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Toroidal Compactification of Closed Bosonic Strings

R. Slansky
Theoretical Division
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Abstract

The boundary conditions of a free closed bosonlcstring propagating in a

space where the compactified dimensions are toroidal limit the lattices

defining the tori to be self dual, just as 1s required by modular invariance

of the one-loop dual amplitudes, The spectra generated by the free-string

oscillators for both Euclidean arid Lorentzlan lattlces aredescrlbed,

Talk presented at “lnfinlte Illmenslonal Lie Algebras and Their

Applications,” sponsored by the Centre de Recherche Mathematlques,

Unlverslte de Montreal , May 12-16, 1986,
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The object of this talk is a simple explanation why the lattices that

define the tori of the compactified dimensions for closed bosonic string

must be self dual. This requirement is already apparent from the free

string, and results from the closed-strlng boundary conditions. Theworic

on Euclidean self-dual lattices is in [1], and the extension to self-dual

Lorentzian lattices is being reported here [2].

It has been established that modular invariance of the “correction

- .dI”””[3] of the integrand of the one-loop string amplitude (which is

~ccepted as a necessary constraint on unitary dual amplitudes) implies

that the lattice defining the torus for the closed string is a self-dual

lattice [4]. A similar result follows from the free string: for example, if

we demand that allmassesar~ integers (in units where thetachyon mass

is -1) and internal symmetry is a finite dimensional Lie group whose

generators are obtained by the Frenkel-Kac construction [5], then the “left”

and ’’right” Iattices must each I’weven self-dual Euclidean lattices, and can

be chosen indeper~ently to be EC X Ea or Spin(32)/Zz for 16 compact ified

dimensions [I]. These results w il I be rederived here,

It has also been found that a lattice associated with GXG (G a Lie

algebra with roots of equal length) is consistent with modular invariance

[4], which is equivaleflt to dimensional reduction on a torus defined by an

even self-dual Lorentzian lattice 16]. The dual model in this case has

tachyonc of at least two different mass values, with the fractional-mass

tachyons !n nontrivial representations of GXG, As stated in [6], the dual

models of the Lolentzlan case are modular invariant over a continuous

rango of parameters. Although some masses dependon the parameters, it
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1s not possible to rid the bosonic theory of tachyons by a spectal choice of

the parameters. The Lorentzian cases are also derived from the boundary

conditions. An explicit example of aspectrum calculation will be given

Let us comment on the possible physical relevance of toroidal

compactification. The stabi 1ity of toroidal compact if icat ion of the

bosonic string is questionable, especially if the tachyons neither decouple

nor acquire non-negative masses. Several resolutions ofthisproblam We

been suggested. One is that extendingthe boundaryconditionsand the

related spaces (such as to orbifolds [7]) might simply remove the

tachyon(s) from the spectrum. Another is to impose symmetries that

prohibit the tachyon; supersymmetric models have no tachyons, as 1s

clearly seen in the formulation of the heterotic strings [8]. Finally, there

are hints that in the correct ground state, even with toroidal

compactification, thetachyons may decouple or become unphysical degrees

of freedom, The group Gassociatedwith!he Iattice must bemokenlna

special way. Although the 26-dimensional bosonic theories appear tohave

tachyons and no fermions, G may be broken in a way where the 10- and

maybe the 4-dimensional theory has chiral fermions and no tachyms. In

this case a subgroup of G contributes to the Lorentz group in the smaller

numberof dimensions [4], The closed string has more than enough states

to give any one of the various superstrlng theories in 10 dimensions,

including either heterotic strings, type liA, or IIB, but it is not yet known

whether the dynamics can actually deccuple the unwani.~d states At

present it is merely self consistent to assume these states decouple

Already on the basis of this attractive possibility, I belleve lt worthwhile
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to analyze simple toroldal compactification.

The non-interact ing closed bosonic string in I ight-cone gauge

satisfies a two-dimensional free wave equation. The sOIIJtiOn iS [3]

Xi(t,d) = xi + 2OIf’pir + 2NiRcl + i~~ ~n=o(l /n)[ani e-2i~~-~) +

~ni e-2ill(t+U)] , (1)

where the coefficients are cnosen so that in the first quantized theory,

the corresponding operators satisfy canonical commutation relations, e.g.,

[xi, pj ] = isij . (2)

The indices 1, j, ... run from 1 to24 and label the directions transverseto

the light-cone components Xt(z,d), where X+(r,U) ❑ x+ + 2ti’p+z, and the

dependent operator X-( Z,@ 1s gotten from the constraint equations.

As the parameter G goes from O to m, the line traced out by

X I(r,u) is a closed curve, so X[(r,fl) and X1(t,O) must Wsigniate the same

point on the compactifled space. (1, J, K = 1,.,,,D label the D components of

Xi(d,T) in the compactlfled dimensions.) In principle the “radii” HI may

differ for each direct Ion, but the general lty of our arguments are only

trivially affected by setting all of them equal to a common radius R] u R,

In the first quantized theory N1 and some constant times &’ PI are

operators with integer eigenvalues, which, however, must satisfy the

constraints on the system. It simplifies the analysls tomake acwwnical

transformation of these zero-mode operators to a set where the

constraints are diagonal. The X’(T,U) can be separated into a

“left-moving” piece (In the z,U SpiICe), which 1S a function of ~L = r+a,

and a “rlghl,-moving” piece, which is a functk.m of [R ❑ r-d only:
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)(i(t,d)=)(~i(~L)+ XRi(tR), (3)

where

XLi(CL)=XLi+@LitL+im ~nz~(l /n) ~ni e-2i*L , (4)

and an identical equation for XRi(~R), except that L 1s replaced by R and

~ni bg ~i. With the conventions expressed in (4), the canonical

commutation relations of the

directions are

[ XL] , pLJ] = i&lJ ,

zero-mode operators in the compact if ied

[xR1 , PRJ] ❑ l~lJ , (51

and theremalnlng commutatorsare zero.

The canonical transformation between the “left- and “right”

operators and the zero-mode operators ln(l)ls

Thus,

to Nl,

M’fl = R(xLI - XRI) I- 2R N1 ❑ M’(PI-l - pR1) . (G)

it is trivially conflrmedthat[fl ,NJ]= i&lJ, etc., so#ls conjugate

although fl does not app~ar In (1), The factors of 2 are Inserted in

(6) so that (5) 1s canonical, in contrast to the conventions of the heterotlc

string [8]. Note that the w!ndlng numberof astrlng canbe transformed,

~orexample, by self interactions, so it Is anlndependent quantum operator

unless further constraints on the theory prohibit such interactionsi

We assume that the zero modes of the string completely describe

the space-time in which the string propagates, so that th~ Iocatlon of the

string is its average position. (This slmpllfylng assumption has usually

been made in past treatments of th(! string, and will be needed in the

Mai Is of our arguments, However, it has no physical basis; the nonzero

modes could play acruclal role lnthespatlal compactlflcation,) Then the
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term 2NiRCY in { 1) 1s interpreted as a “winding number” term and can be

nonzero for the compact!fied dimensions. The unconstrained closed

bosonic string has two sets of zero-mode operators for the compactified

dimensions. Smcethe compactlficatlon refers just tothezeromodes, the

dimensionality of the torus of compact !ficatlon ls twice the numberof

compactifieddimensions,so their numberis actually twice that counted

by the index 1. The heterot ic strings (with their constrained bosonic

strings) have onlyone set of zero-modeoperators for the compactified

dimensions,so there tile dimensionality of the torus is the same as the

number of compactified dimensions [81.

The constraint equations are (X k X’)2 = O, which can also be

writtenas

(XL)2 = (~R)2 ❑ O . (7)

The zero-mode projections of (7) define the dependent Ot)erators pL- and

Pk-” the ~ translation invarial~ce of the origin of the string leads to the

definition of the mass operator,

04’ M2 ❑ (1/2)wL2 + R - 1 , (0

where the WL and WR lattices are r~lated to the lattice of MOIYIentUm

eigenvalues by

w~’~pL, WR=~UWPR , (9)

and the rwmberoperators N andNare

~ = ~n= , S_ni ~ni , N = ~n. ! a-n[ ani , (lo)

where the i sum is over compact and noncompact dimensions, The

momentumvectors and number operators satisfy the constraint,

~ +(1/2)WL2 ■ N + (1/2~wR2 , (Ii)
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Only the finite subalgebra of the full affine algebra obtalriedby the

Frenkel-Kac construction is a symmetry of the S-matrix [5]. The basic

representation of the aff ine algebra is the Fock space obtainedfrom a-n’,

S-n’, and exp(iXLOp”f)L) and exp(iXROp”PR), where PL and f)R are on root

lattices (up to a normalization). The restriction ( 11 ) eliminates states

from this irreducible representation, so the full %!inite-dirnensional

affinealgebra does not generate asymmetry of the S-matrix, nor doesit

commute with the Lorentz algebra.

The vectors of WL and WR each span a D-dimensional Euclidean

sublattice; they can be viewed as sublattices of a2D-dimensional lattice

w= (WL, Wpj. This means wc extend the vectors in WL and WR to be

vectors inW; thts extension must include aprescription (consistent with

the spatial and string periodicity discussed below) for recovering (W)L ❑

wLand(W)~=wR from thevectorsin W; the sublattices wLandwR are

Euclidean. As a nontrivial example, s~ppose that we define a scalar

product on W where, in the L-R basis, the metric is diagonal and of the

f crm,

U“V=-ULOVL+UR.VR , (12)

for vectors U and V in W. Then, in this basis [(W)L12 = wL2, so the P and L

can be associated with the (+,+,...,+) sector and (-,-,...,-) sector,

respectively, which, indeed, is the origin of the ”chiral” notation, In this

extersion, the basis vectors can have nonzero componwlts on both the left

and right lattices. Equation (9) can be rewritten as

W xm2P ■J=(PL, PRI. (13)

We first impose perlodicity on the umpactified ~ace~ for this we



-8-

need the identification of the zero-mode operators and space-time. In

p2rtlcular, we assume that P ❑ ( PL, PR ] 1S the translation operator on the

2D-torus. The torus is definedbya lattice of points,

(14))(0 ■ [ XOL, XOR].

The perlodiclty of the space is then guaranteed by restricting the

eigenvalues of the operator P by [81

exp(~PR”XOR +!PL-XOL) Iphyslcal> ❑ e2mi(integer)l physical> . (1~1

This 1s a translation in the 2D-dimensional lattice, not a scalar product on

the 2D-dimensional lattice. This distinction is important because we will

consider lattices where W=-W in the sense of sets of lattice vectors.

Equation (15) is trivially solved by introducing the lattice dual to

XO; the eigenvalues of the operator P fall on the W lattice (13) if the

lattice cf the torus is defined by

( XOL, XOR ] = &’ fi { @*)L , (W*)R } , (16)

where the sign corresponds with the choice of sign in (12) and

MP. w”fl=w$, (17)

and the W (~ = 1,...,2D) are the basis vectors of the lattice and the W“~

are the basis of its dual. Equation (16) is necessary for the space

generatedby the zero-mode operators to be a torus.

The only boundary condition we impose on the string its~lf is that it

closes. Asu moves from O to TI, X!(r,a) must return to the same point,

Of course X1 isdefinedmodulo the Iattice, so from (I)we find that for

each vector inxOL+ x0 R,there exists avector 2’rlRNon a D-dimensional

Iattlce. This requires finding a relative orientation of XOL and xOR in

D-dimensional space, From ( 16) we can write this restriction as
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fiN = - (&’/R ) [ dw*)L + (W*)RI , (18)

where fi N must be an even Iattlce. (In this and many of the following

equations, ‘=” means equality of sets.) The orderof taking the dual andL

or Rcomponents can make a difference. With (18) and (6), wecanwrlte

the b

slmp

undarycondit ionsas

WR - WL = (W*)R S (W*)L . (19)

We now investigate several solutions to (18) and (19). In the

est solution, we assurnetha tthebaslsvectors of Wean rewritten

in the L-R basis as ( WL, 0 ] and ( O , WR ], and that the left and right

lattices are even w that OC’M2 has integral e~genvalues only, For the

Frenkel-Kac construction tO be possible, the lattiCeS WL and ‘WL are

identical, so that (19) issolvedwith W self dual, W=W* With WL=WL*

andwR= WR*. Euclidean even self-dual lattices exist in 8n dhnensions.

The choice of lattices for WL and WR is restricted to Ee for D = 8

compactlfied dimensions, and E8 X E8 orSpin(32)/Z2 for 16 dimensions,

The next even self-dual lattices appear in 24 dimensions. The problem here

1s to construct from the W lattice an N lattice that satisfies (16),

Wc restrict our attention to the physically interesting case, D = 16,

where 10 dimensions remain uncompactlfled. The simplest Euclidean even

self-dual solution 1s where both WL and ~R are E8 X Ea root or

Spin(32)/Z2weight Iattlces. Equation (18) 1s solvedby superposing the

twc lattices so they exactly coincide in the D-dimensional space. Since

both lattices are self conjugate, ego, wL = ‘WL (in the sense of sets) and

WL=WL- wR, so~Nls even lf~’=R2.

The symmetry of the states Is G X G, where G = E8 X E8 or SO(32)I



- lo-

The generators of this finite dimensional group are obtained from the

Frenkel-Kac construction [5]. This construction is naturally extended to

affine GXG, but restriction ( 11 ) breaks up the representation into a natural

grading, according to the integers, N + (1/2) W~2 - N - (1/2) WR2.

However, all the pieces of the af f ine representation do appear at different

spins and masses, since the oscillators from (he uncompactifed

dimensions contribute to ~ and N, This situation is, in fact, quite similar

to the spectrum of the open string, which has no constraints, and whose

spectrum decomposes into o’irect products of basic represent~t ions of the

af f ine algebra times representations of the 1ight-cone Lorentz group [9].

It looks hopeful that the representations of GXG times the Lorentz group

(however it is constructed) for the closed bosonic string can be gathered

into representations of some infinite-dimensional algebra.

To indicate the motivation for this optimism, it may h~lp to display the

first few levels of the aff~ne E8 X EB basic representation, decomposed

intoE8X Ee irreducible representations, and the particle spectrum of the

closedbosonic string reduced by 8 dimensions of the E8 X Ee lattice. The

components of the affine E8 X Ee basic representation can be classifed by

N+ =~ + N + (1/2)WL2 + (1/2)w# (level)

N-=~- N + (1/2)WL2 - (1 /2) wR2 (grade) .

The first few levels of the basic represention of E8 X E8 are then [9]:

[N+,N-] E. X E. representat ion

[0,01 (1, 1)

[1,11 (248, 1)

[1,-1] (1,248)
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[2,21

[2,01

[2,-21

[3,31

[3, 1J

[3,- 1]

[3,-31

[4,41

[4,2]

[4,01

[4,-2]

[4,-4]

(1+248+3875,1)

(248, 248)

(1, 1+248+3875)

(1 +248+248+3875+30380, 1)

( 1+248+3875, 248)

(248, 1+248+3875)

(1, 1+ 248+248+3875+30380)

(1+ 1+2~+2~+248+3875+ 3875+ 30380+~70~()+” 147250, 1)

(1 +248+248+3875+30390, 248)

(1 +248+3875, 1+248+3875)

(248, 1+248+248+3875+30350)

(1, I+ 1+248+ 248+248+3875+3875+30380+27000+ 147250)

The Ee irreducible representations needed up to level 4 are convenient ly

and unambiguously labeled by their dimensionalities. This table ls easily

derived from the partition function for the basic representation of EaXEe,

11(1-xk)- 16, and the Ea representation orbit decompositions [10], More

simply, the afflne Ea X E8 basic representation can be constructed from

the af f ine E8 basic representation, as 1s easily seen from the grading in

the above table.

If there were no external space, then the constraint N- = O cf the

closed string would yield a string spectrum of the form ~(rn, m), where

rn is the EB representation of the n-th Ieve; of the basic affine Ea

representation,

With the noncompact lf led 18 dlmens ions, the masslc?ss states are in

representations of SO(16) and the massive states are In representations of
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S0( 17) in llght-cone gauge. We carry our the construction with the full

set of ~-n~and a-ni, while satisfying constraint ( 1 1),

oiM2 Spin (S0(16)) EeXE8 representations

-1

0

0

0

0

1

1

1

I

1

1

1

1

I

(0000 ....) (1, 1) (Tachyon)

(200C...) (1,1) (Gravlton)

(0100...) (1,!) (Antisymmetrlc tensor)

(1000...) (1 ,248)+(248,1) (Yang-Mill vectors)

(0000...) (1,1)+(248,248)

Spin (S0( 17))

(4000...) (1,1)

(21001.) (1,1)

(0200...) (1,1)

(3000...) ( 1,248)+(245,1)

(1 100..) ( 1,248)+(248,1)

(O1OO..) (1, 1)+(248,248)

(2000. !.) 3(1 ,1 )+(1 ,3875 )+(3875,1 )+(248,248)

(1000 ..) 2( 1,248)+2(248, I )+(248,3875)+(3875,248)

(00(!0..) 2(1, 1)+( 1,3875;’(3875, 1)+(248,248)+(3875,3875)

That the W’ t12= I states fall into massive representations 1s the miracle

of Lorentz invariance, However, the full structure may be better seen In

terms of the mdssless SO( 16) representations, The following table Ilsts

the Ea X EB content of each massless representation for the m’ M2 ■ 1

states, written lnterms of the [level,gradel notation used in the afflne

b; .lcrepresentat ion:
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(4000...) [0,01

(21 00...) [0,01

(C200...) [0,01

(3000...) [[1 ,11+[ 1,- 11+2[0,011

(1 100...) ([/11+ [1,-11+ 2[0,011

(0100...) [2,01 + ([1,11+[1 ,-11+2[0,01)

(200 L.) [2,21+ [2,01+ [2,-21 + ([ 1,1 1+[1,-1 1+2[0,01)+2[0,01

(1000...) [3,11+ [3,-11 + 3([1,11+[1 ,-11+2[0,011

(0!)00...) [4,0]+ [2,2]+ [2,0]+ [2,-2] + [[ 1, I ]+[ 1,-1]+2[0,01]+[0,01

Thus, we expect that the algebra that commutes w lth the light-cone

generator is the subalgebra of the afflne Ea X Ee that commutes with the

grading operator.

Several technical results are useful Inderlvlngthese results, The

representations have been labeled with the Dynk!n highest weights. The

tensor product of SO(n) representations (n)6) needed are (2000.., )X( 1000..)

■ (3000.. )+( 1100..,)+( 1000...) and (2000., )X(2000.) ■ (4000... )+(2100.)

+(0200.,.)+(2000,.,)+(0100..,)+(OOOO.,..). The not-quite obvious branching

rules for SO(n+ I ) to SO(n) representations are: (0100.. )=(0 I 00..)+( 1000 IIO);

(0200.) ❑ (0200... )+( 1100. )+(2000...); ( I 100... ) = ( I 100... )+(2000...)

+(olf)o,, )+(looo,. m); and (2100,,, ) c (2100,,, )+(3000 m,.)+(1 loo,,, )+(2000,,,)

+(0100,,. ) +( I coo...).

We now turn to the case where WL IS an E8 X E8 kittiCe and WR h a

Spin(32)/Zz Iatt ice, The basis vectors of both wL and WR can be Written

In an SO( 16)X SO( 16) basis without distorting either weight Iattlce sln~e

SO( 16) X SO( 16) is a regula[’ subalgebra of both E. X E* and S0(32). The
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Pranching rule for the adjolnt of E8 X E8 is ( 120,1) + (1,120) + (128,1) +

(1, 128) of S0( 16) X S0( 16), where 120 is the adjoint and 128 is one of

the spinors of S0( 16). Similarly for Spin(32)/Z2, the lowest lying

representations with weights on the lattice include the adjoint 496 ■

(120,1 )+(1,120) +(16,16 )andoneof thesplnors 32768=(128,128)+

( 128”, 128’), where 128” is the other SO( 16) splnor. We now construct

fiN by adding vectors of WL to wR; all that 1s needed to determine

~’/R2 from the lengths of thevectorsof wL-wRare the SO(16)XSo( 16)

congruency classes of the final set

S0( 16) has 4 congruency c!asses, which we label a (ad]oint ), s

(spinor), s’ (other spinor) and v (vector). The addition rules for the

weights ofone SO(16)are those of ZZXZZ, wherea ~(0,0), s~(l,O), s’ ~

(O,l)andv~(l,l). Thus, thecongruency classes of the EoXEalattlce

are (a,a) + (a,s) + (s,a) + (s,s), which closeson itself under addition of

lattlce vectors. The S0(16) X SC)(I6) congruency classes of the

S~ln(-2)/Z2 Iattlce are (a,a) + (s,s) + (s’,s’) + (v,v), which again closes

under addition. The sumofan E8XE8 andSpln(32)/Z21attlcesfallslnto

SO( 16)X SO( lb) classes,

(a,a) + (s,s) + (s’,s’) + (v,v) + (s,a) + (als) + (s’,v) + (v,s’) . (20)

The length squared of all splnor and adjoint weights are even integers,

However, ~ vector weights are odd, so the lattice vectors in the last two

clacses of (20) are odd. Thus, wL - wR has vecto!”s of length 2,3,4,.,

Then, n N 1s even if d = 2 R2, The zero-mass scalars are in

[Adj(E5xFB),Adj( SO(s2))]

A somewhat more compl Ic?ted set of solutlrms that admit a natural
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left-right separation Is the set of Lorentzlan lattices based on any simple

GXG, where rank(G) = D [4,6]. Suppose we place w~ and WR on weight

lattices so that d’12 may have fractional eigenvalues The Frenkel-Kac

construction of the GXG generators 1s unchanged (the roots are on the

lattice), but several twisted versions of the basic representation with the

same structureas the basic representat lon appear in the spectrum, in the

same sense as we found anaffine representation before, i.e., ignoring the

grading constraint or the external spin,

The crucial point here is to note that the basis vectors of W do not

have to be factorable into vectors with components, (wL,O) and (O,WR),

Although WL by itself is not self dual, it is Dossible to make an even

self-dual lattice by doubling the space w = (wL, wR] and imposing a

Lorentzian metric. Our explanation here on how this works will be an

example. We look at the reduction by D-2 dimensions with the

4-dimensional Lorentzian lattice having metric (+,+,-,-) and containing

certain weightsof SU(3)XSU(3), The generalization for specific cases’ is

obvious,

Let al and a2 be the basis vectors, which correspond to the highest

weights of the 3and~representations, respectively, [lnthe Dynkinbasls,

al has components (l,0)anda2 has components (O,l).] Then wecan forma

basis of this 4-dimensional lattice with the vectors,

VI = (al , az-al) , vz = (aZ, al-az]

V3 ❑ (al-a2 , -al) , Vq = (al-az , 32) (~1)

These vectors are all nul I vectors and they are also self dual, i.e., there

are asetofvectorsvlM satisfying
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v~w - Vj = &ij (22)

It is easily confirmed that the dual vectors are VIM = Vt, V2H ❑ VII V3* =

Vq, and Vqa = V3. Note that for each Vi, (vi)L - (V1)R iS a rOOt Of SU(3),

t(231-a2) or t(2a2-al).

This is an even lattice under the Lorentzian scalar product, which

wenowconfir:n. The most general vectoris

I (n1+n3+nq) al + (n2-n3-nq) a2 I

v= 1( (23)-n1+n2-n3)al +(nl-n2+nq)a2 ,

where the metric for the .SC21ar product al’aj (in the wL or the wR

subspace)is

I 12 1 I

T II 21 ,

which is just ofinverse of the SU(3)Cartan matrix, The norms of the left

and right components are,

(1\3) (n1,nz,n~,n4) I 2 1 1 I I I nl I

I 12-1-lllnzl

~L2 = l-12211n31

I l-12211n41 ,

and the metric for wR2is

12-2 I 1 I

(1/3) 1-2 2 -1 -11

II-12-11

II-1-121,

Thus, tt”,enorm of a vector w is

(24)

W2 , 2 n1n2 + 2n3nq , (25)
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and the lattice is eve~l and self du?l In order to satisfy that a N is

even,we computevR- vL from ‘23),

vR- vL =(nl+ng)(2al-a~)+ (n@@(2a~-a,), (26)

which isonthe SU(3) root lattice, SOCX’=R2. Thus, we see that vRandvL

are always in the same congruency (trlality) class,

We now construct the spectrum of states of the closedbosonic string,

reduced bytwodimensions on this lattice, The calculation lsa Fock space

calculation of thesame kind aswehave often done. Themass operator is

c!efined in (8) and the constraint in ( 11), The spectrum of ~tates is:

M’tiz Spin SU(3) X SU(3) representations

-1 (0000...) (1,1)

-2/3 (0000,,,) (3,3) + (7,3

-1/3 Nothing

o (2000... ) (1,1)

(1000 ..) (1,8)+(8, I )

(massless)(O IOO.o.) (1,1)

(0000!.!) (1,1)+(8,5)

Massive representations

1/3 (2000..,) (3,3) +(%,3

(0100.) (3,3) +(7,3

(the usual tachyon)

(the new tachvon)

(graviton)

(YM vectors)

(Antisymmetrlc tensor)

(1000,,.) (6,g+(ti3)+(T,6)+(3,6)

(0000 .,) (6,6) +(&@+ (3,3) +(T,~

2/3 Nothing

I (4000 ,.) (1)1)
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(3000...)

(2100...)

(0200...)

(2000...)

( 1100...)

(0100...)

( 1000...)

(0000...)

( 1,8)+(8,1)

(1,1)

(1,1)

3( 1,1 )+(1 ,8)+( 8,1 )+(8,8)

( 1,8)+(8,1)

( 1,1 )+(8,8)

2[(1,8)+(8,1 )+(8,8))

2( 1,1 )+( 1,8)+( 8,1 )+2(8,8)

We conclude with several comments on Lorentzian Iatt ices. The

lattice, rp,q, which has a signature with p pluses and q minuses, can be

even self dual only if p ❑ q + 8n, Thus, their number appears to be greatly

limited, Neverthess, if the GXG symmetry structure is not required, then

it ;s possible to deform these lattlcesby a general SO(p,q) transforrflation.

The independent parameters live in the coset SO(p,q)/SO(p)XSO( q); there

are pq free parameters, An e~amination of T1 1 shows how this works.#

The general prescription Indicates that there should be a one-parameter

family of solutions to the even self dual constraints. In a basis where the

metric Is a diagonal matrix wlth(l,-l), the basis vectors are

V, ’(lime x(l,l)

vz=(l/fi e-x( 1 ,-1) , (27)

Note that VI and Vz ai-e null vectors, with their duals being V2 and Vl,

respectively, Thus the lattice ls self dual

The general vector on this lattice is

v=(l/~[nle-x+n2eH ,nz Px-nle- x]. (28)
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For two vectors labeled by integers nl,nz and ml,rn2, the scalar product is

U1”U2 = n1m2 + n2m1 . (29)

Thus, this lattice 1s even self dual for all values of x. However, VL-VR is

not a root of SU(2) unless x=O, since,

vL-~=~2nJe-x . (30)

This result suggests that there is a continuum of consistent string

theories. (The modular invariance of the one-loop amplitudes is checked in

[46])

The parameters take on critical values when the Lorentzian lattice is

composed of the weights in GXG. For other values the symmetry is

reduced. It is a subje:t of present investigation whether or not this

freedom will allow for a discussion of symmetry breaking in the S-, latrix

framework.

I gratefully acknowledge useful conversations with Louise DoIan and

Stuart Raby
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