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Abstract

Results are presented of a parametric study of the 1deal
magnetohydrodynamic stability properties of the spheromak, or compact torus,
configuration. In the absence of a nearby conducting wall, the spheromak is
always unstable to at least one current driven mode. With a conducting wall
at the surface, the spheromak can be unstable to current driven modes if the
current is too peaked, i.e., qo(R/a) < 2/3, or if the shear is too low at
the origin. The Mercier criterion sets an upper 1limit on the pressure
gradient everywhere, but configurations that are everywhere Mercier stable can
be unstable to pressure driven low-n modes. Stable toroidal configurations
exist with a spherical wall separated by half a minor radius, and with

89 = 30%.
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I. INTRODUCT.ON

The spheromak, or the compact torus, is an axisymmetric closed magnetic
field line toroidal plasma confinement configuration with zero vacuum toroidal
magnetic field. Toroidal and poloidal currents of comparable magnitude exist
in the plasma to generate the poloidal and toroidal confinement magnetic
fields. Just as the tokamak is a stellerator with internal toroidal current
instead of external helical windings producing the confining poloidal fields,
S0 the spheromak is a tokamak with internal poloidal currents instead of
external toroidal field coils producing the confining toroidal fields.

Recent experimental investigations [1-3] have demonstrated that there do
exist configurations of the spheromak type that remain stable on the ideal
magnetohydrodynamic time scale, that is, over time intervals long compared to
the Alfv;n wave transit time of the device, TA = (uopo) 1/2 a/BO « This is
in qualitative agreement with existing theoretical investigations [4-6] which
have identified stable configurations with current distributions near the
Taylor state in which the current density is everywhere proportional to the
magnetic field strength, 3 = aB. In order to make better quantitative
comparisons with experimental results, and to aid in the design of new
experiments, it is desirable to have mapped out the theoretical boundaries of
the stable operating regimes in the space formed by parameters describing more
general current and pressure distributions, different aspect ratios, and a
range of plasma cross sectional shapes. Such is the intention of the present
paper .

In the next section we discuss the ideal magnetohydrodynamic stability
properties of the circular cylindrical spheromak. This is a fictitious

configuration in which the torus has been cut and straightened out to become a

circular cylinder of radius a, length 2%R, and with periodic boundary
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conditions. The usefulness of this model lies in the fact that it has a
reduced parameter space and is more amenable to theoretical analysis. We find
that a single nine-part diagram adequately summarizes the stability properties
of this configuration.

Section III 3discusses the stability properties of the actual toroidal
spheromak. The complexity of toroidal geometry greatly expands the dimension
of the parameter space and necesitates the use of large numerical stability
codes. However, upon comparing the results we obtain here with those of
Section 11, we find generally a good correspondence between the stability
results for the cylindrical and the torcidal geometry. 1In exception to this
are a small number of new unstable modes which exist in toroidal geometry but

have no analoque in the cylindrical spheromak.

II. THE CYLINDRICAL SPHEROMAK
A usefull model for locating and understanding parameter regimes of
internal mode stability is provided by considering the periodic cylindrical
spheromak . Using standard (r,8,z) cylindrical coordinates, we define a
periodicity length in the z direction of L = 27n/k, where k is the analog of
the reciprocal major radius in a toroidal device, k = 1/R. The equilibrium

equation in this geometry is

The safety factor profile, gqlr) = rsz(r)/Be(r), is taken to be of the form
20

qlr) =qo(l-r ), where the plasma boundary is defined by r = 1. To

parameterize the pressure, we introduce the parameter ocagt by

ap/ar = -arai/a (q'/q)%. Thus for a = 0 , the plasma {s force free, while



for o = 1, the pressure is determined by the condition that it be everywhere
marginally stable to ideal interchange modes, according to the criterion first
derived by Suydam (7]. Note that the mast general pressure profile could be
described by allowing @ to be a function of r, a = a(r). We have restricted
our consideration to constant @ in order to reduce the dimension of our
parameter space.

The eguilibrium fields for such a system are yiven by

r 2 4 ar 4 azdriq?/2x))
By = r By, exp(-/ 2. 2 2
o (g /k + 1)

2
(- (o/8k")rq dr} , (2a)

B = de/rk . (2b)

In addition to the overall scale factor B the equilibrium profiles are seen

.
to depend only on three parameters; the pitch g,/k, the pressure factor a, and
the g exponent o. We introduce a new parameter, the wall radius b, and extend
the definition of the equilibrium fields into a vacuum region surrounding the
plasma by setting q{r} = q'(r) = 0 for 1<r<b and using Eg. (2} to
define Be and B -

In Fig. 1 we plot typical current and magnetic field profiles for force-~
free, parabolic g-profile configurations with a = 0, ¢ = 1, and for g /k
0.5, 1.0, and 2.0, We note that small values of qo/k correspond to the
toroidal current J, peaking on the axis. The current is relatively flat for
qo/k = 1, while for values qo/k > 1, J, peaks off the magnetic axis. These
profiles change little for finite pressure configurations with 0<a<? . For

configurations with o = 1, i.e., with the pressure everywhere at the Suydam

limit, the plasma pressure increases as q,/k (and hence the magnetic shear) is
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1 1
increased. In Fig. 2 we plot BO z2 f rpdr/f rﬂé dr vs. qo/k for a = 1, o
o o
= 1 and for a = 0.5, o = 1. The total B is approximately equal to one half
of .
BO
The stability of this system to infinite conductivity modes is obtained
by minimizing Newcomb's form of the energy integral,

b
_n dE 2 2
1% =3 g dr [f('d—r) + g§ 1, (3)

where the functions f and g are defined as

2
{14n°x"r )
2,2 2
n“x‘rB ,2 ( 2 2 )
5= gy - S e (1 - ee)? e AL (ap)
(1+n“x“r ) a4k (1+n k'r )
Here, the perturbations vary as E(r,0,z) = E[r)exp(ie ~ inkz), so that n is

the longitudinal (or toroidal) mode number and a poloidal mode number of m = 1
is explicitly assumed, as it is known to be the most unstable.
Following the prescription of Newcomb [8], we integrate the Euler-

Lagrange equation

& (eSy - ge-0, (5)

in each independent subinterval bounded by the physical boundarys r = 0, r =
b, and/or by the mode rational surface, @ = 1/n. A solution which is "small"”
at one endpoint and which vanishes anywhere in a subinterval signifies an

unstable mode. Examination of the functional forms of f and g in Eg. (4)
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reveals that each stability calculation depends on the toroidal mode number n
only through the combinations ng and nk.

A general analysis of the destabilizing terms in Egs. (3) =nd (4) has
been given by Robinson [9]. Here we only note that both the first and the
third terms in the bracket of Eq. (4b) can contribute to instability. When
the first term, which is proportional to the pressure parameter o, dominates,
we call the mode pressure driven. When the combined second and third terms
dominate, which requires nqc> S 1, we call the mode current driven. We proceed
to treat «, o, b, nk, nqo as parameters and evaluate stability numerically
according to the proceedure outlined above.

The reduction of the equilibrium and stability problem to a small number
of parameters allows one to graphically identify stable operating regimes as
is done in Figs., 3 and 4. Figure 3 maps out the stable regions in {(nk, nqg )
space for o= 1, a = 0.0, 0.5, 1.0, and b = 1.0, 1.5, and 2.0. M equilibrium
confiquration on these diagrams corresponds to a straight line eminating from
the origin with fixed qo/k. If the entire line lies in the stable region, the
equilibrium is stable *o all ideal mecdes.

The first thing one notices upon examining Fig. (3a) is that force free
equilibrium (a = 0) with a wall on the surface of the plasma (b = 1) and with
g9,/k < 0.67 are unstable to internal current driven modes. This also follows
from examining the FEuler-Lagrange equation around the origin of a zero
pressure equilibrium with ng, = 1. Equation (5) becomes, for r << 1,

%(qo/k)zg—rr g%+zt;=o. (6)
1f we expand £ in a Taylor series about the origin, the condition that the

roots of the indicial equation be real and unequal is that q,/k < 2/3, which



is in agreement with Fig. 3(a) and with Robinson [9].

2s the pressure is increased from zero, Figs. 3(b) and 3(c), the upper
right hand corner of these diagrams become unstable, indicating finite n
pressure driven instabilities with the mode rational surface in the plasma,
ng, 2 1. From Figs. 2 and 3(c), one sees that there exists stable
configurations with the wall on the surface of the plasma, b = 1, with
pressure parameter ¢ = 1, and with pitch qo/k = 1,1, corresponding to a volume
averaged Be of about 38%.

Examination of Figs. 3(d) through 3(i) shows that as the wall is removed
rom the surface cf the plasma, i.e., as b becomes greater than urity, the
region of instability due to the pressure driven modes increases, while that
due to the current driven modes remains about the same. However, from Fig.
3(e), we see that a configuration with wall radius b = 1.5, pressure
parameter a = 0.5, and pitch g, /k = 2.0 is stable to all ideal modes. From
Fig. 2, this corresponds to Be = 70%.

It is evident from Figs. 2 and 3 that the maximum stable B configuration
for a fixed pitch qo/k and wall radius b does not in general have the pressure
parameter a equal to unity, although this is the case for b = 1 and 0.67 <
qo/k ¢ 1.1. For large enough values of the pitch parameter qo/k, the maximum
stable B approaches a limit of Be = 70%. This limit is reached at g /k = 2.0
for b = 1 and b = 1.5, where it corresponds to a value of ¢ ~ 0.5. For b = 2
the limit is reached at q /k = 2.6 where it corresponds to a value of a = 0.3.

Figures 1 through 3 were for the exponent parameter o© in the g profile
equal to !. Raising ¢ above 1 has little effect on the stability diagrams
except for in the vicinity of ndy, = 1. In Fig. 4 we show the analogue of Fig.
3(a), bu* with 0= 2, We see that for all values of q,/k there is a narrow

region of instability to current driven modes for ng ~ 1.
o



M approximate condition for instability can be derived which reproduces
the structure of Fig. 4 for g > 1. We consider o = 2 and values of 9,

(1-¢) (1-r%),  where

I

slightly less than a rational number, so that ng

€ << 1. The Euler equation, (5), evaluated near the origin where r << 1 and

B, ~ B, r becomes

o Bo
g; r3(5+r )2 Eé + 4n k r (e#r JE = . (7)
This is readily solved by a power series expansion, 1f we
-4
take £ = | (nzkzzz/e) , then one cbtains the recursion relation
m=
E =2 (£ + (m-1)(2mra)y £+ y E
m+1 (m+1)(2m+4) “’m e Y Sper T Y S
2 (2m+4)(m=-3)
+ ————t
¥ 2 gm-3]
with y = e/n4k4. The first few £ are given by Eo = 1, £y~ -1/2, £2 =
m
1/12, 53 = =-(1~-36y)/144, g = (1-204y)/2880. Evaluation of this series shows

a zero for y < 0.017 at nzkzrz/e = 4,7, indicating instability for (l-nqo) <

0.017 nk?%, This is in good agreement with Fig. 4.

ITII. TOROIDAL RESULTS
The investigation of the stability properties of the toroidal spheromak
with arbitrary shape and equilibrium profiles necessitates wusing large
computer programs to calculate equilibrium and linear ideal MHD stability. A
description of these programs and their convergence properties has been given

previously [(10-12]. Here, we concentrate on presenting and understanding

their results.

|
|
!
i
|
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A in Pef. [13], we parameterize the shape of the equilibrium we study as
illustrated in Fig. 5. Mtivated by the exact spherical solution, the outer

boundary, in spherical coordinates, is given by r siné j1(r) P1 (cos8)

+ &= 0, where 0 < § < 1,063 measures the gize of the "flux hole.” To
"flatten" (oblate) the configuration, we multiply the =z coordinate
by (1+e]” /2,

The parameters & and ¢ therefore determine the shape of the outermost
flux surface. In analogy with the cylindrical study, we take the safety
factor profile to be of the form gq(¥) = qo[1-(‘¥/‘{’o)U], where 0 < (‘!’/‘!’o) < 1 is
the normalized poloidal magnetic flux. The pressure profile, p(¥), is taken

to be a fraction, a, of the pressure pm(‘!') that is everywhere marginally

stable to the Mercier criterion [14]) for marginal stability to ideal
interchange modes in a torus. Thus p(¥) = « pn(‘?'J where 0 ¢ ¢ ¢ 1 and
P, dp
- m m 1 _
o, = Flggz )" + (E+H)(d—‘y-) -7=0 . (8)
Here,
2 2 2
- (2n; [ «-R > B > - RzBi P . 52 7,
q' 17¥1 1v¥] vyl
-ZTIRBT 1 2
HE o [ -5 < B 5> - < _1_2 >
q <B"> | o] 19¥|
2 2wy ' RB
Brt 2o T (g )]
.2 2 2 ¥
9 | V) <B">

In these =xpressions, prime denotes differentiation with respect to the volume

within a flux surface, R is the major radius, By is the toroidal field

2

2
strength, B = |V¥| /(21m)2 + B,f,, and brackets denote flux surface averages.

Once the plasma equilibrium is kmown, Eq. (B) is solved as a quadratic



equation for (dp /d¥) on each flux surface. Since the pressure gradient
m
encers into the equilibrium equation, Eq. (8) must in practice be solved by

numerically iterating its solution with the solution to the Grad~Shafranov

equation
-2 2 -2 2 dp | (2m)2 v'g
(21m) " R°Ve(rR7v¥) + R 55 + a5 = =09 . (9)

-2 L -2
<x >

The equilibrium is therefore defined by the parameters a,é,qo,o, and a. A
stability calculation also requires the specification of the toroidal mode
number n and the spheromak wall separation parameters aw and bw, Fig. 6.

To illustrate the range of current distributions considered, we plot in
Fig. 7 the poloidal magnetic flux surfaces and the midplane current profiles
for <three equilibrium configurations with ¢ =2, 6= 0.1 0= 1, a = 0, and
with 95 = 0.2, 0.35, and 1.35. & in Fig. 1, we see that small values of =
correspond to the toroidal current being very peaked, while large values of 9,
correspond to flat or hollow toroidal current profiles. 1In analogy to Fig. 2,

we plot in Ffig. 8 R, vS. 9,R/a for configurations with a = ! (i.e., pressure

)

everywhere at the Mercier limit), o = 1 (linear g profiles), and for various

values of the shaping parameters £ and 6. Here ﬁe is defined by

Wy v

(o] (o]
By = - | mnivimay [ ven[p' + @2 (re ) 1ay
(o] [o]

where V is the volume within a constant ¥ surface. b in the cylinder, Be set
by the interchange limit increases with q R/a. In addition, we note that for
configurations with the same values of qu/a the value of '86 increases
with €, or oblateness.

Figures 9 through 11 summarize the results of over 1000 stability

calculations on over 100 different toroidal equilibrium configurations. Each

oy
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symbol indicates stability or instability to a particular mode with toroidal

mode number n = 1, 2, or 3. These were all performed wi'h the g exponent o
1, so that gq(¥) = q°[1—(‘!’/‘1’°)]. Two values of the flux hole § were used, § =
0.1 which corresponds to aspect ratio R/a = 1.3, and § = 0.3 which corresponds
to aspect ratio R/a = 1.6. Each figure corresponds to a different value of
the elongation parameter . Figure 9 with € = 0 is the most elcngated
(prolate), Fig. 10 with € = 2 corresponds to nearly circular flux surfaces;
and Fig. 11 with € = 4 is the least elongated (the most oblate). The
corresponding cylindrical stability boundaries of Fig. 3 are drawn on each
figure for comparison.

We plot typical eigenfunctions, as determined by the PEST-I1 <toroidal
stability code [12], in Figs. 12 and 13, Figure 12 illustrates the
eigenfunction of a n = 2 current driven mode with the wall at the surface of
the plasma Fig. 12(a), and with the wall removed vo infinity Fig. 12(b).
These equilibrium have g, = 0.45, a = O, &= 0.1, and ¢ = 0. The
eigenfunction for both these modes consists of primarily a poloidal mode
number m := 1 harmonic which does not resonate with the perturbation since m -
nq, is greater than zero averywhere in the plasma.

In contrast, we plot in Fig. 13 the eigenfunctions for an n = 2 pressure
driven instability with the wall on the surface of the plasma, and with a = 1,
and 6 = 0.3, and £ = 2. ’s in Fig. 12, and as is also the case with every
stability calculation jllustrated in Figs. 9 through 11, the poloidal mode
number m = 1 harmonic dominates the instability. However, for the pressure
driven instabilities in Fig. 13, unlike the current driven instabilities of
Fig. 12, the mode rational surface where ng = m = 0 plays a central role in
that the eigenfunction is primarily confined to the region ngq - m > 0. 1In
Fig. 13(a) where q, = 0.75 this is the inner one third of the plasma, while in

Fig. 13(b) where q;, = 1.05 this is the inner one half.
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One of the most striking features one notices about Figs. 9 through 11 is
that for a finite wall separation and for modes with n > 2, there is general
qualitative agreement between the toroidal stability results and the
corresponding cylindrical results. This agreement is perhaps fortuitous
considering the inexact correspondence between the q profiles, where we have
used Y/Wo as a variable in the toroidal case but r2 in the cylindrical case,
the wall parameters where we have used a, and bw in the toroidal case but b/a
in the cylinder, and have the pressure determined as a fractior of the Mercier
limit in the torus vs. the Suydam limit in the cylinder.

Examination of the figures does reveal, however, qualitative differences
between the stability of the n = 1 and n = 2 modes in the cylinjer and the
torus. M discussed in detail in Ref. [13), and shown in parts (g) through
(i) of Figs. 9 through 11, the n = 1 modes are always unstable in a torus in
the absence of a conducting wall. They arise from the fact that anlike a
cylinder, an externally imposed vertical magnetic field is needed to maintain
eguilibrium in toroidal geometry. The plasma has a tendency %to tilt so as to
align its magnetic woment with the external field, or to shift horizontally
into a region of weaker magnetic field strength [13].

Figures 9(g), 10(g), and 11{(g) indicate that the n = 2 mode is also
always unstable in the torus in the absence of a conducting wall. The
eigenfunction for this mode corresponds to the plasma ring deforming into the
shape of a baseball seam. Since this mode, like the n = 1 tilt and shift
modes is current driven and absent in the cylinder, it is presumably also
driven by the interaction between the plasma current and the externally
supplied magnetic field. From Figs. 9(d), 10(d), and 11(d) we see that this n
= 2 bending mode will be stabilized by the presence of a spherical conducting

wall with a mean separation of a half of a plasma minor radius.
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Examination of Figs. 9(a), 10(a}), and 11{a) shows that even for a
pressureless plasma with a wall on its surface, there can be an internal n = 1
current driven instability of the torus if gq, ” 1. Closer numerical
evaluation of the stability boundary for this mode indicates that it goes
unstable at exactly g, > 1. This internal kink mode, which from Fig. 3 can be
seen to be stable in the cylinder, is apparently caused by toroidal coupling
of them = 1 and m = 2 poloidal harmonics.

That the internal kink mode can be unstable in the toroidal spheromak
when g, > 1 is consistent with analysis [15,16]. 1. was found that the
stability of a circular cross section torus can be determined by solving a

homogeneous equation for the m = 2 harmonic amplitude x,.

&

d 3, -1 _ 1,2 T -1 _1
Tl -3 5 1 -oxla -5) %, =0 (10)

1f rg is the radius of the q = 1 surface, and if Aoy and x,, are the solutions

of Egq. (10) which satisfy the 1left and right boundary conditions,

respectively, one defines the parameters

x

b e . r
s d 2i _'s d 3
Prr e e, T MM e e e
S s
s
8 = -2 r2 dp ar
P Bzh )r2 o dr
8 "s' s
rS
s -l T e
r o]
5
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Stability is then determined by the condition {i6]

Bs(1+4b~-c)+9h( 1—c)-241:;c(s+|3p )=16c(1+b)( s+ﬁp)2

oW = ) Yo . (12)

We have plotted in Fig. 14 the stability bounlary defined by Eq. [12) for

0!l - (r/rw)2], as well as for a tokamak profile

a spheromak profile with q = g
with g = qo[‘l + (r/rw)z] for comparison. The spheromak and the tokamak case
are seen to be opposites. The internal kink in the tokamak is unstable in
cylindrical geometry, stable at zero pressure in a torus, but unstable in the
torus above some critical pressure. The internal Y¥ink in the spheromak is
stable in cylindrical geometry, unstable at zero pressure in the torus, but
stable ir the torus above the same critical pressure, Unfortunately,
stabilization of this mode by operating at a large value of Bp(rs) appears
impractical since this would violate the maximum p' criterion set by the
Mercier criterion, Eg. 8.

M in the cylindrical configuration illustrated in Fig. 4, a g profile

with low skrar at the origin,dqc/dtb =0¢| , can lead to ainstability in

=0
toroidal geometry if q, is sufficiently close to a rationial surface,
do ¢ V/n. This phenomena is illustrated in Figs. 15 and 16 where we present
the stability results of a sequence of toroidal low shear zero pressure
equilibrium with g = g,(1 =~ ¢4). Figure 15 has the shape parameter ¢ = 2 and
shows that the width of this unstable region around the g = 1/2 surface
increases with the flux hole & (or the aspect ratio R/a). Figure 16 has the
flux hole 6 = 0.1 and shows that the width of this unstable region increases
with decreasing €.

Beta optimization in toroidal geometry is illustrated in Fig. 17 where we

plot the maximum Be stable to internal modes versus q R/a for a variety of

outer flux surface shapes. Each curve is gualitatively similar to the curve
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marked b = 1 in Fig. 2 for cylindrical geometry. For low values of g,R/a, the
pressure is limited by the internal current driven modes. P8 g R/a is
increased, there is a region in which Be is limited by marginal stability to
interchange modes. For the oblate configurations with € = 2 and € = 4, when
qoR/a > 1 the maximum stable ﬂe limit is set ty stability to the internal
pressure driven modes.

Huwever, unlike the cylindrical geometry of Fig. 2, the ultimate ﬁe limit
for each curve is set by the limit that g5 < 1 for stability to the n = 1
internal kink mode. This new limit is seen to favor configurations with large
aspect ratios, or equivalently, large values of the flux hole 6. Also, it is
seen that the maximnum stable Be increases with the oblateress
parameter €, although this increase is more modest when increasing € from two
to four than it is when increasing € from zero to two.

So far we have made no mention of infinite n ballooning modes or zero n
axisymmetric modes in the torus. The equilibrium configurations we have
chosen to look at are manifestly stable to the Mercier criterion, Eq. (8). We
have applied the ballooning criterion {17] to these eguilibrium and have found
them all to be stable to this criterion. This result is consistent with the
study of Greene and Chance (18] in which they found that equilibrium
configurations with monotonically decreasing g-profiles and which are
everywhere stable to the Mercier criterion are also stable to the ballooning
criterion.

The axisymmetric n = 0 modes, however, are potentially wunstable in
toroidal geometry. These modes arise from the interaction of the plasma
toroidal curr°nt with the gradients of the externally applied equilibrium
magnetic fields. The criterion for infinite wall stability of these modes in
the spheromak is the same as that in the tokamak, i.e., that the external

field have a favorable curvature [19], or egquivalently, that the plasma shape
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be sufficiently oblate, € > 2. For configurations with ¢ ¢ 2, a conducting
wall separated on the order of a minor radius should provide passive

stabilization of these modes.

IV. SUMMIRY MD ONCLUSIONS

We have mapped out the ideal magnetohydrodynamic stability boundaries of
the spheromak configuration. A useful model with a reduced parameter space
was obtained by examining the cylindrical spheromak. This predicted unstable
current driven internal modes if the value of the pitch on axis is too low,
qo/ki0.67 or if the shear at the origin is too low, i.e., gq = q,(1
- rzo) with 0 > 1. The local critericn for interchange mode stability set an
upper limit on the pressure gradient everywhere. ®nfigurations that are
everywhere marginally stable to interchange modes will be stable to internal
pressure driven low-n modes if q/k ¢ 1.1. This corresponds to a
maximum Be = 38%, A the pitch is increased above g /k = 1.1 the maximum
stable Be configurations are determined by stability to finite-n pressure
driven modes. For qo/k > 2, stable configurations exist with the wall
separated by half a minor radius and with 89 = 70%.

By letting gq,R/a be the toroidal generalization of the pitch, the
stability boundaries of the toroidal spheromak coincide gualitatively well
with those predicted by the cylindrical model with a few exceptions. In
toroidal geometry, an internal m = 1, n = 1 kink mode exists whenever 9, > 1,
while this is not present in the cylinder. Also in toroidal geometry, the
presence of the required externally generated vertical field will cause the
spheromak to be unstable toc n = 2 bending modes and n = 1 modes of either the
shift and/or tilt polarity for the wall removed far enmough. Recently it has
been shown [20] that full conducting walls are not necessary to stabilize

these free boundary modes but that nearby passive coils with the figure=-eight

i
H
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and clover-leaf topology should be sufficient to stabilize the n = 1 and n = 2

modes, respectively.

M oblate € = 4 plasma with a flux hole § = 0.3 corresponding to an
aspect ratio R/a = 1.6 with a conducting wall at its surface will be stable to
all internal modes with 9, = 1.0 and ﬁe = 65%, Removing the c¢ .ducting wall
to an average separation of a, = b, = 1/2 will cause this configuration to
become unstable, however from Figs. 8 and 10(e) we see that a moderately
oblate plasma with € = 2 will be stable to all internal and free boundary
modes for q,R/a = 1.2 with Be = 30%.

#inally, we remark thut these B optimization studies werr. performed by
evaluating stability only to ideal magnetohydrodynamic modes which occur even
with infinite conductivity. onsideration of finite-conductivity modes could
lead to greatly different conclusions. In fact, since the quantity DR
= p'[E + (F + Hz)p'] is greater than zero for all configurations studied here
with p' # 0, we would cunclude [21] that the 1limiting value is Be= 0.
Optimizatien with respect o these resistive interchange and resistive tearing

modes must await a realistic issrssment of their nonlinear consequences.
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Figure Captions

Fig. 1, Equilibrium profiles vs. radius for g = 0, g = 1., Note that J

hollows as q,/k is increased above 1.0.

Fig. 2. Solid curves give ﬂe vVS. qo/k for a = 1, o= 1and a = 0.5, 0 = 1.
Dashed curves give maxi.um ﬂe configurations limited by finite-n modes for
different wall separations. The total 8 is approximately given

by B = 1/2 ﬁe.

Fig. 3. Stability boundaries for the cylindrical spheromak with o = 1, P
given equilibrium corresponds to a straight line eminating from the origin

with 9,/k fixed. a is the pressure parameter and b is the wall position.

Fig. 4. A narrow region of instability around ng, = 1, nk < 1, exists for o >

1.

Fig. 5. Parameterization of the shape of the plasma boundary. ¢ measures che

oblateness, & meacures the size of the flux hole or aspect ratio.

Fig. 6. M ellipsoidal wall is parameterized by the dimensionless numbers

a and b .
w w

Fig. 7. Toroidal and poloidal midplane current profiles and constant poloidal
V.

flux ¥Y-surfaces for € = 2, § = 0.1. Contours are equally spaced in ¥ 72.
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Fig. 8. Be vs. gq,R/a in toroidal geometry for ¢ = 1, 0 = 1, and with shape

parameter € = 0, 2, and 4.

Fig. 9. Stability of modes in a prolate spheromak with e = 0. Squares

correspond to toroidal number n = 1 modes, circles to n = 2 modes, and
trianagles to n = 3 modes. So0lid symbols inc¢icate instability. The wall
position is defined as a, = b, = b.

Fig. 10. Stability of modes in a moderately oblate spheromak with e = 2.
Fig. 11. Stability of modes in a strongly oblat. spheromak with & = 4.

Fig. 12. Unstable n = 2 mode eigenfunction L*Y versus ¢ for (a) fixad
bcundary mode with wall in contact with plasma and (b) free boundary mode with
wall removed to infinity. Equilibrium have 9, = 0.45, 0= 1, a =0, § = 0.1,

and € = 0. m is the poloidal harmonic nuber.

Fig. 13. Unstable n = 2 mode eigenfunction Z+¢V({ versus ¢ for pressure driven
mode with (a) q, = 0.75 and (b} g, = 1.05. Equilibrium have g = 1, a =1, § =

0.3 and € = 2.

Fig. 14. Stability boundaries for the internal kink mode for tokamak-like and

spheromak--1ike profiles.

Fig. 15. Internal mode stability diagram for zero pressure equilibrium

with € = 2 and with low shear at the origin, q = g [1 - (‘1’/‘1’0)4]-
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Fig. 16. Internal mode stability diagram for zero pressure eguilibrium

with § = 0.1 and with low shear at the origin, g = g [1 - (¥/¥ )4]-
o

Fig. 17. Beta limits for internal mode stability of the toroidal spheromak
with g = 1. Below point &, beta is limited by internal current driven

modes. Between P and B, limit is set by Mercier criterion. Fbove point B, n

= 2 internal pressure driven modes limit beta.
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