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FOREWORD

The work described in this report is an extension of a
basic effort already performed under contract NSF-C906. The
general objectives are: 1) to assess the technical and
' economic feasibility of enéapsulated phase change materials
(PCM's) for storing heat in residential solar energy systems,
and 2) to develop and evaluate such encapsulated phase change

materials.
The project involves three tasks:

Task 1 - Materials selection, including a
limited literature search, selection of candi-
date phase change materials, and selection and
charactefization of encapsulating materials.
Task 2 - Procurement of phase~change and
enéapsulating materials, encapsuiation studies,

and testing of the encapsulated materials.

Task 3 - Preliminary design and economic
evaluation of a residence-sized heat storage

sub-system.

‘Task 1 has been completed, and Task 2 efforts are in

progress.



I. PHASE CHANGE MATERIALS
Evaluation of CaCl,+*6H,0 in high density polyethylene

bottles has been completed. This report will be mainly a
review of these data. The next material to be evaluated

will be Mg (NO;3),*6H,0 encapsulated in steel aerosol cans.

Further data on thermal conductivity of PCM's are shown
in Figure 1. In the liquid range, Mg(NO3;),+*6H,0 and its
eutéctic with NH,NO; have about the same thermal conductivity.
The naphthalene-benzoic acid eutectic gives a value only about
a fourth that of the salt hydrates.

II. ENCAPSULATED PCM'S

We have discovered that the effects of expansion and

contraction during melting and freezing of PCM's has a more
severe effect on the encapsulating medium than we anticipated.
'For example, after 66 cycles in the heat storage test device,
-about half of the polyethylene bottles showed signs of stress
éracking. This is being investigated more fully and will be

discussed in future reports.

III. TESTING PROCEDURES
ASHRAE (94-77) standards for testing thermal storage
units were followed. All of these tests require that the

.temperature of the storage medium, prior to the start of
the test time (1), bée udniform at the desired temperdture
with a steady flow of transfer fluid (air) through the
storage unit (steady-state). The test time begins with

a step change of 35°C in the inlet air stream. For a
latent heat type storage unit, this 35°C step change must
symmetrically bracket the fusion temperature, thereby
forcing the storage medium to undergo a change of phase.
Since the fusion temperature of CaCl,-6H,0 is 27°C,

the inlet air temperature will step change from

lAmerican Society of Heating, Refrigeration, and Air
Conditioning Engineers.
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"9.5°C to 44.5°C, where it is held constant while charging

-the unit. A temperature-time profile of the outlet tempera-
ture during charging is shown in Figure 2 for a nearly ideal
latent heat storage unit. The test time ends when the outlet
temperature reaches midway between the inlet and fusion temp-
eratures, defined as the "maximum charge temperature" (35.75°C).
The charge design rate is set equal to this minimum useful charge
" rate. Following attainment of steady-state conditions the inlet
témperature is step changed from 44.5°C to 9.5°C where it 1is
'héld constant to generate a discharge profile of the outlet
temperature. Like the charging cycle, the test time ends when
the outlet temperature reaches midway between the inlet and
-fusion temperatures defined as the "minimum discharge tempera-
ture" (18.25°C). The discharge design rate is set equal to

this minimum useful discharge rate.

- The areas between the inlet and outlet temperature pro-
files over the test times of charging (TC) and discharging
(Td) are used to determine the charge and discharge capacities,

CC and DC respectively, using the following equations:l

1 T T, T

. C o _ c in "out _ & .

CC =m th fo (Tin lout) dt L fo (———7———— Ta) dr (1)
. ta

DC = m th fo (Tout - Tin) dt (2)

The later half of equation (1) is simply the heat loss
from the storage unit which is incurred during the ¢harging
cycle. This heat loss factor, a modified form of the equation
given in ASHRAE standards, is more accurate since it doesn't
assume a constant average temperature driving force between
nit Tal-
However, the heat loss rate constant (L) is determined from

the storage unit and ambient air temperatures (fu

' the equation given by the ASHRAE standards as follows:

lsee p. 25 for nomenclature.
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3600

m Cps
(3600 sec) (25°) fo (Tin = Tout! 41 (3)

The integration of the above equation is made over a
one hour period after the unit has achieved uniform steady-
state temperatures with the inlet air temperature being 25°C

above the average ambient air temperature (Ta).

IV. HEAT STORAGE TEST RESULTS

The thermal cnergy storage unit used is shown in Fiqure 3.

. Sixteen-ounce high density polyethylene bottles (129) were
‘filled with melted CaCl,+*6H,0 to 95% of capacity and sealed
before freezing. The bottles were placed in the storage

'uﬁit in éh'equilateral triangular pitch arrangement. Thermo-
couples were pléced in nine bottles located at various posi-
tions (1-9) in the storage unit so that temperature-time
profiles for individual bottles of CaCl,<6H,0 may be observed.
The storage unit was sealed and cycled for 58 complete freeze/ -

thaw cydles before any data were taken.

For A typircal charge cycle. (Figure 4), the bottle
located nearest the inlet (1) has the shortest.fesponse

time, quickly melting and achieving steady-state. The
.remaining bottles all melt similarly, each achieving com-
plete meltiné and steady-state in succession, with the
pottle furthest from the inlet (9) finishing last. One
exception is that forlthe bottles at positions 6 and 7 the
order of melting is feversed. Thé presence of the bend in
the air flow path of the storage unit causes either short-
éiﬁcditing or a difference in air heat transfer coefficients.
The end of the test time (14.3 hours) is indicated when the
outlet air temperature reaches the "maximum charge temperature"”.
At this time, all of the CaCl,+*6H,0 has melted except for a

small portion of a few bottles at position 9. Since the



Figure 3
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_thermocouples are located at the center of the bottle, they
measure the temperature of the last portion of material to
melt. Thus, it is believed that the bottles are nearly all
charged, and the small amount still frozen shouldn't signifi-

cantly decrease the charge capacity.

A typical discharge cycle (Figure 5) shows similar
successive trend curves for each bottle position, this time
for cooling, with curves for positions 3 and 4 reversed as
well as for 6 and 7. The end of this test time (11.5 hours),
" when the outlet temperature reaches the "minimum discharge
temperature", several of the bottles aren't completely dis-
charged (frozen), decreasing the discharge capacity. Howéver,
as in the charging cycle, the magnitude of the amount of
material failing to discharge is exaggerated, since the temp-
eratures are of the material which is the last to freeze.
'Still, the unit appears not to have dischargéd to the extent
that it had charged. '

The temperature profiles for the dischargé cycle indicate
. that some supercooling of the CaCl,*6H,0 is taking place.

‘A plot of the extent of supercooling vs. the bottle position
in the storage unit for four air flow rates is shown by
Figure 6. Supercooling ranges from about 7.5°C for bottle
positions nearest the inlet (1) to about 2.0°C for bottle
positions nearest the outlet (9). Each successive bottle
position from the inlet shows a decrease in the amount of
supercooling, except for anomalous positions 3, 4, 6, and 7.
This increase in supercooling may be attributed to heat

- transfer variations caused by the presence of the bend in

~ the storage unit as seen for the case of reverse cooling
curves during discharging. Similarly, the slightly increased

supercooling at position 9 may be attributed to the sudden
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contraction of the 11 1/2" x 10" rectangular conduit to a 4"
diameter circular conduit. These variations in geometry
throughout the unit may result in different rates of cooling,

-resulting in supercooling variations.

A total of eight pairs of charge/discharge cycles (Runs 59-66)
. were done at four air flow rates (46-75 CFM). Profiles of the
outlet air temperature vs. time were generated according to the
test procedures stated earlier, and are shown in Figures 7 and 8

for the charge and discharge cycles, respectively.

Even though each successive cycle was allowed to achieve
steady-state before initiating the step change for the following
cycle, the curves only show the profile generated for the time
period of each test. As illustrated for the charging curve at
75 CFM (74 CFM for discharge), the shaded area between the
inlet and outlet témperature profiles was manually integrated.
As expected, the time necessary for charging (discharging)
the unit indreases as the air flow rate decreases. Note that
the temperatiure profile obtalned fur Lhe, luwesl air flow rate
is most similar to that expected for the case of the nearly
ideal latent heat type storage unit. This may be attribufed to
better equilibrium attainment of heat transfer through the
PCM and heat transfer between the air and bottle surface.
Also note that the net effect of supercooling and reheating is

an increase of about 1/2°C observed during discharging.

The reduced data with energy -balance results for runs 59-66
ére shown by Table I. The ruhs of similar air flow rates have
beén grouped and arranged in decreasing order. Each heading,
éxcept the last, has subcolumns 1 and 2, representing the

charge and discharge cycles, respectively.

-12-
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TABLE I: TEST RESULTS ON CALCIUM CHLORIDE HEXAHYDRATE ENCAPSULATED IN POLYETHYLENE BOTTLES '

_ST_

A 5 v L Capacity(KJ) : .
Air Test Storage Unit :
-Flow Rate - Time Pressure Drop Loss @ CG]oss) (QDC )“ Energ{Kg?lance
. (CFM) (t-Hr) (AP-in. H20) (KJ) in , out Q. +Toss)
»1 2 1 2 1 2 N 2 - 1 2 out % Dev
74 74 12.7 9.9 42 51 3,740 100 22,760 22,530 . 22,630 +0.6
75 73 12.8 10.2 .43 .50 4,130 160 22,770 22,790 22,950 . -0.8
' " Average - 3,940 130 22,770 22,660 - 22,790 -0.1
64 65 .32 .40 4,300 480 22,920 23,000 23,480 -2.4
. 65 63 .33 .38 5,220 180 23,160 24,410 24,590 -6.2
63 62 .32 .38 4,010 80 22,630 23,310 23,390 -3.4
Average 4,510 250 22,900 23,570 23,820 -4.0
55 5 .24 .29 5,650 410 22,980 22,540 22,950 +0.1
46 4c 17 21 6,660 - 1,040 22,980 21,880 22,920 +0.3
- 46 4€ .18 .22 6,950 160 24,350 22,470 22,630 +7.1
Average 6,810 600 23,670 22,180 22,780 +3.8
Charge -
Discharge
(Q,, -loss



The results of the charge (discharge) times and the
pressure drops across the storage unit are shown graphically
as ‘a function of the air flow rates in Figures 9 and 10.
The test times varied from 13 to 22 hours for charging and
10 to 15 for discharging. The longer times for charging
reflect the dominating effect of heat loss working against
charging while working for discharging in attaining the final
test temperatures.A The discharge times are somewhat increased
due to solid crystal build-up of the CaCl,*6H,0 on the inside
‘'walls of the bottles, impeding heat transfer from the molten _
‘cores to the air. It is believed that this heat transfer limita-
tion becomes a dominant factor for larger diameter bottles,

resulting in a decreased storage capacity.

. Theoretical pressure drop curves, derived from a relation-
ship for air flow through a staggered arrangement of tube banks,l
are shown in Figure 10. There are two curves because of the
difference in density of the warm and cool air streams used
during charging and discharging. There is good agreement
between measured and predicted pressure drops for the range

0.2 to 0.5 inches of water. Decreasing the air flow rate

vields a desirable low pressure drup, bul increases thc time

needed to completely charge (discharge) a given capacity (KJ).

The heat loss during charging increases from about

3,900 KJ at 75 CFM to about 6,800 KJ at 46 CKFM. ‘he larger
| heat loss'at'lower air flow rates is due to the longer charge
time. For the discharge cycle, heat loss shows a similar-
trend, but is minimal since the average temperature of theA
storage unit quickly drops below the ambient air temperature.
For the energy balance, the loss during discharge is added
to the discharge capacity and compared to the charge capacity.
A % deviation, defined as the percent difference of this
energy balance comparison relative to the charge capacity,
is re?orted. With 0% deviation representing a perfect energy

balance, the deviation is about +4%.

1Perry's Engineering Handbook; 4th Ed.; 5-47, 48 (1969).
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Theoretical charge and discharge capacities (TCC and TDC)
are calculated for the storage unit with pertinent information
and results listed in Table II. The temperature range of the

TABLE I1I

Theoretical Charge and Discharge Capacities

CaCl,*6H,0

' TFugion Temp., °C 27

Heat of Fusion, Cal/g 46
0.52 (liquid)
0.33 (sulid)

Specific Heat, Cal/g°C

Total Weight, kg

97
. Steel (Storage Unit Structure)
' - Specific Heat; Cal/g°C 0.10
Total Weight, "kg. 125

Charging Discharging
Temperature Range, °C

High 35.75 44.50
Low 9.50 18.25
Theoretical Capacity, KJ (%) 24,190 24,860
’ ' (TCC) (TDC)

(1)

Not including specific heat of polyethylene bottle
encapsulant. ‘

-18-



storage unit during the test is estimated using the minimum

and maximum outlet air temperatures.

The thedretical and measured capacities were plotted against
fhe air flow rate (Figure 11l). The measured charge capacity
increases slightly with decreasing air flow rate as more
time is available for bottle contents and air temperatures to
equilibrate. The measured discharge capacity oscillates for
an unkhown reason. Each measured capacity was divided by its
respective‘theoreticalcapacityand plotted as a percent capacity
',vs. the air flow ratc (Figure 12). For the flow rates used,
the storage unit was able to charge and discharge an average .
| _of'9514% and 91.5%, respectively, of its theoretical capacities.
The difference between the percent capacity for charge and dis-
charge is consistent with the observations of the temperature-
time'profiies for individual bottles in the storage unit. The
charging cycle showed nearly all bottles of material completely
'éharged (thawed) while the discharge cycle showed several bottles
not completely discharged (frozen) by the end of the respective

test times.

An important design criterion for a thermal storage unit
is the charging (discharging) heat rate. A simple heat rate

equation for the transfer fluid may be expressed as folloWs:

g =mC,. AT : ' (4)
The values and results of this equation for runs 59-66

are shown in Table III. Again, the runs with similar air mass

flow rates (kg/hr) are grouped and arranged in descending

order. The pertinent inlet and outlet air temperatures for

the charging and discharging cycles are shown at the bottom

of the table. The charge (discharge) rate will.be a maximum

at the beginning, immediately following the step change of

-19-
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_'[Z_.

Run

62
63

64
65

" 66

Air Mass
Flow Rate

~ TABLE III: CHARGING AND DISCHARGING HEAT RATE

Heat Capacity

(m-kg/hr}
] 2

(Ctf-KJ/kg°C)

1 2
133 153 1.012 1.002
135 152 1.016 1.003
Average
115 134 1.014 1.002
117 13C 1.012 1.002
114 12¢ 1.013  1.002
Average
99 11z 1.012  1.002
82 94 1.013 1.001
83 96 1.009 1.003
Average

= Charge'

1
2 = Discharge

Charging (°C)

Discharging (°C)

out'Tin

Capacity
Heat Rate ~
(q-Kd/hr) At Max. At Min.
Heat Rate Heat Rate
. . CC/q DC/q CC/q DC/q
Max. Min. = Max. Min. 1 2 1 2
4,510 1,180 4.680 1,340 5.0 4.8 19.3 16.8
4,600 1,200 4,650 1,330 5.0 4.9 19.0 17.1
4,560 1,190 4,670 1,340 5.0 4. 19.2 17.0
3,910 1,020 4,100 1,170 5.9 5.6 22.5 - 19.7
3,970 1,040 3,970 1,140 5.8 6.1 22.3 21.4
3,870 1,010 3,940 1,130 5.8 5.9 22.4 20.6
3,620 1,020 4,000 1,150 5.8 5.9 22.4  20.6
3,360 880 3,450 - 990 6.8 7.4 .26.1 22.8
2,780 730 2,870 820 8.3 7.6 31.5 26.7
2,810 730 2,940 840 8.7 7. 33.4 26.8
2,800 730 2,910 830 8.5 7. 32.5 26.8
0 f
Tin Tout  Tout AT 2 arf
44.5 = 11 35.75 in_Tout 33.5 8.75
9.5 *40 18.25 30.5 8.75



the inlet témperature, since the difference of the inlet
and outlet temperatures (AT) is the greatest. Similarly,
thé minimum useful charge (discharge) rate corresponds to
the smallest temperature difference of the air streams"

observed at the end of the test time.

These maximum and minimum heat rates are tabulated for
each ruh and plotted against the air flow rate in Figure 13:.
As expected, the heat rates decrease with decreasing air flow
rate. The higher density of the cool air stream used for
discharging results in a higher mass flow rate and hence,
aslightly higher heat rate curves for the discharging cycles.

For a given air flow rate, a nearly ideal latent heat
storage unit would quickly decrease from its maximum heat
rate to a constant heat rate for most of the test period,
‘while the storage medium absorbed (evolved) its latent heat
of fusion. Near the end of the test time the heat rate
‘would again decrease quickly to finish at its minimum value.
In actual practice a storage unit might operate between 10
and 90 percent of its storage capacity. This would maintain
the heat rate at a fairly constant level, since charging
(discharging) would operate almost exclusively on the latent
heat of fusion. Note that the design rate for this particular
Size storage unit is set equal to the value corresponding

to the minimum heat rate for a given air flow rate.

A storage capacity expressed in hours can be determined
fof charging (discharging) the storage unit at a constant
heat rate. Such capacities were calculated and plotted
against the air flow rate (Figure 14). These curves show
'the'stdrage lifetime of the unit if total charging (dischérg—
ing) occurred at thevminimum or maximum heat rate. The actual
charge (discharge) profiles, as shown earlier in Figure 9, fall
between these hypothetical curves, since the actual heat rate

varies from the maximum to the minimum values.
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Nomenclature

_ e . CAL
th = specific heat of transfer fluid rekTel
CC = charge capacity of thermal storage unit - KJ
DC = discharge capacity of thermal storage unit - KJ
_ ' _ KJ
L = heat loss rate TROC
m = mass flow rate of transfer fluid - %%
AP = pressure differential across storage unit - in. H,O0
o .. K
Aq = lieal irate HR
Q = total heat - KJ
Q. = total heat delivered to storage unit through transfer
in X
' fluld - KlT
0 = total heat delivered by storage unit through transfer
Jout: . A . p
T fluid - KJ
Ta = average ambient temperature - °C
'Tin = temperature of transfer fluid entering storage unit - °C
T = temperature of transfer fluid leaving storage unit - °C
out : ‘ T, +T
= . e e ne _ _ ' . Tin Tout o
Tunit = average tLemperature of storage unit ( ) ) C
AT = temperature difference of inlet and outlet ITin—TOut | —ec
T = . test time (hr)
T, = charging test time (hr)
T, = discharging test.time (hr)
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- V. UTILIZATION ACTIVITY

. We believe it is time to equip a demonstration building
with a CéClz°6H20 PCM storage uhit. The heating system chosen
is a tempered-water multiple heat pump system with liquid-
cooled solar collectors. We are searching for a suitable
building and suitable partners - architect, heat pump manufac-

" turer, solar system supplier, contractors, etc.

_ We have contacted Penn State University and Ohio Agricul-
tural R&D Center to sudgest cooperative programs in utilizing

‘encapsulated CaCl,+6H,0 for heating greenhouses.

VI. PLANS :
1. Initiate testing of magnesium nitrate hexahydrate in
'~ steel aerosol cans and start lifetime testing of this

PCM/container combination.

- 2. . Update storage unit computer model to fit calcium
chloride hexahydrate results and perform sensitivity

- analysis of capacity to container diameter.

3. Fabricate pouches of R-2 retort film for encapsulation
of magnesium nitrate hexahydrate/ammonium nitrate eutectic

and start lifetime testing of the PCM/container combina-

ton.
4. Update economic analysis of thermal storage unit design.
5. Evaluate compatibility of stofage unit design with various

components of solar energy systems using TRNSYS computer

simulation approach.
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VII. CONCLUSIONS

Testing has been completed on CaCl,+*6H,0 encapsulated in
polyethylene bottles in the storage test device. Good values
were obtained for measured charge and discharge capacity, and
- a good energy balance was achieved. The capacities measured
represent 90-98% (ave. 94%) of the theoretical capacity.
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