
TM-346

ARGONNE NATIONAL LABORATORY

UofC·AUA·USDOE

A Comparative Study
of the

Fortran Development Environment
Provided by the

VAXNMS and VAX/UNIX
Operating Systems

by

Richard C. Raffenetti

APPLIED
MATHEMATICS

DIVISION

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.

The facilities of Argonne National Laboratory are owned by the United States Government. Under the
terms of a contract (W-31-109-Eng-38) among the U.S. Department of Energy, Argonne Universities
Association and The University of Chicago, the University employs the staff and operates the Laboratory in
accordance with policies anp programs formulated, approved and reviewed by the Association.

MEMBERS OF ARGONNE UNIVERSITIES ASSOCIATION

The University of Arizona
Carnegie-Mellon University
Case Western Reserve University
The University of Chicago
University of Cincinnati
Illinois Institute of Technology
University of Illinois
Indiana University
The University of Iowa
Iowa State Univt:rsily

The University of Kansas
Kansas State University
Loyola University of Chicago
Marquette University
The University of Michigan
Michigan State University
University of Minnesota
University of Missouri
Northwestern University
University of Notre Dame

The Ohio State University
Ohio University
The Pennsylvania State University
Purdue University
Saint Louis University
Southern Illinois University
The University of Texas at Austin
Washington University
Wayne State University
The University of Wisconsin-Madison

r---------------NOTICE--------------~

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the
United States nor any agency thereof, nor any of their
employees, makes any warranty, expressed or implied, or
assumes any legal liability or responsibility for any third party's
use or the results of such use of any information, apparatus,
product or process disclosed in this report, or represents that its
use by such third party would not infringe privately owned
rights. Mention of commercial products, their manufacturers,
or their suppliers in this publication does not imply or connote
approval or disapproval of the product by Argonne National
Laboratory or the United States Government.

·-.
0 ----------DISCLAIMER'----------­

Th!s book was ~repared as an account of WOI'k sponsored by an agency of the United States Government
Neuher the Un•ted Stat~s ~vernment nor any agency thereof, nor any of their employees. makes an~
warramv. express or •mPired, or assumes any legal liability or responsibility for the accuracy
completeness, ~r usefulness of any information, apparatus, product, or process disclosed 0;
represent~ that •ts use v.ould not infringe privately owned rights. Reference herein to any spe'c·tic
commerc•al Product, process, or service by trade name. trademark, manufacturer or otherwise d~es
not necessarily constitute or imply its endorsement, recommendation, or f~ring by the United
~tales ~vernment Of any agency thereof. The vieiiiiS and opinions of authors expressed herein do not

ecessantv state or reflect thOse of the United States Government or any agency thereof.

ARGONNE NATIONAL LABORATORY
Argonne, Illinois 60439

Applied Mathematics Division

A Comparative Study
of the

Jortran Development Environment
~ Provided by the

YA_U1,MS and .YAX/~NJ:X
""UPeFatlng systems*"""'

Richard C. Raffenetti

November 1979

Technical Memorandum No. 346

Intended Primarily for Internal Distribution

*Hark performed under the auspices of the U.S. Department of Energy.

·-.

.•.

TABLE OF CONTENTS

Chapter·

1. INTRODUCTION

2. LEARNING THE SYSTEMS

Off-line Documentation .
On-line Documentation
Tutorials
Mail • •

3. BASIC SYSTEM ELEHENTS

4.

The File Systems ..
The Command Languages

TEXT MANIPULATION .

Text Manag em en t
Editing
Listings •
Text Processing ..••

5. FORTRAN LANGUAGE SUPPORT

6.

The Fortran Compilers
The Linking Loaders
User Libraries . . . •
Fortran Preprocessors

PROGRAM EXECUTION

Run-Time Error Messages
Input and Output . •
Symbolic Debugging Systems

7. EXECUTION SPEED STATISTICS

Program A
Program B
Program C

- ii -

' • t •

page

3

3
4
4
5

6

6
6

8

8
9

10
• • 11

12

• 12
• 13

14
14

16

16
.17
• 18

. 20

20
•• 24

26

Appendix page

A. HARDWARE. CONFIGURATIONS . 29

- iii -

·-·

..

,.

Chapter 1

INTRODUCTION

The contents of this report are the result of a study to compare two
operating systems which are available to control the Digital Equipment
Corporation's (DEC) VAX-111780 computer. The two operating systems are
the VAX/VHS system from DEC and the UNIX system which is a product of
AT&T's Bell Laboratories marketed by the Western Electric subsidiary.
The information collected and presented here is intended to aid in the
selection of an operating system to be used to control the VAX-11/780
hardware which will be operated in the Applied Hathematical Sciences
Research Section of the Applied Hathematics Division (AMD). Support for
this study was provided by the Applied Hathematical Sciences Research
Section. The objectives of the study focus upon the Fortran development
environment of each system. In other words, _how good is either system
as an environment in which num.erical algorithms can be converted to pro­
grams and with the aid of which their mathematical properties can be
studied. The scope of this study was to evaluate primary development
tools including the file systems, the text editors, the Fortran compi­
lers, and the linking loaders, and also execution performance. A number
of other tools have also been evaluated. Of greatest secondary interest
is the interactive debugging capability of either system.

The method by which the evaluation was carried out was to access an
available system of each type by means of a 300 baud dial-up line and
execute as many of the development tasks as seemed feasible in about a
three-week period. The approach taken for each phase of the development
process is described within each of the following sections. No attempt
is made to be exhaustive in the evaluation of either system. Each sys­
tem has many other useful features which could not be tested in the
alloted time or described here.

The evaluation is presented in a comparative manner only to the
extent that properties of the tools for each development process are
described together, each in the same report section. Host conclusions
as to which subsystem might be "better" would be entirely subjective.
Therefore, such conclusions are avoided except when the outcome is
clear, e.g., when one system has a defective feature or some feature is
missing entirely.

The machines employed in this evaluation were the VAX/UNIX system
being operated in the research group of Prof. Richard Fateman at the
University of talifornia, Berkeley and the VAX/VMS system being operated
in the High Energy Physics Division at Argonne National Laboratory.
Thanks are due Richard Fateman and Richard Newton of Berkeley and Jerry
Gieraltowski of ANL for their aid in getting access to the machines and
in answering questions.

- 1 -

This project also benefitted from discussions with Jack Dongarra,
·Burton Garbow, Paul Messina, and Jesse Wang of the AMD.

- 2 -

••

Chapter 2

LEARNING THE SYSTEMS

The first step in assessing the VAX operating systems was to learn
how to use them. The availability and quality of documentatioh is by
far the first consideration.

2.1 OFF-LINE DOCUMENTATION

Access to a complete set of VMS manuals provided all of the informa­
tion necessary to log in and get started on that system. The "Primer"
manual consisting of about eighty pages is sufficient to get a casual
user started. It covers important features of the editor, the Fortran
compiler, the MACRO assembler, the link editor, the file system, the
file system utilities, and the command language including running a pro­
gram and writing command procedures. Examples were a part of this brief
but very useful document. Additional manuals are many and are well
written. They are organized to provide fast access to the many optional
features of the areas listed above. Examples are used widely. In addi­
tion, there are manuals which cover material of interest to the system
programmer. VMS has protection capabilities which prevent unauthorized
use o.f certain system services. System services can be called from a
high-level language thus removing the need to program system tasks in
assembler. An introduction to system capabilities is provided by the
manual entitled "Summary Description."

Similar information about the UNIX system was less accessible to this
project.· The concepts and facilities which are provided are presented
in the Bell System Technical ,Journal (BSTJ), volume 57, published in
1978. The entire issue is dedicated to a discussion of UNIX separate
from and prior to the present implementation on the VAX-11/780. Of
great value to this study in early work were two manuals which describe
version 6 of UNIX which is implemented on the AMD PDP-11/70. One manual
consists of a number of sub-documents which describe at greater length
the main facilities of UNIX including the editor, Ratfor, the assembler,
the C language, text processing, and the IO system. The second manual,
the UNIX Programmer's Manual, consists of short descriptions of the
function of each of the UNIX system commands, system calls, subroutines,
special files, file formats and conventions, user maintained programs
and subroutines, and system maintenance facilitie·s. These descriptions
include functions, syntax, options, files needed, references to docu­
ments or related commands, and known bugs. The environment of UNIX
development was considered to be friendly and accordingly, convenient,
foolproof protection facilities were not made available.

- 3 -

The style of the documentation of UNIX is brief and sometimes rather
sketchy. It would appear though that a user vlho is well acquainted with
UNIX design concepts would not find this to be true. Indeed it has been
possible to infer the actual method of operation or syntax of a command
option, for example, by its similarity to concepts of the same type used
in other commands.

2.2 ON-LINE DOCUMENTATION

All UNIX documentation comprising the two manuals described previ­
ously is available on-line in machine-readable form. The few UNIX Pro­
gre~mmer' s Hanual pages which describe any command can be displayed at
the terminal using the "MAN" command. One may also receive a brief,
one-linP. description of each command by u::>lng the "WHATIS" eommend, In
addition, the WHATIS database which is in alphabetical order forms a
sui table table of contents for the manual. \fuereas the entire manual is
.easily available it is a bit difficult to make best use of all UNIX
facilities in an effective way without having even an out-of-date hard
copy of the manual on hand. The table of contents provides the supple­
mentary up-to-date source document which informs the user of new and
updated features. Besides the UNIX Programmer's Manual, the more
extended documents described in an earlier section can be formatted and
displayed from on-line or archive files. The extent of this latter
material might force an installation to keep it off-line.

The equivalent facility in VMS is provided by the "HELP command.
This does not provide access to the VMS manuals but to similar informa­
tion stored in a hierarchical manner. Qualifiers to this command pro­
vide access to various hierarchy levels or to functional aree~s of the
descriptive material. VHS provides information for all of the commands
via thA HELP facility.

In addition to its "MAN" command, UNIX sometimes prompts the wier fo1·
more information and at the same time allows him/her to obtain help. In
this case the help document which is produced contains a summary of the
MAN document.

2.3 TUTORIALS

UNIX provides two kinds of tutorial documentation. The document
manual contains sections Which are elLhel' explicitly tutorial by L.illt;~
or implicitly tutorial by their method of description. In addition, the
"LEARN" command of UNIX provides access to interactive tutorial sessions
by which one can be taught one of a number of useful topics including
the file system, the text editor, macros, and typesetting of mathemati­
cal equations. In these sessions the user employs UNIX in true compu­
ter-aided instruction. VMS does not have such tutorials but the exten­
sive documentation does contain many examples which serve as a kind of
tutorial.

- 4 -

; .

e

2.4 MAIL

The mail facility of UNIX is yet another source from ·which to obtain
information about system facilities and by which to relay problems to
the system ma·nager or other users .. For the ·former purpose the existence
is presupposed of a person with sufficient kn6wledge, time, and interest
to respond to one's questions. One may also communicate directiy with
someone who is also logged i'n but in. such a case a real-time response
may not be available. The VMS system does not have a mail facility alt­
hough one had been implemented on the VMS system which was used in these
comparisons. The source of this software was the Stanford Linear Accel­
erator Center (SLAC).

- 5 -

Chapter 3

BASIC SYSTEM ELEMENTS

Any interactive system has as its· basic operations the manl.pulation
of files which contain source programs, data, text, etc. This section
describes the facilities of the UNIX and VMS operating systems with
regard to these operations.

3.1 THE FILE SYSTEMS

Recognizing the important role that file manipulation takes in inter-.
active computing both UNIX and VMS provide a set of file utilities which
are available as primary commands and not as a utility subsystem as in
PDP-11 systems. The file systems are also similar in that users are
assigned a file directory and may create several levels of subdirectory
as needed to separate their files by project, usage, etc. The file sys­
tems are hierarchical and all directories can be traced back to a master
file directory. In accord with the friendly environment concept, UNIX
users may change their directory upwards as well as downwards by employ­
ing the symbolic representation of each current directory's next higher
level direciory, "··"· A UNIX user may therefore gain access to the
entire file system without knowledge of the system's contents. This is
thwarted somewhat by the fact that even though they are elements of a
directory listing, subdirectory names need not look different from file
names. The VHS system allow3 user.s to change their direot.ory but there
is no way to make the master file directory the default. Thus to search
the file system one must instead obtain a list of user directories to
gain access to them. Subdirectory elements in a directory listing are
easily distinguished by the suffix "DIR". Both VMS and UNIX provide
protection features but as described earlier, the protection r.oncept was
not a design goal and therefore UNIX capabilities in this regard are
lacking in utility. When the user is working in the environment of a
given default directory he may refer to files in another directory by
giving the fully qualified file name including directory nRmes. Both
3y:!tcmc hova this f~o?~t.urfl.

3.2 THE COMMAND LANGUAGES

Operations which manipulate directory elements (files, subdirecto­
ries, or command procedures) are referred to as system commands. Exam­
ples are: "FOR" which compiles a Fortran source file and produces an
object file and "CAT" which displays (types) a file at a terr:1inal. Both

- 6 -

....

systems provide a rich assortment of commands for use in carrying out
system provided processes or tasks.. In both systems all common tasks
are primary commands which do not require the user to drop into a sub­
system before entering further commands. Obvious exceptions on both
systems are the text editor systems. V~1S also provides the "MCR" com­
mand which gives VAX users access to RSX-11M system components in a· man­
ner \vhich is compatible with the RSX-11M operating system. In this
fashion, development of RSX-11M software can be carried out on the VAX
hardware.

Both systems provide a realization of the concept of command proce­
dures implemented as files containing properly.formatted commands in a
simple "command language" syntax. Parameters may be substituted at
run-time in a procedure. Nine parameters are available in UNIX and.
eight in VMS. The procedures consist of commands and control structures
such as loops, logical tests, and branching. Procedures may also be
nested, i.e., they may call other procedures. In its command language
UNIX also provides the concept of a "pipe", a device which allows commu­
nicatiorr between processes without the explicit ·existence of a file.
Synchronization of the access of each command process to the pipe buffer
is controlled by the operating system. This device simplifies the
organization of procedures which process discardable intermediate infor­
mation in a sequential fashion. Creation and deletion of such intermed­
iate files may be an obstruction to efficiency because of limitations
posed both by IO devices and by peripheral IO media.

Both systems provide the capability of detaching a process from the
terminal. This permits the user the ability to carry out other tasks
using the terminal while he is waiting for an earlier process to finish.
This may be thought of as a "submit" feature where the process goes to a
batch-like system. The scheduling of such processes by the system is an
important question. VMS allows control over scheduling by various
priQritizing options. In UNIX there does not appear to be an analogous
feature .. UNIX treats all active processes as equal in terms of resource
allocation. UNIX does however provide some features which appear useful
to keep a process in inactive status until certain external conditions
are met. The UNIX "shell" or command interpreter was a major design
feature of the system and hence provides many significant capabilities
of a utilitarian nature for the time-sharing environment.

VMS provides a card-oriented batch capability in addition to the
time-sharing environment. Control of the batch processing is through
command directives which intermix with source and data card decks.

Both systems have convenient and powerful command syntax which is
similar. In UNIX an abbreviation, often comprising two or three charac­
ters, represents the command verb and is followed by keywords and ope­
rands which are usually file specifications. VMS provides longer com~
mands which are sometimes two or three words but which may be
abbreviated down to. those characters which make the command designation
unique. Keywords and operands follow as they do in the UNIX system. As
might be expected, the specific syntax of the two systems is different.

- 7 -

Chapter 4

TEXT MANIPULATION

The time-sharing development environment requires a small number of
utilities which support preparation and management of text comprising
program input and out put. These util.ities deserve special emphasis
since they provide the user with his primary interface to the develop­
mP.nt P.nvlrnnmP.nt.

4.1 TEXT MANAGEMENT

The means of text management is the file system of each of the oper­
ating systems. Development projects on interactive systems ordinarily
produ.ce text files which are related in content.· For example, if a For­
tran program is compiled, then a file containing object code is produced
in addition to a compilation ~utput listing. Ordinarily the listing is
diverted to a file for optional future use. In both systems files which
are related are given different names by appending a qualifier follow­
ing a "dot" separator. Fortran source files must be appended with the
proper qualifier for the compiler but the qualifier need not be typed by
the user when defaults are applicable. ~1S uses a three character qua-.
lifier while UNIX uses only one. If a UNIX system process is creating a
file with the same name as one which existed previously then the old one
will be lost. VMS, on the other hand, maintains a file version number
automatically and preserves old versions until they are removed by the
user. A process will open and use a file with the highest version num­
ber unless the version is explicitly given. VMS thusly affords the user
a means of self-protection; the burden on the user is to clean up old
versions of his files. With the UNIX system the user is forced to main­
tain a copy of his file separately if he wishes to protect it. An
archive facility in UNIX provides an easy way to do this.

Text files on both systems contain no blank fill to the right of the
last character on a line and tabs can be used to remove some blanks
which would appear to the left. Further means for compression or decom­
pression of text files appear to not be a part of the standard VMS or
UNIX systems.

- 8 -

, ..

4. 2 . EDITING

Both systems have text editors which afford the user a means to enter
and modify text files. These files might be language source code, data~
formattable text, etc. For this report the primary editor of each sys­
tem was used: on UNIX the editor is entered by the command "ED" and in
VMS the editor, called SOS, is also invoked by the command "EDIT" or
"ED". Of interest to possible readers of this document is the fact that
the alternate editors TECO and WYLBUR are implemented on the Vt1S system.
TECO is invoked under the RSX-11M. subsystem and WYLBUR (for the VAX) was
developed by SLAC. Alternate experimental editors are available on the
UNIX system as well as a subset of ED which is used during the symbolic
debugging process to examine the source code file.

The UNIX editor is basically a context editor which maintains and can
use line numbers also. During an editing session the line numbers
change as a result of additions to or deletions from a text file. The
editor syntax is simple and does not require an abundance of multi-keys­
troke characters. Slashes delimit strings and a comma separates the
delimiters of a range, these being either strings, line numbers, or a
combination. The characters"·" and"$" stand for current line and last
line respectively. The top line is always line one although a specifi­
cation of noa" allows appending text to the zeroth line Cor equivalently
before the top line). Heavily used edit~r concepts such as "find
string", "substitute string", "print line", "step ahead or backwards"
are extremely simple. The editor provides the ability to move text
around in the text editor buffer as well as the ability to read text in
from a text file and insert it into the current file being edited. A
range of further capabilities whereby one can increment or decrement
line specifications and use wildcards and other codes in strings rounds
out a powerful editing capability.

A possible disadvantage of the UNIX editor stems from the recognition
of case. Lower and upper case are distinguished by the editor in
strings. Thus if text files have mixed case or are exclusively upper
case the user will find himself employing the shift key rather often.
However, it would appear however that if the working environment were
exclusively a UNIX system then one might choose to employ lower case all
the time except when upper case is explicitly required (e.g., in for­
mattable text files). The Fortran compiler recognizes the lower case
alphabet and moreover converts characters to upper case in the printing
of literal strings.

The VNS editor employs a more complicated syntax which differs sub­
stantially from editors in use on the CCF machines. This editor appears
to be primarily a line oriented editor although context searches and
string substitutions are possible. Ranges of text however cannot be
specified by the use oi context string delimiters. In the text manipu­
lations tested for this report no need was found for the use of optional
page numbering which might be considered as another level of line num­
bering. The added syntax necessary to specify pages would seem to be a
burden on the user and no advantages are apparent at this time. Alt­
hough this feature is optional, the editor is s:::~jd to sometimes insert

- 9 -

page numbers, for instance, when ~ file is being copied. Page marks m2y
be deleted. Strings are delimited only by the escape character (which
prints as "$") and line ranges require a colon as a separator. The
characters "t", ".", and "*" conveniently represent the top, current,
and bottom lines respectively in the absence of page marks. The absence
of straightforward defaults is annoying. For example, to print the cur­
rent line one must enter "P." rather than simply "P''· Another rather
annoying characteristic is that the substitution command functions glo­
bally unless something is done to avoid it. One alternative is to spe­
cify "decide mode" which will interrogate the user prior to making each
substitution. A second alternative is to enter "alter mode" which
allows changes to be made directly on the text without the use of the
substitute command. In this mode one can skip over words and delete or
change characters ve~y easily. (It should be noted also that at least
one of the UNIX system editors which is experimental at the time of this
report has an equivalent capability). The VMS editor is also aware of
case. String matching commands will match lower case input to either
lower or upper case text unless the "exact" keyword is specified. On
substitution the case of the replacement string is followed literally.
As with the UNIX system, VMS Fortran recognizes the lower case alphabet
so that a user, to avoid mixing case, might choose to develop source
code exclusively in the lower case alphabet. A "SET TERMINAL" command
affords the user a m'eans of describing his terminal's real or imposed
capabilities to the VMS system. Thus the question of case utilization
can be resolved without users being forced to adopt methods of operation
which are foreign or undesirable to them. A range of wildcard-type
codes usable in a variety of commands provides powerful editing capabil­
ities.

A significant disadvantage of the VMS editor in connection with the
Fortran compiler is that the line numbers of the editor do not agree
with the Fortran line numbers. This is a severe problem when one must
debug the code. The error messages produced in compilation, linking,
and execution contain the Fortran compiler-produced line numbers. The
editor therefore does not effectively complement the Fortran development
environment. In the UNIX system the Fortran compiler apparently adopts
the line numbering of the source which is in accord with the editor.
More will be said about the debugging process in a later section of this
report.

In addition to SOS the VMS system has a batch-style editor, also key­
ing on line numbers, which is used to maintain system source code. Sys­
tem updates are provided using the SLP editor subSYStem.

4.3 LISTINGS

Doth the VHS and UNIX systems offet· f!lcilities to obtain file list­
ings. Both printed and displayed files are included in this category.
The terminal file listing is obtained by use of the "TYPE" command in
VMS whereas the "CAT" command is used in UNIX. It is interesting to
note that the VMS terminal IO recognizes the presence of carriage con-

- 10 -

trol characters and makes proper use of them, including the 11 + 11 • The
UNIX system displays the carriagi control characters as part or the
listing. ·

A print command in both systems ~llows the user to dispose file list­
ings to a· system printer. In VMS the ·list file produ.ced by the Fortran
compiler is rather useful considering ·the previous discussion of line
numbers. ·This listing contains both the editor line numbers of the
source code and those used for reference by the Fortran compiler.
Access· to a printer is. invaluable in the development process. Both sys-.
terns provide formatting features and time and date stamping for printer ·
files. These files are turned over to a spooling system. Whether or
not the spooled print queue· is managed by a scheduling algorithm which
is different from FIFO has not been investigated.

4.4 TEXT PROCESSING

A detailed description of the features of the text processing systems
is not within the scope of the present report. HoHever it is perhaps
widely known that the UNIX system supports a collection of text process­
ing and text formatting capabilities. In addition, there is included ;m
equation formatter for typesetting applications. In contrast, VMS has
no system-supplied software for this purpose.

- 11 -

Chapter 5

FORTRAN LANGUAGE SUPPORT

The Fortran language is of primary interest in this report because it
will probably continue to be the primary development language in the
Appli~d Mathematical Sciences Research Section of the AMD. Accordingly,
this section focuses attention on the Fort-ran compiler·, un sub.5y~tem3

for loading or linking object code, and on facilities for maintaining
load-time libraries. A later section ot' this report will d~dl· with Uw
execution and interactive debugging of such programs.

To test the reliability of the Fortran compilers, a source code whleh
solves an ordinary, one-dimensional, boundary-value problem numerically
was transferred to each system. The main control program code consists
of about 110 lines of Fortran code. (excluding comments) and conforming
to the "66" standard. The code calls two EISPACK subroutines called
BISECT and TINVIT consisting of 136 and 126 Fortran statements respec­
tively. The main program had been written and debugged on the CCF using
the IB~1 Fortran H Extended compiler. Both VAX compilers provide a code
optimization option, the effect of which will be discussed in a section
of this report describing run-time or execution characteristics.

The Fortran compilers on both systems produced correct object code
for this program as evidenced by execution of the loaded code which pro­
duced identical results to those obtained on an IBM 3033. Further tests
of the compilers 'were to introduce syntax errors and to n~ne::~~ne ~ubrout­
ines so as to cause both compile-time and load--time diagno::>l..ies. Care
was taken to not disable the production of warning messages either by
choice or default. Whereas this testing was not exhaustive, some inter­
esting results did emerge.

5.1 THE FORTRAN COMPILERS

The Fortran compiler supplied with the VMS system is calletl Fortran
. IV-Plus and is an implement~tion of t:.he Ful't.ran 66 ;,tandard with exten­
sions, many of which are found in the Fortran 77 standard. Not all syn­
tax errors were detected by this compiler. Those detected included
unbalanced parentheses, an undefined statement number, the redefinition
of a "DO loop" index within its range, and a double comma preceding the
increment variable in a DO statemerJt.. In the ca3e whore errors were
detected, the internal statement number was given in addition to a short
message and a fragment of the source statement including or near to the
erroneous syntax. This fragment is valuable because of the editor's use
of line numbers different from the Fortran compiler's statement numbers.

- 12 -

Thus it can be used for context searching. Errors not detected included
two other occurrences of double commas, one in an IO list and one in the
argument list of a subroutine call.(1) In addition, the interactive com­
pilation messages do not warn of unused variables or undefined varia­
bles. A compilation listing containing cross-reference maps can be pro­
duced on a file for later use and disposal. Optimized object code is
produced by default. The user's guide lists nineteen kinds of optimiza­
tion which are carried out. The default may be overridden for debug­
ging.

The UNIX Fortran compiler conforms to the Fortran 77 language stan­
dard and has many of the useful extensions available in other Fortran
compilers. For example, it includes nearly all of the 66 standard fea­
tures as a subset. Conflicting elements such as "onetrip do loops" are
accessible via a keyword option to the compiler. All deliberate syntax
errors were detected by the compiler including unbalanced parentheses,
the redefinition of a "DO loop" index in its range, double commas in an
IO list, an argument list, and a "DO loop", and an undefined statement
number. The compiler did warn of the presence of an unused local varia­
ble but did not point out a variable which was undefined prior to use.
A listing containing the usual cross-reference maps of variables, state­
ment numbers, and other language elements cannot be produced by any
option. Other software development tools provide some or all of these
useful facilities. The C language code which is produced as an
intermediate step is optimized optionally. No optimization is carried
out at the Fortran language level.

5.2 THE LINKING LOADERS

The command "LINK" in the VMS system accepts as parameters keywords
and several object code files and user libraries. A task module is
built which then may be executed. The linker points out unresolved
references and tells the interactive user which program unit was refer­
ring to them. Several keyword options control the content of an
optional image map file. The useful cross-reference map of program
units anu ::;Lurage elements is available. The image may be executed not­
withstanding the presence of unresolved variables. By default the
linker includes information enabling the execution monitor to produce a
traceback in the case of a run-time error.

In the UNIX system linking is carried out subsequent to compilation
unless only compilation is requested. Moreover, a list of files con­
sisting of only object programs may be loaded using the compiler com­
mand. The file "type" triggers the use of the compiler and loader or
just the loader. The advantage of not using the load command is that
the Fortran default libraries are known to _the compiler command but not

(1)The absence of arguments in a subroutine call is purposeful in this
system. The compiler insP.rt.~ zero values for the orgument3. Thus,
optional parameters in system service routines may be omittP.d.

- 13-

to the loader. If unresolved references are encountered the interactive
user is made aware but no specifics are given as to which program unit
made the reference. If caused by a spelling error the user will have to
scan all of his source files to find the reference. In the event of an
unresolved reference the module produced is not executable. Apparently
this cannot be disabled.

Neither linker carries out checking of argument lists either for mis­
match of length or type of variable. Such checking has not been common
among linking loaders; there seem to be no real standards in this area.
Problems due to such mismatches are generated at run...;.time and will be
discussed in a subsequent section.

5.3 USER LIBRARIES

In the VMS system a "LIBRARY" command produces a user library from a
file or files containing one or more object modules. Each object module
becomes a separate recognizable entity in the library. Modules may be
added, deleted, replaced, and extracted. For easy management a keyword
option produces an alphabetized list of modules along with the addition
date and time. Library disk space management is carried out by the user
by means of other keyword options. User libraries form additional par­
ameters for the "LINK" command.

In the UNIX system the creation and maintenance of user libraries
constitutes one type of usage of the file archive facility. Files con­
sisting of single object modules can be added to the archive file and
are recognizable thereafter as object modules. Deletion, replacement,
and extraction are available in addition to a facility by which the
order of modules may be changed. This latter ability is required
because in the UNIX linking process each library is searched sequen­
tially only once. If a later module were to reference an earlier module
a linking error due to non-resolution of the reference would occur. An
archive directory which displays the order of the modules is easily
obtained. The date and time of addition is also given.

5.4 FORTRAN PREPROCESSORS

Whereas testing the preprocessors available to UNIX or VMS users is
beyond the scope of this report some information was obtained. The UNIX
system supports three preprocessors which are front-ended to Fortran via
the ordinary compiler command. An optional macro preprocessor may pre­
cede either Ratfor (rational Fortran) or EFL (extended Fortran language)
processing with the file suffix distinguishing between the two extended
language alternatives. To complement this facility a "STRUCT" processor
translates Fortran into the Ratfor dialect. \Vith VMS there is no system
provided preprocessor although the MORTRAN preprocessor. was implemented
on the test machine by SLAG.

- 14 -

Some of th~ ~ses of a ~aero p~eprocessor are available in modern
Fortran language concepts. These are the "INCLUDE" statement which
incorporates the contents· of a file at some point in a source code .com­
pilation and the "PARAMETER" statement which allows the user to redefine
Fortran constants apart from their occurrence in the code. , Both Fortran
compilers implement these features which should be most useful in the
Fortran development enVironment.

- 15 -

Chapter 6

PROGRAM EXECUTION

The present section deals with the execution and run-time debugging
of programs developed in the UNIX and VMS Fortran environments. Apart
from errors in the development of algorithm logic, which are errors of
analysis, certain oversights on the part of the programmer continue to
cause run-time errors which can be most difficult to find. The permis­
siveness of th~ Fortran langu~ge 1~ d contributing footer in this reg~rrl
and thus some compilers implement optional features which aid in the
i.~olation of such problems. The. utility of run-time error mess!'lges ~Jill

be reviewed as well as the ped'orme:mc~ of e oyotem· oupplied symb611.c
debugging system.

Both the UNIX and VMS systems produce executable modules or "process
images" as output of the linking process. These images end up as files
stored on the default device and using supplied or default naming con­
ventions. In the UNIX system one simply uses the full file name as a
command to invoke the execution of a process. In the VHS system the
command is "RUN fn" where fn is an unqualified file name having the
proper type suffix of "EXE".

Both systems also allow the interactive user to initiate processes
which execute in a mode which is considered to be detached from the ter­
minal. · That is, the user can subsequently use the terminal to carry out
other command t:.ask$. This is 3imilar to the submit feature nf VMS which
places a process on the batch queue. Batch processes and detached pro­
cesses are. handled differently by the VMS process scheduler.

6.1 RUN-TIME ERROR HESSAGES

As has been 'described earlier, intentione:ll erTot·~ wer~ put into on
otherwise correct Fortran code to permit observation of run-time error
handling. These included mismatch of argument lists, undefined varia­
bles, ~nrl th~ Axcccding of array bounrl~.

In the VMS system, the presence of an undefined variable showed up at
r·un-time as an "arithmetic trap" because the variable was used later as
the denominator in a floating-point divide. A traceback was produced
whieh explicitly named the Fort.rr-~n statement number at which the trap
occurred. It was established that. VHS initializes variables to zero. A
shortened argument list in a subroutine call produced an "access viola:­
tion" when the subroutine referred to the missing variable. The auto­
matic traceback produ.ced tne information by which the error could. be

- 16 -

recognized. In a second argument list where a spurious variable was
inserted, the m·essage and traceback which was produced referred to an
"adjustable array dimension error." Again the statement number of the
offending code was given. A double comma in the same argument list led
to an additional floating-divide error during execution which was
resolved on the basis of the message but which should have been caught
as a syntax error at compile-time. The error of exceeding an array
dimension gave rise to an "access violation" trap. Recompilation with
the ·bounds checking feature and subsequent execution of the new module
produced a trap and the message "subscript out of range."

In the UNIX system identical source code errors produced the follow­
ing behavior. The presence of the undefined variable caused the program
to execute to completion with no error messages. Aside from some
printed table headings the output of the program was missing although
the correct number of iterations had been performed. Investigation rev­
ealed that UNIX had likewise initialized the undefined variable to zero
but carrying out arithmetic with it evidently did not cause error excep­
tions. The shortened execution time implied that some of the code was
not being executed. Execution with array space too small for the prob­
lem caused "segmentation violation" and "illegal unit number" messages
to appear. Rerunning with the compiler's subscript checking feature
produced the "subscript out of range" message along with additional data
pinpointing the exact problem. Execution with a shortened argument list
in a call statement produced the rather cryptic message "bus error."
Finally, execution with a spurious variable inserted into a subroutine
call argument list caused no error exceptions but the information
return·ed from the subroutine turned out to be incorrect as evidenced by
the printed output. Any time a run-time error was printed the addi­
tional message "core dumped" was produced. A core image file appeared
in the user's default directory also. This image file can be used by
the symbolic debugger to further isolate problems. Use of the debugger
facility is described in a later section.

6.2 INPUT AND OUTPUT

Both the VMS and IJNTX systemD default luglcal units five and six to
the terminal for input and output respectively. Fortran 77 and Fortran
IV-Plus both support the "READ" and "PRINT" statements which also refer
to the default input and output units respectively. In addition, For­
tran IV-Plus supports the additional statements "ACCEPT" and "TYPE" for
purely terminal oriented applications. These also default to the appro­
priate device. Both systems also allow the user to equivalence his
default input and output. units to symbolic file names at execution time
using the command language facilities. This is particularly useful for
detached process execution. If a file other than the default is used,
e.g., logical unit n, then a file named "FORT.n" or "FOROOn.DAT" is
opened and/or created in the UNIX and VMS systems respectively. The
user need not be concerned about additional file oriented operations
such as open, close, disposition, etc., although these facilities are
available through Fortran subroutine calls to the IO system.

- 17 -

6.3 SYMBOLIC DEBUGGING SYSTEMS

Both operating systems provide symbolic debugging systems which may
be employed optionally to monitor and control the execution of a Fortran
program in an interactive mode. One can monitor a process' activity and
the values of variables by either name or location. Values of the vari­
ables may be changed to resolve run-time conditions. In order to use
the facilities one must prepare by compiling and/or linking and having
the appropriate debug option keyword or parameter present. Subse­
quently, the process is executed and the interaction may begin.

In the UNIX system the "SDB" debugger is invoked by the command "SDB
fn" where fn names the file containing the process image. The user is
prompted fnr breal<point commands and subcommands which allow a range of
9esirable facilities. Subcommands specify what is to ue ~xamined during
or at a brP.~kpoint and may convE:!nleuLly be sttaohod to thP hrP.Akpoint
command for uninterrupted tracing. The process can be executed in ~in­
gle-step mode which means line-by-Fortran-line. The debugger system is
able to. display the line of Fortran code corresponding to the point in
the program where execution is stopped. t1oreover, an editor-like sub­
system allows the user to examine the source file. As described previ­
ously, the line numbers of the source code are used by the compiler and
therefore the line numbers produced by the symbolic debugger system are
in agreement with the editing facility. At the time when the material
for this report was being gathered the facility by which a variable's
value may be changed did not appear to be working properly. In the case
where a process terminates with the message "core dumped" the symbolic
debugger can be invoked and will use the core image file in addition to
the process image file. Internal pointers will be set to the source
line which caused the dump to be produced. Otherwise the pointers will
be set to the first executable statement. This capability was not
tested.

The VMS symbolic debugging facility is made a part of the process
image when the debug keyword is specified to the linker. The user sim­
ply executes his process as usual and receives a debugger prompt. The
facility supports three kinds of execution interruptions. These are
"BREAK-", "TRACE-", and "WATCH-points." The first two are similar capa­
bU i.ties to those found in the UNIX facility. The WATCH-point allows
the user to view all changes of a variable'a valu~ without specifying
the source code location of such changes. It is a most desirable facil­
ity but at the time when this material vias being gathered it appeared to
be defective. The debugging session went into some kind of loop or
other unknown state. The user of this debugger may also step through
the execution line-by-Fur·tr·an-line. A prirn~ di.~~rlvantage of the system
is that internal statement numbers generated by the Fortran compiler are
needed to specify certain interruption points. In the absence of a con­
venient listing or printing facility one can only scan the compiler
listing using an editor. Such usage would be rather inconvenient at
best.

Both debugging facilities have defects but still provide an interac­
tive user with a powerful capability. Each facility is relatively easy

- 18 -

to use. Various means are afforded the uset to add or dele~e the
debugging code without necessarily backtracking all the way to the com­
piler. All program modules need not contain the debugging code; those
modules so equipped will have the capability· of interactive debugging.

- 19 -

Chapter 7

EXECUTION SPEED STATISTICS

This section provides a comparison of the execution speeds of pro­
cesses run on the two systems. Interest lies not only in the speed of
the image which is produced by the Fortran system but also in the speeds
of the Fortran compiler and linker Lhemsel ve3. Measurem~nt. of speeds is
f~~wPrl hy unoontrollable events relating to the multiprogramming envi­
ronment. To the extent that was pussilile, LIH.: e>ystem:3 w;T'n tim~ 11nrlP.r
conditions of decreased system load. On the UNIX system this was
achieved by carrying out tests between 6:30 and 8:30 A.M. UNIX local
time. viith the VMS system the perceived load seemed to never exceed
about five users and the effect of their presence appeared minimal.

The UNIX system employed in these tests produces a summary of timing
data following the execution of subsystems such as the Fortran. compiler
and linker and following the execution of user processes. Times
included are user cpu time, system time (for IO), and elapsed wall-clock
time. The VMS system provides a command by which elapsed wall-clock
time may be obtained. In addition, the manager of the VMS system had
implemented a pair of system calls by. which a user could obtain the
elapsed cpu time of his own process. Unfortunately the cpu time of the
linker and the compiler is not explicitly available. The elapsed time,
however, provides an upper bound by which some inference of the cpu per­
formance of those subsystems might be drawn. ·

The following sections describe pi'ogr~m:J, referred t.o here as A, B,
and C, which were employed to obtain data. During the timing experi-
ments of program A the hardware configurations of the two systems were
nearly equivalent. The configurations are described elsewhere in this
report. When the experiments for programs Band C were carried out, the
VAX machine with UNIX software had had a memory increase from .5Mbyte to
L 5Mbyte.

7. 1 PROG11Ar1 A

The initial tests of performance were carried out using the program
described in Chapter 5, the numerical solution of an ordinary, one-di­
mensional, boundary-value problem on several equi-spaced grids. Both
eigenvalues arid eigenvector3 were obtained for the resulting tridiagonal
matrix problem using the BISECT and TINVIT subroutines from the EISPACK
collection. By far the dominant characteristic of the processing is the
manipulation of elements of a few one-dimensional arrays. The program
required 5.22 cpu seconds on the IBM 3033 of the ANL Central Computing

- 20 -

Facility (CCF) with the workhorse EISPACK routines having been compiled
using the Fortran H compiler with optimization level of two. This com­
piler provides many optimizing facilities and the resulting object code
is considered to be highly optimized. The program is cp~ bouhd with
only occasional formatted output being produced on an output file.

In Table 1 are shown several cpu and elapsed times for the UNIX and
VMS systems. The times are grouped according to whether or not the
optimization feature of the respective compiler was used. In summary,
the VMS optimized code is fastest being about seven times slower in cpu
sec. than the IBM 3033. About 16% was gained by optimizing the VMS
code: In contrast ihe UNIX code is about 9.5 times slower than the IBM
3033 and the gain from optimization is only about 12%. The cpu times
comprising this data are relatively constant, exhibiting only small
deviations from the averages. On the other hand, the elapsed times
tabulated here exhibit large deviations from the average and trends are
therefore less certain. Considering just the averages, in the UNIX data
is seen an elapsed time roughly twice the cp time whereas the VMS
elapsed times are 4/3 of the cp_ time.

Table 2 contains a short compilation of elapsed times for the compi­
lation and linking of the entire source code. This consisted of the
main program, the two E!SPACK routines, and a dummy abend routine con­
sisting of only a Fortran stop. On the average, compilation is nearly
twice as fast using the VMS system and linking is about three times as
fast.

- 21 -

TABLE 1

Comparison of UNIX Rnd VMS execution times when running prog~am A (times
in sec.)

UNIX VMS

Elapsed CPU Elapsed CPU
Time Time Time Time

168 56.5 50 42.9
Unoptimized 85 55.13 48 42.G

Code 75 56.7 67 42.9
94 . 55.8 61 43.7

Average 106 56~2 57 43.0

101 49.4 49 35. 1
121 49.6 69 35.6

Optimized 129 50.8 41 34.6
Code 79 49.3 41 35.0

77 49. 1 39 34.5
81 48.6 43 35.2

Average 98 49.5 47 35.0

- 22 -

...

TABLE 2

Comparison of UNIX and VMS compilation and linking elapsed time for
pr6gram.A (times in sec.)

Compilation . Linking

UNIX VMS UNIX VMS

89 34 26 8
90 59 27 15
91 33 27 6
90 27 34 4

62 7
33 14
29 6

Average 90 40 2.9 9

- 23 -

. 7.2 PROGRAM B

The program referred to as B was chosen to exercise the Fortran
facilities for a case where doublY-dimensioned array elements dominate
the arithmetic. To this end a driver program was written which solves
linear equations using the Hidely known subroutines DECOt-1P and SOLVE.
The problem was constructed artifically and consisted of solving systems
of dimension n=10,20, ... 100 each a total of five times. The matrix
solved is defined by

A(i,j) = 1 I cosh (2(i-j))
A(i,j) = 0.0

ii-ji ~ 20
otherwise

and the right hand side in the system AX=b was taken to be
b(i)=1.0,i=1,2, ... n. The matrix A was computed only one time and it~

values were kept in a storage array Lo be· used for all of the linear
system solve iterations. Although the matrix is symmetric, no use was
made of this property and the system was treated as being.general. For­
tron code for t.hF> flrtver, fvi' DECot1P, and for SOLVE ~nnf:i sts of 38, 36,
and 28 statements respectively. The double precision (bli-bit) ver~lo11
of all routines was used. The programs ·were likewise run on the IBM
3033 having been compiled using the Fortran H compiler with optimization
level two. Execution time required 4.55 cpu seconds. Table 3 contains
the results of the VAX-1l/780.runs. The cpu time for the UNIX system
runs is consistently greater than twice that of the VMS system. The
elapsed time on the UNIX system varied slightly; on the VMS system the
elapsed time was constant.

- 24 -

c.

·-:

•

TABLE 3

. Comparison of UNIX and VMS execution times when running program B (times
. in sec.)

UNIX VMS.

Elapsed CPU Elapsed CPU
Time Time Time Time

97 92. 1 49 45.28
96 91.9 49 45.35
97 92.0 49 45.22

105 93.5 49 45.21
94 91.8 49 45. 17

144 93.7 49 45. 18

Average 105 92.5 49 45.23

- 25 -

7.3 PROGRAM C

The program referred to as C was supplied by Jack Dongarra of the
Applied Mathematical Sciences Research Section. It consists of a test
driver which is designed to compare several simultaneous linear equation
subroutines. Included in the comparison are DECOMP and SOLVE, the LIN­
PACK routines DGEFA and DGESL which use the basic linear algebra
subroutines (BLAS), and analogous routines which have the BLAS in-line.
The BLAS used by the LINPACK routines are DAXPY, DDOT, and DSCAL. The
collection of routines comprises a mixture of array manipulation types
since the BLAS serve to vectorize the time consuming operations. The
driver program generates matrices A of dimension n=2,5,10,25,50,75,100
and right hand sides b consisting of random numbers. The system of each
size greater than or equal to 25 is solved just one time by each of the
subroutine groups employed. Dimension 25 is set as a standard to com­
pute the number of solves carried out for the smaller systems. The
exact number is adjusted so that as much total time to solve n x n sys­
tems Cn<25) is used as to solve a single system of dimension 25. The
adjustment is based on the O(n3) dependence of solve algorithms and not
on computation time. Because the UNIX system did not have a Fortran
callable cpu timing routine the data collected for program C is simply
for execution of the entire program as has been done for programs A and
B. In addition to the cpu and elapsed times, some information bearing
on the non-cpu time caused by each system is presented. As before the
computations were done using double precision (64-bit) data elements.

To highlight the possible effects of paging strategy in the two sys­
tems an additional parameter LDA was varied.. This quantity is the
dimension of the arrays in the driver program and is known to the
subroutines as the "leading dimension of A." It is used to compute the
memory location of array elements when a sub-array is being manipulated.
As LDA increases, each column of A will span more virtual memory pages
and hence the paging rate or IO time should change. This parameter was
set both at 100 and 200 for a series of runs. Other than a change in
the memory management I/0 there is no change in the mathematical manipu­
lations.

The data collected is presented in Table 4. It is interesting to
point out the following. On the UNIX system the cpu time remained
nearly constant with an increase in LDA. Likewise there would appear to
be no significant effect on the system (IO) time or the elapsed time.
Increases in system time closely parallel increases in elapsed time and
can perhaps be attributed to system activities external to the immediate
process. the array space required for this program is largely equal to
8n(n+2.5) bytes which for dimension 200 is 324 Kbytes and is well below
the bounds of available physical memory. Thus during these timings the
paging may not have been a factor. The VMS system data contains the
numbers of page faults encountered during process execution. Changing
LDA to 200 caused a significant increase in the page fault count. The
array space for LDA equal to 100 is about 82 Kbyte which is \vi thin phy­
sical memory bounds. A page fault count of 211 would seem to not be
serious in terms of causing system degradation. The increase of LDA to
200 caused the page fault count to jump to over 5000. Accompanying this

- 26 -

•

,'

~·

•

is a parallel increase of the cpu time and the elapsed time on the
average by 1.8 and 14 seconds respectively. It would appear that a
sizeable increase in paging does not degrade cpu or elapsed time signi­
ficantly (under the conditions. which existed when the data was
obtained).

- 27 -

TABLE 4

Program C times (in sec.) and IO data

UNIX (1. 5 Mbyte)

-~

LDA:100 LDA=200

CPU System Elapsed CPU System · Elapsed
Ti!Tle TimP. Time Time Tlme Time

79.5 1.0 83 79.5 1.4 87.
79 0 1 1.4 89 '79.7 1.0 85
79.8 2.8 112 79.6 1.'1 102
7Q.P, 2.3 1 01 81 • II 'J.o 134
80. 1 1.0 85 79.2 1 . 1 .84
79.5 0.8 82 79.3 1. 2 83

VMS (.5 Mbyte)

LDA:100 · LDA:200

CPU Page Elapsed CPU Page Elapsed
Time Faults Time Time Faults Time

52.01 242 58. 53.78 5086 61
52.29 211 . 58 54.66 4979 71
51.93 21, 5H 54.29 5648 76
53.83 211 60 55.31 6444 66
52.32 211 58 53.37 4563 60
54.03 211 64 55.84 5949 104

- 28 -

. ,.

I

-.

'·

•

"

•

Appendi"x A

HARDWARE CONFIGURATIONS

In order to assess this comparison of the UNIX and VMS systems on the
VAX-111780 it is useful to know how the hardware is configured. The
systems which were tested were implemented on somewhat different hard­
ware and were operated by different individuals.

The UNIX system hardware consisted of the VAX-111780 and the optional
floating-point accelerator. The memory during the testing of program A
consisted of .5 Mbyte which was later increased to 1.5 Mbyte. The test­
ing of programs B and C was carried out in the latter environment. The
system has two disks, one DEC RP06 used for files and a second System
Industries (SI) disk attached to the UNIBUS and used for paging. The
RP06 has 176 Mbyte of space and a peak transfer rate of 806 Kbyte/sec.
About 80 Mbytes are available on the SI disk and the peak transfer rate
is 1.2 Mbyte/sec,

The VMS system hardware consisted of the VAX-11/780 and the optional
floating-point accelerator. The memory was .5 Mbyte and there was one
DEC RM03 disk with 67 Mbyte of storage and a peak transfer rate of 1.2
Mbyte/sec.

During the testing both machines were accessed by 300 baud dial-up
lines •

- 29 -

