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ABSTRACT 

This  work i s  d i r e c t e d  toward support  s t u d i e s  f o r  t h e  n a t i o n a l  
program f o r  t h e  development and demonstrat ion of i n  s i tu  c o a l  gas- 
i f i c a t i o n  processes .  The o b j e c t i v e  of t h i s  work is  t o  determine 
t h e  r eac t ion -con t ro l l i ng  v a r i a b l e s  and r e a c t i o n  k i n e t i c s  f o r  t h e  
g a s i f i c a t i o n  of cha r s  obtained by pyrolyzing c o a l  i n  simulated 
underground g a s i f i c a t i o n  cond i t i ons .  The r e a c t i o n s  being s tud ied  
and t o  be s tud ied  inc lude  steam-char, C02-char, H2-char, t h e  water- 
gas  s h i f t  r e a c t i o n ,  an,d t h e  methanation r e a c t i o n .  

I n  t h i s  r e p o r t  a r e  presented d a t a  regard ing  t h e  k i n e t i c s  of 
t he  r e a c t i o n  of steam wi th  c h a r s  prepared from P i t t s b u r g h  seam 
h igh -vo la t i l e  bituminous c o a l .  I n  a d d i t i o n ,  a  r e a c t i o n  mudel is  
descr ibed  c o r r e l a t i n g  t h e  steam-char r e a c t i o n  r a t e s  measured 
e a r l i e r  f o r  Hanna subbituminous c o a l  w i t h  ope ra t ing  cond i t i ons  
inc luding  temperature,  p a r t i a l  p re s su re s  of steam and hydrogen, 
and e x t e n t  of carbon g a s i f i c a t i o n .  P a r t i a l  r e s u l t s  a r e  presented 
and d iscussed  f o r  an  i n v e s t i g a t i o n  of s t r u c t u r a l  parameters of 
Hanna cha r  a s  a  func t ion  of p y r o l y s i s  cond i t i ons  and ex ten t  of 
carbon g a s i f i e d  . 

SUMMARY 

This  work has t h e  o b j e c t i v e s  of provid ing  engineer ing  d a t a  f o r  process  
c o n t r o l  and r e source  eva lua t ion  f o r  underground c o a l  g a s i f i c a t i o n .  K ine t i c  
da t a  f o r  gas i f i ca . t i on  of c h a r s  under s imulated i n  s i tu  processing cond i t i ons  
a r e  provided. The c o a l  samples s tud ied  a r e  r e p r e s e n t a t i v e  of coa1.s a t  s i t e s .  
w h e r e . f i e l d  t e s t s  e i t h e r  a r e  c u r r e n t l y  being conducted o r  a r e  under consid- .  , 

e r a t i o n .  C l i a r s ' f o r  g a s i f i c a t i o n  a r e  prepared by pyrolyzing t h e  c o a l  under 
cond i t i ons  c h a r a c t e r i s t i c  of t h e  i n  s i tu  g a s i f i c a t i o n  process .  

, The rea.ction of steam wi th  chars  prepared froni P i t t s b u r g h  seam high- 
v o l a t i l ' e  bituminous c o a l  was determined f o r  t h e  temperature range,  700 t o  
850°C, >and p a r t i a l  p re s su re s  of steam of 70-500 kPa (0.7-5 atm). I n  o r d e r  
t o  coun te rac t  t h e  .'coking p r o p e r t i e s  of . t h i s  c o a l  dur ing  py ro lys i s , , ,  t h e  c o a l  
was .cr,ushed t o  :30 mesh and, d i l u t e d  wi th  t h r e e  t imes  i t s  volume ;of 30 mesh 
&-al&ina be fo re  being placed i n  t h e  r e a c t o r .  The r e a c t i o n  of steam w i t h  
p i t t i b u r g h  cha r  a t  lower temperatures  (%700°C) i s  app,roximately one o r d e r  
of magnitude slower than  had been determined e a r l i e r  f o r  c h a r s  from Hanna 
subbituminous c o a l ,  and a t  higher  temperature (%850°C),. P i t t s b u r g h  char  i s  
about one-third a s  r e a c t i v e  a s  .Hanna cha r .  'Extensive micropore d i f  Eusion 



l i m i t a t i o n s  a r e  observed wi th  t h e  d i l u t e d  P i t t s b u r g h  cha r .  A t  low temper- 
a t u r e s  (%700°C), t h i s  e f f e c t  has  about  t h e  same magnitude a s  t h e  western 
subbituminous c o a l s ,  a s  evidenced by t h e  s i m i l a r i t y  of t h e  apparen t  a c t i -  
v a t i o n  e n e r g i e s ;  Ea a t  700°C, -44.9 kcal/mol f o r  t h e  p i t t i b u r g h  cha r  and .. 
-43.5 kcal/mol f o r  t h e  Wyodak cha r .  A t  h igh  tempera tures  (-85O0C), t h e  
appa ren t  activation energy f o r  t h e  P i t t s b u r g h  char  i s  -18.0 kcal lmol .  Th i s  
i n d i c a t e s  t h a t  t h e  steam-carbon r e a c t i o n  i s  v e r y  s eve re ly  d i f fus ion- l imi ted- -  
much more than was observed f o r  e i t h e r  t h e  ~ a n n a  char  or t h e  Wyodak cha r .  
The r e a c t i o n  of steam w i t h  t h e  P i t t s b u r g h  char  i s  v e r y  c l o s e  t o  f i r s t  o rde r  
i n  steam f o r  the  range  o f .  steam p a r t i a l  p r e s su re s  i n v e s t i g a t e d .  

A r a t e  express ion  has  been der ived  i n  which exper imenta l ly  determined 
r a t e s  of r e a c t i o n  of steam w i t h  Hanna char  have been c o r r e l a t e d  w i t h  t h e  
o p e r a t i n g  v a r i a b l e s . i n  t h e  ranges  of i n t e r e s t  f o r  i n  situ g a s i f i c a t i o n .  

% 

T h i s  express ion  h a s  t h e  form 

~~7h P 1 ; ~  
. . 

rc = r a t e  of  of  t h e  ash- f ree  carbon,  h-' 

Xc = f r a c t i o n  .of ash- f ree  carbon g a s i f i e d  . . 

k = r e a c t i o n  r a t e  cons t an t  = 2.04,' x l o 4  exp (-25940/11~), 
kp,-0.56 h-1 

PHZ0 = p a r t i a l  p r e s s u r e  of steam, kPa 
P 

K = adso rp t ion  rate cons t an t  = 8.87 x lo-' exp ( 3 8 3 5 0 / ~ ~ ) ,  k ~ a ' ~  

= p a r t i a l  p r e s s u r e  of hydrogen, kPa 
P ~ 2  

T h i s  exp re s s ion  f i t s  t h e  exper imenta l  d a t a  w i , t h  a maximum d e v i a t i o n  of ap- 
proxi111aLely 30%. The g r e a t e s t  e r r o r s  occur  a t  h igh  temperatures .  

E a r l i e r  s t u d i e s  w i t h  wes te rn  subbituminous c o a l s  i n d i c a t e d  t h a t  r e a c t i o n  
r a t e  is s t r o n g l y  dependent on t h e  amount of carbon removed from t h e  char .  An 
i n v e s t i g a t i o n  has been i n i t i a t e d  t o  determine t h e  pore  s t r u c t u r e  and s u r f a c e  
a r e a  of c h a r s  a s  a f u n c t i o n  of carbon removal. A t  750°c, removal of 65% of 
t h e  carbon from Hanna cha r  has  been found t o  i n c r e a s e  i t s  s u r f a c e  a r e a  s i x -  
f o l d .  Simultaneously,  t h e  volume of pores  having d iameters  g r e a t e r  than 
60 i n c r e a s e s  approximately f o u r f o l d  and t h e  r e a c t i o n  r a t e  i n c r e a s e s  approx- 
ima te ly  t h r e e f o l d .  Th i s  work i s  not  ye t  complete,  but  i t  i s  planned t o  u se  
rh f s . i n fo rma t ion  i n  ob t a in ing  an  improved c o r r e l a t i o n  of r e a c t i o n  r a t e  w i th  
e x t e n t  of carbon g a s i f i c a t i o n .  



-' . I. INTRODUCTION . 

Current  and p red i c t ed  sho r t ages  of gaseous f u e l s  i n  t h i s  n a t i o n  have 

'u' 
l e d  t o  increased  e f f o r t  t o  develop processes  f o r  t h e  underground conversion 
of c o a l  t o  c l e a n e r  f u e l s ,  e i t h e r  f o r  combustion o r  f o r  u s e ' a s  petrochemical  
feeds tocks .  The concept of i n  s i t u  c o a l  g a s i f i c a t i o n  has  been i n v e s t i g a t e d  
i n t e r m i t t e n t l y  i n  t h e  U.S.A. and European c o u n t r i e s  s i n c e  t h e  e a r l y  p a r t  of 
t h i s  cen tury .  ~ x t e n s i v e  t e s t i n g  of t h e  concept  has  been c a r r i e d  ou t  in ,  t h e  
U.. S  . S  .R. However, underground g a s i f i c a t i o n  development h a s  been i n t e r r u p t e d  
i n  t h e  p a s t  e i t h e r  by war o r  by a l l e v i a t i o n  of t h e  need of such technology .- 
due t o  t h e  d i s cove ry  of ex t ens ive  n a t u r a l  gas. r e s e r v e s ,  a s  i n  t h e . c a s e  of 
t h e  Sov ie t  Union. The increased  i n t e r e s t  i n  underground g a s i f i c a t i o n  i n  . 

t h i s  count ry  can be a ' t t r i b u t e d  t o  r a p i d l y  d e c l i n i n g  r e s e r v e s  of inexpensive 
n a t u r a l  ga s  and t h e  s ea rch  f o r  a l t e r n a t i v e  sources  of gaseous f u e l s  f o r  
i n d u s t r i e s  which cannot be converted economically from gaseous t o  s o l i d  f u e l  
f eeds .  

During g a s i f i c a t i o n  of c o a l  underground,' t h r e e  d i s t i n c t  r e a c t i o n  zones 
can be  i d e n t i f i e d .  I n  t h e  f i r s t  zone, t h e r e  i s  d ry ing  and p y r o l y s i s  (devol- 
a t i l i z a t i o n )  of t h e  c o a l .  Following t h e  p y r o l y s i s  zone i s  t h e  r educ t ion  
zone where a  s i g n i f i c a n t  po r t i on  of t h e  char  produced i n  t h e  d e v o l a t i l i z a t i o n  
zone i s  g a s i f i e d .  Major r e a c t i o n s  here  a r e  t h e  r e a c t i o n s  of cha r  w i th  steam 
and carbon d iox ide .  Carbon d iox ide  i s  produced i n  t h e  t h i r d  zone by combus- 
t i o n  of t h e  remaining cha r  i n  a i r  o r  oxygen i n j e c t e d  i n t o  t h e  c o a l  seam. The 
hea t  f o r  t h e  process  i s  genera ted  i n  t h e  combustion zone and i s  c a r r i e d  i n t o  
o thez  zones by t h e  f low of t h e  ho t  gaseous products  of combustion through 
pores  and f i s s u r e s  generated i n  t h e  c o a l  du r ing  p y r o l y s i s .  

The c h a r a c t e r i s t i c s  of v a r i o u s  r e a c t i o n s  i n  i n  s i t u  g a s i f i c a t i o n  pro- 
c e s s e s  a r e  v e r y  important .  An understanding of them i s  e s p e c i a l l y  important  
i f  i n  s i t u  g a s i f i c a t i o n  i s  t o  be employed t o  produce a  v a r i e t y  of p roducts  
and i f  a  v a r i e t y  of c o a l  sources  i s  t o  be  used. Petrochemical  f eeds tocks ,  
combined c y c l e  power gene ra t i on ,  and p i p e l i n e  gas  product ion w i l l  r e q u i r e  
gases  of d i f f e r e n t  composi t ions,  and each a p p l i c a t i o n  could make good use  
of p roducts  of i n  s i t u  g a s i f i c a t i o n .  

. I n .  a d d i t i o n  ' t o  s t u d i e s  : r e l a t i n g  r e a c t i o n  behavior  t o  subsequent product  
ga s  composi t ions,  g l o b a l  mathematical models must be developed t o  permit (1) 
c a l c u l a t i o n  of t h e  e f f i c i e n c i e s  of t h e  p roces s ,  ( 2 )  p r e d i c t i o n  of t h e  r a t e s  
of movement of t h e  v a r i o u s  r e a c t i o n  zones dur ing  i n  s i t u  g a s i f i c a t i o n ,  (3) 
s p e c i f i c a t i o n  of optimum p roces s  c o n f i g u r a t i o n s  and parameters ,  and (4 )  p r e - ,  
d i c t i o n ' o f  t h e  e f f e c t s  of p rocess ing  u p s e t s  ( e .g . ,  "massive subs idence  i n t o  
t h e  r e a c t i o n  zone).  For a 'model t o  be u s e f u l ,  'it should be  capable  of des- 
c r i b i n g  t h e  t ime and s p a t i a l  dependence of t h e  g a s i f i c a t i o n  processes  a s  they  
occur  underground. Furthermore, e f f e c t i v e  mathematical  models can be used 
t o  determine how v a r i a b l e s  such a s  a i r  i n j e c t i o n . r a t e ,  water i n f u s i o n ,  and 
steam p a r t i a l  p r e s su re  can be a d j u s t e d  t o  t a i l o r  t h e  product  t o  t h e  needs 
of  t h e  consumer. Not a l l  of t hose  c a p a b i l i t i e s  have y e t  been included i n  
c u r r e n t  models f o r  i n  s i t u  g a s i f i c a t i o n ,  bu t  re f inements  w i l l  be made t o  
permit  t h e  g l o b a l  models t o  be used t o  meet t h e s e  a s  we l l  a s  o t h e r  goa l s .  

. , 

A l l  of  t h e  mathematical  models a r e  c u r r e n t l y  l i m i t e d  i n -  u t i l i t y  
becabse t h e r e  i s  a  l a c k  of k i n e t i c  d a t a  f o r  t h e  primary r e a c t i o n s .  involv ing  
c o a l s  of i n t e r e s t .  f o r  i n  s i t u  g a s i f i c a t i 0 . n .  The r eac t ion .  of carbon w i t h  



oxygen i s  very' r a p i d ,  and d i f f e r e n c e s  i n  t h e  phys i ca l  and chemical. n a t u r e  
of t h e  c h a r s  and c o a l s  have minor e f f e c t s  on t h e  rates of t h i s  r e a c t i o n .  
However, c h a r s  obta ined  from d i f f e r e n t ~ o a l s  and a t  d i f f e r e n t  pyro lys is .  
cond i t i on i  by i n  s i t u  p y r o l y s i s  w i th  steam, ca rbon 'd iox ide ,  o r  hydrogen vary  , 

. 
4 

i n  r e a c t i v i t y .  . L i t t l e  in format ion  on t h e s e  r e a c t i o n s  i s  a v a i l a b l e  i n  t h e  
l i t e r a t u r e  f o r  char,s prepared (1) from c o a l s  importa*t i n  underground gas i -  

. . 
f i c a t i o n  and (2) under cond i t i ons  s i m i l a r  t o  those encountered underground. 

. . 

The purpose of ou r  work a t  ANL i s  t o  o b t a i n  k i n e t i c  information t h a t  
i s  d i r e c t l y  a p p l i c a b l e  t o  mathematical models f o r  i n  s i t u  g a s i f i c a t i o n .  
These s t u d i e s  w i l l  a l l ow the .  important processing v a r i a b l e s  i n  underground 
g a s i f i c a t i o n  t o  be i d e n t i f i e d .  . The c o a l s  being u t i l i i e d  a r e  s i m i l a r  t o  , those. '  
used i n  c u r r e n t  f i e l d  t e s t s  o r  proposed f o r  u se  i n  commercial underground 
g a s i f i c a t i o n .  .The process ing  cond i t i ons  s ~ r v e ~ e d ' i n c l u d e  those  expected t o  
be encountered i n  .I:n. si.f;zi g a s i f i c a t i o n .  

The k i n e t i c s  of t h e  r e a c t i o n  of oxygen w i t h  carbon i s  n o t  i n c l u d e d . i n  . ' 

our  work. A s  s t a t e d  above, t h i s  r e a c t i o n  i s  rapi,d, and t h e  r e s u l t s  obtsi ,ned 
In t h e  mathematical models a r e  q u i t e  . i n s e n s i t i v e  t o  e r r o r s  i n  t h e  r a t e  con- 
s t a n t s  f o r  t h i s  r e a c t i o n .  The r e a c t i o n s  being s tud ied  . i n .  t h i s  program 

. - i nc lude :  -. 
4 

. - H20 + C $ H2 + CO . . 
. ,  . 

CO, + c : 2CO 

2H2 + C 2 CH4 . 

Unly t h e  f i r s t  t h r e e  of t h e  above reactions. c o n t r i b u t e  d i r e c t l y  . t o  conversion 
of c h a r  t o  gaseous products .    he f i n a l  two r e a c t i o n s  a f f e c t  t h e ' c ~ m ~ o s i t i o n  
of t h e  product  gases  and a r e  of cons iderable  economic importance i n  r e l a t i o n  
t o  t a i l o r i n g  t h e  product  gas  t o  t h e  needs of v a r i o u s  i n d u s t r i e s  which would 
make u s e  of the  end products  of i n  s i t u  g a s i f i c a t i o n .  c 

Var iab le s  being inves t iga t ed '  i n  t h i s  s tudy  inc lude  t o t a l ' p r e s s u r e ,  
r e a c t i o n  temperature,  , c o a l  d e v o l a t i l i z a t i o n .  cnnd i t i n n s ,  and p a r t i a l  nprcccurc ' ' 

of steam. . K i n e t i c  d a t a  t o  be obta ined  inc lude  r a t e  c o n s t a n t s ,  r e a c t i o n  o r d e r s .  
w i t h  r e s p e c t  t o  each of t h e  r e a c t a n t s ,  and .apparent  a c t i v a t i o n  efiergies.  
These parameters  a r e  being determined f o r  bituminous c o a l  from'. t h e  P i t t s b u r g h  
seam and have. been determined f o r  subbituminous c o a l s ' f r o m  Wyodak and Hanna 
seams of Wyoming. 

I n  t h i s  a n n u a l . r e p o r t ,  k i n e t i c '  d a t a  f o r  the'  r e a c t i o n  of steam wi th  c h a r s  
prepared from P i t t s b u r g h  seam h igh -vo la t i l e  b i . t i .~minnus  c o a l  are presented ,  
Also d i scussed  i s  a  r e a c t i o n  model c u r r e n t l y p r o p o s e d  f o r , c o r r e l a t i o n  of d a t a  
ob ta ined  us ing  Hanna' subbituminous c o a l s .  The r e a c t i o n  r a t e  d a t a  have been d 

r epo r t ed  i n  e a r l i e r  r e p o r t s  of t h i s  s e r i e s .  A l so  included a r e  t h e  r e s u l t s  of 
a  s tudy  w i t h  Hanna cha r  r e l a t i n g  t h e  pore s t r u c t u r e  and s u r f a c e  a r e a  of t h i s  
c h a r  t o  e x t e n t  of g a s i f i c a t i o n .  



11. EXPERIMENTAL 

  he k i n e t i c s  s t u d i e s  a r e  c a r r i e d  ou t  i n  a  packed bed d i f f e r e n t i a l  reac-  .' t o r  i n  which steam, carbon d ioxide ,  and/or  o t h e r  r e a c t a n t s  a r e  blended wi th  
n i t rogen  t o  o b t a i n  t h e  des i r ed  t o t a l  p re s su re  and p a r t i a l  p re s su re s  of reac-  . 
t a n t s .  The e x p e r h e n t a l  appara tus  and gene ra l  ope ra t ing  procedures  have 
been descr ibed  i n  d e t a i l .  l 

t ,  

Py ro lys i s '  o f '  t he  char  i s  c a r r i e d  o u t  just be fo re  g a s i f i c a t i o n  i n  t h e  
g a s i f  i c a t i o k  r e a c t o r  under .' cond i t i ons  of ,p ressure ,  hea t ing  r a t e ,  and sweep- 
ing gas  composition s & i l a r  t o  . t hose  encountered i q  underground g a s i f i c a t i o n .  : 
Because of i t s  coking p r o p e r t i e s ,  t h e  P i t t sburgh .seam c o a l  3s d i l u t e d  wi th  
t h r e e  p a r t s  by volume ,of a-alumina a s  i s  d iscussed  below. 

The ~ i t t s b u r ~ h ' c o a l  i s  crushed t o  -25 +35 mesh and i s  mixed w i t h  t h e  . 
' 

.30-mesh alumina be fo re  placement i n  t h e  r e a c t o r .    his procedure d i f f e r s  
from t h a t  used i n ,  t h e  e a r l i e r  s t u d i e s  wi th  Western subbituminous c o a l s ,  i n  
which t h e  c o a l  was crushed t o  -4 +12 mesh and ,p l aced  d i r e c t l y  i n  t h e  r e a c t o r  
without  d i l u t i o n .  ~ ~ r o 1 ~ s i s ' ~ c o n d i t i o n s  used here  were s i m i l a r  t o '  those  used 
f o r  t h e  subbituminous c o a l s :  3OC/min hea t ing  r a t e  u.p t o  t h e  r e a c t i o n  temp- 

l i e r a t u r e ,  a  t o t a l  system p res su re  of approximately 800 kPa (100 p s i g ) ,  and a  
sweeping gas  cbnk i s t i ng  of 20% hydrogen i n  n i t rogen  f lowing a t  a  r a t e  of 
1.0-1.5 L/min, STP. , - . 



111. RESULTS AND DISCUSSION 

A. Steam-Char Reac t ion  Kine t ics - -P i t t sburgh  Seam Coal - 

I f  a  coking c o a l  such as P i t t s b u r g h  c o a l  i s  pyrolyzed i n  our r e a c t o r  
system wi thout  i n e r t  d i l u e n t ,  i n t e r p a r t i c l e  c o n t a c t  dur ing  p y r o l y s i s  r e s u l t s  
i n  f u s i o n  of t h e  c o a l  i n t o  a  s o l i d  mass and a c c e s s i b i l i t y  of steam t o  t h e  
cha r  i s  seve re ly  l i m i t e d .  - A t  approximately 400°C, t h e ' c o a l  becomes v e r y  
p l a s t i c  and begins  t o  f u s e .  I n  our r e a c t o r ,  t h i s  r e s u l t s  i n  an  i n c r e a s e  of 
p r e s s u r e  drop  a c r o s s  t h e  c o a l  bed. By t h e  t i m e  t h e  r e a c t o r  has  heated t o ,  
525"C, gas  f low through t h e  bed has  decreased  t o  < l o %  o f , t h e  o r g i n i a l  va lue ,  
w i t h  occas iona l  complete blockage of gas  f low.  A t  about  5 5 0 ' ~  p y r o l y s i s  of 
t h e  l i q u i d  phase proceeded t o  t h e  e x t e n t  t h a t  t h e  fused mass began t o  s h r i n k  
away f rom t h e  w a l l s  of t h e  r e a c t o r  t ube , '  pe rmi t t i ng  u n r e s t r i c t e d  g a s  f low . 
around t h e  per imeter  of t h e  s i n g l e  lump of coke. Th i s  shr inkage  cont inued 
tliroughout p y r o l y s i s  unti1:the f i n a l  temperacure f o r  r e a c t i o n  was reached; 

1 

Because of t h i s  shr inkage  channel ing of t h e  r e a c t a n t  steam a round . the  
coke was ' ex tens ive  wi th  v e r y  l i t t l e  of t h e  s team'pass ing  through t h e  mass. 
I n  e f f e c t ,  r e a c t i o n  is  p r i m a r i l y  l i m i t e d  t o  t h e  o u t e r  s u r f a c e  of a  l a r g e  
s i n g l e  p a r t i c l e  of  coke; hence, t h e  apparen t  r e a c t i o n  r a t e  i s  cons iderab ly  
less than  t h a t  expected f o r  ve ry  sma l l  cha r  p a r t i c l e s .  The purpose a f ' t h e  
a-alumina i s  to  prevent  i n t e r p a r t i c l e  c o n t a c t  dur ing  t h e  p y r o l y s i s  phase of 
t h e  experiment and thus  prevent  formation of a  s i n g l e  mass of coke. Adding 
t h e  i n e r t  d i l u e n t  probably g i v e s  a  b e t t e r  approximation of t h e  i n t r i n s i c  
k i n e t i c s  f o r  t h e  P i t t s b u r g h  c h a r ,  f o r  which t h e  on ly  d i f f u s i o n  l i m i t a t i o n s  
t o  r e a c t i o n  would be i n t e r n a l  and would depend. bn t h e  p a r t i c l e s '  a c t u a l  pore  
s i z e  d i s t r i b u t i o n .  S ince  i s o l a t i o n  of c o a l  p a r t i c l e s  wou1.d no t  be encoun- 

. t e r e d  i n  a c t u a l  underground convers ion  of a  c o a l  having a h igh  swel.l.ing .i..ndex, 
t h e  mass t r a n s p o r t  l i m i t a t i o n s  occur r ing  underground due t o  swe l l i ng  of t h e .  
c o a l  would have t o  be c h a r a c t e r i z e d  and be included i n .  t h e  g l o b a l  mathematical 
model t o  p r e d i c t  t h e  a p p r o p r i a t e  p r o f i l e  of p a r t i a l  p r e s s u r e s  of steam and 
r e a c t i o n  products .  Th i s  p r ed i c t ed  p r o f i l e  of r e a c t i o n  c o n d i t i o n s  could then 
be  combined w i t h , t h e  i n t r i n s i c  k i n e t i c  d a t a  t o  form a p h y s i c a l l y  r e a l i s t i c  
r e a c t i o n  model f o r  s imula t ion .  

I n  F igs .  1-4 a r e  p l o t s  of t h e  r a t e s  of r e a c t i o n  of steam with d i l u t e d  
cha r  prepared from P i t t s b u r g h  bituminous c o a l  i n  t h e  temperature  range of 
700-850°C and wi th  a p a r t i a l  p r e s su re  of steam of approximately 230 kPa 
(2.3 atm).  A t  700°C (Fig.'  1 ) ,  on ly  a  v e r y  smal l  f r a c t i o n  of t h e  cha r  reacFs  
w i t h  t h e  steam and by t h e  t i m e  20% of t h e  carbon h a s . b e e n  g a s i f i e d ,  t h e  
r e a c t i o n  r a t e  has  decreased t o  an  i n s i g n i f i c a n t  va lue .  A s i m i l a r  phenomenon 
had been observed i n  t h e  c a s e  of bo th  Wyodak and Hanna Western subbituminous 
c o a l s  a t  low r e a c t  ion  tempera tures .  With t h e s e  lower r ank  c o a l s ,  approxi- 
mate ly  5% of t he  c h a r  e x h i b i t e d  a  r e h t i v e l y  h igh  r e a c t i v i t y  a t  600°C, whi le  
t h e  remaining cha r  exh ib i t ed  3 reduced,  bu t  measurable r a t e .  

The r e a c t i o n  r a t e  of P i t t s b u r g h  cha r  w i t h  steam a t  600°C was t o o ' l o w  t o  
permit  accurate de t e rmina t ion .  Consequently,  t h e  , lowest temperature  f o r  o u t  
d a t a  a n a l y s i s  i s  700°C. It should be noted t h a t  even a t  700°C (Fig.  I ) ,  t h e  
r e s i d u a l  cha r  a f t e r  20% g a s i f i c a t i o n  was s o  u n r e a c t i v e  t h a t  t h e  r e a c t i o n  
r a t e  could no t  be measured. 



X,, FRACTION'OF CARBON CONVERTED 

Fig .  1. React ion Rate  w i th  Steam US. 
Percent  Carbon Conversion 
f o r  Di lu ted  P i t t s b u r g h  Seam 
Char. 700°C, 230 kPa 
(2.3 atm), Steam. 

A t  750°C (Fig.  2,), t h e  r e a c t i o n  r a t e  u s .  carbon convarsion p l o t  is 
compl.etely d i f f e r e n t  from t h e  F ig .  1 p l o t .  There i s  no h igh  i n i t i a l  reac-  
t i v i t y ,  a s  had been observed a t  700°C (Fig.  1 ) .  I n  a d d i t i o n ,  slow-opening 
of t h e  pore s, truceure of t h e  cha r  t h a t  had been observed f o r  t h e  Western 
c h a r s 2  d i d  n o t  occur  w i th  t h e  P i t t s b u r g h  cha r .  By t h e  t ime 15% of t h e  carbon 
had been g a s i f i e d ,  t h e  r e a c t i o n  ra.te reached a maximum; nex t ,  t h e r e  was a 
ve ry  slow dec rease  i n  r e a c t i o n  r a t e  u n t i l  seventy  percent  was g a s i f i e d ;  then  
t h e  r a t e  decreased r a p i d l y .  A t  h igher  tempera tures  (F igs .  .3 and 4 ) ,  t h e  
r e a c t i o n  r a t e  reached 'a  maximum a t  about  20% carbon conversio,n and remained 
r e l a t i v e l y  c o n s t a n t  (w i th in  a 13.0% band) u n t i l  n e a r l y  a l l  of t'he aa.rb.o,n was, 
consumed. 

- 



X , , FHA(;'l-ION OF CARDON CONVERTED 

F i g .  2. R e a c t i o n  R a t e  w i t h  Steam u s .  P e r c e n t  
Carbon Conver siorl  f o r  Di.11.1t ed 
P i t t s b u r g h  Seam Char.  750°C, 
240 kPa (2 .4  a t m ) ,  Steam. 

, 

Xc,, F R A C T I O N  O F  CARBON CONVERTED 

F i g .  3 .  R e a c t i o n  Rate w i t h  Steam V S .  P e r c e n t  Carbon Convers ion 
f o r  D i l u t e d  P i t t s b u r g h  seam Char; 800°C, 230 k ~ a  
(2 . . 3  a tm) ,  stein. 



Xc, FRACTION OF CARBON CONVERTED 

Fig .  4. React ion Rate w i th  Steam us. Percent  Carbon 
Conversion f o r  Di lu ted  P i t t s b u r g h  Seam Char. 
850°C, 230 kPa ( 2 . 3  atm), Steam. 

The temperature dependence of t h e  r e a c t i o n  r a t e  f o r  steam wi th  t h e  
P i t t s b u r g h  seam char  i s  shown i n  Fig.  5. The s o l i d  curve corresponds t o  
t h e  d a t a  obta ined  f o r  c o a l  d i l u t e d  wi th  alumina. For each temperature,  
t h e  r a t e s  a t  10 ,  20, 30, and 50% carbon conversion a r e  p l o t t e d .  The s lope  
of t h e  Arrhenius curve f o r  t h i s  char  does no t  show t h e  dependence upon ex- 
t e n t  of carbon conversion which was observed e a r l i e r  w i th  t h e  Western c o a l s .  2 

This  i s  c o n s i s t e n t  w i th  t h e  d i f f e r e n t  shapes of t h e  r e a c t i o n  r a t e  u s .  carbon 
conversion c u r v e s  (F igs .  1-4) d i scussed  above. 

~ x t e ' n s i ~ e  l i m i t a t i o n s  to. t h e .  steam-Carbon , r e a c t i o n  caused by slow micro- 
pore d i f f u s i o n  a r e  observed 'wi th  t h e  d i l u t e d ' . P i t t s b u r g h  char .  A t  low temper-. 
a t u r e s ; t h i s  e f f e c t  i s  q u i t e  smal l ,  t h e  apparent  a c t i v a t i o n  energy (Ea) being 
-44.9 .kcal /moliat  700°C. This  va lue  closel 'y approximates t h e  va lue  obtained 
f o r  t h e  Wyodak subbituminous~ c o a l  (Ea '= -43.5 k c a l / h o l )  . ; 

. . 

~t . high' temperatures  (%850°C) , t h e  .apparent  a k t i v a t i b n  energy f o r .  t h e  
d i l u t e d  ~ i t t s b u r g h  cha r  i s  -18.0 kcal/mol,  i n d i c a t i n g  t h a t  t h e  steamlcarbon . 

r e a c t i o n  i s  seve re ly  diffusion-limited--much. more .than 'was observed f o r  
, e i t h e r  t h e  Hanna'char o r  t h e  Wyodak'char. Apparently,  the 'micropore '  s t r u c -  

t u r e  o f . t h e  P i t t s b u r g h  bituminous char  does n o t  open up a s  r e a d i l y  a s  t h a t  , . 
of t h e  western subbituminous dhars .  

.. I n  ,summary, t h e  ieac t ' ion  nf steam wi th  t h e  ~ i t t s b u r ~ h  cha r  a t  lower 
temperatures '  'is approximately'  one -o rde r  of magnitude slower than  f o r  t h e  
Hanna char;  - a t  higher  temperatures ,  t h e  P i t t s b u r g h  char  i s  about  one-third ' .  

' ,.., . ,, . . 
. .  . . . . . 
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Fig .  5. Temperature ~ e p e n d e n c e  of 
Steam-Char Reacfion Kate 
wi th  P i t t s b u r g h  Seam Char 

. . 
and 230 kPa Steam. 

as  f e a c  Live ki th  s,team. The reason  f o r  t h i s  d i i f e r c n c e  i s  most probably 
s i g n i f i c a n t  d i f f e r e n c e s  i n  t h e  phys ica l  s t r u c t u r e s  of t he  two ranks  of c o a l . .  

I n  o r d e r  t o  i n v & s t i g a t e  t h e  e f f e c t s  of t h e  alumina d i l u t i o n  11pnn niir 
& ~ a ,  a shore  s e r i e s  of runs  was made .wi t.hniit alumina. P i t toburgh  c o a l  ' 

crushed t o  -25 +35 mesh was placed i n  t h e  r e a c t o r  and pyrolyzed under our ,  . 
' 

s tandard  cond i t i ons ,  permitt . ing a s i n g l e  lump of colcc 'to fgrul 111 Llie reacror ; .  
t h e r e  was a h igh  degree  of channel ing of steam dur ing  g a s i f i c a t i o n .    he ap- 
pa ren t  r d a c t i o n  r a t e s  f o r  the  undi lu ted  coke were determined a t  850, 800, 
and '  700°C and a r e  shown i n  Fig.  5.' With t h i s  experimental  prncedl-ire, t h e  
r e a c r f o n  rate was approximately one-third t h a t  obsetved w i t h  , t h e  d i l u t e d  
cha r .  I n  a d d i t i o n ,  t h e  temperature dependence was somewhat l e s s  than  t h a t '  ' 

f o r  t h e  d i l u t e d  cha r .  The d a t a  a l s o  ind ica tkd  a  dependence of Ea upon. t h e  
e x t e n t  of carbon conversion,  s i m i l a r  t o  t h a t  observed f o r  t h e  Western sub- 
bituniinous c o a l s ,  a l though i .nsuff i c i e n t  d a t a  wcrk obtained to  n~ake a  def.i- 
n i t e  conclus ion .  

The r e a c t o r  con f igu ra t ion  used i n  t h i s  s tudy  of undi lu ted  char  i s  most 
l i k e l y  a  r a t h e r  poor s imu la t ion  of a c t u a l  processing c o n d i t i o n s  f o r  <n sdtu 
g a s i f i c a t i o n .  Never the less ,  measurements from t h i s  experimental  s e r i e s  should 
provide  a n  e s t ima te  of t h e  e x t e n t  t o  which r e a c t i o n  rate is  l i m i t e d  by bulk 
mass t r a n s f e r  d i f f u s i o n  i n  a  coking coa l .  



Figure  6 shows t h e  dependence of t h e  r a t e  of r e a c t i o n  on t h e  p a r t i a l  
p r e s s u r e  o f . s t e a m .  Th i s  experimental  s e r i e s  was c a r r i e d  o u t  w i t h  t h e ' s t e a m  
p r e s s u r e  ranging from '86 t o  470 kPa (0.86 t o  4.6' a tm) ,  The log l  O.'of t h e  
r e a c t i o n  r a t e  i s  p l o t t e d  . a s  a  f u n c t i o n  ,of t h e  log1 0 'of t h e  steam p a r t i a l  
p r e s su re  f o r  1 0  and 50% carbon conversion.  A s l o p e  of t h i s  l oga r i t hmic  p l o t  
would y i e l d  t h e  r eac t ion .  o rde r  w i t h  r e s p e c t  t o  steam. 

. .  . . . .  , . .'. . . 
. . 

010% Carbon Conversion 

050% Carbon  Convers~on 

STEAM PRESSURE,, kPa ' . . 
. . . . . .  

Fig.: 6 .  Dependence of React ion .  Rate  on 
.- . P a r t i a l  P re s su re  of Steam. 

. P i t t s b u r g h .  Seam Char. 800°C. 
The s o l i d  l i n e  corresponds t o  

. . f i r s t  . o rde r  dependknce. .. . , . 

i % *  - 
For t h e  range of steam p a r t i a l  p r e s s u r e s  s t u d i e d ,  r e a c t i o n  w i t h  steam 

i s  approximately f i r s t  o r d e r  f o r  t h e  P i t t s b u r g h  seam c o a l  ( l i n e  i n  F ig .  6 ) .  
Th i s  c o n t r a s t s  w i th  a  r e a c t i o n  o rhe r  of 0.85 measured f o r  t h e  Wyodak c o a l  
and 0.56 measured f o r  t h e  Hanna c o a l  i n  t h e  same range  of steam p a r t i a l  
p r e s su re s .  The r e a c t i o n  o r d e r  decreased t o  n e a r l y  zero  a t  h igh  steam par- 
t i a l  p r e s s u r e s  i n  t h e  c a s e  of t h e  Wyodak c o a l ,  and t h e r e  a r e  i n d i c a t i o n s  
t h a t  t h e  same t r end  would e x i s t  w i t h  t h e  P i t t s b u r g h  seam c o a l .  

The range  of p a r t i a l  p r e s su re s  of steam s tud i ed  f o r  t h e  t h r e e  c o a l s  
above i s  i n  approximately t h e  range  expected f o r  a c t u a l  underground gas i -  
f i c a t i o n .  I f  necessary ,  e x t r a p o l a t i o n  of t h e s e  d a t a  t o  lower p a r t i a l  pres-  
s u r e s  of steam would be permi t ted  because t h e  r e a c t i o n  o r d e r  appears  t o  be 
q u i t e  s i m i l a r  i n  a l l  t h r e e  c a s e s .  Ex t r apo la t i on  t o  h igher  p a r t i a l  p r e s su re s ,  
however, would be v e r y  i nadv i sab l e  because t h e  r e a c t i o n  o r d e r  might dec rease  
a t  tl~ese higher p r e s s u r e s .  For t h e  r e l a t i v e l y  shal low,  low-pressure f i e l d  



- 
o p e r a t i o n s  c u r r e n t l y  under way and envis ioned i n  t h e  nea r  f u t u r e ,  it i s  
h i g h l y  u n l i k e l y  t h a t  t h e  p a r t i a l  p r e s s u r e  of steam would i n c r e a s e  above 
3  atm, except  p o s s i b l y  i n  v e r y  l o c a l i z e d  a r e a s  of r a p i d  water  i n t r u s i o n .  
On t h e  average,  a c r o s s  t h e  e n t i r e  r e a c t i o n  f r o n t ,  t h e  p a r t i a l  p r e s s u r e  of 
steam would probably be 1 a t m  o r  less. 

F igure  7 shows t h e  i n h i b i t i v e  e f f e c t  of hydrogen on t h e  steam-char 
r e a c t i o n  a t  800°C f o r  P i t t s b u r g h  cha r .  The r e a c t i o n  r a t e  was measured a t  
30% carbon conversion w i t h  a  p a r t i a l  p r e s s u r e  of steam of 2.35 t o  2.50 atm. 
Data f o r  t h e  Hanna c o a l  cha r  a t  t h e  same ope ra t i ng  c o n d i t i o n s  a r e  a l s o  pre-  
sen ted  t o  a l l ow  comparison. 

pH2 
, PARTIAL PRESSURE OF HYDROGEN, k Pa 

Fig .  7 : Hydrogen. I n h i b i t i o n , '  of t h e  
'S team-Char React ion.  
800°C., 30% Carbon Conver-- 

I sion, 235-250 kPa Steam. 

. . 
Addi t iona l  d a t a  r ega rd ing  i n h i b i t i o n  by ,hydrogen of t h e  r e a c t i o n  of 

steam wi th  P i t t s b u r g h  cha r -mus t  be ob t a ined . .  The r e a c t i o n  r a t e s  and con- 
. . c e l ~ t r a t i u ~ ~ s  uf producr g a s e s  a r e  s o  low t h a t  i t  was necessary  t o  upgrade 

t h e  g a s  a n a l y t i c a l  system i n  our exper imenta l  r e a c t o r  f o r  a c c u r a t e  measure- 
ment. .This  has now been completed, and t h e s e  d a t a  w i l l  be ob t a ined  soon. 

. . 



B. . Modeling :of the '  'Steam-Cfiar ~ e a c ' t i o r i  f o r  ~ a h n a  Coal ,  

. i When steam r e a c t s  w i th  cha-r:, . 2 t  is  .$generally accepted . t h a t  t h e  pr imary 
r e a c t i o n  is: 

. . . . . . I . :  
: .-.  ' .. . . :C +'H20.* CO + H2 ." . . 

,:7 . . .. , . . 

(1 1 
. .-. . .  . . . 

Any carbqn d iox ide  produced i n  t h e  sys tem, ' i s  a t t r i b u t e d  t o  t h e  water-gas.  .. . 

s h i f t  r e a c t i o n :  

CO + H20 C02 + H2 . (2) 
i 

.   his C02 may subsequent ly  r e a c t  wi th  t h e  , c h a r  t p  form carbon monoxide a s  
. , . follows:. . , . .. 

1 . , . . 
. . . C +:.co2 * 2CO . . . . (3.) 

Methane. i s  a l s o  produced . i n  .small but m e a s u r a b l e . q u a n t i t i e s ;  The main 
neac t ions ,  f o r  i t s  formation a r e  bel ieved t o  be .. \ . . . ,  . .  

'CO + 3H2 z. CHq + H20 
.. . . i s )  

. . I .   o ow ever , t h e  above twq r e a c t i o n s  gene ra l ly  occur so  slowly t h a t  they  d b  not  , 

make a s i g n i f i c a n t  c o n t r i b u t i o n  t o  o v e r a l l  g a s i f i c a t i o n  r a t e .  

Of t h e  above-mentioned f i v e  r e a c t i o n s ,  o n l y  r e a c t i o n s  2 and 5 do not  ' 

c o n t r i b u t e  t o  t h e  d i r e c t  conv.ersion of char ,  t o  gaseous products .  %.Dependent 
upon t h e  n a t u r e  of i m p u r i t i e s  ' p r e sen t  i n  t h e  a ~ h ' c o m ~ o n e n t s  of t h e  raw c o a l ,  
Eq. 2 can'  r a p i d l g  approach equi l ibr ium,  a s  wa's found i n  e a r l i e r  work a t  ANL 
and elsewher&. 3.y It sliould 66 noted tha t . '  react ion 's '  2 and 5 Affect  t h e  .prod- 
uc t  composition, but  do no t  c o n t r i b u t e  t o  t h e  o v e r a l l  carbon conversion.  r a t e .  

. a  

~ l t h o u ~ h  many s t u d i e s  haGe been made of ' t h e  carbon-steam  reaction^,,^' 
d i f f i c u l t i e s  g e n e r a l l y  a r i s e .  f rom. the .  f a c t  t h a t ' o n e  mbst d e a l  w i th  a  r e a c t i o n  
network consis t i 'ng.  of a t  l e a s t  f i v e  .simultaneous : rLeact ions . (1-3) . Purther-  
more, t l ie n a t u r e  and chemical composition of t h e  raw c o a l  and char7  .cont r ib-  
u t e  added c.omplications t o  t h e  ki-net ic  s t u d i e s  of t h e s e  r e a c t i o n s .  ' The 
l a t t e r  v a r i a b l e s  undoubtedly pl,ay a  s i g n i f i c a n t  r o l e  when a wide v a r i e t ?  of . 
c o a l s  a r e  s tud ied  but  a r e  g e n e r a l l y .  ignored i n  t h i s  ana lys is - - s ince  c o a l  
samples c o l l e c t e d  i n , t h i s  i n v e s t i g a t i o n  a r e  l i m i t e d  t o  a  given seam and t h e  
c h a r s  prepared f o r  each g a s i f i c a t i o n  run  a r e  t r e a t e d  s i m i l a r l y  t o  minimize 
v a r i a t f o n s .  .A ' pos s ib l e .  exceptitin t d t h i s  assump'tion of 'uniform c h a r a c t e r  
is demonstrated i n  ou'r- : recent  surfa'c'e' g r ea  and pore s i z e  measuremeqt s t u d i e s .  
This  phys i ca l  va r ' i a t i on  of'' cha r ' 3 t ru ' c th re  dur ing  g a s i f i c a t i o n  and d t s  pos- 
s i b l e  imp'licatiori.' t o  t h e  overal'l ' r eac t ibn  r a t e  h r =  disctissed i n  a l a t e r  i ec -  

- .  t i o n  of t h6s  r e p o r t .  . .. . . ,  , -  

. . .  .. 3 "  

. . 
I .  C '  . . .  - . .  . . 

I n  our  e a r l i e r  a t tempts8  t o  c o r r e l a t e  thg  kinet i 'c  d a t a  f o r  Western 
' 

subbituminous c o a l ,  i t  was found t h a t  . n e i t h e r  a  s imple power func t ion  nor  
a f-lrslr o rder  ~angmui r -~ ia ske lwood  k i n e t i c .  model provided r e s u l t s  t h a t  ac- 

' -count s a t i s f a c t o r i l y  f o r ' t h e  severe  hydrogen-inhibi t ion e f f e c t  i n  t h e  



- 
char-steam r e a c t i o n .  Consequently, a s u b s t a n t i a l  e f f o r t  was expended t h i s  
yea'r on t h e  c o n s t r u c t i o n  of a g a s i f i c a t i o n  r a t e  model t h a t  could adequate ly  
d e s c r i b e  t h e  k i n e t i c  behavior  f o r  t h e  Hanna cha r .  

Table 1 shows t h e  s i x  models t h a t  were t e s t e d  f o r  t h e i r  f i t  wi th  our  
k i n e t i c  d a t a  f o r  Hanna. These models assumed t h a t  t h e  r e a c t i o n  r a t e  is  
n-order dependent w i th  r e s p e c t  t o  t h e  p a r t i a l  p re s su re  of steam, PH2b, and 

i s  a functi 'on of t h e  p a r t i a l  p re s su re  of product hydrogen, P 
H2 

For Hanna 
c o a l ,  n equa l s  0.56. 

. Table 1. Models Tested f o r  Cor re l a t ion  w i t h  
. Experimental Resu l t s  

Model Rate  Expressiona .. . Model Rate  Expressiona 

a~omenc  l a  t u r  e 

r c  , = r a t e  of g a s i f i c a t i o n  of t h e  ash- f ree  carbon 

. .  . ki =' r e a c t i o n  r a t e  cons t an t  for model i 

pH O . =  p a r t i a l  pTessure of steam, a t m r  
2 

Ki = adsorp t ion  r a t e ,  cons t an t  f o r  model i 

= p a r t i a l  p re s su re  of hydrogen, atm 
' ~ 2  

Measurements.of t h e  o v e r a l l  r e a c t i o n  r a t e  were.made f o r  p a r t i a l  pres-  
s u r e s  of .s team ranging  from 107 t o  270 k ~ a '  (1.07-2.7 atm) and temperatures  

'between 650 and 800°C. The p a r t i a l .  pyessure of hydrogen, whi.ch varied i n  
each set of our experiments (15-100 kPa, 0.15-1.0 atmosphere),  was ad jus t ed  
e x t e r n a l l y  i.n each ' run  by adding a measured q u a n t i t y  of hydrogen g a s  a t  t h e  
r e a c t o r  i n l e t .  The raw r e a c t i o n  r a t e  da t a  obta ined  i n  t h e s e  experiments 
have been repor ted  e a r l i e r .  



' 1; our  experiments ,  ah  excess .of  steam i s  g e n e r a l l y  used, wi th  i t s  
consumption r a t e  dur ing  g a s i f i c a t i o n  n o t  exceeding 10%'of  i t s  i n i e t  COdCen- 

. t r a t i o n .  I n  a d d i t i o n ,  t h e  system i s  opera ted  a.t s u f f i c i e n t l y  high gas  
v e l o c i t i e s  t o  minimize e x t e r n a l  mass t r a n s f e r  e f f e c t s  and a t  small  enough 
p a r t i c l e  s i z e s  t o . r e d u c e  i n t e r n a l  mass d i f f u s i o n  e f f e c t s .  

. . 

I n  a  d i f f e r e n t i a l -  r e a c t o r ,  t h e  p a r t i a l ' p r e s s u r e s  of any gases  
v a r y  l i t t l e  along t h e  r e a c t o r .  Thus, one may assume t h a t  t h e  product gas  
comppsitions a t  t h e  system o u t l e t  a l s o ,  r ep re sen t  p o i n t  condi t ' ions w i th in  
t h e  r e a c t o r .  

. , 

Three c r i t e r i a  were used t o  i d e n t i f y  t hose  models t h a t  provide a  rea-  
sonable c o r r e l a t i o n  wi th  a l l  k i n e t i c  d a t a  generated f o r  Hanna: 

1. The. va lue  of ' t he  c o e f f i c i e n t  of. c o r r e l a t i o n  f o r  each s e t  of 
experimental  runs  a t  given T, PH20, and range of PH . 

2 
. . 

The s i g n s  of ' t h e . r a t e  c o n s t a n t s  (ki and Ki). , Any models ' 

y i e l d i n g  nega t ive  v a l u e s , f o r  e t t h e r  ki o r  ,Ki a r e  no t  
f u r t h e r  analyzed s i n c e  they  could provide no phys i ca l  
i n s i g h t  ' t o  a  p l a u s i b l e  mechanism. 

The Arrhenius p l o t  c o r r e l a t e d  f o r  t h e  two r a t e  cons t an t s  
o f ' e a c h  model over  t h e  range of temperature between 650 
,and 800°C. Models showing l a r g e  s c a t t e r i n g  i n  c a l c u l a t e d '  
values.  of t h e  r a t e  c o n s t a n t s  a r e  excluded from f u r t h e r  
cons ide ra t ion .  

To c a l c u l a t e  t h e  two r a t e  c o n s t a n t s  f o r  each of t h e , s i x  models i n  , 

Table 1, t h e i r  varTables,  could be ' r ea r r anged  i n  such a  manner t h a t  a  l i n e a r  
p l o t  between,two parameters  i n  t h e  X- and Y-a.xes can be made. For example, 

. i n  t h e  model ' ' . 
- ,  

. . 
t h e t e k s  rc, p h 0 ,  'and PH can  be rear ranged  t o  o b t a i n  

2 

I f  t h e  model i s  a n  adequate  r e p r e s e n t a t i o n  of t h e  k i n e t i c  d a t a ,  t h e  p l o t  of 
experimental  d a t a  f o r  ~ : ~ ~ / r ~  and p2 should be l i n e a r .  From t h i s  p l o t ,  kIII 

H2 
and KIII which appear i n  Eq. 1 2  could be c a l c u l a t e d  from t h e  i n t e r c e p t  and 
s lope  of t h e  , l i n e .  . . . . 

, . 
. . . . 

O f  t h e  .six.  models', none appears  t o  f i t  d a t a  obta ined  i n  any g iven  s e t  of 
experiments.  Table 2 shows c a l c u l a t e d  v a l u e s  of t h e i r  c o e f f i c i e n t s  of cor-  

' r e l a t i o n .  The r e a c t i o n , . c o n d i t i o n s  analyzed were f o r  T  = 700°C, PH s250 kPa 
2 



Table 2. Calcu la ted  c o e f f i c i e n t s  of C o r r e l a t i o n  . . 

f o r  t he  ~ . i x  Models L i s t ed  i n  .Table 1 . . 

Model 

Run I I I I11 I V  V V I 

(2.5 atm),  and PH between 1 7  and 71 kPa (0.17-0.71 atm). The nega t ive  s i g n  
2 

appearing p r l o r  t o  some of. t h e  c o e f f i c i e n t s  i n  ~ a b i e  2 i n d i c a t e s  nega t ive  
v a l u e s  f q r  e i t h e r  ki o r  Ki. I n  t h i s  e f f o r t ,  t h e  e f f e c t  of t h e  f r a c t i o n  of 
carbon conv.ersion (Xc) was n o t  included i n  t h e  r a t e  express ions .  Cor re l a t ion  
qu ick ly  broke .down a t  low Xc v a l u e s  f u r  the s i x  models tested. Disagreement 
i s  most s i g n i f i c a n t  a t  t h e  midrange of P  . 

H2 

To improve t h e  c o r r e l a t i o n ,  . t h e  e f £ e c t s  of an Xc term on t h e  va lues  of 
t h e  two r a t e  c o n s t a n t s  were i n v e s t i g a t e d .  The v a l u e s  of r e a c t i o n  r a t e  and . 

adso rp t ion  r a t e  c o n s t a n t s  were eva lua ted  a t  cons tan t  X c  va lues  between 0.1 
and 0.5 and a t  v a r i o u s  temperatures  (650-800°C). The react ' ion r a t e , a n d  ad- 
so rp t ion '  r a t e  c o n s t a n t s  were evaluated f o r  cons t an t  v a l u e s  of Xc using t h e  
t h r e e  c r i t e r i a  e s t a b l i s h e d  f o r  model d i sc r imina t ion ,  and only. Model 111, 
E q .  7, appears  t o  f i t  w i th  o u r  d a t a  s a t i s f a c t o r i l y .  F igures  8  -and 9 show 
r e s u l t s  of our  c o r r e l a t i o n ,  us in^ Model ,111. The c o e f f i c i e n t  of c o r r e l a t i o n  
c a l c u l a t e d  f o r  each s e t  of t h e s e  p o i n t s  g e n e r a l l y  exceeds 0 , 9 ,  

. . 

.F igu re  10  shows t h e  kIII and KIII v a l u e s  a s  a  func t ion  of Xc. The va lue  
of kIII shows a  s t rong  dependence on carbon conversion f o r  t h e  temperatures  
i n v e s t i g a t e d ,  wh i l e  v a l u e s  f o r  K T T T  a'&, i n  ge1.1era1, r e l a t i v e l ?  i n s e n s i t i v e  
t o  any changes i n  X, va lues .  There a re  now reasons t.n helievp. t h a t  a r i s e  
i n .  kIII v a l u e  ( o r  char  r e a c t i v i t y )  such a s  is  shown i n  F ig .  1 0  r e s u l t s  .from 
pore  s t r u c t u r e  enlargement providing a d d i t i o n a l  s u r f a c e  a r e a  f o r  r e a c t i o n .  
I n  t h e  absence of a  complete s e t  of pore volume measurements and s u r f a c e  
a r e a  d a t a ,  we s p e c u l a t e  t h a t  perhaps t h e r e  i s  a  d i r e c t  c o r r e l a t i o n  among' 
s u r f a c e  a r e a ,  r e a c t i o n  r a t e  c o n s t a n t . ( k I I I ) ,  carhon.conversi.on (X,), and/or  
pore d iameter .  With t h i s  i n  mind, we p o s t u l a t e  t h a t  t h e  kIII va lues  calcu-  
. l a t e d  p rev ious ly  a r e  r e a l l y  

where k  i s  t h e  Arrhenius f u n c t i o n  and f  (Xc, T, Pi, ....) i s  a  f u n c t i o n  . 
' r e l a t i n g  changes i n  s u r f a c e  a r e a  dur ing  r e a c t i o n  wi th  XC; temperature,  par- 
t i a l  p r e s s u r e  of r e a c t a n t  and/or  product gases ,  a s  we l l  a s  o t h e r  f a c t o r s  
such a s  minera l  con ten t  and c d a l  rank.  It should be noted t h a t  T 'and .Pi i n '  
Eq. 1 3  r e f l e c t  t h e  e f f e c t s  of t h e s e  v a r i a b l e s  on t h e  phys i ca l  s t r u c t u r e  dur ing  
p y r o l y s i s ,  r a t h e r  than  t h e  chemical and temperature e f f e c t s  on t h e  r e a c t i o n  
r a t e .  



Fig .  8.. Cor re l a t i on  of Experimental Resu l t s  F ig .  9.  c o r r e l a t i o n  of Hanna ' ~ h a . r .  
fo r , -  Hanna :No. 1 Char wi th  Model 111. Experimental Data.  w i th  f ,  = 750°C; PH = 2.5 atm, PH = Model 111. PH26 = 

2 2 .  
0.20-0.85 atm. 2.50 kPa, .PH = 15-100 kpa,, . 

X, = 0.3. 2 . . 



Fig.  10.. , Dependence of Kate C:nn.stants on XC, 
F.raction. o f '  Carbon. Converted. 
Hanna Char. 

, ' 
. . 

. . .  . . 
. . 

For s i m p l i c i t y  i n  t h i s  a n a l y s i s ,  I t  is. assumed t h a t  
, "  

F i g u r e .  lO(a)  a l s o  shows t h e  r e s u l t s  of our  c o r r e l a t i o n  us ing  t h e  above equa- 
t i o n . .  Values of .kIII  and m were  e s t ima ted ' f rom t h e  s lope  and i n t e r c e p t  of 
t h e  1 i n . e .  . . I i 

By assuming t h a t  both r a t e  c o n s t a n t s  f o l l o w , t h e  Arrhenius r e l a t i o n ,  both 
t h e  pre-exponent ial  c o n s t a n t s  and t h e  a c t i v a t i o n  ene rg i e s  of k and, K can .be 
e s t ima ted .  F igure  11 i s  an  Arrhenius p l o t  of t h e  two r a t e  c o n s t a n t s  2)s. 1 / T .  

. . 

The model c u r r e n t l y  being considered has  t h e  form 

. . i. 



,Fig.. 11.. . Var ia t ion  of React ion Rate Coristants 
wjth.Temperature.  Hanna Char. 

where: . k = 2.04 x 'lo4 exp' ( - 2 5 . 9 4 0 / ~ ) ,  kpa-O* 56 hh-' , . . 

K = 8.87 x 10-.I3 exp (38350/RT), kpa2 

These v a l u e s  were-obtained i n , l i n e a r '  f i t  wi th  t h e ' k i n e t i c  d a t a .  The f i t s  
'cover t h e  range of 'O.'l'-0.5 i n ,  $ ,.. 650-800°C i n  T', 15-100 kPa (0.15-1.0 atm) 
i n  PH ., and 250 kPa (2.5 at'&)' i n ,  PH n .  

2 2 

F igures  12-15 show r e s u l t s  of ou r  comparison of t h e  p r e d i c t i v e  capabi l -  
i t y  of our  model and a  range of experimental  po,ints. Accuracy t o  w i th in  +30% 
can g e n e r a l l y  be obta ined .  Deviat ions of t h e  observed from t h e  p red ic t ed  
r e a c t i o n  r a t e s  a r e  most s i g n i f i c a n t  a t  t h e  two extremes of t h e  Xc range  
(Fig. 15)  and a r e  a l s o  v e r y  pronounced a t  t h e  h igh  r e a c t i o n  temperature 
(800°C, Figs,. 12-14)'. 



Fig .  1 2 .  E f f e c t  o f  Hydrogen P a r t i a l  P r e s s u r e  on React ion 
R a t e  o f  Hanna Char a t  X, = 0.15 and PIIIO 
2 50 kPo 

F i g .  1 3 .  E f f e c t  of Hydrogen P a r t i a l  P r e s s u r e  o n  R e a c t i o n  
. R a t e ~ f H a n n a C h a r a t X ~  = 0 . 3 a n d P H 0 1  

250 kPa 2 



: , .  . . . .  . . . 

.: . . ' Fig . .  14.  .Ef fec t  of Hydrogen P a r t i a l  P re s su re  on 
. , Reaction Rate of Hanna Char. a t  X, = 0.5'. ' ' 

. . ,  and PH .=  250 kPa 
. . .  2 . . 

. .  . . . 

. . 

. . . . O EXPERIMENT. 
, > 

-MODE L. 
,PRE D.lCTlON 

.. . 

.Fig.  15.  Comparison of Observed and .Predicted Carbon 
. . Conversion Rates  f o r  Hanna .No. .l Char; , . 

.. : . . T = . 70ooc, pH20 = 250 kPa. P = 20-22 kPa, .. 
. . . . :  Run No. 104 H2 ' :, . I . 



Perhaps t h e  most puzz l ing  s e t  'of d a t a  i s  seen i n  F ig .  14 f o r  T  = 700°C. 
A c l o s e r  look  a t  r e a c t i o n  r a t e s  a t  t h i s  range of p re s su re s  may r e v e a l  another  
cu rve  shape i n  which a  maximum i n  rc occurs  a t  an in t e rmed ia t e  v a l u e  of P 

'42 . . The f a c t  t h a t  E q .  14 has  impro'ved t h e  c o r r e l a t i o n  of our  .data  does no t  en- . 

t i r e l y  e l i m i n a t e  t h i s  p o s s i b i l i t y .  Work i s  c u r r e n t l y  under way t o  determine 
whether a  maximuin r e a c t i o n  r a t e  does occur  i n  t h e  range  of P between 0.2 

H2 and 0.4 atm: 

The form of our  p r e s e n t l y  proposed model i s  no t  t h e  same a s  t hose  pro- 
posed by any previous  i n v e s t i g a t o r s .  The second o rde r  dependence i n  PH ( i n  

2 
c o n t r a s t  t o  a  f i r s t  ' o rder  dependence suggested by e a r l i e r  workers) i n d i c a t e s  
t h a t  a d d i t i o n a l  d a t a  p o i n t s  a r e  needed t o  c l a r i f y  t h e  s i t ua t ion ' .  Th i s  can 
be accomplished by eva lua t ing  t h e  changes i n  r e a c t i o n  r a t e  w i th  fou r  and/or  
e i g h t  t imes  as much hydrogen p re sen t  a s  have been. used so f a r .  

It i s  a l s o  p o s s i b l e  t h a t  t h e  d a t a  . po in t s  i 'n F ig .  14 can  be explained 
from pore volume and s u r f a c e  a r e a  measurements. .Further ref inement  of our  
model i s  expected a s  more d a t a ' a r e  obta ined  regard ing  t h e  c h a r ' s  s t r u c t u r a l  
changes upon r e a c t i o n .  , . . 

C.  Re la t ion  of Surface  Area and P o r o s i t y  o f  &nna Char t o  t h e  Extent  of 
G a s i f i c a t i o n  

I n v e s t i g a t i o n s  of t h e  r e a c t i o n  of steam wi th  c h a r s  prepared from Hanna 
subbituminous c o a l  ( r epo r t ed  i n  e a r l i e r  r e p o r t s  of t h i s  s e r i e s )  i nd ica t ed  
a  s t r o n g  dependence of t h e  r e a c t i o n  r a t e  on t h e  amount of carbon t h a t  had 
been g a s i f i e d  from t h e  sample. Genera l ly ,  t h e  maximum r a t e  of r e a c t i o n  was 
n o t  a t t a i n e d  u n t i l  a t  l e a s t  50% of t h e  carbon had been g a s i f i e d .  A t y p i c a l  

. p l o t  of t h e  observed r e a c t i o n  r a t e  u s .  percent  carbon g a s i f i e d  i s  shown i n  
Fig.  1 6 . -  Under t h e s e  c o n d i t i o n s  (750°C, 2.7-atm steam p a r t i a l  ~ ~ P S S I I T P ) ,  
t h e  maximum' r e a c t i o n  r a t e  was observed a f t e r  a p p r o x i m a t ~ l  y 702 nf t h e  carbon 
had been removed, and t h e  i n i t i a l  r e a c t i o n  rate was l a s s  than n n ~ - t h i r d  t h ~  
maximum r a t e .  Th i s  phenomenon l e d  u s  t o  p o s t u l a t e  t h a t  t h e  pore s t r u c t u r e  
of t h i s  c h a r  is  v e r y  poor ly  developed i n  t h e  f r e s h  cha r ,  and t h a t  before  t h e  
maximum r e a c t i o n  r a t e  c6uld be a t t a i n e d ,  pores  of s u f f i c i e n t  s i z e  t o  permit 
d i f f u s i o n  of steam and product gases  through t h e  cha r  had t o  be formed. 

The purpose of t h i s  s tudy  was t o  determine 'the r e l a t i o n s h i p  of pore 
s t r u c t u r e  and s u r f a c e  a r e a  t o  t h e  e x t e n t  of darbon g a s i f i c a t i o n  f o r  char 's,  
u s ing  g a s i f i c a t i o n  c o n d i t i o n s  t y p i c a l  of t hose  encountered i n  unqerground 
g a s i f i c a t i o n .  

. . 
Char samples were prepared from Hanna No. 1 c o a l ,  us ing  our  s tandard  

. . p y r o l y s i s  cond i t i ons  (i:e., a  hea t ing  r a t e  of .3°C/min, t o  t h e  des i r ed  gas i -  
f i c a t i o n  temperature,  i n  a  f lowing atmosphere of 20% hydrogen i n  n i t rogen  
a t  a n  o v e r a l l .  p r e s su re  .of approximarely. e i g h t  a tmospheres) .  Fresh cha r  r 
(no g a s i f i c a t i o n )  was s t u d i e d ,  a s  we l l  a s  c h a r s  from which Various f r a c t i o n s  . 

of carbon had been removed by steam g a s i f i c a t i o n  ( a t  a  p a r t i a l  p re s su re  of 
steam.of approximately 2 .5  atm).. For c h a r s  pyrolyzed a t  750°C, f i v e  samples.  
were o b t a i n e d : '  f r e s h  char  and c h a r s  from which 4.5,  14.7,  37.9, and 6'5.1% 
of t h e  ,carbon had be-en g a s i f i e d .  A s e r i e s  of c h a r s  was a l s o  pyrolyzed a t  
600°C, but  t h e i r  g a s i f i c a t i o n  r a t e s  were so low t h a t  t h e  maximum amount of 



' , F i g ;  16 .  ' React ion Rate  us. Percent  Carbon Convers ion ,  
: ' ,  f o r  Wanna No: 1. Char, 750°C, 275 kPh . '  

I : 

: . I  
. . . -  . 
. (2 .75  atm) . Steam.. . ANL Neg. No. 3'08-78-466 . . ' I .  

carbon removed from t h e  cha r  samples was on1.y 31.4%. The samples of 6 0 0 ' ~  
cha r  s t u d i e d  were: f r e s h  char .  and ,chars  f rom which 3 .l, 9.3, .  22.3, 25.3, 
and 31.4% 'o£ t h e ' c a r b o n  'had been removed. 

' 

:These c h a r  samples were submit ted. .£or  s u r f a c e  a r e a  measurements by' 
' n i t rogen  (BET) adso rp t ion  and f o r  pore  s t r u c t u r e  de te rmina t ion .  1 .  .=.,, . . , 

I 

. '  . .  . 'The  pore  s t r u c t u r e  de t e rmina t ions  were,  c a r r i e d  o u t .  ?s ing  an  ~minco ' . '  
mercury porosimeter  .  his instrument. 'measures t h e  . d i s t r i b u t i o n  of  'pore. '  .' 
s i z e s  f o r  pores  w i th  d iameters  ~llall '60 1. The t o t a l  volumc cff po re s  
wf th3d iame te r s . sma l l e r  t han .60  A could be determined by comparing t h e  ap- 
p a r e i t  dens' i ty of t h e  char  samples .measured i n  t h e  porosimeter  a t  30,'000 p s i g  
w i th  . t h e  t r u e  d e n s i t y  of t h e  char  measured' i n  a  helium pycnometer. : A  helium . 
pycnometer was, ob ta ined  dur ing  t h e  month of September, bu t  was n o t  a v a i l a b l e  
f o r  u s e  dur ing  bhis ,  .study. 

. .  . ; I '  . 
 he r e s u l t s  of ' sur face : ,a re i  measur&ents a r e  summarized i n  Table  3, .  The 

reason '  f o r  . t h e  decrea'se i n .  s u r f a c e  a r e a  f o r  t h e  6 0 O 0 ~ s a m p l e  w i t h  3.1% of. t h e  
carbon, rerdoued is. not.  known,. b u t  i t  i s  obvious t h a t  i n  gene ra l ,  sur face ,"area  

7 , . '  i n c r e a s e s  r a p i d l y ,  a s  car,bon i s  removed. 1t i s  in ' t e r e s t i ng  . t h a t  a t  600°C, t h e  

s u r f a c e  a r e a  'keg ins  t o  dec rease  when more t han  25% of t h e  carbon i s  g a s i f i e d ,  
' but  a t  750°C, s u r f a c e  a r e a  d o e s . ' n o t ' b e g i n  t o  decrease  u n t i l  approximately 60% 

of t h e  c.a<hnn has  been removed. 
, , 



Table 3. Sur face  Areas of Hanna Chars 

P y r o l y s i s '  and Sur face  P y r o l y s i s  and Surf a c e  
G a s i f i c a t i o n  C,arbon Area, G a s i f i c a t i o n  Carbon Area , 

Temperature, O C  Removed, % m 2 / g  Temperature,  O C  Removed, % m 2 / g  

F igu re  17 SHOWS a comparisori of t h e  pore s t r u c t u r e s  deterinined f o r  t h e  
750°C c h a r  a s  t h e  carbon i s  g t s i f i e d . ,  The f r e s h  cha r  has  e s s e n t i a l l y  no pores  
w i t h  volu~i ies  l a r g e r  than  300 A.  However, as  carbon i s  removed from .the c h a r ,  
t h e  po re  volume i n c r e a s e s  qu ick ly  and i s  s t i l l  i n c r e a s i n g  w i t h  65% of t h e  
carbon  removed. I n  F ig .  18 ,  tlie dependence of ,  pore  volume on percent  carbon 
g a s i f i e d  i s  shown f o r  ranges  of pore  s i z e s .  A t  t h e . g a s i f i c a t i o n  c o n d i t i o n s  
used,.  t h e  t o t a l  volume'of pores  w i t h  d iameters  l a r g e r  than  1'0,000 8, does no t  

PORE DIAMETER, prn 

Fig, 17 .  Pore Volume ~ i s t r i b u t i o n  i n  Hanna Char Prepared 
and Gas i f i ed  a t  750°C 

. . 



Fig .  18 .  pore Vnl.ume u s .  Percent  Carbon Gas i f i ed .  . 
Hanna Char, 750°C. 

i n c r e a s e  s i g n i f i c a n t l y  a s  carbon i s  removed. Th i s  i s  a l s o  t r u e  f o r  pores  
having d iameters  between 60 and 350 1. The g r e a t e s t  i n c r e a s e  i n  pore  volume 
i s  obta ined  i n  t h e  i n t e rmed ia t e  s i z e d  pores  having d iameters  between 350 and 
10,000 A. 

I n  Fig.  19 ,  w e  !see a  comple te ly  d i f f e i e n t  p a t t e r n  f o r  c h a r s  prepared and 
g a s i f i e d  a t  600°C. F igu re  1 9  shows !he r e l a t i o n s h i p  between t o t a l  pore  vo l -  
ume (i.e., pores  w i t h  d iameters  >60 A) and t h e  percent  carbon removed. For 
t h e s e  c h a r s ,  t h e  pore volume remains r e l a t i v e l y  cons t an t  u n t i l  approximately 
25% of t h e  carbon  has  been removed, a f t e r  which t h e  pore  volume i n c r e a s e s  
q u i t e  rap id ly .  F i g 1 1 r e ~ 2 0  shows a  s i m i l a r  r e l a t i o n s h i p  f o r  pores  w i th  diam- 
e t e r s  l a r g e r  than  350 A-a l though t h e  i n c r e a s e  i n  pore  volume appears  t o  
begin a t  approximately 20% carbon remova;. However, a s  shown i n  F ig .  21, 
pores  w i t h  d iameters  between 60 and 350 A begin developing immediately upon 
o n s e t  of g a s i f i c a t i o n .  This  would be expected f o r  a  cha r  which i n i t i a l l y  
c o n t a i n s  on ly  po re s  having v e r y  smal l  diameters .  The helium d e n s i t y  mea- 
surements s t i l l  t o  be c a r r i e d  o u t  a r e  expected t o  confirm t h i s .  

. . .  . . 

S i n c e  t h e  r e a c t i o n  r a t e  £or  steam and cha r  a t ' 600°C  i n c r e a s e s  approxi-  
mate ly  l i n e a r l y  a s  a  funct&on of carboo.remova1 u n t i l  approximately 50% of 

I.! 
the'carbon i s  removed (Fig.  22) ,  i t  appears  t h a t  a t t a inmen t  of a  maximum 
r e a c t i o n  r a t e  a t  !his low temperature  depends on t h e  development of 'pores 

# 

1 i n  t h e  60 t o  350 A diameter  range ,  r a t h e r  than  t h e  development of pores  w i th  

.? 
d iame te r s  l a r g e r  than  350 1. However, a t  h igher  tempera tures  w i t h . c o r r e -  
spondingly h igher  r e a c t i o n  rates,.maximurn r e a c t i o n  ra tes  w i l l  be a t t a i n e d  
only  i f l l a r g e r  pores  a r e  developed t o  accommodate t h e  g r e a t e . r ' f l o w s  of steam 
and r e a c t i o n  products .  



GASIFICATION, 'lo 

Ftg  . 1 9 .  Volume of Pores with '  Diameter 
Larger than '60  1 vs. . ,Percent  
Oas i f i iaL; : I :~~~~.  Hgnna Char, 
6OO0C 

Fig.  20. Volume of 'Pores wi th  
Diameters >350 1 us: 
percent  Gas i f i ca t ion .  . 
Hanna Char, 600°C. 



GASIFICATION , % 

F P ~ .  21, Volume of Pores with ~iameters of 60-350 
vs .  Percent Gasification. Hanna Char. 

. 600°C 

> 

0.0000 
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CARBON CONVERTED, % 

Fig.  22. - Instantaneous Carbon Conversion  ate 
for Hanna No. 1 Char, 600°C, 268 kPa 
(2.68 atm) . Steain, Run 86 



- 
Since  a  dec rease  i n  s u r f a c e  a r e a  as a  f u n c t i o n  of Xc is  no t  accompanied 

by a s i m i l a r  drop i n  r e a c t i o n  r a t e ,  s t r u c t u r a l  v a r i a t i o n  of char  pores  may 
have an  a d d i t i o n a l  i n f luence .  Furthermore, i t  appears  t h a t  n e i t h e r  t he  mea- 

> . sured  pore  volumes nor  t h e  s u r f a c e  a r e a s  a l o n e  e x h i b i t  t h e  dependence on Xc 
found t o  b e s t  f i t  t h e  r e a c t i o n  r a t e  (Eq.  1 6 ) .  A t  p r e sen t ,  t h e  r e l a t i o n s h i p  
between t h e  phys ica l  changes occuring dur ing  g a s i f i c a t i o n  and t h e i r  i n f luence  
on r e a c t i o n  r a t e  i s  expressed a s :  

. . 

,' f  (Xc,T,Pi,. . . .) = X c 0 * 5 g  
. . 

(16) 
. . 

U n t i l  more information i s  obta ined  on t h e  s u r f a c e  a r e a  and p o r e  s t r u c t u r e  
"' . ' , 

v a r i a t i o n ,  t h e  above express ion  w i l l  be used a s  p a r t  of o u r  r a t e  model f o r  . 

Hanna subbituminous c o a l .  
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