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In constrained optimization the technique of converting an
inequality constraint into an equality constraint by the
‘addition of a .squared slack variable is well known but rarely

used.

In choosing an active constraint philosophy over the

slack variable approach researchers. quickly justify their

choice with the standard criticisms: The slack variable approach
~ increases the dimension of the problem, is numerlcally unstable

and gives rise to singular systems.

In this paper we show that these criticisms of the slack variable

approach need not apply and the two seemingly distinct approaches § i
are actually very closely related.
variable formulation can be used to develop a superlor and more

~ complete actlve constralnt philosophy.

~ INTRODUCTION AND PRELIMINARIES
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Discrete Newton's Method:

In fact,

the squared slack

The background material on quasi-Newton methods for constrained optimization is

taken from the author's papers,

these papers will be referred to often.

Tapia (1974a),(1974b),(1977) and (1978), and
We first consider three more or less

standard approaches for applying qu351-Newton methods to equality constralned

optimization.

By a quasi-Newton method for approximating a stationary p01nt g
we mean the iterative procedure :
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: AN h
where el,.,..,en are the natural basis vectors for 'Rn ‘h- is a small p031t1ve

scalar (ideally somewh[re near the square root of the machine tolerance of the’
particular computer system being used) and (a ) denotes the matrix whose i, j-th
component’ is aij o

Secant Methods:

- SR R(x,%,8) = By(s,y,B)
‘whiere s =%X-x%x, y=VE{X)-VE(x) and ‘BS satisfies the sgcant; equation
(6) e . BS(S,Y,B)S =¥l

Several of the more popular secant update_s (choices of ) are the so-called
- Broyden, PSB, DFP and BFGS secant updates and can be fmmﬁ (along with their in-
verse updates) in Tapia (1977) and in greater detail in Dennis and More. (1977) .

Now, let us consider the equality constrained optimization problem

£7) : minimize £(x); subject to g(x)=0

where f:Rn"R ~and g:Rn"'Rm (n<n) . Corresponding to prc;blem (1) we have the
Lagrangian " i

(8) Lx, 1) = £(x) + A g(x)

Observe that L:R"XR"—=R . The well-known classical Lagrange mult:iplier theory
says that (under mild conditions) a necessary condition that - x™ solves problem
(7) is that there exists a corresponding multiplier A* such that (. XY is

a solution of T

(9 VXL(x,),) =0 _and g(x)=0.
Notice that (9) can be written
(10) VL(%,2») =0 .

. In the following, we use x* to denote a solution of problem (7) and )s_ to de-
note the corresponding multiplier, i. e,

(11) VL(x""‘,k ) =0 .
By the extended problem corresponding to problem (7) we mean problem (10). The

motivation for the use of the terminology extended should be clear from the fact
that the dimension of problem (10) is actually n+m .

For the sake of simplicity, in this paper we have elected to work with the
Lagrangian instead of the augmented Lagrangian. All our comments and results
apply equally well to formulations which use the augmented Lagrangian. However,
a key point of Tapia (1977) (see in particular, Corollary 7.1 and Theorem (10.3))
is that the augmented Lagrangian may offer little if anything over the standard
Lagrangian formulations. See also Bertocchi, Cavalli and Spzdicato (1979).

The Multiplier Extension Quasi-Newton Methods:

By a multiplier extension quaS1—\Tewt0n method for problem (7) we mean the itera- .
tlve procedure




(12) - (?s e(") - BTRLGx,A)

) A
) _ | B, vg(®)
- (13) ‘ B=l % .
' ’ : ve(x)" O

where i; is an approximation.to ‘ViL(x*,A*).

The multiplier extension secant methods result by choosing

L (18) B, —a3<s,y,n>

vhere s =x -x, y = V L(x,x) -V L(x X), Bx is the current epproximation to
2. s % .
v L(x“,x ) and ﬁ 'is one of the popular secant updates. The multlplier exten-'.‘

sion secant method played an important role in ‘the theory developed.ln Tapla
(1977) and (at present)'we have no references to earller usage., )

The Multiplier Update Quasi-Newton Methods:

By a multlpller update gpasx—Newton.wethod for problem.(7), we mean the 1terat1ve B
procedure :

asy . 1= e - vs's o).
(16) " X =x-8 1V L(x EY)
- (17) B = ﬁ(x,§ x,-i,B) ’

where B(x X, A A,B) is an approx1mat10n to V L(x S5 The_multihlier up&ateu

secant methodes result by. ch0031ng

(18) . .. ] @(x X, )\’)\ B) B (ssYsB) '
. where s8=X-X, y==V§L(§,1)-vxL(x,x) -and;-BS is one of the‘poﬁuler secaﬁtW
. updates. A S ' o ' o

The wultiplier update Newton method was proposed by the author in Tapia (1974a)

" and extended to inequality constraints in Tapia (1974b). The multiplier update

- secant methods were: proposed by the author in Tapia (1977) and in that paper in-
equality constraints were handled via a ‘slack variable. Independently, Han (1977)
proposed secant methods for problems with equality and inequality constraints

"~ .which use an intermediate quadratic program to solve for the multipliers. In the

case of problem (7) (no inequality constraints) it is a simple matter to show
that Han's quadratic program reduces to (15) and hence his algorithm reduces to
the multiplier update secant method. Glad (1976) also independently, proposed
the multiplier update secant method. He used an active constraint philosophy to
handle inequality constraints. All three papers established superlinear conver-
gence. ~ :



The Quadratic‘ Programming Quasi—Newton Methods:

-By a quadratic programming quasi-Newton met:hod for problem (7 we mean the 1terat1ve
procedure

x+-Ax

(19) . x

]
|

20) aa(x %,B)

where ﬁ(x,i;B)“ is an approxxmat1on to V2L(x ,l ) and Ax is a solutxon of the
quadratic program : :

(21) | A min q(Ax) = f(x)A+ <Vf(x);&<> + H{BAx, Ax)

ubject to Vg(x) Ax-+ g(x)

'l'he quadrat1c programnlngL secant methods result by choos:.ng

| .(22> B(X,X,B) = ﬂ?‘ (S’Y:B)
wheré s =X - x, =V L(x AQP) -7 L(x XQP)’ BS is-one of the popular secant

" updates and AQP is the multlpller obtalned in the solution of the’ quadratlc prcgram
(21) . . :

" This form of the quadratlc programming qua51-\e wton method was :mtroduced by Garcia
Palomares and Mangasarian (1976). Han (1976) a2dded some analysis and specific secant
updates and Powell (1972),(1978) added further ref:z.nements and analysis.

When they were first proposed, many thought that these three approaches were distinct
However, as the following theorem from Tapia (1978) shows, they are equivalent.

Theorem 1. The multlpl.ler extension secant method, the multiplier update secant’
method ‘and the quadratic programming secant method generate 1dent1cal (x,k) iter-
ates and are locally Q- superllnearly convergent.

Proof. For the proof of t:hls theorem and other details see Tapla (197/) (19/8).

: INEQUALlTY COVSTRAINTS

Consider the extension of probi‘em (7) given by
'.(23) . minimize f(x), :S'ubject to- gi(x). =0 d1i=1,...,mn
g;(x) €0 f=m+l,....p.

where
1

.' ) n—'
f,gi.R R .
n .
For x€R, let 4 : .
B(x) = {i : 1<i<m or gi(x) =0, i=m+1l,...,p}

In the case 0f problem. (7) we let B(x) = {1,...,m} . A point .x €R™ is-'said to be
a regular point of problem (7) or problem (23) if {Vgi(x):ieB(x)} is a linearly
independent set. Well known necessary conditions for problem (23) are that, if the
regular p01nt x 1s a solution of problem (23), then there exist Lagrange multi-
pliers . (7L Y, = 1,...,p, such that (x%,)*is a solution of the following systes=

of equatlons and 1nequa11t1es



Vf(x) + A Vgl(x) + cee APVg (x) = 0
P 2B () =0, f=mible.,p
(24) | R | - -,g.(x)=o, f=10.m -
. | g; (x) 0 | i =n%l1,...',p : |
li >0, i =m;i,.,.,p

It is not obvious how one extends the multiplier extension and the multiplier up-
date philosophies to handle inequality constraints. Clearly, one way of including
inequality constraints in the quadratic programming philosophy is obvious. Speci-

~ fically one merely carries them.along as linearized inequalities in the quadratic
program. On the surface this seems to be an advantage of the quadratic programming
. approach. However, mathematically the situation is not well-defined since the

_ theory for handling the inequalities will now depend on the particular quadratic
programming code employed in the implementation and can vary significantly. - In

- many ways this approach "sweeps the dirt under the rug'".  Moreover, Chamberlain
(1978) recently demonstrated that th1s approach can lead to cycllno, :

Active Constraint Phllosophy.

The active constraint philosophy consists of ignoring certain inequality con- - -
straints and treating the remaining inequality constraints as equality constraints
at each stage of the iterative process. In its purest form one merely ignores in-
. equality constraints which. are satisfied and treats 1nequa11ty constralnts which
are violated as equality constraints. :

locally (or perhaps better said, asymptotically), the active constraint philosophy
-is optimal. If one merely knew which constraints were active or binding at the
solution, then the inequality constrained problem could be handled as an equality:
‘constrained problem with the minimal number of constraints. Indeed, the knowledge
that a particular constraint is active at the solution can be expected only when the
-iterates are near the solution., Far from the solution the information that a con- -~
straint is either satisfied or violated would be a poor indicator of the properties
,of this constraint at the solution.

One obvious problem'w1th the active constraint approach is that we can never handle
more than n (dimension of X) equality constraints. Hence, it is not clear what
-one should do when the number of original equality constraints plus the number of

" - violated constraints is greater than n . In this case one must consider notions.

analogous to "most violated'. DMoreover, since the iterates generated by the three
quasi-Newton methods described above satisfy linear constraints and the empirical
_fact that linear approximations to nonlinear inequality constraints caa be very
-misleading, we would expect the active constraint philosophy in its purest fortxto
not be immune to cycllng

In sumnary, we feel that what is needed is a conservative active constraint philo--
sophy. Namely, a strategy which allows for a certain amount of indecisiveness. far
from the solution, i.e., doesn't force the drastic choice of either ignore or treat’
~as an equallty. It is the obJectlve of this paper to argue that the squared slack
variable approach which we now descrlbe, can lead to such a strateoy



Squared Slack Variable Phllosophy,

ol %

If we introduce the slack var:.ablgs ymi-l””’yp- and define F,‘Gi:.Rm-?-m - R by

F(x,y) = £(x), -

6, (x,y) = g;(x), i=1l,e..,m .
| s |

Gi(x,}') = %yi + gi(x)’ 1 =m+ 1"'"’.’p‘

then we may consider the following equality constra‘ined optimizatiox; preblem:
(25) o minimize F(x,Y), N subJect to G (x,y) 1= 1,.;..,9 ..

The follomng propos:l.tlon is not dz.fflcult to. prnve and Justlflcs the use of squared
- slack variables. : )

Proposition 1, Suppose xCRn. ~ Then

(i) x solves problem (23)- ® (x,y) solves problern (25) ;' .

(ii) X 1is a regular solutlon of problen (23) e (x,y) is a regular solution of .
. problem (25); : , . _

(iii) =x satisfies (24) the necessary conditions for pro"bleml' (23) @ (x,y)
satisfies the necessaryv conditions for problem (25) (see (9)), (with ) o=
A >0, 1-—m+1,...,p) o

In the above proposition, when x is a solution of problem (23) the correspond:.ng

y sho.uld be interpreted as y; < \/—Zg x) .

The squared slack variable approach suggested above is rarely used by workers in
optimization theory., Its use Seems ta be restricted to some otatisticians and engi-
neers. The idea of replacing a variable which is constrained to be nonnegative by =
squared variable is quite common in statistics (see for example, Chagter 4 and
Appendix II.2 of Tapia and Thompson (1978)). At any rate, most workers in optimi-~
zation theory quickly reject the squared slack var).able approach with one or more of
'~ the following standard crltlclsms-

. (¢)) Squared slack veriables increase the dlmensn.on of the problem 1.e., the
o dimension of the linear systems that must be solved; -

{(2) Squared slack variables are less stable .than nonsquared slack varlables
(suu Rubinson (197(,)), : .

(3) Squared slack varlables lead to (asymptotlc) suxg;ularltles ‘and in particular
51ngu1ar Hc.,sums.

'We will now investigate these three criticisms in the light of our three quasi-

"* Newton methods. We show that, contrary to some authors' biases, the multiplier up-

date quasi-Newton method can be implemented so that it does not suffer from any of
the above three criticisms and also leads to.a -promising active constraint philosophy.

The following qualifications are extremely important. Theorem 1 says that our three
approaches are mathematically equivalent in the sense that they produce identical
iterates. However, there may be significant differences from a numerical and practi-
cal point of view. Hence, in a particular application, if one uses a straightforward
implementation one approach may have_advantages over another. Of course it canld ha.



argued that this straightforward implementation was naive and could be modified ,
so as.to take advantage of any positive aspect of one of the other formulations. .
~While this is mathematically true, it is exactly this point with which we are
“concerned. .Namely, the modification could well be of such a mature as to essen-
tially produce the equivalent formulation. Hence it is the straightforwvard imple-~
mentation that we are concerned with and it is in this context that we will argue -
. that the use of squared slack variables is natural for the multiplier update
quasi-Newton method and leads to an effective active constraint philosophy.

We first establish the following notation

| S : , o
(26) i S R A (O,o-«aO,Ym_,_'ls-é-,Y ) I '
en - 2 - o Y A %,
() : B _-" 19“"’9 19°",P 9

@ Y = diag(0,...,0 ,ynﬂ,o..,y) ;

. (29) . . . A=d138(19°°°s ’)“nﬂ-l’“")‘) »
30) . AN = f(x) + A\ 56
*- and : o
. T . ’
('31). . ) L(x,y,2) ‘—f—F(X,}').-i- A G_(xs}'). ’

where £, F, g and G are as in (23) and (25) . We will also partition the
vector u€RP and the pXp diagonal matrix U = diag(u) imto a part coxvres- .
. ponding to the equality constraints and a part corresponding to the inequality
constraints. These parts w111 be subscrlpted with E and b { respectlvely, i.e.,.

AuEu—(ul,..,,u) >

- (u. T
‘,uI = (um_l,...,up) R

[=]
11

| diag(u;,...,u ),
and | e
. L] '-A—‘A-dlagl(umi_l,...,t.x.P) .

It is a straightfonvafd matter to show that

. oy v, 4(x,1)
| (.: ) (x,?) .x,y,x — hy, ,
| .‘ V(#,y;hﬁL(x’y’k) -{ AIyI .
G(x,Y)
| v22(x,0) ':o
‘34) o | V%X;Y)L(x’y’l) Vo A

and



Vilkx,l) O.A VgE(x) YgI(x)

o2 ' , S
35 (x’y’)\)ux,y,m 0 Ay 0 Yy
oy : : , .
VgE(x.)T . 0 ‘ 0 ' .0
VgI.(sc)T Y 0 - o

_Squared Slacleariables and the Quadratic-Programming.Approach: li

It is not difficult to see that a straightforward application'of the quadratic
programming approach to problem (25) would lead to an algorithm vwhich suffers

_.from all three of the above criticisms. Specifically, we would be approximating - -

: the Hessian matrix given by (34) which is necessarily singular at the solution
(except of course in the unllkely 51tuat10n that all- 1nequa11ty constralnts are -
actlvc at the solutlon) :

Slnce a 11near1zat10n of the constraint G;(x,y)= gi(x) 4f%y%v amounts to’

@6 'Vg (x)Ax + by

_we see that the slack var1ab1es will not appear in squared form only° Hence, we
cannot replace y'2 with z; and work with a nonsquared slack variable. Flnally,
the dimension of the quadratlc program is 1ncreased by p m, the number of
slack varlables." 4

‘Squared Slack Varlables and ‘the Multlpller Extension Approach‘u

It is not d1ff1cu1t to see that only the first two cr1t1clsms apply in ‘this case.
Namely, the Hessian matrix given by (35) is not singular at the solution as long
as we have strict complementarity.- Strict complementarity means that at the
solution not both li and y; ave zero. This assumption is both standard and

mjid. Again we see that y; appears in hoaequared form both in k33)‘andl(34).
. Squared Slack Variables and the Multiplier‘Update Approach- .

A straightforward appllcatlon of the multiplier update quas1—Newton method to
'problem (25) glves the iterative procedure

6 o ,"i«w <Vg<x>~n“_ vt 1t A7) Mo,y - vg'<x>:?ﬁ;1§¥_<;>fi,"‘.
(38) o '*;?xf'B"lffxzc'x,'i(),‘ | R L
G Sea-Nhgy . daflees

oy B = BxELE .

The first thing we observe is that (39) does not require the solution of a linear
system and the linear systems that must be solved in (37) and (38) are not of a
larger dimension than we would have without the addition of slack variables.

- Hence, criticism (1) does not apply. The second thing we observe is. that .the
slack variables appear twice in (37) but in squared form only. Also, while they
do not appear in (39) in squared form only, we can obviously square both sides
and obtainm an equally nice expression with the slack variables in.squared. form
only. These observations allow us to state the complete algorithm jin terms of a .
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nonsquared slack variable. It follows that neither criticism (1) nor criticism
(2) will apply. Let us therefore consider criticism (3); namely, singularities.
In light of the above comments we first introduce the following transformations

-

and notation: - . ) :

(41) | . z; =@y; s> 1= m+ 1,..,.,p
42 -' : = (0 0 : - )T.
( ) . v .A A " zZ = ,....,',Zm_*_l,...,zp
(43) - | Z.= diag(z).

Clearly )\i =0 .fo_f any m <i <p produces a singularity in (37) and 39).

Since A, = 0 1is a reasonable value and clearly is acceptable in the equivalent

A mul'tipliér' extension formulation, it must be a removable singularity. In order to
obtain the correct interpretation of (37) and (39) we will look at the multiplier
- extension formulation. In this consideration the choice of B does not matter;
so for the sake of simplicity we may as well considexr the Newton formulation

. . 2 - = .
R TR A RSN CR R

The linear system (44) can be partitioned into four subsystems of ecjuafians asg
dictated by the form of the Hessian given in (35). We assume that z5 #0 and -

A #0 for i =mt+1l,...,p and then look at the liﬁxitihg behavior as either .

A. =0 or z. =0 . Ve can safely assume that we will never encounter the situ--
ation when both variables go to zero, since this would contradict our strict
complementarity assumption. By combining the information in the second and fourth
" subsystems of equations in (44) we obtain for i =m+1,...,p o

wsy ")Ii/;\ie (78x) " + g () + 2), /2,

where (u)i denotes the i-th component of the vector u . From (45) we see that

for i=m+1l,...,p if ), =0, then ), =0 and the quantity -I.i_/)‘i can be ob-

tained from the ,right-hangl side of (45), even in the case that }-‘1=0 The second

subsystem of (44) (or (39)) shows that if z; = 0, then zZ.=0. We are now in'a

position to rewrite our algorithm using the slack variable "z and removing the

singularities in (37) and (39). Specifically we have :

- - - ‘ -1 -1, s -1 ‘

%6y . %= (v B lvg(x) + 207 2) lg(x) + 2.~ Va(x) B VE(x)] |
©(if Ay =0 set -)_[1 =0 and do not include it in (46), i=m+1,...,p)

(47) g X =-$<-‘B"17x£(>¥,i) .

%8y z, = (9860 hx+g()N/z, ., i=mtl,....p
' o (if z,=0 set 2z, =0 and do not include it in (48)).
(49) ‘ B = B(x,%,),B) .

In the following theorem we assume the -standard. conditions with respect to differ-
entiability, invertibility, regularity and strict complementarity (see Tapia (1977)
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Theorem 2. Consider the mu1t1p11er update. quasi-Newton method given by (46) (49)
for problem (23). Then .

(i) The multlpller'update Newton method is locally_Q-quadratically'convergent'in

-the variables (x,z,1); W

(ii) The multiplier update discrete Newton method 1s locally Q 11near1y conver-
- gent in the variables (x Z,A);

@ii) The multiplier update secant method is locally Q superllnearly convergent in
the variables (x,z,7) -

'Proof The proof follows from Theorem 1 and the convergence ana1y51s glven in .-
Tapia (1977). : :

Obsexve that (39) can be written Aé-

COR vi/'—(x-m/x
or | -

(51)

This interesting symmetry has several important consequences.

Theorem 3. Suppose that the multiplier update quasi-Newton method (46)-(49) con-
verges. Then we necessarily have Q-superlinear convergence to zero of the multi-
pliers corresponding to inequality constraints which are inactive at the solution
and Q-superlinear convergence to zero of the slack variables corresponding to
1nequa11ty constraints which are active at the solutlon.

. Proof. The proof follows dlrectly from strict complementarlty and the expre531ons.
(50)-(51). '

Corollary 1. Suppose that the multiplier update qua31-Newton method (46) (49)

converges to (x~ »2Z ,A“) Then for i=m+1,...,p :

. i ' alr . .
T 1 i g (x%) =0

(52) AN »q L

' 0 if gi(x“) <0

’ ‘ o 11 if Ag.(x“)\< 0

- (53) ' . zi/zi ~ ¢ .

0 if 8; ") =

s

The.indicator I /A as given by (45) will be useful as a check on the validity

of treating'a partlcular con<rralnr as a binding congstraint nr'remov;ng it from
,the problem. : - ~

Alternatlve Choices for - A - and z:

Clearly in (46)-(49) choosing zl'-O " corresponds to treating the i-th constraint
as an equality constraint and choosing ™ A, =0 corresponds to removing the i-th
constraint .froam the calculations. It follows that the active constraint philo-
sophy in its purest form corresponds to the slack variable approach (46)-(%49)
with the alternative choices z,=0 if gl(x):>0 and A.=0 if gl(x)<:0 for
i=m+1,...,p. Near the solution these choices would be optimal. Far from the
solution these choices could be very poor or 1mp0551b1e to implement. What.is
needed is a mechanism for allowing some constraints to be in a third category.
Specifically, this category will consist of the constraints that we feel we do



1
not have have enough information on to decide if they are either active or in-
active at the solution. It should be noted that asymptotically the squared slack
variable approach c01nc1des with the pure active constraint approadh

-

In (48),the alternative choice 4
(54) B S zy =g (®) A gi(x) <0

should have a lot to offer. In particular,'it will make the algorithm less sensi-
tive to poor values of 2z, by removing the dependence on zg in the second ex-
pression on the rlght-hana side of (46). -

Suppose that 8 (x)<<0 and we decide to remove this constralnt, i.e., we decide
to set<_lié= . ‘Then by letting zl--g (x) we can use (45) to calculate

(55) R NN = () Ax)i/-gi(x)A

which can be used to check our choice. WNamely, if X./A., 1is not small, we should
question this choice (see (52)). For constraints that hive been removed it would
be wise to monitor the behavior of 7._./X. as given by (55) as well as the be-
havior of g.(x) . A constraint which has been removed should be brought back
into the. caléulatlon as an equality constraint. (z_=0). This will allow for a
fresh calculation of the multlpller associated w1tﬁ this particular constralnt.

Now, if g (x)>0 or ig (x)‘ is small and )./)\. ' is near one we should ‘treat
this constraint as an ecuallty or_binding constraint by choosing z. =0 . Again
we should monitor the values of x / (in this case we would not ﬁeed (45)) as .
‘well as those of -5 =) . o B ,

‘The details concerning the choices in the improved active constraint approach
cannot be finalized without some numerical experimentation. However, we are
quite confident that these observations can be used to construct an approach
which is superior to both the pure slack varizble approach and the pure active
constraint approach. ' : '

Summary.’

In this paper we have attempted to demons*rate that the squared slack variable
approach to inequality constraints need not suffer from the standard criticisms
attached to it: increased dimension, numerical instability and presence of
singularities. Specifically, it is these removable singularities that eventually
leads to a pure active constraint approach. Moreover, the squared slack variable
approach can be used to construct what we expect will be a superior active con-
straing philosophy. We gain some satisfaction in showing that the pure active
‘constraint philosophy and the squared slack variable phllosophy are not as
d1$51m11ar as many authors belleve thea to be.vﬂ
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