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I n  &strained optimization the technique of converting .an 
. 

inequali ty cons t ra in t  i n t o  an equal i ty cons t ra in t  by the 
addit ion of a .squared s lack  variable is well  known but rareIy 
used. I n  choosing an ac t ive  constraint  philosophy over the  
s lack  var iable  approach .researehers. quickly j u s t i f y  t h e i r  
choice with the standard ct i t ic isms:Theslack var iable  approach 
increases the  dimension of the problem, is numerically unstable 
and gives rise to singular  systems. . 
I n  t h i s  paper we show tha t  these cr i t ic isms of the  s l ack  variable 
approach need not apply and the  Wo seemingly d i s t i n c t  approaches 
are actual ly  very c lase ly  related.  I n  fac t ,  the squared alack 
variable formulation can be used t o  develop a super ior  and more 
complete ac t ive  cons t ra in t  philosophy. 

P O D U C T I O N  AND PRELIE~I~&IES 

The background material  on quasi-Rewton methods f o r  cons traZned optfmizatiori is 
taken from the author ' s papers, Tapia (1974a), (1974b), (1 977) and (1978), and .. 
these papers w i l l  be referred t o  of ten. W e  f i r s t  consider th ree  more or .less - 
standard approaches f o r  applying quasi-Newtoe methods t o  equal i ty  constrained 

. optimization. 

By a quasi-Newton method f o r  a p p r o x h t i n g  a lstationary point  x? .of ~ : R ~ ~ B '  
-:. - we mean the iterative procedure 

, . - .  . -. 

where B(x,Z,B) is i n  some sense  an approximation 
quasi-Newton methods we have 

Newton's Method: 

t o  $f(x*) . A S ,  examples of 
- .  
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~ h e t ~ e  , ., . ,e are the natural basis v e ~ t o r s  f o r  . @, .h.' i s  e small g~os3tiw, n P 

sca l a r  (ideally somev&e near the square root of the  anehrlte tolerance df th& , 

par t fcular  computer sys tern being used) and (a denotes the matrix whose i,j-rt, ii component' is 'ij . . . --. 
-?. .- - . 

Secant ' Methods : 

.where 8 = xc r, y = vf - Of (x) and as s a t i s f  i2 the s kt 
. . 

( 6 )  - s ( ~ s ~ s B ) ~  - J 
. . 

Several of the  more popular secant updates (choices of $ 1'- are the so-catled 
Broyden, PSB, DFP and BFGS secant updates and can be foud (along w i t h  their in- 
verse updates) i n  Tapfa (1977) and i n  greater d e t a i l  i n  Dennis and -4. (1977) . 
No- let us. consider the  equali ty cons trained optimizatioa p r o b l e m  

* 

(7) minimize f ( x )  ; subject t o  gCx> = W1 

where ' f : R ~ - R  and g r ~ n - ~ m  (m_< n) . Corresponding to P&b~am (1) we brnro th; 
Lagrangian - _ - 

Observe that  L : R ~  x R ~ +  R . The we1 1-koown eIass i c a l  bgrange ml tiplier theory 
says t ha t  (under mild conditions) a necessary condition that - X* solves problem 
(7) is that there ex is t s  a corresponding multiplier A* . such that (@,A*) 4)s 
a solut ion of .k 

. Notice . tha t  (9) can be wri t ten - .  

. (20) VL(x,X) = 0 . . - 

. In the  f~l lowing,  we use d t o  denote a solution of problem < I )  ond * to do; 
note the.correspond&ng ml t ip l i e r , . i . e . ,  - - 

. .. 
. - _  . 

. . _ ... . By the  extended pro.blem corresponding t o  problem (7) we mart problem (3.Q). The 
motivation for  the use of the terminology extended should be clear from the &t 

. . t h a t  the  dimension of problem (10) is actually n+ m , 

, . For the  sake 03 s&pli&.ty, i n  t h i s  paper we have elected to w r k  with the ' - 
. - Lagrangian instead of the augmented Lagrangian- A l l  our cazamtnts and r e s u l t s  . 

' apply equally well t o  fomulztions which use the augmented Lagrangiarr, Poi~ever, 
. . . . . a key point of Tapia (1977) (see i n  particular,  Corollary 7.  L and Theorem. (10.3)) 

. . 
. . is. t h a t  the augmented Lagrangian may offer  l i t t l e  i f  anything over the standard 

Lagrangian formulati~ns . See also Ber tocchi, Cavalli and Sp,eCticato (1979)- 

The Multiplier Extqpsion Quasi-Rewton Methods: 
., : 

By a mult ipl ier  extension quasi-ATewton method 'for problem C7) we. mean tke itera- . 
. . 

tive procedure . . 



(12) , ' (3 = ( )  - B'%&(x,.j. . . . 

. . .  

vsm . . .=I" : .,I * . . .  ...*:.: m.: :,. . .  . '(13) 
. . 

v ~ ( Z ) ~  . . . . 
. . . . 

. . .  . . .  

where < is an approximation t o  $1(x4, A*) .: . . .  . . . . .  
. X . . . . . . . . 

The m u l t i p l i e r  extension secan t  methods r e s u l t  by choosing 

- . . - - 
where s = x - x, y = V,L(x,h) - vx~(x,h), Bx is  the  cur ren t  approximation to . 

. 

2 
v~L(x*,~*)  and Cs is one of the popular secan t  updates. The m u l t i p l i e r  enten-. . 

. . .  

s t o n  s e c a n t  method played a n  important r o l e  i n  t h e  theory developed i n  rapik . ' 

(1977) and (at present)  we have no references  to earlier usage. . . . .  

. . . - 
. . The Efu l t ip l ie r  Update Quas.i-Newton Methods: 

. . 
. . 

By a m u l t i p l i e r  update quasi-Newton nethod f o r  problem (7), we mean the iterative . . . . 
procedure . . . . 

. . . . . .2 
. . .  , where E(x,Z, ~ , X , B )  is an approximation t o  vxL(x*, A*). The. mult. ip1ier update.' 

. . . . .  . : 
. . 

' . secant m t h o d ~  r e s u l t  by. choosing .'. . . .  . . .  . . . . 
. . 

. ( l a )  . .: s(x.2, ~ ,A ,B)  = B~ ( s  ,Y.,B) 
. . 

. . 
. . . . . . .. ' 

. . 
. . . . 

. . .  : .where s = H - x, y -RL @,x) - V ~ L ( X , ~ )  a n d  : BS is one of t h e  popular  secan t ' . .  . . . . . .  
. . . . 

. . . . .  - . . . 
. . .  . . 
. . .  updates. 

. . . . . . . . . . . . . . 
. . '  

. . 

. . .  , The m l t i p l i e r  update h'er~ton method was proposed by the  author i n  Tapia (1974a) 
. . . . . . and extended t o  inequa l i ty  cons t r a in t s  i n  Tapia (1974b). . The m u l t i p l i e r  'update 
' .  
. . . . 

. ' ' . . secan t  nethods were. proposed by t h e  author  i n  Tapia (1977) and i n  t h a t  paper in- 
. . .  . ,.:, . 

. . .  . . 
. e q u a l i t y  c o h s t r a i n t s  were handled v i a  a ' s l a ck  var iab le .  Independently, Han (1977) . - 

. . .  . . .  . . . . . . 
proposed secant .  nethods f o r  problems wi th  equa l i t y  and inequa l i ty  cons t r a in t s  

. . . .which  use  a n  intermediate  'quadratic program t o  so lve  f o r  the  mu l t i p l i e r s .  In the 
. . case of problem (7) (no inequa l i ty  cons t r a in t s )  i t  , i s  a simple mat fe r  to show 

. . 
.. t h a t  Han's quadra t ic  program reduces t o  (15) arid hence h i s  a lgor i thm reduces to . 

. . t h e  m u l t i p l i e r  update secant  method. Glad (1976) a l s o  independently, proposed 

the  m u l t i p l i e r  update secan t  mathod. H e  used. an a c t i v e  cons t r a in t  philosophy to . . . .  

handle i n e q u a l i t y  cons ' t ra ints .  A l l  t h r e e  papers 'esta61ished ~ u p e r l i n ~ a r  c-ijnver- 
gence . . . .  . . 



* .  

The Quadratic.  P r o g r m i n g  Quas i-Newton llethods : 

By a quad ra t i c  proaamming quasi-Newton method . fo r  problem (7) we mean t h e  i t e r s t i v e  
. . 

procedure 
. . - 

(19)  . x = x + &  
. . .. . 

. - . . 
(20)  B = U~(~,Z>B) . . 

. . 
where R(x,z,.B) ' is a n  approximatio,n t o  $L(X*,X*) and 6h i r a  solukion of  ihhe . 

X quadra t i c  program . . .  
- .  

(21 ' min q ( b )  = f(x) . . + (vf(x),&) + M B A X , ~ ~ )  
. Ax 

. . . . 
T 

s u b j e c t  t o  ,vg(x) Ax + g (x) = 0 . . 
. . 

> . .  - .  . . .  . .  
The quad ra t i c  programming secan t  methods r e s u l t  by =boos ing 

- 
- . where s = x - x, y = V ~ L ( ; , \ ~ )  - vxL(x,hqp), flS is one of the populzr s e c v r t  

updates'  and 
APp 

is t h e  mu1 t i p l i e r  obtained in, the s o l u t i o n  of the .  quadra t ic  grcgrarn 
(211% 

' This  form of  t h e  quadra t ic  programming quasi-Xei~ton method was introduced by Garcia 

. . ,. . . 
Palomares and Mangasarian (1976). Han (1976) added s o u  a n a l y s i s  and s p e c i f i c  s e c a n t  
updates and Powell (1972), (1978) added f u r t h e r  refinements and ana lys i s ,  . . 

. . 
-.: 

When they  were f i r s t  proposed, many thought t h 2 t  these  t h r e e  approaches were d i s t i n c t  
However, as t h e  f o l l a ~ i n g  theorem from Tapia (19'7 8) shows., they are equivzlent .  

. . . .  . 

Theorem 1. The mult ipf  i e r  extension s ecan t  method, t h e  . m u l t i p l i e r  update s e c a n t :  -. . , . , . , . ,, - . . -. -. . - -. - 
. . method, and t h e  quadra t ic  p rograming  secan t  nethod genera te  ident ical .  Cx, A) i ter- 

- .  ates and are l o c a l l y  Q-superlinearly co.nvergent. 

Proof.  ' ' F O ~  t h e  proof of this  theorem and o t h e r  de t ' a i l s  see T a p i a  (1971), (1978). 

INEQUALITY - - - -. . . . , CONSTRAINTS. . ' . . . 

. . 
. . . . . . Consider t h e  ex tens ion  of problem (7) given by 

, . 

(23) . . minimize. f (x ) ,  ' s u b j e c t  . to .  g. P ( x )  = 0 , .i = 1,. . ,',n 

. . . . .  . 
. :. . . . where 
. _.. ' . 

: .. . . . . . . 
For x ER", l e t  

B ( x )  = (i : l < i _ < m  - o r  gi(x) , = 0 ,  i=m+l, ... . ,p) 
. . 

n 
I n  t h e  .case :of problem. (7) we l e t  B(x) = (1,. . . ,m} . . ' A  p o i n t  .x € R  is - s a i d  .to be 
a r e g u l a r  po in t  o f  problem (7) o r  problem (23) i f  (Vgi (x) : i E ~ ( s ) )  is a l i n e a r l y  
independent s e t .  well known necessary condi t ions  f o r  problem (23) a r e  that., if the 
r e g u l a r  po in t  x* i s  a s o l u t i o n  of p rob len ' (23) ,  then t he re  e x i s t  Lagranpe o ~ l t i -  
p l i e r s  . A'= (A:), i = 1 ,  . . , such t h a t  (x*, 1.~9 is  a s o l u t i o n  of t h e  fo l l ov ing  sys iez 

of equat ions  and inequa l i t i e s :  , . . 



It is not  obvious how one extends t h e  m u l t i p l i e r  extension and the mltipf ier up- 
da t e .  philosophies t o  handle inequa l i ty  cons t r a in t s  . C l  ea r ly ,  one way of i n e l u d i n g  
inequa l i t y  c o n s t r a i n t s  i n  the  quadratic programming philosophy is obvious, Speci- 
f i c a l l y  . one meref y c a r r i e s  them. along as l i nea r i zed  inequa l i t i e s  . %n the q u a d r a t i c  
program. On the su r f ace  t h i s  seems t o ' b e  zn advantage o f  the  quadrat ic  prosam;ling 
approach. However, mathematicaffy the  s i t u a t i o n  i s  not well-defined s ince  the 
theory fo r  handling the i nequa l i t i e s  w i l l  now depend on the  p a r t i c u l a r  quad ra t i c  . 
programming code employed i n  the implementation and can vary s ign i f i can t ly .  - In 
many ways t h i s  approzch llsveeps the d i r t  under the  rug", . Noreover, Chamberlafn 
(1978) r ecen t ly  demonstrated' t h a t  t h i s  approach can lead t o  c y c ~ i n g ,  

.. . . . 
. . 

. . . . 

Active Constraint  Philosophy: . . 

The a c t i v e  cons t r a in t  philosophy cons is t s  of ignoring c e r t a i n  inequa l i ty  con- . . . 

s t r a i n t s  and t r e a t i n g  the  remaining inequal i ty  corzs t r a i n t s ,  as  e q u a l i t y  c o n s t r a i n t s  . . 

- . a t  each s t age  of t he  iterative process. In i t s  pures t  form one merely ignores  i n -  ' . .- 
equa l i t y  cons t r a in t s  which. a r e  s a t i s f i e d  and t r e a t s  inequa l i ty  .. . cons t r a in t s  +ich 

$1 are v io l a t ed  a s  e q u a l i t y  cons t r a in t s  . 
Locally (or perhaps b e t t e r  s a i d , a s y q t o t i c a l l y ) ,  the  a c t i v e  c o n s t r a i n t  ph2losophy 
is optimal. If one merely knew which cons t r a in t s  were a c t i v e  ar binding a t  the . 

so lu t ion ,  then the  inequa l f ty  constrained problen could be handled a s  an e q u z l i t y .  
cons t ra ined  problem wi th  the  minim1 number of cons t r a in t s  . Indeed, the  knowledge 
that: a p a r t i c u l a r  c o n s t r a i n t  is  a c t i v e  a t  the  s o l u t i o n  can  be expected only when t h e  

. i t e r a t e s  a r e  near t h e  so lu t ion .  Far  f rom the  s o l u t i o n  t h e  information t h a t  a con--. ' . 

s t r a i n t  is  e i t h e r  s a t i s f i e d  o r  v io l a t ed  would be a pool: ' ind ica tor  o f  the  properg ies  . 

of t h i s  cons t r a in t  a t  t he  so lu t ion .  
. . . . 

One obvious problem wi th  the' ac t ive  cons t r a in t  .approach is tha t  we .can never handle  
more than n (dimension of x) equal i ty  c o a s t r a i n t s  .. Hence, i t  is not  c l e a r  what 
one should do when the  nuruber of o r ig ina l  equa l i t y  cons t r a in t s  p lus  the number of 
v io l a t ed  cons t r a in t s  is  g rea t e r  than n . I n  t h i s  case  one m s  t cons ide r  no t ions  . . . 

analogous t o  "most violated".  lioreover, s i nce  the  iterates generated by the  t h r e e  
quasi-Newton methods described above s a t i s f y  l i n e a r  cons t r a in t s  and t h e  empi r i ca l  .' 

f a c t  t h a t  l i n e a r  approximations t o  nonlinear i nequa l i t y  cons t r a in t s  can be v e r y  
.misleading, we ~ m u l d  expect the  a c t i v e  cons t r a in t  philosophy i n  its pures t  f o r m  to 
not be immune t o  cyc l ing .  

I n  s u m r y ,  we f e e l  t h a t  what is  needed i s  a conservat ive ac t ive  cons t r a in t  ph i lo -  - 
sophjj. Namely, a  s t r a t e g y  which a l l m , s  f o r  a  c e r t a i n  amount of indecis iveness  f a r  
from the so lu t ion ,  i.e., doesn' t force the d r a s t i c  choice of e i t h e r  ignore o r  t r e a t  
a s  an equal i ty .  It i s  the ob jec t ive  of t h i s  paper t o  argue tha t  the squared s l a c k  
va r i ab l e  approach which we not./ describe,  czn lead to  such a s t ra tegy .  



, 
. .  . . . 

. . 

Squared S l ack  Variable  Philosophy: 
- .  

- I L + p - m ~  R by I f  we in t roduce  t he  s l a c k  v a r i a b b s  y+l,oe,yp and def ine  F,Gi:B .. 

. . . . 
, t h e n  we may cons ider  t h e  fol lowing e q u a l i t y  constra ined op t imiza t ion  problem: 

. . 
minimize F(x,y), sub jec t  t o  Gi(x,y) = 0 ,  i . = I  ,..., p .. . . . . . 

. . 

The f o l l o v i n g  p ropos i t i on  is no t  difficult t o  prove and fus t i f i e o  the use of. squared . . 
slack va r i ab l e s .  . 

. . . . . .  . . - 
- ' Proposition 1. ~ v p p o o e  x c nn. .  TI,^,, 

. . 

. . (i) x so lves  problem (23) (x,y) so lves  problem (25); : . . 

. .  . 
(ii) x is a r e g u l a r  s o l u t i o n  of problem (23) d (x,y) is' a regula r  s o l u t i o n  o f ,  . 

. problem (25) ; 

(iii) x s a t i s f i e s  (24) t he  necessary condi t ions  f o r  problem' (23) (x, y) 
s a t i s f i e s  t h e  necessary condit.ioxis f o r  problem (25) . (see (9)), (with . - 

. . 
hi -> 0, i = q+ l,.. . , p ) .  

, .?. 

I n  t h e  above proposi t ion,  nrhen x is a s o l u t i o n  of problem (23) the co&esponding . 

y should  be i n t e r p r e t e d  as yi = /-- * - . .. . . 

. . .  . . 

The squared s l a c k  v a r i a b l e  approach suggested above is r a r e l y  .used by workers i n  
. op t imiza t ion  theory. Its use seems t o  be r e s t r i c t e d  to  oomc ota t is t ic ia i ls .  arid en@-- 

. . nkers  . The idea  of  r e p l a c i n g  a va r i ab l e  which is cons t ra ined  t o  :be nonnegat ive  by' il 
squared v a r i a b l e  is q u i t e  comon i n  s t a t i s t i c s  (see f o r  example, Chapter 4 and 
Appendix 11.2 o f  Tapia  and Thompson (1978)). A t  any rate, most workers i n  optimi- 
z a t i o n  theory quickly reject t h e  squared s l a c k  v a r i a b l e  approach &th one o r  more of - 

. - 
' t h e  fo l lowing  s tandard  c r i t i c i s m s :  

' 

. . . . 
. .  . . . , . 

... . . 
I .  . . 

. (1) Squared s l a c k  v e r i a b l e s  i nc rea se  t h e  dimension of  t h e  problem, "i. e i  , thr  

. . , . . . aimensfon of t h e  i i n e a r  systems t h a t  must be solved; . . .  

. . . . 
. . 

. . ' . .  
. ., . (2) Squared slack V a r i a b l e ' s  are l e s s  s t a b l e  t h a n  no&quared s l a c k  v a r i a b l e s  

. . (suu' Rub1 r ~ u n  (197 6 )  ) ; . . . ' 
. . 

. ._. . . . - 
. . 

. (3) squa;ed s l a c k  v a r i a b l e s  l e ad  t o  (asymptotic) s i n g u l a r i t i e s  'and i n  p z r t i c u l a r  
s i n g u l a r  Hcss ians  . 

. W w i l l  nor? i n v e s t i g a t e  t he se  t h r e e  c r i t i c i s m s  i n  t h e  l i g h t  of our  three. quas i -  
.. . 

' % Newton methods. We show t h a t ,  con t ra ry  t o  some authors ' biases ,  t h e  m u l t i p l i e r  up- 
d a t e  quasi-Newtoil method can  be implemented s o  t h a t  i t  does not  suf  f e r ' f rqm any of 
t h e  above th r ee  c r i t i c i s m s  and a l s o  leads  t o .  a promising a c t i v e  cons t ra in t  philosophy. 

The fol lowing q u a l i f i c a t i o n s  a r e  extremely important. Theorem 1 says  ' t h a t  bu r  t h r e e  
. 

approaches a r e  mathematically equivalent  i n  the  sense t h a t  they produce ' i d e n t i c a l  
i t e r a t e s  . Ho;~ever, t he re  may be s i g n i f i c a n t  d i f fe rences  from a nwnerical and p r a ~ t i - ,  
c a l  p o i n t  of view. ' Hence, i n  a pa r t i c t i l a r  appl icat ion,  i f  one uses a s t r a i g l ~ t f o n i a r d  
implementation one approach may have advantages over another. Of course i t r n : t l A  h- .. 

. . 
. . . .  



- I  . argued t h a t  t h i s  s t ra ightforward implementation was naive and could be modif ied 
s o  as t o  take advantage of any pos i t i ve  aspect  of one of t he  other formulat ions .  
While t h i s  is  mathematically t rue ,  i t  is exac t ly  t h i s  point with which w e  are 
concerned. Namely, t he  modification could well  be of such a nature as to esscn-  
t i a l l y  produce the  equivalent  fomuf  a t ion .  Hence it is the  s t r a igh t f  o n a r d  imple- 
mentation t h a t  we a r e  concerned-with and i t  is  i n  t h i s  context  t ha t  we will argue 
t h a t  t h e  use of squared s l ack  va r i ab l e s  is na tura l  f o r  the mu1 t i p l i e r  update  
quas %-Newton method and leads  t o  a n  e f f e c t i v e  a c t i v e  cons t r a in t  philosophy. 

. . 
. . We first e s t a b l i s h  t h e  following no ta t ion  

. . . .  . T , .  
'. (2 6) Y ' ( O , ~ ~ * . s O , , , Y ~ ~ s * ~ - s Y  3 

. . P . . 
. . . '. . 

. . T 
. . . . ' . . ( i 9 ) '  A = 'diag(1,. .. ,19bl, .. .,I.? . 

. . I . . .  
. . . . . . 

. . 
. (30) . l(x,A) = f(x) + ~~Tg((x) ,; . , 

. . 
. . . . . .  , . .', '. . and . . . . .  

. . 

. . . . 
T . . .  . . .  

. (31)' L(x,Y, A) = F(x,Y) $- h G ( ~ , Y ) ,  . . 
. . 

. . . . 

. ~qhere  f ,  F, g and G a r e  as i n  (23) and (25) .. W e  x d l l  a l s o  p a r t i t i o n  the ' .. 
. . vec to r  u ERP and the  p x  p diagonal matrix U = diag(u) i n t o  a p a r t  corres- . ' . 

. I pending t o  t he  e q u a l i t y c o n s t r a i n t s  and a p a r t  corresponding t o  the i n e q u a l i t y  
cons t r a in t s .  These p a r t s  w i l l  be subscr ipted with E and a[ respec t ive ly ,  i.e., 

T . . . . 
. . . . .  . . .  

- - % =  ( u ~ , . . ~ ,  urn) 2 
. . .  
6. -.: . . 

. . .  T 
. . 

.U I = , (u.' &1.. *,u ) . 9 .  . . . - 
P 

. : 
. . . . U = diag(ul , .  ..,urn), 

. . .  . . .  E 
and . . 

. . . . 
. > 

. . .  . . ... . . . . . U I = . . .  diag(udl, ,u- ) 
P . . 

. . 
. . 

',' 
It  is a ~ t r a i ~ h t f o r w a i d  mat te r  t o  .show t h a t  

and 



Squared  s l a c k  Variables  and the ~ u a d r a t i c  Programing Approach: . 
' 

.. 
. . .  

. . 

. . . .  It  is no t  d i f f i c u l t  t o  see t h a t  a s t ra igh t fo&rd  a p p l i c a t i o n  o f  t he  quadra t ic  . . 

. . . . . . progranrming approach t o  problem (25) would lead t o  a n  algorithm k-Iaich s u f f e r s  
: . . .  . .  . . from a l l  th ree  of the  above c r i t i c i s m s  Syecif  i c a l l y  , we wouf d be approximating 

t h e  Hessian matr ix  given by .(34) which i s  necessar i ly  s ingular  a t  the  s o l u t i o n  
(except of  course  i n  the .  un l ike ly  s i t u a t i o n  t h a t  a l l .  i nequa l i t y  cons t r a in t s  are .. 

ac t i y c  at t he  so lu t ion ) .  , . . . . 
. . . . . . . . 

. . 
. . - 1 2  Since a  l i n e a r i z a t i o n  o f '  the  cons t r a in t  G .  (x, y) = g.  (x) + $y amounts ' t o  ' . 

3. 3. : i . . . . . . .  . . 
. . 

. . .  . . .  . - .  ' T 
-' (3 6) . ' . .  . . . .  . . .  . . . . 

. . 
"pi*) b i + ~ i A ~ i  . . .  . . . . 

I 
. . 

. . . .  

. & s e e  t h a t  the  s l a c k  va r i ab l e s  w i l l  not appear i n  .squared form only. Hence, lie 
cannot r ep l ace  4 with  z i  and vork with a nonsquared s l a c k  var iab le .  F i n a l l y ,  
t h e  dimension of  t h e  quadra t ic  program i s  increased by .  p - m, t h e  number of , . . 

. . .  . . .  
' slack va r i ab l e s .  ' .  . . 

. . . . . . . . 

Squared S lack  Variables  and the llul t i p 1  i e r  Extension ~ ~ ~ G o a c h :  . . -. 

. . . . 
. = . .  . , 

,- ' 

I t  i s  not  d i f f i c u l t  t o  s e e  t ha t  only the f i r s t  two c r i t i c i sms  'apply i n  t h i s  case.  
Namely, t h e  Hessian ma'trix given by (35) is  not s i n g u l a r  a t  t h e  so lu t ion  a s  long 
a s  we  have strict complementarity. . S t r i c t  complementarity means t h a t  a t  t h e  

. s o l u t i o n  not both h and yi a r e  zero.  This assumption is b o t h  standard and , ' .  
i . . 

mild. Again we  see t h a t  y: appears i n  nonsquared f o e  both i n  3 3 )  a n d  (34). 
. . .  . . 1 . . . . 

. . . . 

Squared Slack Variables  and the l l u l t i p l i e r .  Update Approach: 
. . . . 

. . . .  

" . , A s t ra igh t forward  applicit ion of  t he  mu1 t i p l i e r  update quasi.-~et?ton .rdethod . . to  . 

: , problem (25) g ives  , the '  i t e r a t i v e  procedure . . 
. . ,  . . . .  

. . . , , . . , .  

The f i r s t  th ing we ohserve is  t h a t  (39) does not r equ i r e  the s o l u t i o n  of a  l i n e a r  - 

sys  tem,and the l i n e a r  systems t h a t  m u s t  be solved i n  (37) and (38) a r e ' ng t  of a  . 

l a r g e r  dimension than we would have without the  add i t i on  of s l a c k  var iables .  
Hence, c r i t i c i s m  (1) does not apply. The second th ing  .we .observe. is. a j a t  ,the 
s l a c k  va r i ab l e s  appear twice .in (37) but i n  squared form only. Also, while they.  - 
do not  appear i n  (39) i n  squared form only, we can obviously.square  .both s i d e s  
and o b t a i n  an equc?lly n ice  expression with the s l ack  var iab les  i n  .squared. form : ' 

only. These observat ions  allow us t o  ' s t a t e  the  complete algorithm .in terms of a ,. 



.- , .. . . 
. . . . . . 

9. 

nonsquared s l ack  var iab le .  I t  follows tha t  ne i the r  c r i t i c i s m  (1) nor  c r i t i c i sm . . 
(2) w i l l  apply. Let us therefore  consider c r i t i c i s m  (3); namely, s i n g u l a r i t i e s ,  

. I n  l i g h t  of the above comants  we f i r s t  introduce the  following transfornaati;ons 
and notation: " .,. .. . I 

.: . . 

. . 

Z . = diag  (2) . 
. . 

Clear ly  1' = 0 . fo f .  any m < i 5 p produces a s i n g & l a r i t y  i n  (37) and (39)- i 
. . Since 

'i 
' = 0 is a reasonable value and c l ea r ly .  is acceptable i n  the  equivalent 

. . mul'tiplier. extension formulation,. i t  m u s t  be a removable singulariJy.  In order. to. 
o b t a i n  the co r r ec t  i n t e r p r e t a t i o n  of (33) and (39) we w i l . 1  look a t  t h e  d t i p l f e r  
extension formulation. I n  t h i s  considerat ion the choice of B does n o t  matter; . 

. .  s o  f o r  the sake of s i m p l i c i t y  t:e may'as w e l l  consider  the Newt,on formulation. 

. . 

 he l i n e a r  system (44) 'can be par t i t ioned  i n t o  f o u r ,  subsystems of equations as 
d i c t a t e d  by the  form of the  Hessian given i n  (35). We assume tha t  zi # O and : 
Ai # 0 f o r  i = m + l ,  ...,p and then',look a t  the  l imi t ing  behav io ra s  e l t he r  . - .  

. . - -- 
A. -, 0 o r  z .  i 0 . We can s a f e l y  assume tha t  we w i l l  never encounter the si ' tu- . 

a t i o n  when both var iab les  go t o  zero, s ince  t h i s  would cont rad ic t  our  s t r i c t  
complementarity assump t ion.  By combining the information i n  the second and fou r th  
subsystems of  equations i n  (44). we obtain  fo r  i = m+ I , .  . . ,p  

. - - .  
- T '  . . '  . . 

(45) Ai/Xi ' = (ng(x) . . Ax + g(x) + z )  i/zi 
. .  . .  .. . , , . . - .  

. . 

. . , : whhere ( u ) ~  denotes t he  i - t h  conponent of t he  vec tor  u .  om (45) ye see t h a t  

. . f o r  i = m C  1,. . . ,p i f  A. = 0, then 5 = 0 and t h e  q u a n t i t y  $ 1 ~ ~  can be ob- 
ta ined  from the r ight-hana s i d e  of (45), even i n  t h e  case t h a t  = ,me second 
subsys tern of (44) (or (39)) shows' t h a t  i f  zi = 0 ,  then z i  0. W e  are n m  i n . a  

. .  . pos i t i on  t o  rewr i te  our  algorithm using the s l ack  va r i ab l e  z 'and remo-g the 
s i n g u l a r i t i e s  i n  (37) and (39). Spec i f i ca l ly  we have 

. . 

. . - . . . .  . 
. .  . . . . . . . 

. .  . 
( i f '  hi 0 s e t  x'. =0: and do not include i t  i n ' ( 4 6 ) , .  i = m + l  p) 

1 
. . 

( i f '  z = O  s e t  Z = O  and do not inc lude  i t  i n  (48 ) ) -  
i i .  .- 

- - 
(49) B = fi(x ,%,),,B) . ' . ' . . 

I n  the follo.c.ring theorem we assume the .standard. conditions w i th  respect ..to d i f f e r -  
e n t i a b i l i t y ,  ' i n ~ e r t i b i l i t ~ ,  r e g u l a r i t y  and s t r i c t  complementarity (see Tapia .. (1973) . 



. t:* 

- I0 

Theorem 2.  ' Consider t h e  m u l t i p l i e r  update quasi-Newton method given by (46) - (49)  
f o r  problem (23). Then 

(i) The m u i t i p l i e r  update Newton method is  l o c a l l y  Q-quad ra t i ca l l y  c o n v e r g e n t  i n  
. . t h e  v a r i a b l e s  (x,z, A) ; -.. *..L. ... .; . . 

(ii) The u n i l t i p l i e r  update d i s c r e t e  Nevton method is l o c a l l y  Q - l i n e a r l y  conver- 
gent  ' i n  t he  v a r i a b l e s  (x,z, A) ; 

gii) The m u l t i p l i e r  update s ecan t  method i s  loc2 l ly  Q-supe r l i nea r ly  convergent i n  
. . t h e  v a r i a b l e s .  (x,i, A) 

. . . . .  

. . .  p r o o f .  The proof follows from Theorem Z and t h e  ~ o n v e r ' ~ e n c e  a n a l y s i s  g iven  i n  
. . . . . . 

Tag ia  (1977).. . . . . 
. . . .  

. . 
Observe t h a t , ( 3 9 )  c a n b e w r i t t e n  a s -  . . - 

. . . . . . 

This  . i n t e r e s t i n g  symmetry has s e v e r a l  important consequences, 

Theorem 3. Suppose t h a t  t he  m u l t i p l i e r  update quasi-Newton method ' (46) - (49) con- . 
verges .  Then x . 7 ~  neces sa r i l y  have Q-superlinear convergence to z e r o  .of the m u l t i -  
p l i e r s .  corresponding.  t o  inequaf i t y  cons t r a in t s  which are. i n a c t i v e  at the s o l u t i o n  
and Q-superlinear convergence t o  zero  of t h e  s l a c k  v a r i a b l e s  .corresponding t o  

. . i n e q u a l i t y  c o n s t r a i n t s  which a r e  a c t i v e  a t  t he  so lu t ion .  . . 

Proof.  The proof follows d i r e c t l y  f r o n  strict  complementArity and the express ions  . 

(50) - (51). -: 

b Coro l l a ry  1: Suppose t h a t  the  multipf ier update quasi-Newton-method' (46)-(49) , . 
3; ,..., cooverges t o  ( x * , ~  , x ~ ) ~  Then f o r  i = m f  1 p , . . 

- 
I . r  The i n d i c a t o r  A a s  given by (45.) w i l l  be usefuI  a s  a check o n  t he  validity 

of t r e a t i n g '  a p a r t i c u l a r  constraint as a binding cons trni.nt or '  removing St .fr.om 
, . 

. . .  , t h e  problem. . ' . . . . . . 
. . .  . . .  . . . . .  . . -. 

A l t e r n a t i v e  Choices f o r  - A . and 2: . . ' 

. . 

Clea r ly  i n  (46)-(49) choosing z i = 0 ' corresponds t o  t r e a t i n g  t h e  i-th cons ' t ra in t  
a s  a n  e q u a l i t y  c o n s t r a i n t  and choosing'  X . = O  corresponds to.removing the i - t h  
cons t r aFn t  f r o a  t he  ca l cu l a t i ons  .. I't follows . t ha t  t he  a c t i v e  c o n s t r a i n t  ph i lo -  
sophy i n  i t s  pu re s t  form corresponds t o  t he  s l a c k  va r i ab l e  approach (46)-(49) 
t ~ i t h  t h e  a l t e r n a t i v e  choices  zi = 0 i f  gi(x) 20 and Xi = 0 .  i f  g i (x)<O f o r  

. i = rn+ 1, ... ,p .  Near the  s o l u t i o n  these  choices ~ ~ o u l d  be optirnal. Fa r  from the  
' 

s o l u t i o n  these  choices cou1.d be ,ve ry  poor o r  impossible to  implement. Llhat. is 

needed i s  a mechanism f o r  al lowing soine cons t r a in t s '  t o  be i n  a t h i r d  category.  
Spec i f i ca l l y ,  t h i s  category w i l l  c o n s i s t  of t h e  c o n s t r a i n t s  t h a t  we f e e l  we do 



. , . . . . 
, '  not  have have enough i n f o r k t i o n  on t o  decide i f  they a r e  e i t h e r  ac t ive  o r  in- 

activ.e a t  the so lu t ion .  I t  should be noted tha t  asymptotically the squared s l a c k  
va r i ab l e  approach coincides' with the pure a c t i v e  cons t r a i n t  approach. 

- ;;, 
I n  (48) . the  a 1  t e rna t ive  choice - . . . 

should have a l o t  t o  o f f e r .  I n  pa r t i cu l a r ,  i t  w i l l  make the a lgo r i t ha  l e s s  s ens i -  
t i v e  t o  poor values  of z . by 'removing the dependence' on i;. i n  the second ex- 

1 .  
press ion  on t h e  right:hana s i d e  of (46). . 

. . 

Suppose t h a t  gi(x) < O  and we decide t o  reclove t h i s  cons t r a in t ,  i.e. , we decide 
t o  set hi = 0. Then by l e t t i n g  z = -g. (x) we can use (45) t o  calculate  - . .  i . a  

which can be used t o  check bur choice. y w e l y , ,  if b. 1% is not  -22, we should : 
quest ion t h i s  choice (see (52)). For cons t r a in t s  t h a t  have been removed it would - 
be wise t o  monitor the  behavior of )-./xi as given by (55) a s  well  as the be- 
havior  of gi (x) . A cons t r a in t  h i c k  h2s been removed should be brought beck 
i n t o  the . ca l cu l a t ion  a s  an equa l i ty  cons t r a in t  . (2. = O).. This' w i l l  all%? for ,  a 
f r e s h  ca l cu l a t ion  of t h e  mu l t ip l i e r  2ssociateL with  t h i s  p a r t i c u l a r  cons t r a in t .  

. . - 
Now, i f  gi(x) > 0 o r  igi(x) 1 i s  small end li/li is near one w e  should t r e a t  
t h i s  cons t r a in t  as an equa l i t y  o r  binding cons t r a in t  by choosing z = O  d Again i 
we should monitor the  values of , X . / l  ( in  t h i s  case 'we would not need (45)) as 

i "i 
wel l  as  those of . gi(x) . 

. -- 
The d e t a i l s  concerning the  choices i n  the i q r o v e d  a c t i v e  cons t ra in t  approach 
cannot be f i n a l i z e d  without some nm-erical experimentation. However, t ~ e  are 
q u i t e  confident  t h a t  these observations can bc used t o  cons t ruc t  an approach 
byhich is  super ior  t o  both the pure s l ack  va r i eb l e  approach and the pure a c t i v e  
cons t r a i n t  approach. 

Summary .' , . 
. . 

IA t h i s  paper we have attempted t o  denons t r a t e  t h a t  t he  squared s lack va r i ab l e  . 
. 

.approach t o  inequa l i ty  cons t rz in t s  need not  s v f f e r  from the standard c r i t i c i s m s  
a t tached  t o '  it: increased dimension, nunerical  i n s t a b i l i t y  and presence of . 
i i n g u l a r i t i e s .  Spec i f i ca l ly ,  i t  i s  these renoveble s i n g u l a r i t i e s  t h a t  eventua l ly  
leads  t o  a pure a c t i v e  cons t r a in t  approach. Iforeover, the squared s l ack  v a r i a b l e  
approach can be used t o  construct  &a t  we expect .trill be a super ior  a c t i v e  con- . 

s t r a i n g  philosophy. We gain some s a t i s f a c t i o n  i n  showing t h a t  the  pure act'ive 
.cons t r c i n t  philosophy and t h e ,  squared s l t c k ,  va r i ab l e  philosophy- :. .. zre _ .  not '  a s  . . 

d i s s imi l a r  . .  . a s  many authors b e l i e v e  theii t o  b e ,  '. . . ' , . . .  . . . .  . . .  . .. . . .  . . . .  . 
. . . . . . 

. . 
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