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Abstract
The boundary conditions of a free closed bosonic string propagating in a

space where the compactified dimensions are toroidal limit the lattices
defining the tori to be self dual, just as is required by modular invariance
of the one-loop dual amplitudes. The spectra generated by the free-string

oscillators for both Euclidean and Lorentzian lattices are described.

Talk presented at “Infinite Dimensional Lie Algebras and Their
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The object of this talk is a simple explanation why the lattices that
define the tori of the compactified dimensions for closed bosonic string
must be self dual. This requirement is already apparent from the free
string, and results from the closed-string boundary conditions. The work
on Euclidean self-dual lattices is in [1], and the extension to self-dual
Lorentzian lattices is being reported here [2].

It has been established that modular invariance of the "correction

i [3] of the integrand of the one-loop string amplitude (which is
accepted as a necessary constraint on unitary dual amplitudes) implies
that the lattice defining the torus for the closed string is a self-dua!
lattice [4). A similar result follows frem the free string: for example, if
we demand that all masses are integers (in units where the tachyon mass
is -1) and internal symmetry is a finite dimensional Lie group whose
generators are obtained by the Frenkel-Kac construction [S), then the "left"
and "right” lattices must each he even self-dual Euclidean lattices, and can
be chosen indeper-dently to be E; X Eg or Spin(32)/2Z, for 16 compactified
dimensions [1). These results will be rederived here.

It has also been found that a lattice associated with GXG (G a Lie
algebra with roots of equal length) is consistent with modular invariance
[4], which is equivalent to dimensional reduction on a torus defined by an
even self-dual Lorentzian lattice {6). The dual mode! in this case has
tachyons of at least two different mass values, with the fractional-mass
tachyons {n nontrivial representations of GXG. As stated in [6], the dual
models of the Lorentzian case are modular invariant over a continuous

range of parameters. Although some masses depend on the parameters, it



is not possible to rid the bosonic theory of tachyons by a special choice of
the parameters. The Lorentzian cases are also derived from the boundary
conditions. An explicit example of a spectrum calculation will be given
Let us comment on the possible physical relevance of toroidal
compactification. The stability of toroidal compactification of the
bosonic string is questionable, especially if the tachyons neither decouple
nor acquire non-negative masses. Several resolutions of this problsm have
been suggested. One is that extending the boundary conditions and the
related spaces (such as to orbifoids [7]) might simply remove the
tachyon(s) from the spectrum. Another is to impose symmetries that
prohibit the tachyon;, supersymmetric models have no tachyons, as is
clearly seen in the formulation of the heterotic strings [8). Finally, there
are hints that in the correct ground state, even with toroidai
compactification, the tachyons may decouple or become unphysical degrees
of freedom. The group G associated with the lattice must be proken in a
special way. Although the 26-dimensional bosonic theories appear to have
tachyons and no fermions, G may be broken in a way where the 10- and
maybe the 4-dimensional theory has chiral fermions and no tachyuns. In
this case a subgroup of G contributes to the Lorentz group in the smaller
number of dimensions [4). The closed string has more than enough states
to give any one of the various superstring theories in 10 dimensions,
including either heterotic strings, type IIA, or 11B, but it is not yet known
whether the dynamics can actually deccuple the unwanieJ states At
present it is merely self consistent to assume these states decouple

Already on the basis of this attractive possibility, | believe it worthwhile



to analyze simple toroidal compactification.
The non-interacting closed bosonic string in light-cone gauge
satisfies a two-dimensional free wave equation. The solution is [3)

Xi(7,0) = xi + 20¢piz + 2NIRO + 1V/oc72 Spzg(1/nlay| e~2i(T-0) 4
ani e2in(z+0)] (1)
where the coefficients are cnosen so that in the first quantized theory,
the corresponding operators satisfy canonical commutation relations, e.g,
Ixi,pi] = isl . (2)
The indices 1, §, ... run from 1 to 24 and label the directions transverse to
the light-cone components X*(z,0), where X*(7,0) = x* + 20'p* 7, and the
dependent operator X™(z,0) is gotten from the constraint equations.

As the parameter o goes from O to m, the line traced out by
x1(z,0) is a closed curve, so XI(z, ) and X!(z,0) must designate the same
point on the compactified space. (I, J, K= 1,..,D label the D components of
)’.i(d,t') in the compactified dimensions.) In principle the "radii” Rl may
differ for each direction, but the generality of our arguments are only
trivially affected by setting all of them equal to a common radius Rl =R

In the first quantized theory N! and some constant times y'oc' pl are
operators with integer eigenvalues, which, however, must satisfy the
constraints on the system. It simplifies the analysis to make a cancnical
transformation of these zero-mode operators to 2 set where the
constraints are diagonal. The Xi(t,c) can be separated into a
"left-moving” piece (in the T,0 space), which is a function of EL = T+O,

and a "right-moving" piece, which is a function of £g = ©-0 only:



Xi(z,0) = X I(8) + xgICR) . (3)
where
X EL) = x| + ocp 18 + IVaTZ Tpyeq(1/n) 3y} @206 (4)

and an identical equation for XR'(L',R), except that L is replaced by R and
an' by a,- With the conventions expressed in (4), the canonical
commutation relations of the zero-mode operators in the compactified
directions are

["Ll ' PLJ] = igld | ["RI ' pRJl = sl (5)
and the remaining commutators are zero.

The canonical transformation between the “left® and “right”
operators and the zero-mode operators in (1) is
' 2pl = le + pRI '

Xl =R !-xg) - 2RN=o(p!-pgh) . (6)
Thus, it is trivially confirmed that %1, NJ) = isMJ, etc, so %! is conjugate

Xl = XLI + XRI

to NI, although %! does not appear tn (1). The factors of 2 are inserted in
(6) so that (5) is canonical, in contrast to the conventions of the heterotic
string [8]. Note that the winding number of a string can be transformed,
ror example, by self interactions, so it is an independent quantum operator
unless further constraints on the theory prohibit such interactions.

We assume that the zero modes of the string completely describe
the space-time in which the string prupogates, so that the location of the
string is its average pasition. (This simplifying assumption has usually
been made in past treatments of the string, and will be needed in the
details of our argurnents. However, it has no physical basis; the nonzero

modes could play a crucial role in the spatial compactification.) Then the



term 2NIRa in {1) is interpreted as a “winding number" term and can be
nonzero for the compactified dimensions. The unconstrained closed
bosonic string has two sets of zero-mode operators for the compactified
dimensions. Since the compactification refers just to the zero modes, the
dimensionality of the torus of compactification is twice the number of
compactified dimensions, so their number is actually twice that counted
by the index 1. The heterotic strings (with their constrained bosonic
strings) have only one set of zero-mode operators for the compactified
dimensions, so there the dimensionality of the torus is the same as the
nurnber of compactified dimensions [8).

The constraint equations are (X # X')2 = 0, which can also be
written as

(X )2 = (Xg)2 = 0 . (7)
The zero-mode projections of (7) define the dependent operators p_ ~ and
Pk~ the o translation invariance of the origin of the string leads to the
definition of the mass operalor,

M2 = (1/)w2+ RN -1 (8)

where the wy and wg lattices are related to the laitice of momentum
eigenvalues by

w = V72 p, wp=V/o72 pg , (9)
and the number operators N and N are
N=Snyanan . N = 3t an 3! (10)

where the i sum is over compact and noncompact dimensions. The
momentum vectors and numter operators satisfy the constraint,
N+/22w?2 =N + (1/22wp2 | ()



Only the finite subalgebra of the full affine algebra obtained by the
Frenkel-Kac construction is a symmetry of the S-matrix [S] The basic
representation of the affine algebra is the Fock space obtained from a-nl,
'a"_nl, and exp(ixy OP-p; ) and exp(ixg°P-pRp), where pi and pg are on raot
lattices (up to a normalization). The restriction (11) eliminates states
from this irreducible representation, so the full iafinite-dimensional
affine algebra does not generate a symmetry of the S-matrix, nor does it
commute with the Lorentz algebra.

The vectors of w and wp each span a D-dimensional Euclidean
sublattice; they can be viewed as sublattices of a 2D-dimensional lattice
W = (wp , wp . This means we extend the vectors in wy and wp to be
vectors in W, this extension must include a prescription (consistent with
the spatial and string periodicity discussed below) for recovering (W)_ =
w| and (W)3 = wp from the vectors in W, the sublattices wi_and wq are
Euclidean. As a nontrivial example, suppose that we define a scalar
product on W where, in the L-R basis, the metric is diagonal and of the
form,

U:-V = -y v *+Ug VR , (12)
for vectors U and V in W. Then, in this basis [(W) 12 = w| 2, so the P and L
can be associated with the (+,+,..+) sector and (-,-,..-) sector,
respectively, which, indead, is the origin of the "chiral” notation. In this
extersion, the basis vectors can have nonzero components on both the left
and right lattices. Equation (9) can be rewritten as

W = Jo'72 P = Jo&'72 (p,PR) - (13)

We Tirst impose periodicity on the compactified space; for this we



need the identification of the zero-mode operators and space-time. In
particular, we assume that P = { p, pp ) is the transiation operator on the
2D-torus. The torus is defined by a lattice of points,
X0 = (x0 , x0g ). (14)
The periodicity of the space is then guaranteed by restricting the
eigenvalues of the operator P by [8]
exp(ipp-xOg + 1p %0 ) |physical> = e2Tilinteger)|pnysical> . (17
This is a translation in the 2D-dimensional lattice, not a scalar product on
the 2D-dimensional lattice. This distinction is important because we will
consider lattices where W= -W in the sense of sets of lattice vectors.
Equation (15) is trivially solved by introducing the lattice dual to
x°; the eigenvalues of the operator P fall on the W lattice (13) if the
lattice cf tha torus is defined by

( XOL, XOp) = V2o« Tt (W), (W*)R ), (16)
where the sign corresponds with the choice of sign in (12) and

W Wig = 8%g (17)

and the W (o = 1,..,2D) are the basis vectors of the lattice and the W"3

are the basis of its dual. Equation (16) is necessary for the space
generated by the zero-mode operators to be a torus.

The only boundary condition we impose on the string iteelf is that it
closes. As o moves from O to 7, X!(z,0) must return to the same point.
of course X! is defined modulo the lattice, so from (1) we find that for
each vector in x°|_ + xon, there exists a vector 211R N on a D-dimensional
lattice. This requires finding a relative orientation of xOp and xOp in
D-dimensional space. From (16) we can write this restriction as



VZN = - (Jo'/R) [ +(W™) + (W], (18)
where 2 N must be an even lattice. (In this and many of the following
equations, "=" means equality of sets.) The order of taking the dual and L
or R components can make 2 difference. With (18) and (6), we can write
the boundary conditions as

WR-W_ = (W + (W) . (19)

We now investigate several solutions to (18) and (19). In the
simplest solution, we assume that the basis vectors of W can be written
in the L-R basis as ( wy, 0 ) and (O , wp ], and that the left and right
lattices are even so that oM2 has integral eigenvalues only. For the
Frenkel-Kac construction to be possible, the lattices wy and -w are
identical, so that (19) is solved with W self dual, W = W™ with w|_ = w; ™
and wp = wR*. Euclidean even self-dual lattices exist in 8n dimensions.
The choice of lattices for wi and wg is restricted to Eg for D = 8
compactified dimensions, and Eg X Eg or Spin(32)/Z, for 16 dimensions.
The next even self-dual lattices appear in 24 dimensions. The problem here
is to construct from the W lattice an N lattice that satisfies (15).

We restrict our attention to the physically interesting case, D = 16,
where 10 dimensions remain uncompactified. The simplest Euclidean even
self-dual solution is where both w; and wp are Eg X Eg root or
Spin(32)/Z, weight lattices. Equation (18) is solved by superposing the
twc lattices so they exactly coincide in the D-dimensional space. Since
both lattices are self conjugate, e.g., wy = -wy (in the sense of sets) and
W[ =Ww| - WR, 50 /Z N is even if o = RZ.

The symmetry of the states is G X G, where G = Eg X Eg or SO(32).



The generators of this finite dimensional group are obtained from the
Frenkel-Kac construction [S). This construction is naturally extended to
affine GXG, but restriction (11) breaks up the representation into a natural
grading, according to the integers, N + (1/2) w|_2 - N - (172) wnz.
However, all the pieces of the affine representation do appear at different
spins and masses, since the oscillators from the uncompactifed
dimensions contribute to N and N. This situation is, in fact, quite similar
to the spectrum of the open string, which has no constraints, and whose
spectrum decomposes into direct products of basic representations of the
affine algebra times representations of the light-cone Lorentz group [9).
It Tooks hopeful that the representations of GXG times the Lorentz group
(however it is constructed) for ‘he closed bosonic string can be gathered
into representations of sume infinite--dimensional algebra.

To indicate the motivation for this optimism, it may help to display the
first few levels of the affine Eg X Eg basic representation, decomposed
into Eg X Eg irreducible representations, and the particle spectrum of the
closed bosonic string reduced by 8 dimensions of the Eg X Eg lattice. The
components of the affine Eg X Eg basic representation can be classifed by

N,=R + N+ (1/2)w 2 + (1/2) wg? (level)
N.=R - N+ (1720w 2 - (172) wp? (grade).

The first few levels of the basic represention of Eg X Eg are then [9].

[N, N_-) Eg X Eg representation
[0,0] (1, n
[1,1] (248, 1)

(1,-1] (1, 248)



[2,2] (1+248+3875, 1)

[2,0] (248, 248)

[2,-2] (1, 1+248+3875)

[3,3] (1+248+248+3875+30280, 1)
(3,1} (1+248+3875, 248)

[3,-1] (248, 1+248+3875)

[3,-3] (1, 1+ 248+248+3875+30380)

[4,4] (1+1+248+248+248+3875+3875+30380+27000+147250, 1)
[4,2] (1+248+248+3875+30380, 248)
[4,0] (1+248+3875, 1+248+3875)

[4,-2] (248, 1+248+248+3875+30380)

[4,-4] (1, 1+1+248+248+248+3875+3875+30380+27000+147250)

The Eg irreducible representations needed up to level 4 are conveniently
and unambiguously labeled by their dimensionalities. This table is easily
derived from the partition function for the basic representation of EgXEg,
M(1-x€)~16, and the Eg representation orbit decompositions [10]. More
simply, the affine Eg X Eg basic representation can be constructed from
the atfine Eg basic representation, as is easily seen from the grading in
the above table.

It there were no external space, then the constraint N. = 0 c¢f the
closed string would yield a string spectrum of the form 3 (rp, rpy) , where
rp is the Eg representation of the n-th leve: of the basic affine Eg
representation,

With the noncompactified 18 dimensions, the massless states are in

representations of SO(16) and the massive states are in representations of



SO(17) in light-cone qauge. We carry our the construction with the full
set of E_n‘ and a_n‘, while satisfying constraint (11).

ocM2 Spin (SO(16)) EgXEg representations

-1 (0000....) (1,1) ({Tachyon)

0 (200C...) (1,0 (Graviton)

0 (0100...) (1,1) (Antisymmetric tensor)

0 (1000...) (1,248)+(248,1)  (Yang-Mill vectors)
0 (0000...) (1,1)+(248,248)

Spin (SO(17))
1 (4000...) (1,1)
1 (2100...) (1,n
1 (0200...) (1,n
1 (3000...) (1,248)+(248,1)
| (1100...) (1,248)+(248,1)
] (0100..) (1,1)+(248,248)
1 (2000...) 3(1,1)+(1,3875)+(3875, 1)+(248,248)
1 (1000...) 2(1,248)+2(248,1)+(248,3875)+(3875,248)
! (000C0...) 2(1,1)+(1,3875,+(5875,1)+(248,248)+(3875,3875)
That the o€ M2=1 states fall into massive representations 1s the miracle
of Lorentz invariance. However, the full structure may be better seen in
terms of the massless SO(16) representations. The following table lists
the Eg X Eg content of edch massless representation for the o' M2 - |

states, written in terms of the [level,grade] notation used in the affine

be .1C representation:



(4000...) [0,0]

(2100..) [0,0]

(c200..) [0,0]

(3000..) ([1,1]+[1,-1]+2{0.0])

(1100..) ([1,1]+[1,-1]+2{0,0])

(0100..) [2,01+ {{1,1]+[1,-1}+2{0,0])

(2000..) [2,2]+[2,00+(2,-2] + {[1,1]+[1,~1]+2(0,0])+2[0,0]
(1000...) [3,1])+[3,~1] + 3({1,1]+1,-1]+2(0,0]}

(0000..) [4,0]+[2,2]+[2,0}+[2,-2] + ([1,1]+[1,-1]+2[0,0])+[0,0]

Thus, we expect that the algebra that commutes with the light-cone
generator is the subalgebra of the affine Eg X Eg that commutes with the
grading operator.

Several technical results are useful in deriving these results. The
representations have been labeled with the Dynkin highest weights. The
tensor product of SO(n) representations (n>6) needed are (2000...)X(1000...)
= (3000..)+(1100..)+(1000..) and (2000..)X(2000..) = (4000..)+(2100..)
+(0200..)+(2000...)+(0100..)+(0000....). The not-quite obvious branching
rules for SO(n+1) to SO(n) representations are: (9100.. )=(0100...)+(1000...);
(0200..) = (0200..)+(1100. )+(2000..); (1100..) = (1100..)+(2000..)
+(0100..)+(1000..); and (2100..) = (2100..)+(3000..)+(1100...)+(2000...)
+(0100...) +(1000...).

We now turn to the case where w s an kg X Eg lattice and wp 15 2
Spin(32)/Z, lattice. The basis vectors of both w_and wgr can be written
in an SO(16) X SO(16) basis without distorting either weight lattice since
50(16) X 50(16) is a regular sutalgebra of both E, X E_ and 50(32). The



branching rule for the adjoint of Eg X Eg is (120,1) + (1,120) + (128,1) +
(1,128) of SO(16) X SO(16), whera 120 is the adjoint and 128 is one of
the spinors of SO(16). Similarly for Spin(32)/Z,, the lowest lying
representations with weights on the lattice include the adjoint 496 =
(120,1) + (1,120) + (16,16) and one of the spinors 32768 = (128,128) +
(128°,128’), where 128" is the other SO(16) spinor. We now construct
v/2N by adding vectors of w; to wg; all that is needed to determine
o¢/R2 from the lenqths of the vectors of wy - wg are the SO(16) X SO(16)
congruency classes of the final set

SO(16) has 4 congruency classes, which we label a (adjoint), s
(spinor), s' (other spinor) and v (vector). The addition rules for the
weights of one SO(16) are those of Z,X2,, where a % (0,0), s * (1,0), s’ =
(0,1) and v = (1,1). Thus, the congruency classes of the Eg X Eg lattice
are (a,a) + (3,8) + (s,a) + (s,s), which closes on itself under addition of
lattice vectors. The 50(16) X SO0(16) congruency classes of the
Spin(.2)/2, lattice are (a,a) + (s,s) + (s',s) + (v,v), which again closes
under addition. The sum of an Eg X Eg and Spin(32)/2, lattices falls into
S0(16) X SO(16) classes,

(a,a) + (s,8) + (s'.8") + (v,v) + (5,a) + (a,s) + (5'\v) + (vs') . (20)

The length squared of all spinor and adjoint weights are even integers.
However, 21l vector weights are odd, so the lattice vectors in the last two
classes of (20) are odd. Thus, wy - WR has vectors of length 2,3,4..
Then, vZ N is even if o = 2 R2. The zero-mass scalars are in
[Ad)(EgXF g),Ac§(S0(32))]

A somewhat more complicated set of solutions that admit a natural



left-right separation is the set of Lorentzian lattices based on any simple
GXG, where rank(G) = D [4,6]. Suppose we place wy and wgr on weight
lattices so that o'M2 may have fractional eigenvalues The Frenkel-Kac
construction of the GXG generators is unchanged (the roots are on the
lattice), but several twisted versions of the basic representation with the
same structure as the basic representation appear in the spectrum, in the
same sense as we found an affine representation before, i.e., ignoring the
grading constraint or the external spin,

The crucial point here is to note that the basis vectors of W do not
have to be factorable into vectors with components, (wy,0) and (0,wp).
Although w; by itself is not self dual, it ic possible to make an even
self-dual lattice by doubling the space w = [wl_, wR] and imposing a
Lorentzian metric. Our explanation here on how this works will be an
example. We look at the reduction by D=2 dimensions with the
4-dimensional Lorentzian lattice having metric (+,+,-,-) and containing
certain weights of SU(J)XSU(3). The generalization for specific cases is
obvious.

l.et a, and 3, be the basis vectors, which correspond to the highest
weights of the 3 and 3 representations, respectively. [In the Dynkin bass,
a, has components (1,0) and a, has components (0,1).] Then we can form a
basis of this 4-dimensional lattice with the vectors,

vy =(a,, a,-3y) , vy =(3; 2y-3p)
vy = (ay-3; , -ay) , vq=(ay-37, 3;) (21)
These vectors are all null vectors and they are also self dual, i.e., there

are a set of vectors vj* satisfying



vi* vj = sij (22)
It is easily confirmed that the dual vectors are vy™ = v,, vo* = vy, va* =
V4, and v4™ = v3. Note that for each vy, (vj) - (vi)r is a root of SU(3),
+(2a,-a,) or t(2a,-a,).
This is an even lattice under the Lorentzian scalar product, which
we now confirin. The most general vector is
| (ny*ng*ng) 3y + (np-ny-ny) 2, |
v = | (-ny*np-ng) 3y ¢+ (n)=np*ng) 3, | (23)
where the metric for the scalar product 2jya; (in the wy or the wp
subspace) is
vof2 o |
32|,
which is just of inverse of the SU(3) Cartan matrix. The norms of the left

and right components are,

(173) (nynansng) | 2 1 1 1 | | ny |
| 12-r1] | g |
w2 = | 1-122 | |y
| 1-122 | | ng| (24)
and the metric for wp? is
12 -2 1 1]
(1/3)1-2 2 -1 -1
|1 -12-1|

I 1=-1 -1 2|
Thus, the norm of a vector w is

w2 = 2 NNy + 2n3n1 , (25)



and the lattice is even and self dual. In order to satisfy that /2 N is
even, we compute vg - vi_ from '23),

VR - Vi = (ny*m)(22,-3;) + (ng-n4)(2a5-2,), (26)
which is on the SU(3) root lattice, s0 oc=R2. Thus, we see that VR and vi_
are always in the same congruency (triality) class.

We now construct the spectrum of states of the closed bosonic string,
reduced by two dimensions on this lattice. The calculation is a Fock space
calculation of the same kind as we have often done. The mass operator is

cefined in (8) and the constraint in (11). The spectrum of ctates is:

ox'M2 Spin SU(3) X SU(3) representations
-1 (0000...) (1,1) (the usual tachyon)
-2/3  (0000..) (3,3)+ (33 (the new tachyon)
-1/3 Nothing
0 (2000..)  (1,1) (graviton)
(1000...) (1,8)+(8,1) (Y. M. vectors)
(massless)(0100..)  (1,1) (Antisymmetric tencor)

(0000..)  (1,1)+(8,8)
Massive representations
1/3 (2000...) (3.3)+(3.3)
(0100...) (3,3)+(3,3)
(1000...)  (6,3)+(6,3)+(3,6)+(3,6)

(0000...) (6,6)+(6.6)+(3,3)+(3.3)
2/3 Nothing

! (4000 .) (0



(3000...) (1,8)+(8,1)

(2100...) (,1)

(0200...) (1,1)

(2000...) 3(1,1)+(1,8)+(8,1)+(8,8)
(1100..) (1,8)+(8,1)

(0100..) (1,1)+(8,8)

(1000..) 2((1,8)+(8,1)+(8,8))
(0000...) 2(1,1)+(1,8)+(8,1)+2(8,8)

We conclude with several comments on Lorentzian lattices. The
lattice, l‘p,q, which has a signature with p pluses and q minuses, can be
even self dual only if p = g+ 8n. Thus, their numoer appears to be greatly
limited. Neverthess, if the GXG symmetry structure is not required, then
it .3 poscible to deform these lattices by a general SO(p,q) transformation.
The independent parameters live in the coset SO(p,q)/SO(p)XSO(q); there
are pq free parameters. An examination of ™y | shows how this works.
The general prescription indicates that there should be a one-parameter
family of solutions to the even self dual corstraints. in a basis where the
metric is a diagonal matrix with (1,-1), the basis vectors are

vi=(17/2)eX (1, 1)

vp = (1//2) e (1, -1) . (27)
Note that v, and v, are null vectors, with their duals being v, and vy,
respectively. Thus the lattice is self dual

The general vector on this lattice is

v=0/V2) | ne® +nyeX nyeX-nyeX |. (28)



For two vectors labeled by integers ny,n, and m,,m,, the scalar product is

Uy-lUp = MMy + NoMy . (29)
Thus, this lattice is even seif dual for all values of x. However, v| -vp is
not a root of SU(2) unless x=0, since,

v-w=v/2neX . (30)
This result suggests that there is a continuum of consistent string
theories. (The rnodular invariance of the one-1oop amplitudes is checked in
[4,6].)

The parameters take on critical values when the Lorentzian lattice is
composed of the weights in GXG. For other values the symme'ry is
reduced. It is a subject of present investigation whether or not this
freedom will allow for a discussion of symmetry breaking in the S~ 1atrix

framework.

| gratefully acknowledge useful conversations with Louise Dolan and
Stuart Raby.
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