
w

UCRL- 82963 PREPRINT

A DATA BASE MANAGEMENT SYSTEM
FOR THE MFTF

JOSEPH H. CHOY
JOHN A. WADE

This paper was prepared for submittal to the
8th SYMPOSIUM ON ENGINEERING PROBLEMS OF
FUSION RESEARCH: IEEE; SHERATON HOTEL,
SAN FRANCISCO, CA., NOVEMBER 13-16, 1979

11-12-79

tmrnm*****™*™*™

A DATA BASE NMMBEMENT SYSTEM FOR THE MFTF*

Joseph H. Choy and John A. Hade
Lawrence Uvermore Laboratory, University of California

Llvermore, California 94550

Summary

The data base management system (DBMS) for the
Mirror Fusion Test Facility (MFTF) 1s described as
relational 1n nature and distributed across the
nine computers of the supervisory control and
diagnostics system. This paper deals with a
reentrant runtime package of routines that are used
to access data Hems, the data structures to
support the runtime package, and some of the
ut i l i t ies in support of the DBMS.

Introduction

The supervisory control and diagnostics system
(SCOS) for MFTF Is a distributed system of nine
computers that are connected by a bank of shared
memory 1n a star configuration (see F1g. 1) . The
workload 1s divided among the computers by function,
which reduces the mount of computer-computer
Interactions. Each computer's logical functions
are backed up by one of the other computers In the
SCDS. All communication between tasks on different
computers 1s through the shared memory. (For a
further description of the distributed SCDS, see
McGcldrlck In these proceedings/)

a ^ R — .

Fig. 1. MF1F Control and Diagnostics System

An MFTF shot will produce several megabytes of
diagnostic data that must '.e recorded and analyzed
at a shot rate of one every five minutes. In
addition, about thirty kilobytes of mostly scalar
element and a few small vectors control the M'rTF.
On the other hand, diagnostic data are comprised
chiefly of several large vectors. The DBMS must be
able to handle both scalars and large vectors
efficiently and quickly.

The DBMS 1s relational in nature: I .e . , i t Is
fundamentally a set of tables. The user retrieves
data from a table by specifying the row-and-column
location of the desired data. The DBMS also
permits the user to search tables for specified
conditions and to operate upon selected rows. (For
a further description of relational data base
management systems, see Chamberlain1 and Kim.'')

Program Level Interface

The DBMS permits a user to access the data
base through his program via the Program Level
Interface (PLI) or through an Interactive terminal
via the Query Level Interface (QLI), which 1s built
using the PLI fac i l i t ies . The PLI consists of two
parts: a precompiler and a reentrant runtime
library (see Fig. 2) . (For details of the PLI user
interface, see Wade and Choy in these
proceedings.5)

•work performed under the auspices of the U.S.
Department of Energy by the Lawrence Ltvermore
Laboratory under contract number W-7405-ENG-48.

Fig. 2. Using the PLI Interface

The Precompiler

The precompiler accepts as Input a Pascal2

source program that contains data base declarations
and references. A dot notation used for data-base
references 1s similar to Pascal's record data
structure reference. 5 The main objective of the
precompiler is to eliminate as much processing as
possible, and thus, minimize the runtime to access
data. The precompiler parses the source program,
analyzes the data-base declarations and access
statements, and transforms the access statements to
the appropriate runtime function and procedure
references. During the data-base transformations,
the location of data items being referenced Is
resolved as offsets from given points in a table.
Since the physical location of a data Item 1s
partially resolved prior to runtime, the DBMS Is
not totally independent of the storage structure
characteristics of a given table. A change in the
structure of a table usually requires the programs
referencing that table to be run through the
precompiler, compiler, and load sequence depicted
in Fig. 2. The resultant output of the precompiler
Is a Pascal source program with DBMS runtime
function and procedure calls that 1s then passed on
to the Pascal compiler.

MTMtffTKHI * THIt DBCBMEKT It UNUHITM

The compiler generates a relocatable object
code that 1s then loaded and externals are
resolved. DIMS externals are resolved against the
DINS reentrant runtime library.

A Distributed DIMS

Each table In the DBMS Is kept on one of the
nine computers In the network. In essence, only
one original copy of a table—not several copies-
are referenced on different computers. A backup
copy may be kept 1f loss of the original would be
consequential. A user's program can make reference
to a DBMS table any of the computers In the
network. Fig. 3 shows how a user's task can access
a table that 1s located o.i the sane or a different
computer.

DATtlA»l»OCm>ATH«Wm*W<Y»CAlCOII»UTM •

II
. I*

II
. I*

MMWMt
M M * * 's33r

DMtMa
MMNWMH

M M M M

t M w n t f M M

WtWWJMIt**

1

|
J T«k

DMtMa
MMNWMH

M M M M

t M w n t f M M

WtWWJMIt**

1

M M
Mh J

M»

DMtMa
MMNWMH

M M M M

t M w n t f M M

WtWWJMIt**

1

M M
Mh J

3? v _ ^ ^ ProarM'fivej timrftpf ^^. J

J

^J
qllmjHihlll • r t W k t t l

•hartal LMri
—wiiy

F1g. 3. Data Base Access Paths
for a Physical Computer

The fi les containing a table are stored on the
disks of and "belong" to a specific computer. A
table opened by a user 1s either brought entirely
Into memory or paged 1n portions on a demand
basis. Whether a table is memory-contained or
paged depends on the dita-base usage pattern
(frequency of references, speed of response
required for the table, and complexity of data base
searches) and size of the table.

When a table is brought Into memory, i t can be
placed Into the memory of the local computer or
Into the memory shared by all nine computers. I t
Is desirable to place into shared memory those
tables that are accessed frequently by more than
one computer. I t 1s also preferable to place
only memory-contained tables into shared memory
because of the difficulty and overhead requirements
of paging data Into shared memory. Paging a table
Into shared memory 1s an available option; i t 1s
controlled by the computer that "owns" the files of
the table being accessed. Semaphores and their
associated P and V operators are used to control
access to the paging data structures in shared
memory.

As shown in Fig. 3, a task—through the use of
the PU—can access tables 1n the local memory of
the computer I t 1s running on, or tables in the
shared 'memory. I f the requested table 1s owned by
another computer and 1s not contained in shared
memory, a data-base access request Is communicated
through the network to the DBMS task on the
computer owning the fi les of the desired table.
The DBMS task processes the request, places the
desired data in shared memory, and notifies the
requesting task of the data's location.

The choice of storage structures for the
tables depends on the Internal cha*acter1st1cs of
the data (such as the size of the table and the
distribution of values) and on data-base usage
patterns (frequency of references and complexity of
starches).

PLI Software

The reentrant runtime library 1s written 1n
Pascal and contains routines that permit a user to
create, delete, open, close, read, and write a DBMS
table. In addition, routines are available to
lock, unlock, and checkpoint a data base. A
hierarchical view of the I/O package is given in
Fig. 4.

F1g. 4. Hierarchical View of PLI I/O Routines

The high-level I/O routines check for the
storage structure and logical address of the table
ard validate other parameters that describe the
table. The high-level routines resolve to a
logical byte address offset the location of the
data being referenced. AH I/O 1s made through the
DBMS pager, using logical addresses. I f the
desired logical address needs to be read or
written, the pager calls the appropriate logical
I/O routine, which transforms the logical address
to a physical f i l e and address. Finally, the
physical I/O routines are called to perform the
actual I/O to the paged space from the disks, or
vice versa. Once the data are in the paged space,
ThT"high-level I/O routines move the data to or
from the user's data space. References to a table
that require network communications are intercepted
by the high-level I/O routines, which route the
request to the appropriate computer and then wait
for the data to be placed in the shared-memory page
space. At this point, the requested data are moved
to/from the user's data space.

I f the task Includes reference to data from a
previous shot, the table name is qualified with a
shot identifier. The current shot is always the
default. I f the request for historic data is not
on the disk, the high-level I/O routines request
the computer operator to sount the appropriate
magnetic tape(s) and reads the data onto disk.

PLI Data Structures

The data structures to support the PLI exist
in shared memury or local memory of a computer,
depending on the function and use of the structure.

A l ist of the "tables currently open" by some
task in the SCDS Is kept In shared memory. The
purpose of this l ist is to ensure that a table Is
opened only once. The l ist also decreases the time
to process an open i f the table Is currently open
for another task, since the runtime entry
(described below) need not be constructed. For
each table name In the l i s t , there 1s a pointer to
the runtime entry that describes the table's
attributes and a count of the number of tasks that
currently have the table open.

When a task requests the DBMS to delete a
table, the table's definition is flagged as
deleted, and the name of the table 1s placed on a
11st of "tables to be deleted," which is pointed to
from shared memory. This gives the task a faster
response for delete operations that can be
time-consuming 1n returning data f i l e space and
removing the table definition from the Index. The
croatIon of temporary tables that are frequently
used 1s also faster because the create function
checks to see i f the table being created exists but
1s only marked as deleted.

There are separate paging mechanisms for the
local memory of each of the computers. Each local
memory contains the data structures to describe the
page space and Its associated "last recently used"
queue. Shared memory has one set of the data
structures that describe the shared-memory page
space and one "last recently used" queue. Access
to the shared-memory data structures for paging 1s
controlled by semaphores 1n shared memory. The
semaphores are implemented with the aid of an
Indivisible hardware test-and-set instruction.

Whenever a table Is open, there exists in
shared memory a runtime entry that 1s pointed to
from the 11st of "tables currently open" (described
above). This runtime entry is a subset of the
complete definition of a table. This subset
describes only those few parameters needed during
the runtime. In addition, the runtifk'. entry points
to a l ist of task names that have this table open
and collects usage statistics for the table.

As mentioned above, a table exists In only one
place and belongs to a specific computer. Each
computer has in Its local memory an index to the
tables for which i t has the f i les (see Fig. 5) . A
simple hash table is used to locate a table
definition, with collisions handled with a linked
l i s t . When a task opens a table, the 11st of
"tables currently open" 1s checked f i r s t . I f the
table Is found to be already open, the pointer to
the runtime entry is followed and the task's name
added to the l ist of tasks associated with the open
table.

mm TO TMii otnmntm ow A cowum*

i-W'

Fig. 5. Index to Table Definitions on a Computer

I f the table Is not open, the local Index to table
definitions is checked. I f the table Is local, e
runtime entry Is built from the table definition,
and the table name is added to the l i s t of tables
open. I f the table 1s not local, the Data Use
Manager computer 1s interrogated for the location
of the table, and the appropriate computer 1s
requested to open the table.

The table definitions mentioned above are
essentially static and can only be modified by the
Data Base Administrator. A table definition
contains Information about the table's storage
structure, creation date and time, the table's
logical address, whether 1t Is memory-contained or
paged, 1n shared memory or local memory, the number
of columns to the table, the data type and size of
each column, and a l is t of tasks permitted access
to the table, along with the type of access allowed.

For those tables whose information 1s critical
and must not be lost, a duplicate copy is kept on a
different physical computer. When an update is
made to the original, the same update Is queued to
the DBMS task of the computer where the copy
exists. I f a computer with a table that has a
duplicate copy becomes non functional and the SCDS
can continue to operate 1n a degraded mode, the
backup copy 1s made the primary copy and another
backup copy is made elsewhere on another computer.

Ut i l i t ies

Typical ut i l i t ies create tables (table
definition initialized and space allocated) and
delete tables on the l i s t of "tables to be
deleted." Other routines gather and print usage
statistics and check the pointers and integrity of
the allocated space. There are also ut i l i t ies to
copy tables to magnetic tape for offline storage
and to retrieve the tables from tape when users
need to reference historic data. Because of the
volume of diagnostic data to be collected with the
time constraints of one shot, specialized routines
designed with speed in mind format the raw
diagnostic data Into the DBMS table structure.

The abil i ty of the SCDS to function without a
computer 1n a possibly degraded mode requires that
the DBMS have ut i l i t ies to reconfigure the location
of tables from one computer to another, make copies
of a table on another computer, and modify the
table definition to reflect the changes made.

Conclusions

The MFTF DBMS 1s designed to be fast, easy to
use, and to handle a distributed data base. I t
handles simple scalar set-point values as well as
several megabytes of vector-oriented diagnostic
data quickly. The DBMS utilises a reentrant
runtime library to eliminate several copies of the
same DBMS routine 1n memory.

References

1 . Chamberlain, D. D. "Relational Data Base
Management Systems," Computing
Surveys 8, 1 (March, 1976), 43-66.

2. Jensen, K. and Mirth N. PASCAL: User Manual
and Report, Springer-Verlag,
New York, 1975.

3. Kim, M. "Relational Database Systems,"
Computer Surveys 11, 3
(September, 1979), 185-211.

4. Ncftoldrlck, P. R. "SCOS Distributed SystM,"
Procttdlngs of tht Eighth Sjnposlin on Englnttrlng
Problans of Fusion Rtstarch (IEEE), 1979.

5. Wadt, J . A. «nd Choy, J. H. "Control and
Diagnostic Data Structurts for
tht HFTF/ Procttdlngs Englnttrlng Probltm of
Fusion RtStarch (IEEE), 1979.

NOTICE

TaJ* nport w u prapartd u in account of work rpomorad by tht United
Statu GovtrnrMnt. Ntlthit tht Unlltd Ju t t i not tht United StatH
Dapartmtnt of Efttfgy, not tay of tNtr tmptoytM, nor any ot thttr
cMttacfon. Hibcontractoii, or thtlr ampk>ytti, mafcti any warranty,
tupnu or hnpttad, or tmwm u y «•*) habWty or mpoiMlbHIty Tor tht
acmrtcy, compttttMu or uatfulntM of My tnformiUoii, tpparattii,
product or ptocttf dtadoiad, or rtprtMnu thit Iti D M would not Lnrrtnfi
prrvaltly-owrMd rlghti.

Rtltrtwe to • company or product u m t doti not Imply approval or
rtcommtndatton of la* ptodwt by iht IMlvtraity of California or the U J .
Dtpulrwnt of E w t y to tht txclulon of othtn that may bt MHabta,

