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abstract 

Results are presented of a parametric study of the ideal 

magnetohy3rodynamic stability properties of the spheromak, or compact torus, 

configuration. In the absence of a nearby conducting wall, the spheromak is 

always unstable to at least one current driven mode. With a conducting wall 

at the surface, the spheromak can be unstable to current driven modes if the 

current is too peaked, i.e., q (R/a) < 2/3, or if the shear is too low at 
o ~ 

the origin. The Msrcier criterion sets an upper limit on the pressure 

gradient everywhere, but configurations that are everywhere Mercier stable can 

be unstable to pressure driven low-n modes. Stable toroidal configurations 

exist with a spherical wall separated by half a minor radius, and with 

&a = 30%. 
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I. INTRODUCTION 

The spheromak, or the compact torus, is an axisymmetric closed magnetic 

field line toroidal plasma confinement configuration with zero vacuum toroidal 

magnetic field. Toroidal and poloidal currents of comparable magnitude exist 

in the plasma to generate the poloidal and toroidal confinement magnetic 

fields. Just as the tokamak is a stellerator with internal toroidal current 

instead of external helical windings producing the confining poloidal fields, 

so the spheromak is a tokamak with internal poloidal currents instead of 

external toroidal field coils producing the confining toroidal fields. 

Recent experimental investigations [1-3] have demonstrated that there do 

exist configurations of the spheromak type that remain stable on the ideal 

magnetohydrodynamic time scale, that is, over time intervals long compared to 
1/2 the Al fven wave transit time of the device, T = (u o ) a/B . This is 

A o o o 

in qualitative agreement with existing theoretical investigations [4-6] which 

have identified stable configurations with current distributions near the 

Taylor state in which the current density is everywhere proportional to the 

magnetic field strength, j = \B. In order to make better quantitative 

comparisons with experimental results, and to aid in the design of new 

experiments, it is desirable to have mapped out the theoretical boundaries of 

the stable operating regimes in the space formed by parameters describing more 

general current and pressure distributions, different aspect ratios, and a 

range of plasma cross sectional shapes. Such is the intention of the present 

paper. 

In the next section we discuss the ideal magnetohydrodynamic stability 

properties of the circular cylindrical spheromak. This is a fictitious 

configuration in which the torus has been cut and straightened out to become a 

circular cylinder of radius a, length 2TIR, and with periodic boundary 
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conditions. The usefulness of this model lies in the fact that it has a 

reduced parameter space and is more amenable to theoretical analysis. We find 

that a single nine-part diagram adequately summarizes the stability properties 

of this configuration. 

Section III discusses the stability properties of the actual toroidal 

spheromak. The complexity of toroidal geometry greatly expands the dimension 

of the parameter space and necesitates the use of large numerical stability 

codes. However, upon comparing the results we obtain here with those of 

Section II, we find generally a good correspondence between the stability 

results for the cylindrical and the toroidal geometry. In exception to this 

are a small number of new unstable modes which exist in toroidal geometry but 

have no analoque in the cylindrical spheromak. 

21 . THE CYLINDRICAL SPHEROMAK 

ft usefull model for locating and understanding parameter regimes of 

internal mode stability is provided by considering the periodic cylindrical 

spheromak. Using standard (r,9,z) cylindrical coordinates, we define a 

periodicity length in the z direction of L = 2-ji/k, where k is the analog of 

the reciprocal major radius in a toroidal device, k = 1/R. The equilibrium 

equation in this geometry is 

fe.d i J B e d 
dr + Tr 2 \ + r-dT r B0 ' ° ' ") 

The safety factor profile, q(rl 3 rkB (r)/B (r), is taken to be of the form 
z y 

q(r) = q ( 1-r ), where the plasma boundary is defined by r = 1. To 

parameterize the pressure, we introduce the parameter o<a<1 by 
2 2 dp/dr = -aiB^/8 (q'/q) • Thus for a = 0 , the plasma is force free, while 
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for a = 1, the pressure is determined by the condition that it be everywhere 

marginally stable to ideal interchange modes, according to the criterion first 

derived by Suydam [7] . Note that the most general pressure profile could be 

described by allowing a to be a function of r, a = a(r) . We have restricted 

our consideration to constant a in order to reduce the dimension of our 

parameter space. 

The equilibrium fields for such a system are <-,iven by 

, ,r [- (a/8k2)rq'2 + 2r + d/dr (q2/2k2) ] _, . ,, . 
B e " r V e x p { " ' -T72 r d r } ' ( 2 a ) 

o (q A + r ) 

B = qB„/rk . (2b) 
z ^ 9 

In addition to the overall scale factor B , the equilibrium profiles are seen 
DO 

to depend only on three parameters; the pitch q 0 A , the pressure factor a, and 

the q exponent 0. We introduce a new parameter, the wall radius b, and extend 

the definition of the equilibrium fields into a vacuum region surrounding the 
plasma by setting q(r) = q'(r) = 0 for 1<r<b and using Eq. (2) to 

define B„ and B„ • v & 

In Fig, 1 we plot typical current and magnetic field profiles for force-

free, parabolic q-profile configurations with a = 0, a = 1, and for q Q A = 

0.5, 1.0, and 2.0. We note that small values of q Q A correspond to the 

toroidal current J z peaking on the axis. The current is relatively flat for 

qQ/k = 1, while for values ^/k > 1, J z peaks off the magnetic axis. These 

profiles change little for finite pressure configurations with 0<ar<1 . Fbr 

configurations with o = 1, i.e., with the pressure everywhere at the Suydam 

limit, the plasma pressure increases as qQ/k (and hence the magnetic shear) is 



-5-

1 1 2 

increased. In Fig. 2 we plot p = 2 / rpdr// rB. dr vs. q /k for a = 1, a 
o o 

= 1 and for o = 0.5, a = 1. The total p is approximately equal to one half 

The stability of this system to infinite conductivity modes is obtained 

by minimizing Newcomb's form of the energy integral. 

w - 3 / d r Wffr + g^ 1 . ( 3 > 

where the funct ions f and g are defined as 

(1+n k r ) 

n * r B r > i 2 T - ) r _ 2 ~ 2 1 1 
9 r o q i . \ 2 . 2 n q - 1 i , „ . , 

g = - - _ i a — + 1 - nq) + I * ' . (4b) 
f l + n

2 k 2 r 2 ) 4 k 2 f n - n V r 2 ) 

Here, the p e r t u r b a t i o n s vary as ! ; ( r , 9 , z ] = £ ( r ) e x p ( i 9 - inkz) , so t h a t n i s 

the l ong i tud ina l (or t o r o i d a l ) mode number and a po lo ida l mode number of « = 1 

i s e x p l i c i t l y assumed, as i t i s known to be the most u n s t a b l e . 

Following the p r e s c r i p t i o n of Newcomb [ 8 ] , we i n t e g r a t e the Eu le r -

Lagrange equat ion 

§j if § ) - * = o , 

in each independent 3ubinterval bounded by the physical boundarys r = 0, r = 

b, and/or by the mode rational surface, q = 1/n. * solution which is "small" 

at one endpoint and which vanishes anywhere in a subinterval signifies an 

unstable mode. Examination of the functional forms of f and g in Eq. (4) 

file:///2.2nq-1i
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reveals that each stability calculation depends on the toroidal mode number n 

only through the combinations nq and nk. 

A general analysis of the destabilizing terms in Eqs. (3) .nd (4) has 

been given by Robinson [9] . Here we only note that both the first and the 

third terms in the bracket of Eq. (4b) can contribute to instability. When 

the first term, which is proportional to the pressure parameter a, dominates, 

we call the mode pressure driven. When the combined second and third terms 

dominate, which requires nq < 1, we call the mode current driven. We proceed 
o ~ 

to treat a, a, b, nk, nq as parameters and evaluate stability numerically 

according to the proceedure outlined above. 

The reduction of the equilibrium and stability problem to a small number 

of parameters allows one to graphically identify stable operating regimes as 

is done in Figs. 3 and 4. Figure 3 maps out the stable regions in (nk, nq ) 

space for a = 1, a = 0.0, 0.5, 1.0, and b = 1.0, 1.5, and 2.0. Ai equilibrium 

configuration on these diagrams corresponds to a straight line eminating from 

the origin with fixed q0/k. If the entire line lies in the stable region, the 

equilibrium is stable "~.o all ideal modes. 

The first thing one notices upon examining Fig. (3a) is that force free 

equilibrium (a = 0) with a wall on the surface of the plasma (b = 1) and with 

q^/k < 0.67 are unstable to internal current driven modes. This also follows 

from examining the Euler-Lagrange equation around the origin of a zero 

pressure equilibrium with ng^ = 1. Equation (5) becomes, for r << 1, 

iK/*) 2Jr* 7H + ^ = ° -
If we expand £ in a Taylor series about the origin, the condition that the 

roots of the indicial equation be real and unequal is that ĝ /k < 2/3, which 
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is in agreement with Fig. 3(a) and with Robinson [9]. 

fs the pressure is increased from zero. Figs. 3(b) and 3(c), the upper 

right hand corner of these diagrams become unstable, indicating finite n 

pressure driven instabilities with the mode rational surface in the plasma, 

nq > 1. From Figs. 2 and 3(c), one sees that there exists stable 

configurations with the wall on the surface of the plasma, b = 1, with 

pressure parameter a = 1, and with pitch q^A = 1.1, corresponding to a volume 

averaged fl. of about 38%. 

Examination of Figs. 3(d) through 3(1) shows that as the wall is removed 

from the surface cf the plasma, i.e., as b becomes greater than unity, the 

region of instability due to the pressure driven modes increases, while that 

due to the current driven modes remains about the same. However, from Fig. 

3(e), we see that a configuration with wall radius b = 1.5, pressure 

parameter a - 0.5, and pitch q 0 A = 2.0 is stable to all ideal modes. From 

Fiq. 2, this corresponds to P = 70*. 

It is evident from Figs. 2 and 3 that the maximum stable g configuration 

for a fixed pitch qQ/k and wall radius b doss not in general have the pressure 

parametet a equal to unity, although this is th>» case for b = 1 and 0.67 < 

q̂ /k < 1.1. For large enough values of the pitch parameter q^/k, the maximum 

stable p approaches a limit of Pg = 70%. This limit is reached at q0/k = 2.0 

for b = 1 and b = 1.5, where it corresponds to a value of I = 0.5. For b = 2 

the limit is reached at qQ/k =2.6 where it corresponds to a value of a = 0.3. 

Figures 1 through 3 were for the exponent parameter a in the q profile 

equal to 1. Raising a above 1 has little effect on the stability diagrams 

except for in the vicinity of nq0 = 1 . in Fig.. 4 we show the analogue of Fig. 

3(a), bo"- with a = 2. He see that for all values of qQ/k there is a narrow 

region of instability to current driven modes for nq ~ 1. 



fti approximate condition for instability can be derived which reproduces 

the structure of Fig. 4 for <j > 1 • We consider a - 2 and values of q^ 
4 slightly less than a rational number, so that nq = (1-e)(1-r ), where 

e << 1. The Euler equation, (5), evaluated near the origin where r << 1 and 

B ~ B r becomes 0 (TO 

f r 3 ( E + r V £ + 4„Vr 3 ( E ,rV = 0 . ,7, 
dr dr 

This is readily solved by a power series expansion. If we 
CD 

take Z, = T Z, (n k r /e) , then one obtains the recursion relation 
m=o 

[C + (m-1)(2m+4)y t + y I; 'm+1 (m+1)(2m+4) L^m " ^m-1 ' 'm-2 

2 (2m+4)(m-3) , -, 
y 5 S m_ 3l 

with y = e/n k . The first few £ are given by ^ = 1, r = -1/2, £ = 
'm 'o 1 2 

1/12, I = -( 1-36y)/144, t, = (1-204y1/2880. Evaluation of this series shows 
2 2 2 a zero for y < 0.017 at n k r /e = 4.7, indicating instability for (1-nq0) < 

0.017 n4k . This is in good agreement with Fig. 4. 

III. TOROIDAL RESULTS 

The investigation of the stability properties of the toroidal spheromak 

with arbitrary shape and equilibrium profiles necessitates using large 

computer programs to calculate equilibrium and linear ideal CUD stability. A 

description of these programs and their convergence properties has been given 

previously [10-12]. Here, we concentrate on presenting and understanding 

their results. 
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fls in Pof. [13], we parameterize the shape of the equilibrium we study as 

illustrated in Fig. 5. Motivated by the exact spherical solution, the outer 

boundary, in spherical coordinates, is given by r sinfi j.(r) P (cos9) 

+ 6 = 0, where 0 < 6 < 1.063 measures the size of the "flux hole." To 

"flatten" (oblate) the configuration, we multiply the z coordinate 

by [1 + e ] " 1 / 2 . 

The parameters 6 and e therefore determine the shape of the outermost 

flux surface. In analogy with the cylindrical study, we take the safety 

factor profile to be of the form q(Y) = q [1-(?/f )°] , where o < (V/V ) < 1 is 
o o o 

the normalized poloidal magnetic flux. The pressure profile, p( f) , is taken 

to be a fraction, a, of the pressure p C?) that is everywhere marginally 
m 

stable to the Mercier criterion [14] for marginal stability to ideal 

interchange modes in a torus. Thus ptf) = a p (?) where 0 < a < 1 and 

V4) 2 t(-%V^=0 . (8, 

Here, 

T s A i i l ! [ < J L l >< J L l > . ̂  < _ ! ^ S 
q' IWI IVY I IVf l 

-2i tRB 2 
H = — - 1 [ - V < -*-> - < —!_ > 1 , 

i L 2 2 2 J ' 
q <B > |vy| |v f | 

2 2-nq' RB 

g- i v r r <B 2> * 

In these exp re s s ions , prime denotes d i f f e r e n t i a t i o n with r e spec t to the volume 

wi th in a flux s u r f a c e , R i s the major r a d i u s , B T i s the t o r o i d a l f i e l d 

s t r e n g t h , B 2 = |Vf| / ( 2 * R ) 2 + B^, and brackets denote flux surface averages . 

Once the plasma equilibrium i s known, Eg. (8) i s solved as a quad ra t i c 
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equation for (dp /d¥> on each flux sur face . Since the p r e s s u r e g r a d i e n t 
m 

enters in to the equilibrium equation, Eq. (8) must in p r a c t i c e be solved by 

numerically i t e r a t i n g i t s so lut ion with the s o l u t i o n to the Grad-Shafranov 

equa t ion 

(2n)-2 P 2 V . ( R - 2 7 * ) + R2 | | + 1^3 [ _T3_ 1. „ 0 . ( 9 ) 

<x~ > <x~ > 

The equilibrium is therefore defined by the parameters e,o,a ,a, and a. A 
~o 

stability calculation also requires the specification of the toroidal mode 

number n and the spheromak wall separation parameters a and b , Fig. 6. 
(A) (J 

To i l l u s t r a t e t he range of c u r r e n t d i s t r i b u t i o n s c o n s i d e r e d , we p l o t in 

F i g . 7 the p o l o i d a l magnetic flux su r faces and the midplane c u r r e n t p r o f i l e s 

for t h r e e e q u i l i b r i u m c o n f i g u r a t i o n s with £ = 2, 6 = 0.1 o = 1, a = 0, and 

with q Q = 0 . 2 , 0 . 35 , and 1.35. fe in F ig . 1, we see t h a t small va lues of q^ 

correspond to the t o r o i d a l c u r r e n t being very peaked, while l a rge va lues of q_ 

correspond to f l a t or hollow t o r o i d a l c u r r e n t p r o f i l e s . In analogy to F ig . 2, 

we p l o t in P ig . H ft v s . q_R/a for c o n f i g u r a t i o n s with a = ? ( i . e . , p r e s s u r e 

everywhere a t the Mercier l i m i t ) , o - 1 ( l i n e a r q p r o f i l e s ) , and for va r ious 

va lues of the shaping parameters E and 6 . Here B i s defined by 

° *° 2 
3g = - / P < ¥ ) V ( r " ) d ¥ / / V ( ¥ ) [ p ' + <R > ( R B T ) ' ] d ? , 

o o 

where V is the volume within a constant f surface. Pe in the cylinder, p set 
0 

by the interchange limit increases with q^R/a. In addition, we note that for 

configurations with the same values of q^U/a the value of 8~ increases 

with e, or oblateness. 

Figures 9 through 11 summarize the results of over 1000 stability 

calculations on over 100 different toroidal equilibrium configurations. Each 
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symbol indicates stability or instability to a particular mode with toroidal 

mode number n = 1, 2, or 3. These were all performed wi'.h the q exponent o = 

1, so that q(¥) = q (1-(¥/Y )]. Two values of the flux hole 6 were used, 5 = o o 
0.1 which corresponds to aspect ratio R/a = 1.3, and 6 = 0.3 which corresponds 

to aspect ratio R/a = 1.6. Each figure corresponds to a different value of 

the elongation parameter e. Figure 9 with e = 0 is the most elongated 

(prolate), Fig. 10 with e = 2 corresponds to nearly circular flux surfaces, 

and Fig. 11 with e = 4 is the least elongated (the most oblate) . The 

corresponding cylindrical stability boundaries of Fig. 3 are drawn on each 

figure for comparison. 

We plot typical eigenfunctions, as determined by the PEST-II toroidal 

stability code [12], in Figs. 12 and 13. Figure 12 illustrates the 

eigenfunction of a n = 2 current driven mode with the wall at the surface of 

the plasma Fig. 12(a), and with the wall removed \:o infinity Fig. 12(b). 

These equilibrium have q Q = 0.45, a = 0, 6 = 0.1, and e = 0. The 

eigenfunction for both these modes consists of primarily a poloidal mode 

number m •= 1 harmonic which does not resonate with the perturbation since m -

nq^ is greater than zero everywhere in the plasma. 

In contrast, we plot in Fig. 13 the eigenfunctions for an n = 2 pressure 

driven instability with the wall on the surface of the plasma, and with a = 1, 

and 6 = 0.3, and E = 2. As in Fig. 12, and as is also the case with every 

stability calculation illustrated in Figs. 9 through 11, the poloidal mode 

number m =» 1 harmonic dominates the instability. However, for the pressure 

driven instabilities in Fig. 13, unlike the current driven instabilities of 

Fig. 12, the mode rational surface where nq - m = 0 plays a central role in 

that the eigenfunction is primarily confined to the region nq - m > 0. In 

Fig. 13(a) where ^ = 0.75 this is the inner one third of the plasma, while in 

Fig. 13(b) where q^ = 1.05 this is the inner one half. 
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One of the most striking features one notices about Figs. 9 through 11 is 

that for a finite wall separation and for modes with n > 2, there is general 

qualitative agreement between the toroidal stability results and the 

corresponding cylindrical results. This agreement is perhaps fortuitous 

considering the inexact correspondence between the q profiles, where we have 

used <?/? as a variable in the toroidal case but r 2 in the cylindrical case. 
o J ' 

the wall parameters where we have used a w and b w in the toroidal case but b/a 

in the cylinder, and have the pressure determined as a fraction of the Mercier 

limit in the torus vs. the Suydam limit in the cylinder. 

Examination of the figures does reveal, however, qualitative differences 

between the stability of the n = 1 and n = 2 modes in the cylinder and the 

torus. Ps discussed in detail in Ref. [13! , and shown in parts (g) through 

(i) of Figs. 9 through 11, the n = 1 modes are always unstable in a torus in 

the absence of a conducting wall. They arise from the fact that unlike a 

cylinder, an externally imposed vertical magnetic field is needed to maintain 

equilibrium in toroidal geometry. The plasma has a tendency to tilt so as to 

align its magnetic moment with the external field, or to shift horizontally 

into a region of weaker magnetic field strength [13] . 

Figures 9(g), 10(g), and 11(g) indicate that the n = 2 mode is also 

always unstable in the torus in the absence of a conducting wall. The 

eigenfunction for this mode corresponds to the plasma ring deforming into the 

shape of a baseball seam. Since this mode, like the n = 1 tilt and shift 

modes is current driven and absent in the cylinder, it is presumably also 

driven by the interaction between the plasma current and the externally 

supplied magnetic field. From Figs. 9(d), 10(d), and 11(d) we see that this n 

= 2 bending mode will be stabilized by the presence of a spherical conducting 

wall with a mean separation of a half of a plasma minor radius. 
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Examination of Figs. 9(a), 10(a), and 11(a) shows that even for a 

pressureless plasma with a wall on its surface, there can be an internal n = 1 

current driven instability of the torus If q„ > 1- Closer numerical 

evaluation of the stability boundary for this mode indicates that it goes 

unstable at exactly g Q > 1. This internal kink mode, which from Fig. 3 can be 

seen to be stable in the cylinder, is apparently caused by toroidal coupling 

of the m = 1 and m = 2 poloidal harmonics. 

That the internal kink mode can be unstable in the toroidal spheromak 

when q > 1 is consistent with analysis [15,16]. k was found that the 

stability of a circular cross section torus can be determined by solving a 

homogeneous equation for the m = 2 harmonic amplitude x 2 . 

f r f ' V M ) 2 ^ ] - ' ^ - 1 - - ; ) « , - » • 

If r is the radius of the q = 1 surface, and if x 2i a n <i x2e a r e ^ e solutions 

of Eq. (10) which satisfy the left and right boundary conditions, 

respectively, one defines the parameters 

's d . 2i s d , 3 , ... b = -- — in , c = — -j- in x. r , (11) 4 dr r r 4 dr 2e |r 

3 = - ^ f S r 2 ^ dr 
B 9 ( r s ) r s ° 

1 f S 3 r -2 ,T - — J r [q - 11 dr 
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Stab i l i t y is then determined by the condition [i6I 

Bs(1+b-cj+9M1-c)-24bc(s+p )-16c(1+b)(s+P ) 2 

6 w = ( 1 + b - c )

 P ^ >• 0 . (12) 

We have plotted in Fig. 14 the s t a b i l i t y boundary defined by Eq. (12) for 

a spheromak profi le with q = q 0 !1 - ( r / r w ) ] , as well as for a tokamak profi le 

with q = ^ [ 1 + ( r / r w ) ] for comparison. The spheromak and the tokamak case 

are seen to be opposi tes . The internal kink in the tokamak is unstable in 

cylindrical geoir.etry, stable at zero pressure in a torus, but unstable in the 

torus above some c r i t i c a l pressure. The internal kink in the spheromak is 

s table in cyl indrical geometry, unstable at zero pressure in the torus, but 

stable in the torus above the same critical pressure. Unfortunately, 

stabilization of this mode by operating at a large value of S (r ) appears 
P s 

impractical since this would violate the maximum p' criterion set by the 

fercier criterion, Eq. 8. 

76 in the cylindrical configuration illustrated in Fig. 4, a q profile 
with low sh.~a- at the origin, do /di(, =0 | , can lead to instability in 

c <i>=0 

toroidal geometry i f q_ i s suff ic ient ly close to a rational surface, 

q < 1/n. This phenomena is i l lus t ra ted in Figs. 15 and 16 where v.*e present 

the s t a b i l i t y r esu l t s of a sequence of toroidal low shear zero pressure 

equilibrium with q = 0 ,̂(1 - ( ) / ) . Figure 15 has the shape parameter e = 2 and 

shows that the width of this unstable region around the q = 1/2 surface 

increases with the flux hole 6 (or the aspect ra t io R/a) . Figure 16 has the 

flux hole 6 = 0.1 and shows that the width of th i s unstable region increases 

with decreasing e. 

Beta optimization in toroidal geometry is i l l u s t r a t ed in Fig. 17 where we 

plot the maximum f3. s table to internal modes versus q_R/a for a variety of 

outer flux surface shapes. Each curve is qual i ta t ively similar to the curve 
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marked b = 1 in Fig. 2 for cylindrical geometry. For low values of q^R/a, the 

pressure is limited by the internal current driven modes. PB q^R/a is 

increased, there is a region in which 0„ is limited by marginal stability t> 

interchange modes. For the oblate configurations with c - 2 and e = 4, when 

q_R/a > 1 the maximum stable p. limit is set ty stability to the internal 

pressure driven modes. 

However, unlike the cylindrical geometry of Fig. 2, the ultimate {3 limit 
a 

for each curve is set by the limit that q 0 5 1 for stability to the n = 1 

internal kink mode. This new limit is seen to favor configurations with large 

aspect ratios, or equivalently, large values of the flux hole 6. Also, it is 
seen that the maximum stable g increases with the oblater.ess 

0 

parameter e# although this increase is more modest when increasing c from two 

to four than it is when increasing £ f>-om zero to two. 

So far we have made no mention of infinite n ballooning modes or zero n 

axisymmetric modes in the torus. The equilibrium configurations we have 

chosen to look at are manifestly stable to the tercier criterion, Bq. (8). We 

have applied the ballooning criterion [17] to these equilibrium and have found 

them all to be stable to this criterion. This result is consistent with the 

study of Greene and Chance [18] in which they found that equilibrium 

configurations with monotonically decreasing q-profiles and which are 

everywhere stable to the Mercier criterion are also stable to the ballooning 

criterion. 

The axisymmetric n = 0 modes, however, are potentially unstable in 

toroidal geometry. These modes arise from the interaction of the plasma 

toroidal current with the gradients of the externally applied equilibrium 

magnetic fields. The criterion for infinite wall stability of these modes in 

the spheromak is the same as that in the tokamak, i.e., that the external 

field have a favorable curvature (19], or equivalently, that the plasma shape 
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be sufficiently oblate, e > ?. For configurations with g < 2, a conducting 

wall separated on the order of a minor radius should provide passive 

stabilization of these modes. 

IV. SUMMARY KID CONCLUSIONS 

We have mapped out the ideal magnetohydrodynamic stability boundaries of 

the spheromak configuration. A useful model with a reduced parameter space 

was obtained by examining the cylindrical spheromak. This predicted unstable 

current driven internal modes if the value of the pitch on axis is too low, 

q^/k £ 0.67 or if the shear at the origin is too low, i.e., q = 9̂ (1 

- r ) with o > 1. The local criterion for interchange mode stability set an 

upper limit on the pressure gradient everywhere. Configurations that are 

everywhere marginally stable to interchange modes will be stable to internal 

pressure driven low-n modes if ĉ /k < 1.1. This corresponds to a 

maximum pV = 38%. As the pitch is increased above q^k = 1.1 the maximum 

stable p configurations are determined by stability to finite-n pressure 

driven modes. Jbr a^/k > 2, stable configurations exist with the wall 

separated by half a minor radius and with p = 70%. 
0 

By letting qQR/a be the toroidal generalization of the pitch, the 

stability bovindaries of the toroidal spheromak coincide qualitatively well 

with those predicted by the cylindrical model with a few exceptions. In 

toroidal geometry, an internal m = 1, n = 1 kink mode exists whenever g^ > 1, 

while this is not present in the cylinder. Also in toroidal geometry, the 

presence of the required externally generated vertical field will cause the 

spheromak to be unstable to n = 2 bending modes and n = 1 modes of either the 

shift and/or tilt polarity for the wall removed far enough. Recently it has 

been shown [20] that full conducting walls are not necessary to stabilize 

these free boundary modes but that nearby passive coils with the figure-eight 
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and c l o v e r - l e a f t o p o l o g y s h o u l d be s u f f i c i e n t t o s t a b i l i z e t h e n = 1 and n = 2 

m o d e s , r e s p e c t i v e l y . 

fti o b l a t e £ = 4 p l a s m a w i t h a f l u x h o l e fi = 0 . 3 c o r r e s p o n d i n g t o an 

a s p e c t r a t i o R/a = 1.6 w i t h a c o n d u c t i n g w a l l a t i t s s u r f a c e w i l l be s t a b l e t o 

a l l i n t e r n a l modes w i t h a = 1.0 and p . = 6 5 % . Removing t h e cc . d u c t i n g w a l l 

t o an a v e r a g e s e p a r a t i o n of a w = b w = 1/2 w i l l c a u s e t h i s c o n f i g u r a t i o n t o 

become u n s t a b l e , however from F i g s . 8 and 1 0 ( e ) we s e e t h a t a m o d e r a t e l y 

o b l a t e p l a s m a w i t h e = 2 w i l l be s t a b l e t o a l l i n t e r n a l and f r e e b o u n d a r y 

modes fo r q „ R / a = 1.2 w i t h S . = 30%. ° y 

f i n a l l y , we r e m a r k t h a t t h e s e f3 o p t i m i z a t i o n s t u d i e s werr. p e r f o r m e d by 

e v a l u a t i n g s t a b i l i t y o n l y t o i d e a l m a g n e t o h y d r o d y n a m i c modes which o c c u r even 

w i t h i n f i n i t e c o n d u c t i v i t y . C o n s i d e r a t i o n of f i n i t e - c o n d u c t i v i t y modes c o u l d 

l e a d t o g r e a t l y d i f f e r e n t c o n c l u s i o n s . In f a c t , s i n c e t h e q u a n t i t y D R 

2 
= p ' [E + (F + H ) p ' ] i s g r e a t e r t h a n z e r o f o r a l l c o n f i g u r a t i o n s s t u d i e d h e r e 

w i t h p ' ^ 0 , we would c c i c l u d e [21] t h a t t h e l i m i t i n g v a l u e i s p = 0 . 

O p t i m i z a t i o n w i t h r e s p e c t :o t h e s e r e s i s t i v e i n t e r c h a n g e and r e s i s t i v e t e a r i n g 

modes must a w a i t a r e a l i s t i c i s s ^ s s m e n t of t h e i r n o n l i n e a r c o n s e q u e n c e s . 
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Figure Captions 

Fig. 1. Equilibrium profi les v s . radius for ct = 0, o = 1. Note that J 

hollows as q ĵ/k is increased above 1.0. 

Fig. 2. Solid curves give Bg v s . q^/k for a = 1, a = 1 and a = 0.5, a = 1. 

Dashed curves give maximum 8 configurations limited by f ini te-n modes for 
B 

different wall separations. The total B is approximately given 

by B = 1/2 B Q. 

Fig. 3. Stability boundaries for the cylindrical spheromaV. with a = 1. F 

given equilibrium corresponds to a straight line eminating from the origin 

with q̂ /k fixed, a is the pressure parameter and b is the wall position. 

Fig. 4. P narrow region of instability around nq^ = 1, nk < 1, exists for a > 

1. 

Fig. 5. Parameterization of the shape of the plasma boundary. e measures 'che 

oblateness, 6 measures the size of the flux hole or aspect ratio. 

Fig. 6. tti ellipsoidal wall is parameterized by the dimensionless numbers 

a and b . w w 

Fig. 7. Toroidal and poloidal midplane current profiles and constant poloidal 

flux ^-surfaces for e = 2, 6 = 0.1. Contours are equally spaced in ¥ 2 . 
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Fig. 8. 3 vs. q~R/a * n toroidal geometry for a =" 1, a = 1, and with shape 

parameter c = 0, 2, and 4. 

Fig. 9. Stability of modes in a prolate spheromak with E = 0. Squares 

correspond to toroidal number n = 1 modes, circles to n = 2 modes, and 

triancjles to n = 3 modes. Solid symbols indicate instability. The wall 

position is defined as a
w = b w = b. 

Fig. 10. Stability of modes in a moderately oblate spheromak with e - 2. 

Fig. 11. Stability of modes in a strongly oblat-. spheromak with e = 4. 

Fig. 12. Unstable n = 2 mode eigenfunction £*V()' versus i|> for (a) fixad 

boundary mode with wall in contact with plasma and (b) free boundary mode with 

wall removed to infinity. Equilibrium have q_ = 0.45, a = 1, a = 0, 6 = 0.1, 

and e = 0. m is the poloidal harmonic nuinber. 

Fig. 13. Unstable n = 2 mode eigenfunction £»Vcp versus (p for pressure driven 

mode with (a| q Q = 0.75 and (b) q 0 = 1.05. Equilibrium have c = 1, a = 1, & = 

0.3 and E = 2. 

Fig. 14. Stability boundaries for the internal kink mode for tokamak-like and 

spheromak"like profiles. 

Fig. 15. Internal mode stability diagram for zero pressure equilibrium 

with E = :> and with low shear at the origin, q = q [1 - (¥/¥ )*] • 



-22-

Fig. 16. Internal mode stability diagram for zero pressure equilibrium 

with J = 0.1 and with low shear at the origin, q = q_ [ 1 - ('?/¥ ) ! • 
*-> o 

Fig. 17. Beta limits for internal mode stability of the toroidal spheromak 

with a = 1. Below point P, beta is limited by internal current driven 

modes. Between P and B, limit is set by tercier criterion. Jbove point B, n 

= 2 internal pressure driven modes limit beta. 

I> 
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