

MASTER

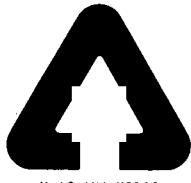
CONF-791142--6

ACTINIDE $5f$ SYSTEMS:

EXPERIMENTAL DETERMINATION OF THE MAGNETIC RESPONSE FUNCTION

by

G. H. Lander


DISCLAIMER

This book was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Prepared for
International Conference
on
Crystalline Electric Field
and
Structural Effects on f -Electron System

Philadelphia, Pennsylvania

November 12-15, 1979

U of C AIAA USDOE

ARGONNE NATIONAL LABORATORY, ARGONNE, ILLINOIS

Operated under Contract W-31-109-Eng-38 for the
U. S. DEPARTMENT OF ENERGY

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED
EP

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

The facilities of Argonne National Laboratory are owned by the United States Government. Under the terms of a contract (W-31-109-Eng-38) among the U. S. Department of Energy, Argonne Universities Association and The University of Chicago, the University employs the staff and operates the Laboratory in accordance with policies and programs formulated, approved and reviewed by the Association.

MEMBERS OF ARGONNE UNIVERSITIES ASSOCIATION

The University of Arizona	The University of Kansas	The Ohio State University
Carnegie-Mellon University	Kansas State University	Ohio University
Case Western Reserve University	Loyola University of Chicago	The Pennsylvania State University
The University of Chicago	Marquette University	Purdue University
University of Cincinnati	The University of Michigan	Saint Louis University
Illinois Institute of Technology	Michigan State University	Southern Illinois University
University of Illinois	University of Minnesota	The University of Texas at Austin
Indiana University	University of Missouri	Washington University
The University of Iowa	Northwestern University	Wayne State University
Iowa State University	University of Notre Dame	The University of Wisconsin-Madison

NOTICE

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for any third party's use or the results of such use of any information, apparatus, product or process disclosed in this report, or represents that its use by such third party would not infringe privately owned rights. Mention of commercial products, their manufacturers, or their suppliers in this publication does not imply or connote approval or disapproval of the product by Argonne National Laboratory or the United States Government.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
559
560
561
562
563
564
565
566
567
568
569
569
570
571
572
573
574
575
576
577
578
579
579
580
581
582
583
584
585
586
587
588
589
589
590
591
592
593
594
595
596
597
598
599
599
600
601
602
603
604
605
606
607
608
609
609
610
611
612
613
614
615
616
617
618
619
619
620
621
622
623
624
625
626
627
628
629
629
630
631
632
633
634
635
636
637
638
639
639
640
641
642
643
644
645
646
647
648
649
649
650
651
652
653
654
655
656
657
658
659
659
660
661
662
663
664
665
666
667
668
669
669
670
671
672
673
674
675
676
677
678
679
679
680
681
682
683
684
685
686
687
688
689
689
690
691
692
693
694
695
696
697
698
699
699
700
701
702
703
704
705
706
707
708
709
709
710
711
712
713
714
715
716
717
718
719
719
720
721
722
723
724
725
726
727
728
729
729
730
731
732
733
734
735
736
737
738
739
739
740
741
742
743
744
745
746
747
748
749
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
799
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1198
1199
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1298
1299
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1398
1399
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1498
1499
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1598
1599
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1698
1699
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1798
1799
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1898
1899
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1939
1940
1941

ACTINIDE 5f SYSTEMS: EXPERIMENTAL DETERMINATION
OF THE MAGNETIC RESPONSE FUNCTION*

G. H. Lander

Materials Science Division
Argonne National Laboratory
Argonne, IL 60439

INTRODUCTION

The advent ten years ago of neutron spectroscopy to identify excited crystal-field (cf) states in lanthanide type materials has greatly added to our understanding of the microscopic interactions in these compounds.^{1,2} For example, once the cf scheme is known, one can calculate the magnetization at any field and temperature, compare with experiment, and thus derive exchange terms.³ If the material orders then the easy axis, details of the spin-wave spectrum, and value of the ordered moment all depend on the cf terms.⁴ Indeed, the very presence or absence of magnetic order may depend on whether or not a singlet is the ground state.⁵ Despite the difficulty of calculating the cf potential from first principles, its measurement represents a necessary step forward in describing a material. In this respect, one may say it is as necessary as knowing the lattice parameter. In the study of actinide compounds the first step therefore was to determine the cf states.

Early Experiments and Expectations

The first experiments with neutron spectroscopy were those of Wedgwood⁶ on UX (X = C, N, P, S, and Se) and Lander et al.⁷ on USn₃. Both attempts failed to see any discrete cf levels.

Before proceeding further along this experimental line, let us return to the simple question of whether or not we expect to observe transitions between cf states in actinide materials with

*Work supported by the U. S. Department of Energy.

neutron inelastic spectroscopy. We may first look at investigations of ionic solids with optical techniques. Here the answer is clear, cf states are well defined, as we would expect from the highly correlated f nature of the outer electrons,⁸ and the overall energy is roughly a factor of 2 to 5 greater than in the $4f$ series.⁹ If we now turn to the metallic compounds, the first study to discuss cf states was by Grunzweig-Genossar et al.¹⁰ They considered the UX compounds and concluded that the stable configuration is $5f^2$ with a Γ_1 singlet ground state. The ordering then develops through a strong exchange mixing. Such a model should be immediately verifiable by neutron spectroscopy, especially on compounds diluted with thorium to weaken the exchange interactions. In 1974 Chan and Lam¹¹ developed a more complete theory including the effects of J mixing, but this still assumes well-defined cf levels. Unless the energies between the ground and excited states are always greater than ~ 12 THz (≈ 50 meV ≈ 400 cm $^{-1}$ ≈ 576 K) cf levels should be observable with neutron spectroscopy. For example, by fitting high-temperature susceptibility data Troc and Lam¹² proposed that UAs had a $5f^3$ configuration with a $\Gamma_8^{(1)}$ ground state and excited Γ_6 and $\Gamma_8^{(2)}$ states at 1.44 and 52.5 THz, respectively. The first transition $\Gamma_8^{(1)} - \Gamma_6$ is exactly in the right region for neutron spectroscopy and evidence for such a transition was reported by Furrer and Murasik¹³ using a polycrystalline sample, but our recent experiments on single crystals show this to be a wrong analysis of the data.

Quite clearly the subject is confused. Our initial (5 years ago) expectation was that in most metallic systems we would find cf levels with neutron spectroscopy. Now we find them hardly at all, and the review I wrote¹⁴ in 1976 marks the point at which our naive expectation gave way to reality. Since that time a number of important developments have taken place. First, cf levels have been seen in the U-Pd system,^{15,16} thus disselling the myth that they never can be seen in metallic systems. Second, experiments on $4f$ systems with intermediate valence have shown that the neutron spectrum consists of a broad Lorentzian response, the energy width of this response being almost independent of temperature. In such systems cf transitions are rarely seen. Third, experiments on single crystals of UX ($X = N, As, Sb, S$, and Te) have shown that the nature of the response function in these compounds, which all order at relatively high temperatures (50-250 K), is much more complex than in the analogous lanthanide systems.

Neutron Cross Section

To prepare the discussion for both ordered and nonordered system we need to consider the fundamental expressions for the thermal neutron cross section, which can be written,¹⁷

$$\begin{aligned}
 \frac{d^2\sigma}{d\Omega d\omega} = & \left\{ \left(\frac{\gamma e^2}{m_e c^2} \right)^2 \left[\frac{1}{2} g f(\vec{Q}) \right]^2 \frac{k_f}{k_i} \exp[-2W(\vec{Q})] \right\} \\
 & \times \sum_{\alpha\beta} (\delta_{\alpha\beta} - \hat{Q}_\alpha \hat{Q}_\beta) \frac{1}{2\pi\hbar} \int_{-\infty}^{\infty} [\exp(-i\omega t) \\
 & \times \langle \hat{S}_Q^\alpha(0) \hat{S}_{-Q}^\beta(t) \rangle dt] \quad (1)
 \end{aligned}$$

We have written down the full expression [Eq. (8.26) in Ref. 18] so as to make some important points.

- (i) The section $\{ \}$ contains constants, the magnetic form factor $f(\vec{Q})$, and the Debye-Waller factor. We have assumed that the spatial part of the wavefunction is factorizable from the spin operator $\hat{S}_Q^\alpha(t)$ so that the $|\vec{Q}|$ dependence appears in this section only.
- (ii) The term $(\delta_{\alpha\beta} - \hat{Q}_\alpha \hat{Q}_\beta)$ reminds us that magnetic scattering takes place between components perpendicular to the momentum transfer. This will be important later in ordered systems, although in paramagnets a simple average value of $2/3$ enters into the expression.
- (iii) The time integral of the spin correlation function enters directly into the cross section.

Two other forms of the cross section are also of importance

$$\frac{d^2\sigma}{d\Omega d\omega} = \{ \} \times S(\vec{Q}, \omega) \quad (2)$$

where

$$S(\vec{Q}, \omega) = \frac{N}{\pi(g\mu_B)^2} [n(\omega) + 1] \sum_{\alpha\beta} (\delta_{\alpha\beta} - \hat{Q}_\alpha \hat{Q}_\beta) \text{Im}\chi^{\alpha\beta}(\vec{Q}, \omega) \quad (3)$$

and through the Kramers-Kronig relationship

$$\text{Im}\chi(\vec{Q}, \omega) = \omega \chi(\vec{Q}) F(\vec{Q}, \omega) \quad (4)$$

where the fluctuation spectrum is defined by

$$\int_{-\infty}^{+\infty} F(\vec{Q}, \omega) d\omega = 1$$

If the spin dynamics are purely relaxational, i.e., $F(\vec{Q}, t) \sim \exp(-\Gamma(\vec{Q}) \times t)$ then

$$F(\vec{Q}, \omega) = \frac{1}{\pi} \frac{\Gamma(\vec{Q})}{\Gamma^2(\vec{Q}) + \omega^2}. \quad (5)$$

The experimental intensity is therefore proportional to the product of $S(\vec{Q}, \omega)$ and a function that takes out the dependence on $|\vec{Q}|$. We may immediately extract $\text{Im}\chi(\vec{Q}, \omega)$, via Eq. (3). Spin waves (or crystal-field excitons) correspond to peaks in the function $\text{Im}\chi(\vec{Q}, \omega)$, which can be expressed as a delta function in one or both of \vec{Q} and ω . This treatment is not particularly useful in extracting the physics from a spin-wave spectrum of something such as MnF_2 , but for more complex situations Eq. (3) is a useful form.¹⁸ For paramagnetic systems we can use Eqs. (4) and (5) to see that $S(\vec{Q}, \omega)$ is given by an overall scale factor $\chi(\vec{Q})$ and a Lorentzian energy distribution, which has a full-width at half maximum (FWHM) of $2\Gamma(\vec{Q})$.

Non-ordered Systems

Although experiments on $\text{U}_{0.15}\text{Th}_{0.85}\text{Se}$ and other diluted U systems have been performed,¹⁴ no careful data analysis has been presented other than the statement that sharp cf transitions do not exist. The same is true for a very rapid experiment performed some years ago at Brookhaven National Laboratory by S. Shapiro and myself on $\text{Np}_{0.02}\text{Y}_{0.98}$. We do, however, have results on UAI_2 by Loewenhaupt et al.,¹⁷ who also present qualitative results on USn_3 in the same paper.

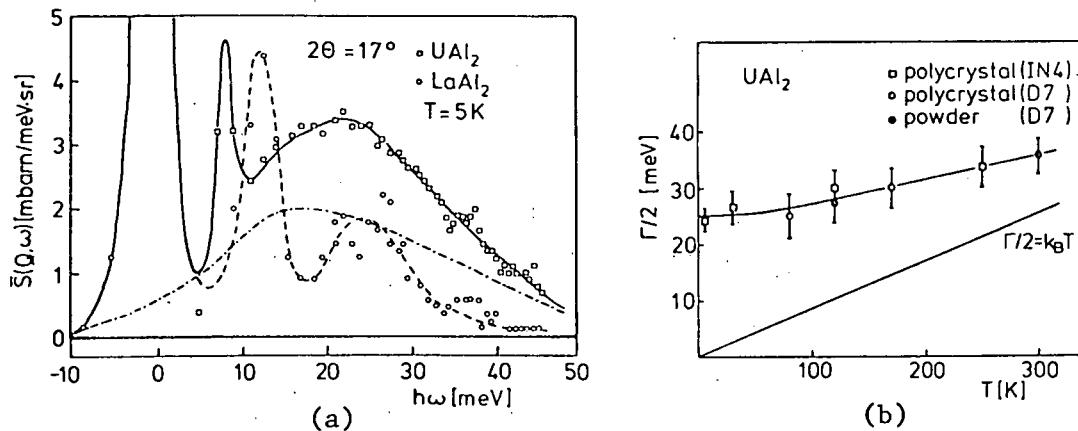


Fig. 1. (a) Energy loss spectra of UAI_2 and LaAl_2 at 5 K. Solid line represents fit for UAI_2 , dashed line for LaAl_2 . Dashed dotted line shows quasielastic magnetic contribution distorted by detail balance factor $[n(\omega) + 1]$. (b) Temperature dependence of half-line width (4.13 meV = 1 THz) in UAI_2 . (From Loewenhaupt et al., Ref. 17)

Figure 1 shows the energy loss spectra (incident energy 51.4 meV = 12.4 THz) for UAl_2 and $LaAl_2$ at 5 K. In addition to the elastic line arising from incoherent nuclear scattering, two inelastic phonon lines are observed. The most important feature is that for UAl_2 additional scattering appears spread over a wide energy range. This additional scattering is well described by Eqs. (2) - (5) where the static bulk susceptibility $\chi(\vec{Q} = 0)$ is an overall (T dependent) scale factor and the energy dependence is given by a Lorentzian. The variation of the half width is shown in Fig. 1(b). Such a general magnetic scattering function was found²⁰ for the intermediate valent system $CePd_3$, and has been found for other non-stable 4f configurations,¹⁸ and forces us at least to consider that many metallic uranium compounds should best be considered in terms of intermediate valence theory.

Ordered Systems

Studies of ordered systems began with Wedgwood⁶ who noted that the magnetic scattering appeared over a wide energy range and was approximately represented by a gaussian centered at $\omega = 0$. These experiments were performed in the paramagnetic state, where most materials show inelastic contributions around $\omega = 0$, but the half widths are seldom more than 0.5 THz,²⁰ whereas for the UX materials the half widths were clearly of the order of 3 - 5 THz.

(i) Measurements on UN

Uranium nitride (NaCl structure, $a_0 = 4.89 \text{ \AA}$) orders antiferromagnetically with the simple type I structure at 53 K. The ordered moment is $0.75 \mu_B$ at 0 K. The neutron inelastic scattering experiment failed to find any evidence for discrete excitations.²¹ Instead, in the ordered phase the magnetic response at the (110) reciprocal lattice point, which is the magnetic zone center, is a broad (FWHM = 5 + 1 THz) distribution peaked at ~ 4 THz. One may think of this as a strongly overdamped spin wave with very steep dispersion. Two important points, which will recur in other investigations, is that (a) the response function is primarily longitudinal in nature and (b) the anisotropy gap at the X point [110] is close to that defined by the phonon branches. To understand (a) we must refer back to the orientational factor in Eqs. (1) and (3). In the type I structure the domain symmetry is such that the scattering around [110] and [001] come from a single domain, that with $\mu \parallel [001]$. We may then separate out²² the response into transverse χ^{xx} (or χ^{yy}) and longitudinal components χ^{zz} .

Further analysis and experiments are now in progress. Of particular interest will be how the high-temperature broad response function, seen by both Wedgwood⁶ and the Chalk River Group,²¹ changes on cooling through T_N . Another question is whether a

Lorentzian distribution of magnetic scattering exists even in the ordered phase.

(ii) Measurements on UAs

Uranium arsenide (NaCl structure, $a_0 = 5.78 \text{ \AA}$) orders with type I antiferromagnetism at 127 K, but has a first order transition to the type IA structure²³ at 63 K. The ordered moment is $2.2 \mu_B$ at 5 K. Neutron inelastic scattering experiments have only just been completed,²⁴ so that the results are very preliminary. Nevertheless, some simple statements are possible. First, no collective excitation has been observed in the ordered state. Second, the scattering may be characterized by a scale factor $\chi(Q)$ and a Lorentzian energy spectrum centered about $\omega = 0$ in the ordered state.

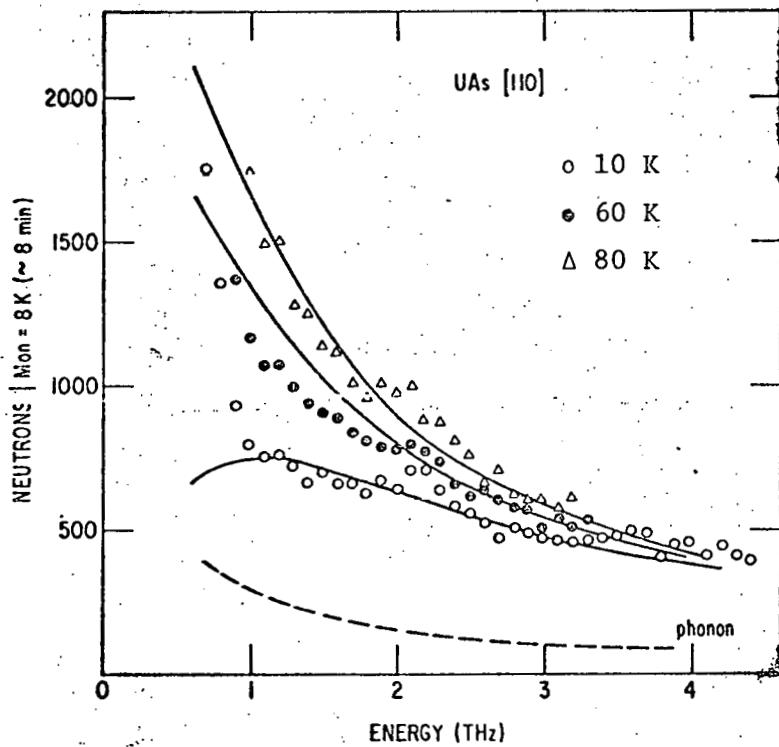


Fig. 2. Experimental scans ($k_f = 3.6 \text{ \AA}^{-1}$) from a single crystal of UAs at different temperatures. The phonon contribution (shown for $T = 80 \text{ K}$) is obtained from the Q^2 dependence of the scattering. The lines represent the variation in scattering expected if $\chi(110) = 700$ and $\Gamma(110) = 1.1 \text{ THz}$. The change in shape is simply a feature of the thermal population and detail balance factor. We have not subtracted the tail of the incoherent scattering, hence the upturn in experimental intensity for $\omega < 1 \text{ THz}$ and $T = 10 \text{ K}$ is not significant.

We show in Fig. 2 scattering from UAs. To fit the data we have separated the nuclear and magnetic parts by the Q dependence (for example, at each temperature scans were done at both the [110] and [330] zone centers) and then used the expression derived from Eqs. (3) - (5). Similar curves for $\vec{Q} = [001]$ are shown in Fig. 3.

Without going into great length, we can note the following:

- (a) The magnetic scattering is very strong. The incoherent phonon contribution is small (<20%), as also is the instrumental background of ~40 counts on this scale, and which has not yet been subtracted.
- (b) Since $\chi(\vec{Q} = [001]) = 2 \chi^{xx}$ and $\chi(\vec{Q} = [100]) = \chi^{xx} + \chi^{zz}$, then we can roughly deduce that $\chi^{zz} \approx 2\frac{1}{2} \chi^{xx}$.
- (c) Above T_N (= 127 K) the spectra (not shown) indicate a drop in $\chi(Q)$ but rather little change in $\Gamma(Q)$. This is exactly what is expected if we believe the response function is a measure of the fluctuation time, and therefore insensitive to ordering, whereas the staggered susceptibility $\chi(\vec{Q})$ must be greater in the ordered state.
- (d) In the [110] scans the collective excitation possibly begins to coalesce at ~2.1 THz (this small peak has been also seen with $k_f = 3.36 \text{ \AA}^{-1}$) but line-broadening effects prevent its observation away from this point.

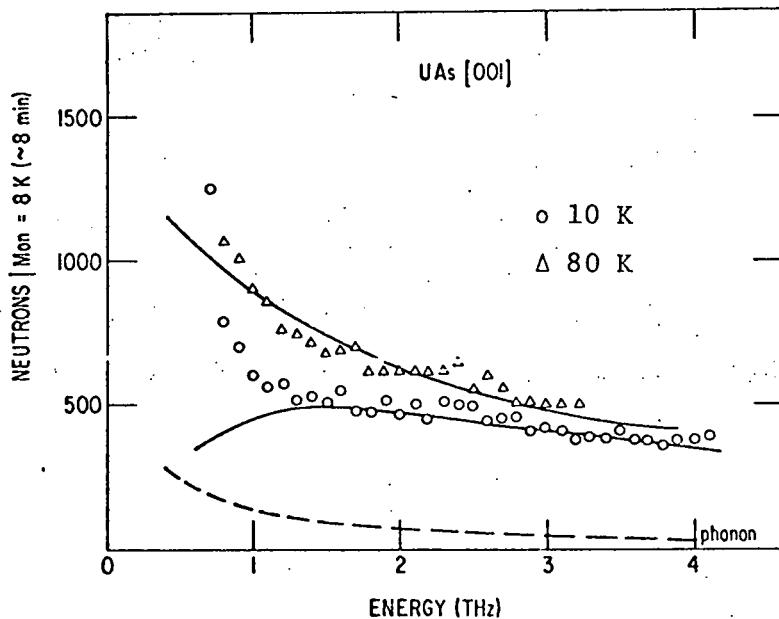


Fig. 3. Experimental scans ($k_f = 3.6 \text{ \AA}^{-1}$) and preliminary fits at the [001] point in UAs. The solid curves are as in Fig. 2 except that $\chi(001) = 400$ and $\Gamma(001) = 1.6 \text{ THz}$. The phonon function, again shown for $T = 80 \text{ K}$, is the same as in Fig. 2.

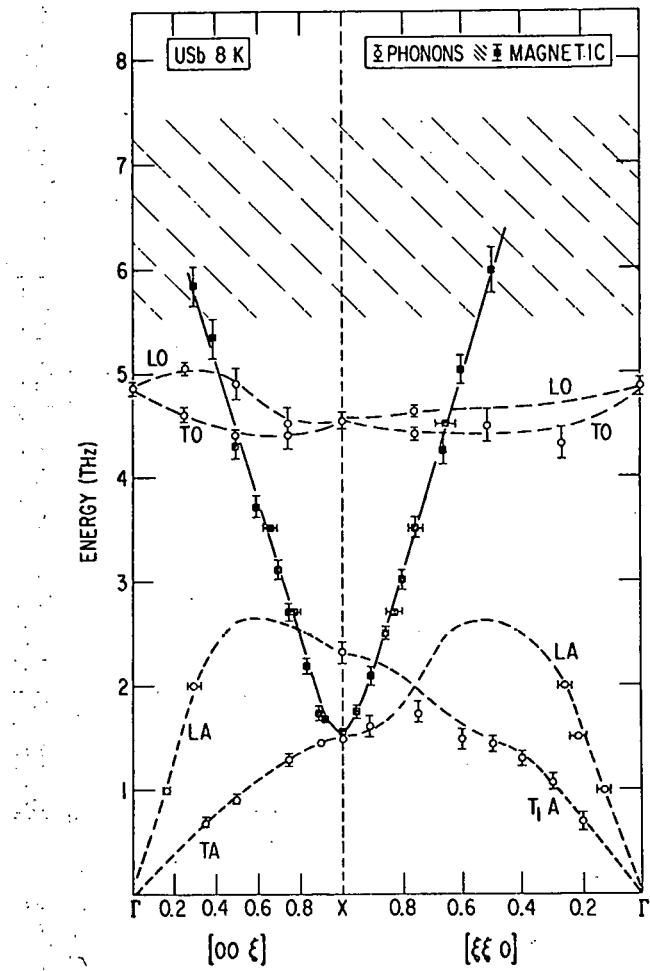


Fig. 4. The dispersion curves for USb; energy plotted against wave-vector transfer \vec{Q} (in units of $2\pi/a$). The dashed lines represent the phonons. The magnetic modes are represented by solid squares (the collective excitation) and the hatched area (excitonic level).

(iii) Measurements on USb

Uranium antimonide (NaCl structure, $a = 6.20 \text{ \AA}$) orders with the type I structure at 240 K. The ordered moment is $2.8 \mu_B$ at 0 K. In contrast to the rather featureless spectra discussed above for UN and UAs, the excitation spectra for USb has a number of most intriguing features.²⁵

The dispersion curves are shown in Fig. 4. The most important point of the USb experiment concerns the observation of a longitudinally polarized magnetic excitation, centered at the X-point, with steeply rising branches. As the temperature is raised the intensity of this collective mode decreases so that by $T_N/2$ it is unobservable. Second, we see a dispersionless exciton (cf level) at $\sim 6\frac{1}{2} \text{ THz}$. Third, we observe a broad response function which is centered on zero energy and (experimentally) appears to increase in intensity as the temperature is raised.

Let us examine these in the context of the UN and UAs experiments. The broad response function is clearly similar to that shown in Figs. 2 and 3 and experimentally in USb we also find a much stronger signal at [110] than [001]. The cf level in USb at $\sim 6\frac{1}{2}$ THz is in excellent agreement with predictions based on form-factor measurements,²⁶ so that this can be reasonably assigned to a transition between states of different symmetry. If the splitting ΔE is proportional to a_0^{-5} , as expected from cf considerations, then $\Delta E \sim 9$ THz in UAs and ~ 21 THz in UN. Both values are rather large for neutron spectroscopy and might well be missed, especially as the matrix element in USb is small. Finally, we come to the collective longitudinal mode. Where has this gone in UN and UAs? We cannot, of course, answer this question unambiguously. It seems highly probable though that the response is strongly overdamped in UN and UAs, but would like to appear at approximately the acoustic phonon X-point frequency, which is what happens in USb (see Fig. 4). The most plausible suggestion is that the strong indirect 5f-5f interaction through the anions and/or conduction electrons leads to suppression of the longitudinal fluctuation. We might expect this to be a function of lattice parameter, and its absence in those materials with small U separation is at least consistent with this view.

CONCLUSIONS

We have discussed at some length the neutron cross section to draw attention to the fact that more than just cf levels can be seen with neutron spectroscopy. Progress since 1976¹⁴ has been substantial -- at least from an experimental view, but it is also clear that we have a long way to go before we can claim an understanding. We have shown that the broad magnetic response function seen in intermediate valence 4f compounds is also present in many U compounds, independent of whether they order or not. In one material, USb, an unusual longitudinal excitation has been observed. This corresponds to a correlated fluctuation in the magnitude of $\langle J_z \rangle$, and one might therefore speculate that it is a collective valence fluctuation, although such a highly provocative statement is not yet supported by quantitative theory. The conventional spin-wave (transverse) response in these materials is clearly at very high energies, as a consequence of the uniaxial anisotropy,²² and has not been seen with neutron experiments. The inability of the neutrons to see the longitudinal mode in UN and UAs is probably because of lifetime broadening effects, arising from interaction with the conduction electrons, or a widening of the 5f band width if we choose to consider a band structure approach.

In this paper I have suggested that the difficulties and challenge of neutron spectroscopy in U compounds is because many of them show characteristics of intermediate valence. Since the

two ground states, $5f^2$ and $5f^3$, may both support magnetic ordering, these systems may well turn out to be as interesting as TmSe, a compound of much current interest. The next few years will show to what extent these suggestions are valid.

ACKNOWLEDGMENTS

Discussions with W. J. L. Buyers, B. R. Cooper, T. M. Holden, S. K. Sinha, and W. G. Stirling are much appreciated. These colleagues should not be held responsible for the possibly controversial views expressed here! Finally, the cooperation, and continued enthusiasm of Oscar Vogt of ETH, Zurich in growing the crystals involved in these studies is of immeasurable importance.

REFERENCES

1. K. C. Turberfield, L. Passell, R. J. Birgeneau, and E. Bucher *J. Appl. Physics* 42, 1746 (1971).
2. See many papers in "Crystal Field Effects in Metals and Alloys," A. Furrer, ed., Plenum Press, New York City (1977).
3. An example is T. O. Brun, J. S. Kouvel, and G. H. Lander, *Phys. Rev. B* 13, 5007 (1976).
4. T. M. Holden, E. C. Svensson, W. J. L. Buyers, and O. Vogt, *Phys. Rev. B* 10, 3864 (1974).
5. B. R. Cooper in "Magnetic Properties of Rare Earth Metals", R. J. Elliott, ed., Plenum Press, New York City (1972).
6. F. A. Wedgwood, *J. Phys. C* 7, 3203 (1974).
7. G. H. Lander, T. O. Brun, B. W. Veal, and D. J. Lam, in "Proc. of Conf. on Crystalline Electric Field Effects in Metals and Alloys", R. A. Devine, ed., University of Montreal (1974) p. 480.
8. B. G. Wybourne, "Spectroscopic Properties of Rare Earths", Interscience, New York (1965) p. 198 et seq.
9. W. T. Carnall, H. M. Crosswhite, H. Crosswhite, J. P. Hessler, C. Aderhold, J. A. Caird, A. Paszek, and F. W. Wagner, "Proc. of 2nd Int. Conf. on the Electronic Structure of the Actinides", J. Mulak, W. Suski, and R. Troc, eds., Polish Academy of Sciences (1977) p. 105. See also M. E. Hendricks, et al., *J. Chem. Phys.* 60, 2095 (1974) and W. T. Carnall, et al., *J. Chem. Phys.* 61, 4993 (1974).
10. J. Grunzweig-Genossar, *Phys. Rev.* 173, 562 (1968).
11. S. K. Chan and D. J. Lam in "The Actinides: Electronic Structure and Related Properties", A. J. Freeman and J. B. Darby, Academic Press, New York (1974), Vol. I. Ch. 1.
12. R. Troc and D. J. Lam, *Phys. Stat. Sol.* 65 b, 317 (1974).
13. A. Furrer and A. Murasik, *Helvetica Physica Acta* 50, 447 (1977).
14. G. H. Lander, in "Crystal Field Effects in Metals and Alloys", A. Furrer, ed., Plenum Press, New York City (1977), p. 213.
15. N. Shamir, M. Melamud, H. Shaked, and M. Weger, *Physica* 94B, 225 (1978).

- 16.A. F. Murray and W. J. L. Buyers, see Proceedings of this Conference.
- 17.W. Marshall and S. Lovesey, "Theory of Thermal Neutron Scattering", Oxford, Clarendon Press, (1971) ch. 8.
- 18.S. M. Shapiro, J. D. Axe, R. J. Birgeneau, J. M. Lawrence, and R. D. Parks, Phys. Rev. B 16, 2225 (1977).
- 19.M. Loewenhaupt, S. Horn, F. Steglich, E. Holland-Moritz, and G. H. Lander, J. de Physique 40, C4-142 (1979).
- 20.E. Holland-Moritz, M. Loewenhaupt, W. Schmatz, and D. K. Wohlleben, Phys. Rev. Letters 38, 983 (1977).
- 21.W. J. L. Buyers, T. M. Holden, E. C. Svensson, and G. H. Lander, in "Proc. of the International Symposium on Neutron Inelastic Scattering", IAEA, Vienna, (1978) p. 239. T. M. Holden, et al., J. de Physique 40, C4-31 (1979) (abstract only).
- 22.G. H. Lander, S. K. Sinha, D. M. Sparlin, and O. Vogt, Phys. Rev. Letters 40, 523 (1978) and references therein.
- 23.G. H. Lander, M. H. Mueller, and J. F. Reddy, Phys. Rev. B 6, 1880 (1972).
- 24.G. H. Lander, W. G. Stirling, and O. Vogt, Experiment at Inst. Laue Langevin, August/Sept. 1979. Unpublished.
- 25.G. H. Lander, W. G. Stirling, and O. Vogt, Phys. Rev. Letters 42, 260 (1979); and Phys. Rev. B (1980) in press.
- 26.G. H. Lander, M. H. Mueller, D. M. Sparlin, and O. Vogt, Phys. Rev. B 14, 5035 (1976).