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ABSTRACT

We review properties of the negative binomial distribution, along
with its many possible statistical or dynamical »rigins. Considering
the relation of the multiplicity distribution to the density matrix for
Boson  systems, we re-introduce the partially coherent laser
distribution, which allows for coherent as well as incoherent hadronic
emission from the k fundamental cells, and provides equally good
phenomenological fits to existing data. The broadening of non-single
diffractive hadron-hadron distributions can be equally well due to the
decrease of coherence with increasing energy as to the large (and
rapidly decreasing) values of k _deduced from negative binomial fits.
Similarly the narrowness of e -e multiplicity distribution is due to
nearly coherent (therefore nearly Poissonian) emission from a small

number of jets, in contrast to the negative binomial with enormous
values of k.,



I. NEGATIVE BINOCMIAL DISTRIBUTION

The negative hinomial distribution

p k o (ntk-1)! (n/k)" o
0 n' (k=1)! (1;n/k)n+k

with n (the average multiplicity) and k as the parameters, has been
found to give an excellent account of hadronic multiplicity
distributionsl). In particular the recent fit to non-single diffractive
data from all energies by the UA5 group is especially interesting in
that the parameter k is required to decrease rather rapidly with energy.
Put differantly, the scaling form of (1) (a special case of the gamma

distribution)

k
-5 k _ k k-1 -kz
o~ (2) = qeyr 2 e (2)

z = n/n

does not exhibit KNO scaling, as would be :he case were k constant.
These facts, in particular the energy dependence ot k have inspire” many
theoretical conjectures about the meaning of (1) and its _.aysical
meaning.

The negative binomial distributions occurs in many physical and
mathematical contexts. Here we mention of few examples, referring to
standard mathematical textsa) ana our forthcoming review artic\e4) for
more information on this and related distributions.

k
(D Py s a generalized Bose-Einstein distribution composed of

k (integral) cells of equal average occupancy n/k (see Knoxl)

and ref. 3).

(2) Pnk is the superposition of Poisson distributions for the
o
particular case of the Poisson transform 4.5)

f(x)

of the weight

@ < N =XN
, ‘ xn) e :
P —lé dx t(x) g*—lﬁr——— (3)



with the weight f(x) = wk(x) given by Eq. (2). 7This formula suggests

the possibi]itys-e) that the observed broad hadronic distributions are
the consequence of an average (i~ the event sample) over varying in-
elasticitieas or equivalently impact parameters, for continuous k.

(3) Pnk corresponds to the counting distribution characteristic of

a Gaussian field ensemble, whether in semiclassical photoccunt

theoryz'gj or in the representation of the oscillator by the diagonal

9,10)

coherent state representation For applications to hadronization,

k would be the average number of effective cells (or emiiters).
Although there is no fundamental basis for k, most people imagine that

the number of emitters should increase with energy.

(4) Pnk can be derived as & composite Poisson-logarithmic
distribvﬁion11-13)

in which «clusters produced with a Poisson

distribution decay into the final hadrons via a logarithmic
distribution. This picture (as do the others mentioned here) requires
further elaboration tc become compelling.

(5) Pnk 3,4,14-17)

equations in the parameter n. In these cases the mathematics is more

is the solution of various probability evelution

clear than the physical processes ailowing the reduction of the
many-body problem to a few degrees of freedom cheying tihe appropriate
equations.
(6) Pn
kernel f(x,t) obeys a suitable stochastic differential equation. At

least two caﬁes are knowns‘le)'
(7) Pn can result from a Cantor set type ot cascade structure

k is the long time distribution whose time dependent Poisson

(including parallel or composite cascadas) in which Pnk is the fraction

of a line occupied at the nth stagelq).

This interpretation is closely
connected with the interpretation of the k=1 (Bose-Einstein)
distribution as a "geometric" distribution3).

The foregoing list in no way exhausts the rich variety of contexts
in which the neqative binomial distribution occurs in naturezo). We
have emphasized those which may have relevance to the particle physics
multihadron production problem.

I1. PROTOTYPE HADRONIZATION DENSITY MAIRICES

The counting distribution Pn can in principle be obtained from the

projection of the wave function w(t) on the n particle states at trme,

{ o whon tha meoscdiimad o do o0 L



Pn - <n|pout'n>
Pout ~ ILpout><q’outl (4)
for a so called "pure” state. The "in" density matrix Pin = Iwin><¢1n|

is related to p_ . via the S "matrix" S = |y, >y | by Py . = ST .S,
indicating the relation of (4) to the usual formulation in terms of phase
space integrations over the squared S-matrix. Having said this, we
admit that a dynamical evaluation of Pout is not easier than that of S.
Nevertheless, on2 can make educated guesses on the structure cf Pout O"

the experimental results and accumulated from statistical physics,
9-10

particularly the sophisticated results from quantum optics Such
results can then provide well-formulated goals for more ambitious

2
dynamical schemes such as jet ca]cu1u521, dual topological mode]sz“,

etc. This framework suggests the merit of deriving the "stochastic
essence" from the full exclusive event by searching for suitabie
probabalistic equations for inclusive variables. Although traditional
in other branches of science, particle physics has heretofore made
little use of these techniques.

The final hadrons are tc good approximation described by . set of
free Bose fields, whose creation and destruction operators (a,a+) are

nothing but free harmonic oscillators. is therefore some function

p
of the outgoing a's and a''s. Althoughogge actual a and a variables
are equipped with moment: and other degrees of freedom, it turns out to
be fruitful to consider a prototype model with one (or a few) effective
oscillators. The most popular oscillator states, the pumber states
[n> = (a+)n|0>/(n!)% nave ill-defined phase and hence are only ind-rectly
related to classical-like field motions. This does not matter {o-~ the

incoherent thermal ensemble, whose (mixed) density matiix

exp(-H f N"
P TPLJFI N TS LAl (%)
M exp(-pH) 10 (1+N)"l
is diagonal in the number basis. Recall that in this case the
occupation aumber N of the Bose-Einstein distribution fis given by

N-1 = exp(Bw)-1.



Suppose, however, we have the oppcsite case of an oscillator
undergoing sinusoidal motion. In this case we expect a Poisson
distribution for probabilities of the system being found in the nth
excited state. As is we]]-known4’9’10, the most suitable states in this
case are the coherent states |a> which can be defined “for any complex

a) by

2 n
la> = e-!“Ofl zij a %|n> (6)

n (n!)

The Poisson distribution follows immediately on identifying the mean
multiplicity S with lal2

p = la><a]
n-S
P = Snf s = Jaf? (7)

The motion <a|x(t)la> ~ Iulkcos(¢-wt) where ¢ = arg o.) Although |u><a]
has many off-diagonal elements in the number basis, the counting process
is not sensitive to them. Hence observation of (7) in no way implies
that the actual physical system has the full classical-like phase
structure,

Next suppose that instead of the pure state |a><a| we have a mixed
ensemble with real weight function #(a)

p = 4% (o) o> <] (8)

This representation has considerable great generality thkan might be
surmised from the foregoing. Moreover, as one can easily see the
diagonal element <n|p|In> leads directly to the Poisson transform,
Ea. (3), which thereby inherits this greater generality.

As our first example we nole that a Gaussian weight leads to the
Bose-Einstein distribution:

d(o) = exp(-lwlz/N)/nN

n
p o= ____E__T (ay
" an A



(For k modes the direct product exp(-Zlai|2/(N/k)),’(nN/'k)k leads
directly to the negative binomial, Eq. (1). Note that these results are
compatible with but do not require thermal equilibrium.

A very interesting generalization, which actually arises in a model
of a single-mode 1aser9, is the displaced Gaussian weight whose Pn
interpolates between (7) and (9)

& = exp(-la-BI2/N )/mN

(10)
n
S -S
P = —— exp =~ =g L. 35
n (1+N)n+1 1+N  "n 14N
Here the average multiplicity is n = S+N with § = IBIZ; Ln is the usual

Laguerre polyrnomial (positive for negative argument.)

Tne notation is chosen so that S measures the strength of the
coherent signal and N the strength of the (Gaussian) noise. wWe shall
refer to (10) and its generalization to k (equal strength) cells:

n

K _ _(N/k) _S/N kL =ks/N
"o T etk P T TR o TR (11)

as the partially coherent laser distribution (PCLD). These formulas
were originally derived for the phnotocount distribution for k-mode
lasers whose emitting modes have a (common) signal and noise ratio as
defined above. This suggests application to the description of hadron
counting for emissions from a set of cells having to first approximation
a common (35,N).

[II. DESCRIPTION OF MULTIPLICITY DISTRIBUTIONS
The PCLD &Eq. (11) was “irst used5‘24)
mu'tiplicities i 1983, although equivalent physicsy was assumed for
moments (for finite rapidity differences) as early as 1978 by the
Marburgzs) group. We note that (11) depends on three parameters (S,N,k) as
opposed to just twwo for the negative binomial, Eq. (1). We shall use
the equivalent set (n = N+$, m = (N/S)a,k). Note that as N/S » = (ll)

gues over to the negative binomial, while N/S » 0 leads to the Poisson.

to describe hadronic

We have used the noise to sianal amnlitude m = (N/Q\!’ vathar +than tha



usual S/N ratio for the following reason. Near the Poisson limit the
shape of the wings of the distribution is very sensitive to a small
amount of noise. Hence m can be a few percent, in some sense very close
to Poissonian, yet to the eye the curve looks quite different from
Poissonian (see Fig. 1 of ref. 5 for illustration of this fact).

Since (11) has an extra parameter, 1t 1is not surprising that it
leads to multiplicity fits as good or better than the negative binomial.
What is not visible at firzt sight, however, is that one can trade an
increasing k for an increasing S/N: either will narrow the distribution
in a way which accomodates the data equally well from a X2 critericn.

Examples were given26

by us at the Luna conference; more will be given
elsewhere. Nue to space limitations we here only assert again the

result: fits to multiplicity distributions alone cannot distinguish

between the negative binomial from the partially coherent distribution

with smaller k and non-zero S/N. However, analysis of the pp
28

forward-backward correlation™  does constrain the parameters, indicating
that N/S > 1 but not that (1) is really 1in force. What are the
consequences of this ambiguity in the parameter space of (11)? The most
important ones are:

(1) The large values of x obtained by UA5 by fitting Eq. (1) to
non-single-diffractive data can be eliminated by allowing coherent
emission to be substantial at low energy, disappearing completely at
higher energies (so that the energy dependence of KNO plot could
stabilize at higher energies.) This point of view, stressed recently by
the Marburg groung, shows how the puzzling rapid decrease of k can be
replaced by a more plausible increase of randomness of the emitting
fields wich increasing energy.

(2) Recent measurements of e+-e_ annihilation to hadrons at 29 GeV
have given precise charged multiplicity Jdistributions. These data were
very well described by (1) with very large values of k (ranging up to
100). In 1984 we claimed that existing data were almost Poissonian, the
deviations being due to a small amount of noise superposed on almost
coherent-state oehavior for one or two quark jets (i.e. k =1 or 2 is
literally the number of scurces). Since for k»» the negative binomial
approaches e Paisson, these views are not very different

mathematically event thouah we have no idea how to internrat k = K0 ar



even 20, in a physical way. Recent]y31 we have analyzed the data of
ref. 30 to try to discriminate phenomenologically between these
alternatives. It 1is very hard to distinguish, even with the aid of F/B
correlation data and restricted rapidity intervals, although the nearly
Poissonian limit Tooks somewhat better.

To summarize, the replacement of the negative binomial distribution
(1) by the partially coherent distribution for bolh hadron-hadron and
e -e multipiicity distributinns. In each case the physical picture is
intuitively simple. For h-h we have emiss‘ons from a small average
number of effective cells (whose number could even be constant). The
energy dependence of the KNO plot is then to be interpreted as the
decrease of S/N; current collider results are nearly at the negative
binomial Timit. It is therefore tempting to speculate that tne Cn
moments will saturate beginning by Fermilab coilider energies. For
e -e” hadronizations we can, as in ref. 5 continue to identify k as the
number of jets (except at the lower energies), which is small. The
narrowness of the distribution is due to the largeness of S/N. What is
missing in this parametrization by (ll) is any understanding of why KNO
scaling should hold (as it seems to) in e+-e_ annihilations. The pure
Poisson does not scale, and we have neither a dynamical or statistical
explanation of how N/S should be tuned to conform to the apparent
experimental validity of KNO scaling in e+-e_ annihilations. We hope
that the next generation of experiments will shed 1light on this
question.
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