i

AL

UCRL-
PREPII£‘963

ConE - Qo2 -~k

A DATA BASE MANAGEMENT SYSTEM
FOR THE MFTF .

JOSEPH H. CHOY
JOHN A. WADE

This g Eer was prepared for submittal to the
8th SYMPOSIUM ON E GINEERING PROBLEMS OF

FUSION RESEARCH; IEEE; SHERATON HOTEL,
SEN FRANCISCO, CA., NOVEMBER 13-16, 1979

11-12-79

‘This Is a preprint of a paper | » fon in n journal o
chong's may be made before publicativa, this preprint is made avall
v~ dorstanding that ¥ will net be cited or roproduced without the

»
RAN
S
-
%

UN—— Y VY PR

Neithar the Unites Stares Govammant hor any agancy Huareol, nor iy of Hwie emplovem, mekas sty
wartanty, Supr or imatied, S smmer eny el Hebdity ar remerolbiity fee e sacumcy,
Comph A, O Uwkines of oy Indermetién, speerena, Product, o greeem dhecosd, of
Teraacrs that 1) U Wl Rt iniinge priwaely owned Hight. Reterance harvin te iy Iecific
commercial OFoduct, Jrecam. O Wrice by Trede neme, tradermech, Manccturr, o wbarwier, et
ot oecamatly contitte of Imely i endermmant, Tocommendetion, of fovaring ey the United
Thatet Govemment or ey apency thersot, The views ond opilons of authart sepristed harvin S0 net

A DATA BASE MANAGEMENT SYSTEM FOR THE MFTF*

Joseph H. Choy and John A. Wade
Lawvence Livermore Laboratory, University of California
Livermore, California 94550

Summary

The data base management system (DBMS) for the
Mirror Fusion Test Facility (MFTF) is described as
+elational in nature and distributed across the
nine computers of the supervisory control and
diagnostics system, This paper deals with a
reentrant runtime package of routines that are used
to access data items, the data structures to
cupport the runtime packoge, and some of the
utilities in support of the DBMS.

Introduction

The supervisory contro) and diagnostics system
(SCDS) for MFTF {s a distributed system of nine
computers that are connected by a bank of shared
memory in a star configuration (see Fig. 1). The
workload is divided among the computers by function,
which reduces the mmount of computer-computer
interactions, Each computer's logical functions
arce backed up by one of the other computers in the
SCOS. A1 communication between tasks on different
computers is through the shared memory. (For a
further description of the distrlbuted SCDS, see
McGeldrick in these proceedings.*)

Fig. 1. NFTF Control and Diagnostics System

A MFTF shot will produce several megabytes of
diagnostic data that must “e recorded and analyzed
at a shot rate of one every five minutes, In
addition, about thirty kilobytes of mostly scalar
element and a few wmall vectors control the M-TF.
On the other hand, diagnostic data are comprised
chiefly of several large vectors. The DBMS must be
able to handle both scalars and large vectors
efficiently and quickly.

Fork performed under the auspices of the U.S.
Oepartnent of Energy by the Lawrence Livermore
Laboratory under contract number W-7405-ENG-48.

The DBMS 15 relational in nature: f.e,, it is
fundamentally a set of tables. The user retrieves.
data from a table by specifying the row-and-column
Tocation of the desired data. The DBMS also
permits the user to search tables for specified
conditions and to operate upon selected rows. (For
a further description of relationa) data base
macagement systems, see Chaaberlainl and Kim,3)

Program Level Interface

The DBMS permits a user to access the data
base through his program via the Program Level
Interface {PL1) or through an interactive terminal
via the Query Leve) Interface (QLI), which fs buflt
using the PLI facilities. The PLI consists of two
?arts: a precompiler and a reentrant runtime

ibrary {see Fig. 2). (For Getails of the PLI user
interface, sge Wade and Choy in these
proceedings.3)

EEH=H=[=
B | [EH=
=] =]

Fig. 2. Using the PLI Interface

The Precompiler

The precompiler accepts as input a Pascal?
source program that contains data base deciarattons
and references. A dot notation used for data-base
references is sinilag to Pascal's record data
structure reference.”® The main objective of the
precompiler s to eliminate as much processing as
possible, and thus, minimize the runtime to access
data. The precompiles parses the source program,
analyzes the data-base declarations and access
statements, and transforms the access statements to
the appropriate runtime function and procedure
references. During the data-base transformations,
the location of data items being referenced is
resalved as offsets from given points in a table.
Since the physical location of a data item is
partially resolved prior to runtime, the DBMS is
not totally independent of the storage structure
characteristics of a given table. A change in the
structure of a tahle usually requires the programs
referencing that table to be run through the
precompiler, compiler, and load sequence depicted
in Fig. 2. The resultant output of the precompiler
is a Pascal source program with DBMS runtime - - -

function and procedure calls that is then passed on

to the Pascal compiler.

BRTWEETION OF THIS DOCUMENT I8 UNLINIT]

*

1
5
i

L e et e e

i

The compiler erates a relocatable object
code that is then loaded and externals are
resolved, DBMS extarnals are resolved against the
DBMS resntrant runtime library.

A Distributed DBNS

Each table in tha OBMS is kept on one of the
nine computers in tha network. In essence, only
one origina) copy of a table--not several copies--
are referenced on different computers. A bnckug
copy may be kept if loss of the original would be
consequantial. A user's program can make reference
to a DBMS table any of the computers in the
network. Fig. 3 shows how & user's task can access
4 table that is located oa the same or a different
computer,

DATA BASE ACCESS PATHS POR A PHYBICAL OOMPUTER »
— 1

Fig. 3. Data Base Accass Paths
for a Physical Computer

The files containing a table are stored on the
disks of and “beiony" to a specific computer. A
table opened by a user is eiinar brought entireiy
into wemory or paged in portions on a demand
basis. Whether a table is memory-contained or
paged depends on the dita-base usage pattern
{frequency of references, speed of response
required for the takle, and complexity of data base
searches) and size of the table.

When a tabie is brought into memory, it can be
placed iiito the memory of the local computer or.
into the memory shared by all nine computers. It
is desirable to place inig shared memory those
tables that are accessed frequently by more than
one computer. [t is also preferable to place
only memory-contained tables into Shared memory
because of the difficulty and overhead requirements
of paging data into shared memory. Paging a table
into shared memory is an available option; it is
controlled by the computer that "owns® the files of
the table being accessed. Semaphores and their
associated P and V operators are used to control
access to the paging data structures in shared
memory.

As shown in Fig. 3, a task--~through the use of
the PLI--can access tables in the loca memory of
the computer it is rumning on, or tables in the
shared wamory. If the requested table is owned by
another vomputer and is not contained in shared
mevory, a data-base access request is communicated
through the:-network to the DBMS task on the
computer owing the files of the desired table.

} The DBMS task processes the request, places the

desired data in shared memory, and notifies the
requesting task of the data's location.

“2-

The choice of storage structures for the
tables depends on the internal cha-acteristics of
the data (such as the size of the table and the
distribution of values) and on data-base usage
patterns (frequency of references and complexity of
searches).

PLI Software

The reentrant runtime 1ibrary is written in
Pascal and contains routines that permit a user to
create, delete, open, close, read, and write a DBMS
table. In addition, routines are available to
Jock, unlock, and checkpoint a data base. A
ll;ieu:chicn view of the [/0 package is given in

ig. 4.

MW OF LI LD ROUTINES]

—(=

DL

(=]

Fig. 4. Hierarchical View of PLI 1/0 Routines

The fiigh-level I/0 routines check far the
storage structure and logical address of the table
ard validate other parameters that describe the
table. The high-level routines resolve to a
logical byte address offset the location of the
data being referenced. A1l 1/0 is made through the
DBMS pager, using logical addresses. If the
desired logical address needs to be read or
written, the pager calls the apprapriate logical
1/0 routine, which transforms the logical address
to a physical file and address. Finally, the
physical 1/0 routines are called to perform the
actual 1/0 to the paged space from the disks, or
vice versa, Once the data are in the paged space,

gh-Tevel 1/0 routines move the data to or
from the user's data space. References to a table
that require network communications are intercepted
by the high-level 1/0 routines, which route the
request to the appropriate computer and then wait
for the data to be placed in the shared-memory page
space. At this point, the requested data are moved
to/from the user's data space.

If the task includes reference to data from a
previous shot, the table name 1s qualified with a
shot fdentifier. The current shot is always the
default. If the regquest for historic data is not
on the disk, the high-level 1/0 routines request
the computer aperator to wount the appropriate
magnetic tape(s) and reads the data onto disk.

skiskink

PLI Data Structures

The data structures to support the PLI exist
in shared mew.;ry or local memory of a computer,
depending on the function and use of the structure.

A list of the "tables currently open" by some
task in the SCDS is kept in shared memory, The
purpose of this 1ist is to ensure that a table is
opened only once. The 1ist also decreases the time
to process an open if the table is currently open
for another task, since the runtime entry
(described below) need not be constructed. For
each table name in the 1ist, thers is a pointer to
the runtime entry that describes the table's
attributes and a count of the number of tasks that
currently have the table apen,

When a task uests the DBMS to delete a
table, the table's definition s flagged as
deleted, and the name of the table is placed on a
1ist of “tables to be deleted,” which is pointed to
from shared mamory. This gives the task a faster
rasponse for dejete operations that can be
time-consuming in returning data file space and
removing the table definition from the index. The
croation of temporary tables that are frequently
used is also faster because the creata function
checks to see if the table being created exists but
is only marked as deleted,

There are separate paging mechanisms for the
local memory of each of the computers. Each local
memory contains the data structures to describe the
page space and ity associated “last recently used”
queus. Shared memory has one set of the data
structures that describe the shared-mamory page
space and one "last recently used® queue, Access
to the shared-memory data structures for paging is
controlled by semaphores in shared memory.
semaphores are implemented with the aid of an
indivisible hardware test-and-set instruction.

Whenever a table is open, there exists in
shared memory a runtime entry that is pointed to
from the 1ist of “tables currently open" (described
above). This runtime entry is a subset of the
complete definition of a table. This subset
describes only those few parameters nieded during
the runtime. In addition, the runtim. entry points
to a 1ist of task names that have this table open
and collects usage statistics for the table.

As mentiaoned above, a table exists in only one
place and belongs to a specific computer. Each
computer has in its local memory an index to the
tables for which it has the files (see Fig. 5). A
simple hash table is used to locate a table
definition, with collisions handled with a 1inked
1ist. When a task opens & table, the list of
“tables currently open® is checked first. If the
table is found to be already open, the pointer to
the runtime entry is followed and the task's name
:dﬁd to the list of tasks associated with the open

able.

SNDAX TO TARLE DRFINITIONS ON /A COMPUTER "

Hah
[)

g~
L7
Table,
-

1f the table is not open, the local index to table

definitions is checked. If the table is local, a

runtime entry is built from the table definition,

and the table name is added to the 1ist of tablus

open, If the table is mot local, the Data Lase

Manager corputer 1s interrogated for the lecation

of the tabls, and the nr‘owhtu computer it

requestid to open the table,
The table definitions mentioned sbove are

essentially static and can only be modified by the

Data Base Administrator. A table definition

contains fnformation about the table's stor

structure, creation date end time, the table's

logical sddress, whather it is memory-contained or [

paged, in shared memory or local memory, the mumbar i

of columns to the table, the data type and size of

each column, and a 1ist of tasks permitted access

to the table, llon? with the type of access allowed.
For those tables whose information is critical

and must not be lost, a duplicate copy is kept on a

different physical computer. When an update is

made to the original, the same update ts queued to

the DBMS task of the computer where the copy

exists, If a computer with a table that has a

duplicate copy becomes non functional and the SCDS

can continue to operate in a degraded mode, the

backup copy is made the primary copy and another

backup copy is made elsewhere on another computer,

Utilities

Typical utilities create tables (table
definition inftialized and space allocated) and
delete tables on the 1ist of "tables to be
deleted.” Other routines gather and print usage
statistics and check the pointars and fntegrity of
the allocated space. There are also utilities to
copy tables to magnetic tape for offline storage
and to retrieve the tables from tape when users
need to reference historic data. Because of the
volume of diagnostic data to be collected with the
time constraints of one shot, specialized routines
designed with speed in mind format the raw
diagnostic data into the DBMS table structure.

The ability of the SCDS to function without a
computer in a possibly degraded mode reguires that
the DBMS have utilities to reconfigure the location
of tables from one computer to znother, make copies
of a table on another computer, and modify the
table definition to reflect the chianges made.

Conclusions

The MFTF DBMS is designed to be fast, easy to
use, and to handle a distributed data base. It
handles simple scalar set-point values as well as
several megabytes of vector-oriented diagnostic
data quickly. The DBMS utilizes a reentrant
runt ime Hbrari' to eliminate several copies of the
sime DBMS routine in memory.

References

1. Chemberiain, D. D, “Relational Data Base

Management Systews,” Computi
Surveyt 8, 1 (Narch, 1976), 43-66.

2, Jensen, K. and Wirth N. PASCAL: User Manual
and Report, Springer-Verlag, H
New York, 1975, .

3. Kim, W. *"Relational Database Systems,*
Lomputer Surveys 11

Fig. 5. Index to Table Definitions on a C

» 3 ~
(September, 1979), 185-211,

P

3=

4, McRoldrick, P. R. "SCDS Distributed System,”
Procudings of ‘the Efghth Symposium on Engineering
Problams of Fusion Research (IEEE), 1979.

5. Wade, J. A. #nd Choy, J. H. "Control and
Dilnmsuc Data Structures £

the MFTF,* Proceedings En 1neor(ng Problems of
Fusion Research (IEEE), 1979,

NOTKCE

“This report was prepared as an sccount of work rponsorsd by the Uslted
States Govlmmnl Nelthat the Unlied States nor the Unlted States
Depariment of Emrgy, not aay of their emphoyess, Kor any of their
ot thelr mekes any warraaty,

llplﬂl or Impuod or n-um say mpal Ihbln of respomatbillly fot the
tenes or wasfulness of way information, ratus,

mnduﬂ o pmau discloed, o npm-nu that Its use would not
Privately-owned tights,

Refutence 10 & company of product Rame doss rot imply spproval
recommaendation of the pmdnl by the University of Califorala or the us
Departneent of Emargy to 1he exclusion of othera that may be suitable,

-4-

