

27
1/23/19
copy w/MTS
24

CONF - 780879

MASTER

**PROCEEDINGS OF THE
6th ANNUAL SPEAKEASY CONFERENCE**

**PICK-CONGRESS HOTEL
CHICAGO, ILLINOIS
AUGUST 17-18, 1978**

**Sponsored by
ARGONNE NATIONAL LABORATORY**

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

The facilities of Argonne National Laboratory are owned by the United States Government. Under the terms of a contract (W-31-109-Eng-38) between the U. S. Department of Energy, Argonne Universities Association and The University of Chicago, the University employs the staff and operates the Laboratory in accordance with policies and programs formulated, approved and reviewed by the Association.

MEMBERS OF ARGONNE UNIVERSITIES ASSOCIATION

The University of Arizona	Kansas State University	The Ohio State University
Carnegie-Mellon University	The University of Kansas	Ohio University
Case Western Reserve University	Loyola University	The Pennsylvania State University
The University of Chicago	Marquette University	Purdue University
University of Cincinnati	Michigan State University	Saint Louis University
Illinois Institute of Technology	The University of Michigan	Southern Illinois University
University of Illinois	University of Minnesota	The University of Texas at Austin
Indiana University	University of Missouri	Washington University
Iowa State University	Northwestern University	Wayne State University
The University of Iowa	University of Notre Dame	The University of Wisconsin

NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately-owned rights. Mention of commercial products, their manufacturers, or their suppliers in this publication does not imply or connote approval or disapproval of the product by Argonne National Laboratory or the U. S. Department of Energy.

CONF - 78079

Distribution Category
Mathematics and Computers
(UC-32)

PROCEEDINGS OF THE 6th ANNUAL SPEAKEASY CONFERENCE

HELD AT THE PICK-CONGRESS HOTEL

CHICAGO, ILLINOIS

AUGUST 17-18, 1978

Sponsored by

ARGONNE NATIONAL LABORATORY

NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

NOTICE

PORTIONS OF THIS REPORT ARE ILLEGIBLE. It
has been reproduced from the best available
copy to permit the broadest possible avail-
ability.

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

leg

6TH ANNUAL
SPEAKEASY - 1978
ATTENDEE ADDRESS LIST

Anderson, Janet B.
Argonne National Laboratory

Augustine, Charles A.
Carnegie-Mellon University
5111 Science Hall
Pittsburgh, PA 15213

Bailey, Mike
Computer Aided Design and Graphics Lab
School of Mechanical Engineering
Purdue University
W. Lafayette, IN 47907

Baker, James F.
Joseph Schlitz Brewing Company
235 W. Galena
Milwaukee, Wisconsin 53212

Ballengee, David W.
General Public Utilities
Madison Avenue
Morristown, New Jersey 07960

Bavinger, Bill A.
Rice University
P. O. Box 1892
Houston, Texas 77001

Bengtson, Susan E.
Clemson University
Clemson, SC 29631

Bharucha-Reid, Albert T.
Wayne State University
Detroit, MI 48202

Bitterli, Charles V.
Applied Physics Lab
Johns Hopkins University
Johns Hopkins Rd
Laurel, Md. 20810

Bosse, James K.
Sikorsky Aircraft
N. Main Street
Stratford, Conn. 06602

Burner, Kenneth
Carnegie-Mellon University
5103 Science Hall
Pittsburgh, PA 15213

Burris, Anthony E.
Foreign Demand And Competition Div.
Economic Research Service
U.S. Department of Agriculture
500 12th Street, S.W.
Washington, D.C. 20250

Capra, Flavio
Banca Commerciale Italiana
Ufficio Studi
Via Borgonuovo 2
Milano, Italy 20100

Child, Margaret E.
University of California San Francisco
Rm U-76, UCSF
San Francisco, CA 94114

Cohen, Stan
Speakeasy Computing Corporation
222 West Adams Street
Chicago, Illinois 60606

Coldrick, David B.
National Research Council
Computation Centre
Bldg. M-60
Montreal Rd
Ottawa, Ontario K1A OR6

Conley, Roy D.
Federal Reserve Bank of San Francisco
P. O. Box 7702
San Francisco, CA 94120

Crema, Alice M.
Signetics
811 E. Arques Bin 3
Sunnyvale, CA 94086

Diament, Alex
Federal Reserve Bank of Philadelphia
100 N. Sixth Street
Philadelphia, PA 19105

Furusawa, T.
Fujitsu Limited
1015 Kamikodanaka
Nakahara-ku
Kawasaki, Japan

Goldhammer, Donald H
University of Chicago
Computation Center
5737 S. University
Chicago, Illinois 60637

Grace, Thom.
Argonne National Laboratory

6th Annual Speakeasy Conference

-2-

Hall, Janet M.
Clemson University
Computer Center
Clemson, SC 29631

Harris, James S.
Exxon Corporation
P. O. Box 153
Florham Park, NJ 07932

Haycock, Andrew B.
National Research Council
Bldg. M-60
Montreal Rd
Ottawa, Ontario K1A 0R6

Herman, Ronald I.
Federal Reserve
Data Processing
20th & Constitution Avenue
Washington, D.C. 20551

Hopper, Marcy
Speakeasy Computing Corporation
222 West Adams Street
Chicago, Illinois 60606

Hull, Harry M.
Computing Center
University of Wisconsin
1210 W. Dayton St.
Madison, Wisconsin 53706

Jones, Alan J.
Unilever Computer Services
Box 110
Watford, Herts
England WDI ISA

Kaplan, Randy
Federal Reserve Bank of Phila.
100 N. Sixth Street
Philadelphia, PA 19105

Kau, Jackie Y.
Federal Reserve Bank of S.F.
400 Sansome St.
San Francisco, CA 94120

Kilgore, James A.
Department of Army
USAMSSA(CSAM-DPD-D)
Pentagon
Washington, D.C. 20310

Lachmuth, Lyle T.
Imperial Oil Ltd
Systems & Computer Services
500 6 Avenue SW
Calgary Alberta
Canada T2P 2S1

Laplanche, Gilbert J.
University of Liege
C.E.C.T.I.
15 Avenue des Tilleuls
Liege Belgium B-4000

Leibson, Norman H.
Security Pacific Bank
611 North Brand
Glendale, CA 91203

Maccabee, Halaine
Northeastern Illinois Planning
Commission
400 West Madison
Chicago, Illinois 60606

Machusick, Richard A.
GPU Service Corporation
Box 1018
Reading, PA 19603

Macycr, Robert
Gulf University Research
Consortium Suite 600
5909 W. Loop South
Bel Air, Texas 77401

Massagli, Robert A.
Federal Reserve Bank of S.F.
400 Sansome St.
San Francisco, CA 94120

Massaquoi, Steve
Argonne National Laboratory

Meacham, Robert C.
Union Carbide Corporation
Nuclear Division
M.S.259, 4500N
P. O. Box X
Oak Ridge, TN 37830

O'Donnell, Patrick T.
Pennzoil Company
700 Milam
Houston, Texas 77001

6th Annual Speakeasy Conference

-3-

O'Reilly, Daniel F.X.
Argonne National Laboratory

Overton, Charles E.
U. S. Dept. of Agriculture
500 12th S.W.
Washington, D. C. 20250

Paloranta, Duane L.
Control Data Corporation
8100-34th Avenue So.
Minneapolis, MN. 55440

Peterson, Barbara C.
Florida Power Corporation
3201 - 34th Street South
St. Petersburg, Florida 33711

Pieper, Steven
Argonne National Laboratory

Reynolds, John H.
COMSAT
P. O. 115
Clarksburg, Maryland 20734

Richau, Clem
A. S. Hansen, Inc.
EDP
1080 Green Bay Rd.
Lake Bluff, Illinois 60044

Rower, Jack
Economic Research Service
U. S. Department of Agriculture
500 12th Street, S.W.
Washington, D.C. 20250

Rutiezer, Howard
A.S. Hansen, Inc.
EDP
1080 Green Bay Rd.
Lake Bluff, Illinois 60044

St. George, George
Department of Agriculture
Economic Research Service
500 12th SW Room 272
Washington, D. C. 20023

Saxe, David
Educational Testing Service
Rosedale Road
Princeton, New Jersey 08540

Schlichting, Richard
Argonne National Laboratory

Schwartz, Martin W.
Economic Research Service
U. S. Department of Agriculture
500 12th Street, S.W.
Washington, D. C. 20250

Sharp, Geoffrey H.
Lockheed
3251 Hanover
Palo Alto, CA 94304

Skrydlak, James S.
Amdahl Corporation
1250 East Arques Avenue
Sunnyvale, CA 94086

Stack, Dick
Thomas L. Jacobs & Associates
53 W. Jackson
Suite 1339
Chicago, Illinois 60604

Stob, Mike
Speakeasy Computing Corporation
222 West Adams Street
Chicago, Illinois 60606

Stokes, Houston H.
University of Illinois
Box 4348
Chicago, Illinois 60637

Van Hassel, Bill
Educational Testing Service
Rosedale Road
Princeton, New Jersey 08540

Wehrenberg, Monika
Argonne National Laboratory

Weiss, Michael
U.S. Department of Agriculture
500 12th St S.W., Room 202
Washington, D. C. 20250

6th ANNUAL SPEAKEASY CONFERENCE
August 17-18, 1978
Pick-Congress Hotel
Chicago, Illinois 60605

PROGRAM

THURSDAY, AUGUST 17

8:30 a.m.	Registration	
9:30 a.m.	Welcome Overview of Conference General Discussion	<i>S. Cohen</i>
10:30 a.m.	COFFEE	

GRAPHICS

11:00 a.m.	Graphics under Speakeeasy	<i>J. H. Reynolds</i>
11:30 a.m.	Speakeeasy on a Mini	<i>M. Bailey</i>
11:50 a.m.	Colour Graphics	<i>A. Jones</i>
12:15 p.m.	LUNCH	

TIME SERIES

1:45 p.m.	TDAM/OASIS A User Oriented System at U.S. Department of Agriculture	<i>M. Schwartz</i> <i>G. St. George</i>
2:30 p.m.	Implementation Difficulties with Box Jenkins Analysis	<i>R. Conley</i>
2:50 p.m.	General Discussion about Time Series Analysis	
3:15 p.m.	COFFEE	

APPLICATIONS

3:45 p.m.	Weather and Crop Yield Analysis System	<i>M. Weiss</i>
4:00 p.m.	Property Investment Analysis System	<i>D. Stack</i>
4:15 p.m.	General Discussion about Contributions	

4:30 p.m. Art and the Computer M. Wehrenberg
6:00 p.m. BANQUET--Family House Restaurant
10:30 p.m. Bus Leaves Family House for Pick-Congress

FRIDAY, AUGUST 18

DATA BASES UNDER SPEAKEASY

9:00 a.m. Relational Data Base R. Schlichting
9:15 a.m. Applications of Relational Data Bases B. Bavinger
9:45 a.m. TOTAL Interface, Implementation and Applications A. Diamant
10:15 a.m. COFFEE

SURVEY ANALYSIS

11:00 a.m. Survey Analysis Package from Liege G. Laplanche
11:30 a.m. F4STAT and Its Future under Speakeeasy D. Saxe
11:45 a.m. General Discussion about Statistics and Speakeeasy
12:15 p.m. LUNCH

NEW FEATURES IN SPEAKEASY

1:45 p.m. Partial Differential Equations Compiler/Optimization D. O'Reilly
T. Grace
3:00 p.m. COFFEE
3:45 p.m. Open
5:00 p.m. End of Conference

The conference schedule has been kept relatively open so that new topics can be added. The last session has been left open so that the audience can interact as a whole.

COMSAT Speakeasy Graphics
A Status Report

John H. Reynolds*

I. INTRODUCTION

This note will describe the status of the Speakeasy graphics system developed at COMSAT Laboratories. The objective of this system is to provide an uncomplicated graphics facility. Like many other Speakeasy linkules, graphics linkules can be thought of as generalized operators which map data onto a graphic display in a readily understandable form. The internal workings of this process while quite complicated are and should be invisible to the user. The inherent problem is that a format which is "readily understandable" for one user or one application may be incomplete or inappropriate for another user or application. The solution is to provide a stable, modular means of modifying the form of the graphic output. Stability here means that various sets of "bells and whistles" do not interfere with one another. It requires adherence to a central guiding philosophy and standards. Modularity means that the user can select only those modifications of interest to him. He should in fact be able to proceed without knowing the full capabilities of the system.

The ability to modify the graph has been steadily strengthened. The original version had scaling and labeling options and the ability to change the location and size of the axes. Later versions provided alternate axis formats such as probability scales and a USERAXIS which allows the user to specify the axis axis format in some detail. The flexibility of text output has been steadily improved and now exploits the capabilities of newer graphic devices. Special capabilities of supported devices, such as graphic input, have also been utilized.

This work is by no means complete. Because its development has been driven primarily by the requirements of COMSAT, the present system was designed to plot scientific and engineering data: line graphs on orthogonal axes. This format is of course also appropriate for many other applications but other formats such as histograms are also needed. Additional axis formats such as calendar scales are required for some applications. Compatible three-dimensional graphics should be supported. If the

*Author's address:

Device Physics Department
COMSAT Laboratories
Clarksburg, MD 20734

system is to continue to grow, these and other capabilities should be added.

A basic design principle is that present and future capabilities be compatible with all supported devices. When a requested function, such as graphic input, can not be performed by the device, a reasonable action must be taken. An example of this is shown later when the new character rotation facility is illustrated. A corollary is that a graph specification (and graphics programs) should be portable; that is, once a graph has been generated on one device a "similar" graph should be producible on any other supported device.

The next section contains an overview of the graphics system design. The means by which the system meets the objectives of stability, modularity, and portability are briefly described. Areas requiring improvement or development are pointed out. The last section illustrates some recent enhancements. Many of them were added to exploit the capabilities of the Tektronix 4662 pen plotter but can be adapted to similar new graphics devices. The result of recent work has been the ability to generate graphs of increasingly high quality on a greater variety of devices.

II. SYSTEM OVERVIEW

A. Operational Components

The operational part of the system consists of:

1. graphics linkules which are compatible with the standard Speakeasy processor;
2. sets of device dependent parameters used to initialize the system, control the hardware interface software, and provide appropriate default values for the graph specifications;
3. Help Documents and other user-oriented documentation.

Graphics linkules are classified as device independent or device dependent. The former are used to set up graph specifications and to interact with the Speakeasy processor. The latter interact with a graphic device or return results which depend on the characteristics of the device. Each device dependent linkule is self contained incorporating all necessary device driver software. Since the driver software is unique to a specific device or device family, multiple linkule libraries are required to support diverse graphic devices. As described below, the appropriate library is automatically attached to the processor and

used by the graphics system. At present, support is available for Tektronix CRT terminals, the Tektronix 4662 pen plotter, and Anderson-Jacobson terminals.

Figure 1 illustrates the overall flow of a graphics session. The GRAPHICS linkule initializes the system. The initialization process, which is discussed in more detail below, creates communication areas (TERMPARM and PLOTPARM) which remain in Named Storage for the duration of the graphics session. Graph specifications stored in PLOTPARM are modified by device independent linkules such as SETXSCALE. Device dependent linkules, such as GRAPH, ANNOTATE, and CURSOR, interact with the graphic device. For example, the GRAPH linkule which is described in more detail below, uses the graph specifications in PLOTPARM and the device dependent parameters in TERMPARM to generate a graph.

Most graphics linkules are straightforward but two key linkules, GRAPHICS and GRAPH, require a more detailed description. Figure 2 illustrates the initialization procedure performed by the GRAPHICS linkule. One of the parameters passed to GRAPHICS is a word (such as TEK4014) which identifies the graphic device. This must be the name (or alias name) of a member of an attached library. The member contains the appropriate device dependent parameter set. (In the present implementation, the parameters are stored in members of 'SPEAK.PROCLIB'). The parameters are used to initialize TERMPARM. One of them is the file name of the supporting device dependent linkule library. This file is dynamically attached to the processor using the Speakeasy Data Management Facility.

If PLOTPARM already exists in Named Storage, it is retained; otherwise it is allocated and initialized. GRAPHICS itself does not initialize the graphic device; instead it schedules the device initialization linkule, STARTGRA, and returns control to the processor. The processor then calls STARTGRA from the newly attached device dependent linkule library.

Figure 3 shows the processing done by the GRAPH linkule. After verifying the argument list, GRAPH plots the data according to the specifications in PLOTPARM using the device dependent parameters in TERMPARM. GRAPH does not generate axes or labels. Instead it schedules the axis generation linkules and a label generation linkule and returns to the processor. The processor calls the scheduled linkules. An axis can be generated either by special axis linkules or by default linkules. Special axis linkules which create special formats such as a probability scale are specified by keywords stored in PLOTPARM by the SETXAXIS and SETYAXIS linkules. By convention, the corresponding linkule names are @XKEYWOR (for an X axis) and @KEYWOR (for a Y axis). KEYWOR is the axis keyword shortened if necessary to six characters. A keyword is validated simply by determining that the corresponding linkule is in an attached library. This mechanism makes it

quite simple to add special axes. The default situation is signaled by a blank keyword parameter. The default axis linkule name is determined by the data scaling mode (linear and logarithmic scaling are currently supported). Only a default labeling linkule is presently available, but alternate linkules could be specified via a similar mechanism.

A logical improvement is to move the curve generation code into another linkule. Then the GRAPH linkule would become device independent, serving primarily as a checker and scheduler. Additional data formats, such as histograms, could then be provided by adding alternate data plotting linkules.

The other graphics linkules are more straightforward and will not be discussed in this overview. They perform elementary functions such as modifying specifications in PLOTPARM or generating text. The graphics Help Documents provide a functional description.

B. Support and Development Components

The graphic software is organized into three levels. The highest is the graphic linkule code. The second is the graphic subroutines called by the graphic linkules. There are two classes: 1) utility subroutines which perform internal functions such as scaling or extracting data from the communication areas; 2) device interface subroutines which interface between the linkules and the device driver software. Device interface subroutines perform elementary functions such as drawing a straight line or generating a line of text. All communication with graphic devices must occur through interface subroutines. (An exception is the startup linkule which may make direct calls to the driver software.) The lowest level is the device driver software supplied by the device manufacturer. Only elementary driver routines are required.

This organization allows expansion in two directions: 1) new or improved linkules can be written; 2) new device interface libraries can be added to support other graphic devices. The system has the potential to grow geometrically as new capabilities are added and new devices are supported.

System documentation and source text for the graphic help documents is in Waterloo Script readable form. Procedures have been developed which generate a formatted Help Document listing and which build a standard Speakeasy Help Document library directly from the source text. Other support facilities include a linkule to create or modify the device parameter sets.

III. RECENT WORK

Recent work has concentrated on providing support for the Tektronix 4662 pen plotter. The plotter has graphic input capabilities. A new version of the CURSOR linkule uses this capability and is useful for digitizing existing graphs or drawings. The plotter also has improved character output, including variable character size and character rotation. This capability is used by both the GRAPH and ANNOTATE linkules. Character rotation is illustrated in Figures 4 through 6. Figure 4 contains a Speakeasy program which calls the new ANNOTATE. The resulting output on a pen plotter is shown in Figure 5. The same program using a Tektronix 4014 CRT terminal which does not support character rotation is shown in Figure 6. It is seen that the text arrangement has been altered so that it remains readable in all orientations. This is an example of portability -- Figure 6 is "similar" to Figure 5.

The plotter also supports variable character width and height. This feature is exploited by a variable pitch option which generates a version of Engineering Gothic script: the character width and spacing is variable; some character pairs such as "LT" are overlapped. The result is comparable to hand drawn lettering. Superscript and subscript notation is also supported. Superscript characters which are part of the "TN train" character set can be generated. They are signaled by escape characters in the text string; for example, the expression "X to the minus one" can be designated by the Speakeeasy statement: ANNOTATE(1, 1, "X%-%1"). The percent signs are escape characters which indicate that the following character is to be translated to a special character. General subscript and superscript notation is provided by the escape sequences: "%>" and "%<". The former (read as half space up) is used to prefix a string of superscripts; the latter (read as half space down) prefixes a string of subscripts. Half space down is also used to return from the superscript mode to the normal text mode; similarly, half space up terminates the subscript mode. Mixed subscripts and superscripts are allowed. An example of the new text output on a pen plotter is shown in Figure 7. The program is shown in Figure 8. Subscripts and superscripts can be generated on all supported devices.

Another new feature is the ORIENTGRAPH command. This command allows the user to effectively override the graph location and length specifications; the modifications remain in effect for the duration of the session. ORIENTGRAPH uses the graphic input facility of the graphics device (the crosshairs on Tektronix CRT terminals and the pen position on the Tektronix pen plotter) to indicate the location of the graph boundary. The axis lengths are adjusted and the display coordinates are translated and (if necessary) rotated to align the graph with the indicated points. The coordinate transformation is applied to all subsequent graphic

output including text generated by the ANNOTATE command. It is also applied by the CURSOR linkule which returns values relative to the adjusted graph location. This facility is useful when digitizing. The ORIENTGRAPH Help Document contains more detailed information. One of the available options can be used to align the graph with respect to a calibration point (or benchmark) located at an arbitrary position. A sample program illustrating ORIENTGRAPH is shown in Figure 9; sample output is shown in Figures 10 and 11. The top graph was generated according to the specifications while the bottom graph was generated after the specifications were overridden by ORIENTGRAPH. Figure 11 shows that the graph can be rotated to correct for misalignment of the paper.

The last example illustrates a new data smoothing linkule as well as a Speakeasy program used to plot smoothed data with gaps in the neighborhood of the original data points. The linkule, SMOOTHCURVE, is an interface to IMSL data smoothing subroutines. It is described in detail in the SMOOTHCURVE Help Document. A notable option is DEGLITCH which invokes an empirical procedure to eliminate NON-random errors in the data. It adjusts data values which differ significantly from neighboring points. GAPCURVE shown in Figure 12 is the Speakeasy program. It uses SMOOTHCURVE and a number of other graphics linkules. Sample output from GAPCURVE is plotted in Figure 13 which also shows the original data points.

Two variations of SMOOTHCURVE, SMOOTH1D and SMOOTH2D, return respectively the first and second derivatives of the smoothed curve.

ACKNOWLEDGMENT

I would like to thank my colleagues at COMSAT Laboratories, particularly Gary Gordon, whose comments and suggestions contributed greatly to the development of the system. I also greatly appreciate Gary's invaluable assistance in the preparation of the Help Documents. Jerry Shifrin installed the COMSAT graphics driver packages and made a lot of balky software perform as specified. Al Berger made improvements to the processor which made many recent developments possible. Steve Pieper made many helpful suggestions and improvements. Finally, I would like to add special thanks to Stan Cohen for his continuing advice, encouragement and support.

GRAPHICS SESSION FLOW

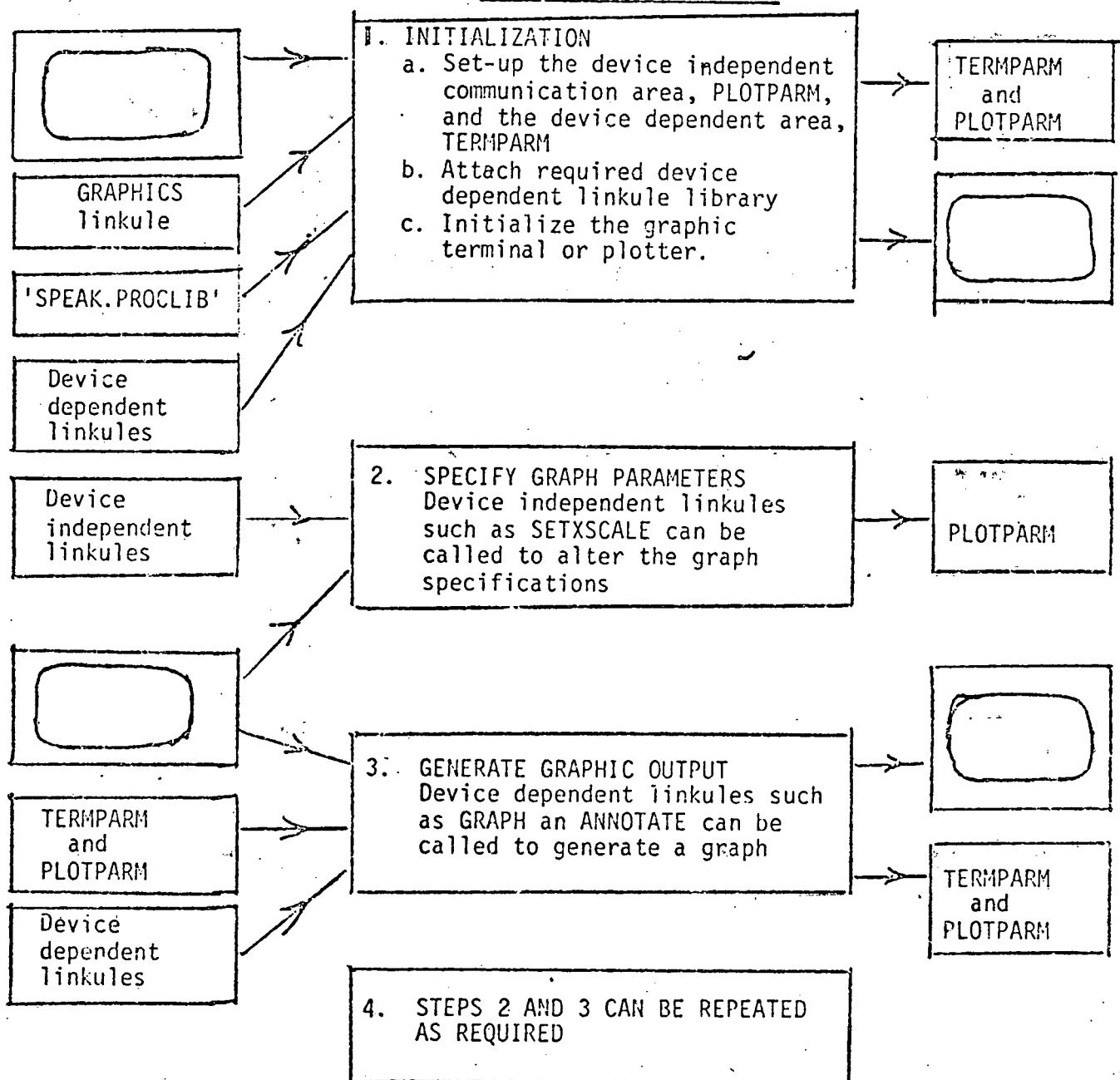


Figure 1

THE GRAPHICS LINKULE

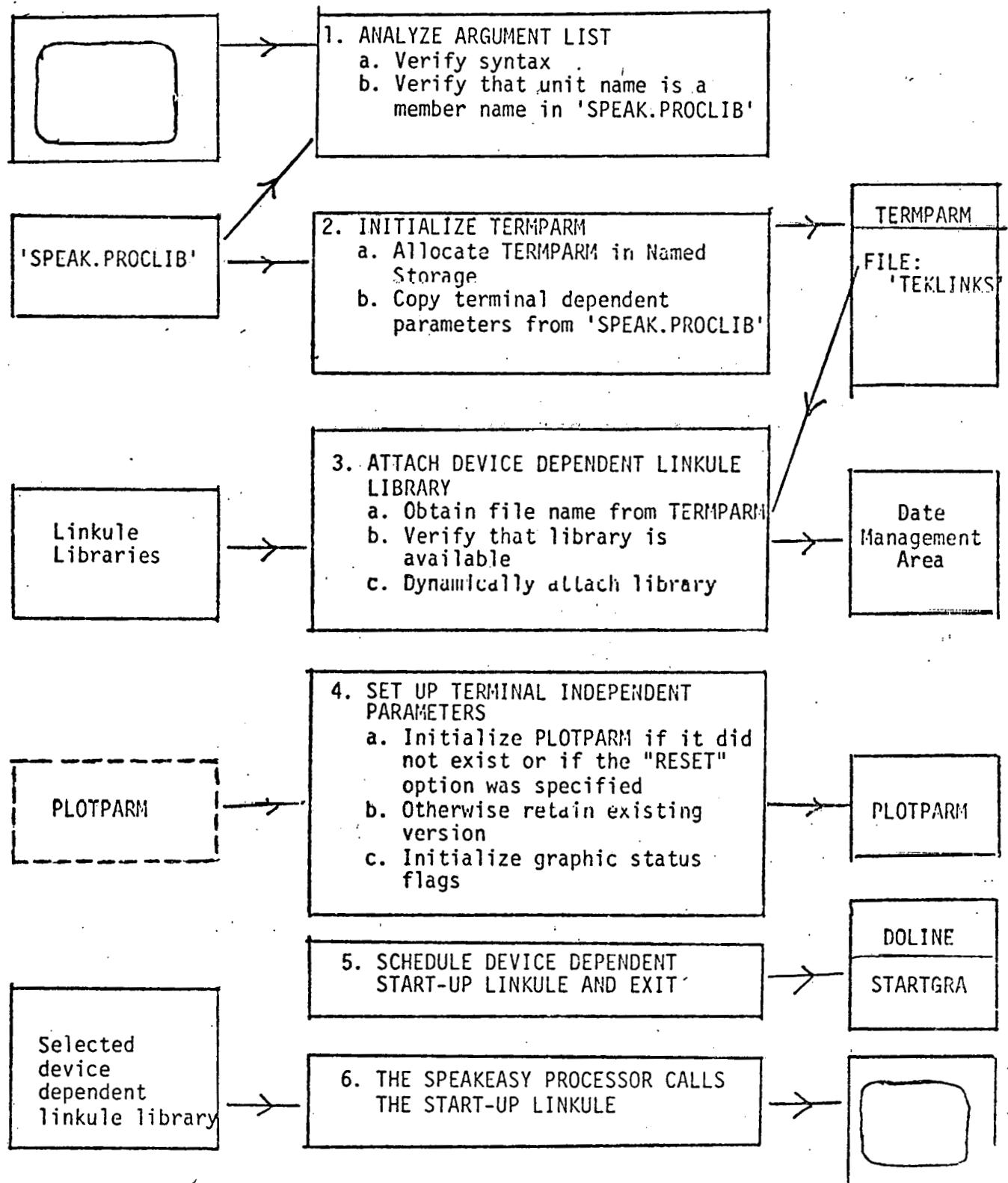


Figure 2

GRAPH LINKULE

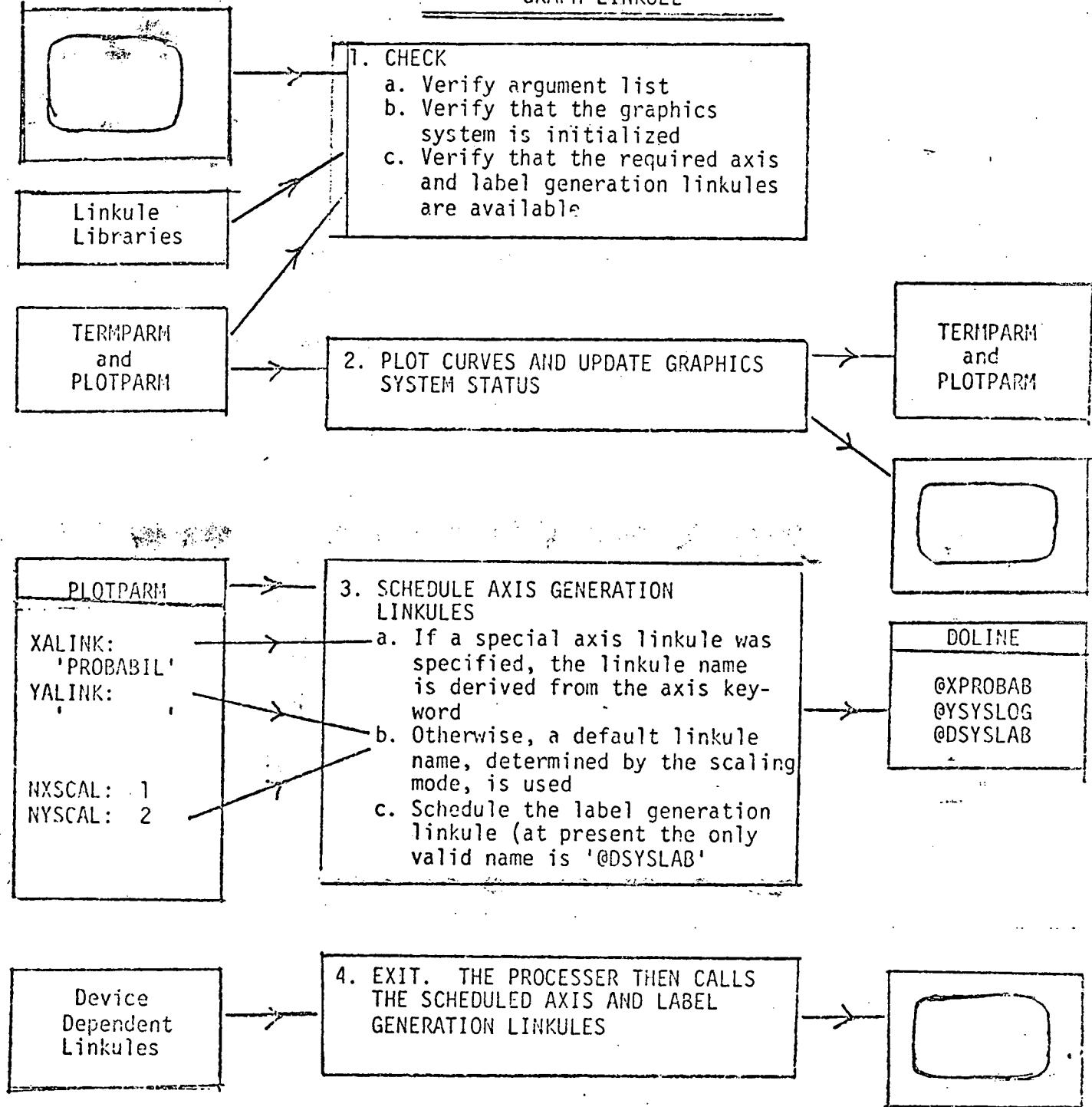


Figure 3

EDITING DEMO2
1.0 PROGRAM
2.0 \$ PROGRAM TO DEMONSTRATE ANNOTATE
3.0 GRAPHICS RESET
4.0 ANGLES IN DEGREES
4.5 ERASE
5.0 FOR THETA=0,336,30
6.0 ANNOTATE(3+SIN(THETA),3+COS(THETA), "Specklesy!", 1, THETA)
*7.0 NEXT THETA
:End
MANUAL MODE
:_graphics tek4662

ENTER PAPER SIZE: HEIGHT,WIDTH
:8,7
READY FOR GRAPHICS ON A TEKTRONIX PLOTTER
:_demo2
EXECUTION STARTED

MANUAL MODE
:_

Figure 4

Speakeasy!
Speakeasy!
Speakeasy!
Speakeasy!
Speakeasy!
Speakeasy!

Figure 5

•ANJALI M. DE

Figure 6

SPECIAL CHARACTER OUTPUT

TN CHARACTERS

"H%2 = X%2 + Y%2"

is displayed as: $H^2 = X^2 + Y^2$

GENERAL SUBSCRIPT AND SUPERSCRIPT NOTATION

"U%<1,J%> = V%<0%> + W%>2%<%<1"

is displayed as: $U_{1,J} = V_0 + W_1^2$

Figure 7

1
EDITING DEMO3

1 PROGRAM
2 \$ PROGRAM TO DEMONSTRATE SPECIAL CHARACTER OUTPUT
3 GRAPHICS RESET
4 SETCHAR(0.24)
5 ANNOTATE(7.5,3.5,"SPECIAL CHARACTER OUTPUT",1.5:ABOVE,CENTERED)
6 ANNOTATE(6,0.6,"TN CHARACTERS")
7 ANNOTATE(5.5,1.0,"H%2 = X%2 + Y%2")
8 ANNOTATE(5,1.0,"is displayed as: H%2 = X%2 + Y%2")
9 ANNOTATE(4,0.6,"GENERAL SUBSCRIPT AND SUPERSCRIPT")
10 ANNOTATE(3.75,1,"NOTATION")
*11 ANNOTATE(3.25,1.0,"U%<1,j%> = U%<0%> + U%>2%<%<1")
12 ANNOTATE(2.75,1.0,"is displayed as: U<1,j%> = U<0%> + U%>2%<%<1")
::%

Figure 8

1 EDITING DEMO1

1 PROGRAM
2 S PROGRAM TO DEMONSTRATE ORIENTGRAPH COMMAND
3 GRAPHICS RESET
4 SETCHAR(0.17)
5 SETXAXIS LOCATION 1.5, LENGTH 3
6 SETYAXIS LOCATION 5, LENGTH 2
7 SETTITLE ("ORIENTGRAPH DEMO")
8 SETXLABEL "X AXIS"; SETYLABEL "YAXIS"
9 FOR I=1, 2
10 GRAPH INTEGERS(1,5)
11 ANNOTATE(6.5,2,"A STRING")
12 IF (I .EQ. 1) ORIENTGRAPH
213 NEXT I
:Send
MANUAL MODE
:-graphics tek4662

ENTER PAPER SIZE: HEIGHT,WIDTH

120,7

READY FOR GRAPHICS ON A TEKTRONIX PLOTTER

:_demo1

EXECUTION STARTED

LOAD GRAPH PAPER THEN PRESS RETURN

LOAD GRAPH PAPER THEN PRESS RETURN

881

881

MANUAL MODE

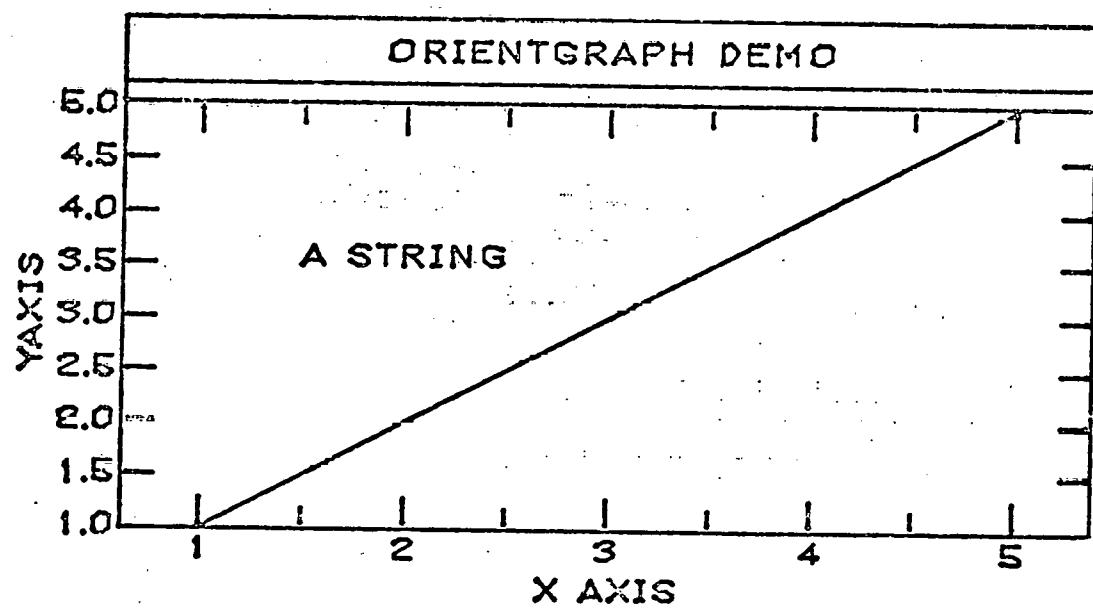
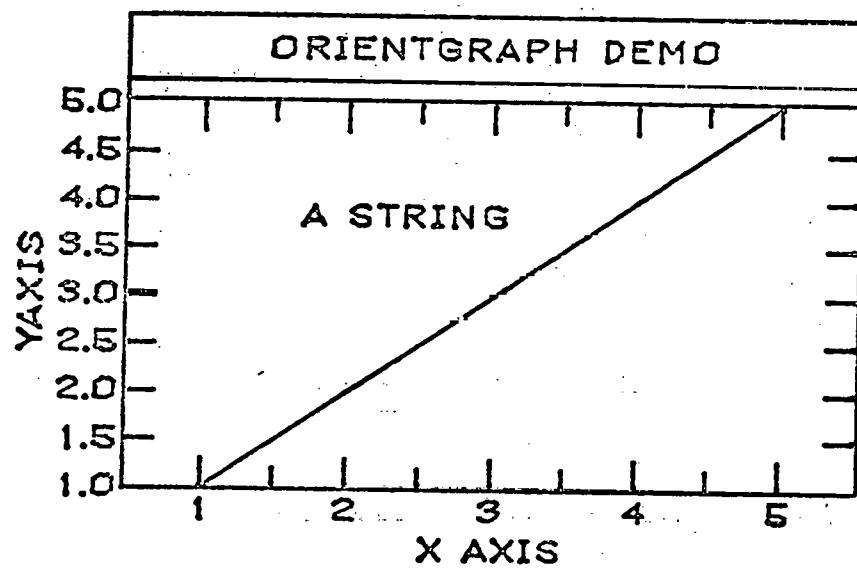



Figure 10

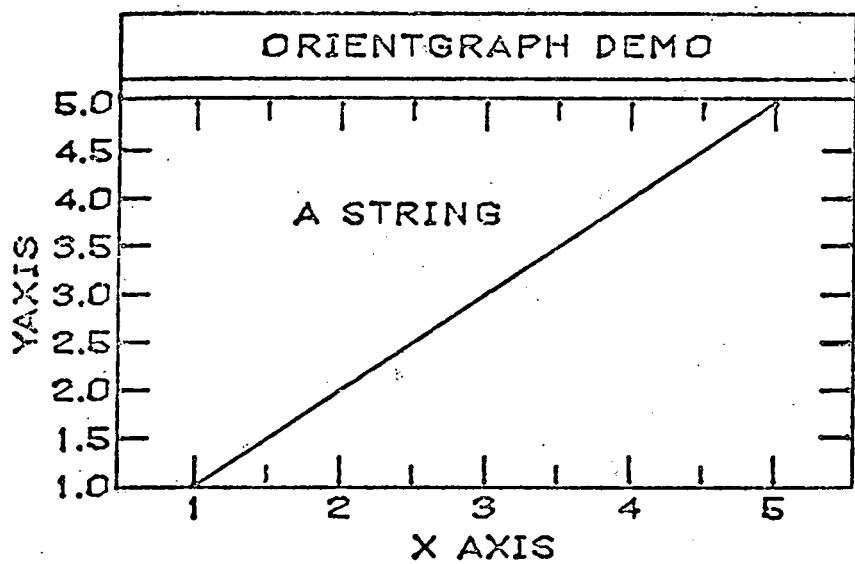


Figure 11

```

1 1st
2 1) TING CAPCURVE
3 2) PRGMPAR CAPCURVE
4 3) A PROGRAM TO FIT A SMOOTHED CURVE THROUGH DATA WITH GAPS
5 4) IN THE NEIGHBORHOOD OF THE DATA POINTS
6 5) INPUT:
7 6)   R   THE SIZE OF THE NEIGHBORHOOD.
8 7)   X   THE X DATA
9 8)   Y   THE Y DATA
10 9)   DY  THE ERROR IN Y
11 10)  DELX THE INCREMENT BETWEEN POINTS ON THE SMOOTHED CURVE
12 11) OUTPUT:
13 12)  XOUT THE SMOOTHED CURVE GRID
14 13)  YOUT THE SMOOTHED CURVE Y VALUES
15 14)  NULLPOINT A VARIABLE CONTAINING THE VALUE OF POINTS TO BE
16 15)  SKIPPED
17 16) TEMPORARY VARIABLES:
18 17)  XS,YS,DYS,YP,YR,A,B,C,S,T,ALPHA,XIP,X2P,SCALE,XLOU,XHIGH
19 18) FREEIF(XOUT,YOUT)
20 19)  XS=XLOCATION(X);YS=YLOCATION(Y),DYS=YLOCATION(Y+DY)-YS
21 20)  YP=SMOOTH(XS+R,YS,XS,DYS);YM=SMOOTH(XS-R,YS,XS,DYS)
22 21)  A=SORT((YS-YP)IZZ+RIZZ)
23 22)  B=SORT((YP-YR)IZZ+4RIZZ)
24 23)  C=SQRT((YS-YM)IZZ+RIZZ)
25 24)  S=0.5*(A+B+C)
26 25)  T=SORT((S-A)IZ(S-B)IZ(S-C)/S)
27 26)  ALPHA=2*ATAN(T/(S-A))
28 27)  XIP=RIIZ-CIZ2ISIN(ALPHA)IZZ
29 28)  WHERE ((XIP.LT. 0.09IRIZZ) XIP=0.
30 29)  XIP=SORT(XIP)
31 30)  X2P=CICOS(ALPHA)
32 31)  XLCU=RIZ(X2P-XIP)/B-1)
33 32)  XHIGH=XLCU+4XIPIR/B
34 33)  SCALE=(X(2)-X(1))/(XS(2)-XS(1))
35 34)  XLCU=X*SCALE*XLOW; XHIGH=X*SCALE*XHIGH
36 35)  JMULL=1;XOUT=ARRAY(X(1))
37 36)  FREE(XS,YS,DYS,YP,YR,A,B,C,S,T,ALPHA,XIP,X2P,SCALE)
38 37)  COMPUTE OUTPUT &RTD
39 38)  FOR I=1,MCELS(XLOW)-1
40 39)    XOUT=XOUT,VARIABLE(XHIGH(I),XLOW(I+1),DELX),X(I+1)
41 40)    JMULL=JMULL,MCELS(XOUT)
42 41)  NEXT I
43 42)  FREE (XLOW,XHIGH)
44 43)  YOUT=SMOOTH(XOUT,Y,X,DY)
45 44)  NULLPOINT=1.2345E-56
46 45)  XOUT(JMULL)=NULLPOINT
47 46)  1) _keepdeck gpcurve
48 47)  2) _quit
49 48)  3) _exit
50 49)  4) _help
51 50)  5) _quit
52 51)  6) _exit
53 52)  7) _help
54 53)  8) _quit
55 54)  9) _exit
56 55)  10) _help
57 56)  11) _quit
58 57)  12) _exit
59 58)  13) _help
60 59)  14) _quit
61 60)  15) _exit
62 61)  16) _help
63 62)  17) _quit
64 63)  18) _exit
65 64)  19) _help
66 65)  20) _quit
67 66)  21) _exit
68 67)  22) _help
69 68)  23) _quit
70 69)  24) _exit
71 70)  25) _help
72 71)  26) _quit
73 72)  27) _exit
74 73)  28) _help
75 74)  29) _quit
76 75)  30) _exit
77 76)  31) _help
78 77)  32) _quit
79 78)  33) _exit
80 79)  34) _help
81 80)  35) _quit
82 81)  36) _exit
83 82)  37) _help
84 83)  38) _quit
85 84)  39) _exit
86 85)  40) _help
87 86)  41) _quit
88 87)  42) _exit
89 88)  43) _help
90 89)  44) _quit
91 90)  45) _exit
92 91)  46) _help
93 92)  47) _quit
94 93)  48) _exit
95 94)  49) _help
96 95)  50) _quit
97 96)  51) _exit
98 97)  52) _help
99 98)  53) _quit
100 99)  54) _exit
101 100) 55) _help
102 101) 56) _quit
103 102) 57) _exit
104 103) 58) _help
105 104) 59) _quit
106 105) 60) _exit
107 106) 61) _help
108 107) 62) _quit
109 108) 63) _exit
110 109) 64) _help
111 110) 65) _quit
112 111) 66) _exit
113 112) 67) _help
114 113) 68) _quit
115 114) 69) _exit
116 115) 70) _help
117 116) 71) _quit
118 117) 72) _exit
119 118) 73) _help
120 119) 74) _quit
121 120) 75) _exit
122 121) 76) _help
123 122) 77) _quit
124 123) 78) _exit
125 124) 79) _help
126 125) 80) _quit
127 126) 81) _exit
128 127) 82) _help
129 128) 83) _quit
130 129) 84) _exit
131 130) 85) _help
132 131) 86) _quit
133 132) 87) _exit
134 133) 88) _help
135 134) 89) _quit
136 135) 90) _exit
137 136) 91) _help
138 137) 92) _quit
139 138) 93) _exit
140 139) 94) _help
141 140) 95) _quit
142 141) 96) _exit
143 142) 97) _help
144 143) 98) _quit
145 144) 99) _exit
146 145) 100) _help
147 146) 101) _quit
148 147) 102) _exit
149 148) 103) _help
150 149) 104) _quit
151 150) 105) _exit
152 151) 106) _help
153 152) 107) _quit
154 153) 108) _exit
155 154) 109) _help
156 155) 110) _quit
157 156) 111) _exit
158 157) 112) _help
159 158) 113) _quit
160 159) 114) _exit
161 160) 115) _help
162 161) 116) _quit
163 162) 117) _exit
164 163) 118) _help
165 164) 119) _quit
166 165) 120) _exit
167 166) 121) _help
168 167) 122) _quit
169 168) 123) _exit
170 169) 124) _help
171 170) 125) _quit
172 171) 126) _exit
173 172) 127) _help
174 173) 128) _quit
175 174) 129) _exit
176 175) 130) _help
177 176) 131) _quit
178 177) 132) _exit
179 178) 133) _help
180 179) 134) _quit
181 180) 135) _exit
182 181) 136) _help
183 182) 137) _quit
184 183) 138) _exit
185 184) 139) _help
186 185) 140) _quit
187 186) 141) _exit
188 187) 142) _help
189 188) 143) _quit
190 189) 144) _exit
191 190) 145) _help
192 191) 146) _quit
193 192) 147) _exit
194 193) 148) _help
195 194) 149) _quit
196 195) 150) _exit
197 196) 151) _help
198 197) 152) _quit
199 198) 153) _exit
200 199) 154) _help
201 200) 155) _quit
202 201) 156) _exit
203 202) 157) _help
204 203) 158) _quit
205 204) 159) _exit
206 205) 160) _help
207 206) 161) _quit
208 207) 162) _exit
209 208) 163) _help
210 209) 164) _quit
211 210) 165) _exit
212 211) 166) _help
213 212) 167) _quit
214 213) 168) _exit
215 214) 169) _help
216 215) 170) _quit
217 216) 171) _exit
218 217) 172) _help
219 218) 173) _quit
220 219) 174) _exit
221 220) 175) _help
222 221) 176) _quit
223 222) 177) _exit
224 223) 178) _help
225 224) 179) _quit
226 225) 180) _exit
227 226) 181) _help
228 227) 182) _quit
229 228) 183) _exit
230 229) 184) _help
231 230) 185) _quit
232 231) 186) _exit
233 232) 187) _help
234 233) 188) _quit
235 234) 189) _exit
236 235) 190) _help
237 236) 191) _quit
238 237) 192) _exit
239 238) 193) _help
240 239) 194) _quit
241 240) 195) _exit
242 241) 196) _help
243 242) 197) _quit
244 243) 198) _exit
245 244) 199) _help
246 245) 200) _quit
247 246) 201) _exit
248 247) 202) _help
249 248) 203) _quit
250 249) 204) _exit
251 250) 205) _help
252 251) 206) _quit
253 252) 207) _exit
254 253) 208) _help
255 254) 209) _quit
256 255) 210) _exit
257 256) 211) _help
258 257) 212) _quit
259 258) 213) _exit
260 259) 214) _help
261 260) 215) _quit
262 261) 216) _exit
263 262) 217) _help
264 263) 218) _quit
265 264) 219) _exit
266 265) 220) _help
267 266) 221) _quit
268 267) 222) _exit
269 268) 223) _help
270 269) 224) _quit
271 270) 225) _exit
272 271) 226) _help
273 272) 227) _quit
274 273) 228) _exit
275 274) 229) _help
276 275) 230) _quit
277 276) 231) _exit
278 277) 232) _help
279 278) 233) _quit
280 279) 234) _exit
281 280) 235) _help
282 281) 236) _quit
283 282) 237) _exit
284 283) 238) _help
285 284) 239) _quit
286 285) 240) _exit
287 286) 241) _help
288 287) 242) _quit
289 288) 243) _exit
290 289) 244) _help
291 290) 245) _quit
292 291) 246) _exit
293 292) 247) _help
294 293) 248) _quit
295 294) 249) _exit
296 295) 250) _help
297 296) 251) _quit
298 297) 252) _exit
299 298) 253) _help
300 299) 254) _quit
301 300) 255) _exit
302 301) 256) _help
303 302) 257) _quit
304 303) 258) _exit
305 304) 259) _help
306 305) 260) _quit
307 306) 261) _exit
308 307) 262) _help
309 308) 263) _quit
310 309) 264) _exit
311 310) 265) _help
312 311) 266) _quit
313 312) 267) _exit
314 313) 268) _help
315 314) 269) _quit
316 315) 270) _exit
317 316) 271) _help
318 317) 272) _quit
319 318) 273) _exit
320 319) 274) _help
321 320) 275) _quit
322 321) 276) _exit
323 322) 277) _help
324 323) 278) _quit
325 324) 279) _exit
326 325) 280) _help
327 326) 281) _quit
328 327) 282) _exit
329 328) 283) _help
330 329) 284) _quit
331 330) 285) _exit
332 331) 286) _help
333 332) 287) _quit
334 333) 288) _exit
335 334) 289) _help
336 335) 290) _quit
337 336) 291) _exit
338 337) 292) _help
339 338) 293) _quit
340 339) 294) _exit
341 340) 295) _help
342 341) 296) _quit
343 342) 297) _exit
344 343) 298) _help
345 344) 299) _quit
346 345) 300) _exit
347 346) 301) _help
348 347) 302) _quit
349 348) 303) _exit
350 349) 304) _help
351 350) 305) _quit
352 351) 306) _exit
353 352) 307) _help
354 353) 308) _quit
355 354) 309) _exit
356 355) 310) _help
357 356) 311) _quit
358 357) 312) _exit
359 358) 313) _help
360 359) 314) _quit
361 360) 315) _exit
362 361) 316) _help
363 362) 317) _quit
364 363) 318) _exit
365 364) 319) _help
366 365) 320) _quit
367 366) 321) _exit
368 367) 322) _help
369 368) 323) _quit
370 369) 324) _exit
371 370) 325) _help
372 371) 326) _quit
373 372) 327) _exit
374 373) 328) _help
375 374) 329) _quit
376 375) 330) _exit
377 376) 331) _help
378 377) 332) _quit
379 378) 333) _exit
380 379) 334) _help
381 380) 335) _quit
382 381) 336) _exit
383 382) 337) _help
384 383) 338) _quit
385 384) 339) _exit
386 385) 340) _help
387 386) 341) _quit
388 387) 342) _exit
389 388) 343) _help
390 389) 344) _quit
391 390) 345) _exit
392 391) 346) _help
393 392) 347) _quit
394 393) 348) _exit
395 394) 349) _help
396 395) 350) _quit
397 396) 351) _exit
398 397) 352) _help
399 398) 353) _quit
400 399) 354) _exit
401 400) 355) _help
402 401) 356) _quit
403 402) 357) _exit
404 403) 358) _help
405 404) 359) _quit
406 405) 360) _exit
407 406) 361) _help
408 407) 362) _quit
409 408) 363) _exit
410 409) 364) _help
411 410) 365) _quit
412 411) 366) _exit
413 412) 367) _help
414 413) 368) _quit
415 414) 369) _exit
416 415) 370) _help
417 416) 371) _quit
418 417) 372) _exit
419 418) 373) _help
420 419) 374) _quit
421 420) 375) _exit
422 421) 376) _help
423 422) 377) _quit
424 423) 378) _exit
425 424) 379) _help
426 425) 380) _quit
427 426) 381) _exit
428 427) 382) _help
429 428) 383) _quit
430 429) 384) _exit
431 430) 385) _help
432 431) 386) _quit
433 432) 387) _exit
434 433) 388) _help
435 434) 389) _quit
436 435) 390) _exit
437 436) 391) _help
438 437) 392) _quit
439 438) 393) _exit
440 439) 394) _help
441 440) 395) _quit
442 441) 396) _exit
443 442) 397) _help
444 443) 398) _quit
445 444) 399) _exit
446 445) 400) _help
447 446) 401) _quit
448 447) 402) _exit
449 448) 403) _help
450 449) 404) _quit
451 450) 405) _exit
452 451) 406) _help
453 452) 407) _quit
454 453) 408) _exit
455 454) 409) _help
456 455) 410) _quit
457 456) 411) _exit
458 457) 412) _help
459 458) 413) _quit
460 459) 414) _exit
461 460) 415) _help
462 461) 416) _quit
463 462) 417) _exit
464 463) 418) _help
465 464) 419) _quit
466 465) 420) _exit
467 466) 421) _help
468 467) 422) _quit
469 468) 423) _exit
470 469) 424) _help
471 470) 425) _quit
472 471) 426) _exit
473 472) 427) _help
474 473) 428) _quit
475 474) 429) _exit
476 475) 430) _help
477 476) 431) _quit
478 477) 432) _exit
479 478) 433) _help
480 479) 434) _quit
481 480) 435) _exit
482 481) 436) _help
483 482) 437) _quit
484 483) 438) _exit
485 484) 439) _help
486 485) 440) _quit
487 486) 441) _exit
488 487) 442) _help
489 488) 443) _quit
490 489) 444) _exit
491 490) 445) _help
492 491) 446) _quit
493 492) 447) _exit
494 493) 448) _help
495 494) 449) _quit
496 495) 450) _exit
497 496) 451) _help
498 497) 452) _quit
499 498) 453) _exit
500 499) 454) _help
501 500) 455) _quit
502 501) 456) _exit
503 502) 457) _help
504 503) 458) _quit
505 504) 459) _exit
506 505) 460) _help
507 506) 461) _quit
508 507) 462) _exit
509 508) 463) _help
510 509) 464) _quit
511 510) 465) _exit
512 511) 466) _help
513 512) 467) _quit
514 513) 468) _exit
515 514) 469) _help
516 515) 470) _quit
517 516) 471) _exit
518 517) 472) _help
519 518) 473) _quit
520 519) 474) _exit
521 520) 475) _help
522 521) 476) _quit
523 522) 477) _exit
524 523) 478) _help
525 524) 479) _quit
526 525) 480) _exit
527 526) 481) _help
528 527) 482) _quit
529 528) 483) _exit
530 529) 484) _help
531 530) 485) _quit
532 531) 486) _exit
533 532) 487) _help
534 533) 488) _quit
535 534) 489) _exit
536 535) 490) _help
537 536) 491) _quit
538 537) 492) _exit
539 538) 493) _help
540 539) 494) _quit
541 540) 495) _exit
542 541) 496) _help
543 542) 497) _quit
544 543) 498) _exit
545 544) 499) _help
546 545) 500) _quit
547 546) 501) _exit
548 547) 502) _help
549 548) 503) _quit
550 549) 504) _exit
551 550) 505) _help
552 551) 506) _quit
553 552) 507) _exit
554 553) 508) _help
555 554) 509) _quit
556 555) 510) _exit
557 556) 511) _help
558 557) 512) _quit
559 558) 513) _exit
560 559) 514) _help
561 560) 515) _quit
562 561) 516) _exit
563 562) 517) _help
564 563) 518) _quit
565 564) 519) _exit
566 565) 520) _help
567 566) 521) _quit
568 567) 522) _exit
569 568) 523) _help
570 569) 524) _quit
571 570) 525) _exit
572 571) 526) _help
573 572) 527) _quit
574 573) 528) _exit
575 574) 529) _help
576 575) 530) _quit
577 576) 531) _exit
578 577) 532) _help
579 578) 533) _quit
580 579) 534) _exit
581 580) 535) _help
582 581) 536) _quit
583 582) 537) _exit
584 583) 538) _help
585 584) 539) _quit
586 585) 540) _exit
587 586) 541) _help
588 587) 542) _quit
589 588) 543) _exit
590 589) 544) _help
591 590) 545) _quit
592 591) 546) _exit
593 592) 547) _help
594 593) 548) _quit
595 594) 549) _exit
596 595) 550) _help
597 596) 551) _quit
598 597) 552) _exit
599 598) 553) _help
600 599) 554) _quit
601 600) 555) _exit
602 601) 556) _help
603 602) 557) _quit
604 603) 558) _exit
605 604) 559) _help
606 605) 560) _quit
607 606) 561) _exit
608 607) 562) _help
609 608) 563) _quit
610 609) 564) _exit
611 610) 565) _help
612 611) 566) _quit
613 612) 567) _exit
614 613) 568) _help
615 614) 569) _quit
616 615) 570) _exit
617 616) 571) _help
618 617) 572) _quit
619 618) 573) _exit
620 619) 574) _help
621 620) 575) _quit
622 621) 576) _exit
623 622) 577) _help
624 623) 578) _quit
625 624) 579) _exit
626 625) 580) _help
627 626) 581) _quit
628 627) 582) _exit
629 628) 583) _help
630 629) 584) _quit
631 630) 585) _exit
632 631) 586) _help
633 632) 587) _quit
634 633) 588) _exit
635 634) 589) _help
636 635) 590) _quit
637 636) 591) _exit
638 637) 592) _help
639 638) 593) _quit
640 639) 594) _exit
641 640) 595) _help
642 641) 596) _quit
643 642) 597) _exit
644 643) 598) _help
645 644) 599) _quit
646 645) 600) _exit
647 646) 601) _help
648 647) 602) _quit
649 648) 603) _exit
650 649) 604) _help
651 650) 605) _quit
652 651) 606) _exit
653 652) 607) _help
654 653) 608) _quit
655 654) 609) _exit
656 655) 610) _help
657 656) 611) _quit
658 657) 612) _exit
659 658) 613) _help
660 659) 614) _quit
661 660) 615) _exit
662 661) 616) _help
663 662) 617) _quit
664 663) 618) _exit
665 664) 619) _help
666 665) 620) _quit
667 666) 621) _exit
668 667) 622) _help
669 668) 623) _quit
670 669) 624) _exit
671 670) 625) _help
672 671) 626) _quit
673 672) 627) _exit
674 673) 628) _help
675 674) 629) _quit
676 675) 630) _exit
677 676) 631) _help
678 677) 632) _quit
679 678) 633) _exit
680 679) 634) _help
681 680) 635) _quit
682 681) 636) _exit
683 682) 637) _help
684 683) 638) _quit
685 684) 639) _exit
686 685) 640) _help
687 686) 641) _quit
688 687) 642) _exit
689 688) 643) _help
690 689) 644) _quit
691 690) 645) _exit
692 691) 646) _help
693 692) 647) _quit
694 693) 648) _exit
695 694) 649) _help
696 695) 650) _quit
697 696) 651) _exit
698 697) 652) _help
699 698) 653) _quit
700 699) 654) _exit
701 700) 655) _help
702 701) 656) _quit
703 702) 657) _exit
704 703) 658) _help
705 704) 659) _quit
706 705) 660) _exit
707 706) 661) _help
708 707) 662) _quit
709 708) 663) _exit
710 709) 664) _help
711 710) 665) _quit
712 711) 666) _exit
713 712) 667) _help
714 713) 668) _quit
715 714) 669) _exit
716 715) 670) _help
717 716) 671) _quit
718 717) 672) _exit
719 718) 673) _help
720 719) 674) _quit
721 720) 675) _exit
722 721) 676) _help
723 722) 677) _quit
724 723) 678) _exit
725 724) 679) _help
726 725) 680) _quit
727 726) 681) _exit
728 727) 682) _help
729 728) 683) _quit
730 729) 684) _exit
731 730) 685) _help
732 731) 686) _quit
733 732) 687) _exit
734 733) 688) _help
735 734) 689) _quit
736 735) 690) _exit
737 736) 691) _help
738 737) 692) _quit
739 738) 693) _exit
740 739) 694) _help
741 740) 695) _quit
742 741) 696) _exit
743 742) 697) _help
744 743) 698) _quit
745 744) 699) _exit
746 745) 700) _help
747 746) 701) _quit
748 747) 702) _exit
749 748) 703) _help
750 749) 704) _quit
751 750) 705) _exit
752 751) 706) _help
753 752) 707) _quit
754 753) 708) _exit
755 754) 709) _help
756 755) 710) _quit
757 756) 711) _exit
758 757) 712) _help
759 758) 713) _quit
760 759) 714) _exit
761 760) 715) _help
762 761) 716) _quit
763 762) 717) _exit
764 763) 718) _help
765 764) 719) _quit
766 765) 720) _exit
767 766) 721) _help
768 767) 722) _quit
769 768) 723) _exit
770 769) 724) _help
771 770) 725) _quit
772 771) 726) _exit
773 772) 727) _help
774 773) 728) _quit

```

Figure 12

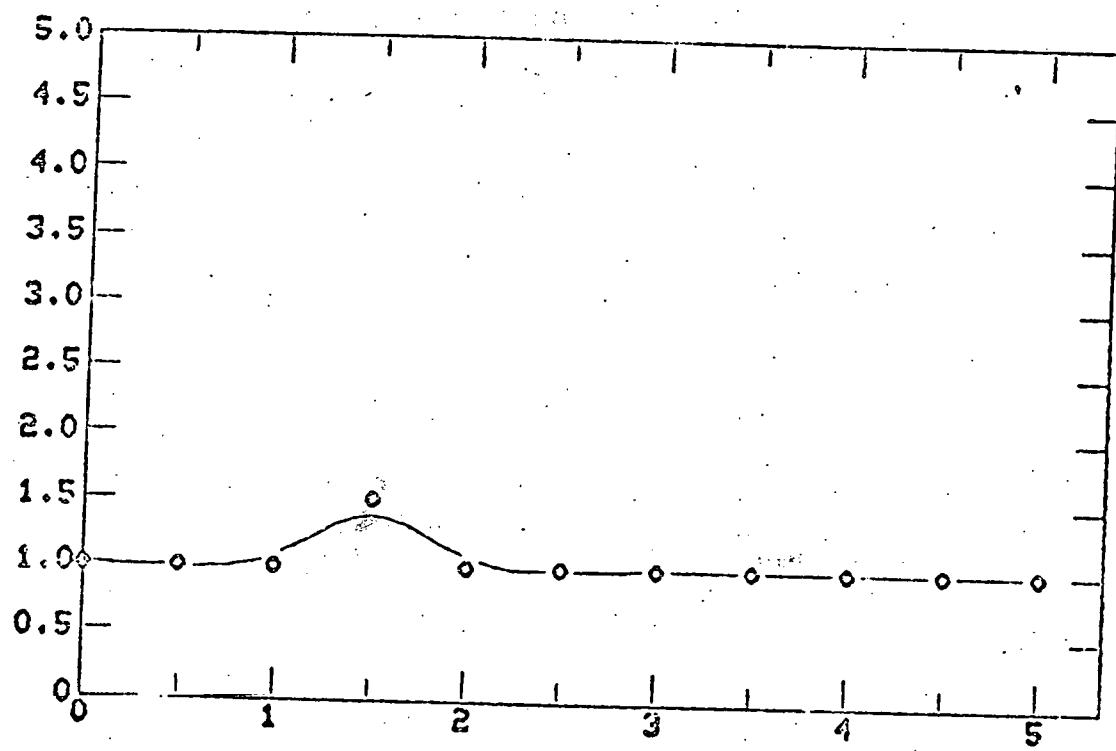


Figure 13

SPEAKEC: MINICOMPUTER SPEAKEASY

Mike Bailey

Dave Anderson¹

Abstract

Speakec is a minicomputer-based interpretive language modeled after Speakeeasy[1]. It is being developed at the Computer Aided Design and Graphics Laboratory in Purdue University's School of Mechanical Engineering. Speakec runs in 18K on a PDP 11/40 under the UNIX operating system.

Introduction

Although there has been an effort to maintain compatibility with Speakeeasy, certain concessions have been made to the limitations of a minicomputer. Speakec has only the manual (:_) mode, and the sole variable "kind" is real. However, variable "klasses" include scalars, arrays, vectors, matrices, and a special geometric modeling data structure of our own design.

The attempt to model the Speakeeasy environment on a minicomputer has its origins in several goals:

- Our primary objective is research into interactive computer graphics methods and techniques. Speakeeasy's powerful ability to manipulate numbers seemed to be an excellent method for achieving very tight control over the definition and modification of a 3D object.
- The on-site existence of a Speakeeasy-based system would enhance our educational environment.
- Using Speakec as a central monitor and data manipulator.

¹Authors' address:
Computer Aided Design and Graphics Lab
School of Mechanical Engineering
Purdue University
W. Lafayette, IN 47907

many graphical ideas and techniques may be integrated into one Computer Aided Design (CAD) system.

This third objective, using Speakec as a framework for a CAD system, has been of particular interest to us. The use of the "plug-in" linkules creates a unique CAD environment: minicomputer-based with a large variety of functions, but all functions available within one program rather than a loosely scattered group of programs. This lends a coherence that, to our knowledge, is unavailable elsewhere on a minicomputer.

Implementation

Speakec is implemented on a PDP 11/40 under UNIX[2], a PDP-11 operating system developed at Bell Telephone Laboratories. UNIX is a multi-user system for PDP-11's that has been rapidly growing in popularity. The implementation language for Speakec is C (hence the name SpeakeC), a structured programming language running under UNIX which is similar to PL/I and Pascal.

The UNIX-C combination produces a very powerful environment. It would not be an exaggeration to say that our minicomputer model of Speakeeasy would have been impossible without it. This team allows the user access to system routines without nightmarish encounters with assembly language. The system routines are useful in performing such difficult tasks as expanding the program's data area, linkule loading, special disk accesses, and the initialization of other processes on the system from within a program.

The heart of Speakec is its linkule loader. When a linkule is to be used, the loader first searches memory to see if that linkule has already been loaded from a previous use. If not, the loader searches a list of available linkules to determine its disk location. A linked list of allocated memory is then examined to determine if a large enough slot exists for the linkule. If not, other linkules are removed from memory, consolidating slots until either a large enough slot opens up or the load ultimately fails.

As the linkule is loaded, certain machine language words are relocated (changed to reflect the memory locations at which the linkule is being loaded) according to flags imparted to the linkule by a standard option of the C compiler. Thus, linkules may be loaded from the disk to any available memory slot.

The Speakec processor occupies 18K words of PDP-11 memory. Our current linkule libraries consist of about 150 linkules[3].

Applications

Some of the current developments in Speakec are shown in the figures. Figure 1 shows a cross section for a keyed shaft being created by graphically editing a 14-sided polygon. Figure 2 shows a

twisted keyed shaft produced by simultaneously rotating and translating the cross section. Figure 3 shows the same object with hidden lines removed. Although this particular hidden line program is not a part of the Speakec system, a linkule was written to produce a data file to be used as input to the hidden line program [4].

Figure 4 shows a goblet constructed with 36 points. Figure 5 shows the same goblet with surface patches fitted through the points. Surface patches are continuous, analytically defined elements of surface area which are also continuous with adjacent patches. Each boundary curve of the patch is formed with a parametric cubic curve. Because of their smoothness, surface patching is a popular tool for N/C machining. While only the patch boundary curves are shown in Figure 5, Figure 6 demonstrates the same patch network with interior cross-hatching applied to each patch.

Figure 7 is a quarter section of a disk being analyzed for radial (from the top toward the center) loading. Figures 8 and 9 show the results of Speakec's plane stress finite element routines. A linkule produced a data file representing the geometry of the quarter disk. An analysis program capable of reading this data file was then triggered and ran in the "background" (in UNIX one job may start another). When completed, the analysis program produced an output data file which was then accessed by other linkules. Figure 8 shows exaggerated deflections and Figure 9 shows the stress distribution represented as vertical displacements. The conversion from output data to meaningful graphical constructs was easily accomplished using standard Speakeasy grammar.

Another application currently being developed is in geometric modeling. Closed volumes are defined and may be translated, rotated, or scaled. Given two bodies, it will be possible to take their union, intersection, or difference to form a third body. In this manner, fairly complex 3D objects may be built very quickly and painlessly. Physical properties such as surface area, volume, center of gravity, and moments of inertia will be computable from the body data structure.

The Future

One of the main drives in our future work is to move Speakec to a minicomputer which is less obsolete than the 11/40. Recently we have had limited access to a PDP 11/70, and preliminary tests show speed increases by more than a factor of 50 times! Also, UNIX on the 11/70 allows a program's instruction and data areas to be separated and each occupy its own 32K block of memory. Under the 11/40, the entire program must occupy a single 32K block. Thus, more program expansion will be possible in the future.

Another advantage that the 70 would allow us is the presence of Fortran IV-Plus. We believe that a suitable interface may be developed to utilize the power of the Fortran IV-Plus compiler to allow Fortran linkules to be written, even though the Speakec

processor is written in C.

Another idea on the drawing board is the use of virtual data, that is, allowing certain parts of the user-defined data area to be placed out on disk when not in use. This will allow for larger overall data structures, necessary for more elaborate 3D surface and finite element work.

Acknowledgements

Our profound thanks to Stan Cohen. Without his openness, cooperation, and encouragement, this bird would have never gotten off the ground.

This work was indirectly funded in part by NASA grant NSG-2192, Ames Research Center.

References:

- [1] Cohen, Stanley and Pieper, Steven C., The SPEAKEASY-3 Reference Manual/Level MU, Argonne National Laboratory Report ANL-8000, August 1977.
- [2] Ritchie, Dennis M. and Thompson, Ken, "The UNIX Time-Sharing System," Communications of the ACM, Volume 17, Number 7, July 1974, pp365-375.
- [3] Bailey, Mike and Anderson, Dave, "Speakec User's Guide," Computer Aided Design and Graphics Lab, Purdue University, W. Lafayette, Indiana, August 1978.
- [4] MOVIE.BYU is a general purpose computer graphics software system written by Hank Christianson and Mike Stephenson. The system is designed around a program which generates line drawings and continuous tone shaded images.

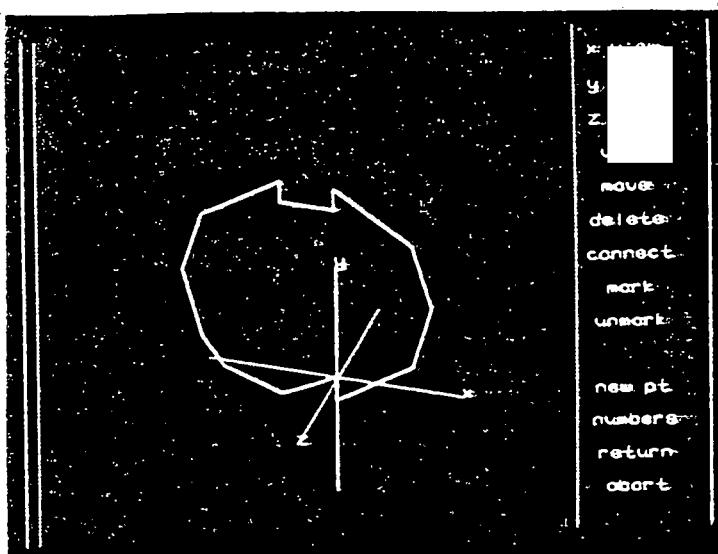


Figure 1:

Graphically creating a keyed cross section from a 14-sided polygon

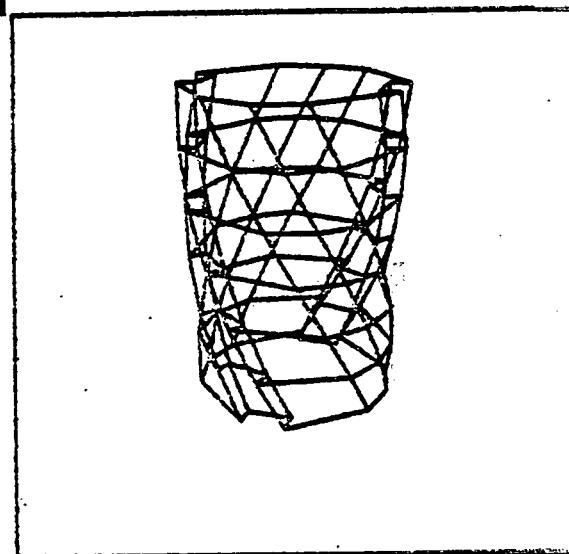


Figure 2:

Transformation of the cross section to produce a twisted shaft

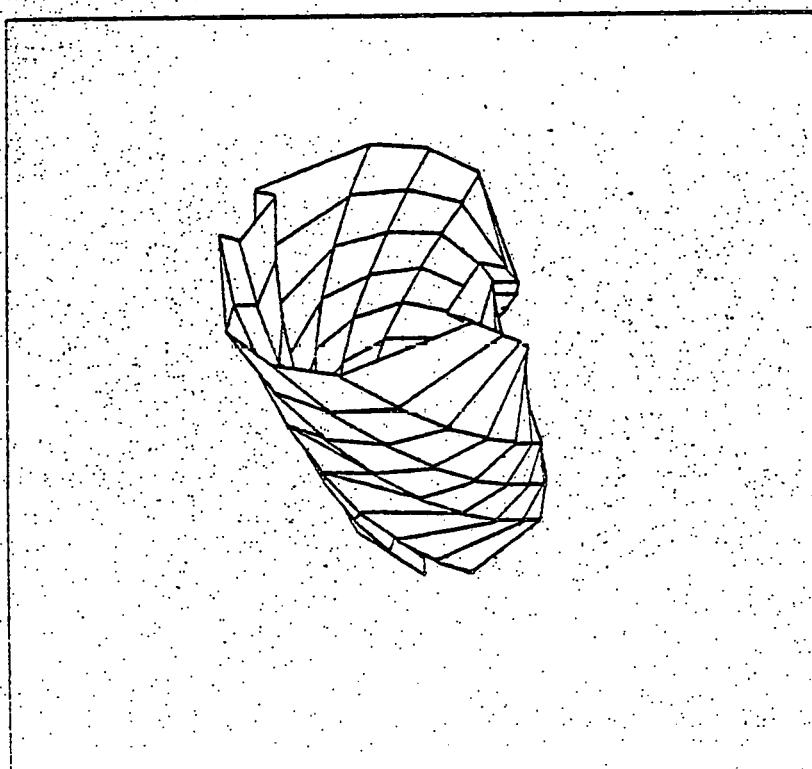


Figure 3: Shaft with hidden lines removed

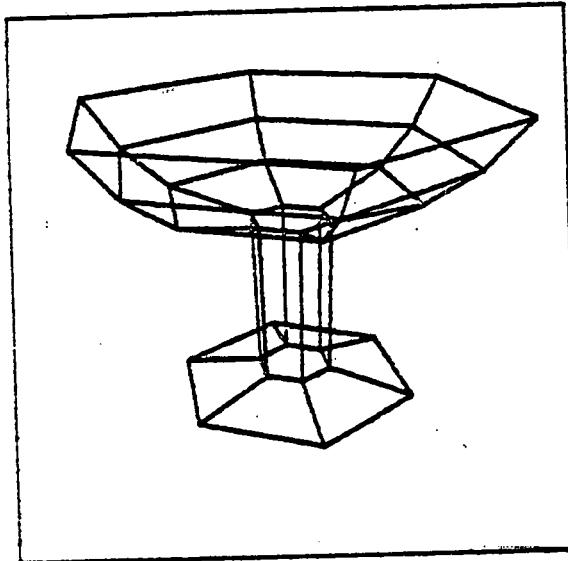


Figure 4:

Goblet with straight line connections

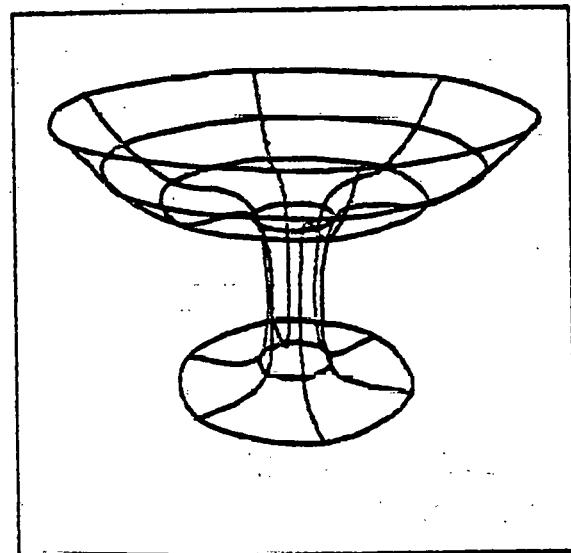


Figure 5:

Goblet with patch boundary curves

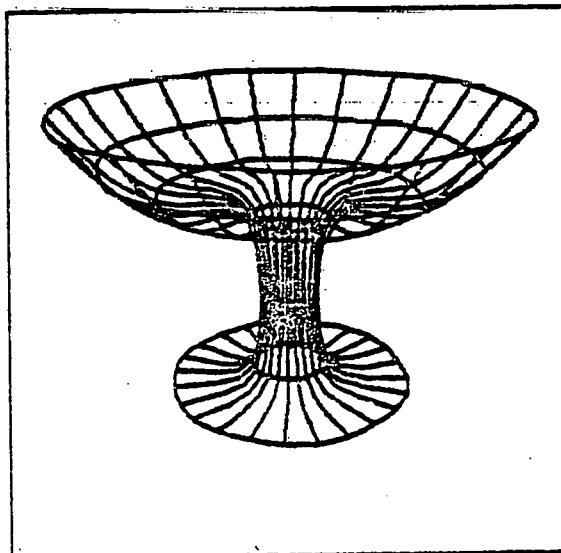


Figure 6: Patched goblet with interior patch traces

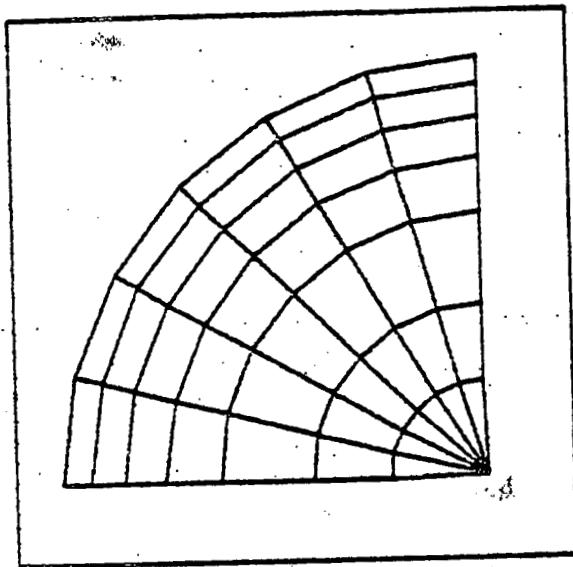


Figure 7:
One quarter of a disk

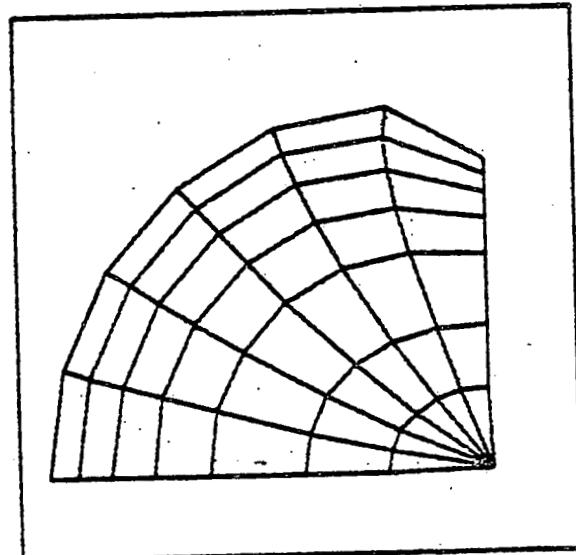
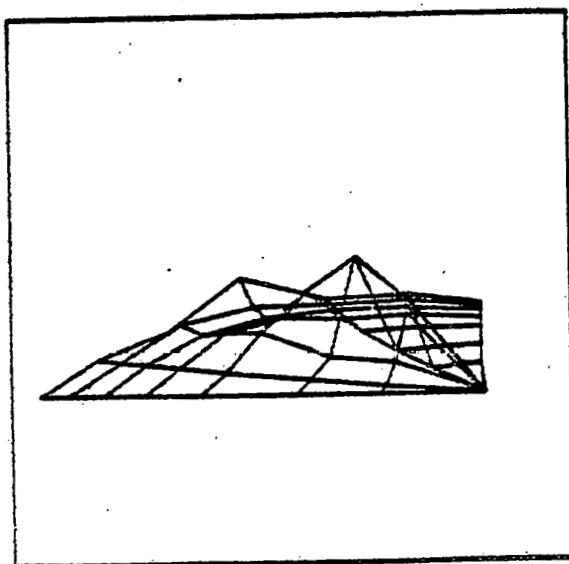



Figure 8:
Exaggerated deflections from radial loading

Figure 9:
Stress distribution represented as vertical displacements

COLOUR GRAPHICS within SPEAKEASY

by

A. J. JONES
Software Consultant
UNILEVER COMPUTER SERVICES LIMITED

What do the figures 38, 22, 36 conjure up in your mind ? Perhaps a colour picture of the object you imagine would be appreciated.

Disappointed when it turns out to be a squat box (Slide 1) ? There is no doubt that a coloured diagram is more easily understood than a table of numbers or even a black and white sketch use different shading patterns to provide contrast.

Few people today, with all the visual aid devices available, would make a presentation without the use of colour to emphasise words or detail on their slides. Nevertheless even for exception reports most systems designers do not look beyond printing columns of figures; few people, if any, think of printer plotting to produce simple bargraphs or histograms.

With the increasing availability and use of interactive processing, the problem has been shifted back on the user. By putting him in front of a Vdu, he is persuaded to view his own data in a reactive manner. Unfortunately there is not an abundance of software tools designed for use by the non-dp person. Some do exist, such as RAMIS and Easytrieve, and achieve varying levels of useability; I have given these systems the group name of CUDOS - Complete User Direct Operated Systems. Pre-eminent in this class is Speakeeasy.

As you all know Speakeeasy allows the user to manipulate his data without the need to know the more intricate details of programming. This has been extended into the area of graphical representation on such devices as storage tubes and plotters. As colour diagrams are easy to appreciate, UCSL decided to investigate the availability of a suitable colour vdu to use as a terminal into Speakeeasy via our timesharing system. We could then extend Speakeeasy to have the ability to produce histograms and bargraphs with the same ease as current graphics operators.

We were unable to find a colour vdu that had a standard ASCII code interface. Apparently most colour vdu's have been used in the process control field and normally directly coupled to minis. In the end we chose an Intecolor 8051 produced by Intelligent Systems Corporation as being the easiest to program to fit into our tp environment. This involved translating between the internal code of the micro in the vdu and standard ASCII transmission code.

Cont'd...

The vdu has a 48 line by 80 character screen; has six colours as well as black and white, any of which can be used as background or foreground for any character position. It had been extended to include internal software to facilitate the plotting of points, vectors and bars automatically on a 160 by 192 grid (slides 2 - 4).

Our first aim was the production of histograms to meet the need to present financial data. To present a picture that was understandable and would be left undisturbed while further commands were entered, the screen is split into three areas when in graphics mode. At the top is a four line key area, then a histogram area of forty one lines giving a plot area of 160 x 160 grid and a three line scrolled area for command entry.

A listing of the various draft help documents is attached (shown on slides 5 - 10). Also attached are tabulations of the various groups of data used in producing the examples of histograms from the minimum input to the most comprehensive.

Unfortunately, it has proved impossible to get colour prints of the pictures of the displays produced in time to go with this synopsis of my presentation.

help intecolr
COLOUR GRAPHICS

*

UCSL has programmed an INTECOLOR 8000 series vdu to accept/send ASCII transmission characters (eg 7 bit) by applying conversion to/from its internal 8 bit code.

*

When used in graphics mode the screen is split into three areas:-

- (i) A title and key area of 4 lines;
- (ii) A histogram area of 41 lines;
- (iii) A command area of 3 lines which is scrolled.

*

There are three commands and two objects used in the graphics mode.

*

COLHISTO (D1,...,D6:I:K1,...) draws a histogram.

ADDHISTO (D:K) adds columns to the current histogram.

CUMHISTO (D1,...,D6:I:K1,...) draws a cumulative histogram.

TITLE is used to title the histogram.

COLOUR="fgbgV1V2V3V4V5V6" is used to set the selection order of colours

*

AJJ UCSL

:—

help colhisto

COLHISTO (D1,...,D6:I:K1,...) draws a histogram.

D1 is a two dimensional array mxn where m=<6 and mxn=<72;
each row is treated as a different variable.

OR

D1,D2,...,D6 are a set of 1 to 6 one dimensional arrays of equal size
such that the total number of elements is not more than 72.

These represent the dependent variable(s); automatic scaling takes place;
they are drawn side by side in different colours as set in COLOUR.

I is the independent variable and is a 1xn array, where n is the
number of columns in D1. The values of I are converted to
character if necessary and used to title the X axis.

K1 can be a two dimensional character object;

K1,K2,...,K6 can be a set of 1 to 6 one dimensional character objects;
the values of the K(s) are used to title the key of the histogram;
if not present the names of the dependent variable(s) are used.

AJJ UCSL

:—

help addhisto
ADDHISTO (D:K) adds columns to the current histogram for the dependent variable D which is a one dimensional array with the same number of columns as the original D1. If any value in D exceeds the current height of the histogram, a comment is issued and the column for that value drawn to the top of the histogram. K is used to add to the key; if not present then the name "D" is used.

AJJ UCSL

:_

help cumhisto
CUMHISTO (D1,...,D6:I:K1,...) draws a cumulative histogram. D1 is a two dimensional array mxn where m=<6 and mxn=<70; each row is treated as a different variable. D1,...,D6 are a set of 1 to 6 one dimensional arrays of n elements each where n =< 71; These are the dependent variables; automatic scaling takes place; they are drawn one above the other in the order given, each in a diffent colour as set in COLOUR. I is the independent variable and is a 1xn array, where n is the number of columns in D1. The values of I are converted to character if necessary and used to title the X axis. K1 can be a two dimensional character object; K1,K2,...,K6 can be a set of 1 to 6 one dimensional charater objects; the values of the K(s) are used to title the key of the histogram; if not present the names of the dependent variable(s) are used.

AJJ UCSL

:_

help title
TITLE if a character object named TITLE exists it is used to title
the histogram.

AJJ UCSL

:_

help colour

COLOUR="fgbgV1V2V3V4V5V6" is used to set the colours used for
foreground,background and the several dependent variables.
The default value is White,Black,Red,Yellow,Green,Cyan,
Magenta,Blue.

The values used to set the colours are the characters which have
keys of the appropriate colour i.e. P for black,W for white,T for
blue,R for green,Q for red,S for yellow,V for cyan and U for
magenta.

AJJ UCSL

:_

INFORMATION USED IN COLHISTO AND ADDHISTO SLIDES

X	A	B	C	D	E	F	LANG
*****	*****	*****	*****	*****	*****	*****	*****
USER1	3.1436	3.3292	1.0709	1.9833	11.413	9.1831	PL/I OPT.
USER2	0	4.4552	0	2.2746	12	0	ANS4 COBOL
USER3	6.5146	3.5833	0	2.4397	19	7.1875	FORTRAN G1
USER4	1.0435	3.8141	1.313	2.3412	2.9145	19.448	EASYTRIEVE
USER5	0	3.8627	0	2.255	0	0	RAMIS 180K
USER6	0	10.133	0	1.3462	0	0	RAMIS 210K
USER7	2.8174	0	0	1.6667	0	0	
USER8	0	6.8095	.49153	0	0	0	
USER9	6.68	0	0	7.2593	5.5882	3.7143	
USER0	3.0522	3.3651	1.022	2.3989	5.9604	14.614	

:_ title

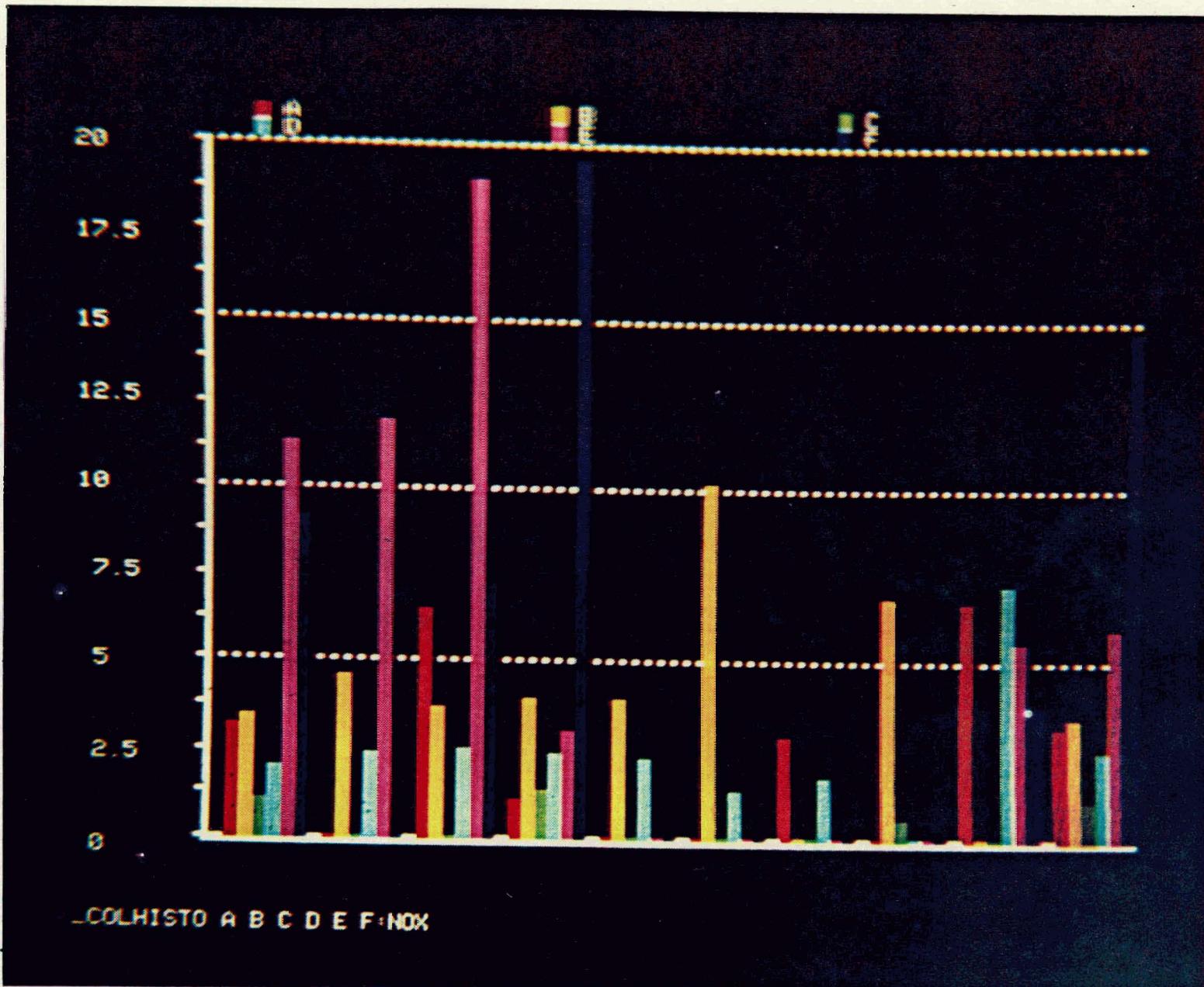
LANGUAGE COMPARISON

:_

DATA USED FOR CUMHISTO EXAMPLE

TARGETS	WORST			LIKELY			BEST			ACTUAL
*****	*****	*****	*****	*****	*****	*****	*****	*****	*****	*****
50	48	47	46	2	2	2	1.5	1.5	1.5	47
54	53	47	46	2	2	2	1.5	1.5	1.5	49
54	49	49	50	2	2	2	1.5	1.5	1.5	51
61.5	56	58	59	2	2	2	1.5	1.5	1.5	60
55	55	54	56	2	2	2	1.5	1.5	1.5	57
55	54	54	55	2	2	2	1.5	1.5	1.5	56
48	46	46	46	2	2	2	1.5	1.5	1.5	47
45	43	43.5	44	2	2	2	1.5	1.5	1.5	45
48	46	45	45	2	2	2	1.5	1.5	1.5	46.5
49	47	48	47.5	2	2	2	1.5	1.5	1.5	49
49	48	47.5	0	2	2	0	1.5	1.5	0	0
48	0	0	0	0	0	0	0	0	0	0

```


:_title
REVENUE PERFORMANCE
:_colour
WPRPSVQT
:_key
TARGET
WORST
LIKELY
BEST
ACTUAL
:_xtitle
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC
:-

```

```

:_edit perform
EDIT COMMAND MODE
:z1
EDITING PERFORM
1 PROGRAM
2 GETLIST LEN
3 GETLIST REVENUE
4 J=INTEGERS(1,56,5)
5 T=A1D(60);W=T;L=T;B=T;A=T
6 T(J)=TARGETS
7 K=INTEGERS(5,60,5)
8 A(K)=ACTUAL
9 II=A1D(24:J,K)
10 I=INTEGERS(1,60);I=RELCOMP(I,II)
11 W(I)=A1D(:WORST);L(I)=A1D(:LIKELY);B(I)=A1D(:BEST)
*12 CUMHISTO T W L B A:XTITLE:KEY
:zend
MANUAL MODE
:-

```


OASIS - AN OUTLOOK AND SITUATION INFORMATION SYSTEM FOR THE U.S. DEPARTMENT OF AGRICULTURE

MARTIN W. SCHWARTZ AND GEORGE E. ST. GEORGE

- The design and implementation of a computer-based information system for research and for outlook and situation processing within the Economics Statistics, and Cooperatives Service uncovered many critical areas: user orientation, data management, analytical capability, and clarity of output. Many computer-related design criteria were considered, such as free-format vocabulary, extendability, linkage to different data and program storage devices, and error detection-correction capabilities. Data storage and manipulation techniques were emphasized since these form a vital part of the outlook and situation process. The resulting system is one in which the casual or novice user can communicate a problem to the computer in a natural manner with little knowledge about programming or internal workings of the computer.
- **Keywords:** Information management, data bases, programming languages, computers, research support systems.

A major function of the Economics, Statistics, and Cooperatives Service (ESCS) is to provide economic intelligence on the agricultural sector to public and private decisionmakers. In this article, we describe the development of an effective, efficient process for analyzing and reporting this information—OASIS: Outlook and Situation Information System.

THE NEED FOR A COMPREHENSIVE SYSTEM

Behold, I set before you this day a blessing and a curse: the blessing, if ye shall hearken unto the commandments . . . which I command you this day; and the curse, if ye shall not hearken unto the commandments . . . but turn aside out of the way which I command you this day.

Deuteronomy Ch. 11:26-28.

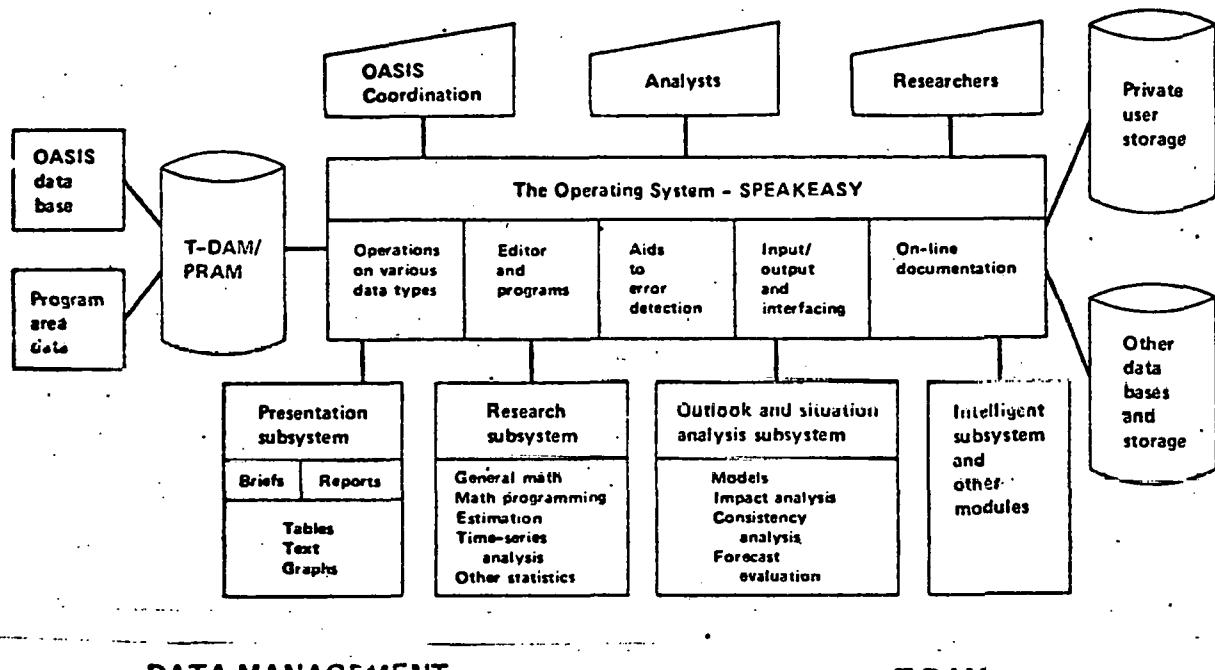
While much of the operational structure needed already existed in ESCS, the information flow was fragmented before OASIS and no uniform format existed. This situation resulted, in part, because of the size and diversity of the staff and the distribution of functions in the food and fiber divisions. Further, conflicts occur between conducting basic research and performing such staff functions as special analyses, outlook and situation work, and providing current economic intelligence. Finally, no common research and information system with a strong data base existed through which researchers, analysts, and policymakers could interact.

Up to 1977, the Economic Research Service (ERS, now part of ESCS) had been establishing the roots of a strong, common research system and data base, but progress moved slowly because support was informal and

vested in an ad hoc group of researchers, modelers, and computer specialists drawn together by common interests. Then, in 1977, a multitude of events in the agricultural sector intensified the demand for quick and comprehensive analysis. The existing system could not keep up with the flow of analysis and information required, and ERS Acting Administrator Kenneth Farrell formed the OASIS task force which began work in October 1977.

THE DEVELOPMENT OF OASIS

Formation of the Task Force


The makeup and operational license of the task force were somewhat unique. A number of ESCS staff members were selected, and were asked to work in a large room; they were charged (commanded) with analyzing and recommending a completely integrated, quick-turn-around information retrieval, analysis, and display system. They were relieved of their normal duties as much as possible so that they could attend the task force meetings. These were held in a different building from the members' office building to minimize distractions. The task force was established with no designated chairperson; no one was charged with maintaining order, or with keeping a cool head amidst the ensuing discussions.

Thus unconstrained, most of the members dredged up from the depths of their knowledge and/or biases, any points that they felt would have relevance to the task at hand. Members often emphasized their ideas by delivering them eyeball to eyeball at maximum volume: they uttered dire, prophetic warnings of bureaucratic retribution; hurled exquisite insults and heroic metaphors; used ways to attract attention or pose precise alternatives and ways to ease tension and cope with the objections of people who were not on the task force; and they knew when and where to adjourn at the end of a hard day. Despite the outward appearance of total chaos, it was a strikingly successful exercise in group dynamics. The task force produced a set of problem statements and recommendations and presented them to Agency management in late 1977 and early 1978.

Recommendations of the Task Force

The task force recommended that a computer-based system be developed which was capable of the quick turnaround necessary to support the outlook and situation process. In brief, the recommended system would consist of a well-maintained data base of historical and forecasted data, the software to effectively analyze and report this data, and a staff within a workable organizational arrangement.

FIGURE 1
The OASIS Computer System

DATA MANAGEMENT AND DATA BASES

A relevant, well-maintained data base is, of course, essential for outlook and situation work. Data management is necessary to assure the integrity of the data and to provide for timely updating and a consistent variable nomenclature. Rapid data access, though, is only one condition for complete data support. Thus, a program of thorough, careful data updating and maintenance is also needed to assure both quality and timeliness.

In addition to the primary OASIS data base, users need access to other data. Detailed data maintained by other ESCS/ECON units, ESCS/STAT units, other USDA agencies, and other outside sources are all helpful for outlook work and they are sometimes necessary for research.² Thus, OASIS must be linked to other data management systems. In addition, individual users also need to be able to store their own programs and data. OASIS currently provides facilities to maintain its central data base, to access any other from T-DAM (Time-Series Data Access method), to access data in some commercial data management systems, read and write character image files, and to maintain private libraries for users.

T-DAM

T-DAM is the data management system used for the OASIS data base. It is specifically designed for economic time-series data. In 1976, development began on T-DAM because there was no efficient time-series data management system available to the former Economic Research Service.

T-DAM can contain any number of variables, and it has 50 million observations. Variables are divided into logical groups (each group has a 3-character name and belongs to a specific user or project), plus a 20-character variable name (though OASIS allows only 7 characters for Speakeasy use). OASIS data currently make up about 10 percent of the total data available in T-DAM.

While all OASIS users can read almost all T-DAM data, a logical group's owner can restrict even the reading of his data to specific persons. Users can create new variables and update existing variables only within logical groups that they own. Both password-protection and use-auditing systems are included in T-DAM.

T-DAM allows various periodicities, and the user may specify the beginning and ending periods. All retrievals may be started at the same time period, and the retrieved results will be padded; that is, equivalent dates are aligned in columns.

Other salient features of T-DAM appear in table 2. PRAM (Page Relative Access Method) is a recently developed enhancement which improves both space management and user performance.

²ESCS/ECON refers to the former Economic Research Service, and ESCS/STAT to the former Statistical Reporting Service. Both are now parts of the Economics, Statistics, and Cooperatives Service formed January 1, 1978.

Table 2—Features of T-DAM-PRAM, data management system used in ESCS

Feature
Ability to interface to any user's program via a "standardized" subroutine call
Almost unlimited amount of data on-line at one time
Data series logically divided into "logical groups", but in one centralized physical file
System operable in both interactive and batch modes
Data access protected so only the owner of a "logical group" (or someone he specifies) can alter his data, and so the owner can restrict even the reading of his data when desired
Completely mnemonic names for the data variables
Capability for maintaining documentation information, such as units of measure, source, description, owner, last update, and date last updated for each variable
Flexibility of internal data formats, including INTEGER, REAL, and DOUBLE-PRECISION
Automatic handling of periodicities such as annual, quarterly, and monthly
Space-accounting facility which reclaims space from deleted variables, facilitates addition of new observations to an existing variable, and allows each variable to have an almost unlimited number of observations
Retrieval of any desired contiguous subset of possible observations
Auditing facility to log who (which user) is doing what to which data; can be valuable in tracking system or user problems and in supplying management information
Archive facility for holding logical groups of variables not currently required on-line (to reduce on-line disk costs), and to be a system backup
Links to various software packages, such as SAS, SPSS, TPL

Other Data Bases and Data Management Packages

As the operating system permits Fortran subroutine calls, it is relatively easy to interface OASIS with any commercially available, or user-developed data management package which has a Fortran interface. Some packages for which interfaces have been developed include Total, Ramis, Starmap, SPSS, and the Federal Reserve's MDL. The Fortran input-output capabilities allow interfacing (with some decrease in efficiency) with any data set or data management package formatted in either character image or Fortran unformatted format.

THE OASIS PRESENTATION SUBSYSTEM

An ounce of image is worth a pound of performance

—Peter's Placebo

The information presentation facilities were designed to have a set of commands for creating and maintaining table, text, and graphics units. Further, these units were to be merged into user-oriented products known as BRIEFs and REPORTs. The T-DAM data management system interacts with these BRIEFs and REPORTs so that data required for tables and graphs can be automatically retrieved for use.

Tables

Speakeasy offers a tabulate command which produces tabular listings of data. While this command is flexible, it does not offer such required features as footnotes, easy dating of periodicities, and multiple labels per data line. Therefore, a series of commands were set up to allow creation, alteration, and printing of table specifications. Clerical and research staff with no computer background have learned to create table specifications within a few hours. Tables are designed to be generated from within REPORTs and BRIEFs. They require a specific environment which is created by the commands REPORT, BRIEF, and SHOWTABLE. A typical table is shown as table 3.

Text

Textual material is required to explain "hard data" presented in tables and graphs. Therefore, OASIS needed facilities for creating, editing, and printing textual information. Speakeasy provides some textual facilities. It was determined that judicious use of these commands within a Speakeasy program would provide the basic facilities required for OASIS' initial operation. However, four new commands were added. Figure 2 shows a BRIEF, including text and a TABULATE table.

Graphics

Graphical displays are a highly convenient way of conveying economic information. An integral part of OASIS, they have two levels of implementation. The first level was developed at Communications Satellite Corporation and is supplied with Speakeasy. The second level is created by combining the first-level graphics commands with other Speakeasy commands into link-level driven prompting programs. Both levels have unique advantages and limitations.

The graphics package as supplied with Speakeasy is designed to support many different terminal types. Others can be added by the installation without undue difficulty. The main feature is that all of the graphics

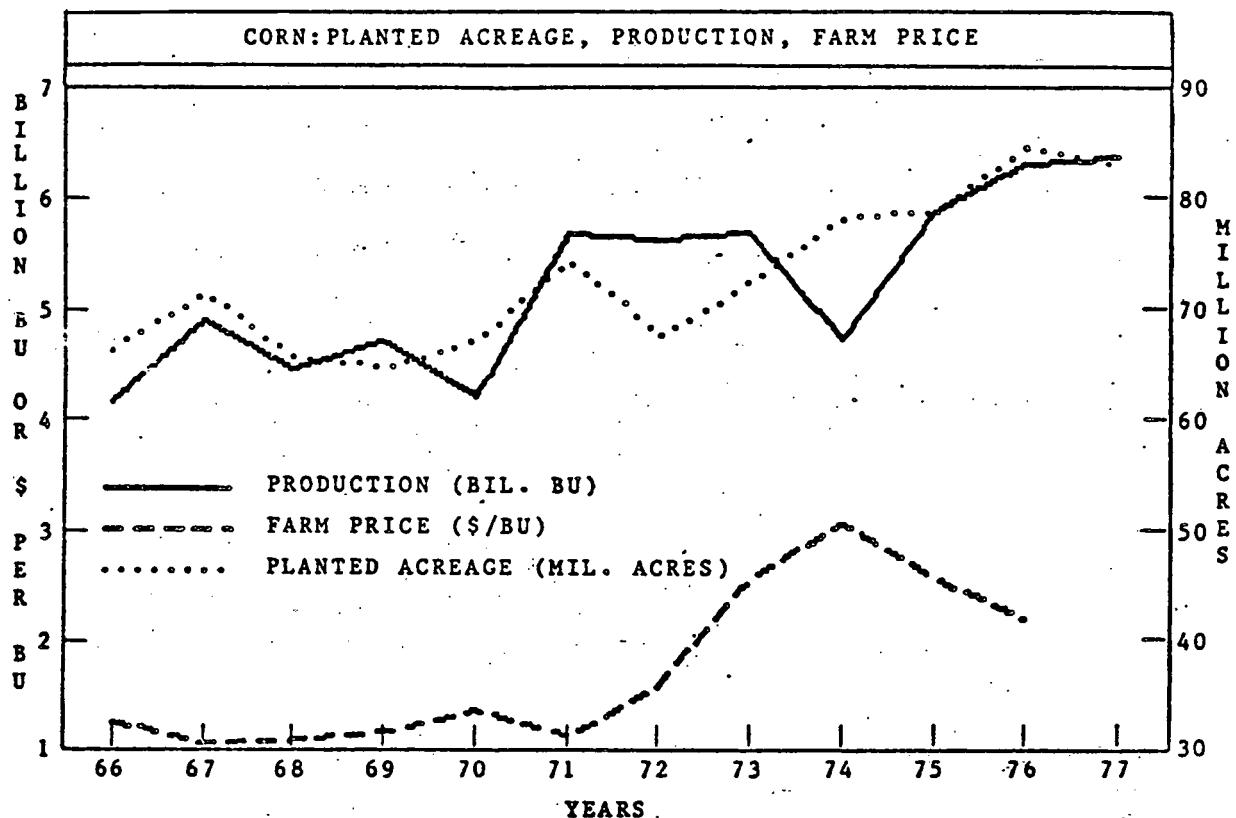
U. S. DEPARTMENT OF AGRICULTURE
ECONOMICS, STATISTICS, AND COOPERATIVES SERVICE
OUTLOOK AND SITUATION INFORMATION SYSTEM

TABLE 3.--WORLD GRAIN PRODUCTION BY CROP AND MAJOR PRODUCING REGION

ID: VARIABLE NAME		UNITS	1973	1974	1975	1976
			HISTORY	HISTORY	HISTORY	HISTORY
1:WHEAT (TOTAL)	:	1000 M.T.	372,005:	356,141:	349,198:	415,528
2: U.S.	:		46,560:	48,496:	57,751:	58,296
3: CANADA	:		16,159:	13,295:	17,075:	23,587
4: ARGENTINA	:		6,560:	5,970:	8,570:	11,000
5: USSR	:		109,784:	83,913:	66,224:	96,882
6: EEC-9	:		41,393:	45,391:	38,105:	39,539
7: OTH.W. EUROPE	:		9,372:	11,305:	10,397:	11,561
8: E. EUROPE	:		31,631:	34,107:	28,485:	34,614
9: AUSTRALIA	:		11,987:	11,357:	11,982:	11,713
:	:	:	:	:	:	:
10:COARSE GRAINS	:	1000 M.T.	661,178:	621,536:	635,406:	693,875
11: U.S.	:		186,777:	150,905:	185,057:	193,859
12: ARGENTINA	:		17,935:	13,793:	12,438:	16,860
13: CANADA	:		20,411:	17,436:	19,987:	21,125
14: AUSTRALIA	:		24,976:	21,968:	20,702:	16,543
15: BRAZIL	:		16,851:	16,926:	18,482:	19,381
16: THAILAND	:		2,520:	2,730:	3,350:	3,000
17: USSR	:		100,951:	99,744:	65,820:	114,979
:	:	:	:	:	:	:
18:RICE ROUGH	:	1000 M.T.	223,469:	227,339:	243,109:	235,402
19: U.S.	:		3,034:	3,667:	4,091:	3,777
20: THAILAND	:		9,471:	9,570:	10,032:	10,428

commands are the same for all terminal types; thus, users need learn only one set of graphics commands.

While the standard graphics commands provide easily understood methods for generating tailored graphical output, however, users identified three needs that dictated the second level of graphics capabilities. First, policymakers often must have graphics quickly. These requests cannot be planned; frequently, they must be completed within 1 or 2 working days. Second, standard graphs are needed that can be easily reproduced following updates of the data series. Many ESCS program areas keep files of such graphs for a large volume of data, some of which are updated monthly. Third, many graphs are needed only once, either as an analytical aid or for a briefing. Often, the user drew such graphs by hand.


The OASIS task force had to provide for these needs in a comprehensive yet user-oriented manner, one that could adapt to users' different requirements. In any system adopted, updates had to be handled easily. Also,

many potential users of the new system did not have time to write and "debug" a level-one program whenever they needed a complex graph; thus, OASIS had to be able to meet their needs.

The solution was to install in the OASIS system a second graphics level consisting of linkule-driven Speak-easy programs which prompt the user for the appropriate parameters needed to create a graph and produce the desired graph with a single command. The graphics are also designed so that they can be driven by the REPORT and BRIEF commands.

This graphics facility has already demonstrated its worth, as it is quick and easy to use. While being developed, it was used to meet needs of Department and agency level policymakers. Production of a single graph takes about 10 minutes, specification and production included. Because little or no programming is involved, and on-line instructions are available for every portion of

FIGURE 3
An OASIS Graph

ALL FIGURES REPORTED ON CROP YEAR BASIS

the OASIS system, the uninitiated can easily produce useful results in a short time. Several improvements will be made to the graphics at both levels, and the system will be able to provide more varied types of graphics. Figure 3 shows an OASIS graph.

BRIEFS

A BRIEF is a self-contained set of materials not alterable by the final user. It covers specific time periods and data, and it is produced for a specific purpose—generally to describe a current situation or to respond to a specific question.

OASIS briefs are designed to provide information to users who have a minimum knowledge of computer systems. While a report requires the user to specify time periods and some other optional information, a brief is completely self-contained. After typing "BRIEF(name1 name2 . . .)", the user receives briefings on the named subjects.

An extension of the briefing facility is the "time-stamped" briefing. Each BRIEF is recorded in a table with the date and time of its storage. Another table is

kept in OASIS showing the last date and time that an authorized recipient of briefs received an updated listing of available briefs. When such a user types the OASIS command BRIEFME, an index of new or altered briefs is produced. After seeing this, the user can ask for a print-out of all indexed briefs or terminate the automatic briefing and, using the BRIEF command, request only certain briefs. At this time, the user's profile is altered to reflect that he or she is up to date.

Reports

OASIS reports are predefined combinations of one or more tables, graphs, and text units. The time periods, forecast scenarios, periodicities, and some other environmental attributes are specified at the time the report is requested, allowing flexibility in displaying tables and graphs in response to ad hoc needs of researchers or analysts.

Technically, the REPORT command retrieves each requested report specification and writes its individual lines into one sequential file. The computer sets the environment based upon the parameters included with the REPORT command, and it shifts the control input from the terminal (or card reader) to that file of control cards.

The recommendations of the task force were accepted by the management team, and the task force was instructed to develop (1) an information presentation subsystem for displaying text, tables, and graphs, and (2) an improved data base and data maintenance procedures.

The starting point for OASIS proved to be the decision to combine Speakeasy, a user-oriented, interactive computer language, and T-DAM (Time-series Data Access Method), the ESCS/Economics time-series data management system. High-priority data for OASIS reports are currently maintained in T-DAM. The OASIS operating system is Speakeasy with a few additional routines.

THE PURPOSE FOR OASIS

The basic reason OASIS exists is to enable its users to store, manipulate, and display information as desired with a minimum of effort and wasted time. Within ESCS, however, a substantial amount of research and analysis is used in the outlook and situation process. Thus, the OASIS task force recognized the benefits of a system that would support both research and forecasting activities. With such a system, the end result, the report, would emerge as a natural result of the underlying analysis. While most of the phase one implementation of OASIS involved data management and display components, the marriage of the analysis and research components to them was kept in mind, especially in selecting an operating system.

More specifically, the long-range OASIS goals are: (1) to provide an effective time-series data management system for outlook and situation and research activities; (2) to assist in an integrated, comprehensive flow of information within ESCS; (3) to increase the stock of user-oriented tools; and (4) to provide a central focus for the agency's outlook and situation modeling efforts.

CHOOSING/DESIGNING THE OPERATING SYSTEM

Build a system that even a fool can use, and only a fool will want to use it.

—Shaw's Principle

The basic criterion for OASIS was that it be an interactive, well-documented, user-oriented system capable of providing results quickly. The following additional criteria were also important.

Additional Criteria

OASIS must also operate in a "batch" environment so that large or low-priority requirements can be filled at lower dollar costs. The same commands and syntax should be used in both interactive and "batch" modes.

The system should incorporate facilities for the retrieval of variables with different structures (such as scalars one- and two-dimensional arrays of numbers and literals) into a temporary workspace, the manipulation of these objects, and storage of the results.

The vocabulary should be "free-format" and extendable through standard programming to accomplish additional tasks. Some mechanism for the creation of "programs" of the system's vocabulary should be provided to help with recurring or iterative tasks, and some method should exist for storing and retrieving these "programs".

Individual users should be able to maintain their own libraries of temporary data, program, and vocabulary extensions, so, they can keep their own materials without affecting either the performance or the cost for other users.

Design Alternatives

The OASIS task force had several alternatives available. Excellent software for the individual pieces of the overall computer system exist; there are data base management systems, statistical packages, linear programming systems, and the like, which satisfy very demanding people. But they satisfy only a small part of the requirements for OASIS. The task force could have chosen one system to satisfy the numerical information communication needs, another to satisfy the text communication, a third for econometric modeling, a fourth for linear programming modeling, and so forth, and it could have tried to merge them together.

Ad hoc merging was rejected for several reasons. First, it was felt that an integrated system would serve not only to link the various parts, but as a basis for common communication among users. Second, the time available for the task force to complete the work was very short. Finally, a system that already met several of the needs would allow concentration on only those pieces that were weak or missing.

THE OPERATING SYSTEM

A graphic version of OASIS is shown in figure 1. The function of the operating system, at the center of the computer system, is to provide effective applications control. The user retrieves data from the data bases and navigates it through assorted analyses into display or storage for further use. Table 1 shows some of the capabilities. Their extremely broad range makes it difficult to categorize or list them effectively in the limited available space. Those wishing more detail should contact the Speakeasy Center.

view of the technicians and places it directly in the hands of users who might want to take advantage of the full range of services under the OASIS umbrella.

CONCLUSIONS

Blessed is he who expects nothing for he shall not be disappointed.

Franklin's Rule

While acknowledging that OASIS could not operate without data and the appropriate manipulative tools, the task force realized that the entire process had to be engineered to account for the basic fallibility of the human animal. The software that produces the tables, text, and graphs allows the most unsophisticated user the maximum number of opportunities to make a maximum number of mistakes and still correct the errors. This ability removes the system from the pur-

REFERENCES

1. Cohen, Stanley and Steven C. Pieper, "The SPEAK-EASY-3 Reference Manual, Level MU." Argonne National Lab. rpt. ANL-8000, rev. 2, 1977.
2. Gordon, Gary, "Speakeasy Lectures". Communications Satellite Corp., mimeog., 1977.
3. Havener, A., R. Herman, and J. Condie, "Model Estimation with FEDEASY". Am. Sta. Assoc. Conf. Proc., Aug. 1977.
4. Condie, James M., "A Speakeasy Language Extension for Economists." Assoc. Computing Machinery Annual Conf., 1977.
5. The OASIS Reference Manual. U.S. Dept. Agr., Econ., Stat., Coop. Serv., forthcoming.
6. Schwartz, Raymond C., "PRAM—Page Relative Access Method". U.S. Dept. Agr., Econ., Stat., Coop. Serv., OASIS staff, mimeog., 1978.

An Approach to Writing Input-Burdened Linkules

by

Roy Conley

Federal Reserve Bank of San Francisco

One of SPEAKEASY's strong points is the ease with which new commands can be added to the language. To add a command, a user merely writes a FORTRAN subroutine, called a linkule, which performs the desired operation. By giving this linkule the proper argument list and placing it in the linkule library, the linkule becomes a new SPEAKEASY command.

Most problems associated with writing SPEAKEASY linkules are common to all programming. One way in which linkule writing differs from other programming is the way in which input is handled. Normally this poses no problems. However, when a linkule requires a great deal of input, finding an effective way to supply that input can be a challenge.

Of course, there is no such thing as a typical linkule. Linkules vary as widely in form and function as do any other programs. However, there are some generalizations which can be made. Most linkules operate on a single SPEAKEASY object or a few related objects. They either modify the object, detect some property of the object, or create a new object related to the old one in some way. The point, here, is that the input object already exists at the time the linkule is used. It is not generally necessary to modify an object or create a new one specifically to provide input to the linkule. For these linkules, input is no problem.

There is a type of linkule for which input does become a problem. It differs from "typical" in two major ways. First, its purpose is to perform involved calculations. It is not intended to modify or create SPEAKEASY objects. It may, in fact, create or modify objects, but this is a by-product of its operation rather than a primary objective. Second, a great deal of input is required. In particular, many dissimilar pieces of information are required as input. Dissimilar in the sense that they would not normally be collected together in a single object. Given the need to implement such a linkule, the difficulty faced by the linkule writer is how to provide all the input to the linkule.

There are many ways to move input to a linkule. The most common way is simply to pass the data as arguments. This assumes that all data required by the linkule already exist in some object or objects. This is normally the case. A SPEAKEASY user is more often concerned with which linkule will provide a particular result, given the data, than with how to modify the data in order to use a particular linkule. When a linkule requires a large amount of input, this method will not work. Too many arguments would be required. Other ways of handling the input must be found.

A linkule may receive its input interactively. Based on what it already "knows", it can prompt the user for more information. This approach is useful for some on-line applications. Such linkules can be run in batch mode, but the input tends to be cumbersome.

Data can be passed to linkules thru the use of keywords. Keywords are names for SPEAKEASY objects in which the linkule will look for data. These names are fixed at the time the linkule is written and cannot be changed later. Since the data will be in a location whose name is known to the linkule, it is not necessary to pass these objects as arguments.

A linkule can obtain data by doing a FORTRAN "READ" of an external dataset. This requires that the external dataset be created in advance. It also requires the user to set up the appropriate linkage prior to entering SPEAKEASY.

Finally, it is possible to combine existing objects into new objects to be passed as arguments. This is similar to the first method of passing data, but differs in one important aspect. That is that it requires the user to prepare an object specifically for use as input to the linkule. The user must give this object a structure imposed by the linkule.

Which input method is best for a given situation? There are no absolute answers. However, some observations can be made about the possible uses of each method.

The use of interactive input generally should be reserved for linkules to be used only on-line. This is particularly true in the case where branching occurs within the linkule and different input is requested depending on what has already been entered. In any case, it is somewhat awkward for someone setting up a batch run to provide a series of answers without seeing the questions. Even for strictly on-line linkules, if a great deal of input is required, interactive input is very slow. The problems of slow response and long transmission times are aggravated by the interaction. Interactive input should be reserved for on-line linkules which require only a few responses or for linkules which actually require decisions to be made by the user during execution.

The use of keywords should be approached with caution. Admittedly, their use may be attractive for certain optional inputs. The use of keywords allows options to be set without altering the calling sequence of the linkule. In addition, options can be set which will apply to several related linkules. However, the benefits do now come without cost. The user must be aware of which names are keywords to the linkules he is using. This is true even though he does not wish to make use of the keywords. The linkule cannot tell if an object with the required name was created deliberately or was left over from another application. The use of keywords restricts a user's choice of object names. It is common for users to give objects descriptive names. The use of keywords will limit their ability to do so. Keywords also force the linkule writer to be aware of keywords used by other linkules at his site. Failure to do so could result in users having to change the names of objects between calls to various linkules, in order to satisfy the keyword requirements of each. Keywords can be useful, but should be used carefully and in moderation.

Interaction and keywords, then, are not the answer for input-burdened linkules. This leaves FORTRAN "READ"s and passing existing or specially created objects as arguments. The use of FORTRAN "READ" statements in a linkule could be an effective way to pass large quantities of data to a linkule. This is especially true when the linkule is being adapted from a batch-type program. The original input statements of the program could be retained intact. There are several limitations to this method, however. The input file must be created in advance and could not easily be changed during the SPEAKEASY session. This would make it difficult, for example, to run the linkule several times during a session with slightly different inputs. Thus flexibility, one of SPEAKEASY's strong points, is lost. The use of FORTRAN "READ"s also assumes the user to be familiar with the linkage mechanism between FORTRAN and the input data set (JCL, TSO ... ALLOCATE,...). This may or may not be the case. It may not even be possible to set up this linkage at a given site. If FORTRAN "READ"s are to be considered, then careful consideration must be given to who the users of the linkule will be and to the environment in which SPEAKEASY is being run.

This leaves passing arguments to the linkule. Certainly, this is the way most linkules handle input. But if a linkule requires more than a little input, some combining of objects must be done. Once again, there is no "best" way to do this, but some suggestions can be made.

A very important decision to be made is the number of arguments to be passed. SPEAKEASY has a limit of thirty arguments. Most people have a much smaller limit. The more arguments passed, the greater the risk of transposing two arguments, omitting one, misspelling one or making some similar error. Five to ten arguments seems to be a good range. Most people can handle that many without much trouble.

Limiting the number of arguments means each of those arguments will have to contain a lot of data. Many small objects will have to be combined into a few large ones. Of course, small objects are easier to handle than large ones. But given a choice between passing a few large objects or many small ones, it is generally better to opt for a few large ones.

Given that the input to the linkule will be contained in a few large objects, careful thought must be given as to what each object should contain. Often the way the particular linkule is to be used will provide some clues. As much as possible, all data in a given object should be related in some way. This may be possible only in a very general sense, such as control parameters and raw data. Data which is likely to change from one call to the linkule to another should be separated from data which is likely not to change. This allows the user to make changes, yet not worry that he has inadvertently altered something which previously worked. It may be desirable to combine individual values into one-dimensional arrays while combining groups of values into two-dimensional arrays. Also, the intended user of the linkule may have strong feelings about how the data should be grouped, and should certainly be consulted.

The goal of any linkule writer should be to produce a linkule which is powerful enough that the user will want to use it, yet flexible enough that the user will be able to use it. The problems associated with input-burdened linkules certainly make this much more difficult. But by considering the peculiarities of each input method, the SPEAKEASY environment, the intended user, and how the linkule is to be used, the linkule-writer should be able to achieve this goal.

WEATHER AND CROP YIELD ANALYSIS SYSTEM

By

Michael D. Weiss

USDA, ESCS, CED, FSG

The Forecast Support Group Weather/Yield System has evolved from two related efforts: First, yield equations based on "weather-up-to-the-present" have been developed for within-the-year forecasting and analysis of U.S. yields for several major crops; second, a large data bank of historical and recent weather and economic data has been created, along with a software system (written in, Speakeasy) permitting convenient manipulation and analysis of the data.

The system is now fully operational and permits essentially automatic forecasting of crop yields based on "weather-up-to-the-present."

The weather data bank and associated software have been designed not only to generate weather-variable values for use in the yield equations, but also to serve as a general resource in answering weather-related questions. Monthly records of temperature, precipitation, and the Palmer Drought Index are available for each climatic subdivision of each of the 48 contiguous states. The climatic subdivisions are those used by the National Oceanic and Atmospheric Administration; they correspond somewhat to the Agriculture Department's Crop Reporting Districts. The data bank currently covers January 1931 to present for temperature and precipitation and January 1931-December 1975 for the Palmer Drought Index. The temperature and precipitation series are automatically updated each week during the growing season and each month outside the growing season.

This paper represents the views of the author and not necessarily those of the U.S. Department of Agriculture.

The weather data system is capable of manipulating weather records for any chosen groupings of years, months, states, and state climatic subdivisions. Examples of its use, illustrating actual operation of portions of the system as experienced by the user at the computer terminal, appear on the following pages. The user's typed entries are circled.

Example 1: (cf. pp. 3 - 4).

The user wishes to create a time-series of quarterly precipitation indices for Iowa. The first quarter is to begin with December.

The user enters the weather type ("PRCP"); the state name ("IA"); the climatic subdivisions of Iowa under consideration ("ALL"); the months ("DEC," "JAN," etc.); and the years ("1931," "1975"). He then indicates how the quarters are to be formed (and, additionally, asks for a semi-annual index). The output is shown on page 4.

Example 2: (cf. p. 5).

The user wishes to forecast the 1978 U.S. soybean yield using "weather-up-to-the-present." He enters the Speakeasy manual mode and gives three simple commands. He obtains the forecast table shown.

Example 1: Quarterly Indices

SPECIFY WEATHER TYPE (TEMP, PRCP, OR PDI)

WTYPE = PRCP

ENTER STATE NAME ABBREVIATIONS

STATNAMS = IA

ENTER "ALL" OR LIST CHOSEN CLIMATIC SUBDIVISIONS IN ORDER WITHOUT LEADING ZEROES

SUBDIVSIA = ALL

ENTER MONTHS IN ORDER

MONVALS = DEC JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV

ENTER STARTING AND ENDING YEARS FOR FIRST MONTH

STARTYR = 1931LASTYR = 1975

USING D2IOR VERSION 06-13-77, 1100 (V1.02)

USING DATA FILE OF 02/11/79 AT 122248

STATCOL IS A 551 ELEMENT REAL ARRAY

ANSWERMT IS A 540 BY 1 REAL ARRAY

WANT TO COMBINE MONTHS?

ANS = YES

ENTER MONTHS TO BE COMBINED IN ORDER

CHOICES = DEC JAN FEBWITHOUT BLANKS, ENTER NAME OF FORTHCOMING ACCUMULATION MATRIX DECFEB

DECFEB IS A 45 BY 1 REAL ARRAY

WANT TO COMBINE MONTHS AGAIN?

ANS = YES

ENTER MONTHS TO BE COMBINED IN ORDER

CHOICES = MAR APR MAYWITHOUT BLANKS, ENTER NAME OF FORTHCOMING ACCUMULATION MATRIX MARMAY

MARMAY IS A 45 BY 1 REAL ARRAY

WANT TO COMBINE MONTHS AGAIN?

ANS = YES

ENTER MONTHS TO BE COMBINED IN ORDER

CHOICES = JUN JUL AUGWITHOUT BLANKS, ENTER NAME OF FORTHCOMING ACCUMULATION MATRIX JUNAUG

JUNAUG IS A 45 BY 1 REAL ARRAY

WANT TO COMBINE MONTHS AGAIN?

ANS = YES

ENTER MONTHS TO BE COMBINED IN ORDER

CHOICES = SEP OCT NOVWITHOUT BLANKS, ENTER NAME OF FORTHCOMING ACCUMULATION MATRIX SEPNOV

SEPNOV IS A 45 BY 1 REAL ARRAY

WANT TO COMBINE MONTHS AGAIN?

ANS = YES

ENTER MONTHS TO BE COMBINED IN ORDER

CHOICES = DEC JAN FEB MAR APR MAYWITHOUT BLANKS, ENTER NAME OF FORTHCOMING ACCUMULATION MATRIX DEC MAY

DEC MAY IS A 45 BY 1 REAL ARRAY

WANT TO COMBINE MONTHS AGAIN?

ANS = NO

:-

YEAR	DEC FEB	MAR MAY	JUN AUG	SEP NOV	DEC MAY
1931	5.12	7.40	15.36	5.44	12.52
1932	2.63	9.60	8.00	5.91	11.23
1933	2.32	3.03	10.50	11.41	5.40
1934	2.32	7.99	12.76	3.77	10.31
1935	3.97	4.99	7.03	9.45	8.96
1936	4.72	3.86	10.42	4.27	13.57
1937	2.73	11.51	12.52	9.43	14.29
1938	3.31	5.76	12.94	2.33	9.07
1939	2.57	6.93	14.33	5.71	9.49
1940	3.52	6.76	10.34	15.16	10.23
1941	3.76	7.71	14.00	7.42	11.47
1942	3.09	3.42	15.77	4.33	11.51
1943	2.65	13.08	15.57	4.37	15.73
1944	3.37	13.40	11.13	5.76	16.77
1945	4.16	9.76	12.25	10.04	13.92
1946	2.42	10.42	13.40	7.71	12.34
1947	3.76	7.61	10.10	6.61	11.37
1948	5.20	6.45	11.25	5.62	11.65
1949	4.14	3.70	12.73	3.39	12.33
1950	3.36	14.25	16.87	7.10	13.11
1951	2.93	3.95	13.99	3.67	11.93
1952	3.66	8.40	10.98	2.76	12.06
1953	3.07	10.08	15.20	6.60	13.15
1954	2.93	7.17	8.11	4.73	10.10
1955	1.53	6.12	11.42	4.96	7.65
1956	1.43	9.35	12.15	7.90	10.34
1957	2.41	4.39	13.73	5.55	7.23
1958	2.35	13.65	11.33	9.10	16.01
1959	5.20	10.77	12.54	6.54	15.96
1960	2.64	8.61	11.94	13.31	11.25
1961	4.24	9.04	13.60	5.54	13.23
1962	1.53	9.55	11.95	4.85	10.14
1963	1.21	10.74	12.93	6.09	11.95
1964	3.64	12.19	11.96	12.02	15.32
1965	3.33	7.54	11.49	3.43	10.37
1966	2.33	7.71	13.44	6.56	10.54
1967	1.79	7.99	12.47	9.23	9.73
1968	4.94	3.34	16.19	6.25	13.19
1969	1.96	9.52	10.65	11.39	11.43
1970	4.79	5.69	9.08	9.16	10.43
1971	3.15	9.51	13.74	10.32	12.66
1972	4.92	14.65	11.37	11.73	19.47
1973	4.02	11.40	11.33	5.93	15.42
1974	3.36	9.31	11.73	5.97	13.17
1975	2.50	11.23	7.19	3.15	13.73

Example 2: Soybean Yield Forecast

TCD SPEAKERASY 3 MU+ 11:15 AM AUGUST 11, 1978

:LSIZE=175

:LGET SOYPROG

:LSOYPROG

EXECUTION STARTED

U.S. SOYBEAN YIELD FORECAST

SOYCAST	SOYCAST	SOYCAST
1951 20.9	1961 23.9	1970 26.5
1952 20.4	1962 25.3	1971 26.5
1953 19.2	1963 24.3	1972 23.4
1954 20.7	1964 23.7	1973 23.6
1955 20.4	1965 25.3	1974 23.7
1956 21.3	1966 24.8	1975 27.0
1957 21.9	1967 24.5	1976 27.2
1958 24.1	1968 26	1977 29.0
1959 22.9	1969 27.2	1978 29.1
1960 23.4		

ECONOMIC ASSUMPTIONS:

U.S HARVESTED ACREAGE OF SOYBEANS FOR 1978: 63.178 MIL.

ESTIMATE OF ESCS/STATISTICS FERTILIZER INDEX FOR 1978: 131

THIS FORECAST MADE ON AUGUST 11, 1978

MANUAL MODE

:L

RICHARD A. STACK

Thomas L. Jacobs & Associates
53 W. Jackson
Suite 1339
Chicago, Illinois 60604

Property Analysis System (PAS)

This paper introduces a set of programs which allow the small investor to analyze the financial characteristics of a proposed investment in income property. The computations required to produce such an analysis, though simple, are nonetheless tedious and error-prone. Their length may cause the investor to overlook potentially profitable investments during his initial screening, and the possibility for computational error carries the risk of making a bad investment. The Property Analysis System described in this article addresses these problems in real estate investment in a useful way.

Introduction

The system was designed to provide the individual investor with a financial analysis of an investment (income) property. It is set up for simple purchases and is generally not capable of doing swaps and property exchanges, or of handling complicated partnership arrangements or investment trusts in which different partners share tax and appreciation benefits in different proportions.

PAS is used in SPEAKEASY's interactive mode which allows the investor to change estimates and investment profile characteristics and produce financial analyses reflecting those changes very rapidly. It does not, however, automatically search for an "optimal" strategy in any sense; i.e., no parameters of the analysis are varied over a range to select the "best" investment choice.

The PAS system is reasonably designed from a human engineering standpoint - it generally converses with its user in english, gives intelligent error messages, assumes reasonable defaults, and is forgiving when presented with unexpected or erroneous input.

Overview of Operation

Two sets of data are needed to produce a property analysis: an investor profile, containing money market data and investor-related information; and property data specific to the investment being considered.

When a user signs on to the system, he is prompted for his initials, which are used as an investor identification. If he has previously established his investor profile, it is re-printed for his review (see pg 2 of the attachment) and he is given the opportunity to modify it. If this is his initial use of PAS, he will be prompted on an item-by-item basis to supply information which constructs the profile. Suitable defaults and a method for changing them are provided. When completed, the profile will be filed, to be used in all future property analysis work. This entry path into the system is shown on pg 1 of the attachment.

The contents of the profile are detailed in both examples. As is apparent, some items are related to the mortgage market, some to the investor's financial situation, and some to general assumptions about the property's investment characteristics and transaction costs. Most of this information should remain fairly static, or vary over restricted ranges in the course of a particular analysis.

Some general comments about the content of the investor profile should be made:

- 1) There is not much error checking done on the reasonability of the information supplied, i.e., one could enter a negative useful life or mortgage rate, and it would be accepted. The financial analysis could probably be carried through with bizarre data values, but would be of course, useless. A system designed for less sophisticated users than those expected to use this version of PAS would require more thorough edits and cross-checks.
- 2) No legal or IRS rules are applied. For example, no check is made to see whether the useful life of a property qualifies it for the use of accelerated depreciation.

- 3) Item 11, years of analysis to produce, not only controls the amount of printout produced, but has a major impact on the financial analysis, since the property is assumed to be sold at the end of the last year shown.
- 4) Item 12, level of analysis, should be left at zero (the default) if a full analysis of cash flows and rate of return information is wanted; setting this to one will eliminate the printout of cash flows.

After the investor profile is retrieved or built, an existing property description is retrieved from the user's file, or built. Page 3 shows how an "index scanning" function is used to print a summary of properties on file, and provides an example of how a previously created property description is retrieved, then printed. (An example of creating a new property is shown on page 7.) The property description is free-form and contains descriptive information, e.g., address, physical characteristics, broker name, etc. (at the option of the user) and five numeric data elements related to the property, i.e., purchase price, land value, estimated revenue, operating expense (including taxes), and cost of required capital improvements. Each property in an investor's file is identified by a two-character code, chosen by the user.

Once both investor and property data are present, the financial characteristics of the investment are produced by invoking the analysis function (see page 4). This consists of some descriptive information, a taxable income analysis, cash flow analysis, and an analysis of proceeds, including after tax rate of return on investment. Key elements of this printout are: cash flow before taxes (which shows to what extent the property "carries" itself); cash flow after taxes (which shows net financial impact on the investor); and annual after-tax rate of return (which allows the comparison of returns with alternative investments).

After the initial pass has indicated that a specific property is worth further analysis, elements of the property description and/or investor profile can be modified to check various financing alternatives and financial projections or to perform crude sensitivity analyses. The examples of pages 5 and 6 show how the depreciation method to be used is modified (from 125% declining balance to straight-line) and the results of this change. Any property description and/or investor profile component can be altered and the analysis program re-run, and this sequence is repeated as often as necessary. Each change to either set of data alters the saved copy and remains in effect until subsequently modified.

UPINIT
YOUR INITIALS? (NEED THREE) ABC

CREATING NEW INVESTOR PROFILE - IF DEFAULTS (IN PARENS)
ARE OK, SIMPLY HIT RETURN

ENTER MORTGAGE % OF PRICE	(75)	70
ENTER CLOSING EXPENSES (AS % OF PURCHASE PRICE)	(3)	
ENTER MORTGAGE TERM (YEARS)	(25)	30
ENTER MORTGAGE ANNUAL % RATE	(9.75)	
ENTER ANNUAL % INCREASE IN GROSS INCOME	(5)	
ENTER ANNUAL % INCREASE IN OPERATING EXP	(5)	
ENTER VACANCY ALLOWANCE (AS % OF GROSS INCOME)	(4)	
ENTER DEPRECIATION METHOD (100 FOR S/L, 125 OR 200)	(100)	
ENTER USEFUL LIFE (IN YEARS)	(25)	30
ENTER INVESTOR INCOME TAX BRACKET (%)	(42)	38
ENTER NUMBER OF YRS OF ANALYSIS TO PRODUCE	(6)	
ENTER LEVEL OF ANALYSIS TO PRODUCE	(0)	
ENTER SALES COSTS (AS % OF SALES PRICE)	(6)	
ENTER PESSIMISTIC EST OF YRLY APPRECIATION (%)	(0)	
ENTER MOST LIKELY EST OF YRLY APPRECIATION (%)	(5)	
ENTER OPTIMISTIC EST OF YRLY APPRECIATION (%)	(10)	

INVESTOR ANALYSIS PROFILE

ITEM	DESCRIPTION	VALUE
1	MORTGAGE % OF PRICE	70
2	CLOSING EXPENSES (AS % OF PURCHASE PRICE)	3
3	MORTGAGE TERM (YEARS)	30
4	MORTGAGE ANNUAL % RATE	9.75
5	ANNUAL % INCREASE IN GROSS INCOME	5
6	ANNUAL % INCREASE IN OPERATING EXP	5
7	VACANCY ALLOWANCE (AS % OF GROSS INCOME)	4
8	DEPRECIATION METHOD (100 FOR S/L, 125 OR 200)	100
9	USEFUL LIFE (IN YEARS)	30
10	INVESTOR INCOME TAX BRACKET (%)	38
11	NUMBER OF YRS OF ANALYSIS TO PRODUCE	6
12	LEVEL OF ANALYSIS TO PRODUCE	0
13	SALES COSTS (AS % OF SALES PRICE)	6
14	PESSIMISTIC EST OF YRLY APPRECIATION (%)	0
15	MOST LIKELY EST OF YRLY APPRECIATION (%)	5
16	OPTIMISTIC EST OF YRLY APPRECIATION (%)	10

OK AS IS? (Y OR N) Y

VPINIT
YOUR INITIALS? (NEED THREE) RAS

INVESTOR ANALYSIS PROFILE

ITEM	DESCRIPTION	VALUE
1	MORTGAGE % OF PRICE	80
2	CLOSING EXPENSES (AS % OF PURCHASE PRICE)	3
3	MORTGAGE TERM (YEARS)	30
4	MORTGAGE ANNUAL % RATE	9.75
5	ANNUAL % INCREASE IN GROSS INCOME	5
6	ANNUAL % INCREASE IN OPERATING EXP	5
7	VACANCY ALLOWANCE (AS % OF GROSS INCOME)	4
8	DEPRECIATION METHOD (100 FOR S/L, 125 OR 200)	125
9	USEFUL LIFE (IN YEARS)	25
10	INVESTOR INCOME TAX BRACKET (%)	42
11	NUMBER OF YRS OF ANALYSIS TO PRODUCE	6
12	LEVEL OF ANALYSIS TO PRODUCE	0
13	SALES COSTS (AS % OF SALES PRICE)	6
14	PESSIMISTIC EST OF YRLY APPRECIATION (%)	5
15	MOST LIKELY EST OF YRLY APPRECIATION (%)	7.5
16	OPTIMISTIC EST OF YRLY APPRECIATION (%)	10

OK AS IS? (Y OR N) Y

AVAILABLE PAS (PROPERTY ANALYSIS SYSTEM) COMMANDS:

INVESTOR PROFILE COMMANDS:

VPINVPRT - PRINT CURRENT INVESTOR ANALYSIS PROFILE
VPINUMOD - MODIFY CURRENT INVESTOR ANALYSIS PROFILE

PROPERTY RELATED COMMANDS:

VPBLDCRE - CREATE A PROPERTY DESCRIPTION
VPBLDPRT - PRINT THE CURRENT PROPERTY DESCRIPTION
VPBLDRET - RETRIEVE A PROPERTY DESCRIPTION
VPBLIMOD - MODIFY THE CURRENT PROPERTY DESCRIPTION
VPBLDSCH - PRINT PARTIAL DESCRIPTIONS OF ALL INVESTOR PROPERTIES
VPBLDDEL - REMOVE A PROPERTY DESCRIPTION FROM YOUR FILE

OPERATING COMMANDS:

VPINIT - INITIALIZE SYSTEM
VPMENU - PRINT LIST OF COMMANDS AND THEIR FUNCTION
VPMAL - PRODUCE PROPERTY ANALYSIS

UPBLDSCN

PROPERTIES IN FILE:

PROPERTY ID 1ST DESCRIPTION LINE

R1 878 ASH ST
R3 929 12TH ST

:UPBLDRET

PROPERTY IDENTIFIER? (2 CHARACTERS) R1
PROPERTY R1 RETRIEVED AND MADE CURRENT PROPERTY

:+\$PRINT PROPERTY DESCRIPTION

:UPBLDPRT

DESCRIPTIVE TEXT	DATA	VALUES
878 ASH ST	PURCHASE PRICE	125000
SAMPLE PROPERTY 1	LAND VALUE	15000
	ANNUAL GROSS INCOME	11520
	ANN OPER EXP (INCL TAXES)	2700
	CAPITAL IMPROVEMENTS	0

:E

UPANAL

PROPERTY INVESTMENT ANALYSIS: AT 7:04 PM ON AUGUST 16, 1978

PROPERTY DATA

ID: R1 ADDRESS: 878 ASH ST
 PURCHASE PRICE: 125000

MORTGAGE:

INITIAL VALUE: 1000000 INT RATE: 9.75 TERM: 30
 MONTHLY PAYMENT: 859.15 BALANCE AT SALE: 95459

ANALYSIS OF TAXABLE INCOME

YEAR	TOTAL GROSS INCOME	VACANCY ALLOW	OPERATING EXPENSE	INTEREST EXPENSE	DEPREC- IATION	TAXABLE INCOME
1	11520	461	2700	9724	5500	-6865
2	12096	484	2835	9665	5225	-6112
3	12701	508	2977	9599	4964	-5347
4	13336	533	3126	9526	4716	-4565
5	14003	560	3282	9446	4480	-3765
6	14703	588	3446	9358	4256	-2945

ANALYSIS OF CASH FLOWS

YEAR	NET OPER INCOME	PRINCIPAL + INTEREST	CASH FLOW BEF TAXES	INCOME TAX	CASH FLOW AFT TAXES
1	8359	10310	-1951	-2883	933
2	8777	10310	-1533	-2567	1035
3	9216	10310	-1094	-2246	1152
4	9677	10310	-633	-1917	1284
5	10161	10310	-149	-1582	1432
6	10669	10310	359	-1237	1596

TITLE

ANALYSIS OF PROCEEDS

ASSUMED YEARLY APPRECIATION	5	7.5	10
RESULTING SELLING PRICES	167512	192913	221445
ADJUSTED BASES	165911	187435	189147
CAPITAL GAINS	60450	84327	111148
TAX LIABILITY	13845	18859	24492
PROCEEDS BEFORE TAXES	62802	85878	112699
PROCEEDS AFTER TAXES	48156	67819	88207
ANNUAL AFTER TAX RETURN (%)	12.397	18.142	23.242

\$MODIFY INVESTOR PROFILE--CHANGE DEPRECIATION METHOD
:<UPINUMOD
WANT TO SEE CURRENT PROFILE? (Y OR N) N
WHICH ITEM NUMBER TO CHANGE? 8
NEW VALUE FOR DEPRECIATION METHOD (100 FOR S/L, 125 OR 200) 100
WHICH ITEM NUMBER TO CHANGE?
PROFILE MODIFIED AND RE-FILED

:+

RE-DO ANALYSIS--USING STRAIGHT-LINE DEPRECIATION
:+UPANAL

PROPERTY INVESTMENT ANALYSIS: AT 7:13 PM ON AUGUST 16, 1978

PROPERTY DATA

ID: R1 ADDRESS: 878 ASH ST
PURCHASE PRICE: 125000

MORTGAGE:

INITIAL VALUE: 100000 INT RATE: 9.75 TERM: 30
MONTHLY PAYMENT: 859.15 BALANCE AT SALE: 95459

ANALYSIS OF TAXABLE INCOME

YEAR	TOTAL GROSS INCOME	VACANCY ALLOW	OPERATING EXPENSE	INTEREST EXPENSE	DEPREC- IATION	TAXABLE INCOME
1	11520	461	2700	9724	4400	-5765
2	12096	484	2835	9665	4400	-5287
3	12701	508	2977	9599	4400	-4783
4	13336	533	3126	9526	4400	-4249
5	14003	560	3282	9446	4400	-3686
6	14703	588	3446	9358	4400	-3098

ANALYSIS OF CASH FLOWS

YEAR	NET OPER INCOME	PRINCIPAL + INTEREST	CASH FLOW BEF TAXES	INCOME TAX	CASH FLOW AFT TAXES
1	8359	10310	-1951	-2421	471
2	8777	10310	-1533	-2221	688
3	9216	10310	-1094	-2009	915
4	9677	10310	-633	-1785	1152
5	10161	10310	-149	-1548	1399
6	10669	10310	359	-1298	1656

TITLE

ANALYSIS OF PROCEEDS

ASSUMED YEARLY APPRECIATION	5	7.5	10
RESULTING SELLING PRICES	167512	192913	221445
ADJUSTED BASES	108651	110175	111887
CAPITAL GAINS	58861	62738	669558
TAX LIABILITY	12361	17375	23007
PROCEEDS BEFORE TAXES	62002	65978	112699
PROCEEDS AFTER TAXES	49641	68504	89692
ANNUAL AFTER TAX RETURN(%)	12.267	17.927	22.97

\$CREATE NEW PROPERTY DESCRIPTION
:+UPBLDISC
PROPERTY ID? (2 CHARACTERS) RX
ENTER LINES OF DESCRIPTIVE TEXT: (ADDRESS ON FIRST LINE)
HIT RETURN TO QUIT
? 123 MAIN ST
? ANYWHERE, IL
?
ENTER PURCHASE PRICE 150000
ENTER LAND VALUE 18000
ENTER ANNUAL GROSS INCOME 12*875
ENTER ANN OPER EXP (INCL TAXES) 1500+12*175
ENTER CAPITAL IMPROVEMENTS 2000
:+

UPBLDISC

PROPERTIES IN FILE:

PROPERTY ID	1ST DESCRIPTION LINE
*****	*****
RX	123 MAIN ST
R1	878 FSH ST
R3	929 12TH ST

:+

SPEAKEASY DATABASE COMMANDS

Richard D. Schlichting
Cornell University
Ithaca, New York
August 17, 1978

Section 1 -- GSPEAK

A. Commands

Long term storage of information such as programs and objects defined in Named Storage is available in Speakeasy using the commands KEEP and KEPT. These commands, however, are not practical if a very large number of objects are to be saved since each must be assigned a unique reference name. The Generic Storage programming package is designed to store and catalog many hundreds of objects and to retrieves them indirectly through reference to their associated catalog entries.

The activation of Generic Storage is accomplished by the command GSTART, which is of the form

GSTART(name:NOBUFS=n,MAXSIZE=m,RECOVERY=m).

All of the parameters are optional, and those after the colon can appear in any order.

The parameter 'name' allows the user to specify the dataset to be opened for Generic Storage. Objects will be saved in the dataset USERID.name.GDATA, which will automatically be created if it does not already exist. However, in Batch Speakeasy, the dataset cannot be created dynamically, so it must exist and be allocated by job control statements to the ddname 'name'. If the parameter is omitted, the dataset name defaults to USERID.GSPEAK.GDATA.

If 'nobufs=n' appears in the argument list, a maximum of n buffers will be retained in core. The default value is two, which is also the minimum allowable. Although the linkule will run more efficiently for a greater n, a compromise must be made between efficiency and the extra space used in Named Storage since each buffer uses space equal to the BLKSIZE of the dataset (see below). For most applications, two buffers should be sufficient.

The MAXSIZE parameter of GSTART allows the user to set an upper limit on Named Storage space occupied by GSPEAK during execution. The larger the size, the more efficient the linkule will operate. The default size is sixteen. For each extra buffer that is requested to be kept in Named Storage, space equivalent to the block size of the Generic Storage dataset must be added to allow proper operating room for GSPEAK.

The RECOVERY parameter specifies the number of

kilobytes of the generic dataset which will be reserved for recovery from errors which involve the dataset running out of room. Without this area, such an error could lead to an unusable dataset. For maximum protection, the RECOVERY size should be as large as MAXSIZE.

A defined object in Speakeasy is put in the Generic Storage dataset by the command SAVE. In using the command, it is necessary to describe the catalog entries that will be used to reference the information at a later time and to specify the name of the object to be saved. In particular

```
SAVE(X:A,I,J)
```

indicates that the object named X is to be copied into the Generic Storage dataset and to be saved for later reference under the generic name A, with case number I and item number J. Executing a SAVE command does not destroy the object; it still exists in Speakeasy's Named Storage. However, a permanent copy is also available for later use.

The command SAVED is used to reference a previously saved object. Once again, the generic name, case number, and item number are used to select a particular object. In Speakeasy the word SAVED produces a temporarily defined object that can itself be used in expressions. Thus,

```
Y=4*SQRT(SAVED(A,I,J))
```

will take the square root of the object saved as (A,I,J), multiply the result by four, and assign the name Y to the final result. To merely recover an object, a statement such as

```
X=SAVED(A,I,J)
```

will suffice.

The SAVE and SAVED commands can be used in abbreviated forms if desired. For example, the statement

```
SAVE(Y)
```

is equivalent to

```
SAVE(Y:Y,0,0)
```

and copies the currently defined object Y into the database under the generic name Y. Table 1 provides a complete list of the available SAVE and SAVED commands.

The command

```
GEND
```

ends a session. If the keyword SAVE is specified, all of the data stored in the Generic Storage dataset during that session is retained, while the keyword NOSAVE will cause the

TABLE 1. Complete list of the available SAVE and SAVED commands usable in GSPEAK

Command	Generic Name	Case Number	Item Number	Speakeasy Object
SAVE(X:A,I,J)	A	I	J	X
SAVE(X:A,I)	A	I	0	X
SAVE(X:A)	A	0	0	X
SAVE(X)	X	0	0	X
SAVED(A,I,J)	A	I	J	-
SAVED(A,I)	A	I	0	-
SAVED(A)	A	0	0	-

data to be discarded. The use of the command without a keyword is the equivalent of a GEND(SAVE) if the SAVE command has been used at least once during the session; otherwise, the equivalent of a GEND(NOSAVE) is done.

The command

GRESTORE(name:GENERATION=n)

is used to resume generic activity after a GEND command has been used. Both parameters are optional, with 'name' giving the dataset name (see GSTART), and 'GENERATION=n' specifying which generation of the dataset to restore. Each GEND command which results in the saving of data adds a successive generation to a generation stack. Each such generation acts like a 'checkpoint', allowing the user to restore the exact environment in Generic Storage after any of his previous saving GENDs. The number 'n' is the n'th generation of the dataset, so that

GRESTORE(:GENERATION=1)

would restore the first previous generation, while

GRESTORE(:GENERATION=MostRecent)

is equivalent to GRESTORE and restores the present generation (i.e. the information saved by the most recent GEND command). For most cases, a simple GRESTORE will suffice.

The generation stack can be displayed with the command

GHISTORY(name)

which will print out the generation number, date and time for each generation of Generic Storage. The parameter 'name' is optional. If GSPEAK is active, the parameter is ignored and the information is displayed from the currently active dataset, while if GSPEAK is not active, the generations of USERID.name.GDATA will be printed. Omitting the parameter in the latter case implies that the dataset name is USERID.GSPEAK.GDATA.

Two commands are provided to examine the catalog of stored information: GNAMES and GINVENTORY. The command

GNAMES

will produce a list of currently defined generic names. It can also be used in the form

N=GNAMES

which will assign the corresponding namelist to N. The GINVENTORY command gives a variety of more detailed information depending on which form is used. A simple

GINVENTORY

behaves exactly like GNAMES, printing out the currently defined generic names, while

GINVENTORY(ALL)

displays all of the generic names along with their associated case, item pairs. To obtain case, item pairs for specific generic names,

GINVENTORY(gname1,gname2...)

is used. If case numbers are all that is needed, then

GINVENTORY(gname1,gname2...:CASES)

will print out the desired information. Item numbers associated with specific cases can be displayed by

GINVENTORY(gname1,gname2...:CASES case1,case2...).

It should also be noted that these commands can appear on the right side of an equal sign if only one generic name is used in the argument list. In these cases, an appropriate Speakeasy object will be defined.

The removal of unwanted items from Generic Storage is

accomplished through the GDELETE command. If the user specifies

GDELETE(gname)

the name and all of its associated case, item pairs are erased. To remove only a single case, item pair, the command

GDELETE(gname,case,item)

is used, where case and item are the indices of the element to be deleted.

The command

GSIZE(MAXSIZE=n)

allows respecification of the MAXSIZE parameter that is set in GSTART. As in that command, the number 'n' is the number of kilobytes within which GSPEAK will restrict itself during execution.

Eventually, the generic dataset will become full of unwanted and inaccessible data. This is especially true since actual removal of the information is not possible with GSPEAK's sequential datasets. Since this represents wasted space, a method for garbage collection has been provided. If the user types

GCOMPRESS(readname,writename:GENERATION=n)

information currently in Generic Storage dataset USERID.readname.GDATA will be copied into a new dataset, USERID.writename.GDATA. Inaccessible data will not be copied.

If no parameters in the GCOMPRESS command appear before the colon, the name of the read dataset(i.e. the dataset to be compressed) is assumed to be USERID.GSPEAK.GDATA, and that of the write dataset USERID.COMPRESS.GDATA. If only one parameter is used, it is interpreted as the read dataset name, in which case the write dataset name is assumed to be as above. As with GSTART, TSO Speakeeasy will create this write dataset if it does not exist, while Batch Speakeeasy requires that it exist and be allocated with ddname 'writename'. In any case, the two datasets must have the same specifications; in particular, the BLKSIZES must be identical.

The third parameter of GCOMPRESS, 'GENERATION=n', allows the specification of the particular generation to be compressed. It is also optional, with the default being the most recent generation.

The GCOMPRESS command can be invoked anytime during a Speakeeasy session so that Generic Storage need not have been activated by a GSTART or GRESTORE command. However, if GSPEAK is active, the equivalent of a GEND(SAVE) command

will be done to prepare for the compress.

D. Dataset Structure and Programming Considerations

The facilities described here are designed to operate as normal linkules with the Mut version of the Speakeasy processor. Therefore, in order to use GSPEAK, no special preparations are necessary for Speakeasy itself. However, to be able to read and write into Generic Storage from GSPEAK, it is necessary to have a dataset available.

The dataset used for Generic Storage is a normal sequential dataset. An appropriate dataset can either be defined by the user, or left up to GSPEAK to create when the GSTART linkule is invoked. Since allowing GSPEAK to create the dataset results in default specifications being used, it is often desireable to create the dataset before activating Generic Storage. This is done prior to entering Speakeasy or within Speakeasy using the TSO submode.

To allocate a new Generic Storage dataset the appropriate TSO commands are as follows:

```
ATTRIB DCB LRECL(6000) BLKSIZE(6000) RECFM(F)
ALLOC DA(USERID.name.GDATA) USING(DCB) SPACE(10,5)
FILE(name) BLOCK(7000)
```

The space allocation of ten tracks for the primary allocation and five tracks for the secondary extent is sufficient for applications where less than ten thousand data elements are saved. Data sets that are filled close to capacity or for which a "full dataset" error has been received can be stripped of their inaccessible data and copied into a new dataset by use of the GCOMPRESS command. If a "full dataset" error has not yet been received and more than one generation is needed, the entire dataset should be copied into a larger one via the TSO-Copy command. The BLKSIZE may be other than 6000, but the RECFM must remain F.

To use a previously created dataset in GSPEAK, one need only specify its name in the GSTART or GRESTORE command. If the dataset has not been allocated to the proper file, the linkule will do so automatically. Alternatively, the user can do the allocation manually in TSO. This method has the advantage of being slightly more efficient. To accomplish this allocation, the command

```
ALLOC DA(USERID.name.GDATA) FILE(name)
```

is used. The dataset name must still appear in the GSTART or GRESTORE argument list, however.

Three GSPEAK keywords refer directly to opening and closing of the Generic Storage dataset. They are the GSTART command, used to open the dataset; the GRESTORE command, used to reopen a dataset to reference previously stored data or to add new data; and the GEND command, used to close the

dataset so that new data added is kept as a permanent part of the dataset. No reference can be made to Generic Storage until either GSTART or GRESTORE has been used to open the file and initialize certain internal elements of the GSPEAK linkule. In addition, because of the way in which the linkule is constructed, no information is saved permanently until the GEND command is used with the SAVE keyword. However, the SAVE keyword is not intended to be used indiscriminately since in the process of closing the dataset, at least one block of data is added to the dataset. This action occurs even if no information had been saved during the session. Therefore, in order to prevent the needless waste of the dataset, the user who simply wants to terminate the GSPEAK session with no retention of data should use the GEND command with the NOSAVE keyword.

Section 2 -- RSPEAK

RSPEAK is an attempt to provide a simple relational database facility for Speakeasy. Commands are provided to create, manipulate, and update relations as well as commands to display database information to the user. The basic syntax of the various RSPEAK commands is described below, while more general information on the relational approach to database management, as well as examples of RSPEAK in use can be found in the longer document, "Database Manipulation in Speakeasy" by R. Schlichting.

1. Creating a Relation

The RSPEAK command

```
CREATERELATION relation-name WITH n COLS
```

provides for the initial creation of a relation. Before this command is executed, however, preparations must be made to define the relation's data in such a way that appropriate input can be provided for the linkule.

These preparations consist of defining both descriptive information about the relation and the data itself. The attribute, or column headings, are defined in a Speakeasy name-literal array. One way of doing this is by using the NAMELIST function in the following manner:

```
attribs=NAMELIST(attrib1,attrib2,...,attribN)
```

There should be as many attribute names as there are columns in the relation. As with all Speakeasy name-literal objects, a maximum of eight characters is permitted; longer names will be truncated.

The attribute types are also defined in a name-literal array, with the keywords NUM and CHAR indicating the type of each column. Thus, the command

```
types=NAMELIST(NUM,CHAR,NUM)
```

would indicate that the first and third columns are numeric, while the second contains character literals. These are the only two types presently supported.

After the descriptive information has been defined, the data itself needs to be put in Named Storage. Each column should be defined as either an array of numbers or a two dimensional character object. The latter type is created by typing

```
EDIT attr-name NEW NONUM
```

which will cause the Speakeasy editor to be invoked. The data elements are then typed, one to a line, while in EDIT

INPUT MODE. After all of the elements have been entered, a null line puts the user in EDIT COMMAND MODE. In this mode, any of the normal Speakeasy editor commands can be used to alter the information as desired. When the elements, which can be a maximum of eighty characters, are fully defined the user types

```
DEFINE attr-name NONUM
```

to have the object entered into Named Storage under the appropriate name. An END command returns the user to MANUAL MODE.

When the information has been properly defined, the CREATERELATION command can be invoked as shown above. The command will then request the name under which the attributes have been defined, and, following that, the namelist which holds the type definitions. The attribute names of the primary keys are then requested. These should be entered with separating commas. Up to four columns can be designated as the primary key.

The user is then asked if all of the columns are stored under their attribute names. If they are, RSPEAK will automatically retrieve the information and store it. Otherwise, the user will have to type in the name under which each column is stored as RSPEAK asks for it. The former method is obviously preferable. After all the data has been input to the linkule, a message will be transmitted to the user indicating that the definition of the relation has been accomplished.

While the process for creating a relation may seem overly complicated, each step is necessary for the proper definition of the relation. There are, however, certain facets of Speakeasy which allow the circumvention of some of the most arduous preparations. For example, all of the required definitions can be performed in a previous Speakeasy session and then stored until the relation is actually created. The KEEPLIST function, which allows the storing of several objects under a single name, is especially useful. Another possibility is the generation of the appropriate objects from a Fortran program which could then store the objects in a private KEEP library for later retrieval in an interactive Speakeasy session. This alternative means that the data in the relation need not be laboriously entered from a terminal. This is especially nice if the relation contains a large amount of information. All of these devices facilitate the use of the CREATERELATION command.

2. Manipulating Relations

There are two basic operations which can be performed on relations in RSPEAK, combining and projecting.

To combine two relations, the COMBRELATION command is

used in the following manner:

```
COMBRELATION rel1 WITH rel2 OVER common-domain [INTO  
resultnam]
```

This command merges two relations by first scanning for like elements in the common domain, and then upon finding them, combining those two rows into one. If there are elements in the common domain of one relation but not the other, that row does not participate in the combine operation.

Conversely, if an element has many like elements in the other relation, its row is replicated to participate in the combine. The optional keyword INTO allows the specification of a name for the resulting relation. If this keyword is omitted, the name RESULT will automatically be assigned to the answer, allowing it to be used in subsequent commands. The COMBRELATION command is illustrated several times in the sample TSO sessions in the appendix.

The PROJRELATION command isolates a specific subset of columns from the relation. By typing

```
PROJRELATION relnam OVER col1,col2,...colN [INTO resultnam]
```

a result is formed in which only those columns specified will appear. It should also be pointed out that they will be defined in the order given in the command, so that it also can be used to rearrange the columns of a relation. As with the COMBRELATION command, the keyword INTO allows specification of a name for the resulting relation.

Many queries into relational databases involve the repeated use of the COMBRELATION and PROJRELATION commands before a final result is established. When this is the case, the intermediate relations generated by the commands tend to be transitory, existing only for a short time until another operation can be performed on it. In order to save both time and space, special capabilities have been provided in RSPEAK to facilitate these multiple-command queries. They make use of what is called a result relation.

If the user appends the keyword RESULT to the end of either the COMBRELATION or PROJRELATION commands, a result relation is formed instead of a regular relation. This result relation, which is faster to generate and uses less space than a regular relation, can then be manipulated by special versions of the COMBRELATION and PROJRELATION commands.

The COMBRESULT command allows the last previously generated result relation to be combined with any regular relation in the same way as the COMBRELATION command. The proper format is

```
COMBRESULT WITH relnam OVER common-domain
```

where 'common-domain' is the attribute heading.

The command

PROJRESULT OVER col1,col2,...,colN

projects the last generated result relation over the specified columns.

These two commands form, as a consequence of their execution, another result relation which replaces any previously generated result relation. Therefore, since only the last generated result is accessible at any given time, these special relations are truly transitory. One further property should be noted: since the result relations are nameless, the INTO keyword (used with the COMBRELATION and PROJRELATION commands) is incompatible with the use of these special types of relations. Thus, INTO should not be used in conjunction with the RESULT keyword, or on the COMBRESULT or PROJRESULT commands.

The user will generally want to retain the result of a long series of commands. A method of converting a result relation to a regular relation has been provided. The command

KEEPRESULT AS relnam

will copy the last generated result into the relational database as a regular relation under the name 'relnam'. The result relation still exists, however, and can be used in further computations.

3. Updating Commands

In addition to the manipulative commands, two operations are provided for the alteration of regular relations. To insert a new row, the command

ROWADD relnam TO e11,e12,...e1N

is used. In this case, N is the number of columns in the relation. The elements which constitute the new row may be constants, either numeric or character, or the names of objects defined in Named Storage. The row is added to the end of the specified relation, defining a new relation which replaces the old. It should be noted that this relation is not treated as a result relation, but simply as a modified version of the original relation.

To delete a row, the command

ROWDELETE relname OF e11,e12,...e1K

is used. The number of elements specified in the command should be equal to the number of attributes which serve as the primary key. The row with that key is then searched out and deleted from the relation. As with ROWADD, the new relation replaces the old.

4. Informational Commands

There are three words which can be used to print out relations. The command

DISPRELATION relnam

will cause the specified relation to be printed out. To display a result, the command

DISPRESULT

is used. The names of all currently defined relations can be obtained by the command

RELATIONS.

5. Miscellaneous commands

The user might find it advantageous to be able to use normal Speakeasy commands on certain columns of a relation. To facilitate this type of operation, two commands can be used. The word

USERELATION relnam

will define each column of the specified relation in Named Storage under its column heading (i.e. attribute name). Numeric columns will be defined as one dimensional arrays, while character information will become two dimensional character arrays. The command

USERESULT

performs the same operation on the last generated result relation.

The command

REND

allows the user to end the RSPEAK session in much the same way as the GEND command of GSPEAK. If the keyword SAVE is specified, all of the relations created during that session are retained, while the keyword NOSAVE will cause the relations to be discarded. The use of the command without a keyword is the equivalent of an REND SAVE if at least one relation has been saved during the session; otherwise the equivalent of a REND NOSAVE is done. However, any result relations which were generated are valid only during the session in which they were defined and are never incorporated into the relational database.

Several of the commands which were used in GSPEAK are also necessary for the operation of RSPEAK. These are

GSTART, GRESTORE, and GSIZE. For a description of each, see the previous section.

Appendix I

GLOSSARY OF GSPEAK COMMANDS

GCOMPRESS--Writes all current information from one generation of Generic Storage into a new dataset.

GDELETE--Removes either an entire generic name and its associated case, item pairs or one case, item pair of a specific generic name from Generic Storage.

GEND--Closes the Generic Storage dataset and retains the data stored during the session.

GHISTORY--Prints out the date, time, and generation number for each generation of Generic Storage.

GINVENTORY--Lists case and item numbers associated with a generic name.

GNAMES--Lists all the Generic Names.

GRESTORE--Opens and initializes a Generic Storage dataset which has previously been written in.

GSIZE--Allows respecification of the MAXSIZE parameter that is set in GSTART.

GSTART--Initiates a new Generic Storage dataset.

SAVE--Writes objects into the Generic Storage dataset. (See Table 1)

SAVED--Reads objects from the Generic Storage dataset. (See Table 1)

Appendix II

GLOSSARY OF RSPEAK COMMANDS

COMBRELATION--Forms a relation by combining two other relations.

COMBRESULT--Forms a result relation by combining a regular relation with the latest result relation.

CREATERELATION--Creates a relation.

DISPRELATION--Displays a relation.

DISPRESULT--Displays the latest result relation.

KEEPRESULT--Creates a regular relation from the latest result relation.

PROJRELATION--Forms a new relation by projecting a relation over specified columns.

PROJRESULT--Forms a new result relation by projecting the latest result relation over specified columns.

RELATIONS--Prints out the names of the currently defined relations.

REND--Terminates an RSPEAK session.

ROWADD--Adds a row to a relation.

ROWDELETE--Deletes a row from a relation.

USERELATION--Defines the columns of a relation in Named Storage under their attribute headings.

USERESULT--Defines the columns of the latest result relation in Named Storage under their attribute headings.

A Preview of some upcoming Developments in RSPEAK

S. Massaquoi August 1978

The evolution of Speakeasy's relational data base facility will involve primarily the introduction of a new set of high-powered words. Soon the relational data base vocabulary will probably consist of the words: RCOMBINE, RAPPEND, RPROJECT, RCREATE, RDELETE, RUPDATE, RSHOW, RCOUNT, RCOPY RDESCRIBE, RDESCRIPTION and RREFERENCE. The capabilities of these words will greatly extend both the power and convenience of data manipulation in RSPEAK.

The impetus for developing these new words comes from the realization that a relational data base is more efficient and powerful when it consists of many different relations, each containing a conceptually different set of data, than when it is made up of a few catch-all relations. Such poorly refined data bases tend to have a great deal of redundancy of information and suffer many types of manipulation anomalies.* With an increased number of relations, however, it becomes much more tedious to execute the basic manipulations necessary to retrieve the widely distributed data. Thus the new RSPEAK words RUPDATE, RSHOW, RCOUNT, RDELETE and RCOPY will be designed to automatically combine, append, and project all of the relations needed to isolate the data. The words RREFERENCE and RDESCRIBE will enable the user to, respectively, specify which relations in the data base are to be included in the automatic searches, and to store short descriptions of the data contained in each relation (RDESCRIPTION will recover this description). Finally, RCREATE, RAPPEND, RCOMBINE and RPROJECT will retain the user's ability to manually manipulate relations if desired.

The tentative drafts of the help documents for these words are given at the end of this handout to better explain their individual functions, but first, an example of how some of this vocabulary might be used.

Imagine for a moment that it is 10:50 A.M. and Sam, an attendant at Speakville airport, has just discovered a fat wallet lying in a corridor apparently having been just dropped by a hurried traveler. Incredibly, the only sources of possible identification are part of a torn social security card displaying the digits: 37-2011, and a torn portion of a newspaper advertisement which reads: "...fly our wide-bodied jets to Hawaii!" Being uncompromisingly honest and quite resourceful to boot, Sam rushes to the nearest computer terminal and logs onto Speakeasy. Once invoking RSPEAK he has access to FLIGHTINFO, the data base consisting of the following relations:

* For a discussion of optimal relational data base organization and manipulation anomalies, see "Relational Data-Base Management Systems" by Donald D. Chamberlin. ACM Computing Surveys: Vol. 8, #1 March 1976

DEPARTURES

TIME	FLIGHTNO	AIRLINE	DESTINATION	PLANE	GATE
10:55	202	ALPHA	NEW YORK	727	K1
10:55	139	GAMMA	HONOLULU	747	C3
11:00	617	GAMMA	BOSTON	DC-10	C1
11:03	4	BETA	NEW YORK	727	J6
11:11	165	GAMMA	PHOENIX	DC-10	A3
11:18	105	ZETA	HONOLULU	707	E1
11:25	218	ZETA	SAN FRANCISCO	747	E6
11:41	201	PHI	ATLANTA	707	H11

ARRIVALS

TIME	FLIGHTNO	AIRLINE	FROM	PLANE	GATE
10:30	100	ZETA	DALLAS	727	E4
10:38	617	GAMMA	SEATTLE	DC-90	C1
10:45	302	RHO	HICKSVILLE	DC-9	D2
10:53	413	ALPHA	WASHINGTON/DC	727	K4
11:02	108	ALPHA	PHILADELPHIA	707	K5
11:11	338	ZETA	LOS ANGELES	DC-10	E5
11:18	119	PHI	MIAMI	707	H2
11:21	106	BETA	NEW YORK	L-1011	J8
11:25	115	BETA	ALBANY	727	J6

PASSENGERS				
NAME	FLIGHTNO	AIRLINE	ADDRESS	S.S.NO
Aaron, L	413	ALPHA	603 N Wooddale, N.Y	488-21-4866
Abbott, K	165	GAMMA	13 East Drive, Pt Pa	738-28-7277
Abbate, J	105	ZETA	18½ 43rd, Zv. Id	100-14-8139
Acterson, Z	401	OMEGA	P.O. Box 21, Woodland Ky	376-45-5104
Addison, M	202	ALPHA	173 W 95th St, Chi IL	218-19-1817
Ardmore, P	139	GAMMA	506 W. Highbank, Minn	365-37-2011
Aston, J	139	GAMMA	218 E, Lombard, Ren. Nev	189-27-3604
Astor, V	118	OMEGA	17½ 109th *6, L.A. Ca.	138-81-8712
Atticus, G	201	PHI	100 Longwood Drive, N.Y.	151-11-0664
Avery, C	166	BETA	37 N. Kedzie, Chi. Ill.	642-01-0080
Baker, C	201	PHI	3109 E 47th St, Ch. Ill.	137-12-3092
Bamberg, D	302	RHO	Ontario NW, Wash. D.C.	418-22-2867
Banson, L	119	PHI	13 East Start, Miami Fl	910-05-5631
Berry, V	302	RHO	Callahan Sq *8 Boston Ha	218-89-9037
Best, G	302	RHO	Roberts Fld, N.Dak	668-84-0935
Bettler, G	413	ALPHA	601 E Main, Portage, Ind	471-62-6801
Binks, J	100	ZETA	14 High St. Elgin Ill.	928-35-2019
Bisk, F	4	BETA	*3 Township Ave. W.R. Va	375-63-8076
Ritter, L	139	GAMMA	1922 Cassidy, N.Y. N.Y	225-24-8172
	B		1059 W. 211	606-0

PLANE TYPE			
PLANE	NO SEATS	BODY TYPE	NO ENGINES
DC-9	80	NARROW	2
DC-10	198	WIDE BODY	3
727	78	NARROW	3
707	130	NARROW	4
747	240	WIDE BODY	4
L-1011	200	WIDE BODY	3

He then enters:

:_RDESCRIPTION FLIGHTINFO

DEPARTURES IS A RELATION HAVING 6 ATTRIBUTE HEADINGS:
TIME, FLIGHTNO, AIRLINE, DESTINATION, PLANE, GATE
THERE ARE CURRENTLY 8 RECORDS UNDER THESE HEADINGS.

DEPARTURES IS A CONSTANTLY UPDATED RELATION WHICH CONTAINS INFORMATION REGARDING FLIGHTS DEPARTING WITHIN THE NEXT HOUR.

ARRIVALS IS A RELATION HAVING 6 ATTRIBUTE HEADINGS:
TIME, FLIGHTNO, AIRLINE, DESTINATION, PLANE, GATE
THERE ARE CURRENTLY 9 RECORDS UNDER THESE HEADINGS.

ARRIVALS IS A CONSTANTLY UPDATED RELATION WHICH CONTAINS INFORMATION REGARDING FLIGHTS WHICH HAVE ARRIVED DURING THE PAST HALF-HOUR OR ARE SCHEDULED TO ARRIVE IN THE NEXT HALF-HOUR.

PASSENGERS IS A RELATION HAVING 5 ATTRIBUTE HEADINGS:
NAME, FLIGHTNO, AIRLINE, ADDRESS, S.S.NO
THERE ARE CURRENTLY 1,314 RECORDS UNDER THESE HEADINGS.

PASSENGERS CONTAINS INFORMATION ABOUT ALL OF THE PERSONS WHO CURRENTLY HAVE RESERVATIONS ON FLIGHTS ARRIVING AT OR DEPARTING FROM SPEAKVILLE AIRPORT.

PLANETYPE IS A RELATION HAVING 4 ATTRIBUTE HEADINGS:
PLANE, NOSEATS, BODYTYPE, NOENGINES
THERE ARE CURRENTLY 6 RECORDS UNDER THESE HEADINGS.

PLANETYPE CONTAINS PHYSICAL SPECIFICATIONS OF THE TYPES OF AIRCRAFT CURRENTLY USED BY AIRLINES OPERATING AT SPEAKVILLE AIRPORT.

\$ Note that FLIGHTINFO is merely a namelist of the relations in the
\$ data base.

\$ He continues:

:_RREFERENCE DEPARTURES, PLANETYPE
:_RSHOW "TIME,FLIGHTNO,AIRLINE,GATE FROM DEPARTURES WHERE DESTINATION IS &
'HONOLULU' AND BODYTYPE IS 'WIDEBODY' IN PLANETYPE"

TIME	FLIGHTNO	AIRLINE	GATE
*****	*****	*****	*****
10:55	139	GAMMA	C3

So Sam rushes off to C3 only to find that flight 139 had left seconds earlier. Not to despair, though, he logs back onto the system and enters:

: _RREFERENCE PASSENGERS, DEPARTURES
:_RSHOW "NAME, ADDRESS, S.S.NO FROM PASSENGERS WHERE DESTINATION IS &
'HONOLULU' IN DEPARTURES"

NAME	ADDRESS	S.S.NO
*****	*****	*****
Abbate,L	13 East Drive, Pitt. Pa.	738-28-7277
Ardmore,P	506 W. Highbrook, Minn. Minn.	365-37-2011
Aston,J	218 E. Lombard, Reno Nev.	189-27-3604
Bitner,L	1922 Cassidy, N.Y., N.Y.	225-24-8172

And voila! the last digits of Mr. Ardmore's social security number match those on the stub--all is not lost! Thanks to Sam and RSPEAK the wallet will be returned!

Finally, the important thing to note is that the real drama of this example lies in the fact that the last simple query alone replaces essentially the following sequence of current commands:

```
: ATTRIBS=NAMELIST(DESTINATION)
: TYPES=NAMELIST(CHR)
: EDIT DESTINATION NEW NONUM
1. HONOLULU
:%DEFINE DESTINATION_NONUM
:%END
: CREATERELATION TEMP1 WITH 1 COL
: COMBRELATION DEPARTURES WITH TEMP1 OVER DESTINATION INTO TEMP2
: PROJRELATION TEMP2 OVER FLIGHTNO, AIRLINE INTO TEMP3
: COMBRELATION TEMP3 WITH PASSENGERS OVER FLIGHTNO RESULT
: COMBRESULT WITH TEMP3 OVER AIRLINE
: PROJRESULT OVER NAME, ADDRESS, S.S.NO
: DISPRESULT
```

Tentative RSPEAK Help Documents

RAPPEND RAPPEND joins relations with the same attribute headings. RAPPEND(rel1, rel2, ... reln INTO resultname) produces a single relation named 'resultname' which consists of all of the records contained in relations rel1 ... reln (with duplicate records removed). Rel1 ... reln must therefore all have the same attribute headings. If the keyword INTO and the resultname are omitted, the resulting relation is by default named "RESULT". RAPPEND is one of several words used with Speakeasy's relational data base facility. See the RSPEAK larger document for more information.

RCOMBINE *

RCOPY RCOPY copies data from a relation into another object. The form of the command is: RCOPY "qualifier" where the qualifier is always enclosed by a single pair of quotation marks. Within the qualifier, three keywords may be used: FROM, WHERE (or WHEREVER) and AS. FROM specifies the name of the relation from which the data is to be retrieved. WHERE introduces a logical condition which must be satisfied by the data search. The condition consists of units of the form: conditionattribute verb conditionvalue IN relationname connected together by the logical conjunctions AND, OR or EXCEPT (or UNLESS); optionally, AND WHERE, OR WHERE or EXCEPT WHERE may be used. Further, up to 8 levels of parentheses may be used to logically group the expression. When parentheses are not used the default precedence of the logical conjunctions is: AND before OR before EXCEPT. The verb may be: IS, ISNOT, EQUALS, .EQ., .GE., .LE., .GT., .LT., .NE., ISBEFORE, ISAFTER, ISBETWEEN...AND..., CONTAINS. The conditionvalue may be a list of data items enclosed in apostrophes, a name of an object containing the list of data items (each item in the list is considered a conditionvalue alternative), or an expression bracketed in angle brackets (or at-signs) which will be evaluated by the Speakeasy processor before being used as a value. The specification of a particular relation to be searched by the keyword IN is optional but speeds location of data.

AS specifies the names which the resulting relations will be given. AS ARRAYS may be used to indicate that the results are to be in the form of 1-dimensional arrays with the given names. If the names are omitted, the attribute headings will be used as names by default.

The portion of the qualifier preceding any keywords indicates what part of the data is to be copied. This may be a list of attribute headings, "RECORDS" if data under all headings is to be copied or a list of relationnames if the entire relations are to be copied (in this case no other keywords follow). A copy of just the attribute headings of a given relation can be obtained by using the syntax:

RCOPY ATTRIBUTES FROM relationname

Finally if the syntax RCOPY : is used the user will be automatically prompted with the possible keywords. A blank line response causes an advance to the next keyword, a break causes the prompt to be reissued and two consecutive breaks cause termination of the command with nothing done.

RCOPY is one of several words used with Speakeasy's relational data base facility. For more information and examples of the RCOPY syntax, see the RSPEAK larger document.

RCOUNT

RCOUNT counts selected data items in a relation.

The form of the command is: RCOUNT "qualifier" where the qualifier is identical to that used with RSHOW (see separate help document) with the single exception that RCOUNT may be used in a replacement expression:

NUM = RCOUNT "qualifier"

which assigns the count obtained to the variable NUM.

RCOUNT is one of several words used with Speakeasy's relational data base facility. See the RSPEAK larger document for more information.

RCREATE

*

RDELETE

RDELETE deletes selected records from a relation.

The form of the command is: RDELETE "qualifier" where the qualifier is english-like and is always enclosed by a single pair of quotation marks. The two syntaxes of the command are:

RDELETE relation1,..., relationN which destroys relations 1 thru N.

RDELETE FROM relation WHERE condition which caused all records which contain data items satisfying the condition to be deleted from relation. The condition consists of units of the form:

conditionattribute verb conditionvalue IN searchrelation connected together by the logical conjunctions AND, OR or EXCEPT (or UNLESS); optionally, AND WHERE, OR WHERE or EXCEPT WHERE may be used. Further, up to 8 levels of parentheses may be used to logically group the expression. The verb may be: IS, ISNOT, EQUALS, .EQ., .GE., .LE.,

.GT., .LT., .NE., ISBEFORE, ISAFTER, ISBETWEEN...AND..., CONTAINS. The conditionvalue may be a list of data items enclosed in apostrophes, a name of an object containing the list of data items (each item in the list is considered a conditionvalue alternative), or an expression bracketed in angle brackets (or at-signs) which will be evaluated by the Speakeasy processor before being used as a value. The specification of a relation to be searched first by the keyword IN is optional but speeds location of data.

RDELETE is one of several words used with Speakeasy's relational data base facility. For more information see the RSPEAK larger document.

RDESCRIB RDESCRIBE enters a description of a relation.

RDESCRIBE(relationname WITH description) is used to enter a description of the data contained in the relation named "relationname". "description" is the character object which contains the description. This object may be created with a simple replacement statement using quotation marks or with the Speakeasy word TEXT (see help document for TEXT).

Alternatively, the syntax RDESCRIBE(relationname :) may be used to cause the user to be prompted with ":>" to enter lines of the description directly.

RDESCRIBE is one of several words used with Speakeasy's relational data base facility (see larger document: "Relational Data Bases in Speakeasy" for more information).

RDESCRIP RDESCRIPTION(relation) lists the description of relation.

The description which the user has stored using the word RDESCRIBE (see separate help document) is printed out preceded by the message:

"'relation' is a relation having N attribute headings:
atthead1,atthead2,...attheadN

There are currently k records in 'relation'." In order that k, the number of records, be always accurate, the number is automatically revised when changes are made to 'relation'. Also, the entire description is automatically deleted whenever 'relation' is destroyed.

The description can be saved as a character object X, rather than be displayed, via the command:

X=RDESCRIPTION(relation).

RDESCRIPTION is one of several words used with Speakeasy's relational data base facility. See the RSPEAK larger document for more information.

RPROJECT *

RREFEREN RREFERENCE specifies relations for automatic searches.

RREFERENCE rel1,...relN specifies which relations of those currently defined are to be searched automatically by other RSPEAK words which use the keyword WHERE (presently these include: RSHOW, RCOUNT, RCOPY, RDELETE, and RUPDATE). With these words the keyword FROM or IN

may be omitted whenever exactly one relation has been referenced.

RREFERENCE ALL references all currently defined relations.

Relations can be freed from being referenced by using the commands RFREE rel1,...relN or RFREE ALL

RREFERENCE is one of several words used with Speakeasy's relational data base facility. For more information, see the RSPEAK larger document.

RSHOW

RSHOW displays selected data items from a relation.

The form of the command is: RSHOW "qualifier" where the syntax of qualifier is english-like and is always enclosed in a single pair of quotation marks. Within the qualifier two keywords may be used: FROM and WHERE.

FROM specifies the name of the relation from which the data is to be retrieved. This keyword may be omitted if there is exactly one relation currently referenced.

WHERE introduces a logical condition which must be satisfied by the data search. The condition consists of units of the form:

conditionattribute verb conditionvalue IN relationname connected together by the logical conjunctions: AND, OR or EXCEPT (or UNLESS); optionally, AND WHERE, OR WHERE or EXCEPT WHERE may be used. Further, up to 8 levels of parentheses may be used to logically group the expression. The verb may be: IS, ISNOT, EQUALS, .EQ., .GE., .LE., .GT., .LT., .NE., ISBEFORE, ISAFTER, ISBETWEEN...AND..., CONTAINS. The conditionvalue may be a list of data items enclosed in apostrophes, a name of an object containing the list of data items (each item in the list is considered a conditionvalue alternative), or an expression bracketed in angle brackets (or at-signs) which will be evaluated by the Speakeasy processor before being used as a value. The specification of a searchrelation with IN is optional but speeds the location of data.

The portion of the qualifier preceding any keywords indicates what part of the data is to be displayed. This may be a list of attribute headings, "RECORDS" if data under all headings is to be displayed or a list of relationnames if the entire relations are to be shown (in this case no other keywords follow). A listing of just the attribute headings of a given relation can be obtained by using the syntax:

RSHOW ATTRIBUTES FROM relationname

Finally, if the syntax RSHOW : is used, the user will be automatically prompted with the possible keywords. word, a break causes the prompt to be reissued and two consecutive breaks cause termination of the command with nothing done.

RSHOW is one of several words used with Speakeasy's relational data base facility. For more information and examples of the RSHOW syntax, see the RSPEAK larger document

RUPDATE

RUPDATE replaces selected data items in a relation.

The form of the command is: RUPDATE "qualifier" where the qualifier is english like and is always enclosed in a single pair of quotation marks. The two basic syntaxes of the command are:

RUPDATE relationname : which causes new records to be added to the relation named relationname. This is done by having the user be prompted sequentially with the attribute headings and having the user enter the data items to be stored under these headings. A break character in the middle of an input line causes a prompt to be reissued while a break immediately following a prompt terminates the command. Note that if the last record was not completed it will not be retained.

RUPDATE atthead1,...,attheadN : which causes the user to be prompted with attribute headings 1 thru N. The data which is entered in response to each prompt is used to replace the data under each respective heading.

RUPDATE RECORDS : is the same as above except that the user is prompted automatically with all of the attribute headings belonging to the relation.

In addition, 3 keywords may be used with the basic syntaxes above.

IN specifies the name of the relation in which data is to be updated. This keyword may be omitted if exactly one relation is currently referenced.

WHERE introduces a logical condition which must be satisfied by the data search. The condition consists of units of the form:

conditionattribute verb conditionvalue IN relationname connected together by the logical conjunctions AND, OR or EXCEPT (or UNLESS): optionally, AND WHERE, OR WHERE or EXCEPT WHERE may be used. Further, up to 8 levels of parentheses may be used to logically group the expression. When parentheses are not used the default precedence of the logical conjunctions is: AND before OR before EXCEPT. The verb may be: IS, ISNOT, EQUALS, .EQ., .GE., .LE., .GT., .LT., .NE., ISBEFORE, ISAFTER, ISBETWEEN...AND..., CONTAINS. The conditionvalue may be a single data item enclosed in apostrophes, a name of an object containing a data item, a list of conditionvalue alternatives, an object containing a list of conditionvalue alternatives or an expression bracketed in angle brackets (or at-signs) which will be evaluated by the speakeasy processor before being used as a value. The specification of a searchrelation with IN is always optional but speeds location of data.

WITH replaces the colon and specifies directly the data or names of objects containing the data which is to replace the old data. The data is separated by semicolons into fields corresponding to the attribute headings. Each field may contain a single data item enclosed in apostrophes, the name of an object which contains the data item, or an expression in angle brackets or at-signs which will be evaluated by the Speakeasy processor before being used as a data item.

RUPDATE is one of several words used with Speakeasy's relational data base facility. For more information, see the RSPEAK larger document.

- * The help documents for these words will be substantially the same as those now existing for COMBRELATION, CREATERELATION and PROJRELATION.

APPLICATIONS OF RSPEAK: A RELATIONAL
DATA MANAGEMENT FACILITY IN SPEAKEASY

by

Bill A. Bavinger
School of Architecture
Rice University

INTRODUCTION

For the past four years the Rice Architecture Computer Lab (RACL) in the School of Architecture at Rice University has used Speakeasy as its primary access to computing capabilities. Utilizing Speakeasy's provision for extension the lab has developed numerous linkules that are specifically related to geographic information processing. This subsystem of linkules is called RAGIS (Rice Architecture Geographic Information System). Speakeasy has provided the capability to integrate under a single information processing system, a number of special purpose functions and operations that jointly allow acceptance, organization, and representation of spatially related data at the regional, urban, and the built form scales. The addition last year of a relational data management facility in Speakeasy (Rspeak) provided the opportunity to integrate a data base management capability into the lab's work. In practice the relational approach to data management greatly extended the lab's research and applications. This paper will briefly describe the concepts of the relational data model and the specific use of Rspeak in four different applications: (1) a Watershed Management Project for the U.S. Army Corps of Engineers, (2) Urban Research at RACL, (3) Information Management for Health Planning and Facility Design, and (4) a management application concerning chemicals and research related to the nation's Enhanced Oil Recovery (EOR) program.

There are three general conceptual models for data management: hierarchical (tree), network (complex), and relational (tabular). Of these three models the relational seems to offer many advantages (Date, 1977). Relations are straightforward, relatively easy to understand, and their uniformity of representation allows an operational simplicity that is much more easily managed than either the network or hierarchical models. Also, since its organization does not depend on physical analogs, or pointers, to create relations between data the relational model offers a minimum of organizational or informational bias. The network approach, from which hierarchical models can be considered a special case, has many constructs which are essential in the data set. This one fact establishes the difference between relational and network models: relations are simple because they have one uniform construct, networks are complex because they have many operational constructs, all of which are necessary for data management and manipulation.

Since its inception in the early 1970's, RACL has been concerned both with complex problems related to regional and urban analysis and with large amounts of data. Many approaches to data management related to these problems have been explored and developed

RAGIS

SYSTEM DIAGRAM

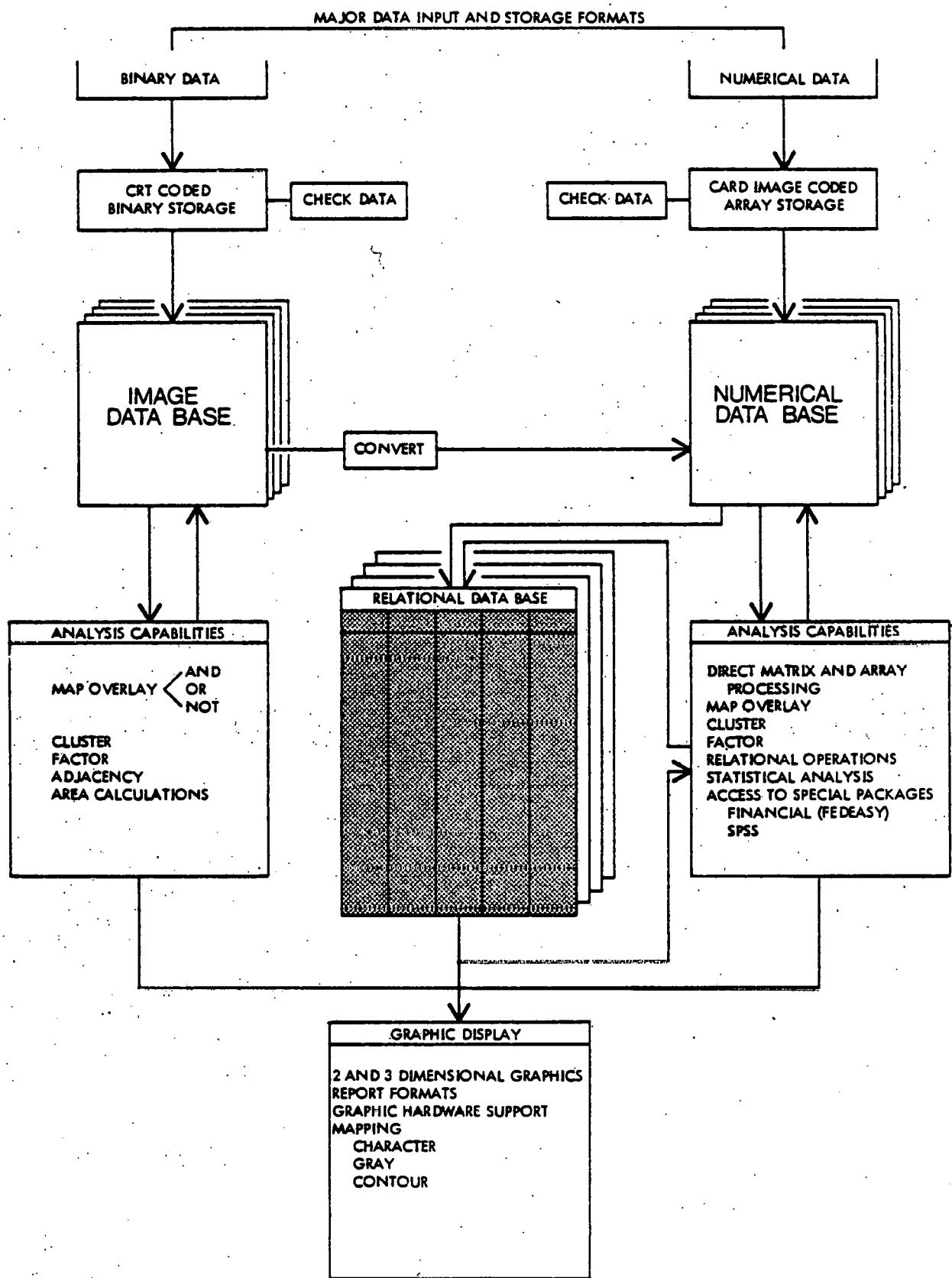


Figure 1

under RAGIS. Included in these approaches are pattern finding capabilities (multi-variate clustering and factoring), data association capabilities (the matrix approach to data organization), and capabilities to determine context (connectivity and adjacency). The introduction of Rspeak and the concepts of the relational data management have allowed the perception of the interrelationships between the results of analysis and the raw data describing the original problem context. These capabilities are implemented very simply by adding attributes (columns) containing the results of various kinds of analysis to tables of attributes in Rspeak containing data (relations). Thus in addition to finding relationships between data, it is possible to find relationships both between various kinds of analysis and data, and among the results of the analyses. The merger of Rspeak with RAGIS analysis capabilities has allowed perceptions through first order data organizations to a second order of relationships describing the first order. For the first time many of the original goals of RACL, which included the integration of diverse information into the design process at all scales, and the view of design as a series of representations in the relationships between information, are manageable.

While at the technical level the relational approach to data management has received much attention in recent articles and books, little has been written concerning actual applications. Work at RACL with Rspeak has revealed a number of operational considerations related to the use of a relational data management model and "relational thinking". In practice Rspeak provides a number of powerful data management capabilities, but more importantly, it introduces a number of concepts for problem organization and solving. An understanding of these concepts has greatly expanded the scope of RACL applications. It is difficult to specifically state these concepts as operational rules at this point in time, but the general influence of relational thinking emerges in the following descriptions of specific applications.

APPLICATIONS

Watershed Management

RAGIS has been used on several flood plain projects (Rowe and Blackburn, 1977; Bedient, 1978) primarily for the purposes of organizing the inventory and analysis of land use and environmental data, and in support of land use and hydrologic modelling activities (Figure 2). On the most recent of these projects (Bear Creek, Texas) Rspeak was explored for its utility to the overall data management requirements. The spatial data base constructed for Bear Creek conformed to the Universal Transverse Mercator (UTM) cardinal referencing system. The data points themselves took the form of a uniform grid cell system with individual grid cells of 1/4km X 1/4km or 15.45 acres. Spatial information was coded as discrete images which are stored as logical bit strings. Thus each data pattern was either present or absent in each grid cell. This raster-like technique for data capture and storage is one of the major aspects of RAGIS. The image data base incorporated land use and ground cover information, soils information by hydrologic sub-group, and other environmental and economic data such as the location of natural hazard conditions and land value. To improve the spatial resolution of the data representation

APPLICATION OF RAGIS TO FLOOD PLAIN MANAGEMENT

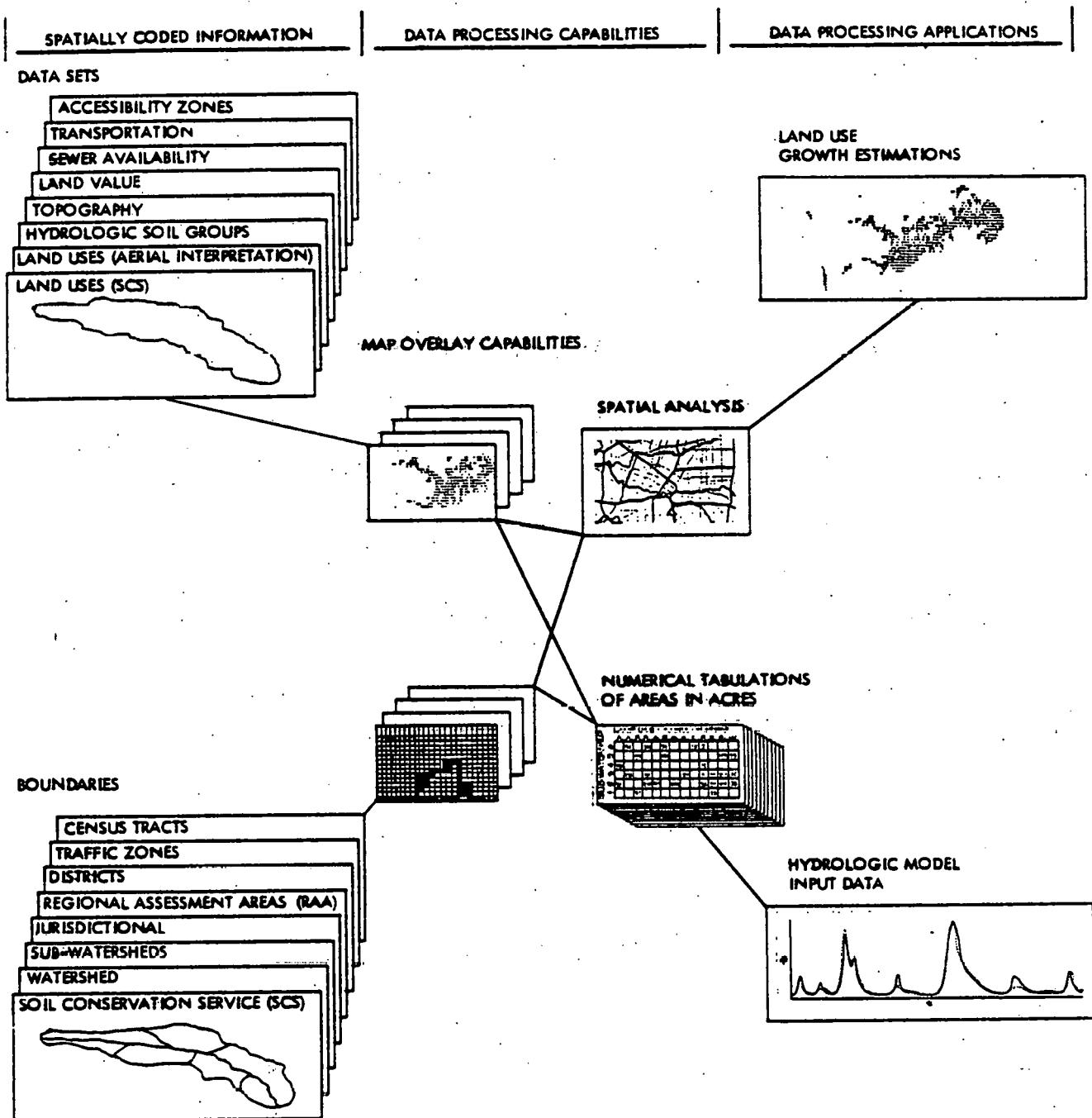


Figure 2

the capability to allow the partial presence of a "data feature was incorporated.

Through Speakeasy each data pattern was converted to a numerical array of zeros (for absence) and any integer value desired (for presence). These arrays were combined under their major headings and loaded as attribute columns in RSpeak. RSpeak provided a centralized data management facility to support the numerous uses of the data required in this project. In addition, it allowed the results from one area of the project such as land use growth projections to be related to results from other areas of the project such as the determination of flooding. Thus the end purpose of the project, which was to identify the relationship between these two dynamic and competitive systems at any point in time and related to economic criteria was readily accomplished in RSpeak (Figure 3). Any state,

WATERSHD	WE1	WE2	WE3	WE4	WE5	WE6	WL1	WW1	WW2	WW3
LANDUSES										
CHRCH	0	0	0	0	0	0	0	0	0	0
FWY	0	0	0	8.3418	0	0	0	0	8.3418	6.9515
HDAPT	4.1709	0	0	0	0	0	0	0	0	0
HVCOM	4.1709	0	2.7806	16.684	5.5612	0	0	0	5.5612	6.9515
HVIND	0	4.1709	0	0	0	0	0	0	0	0
INST	0	0	0	0	0	0	0	0	0	0
LDAFT	68.123	0	13.903	1.3903	0	0	0	0	0	0
LTCOM	0	0	1.3903	0	0	0	0	0	4.1709	0
LTIND	0	0	0	0	0	0	0	0	0	0
OFF	4.1709	0	1.3903	0	0	0	0	0	0	0
OPN	63.954	31.441	5.5612	33.367	1.3903	0	0	0	2.7806	4.1709
REC	1.3903	0	0	0	0	0	0	16.684	0	0
SF	37.538	0	0	0	16.684	0	0	11.122	63.954	8.3418
TOTALPER										
SUBSHED	183.52	55.612	25.025	59.783	23.635	0	0	27.806	84.808	26.416

Figure 3

or condition, in either land use growth or flooding could be mapped directly from the relational data base in terms of the other system (Figures 4 & 5).

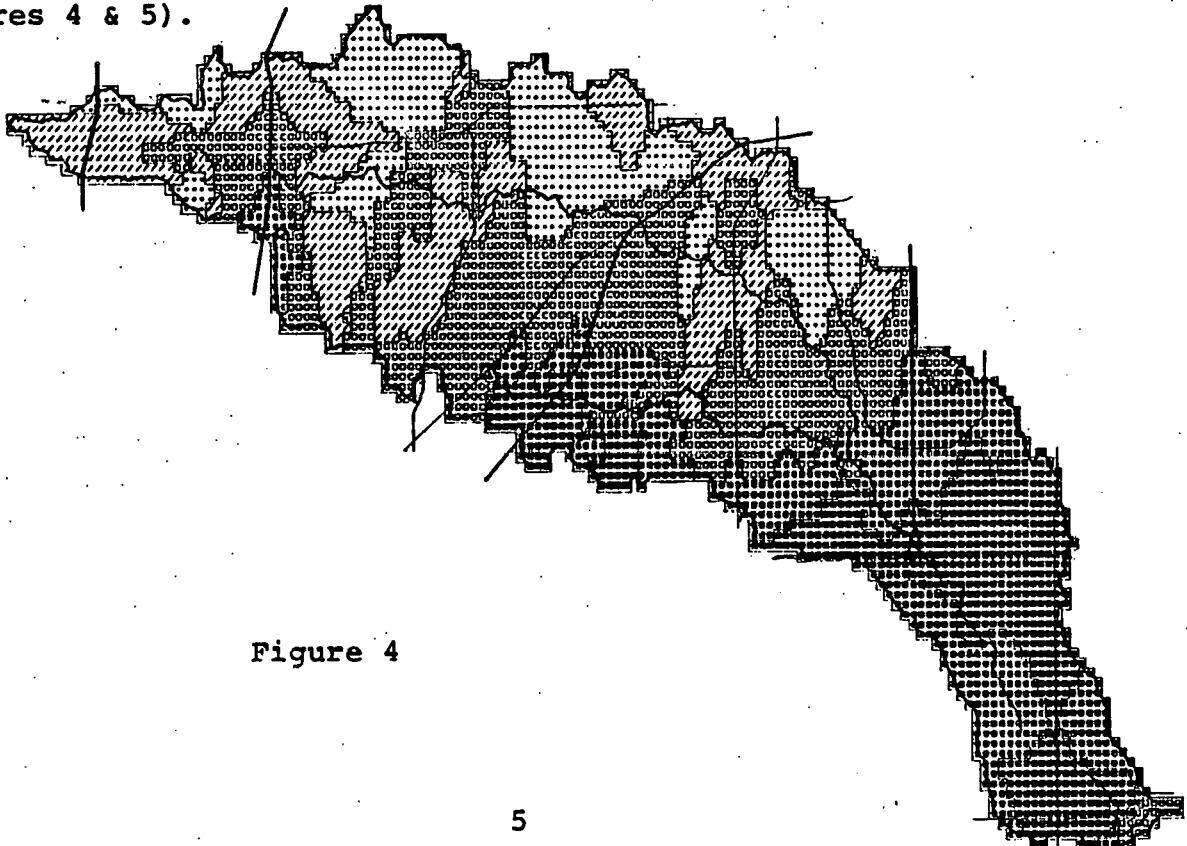


Figure 4

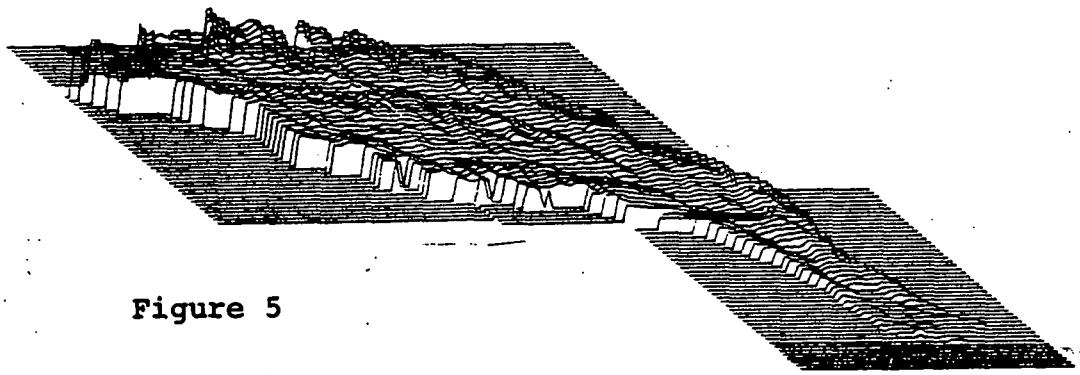


Figure 5

In practice while Rspeak is TSO bound, it was nonetheless possible in a 512K TSO region to construct relations that contained as many as 14 data categories across 4074 grid cells. Queries to these numerical relations were very economical. The advantage of Rspeak in this application was that it provided a unified format for data analysis.

Urban Analysis

The focus of information processing in RAGIS at the urban scale has been to support the exploration of spatial data for the purposes of defining inherent structures and relations in urban spatial distributions and processes. In addition to the processing of data to support theories and models, well managed data processing is beginning to yield new insights into the nature of urban problems. Descriptive data processing (Figure 6) is increasingly becoming a problem identification, solving and monitoring process by itself. The traditional sequence of problem identification, model building, data gathering, data processing and conclusion making is breaking up into more integrated relationships with the information descriptive of the problem. Rspeak provided an excellent capability to implement this integrated approach.

DESCRIPTIVE DATA PROCESSING

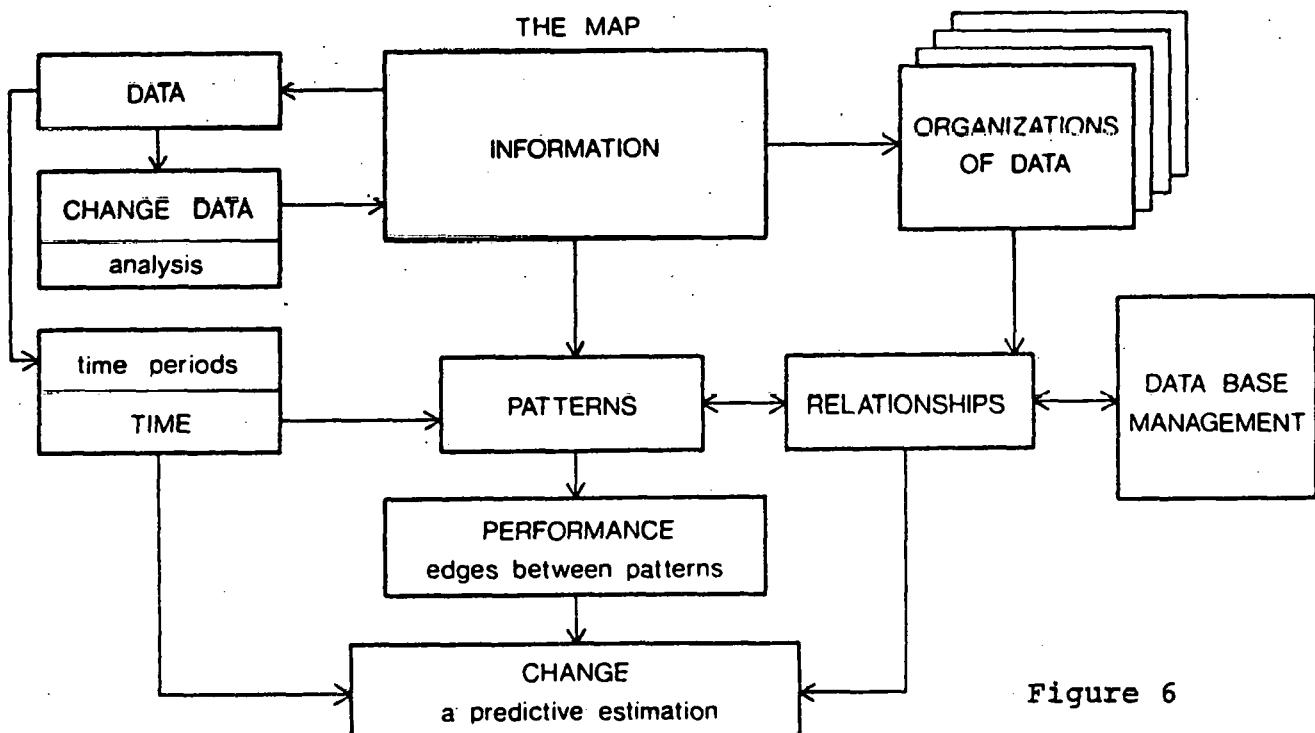


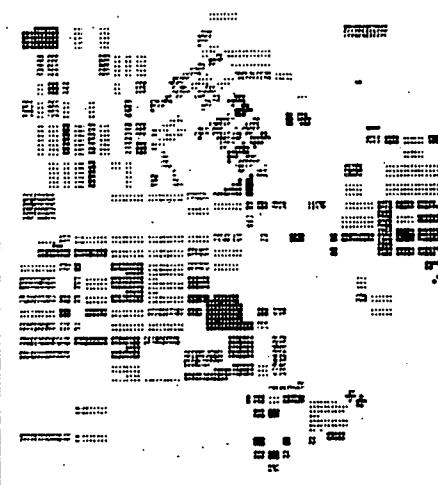
Figure 6

The operative mechanism of descriptive data processing is organization and the capability to reorganize interactively at any time to accomodate the nature of explorative inquiry. RAGIS is designed to relate to the ill-defined class of problems involving urban socio-logical, economical, and environmental criteria. Rspeak also offered the opportunity to deal with objective and subjective concerns. While a vast amount of information descriptive of urban characteristics and growth has a spatial index, an equally vast amount does not. Generally, information that deals with cause related issues falls into the latter category. Subjective information related to policies, issues, opinions, and feelings is a large subset in this area and is not usually recorded as raw data on a map. Subjectivity generally has objective precedents, but the relationships between the two are neither necessarily direct nor logical. It is essential that any study of cause and effect be capable of not only working in consideration of spatial and non-spatial information, but that it also have the capability for relating the two with sensitivity. By implementing special case relations dealing with issues with relations containing the data descriptive of urban blocks, an operational integration of these concerns was achieved.

Further capabilities of the relational data base allowed data to be perceived in relationship to time and change. This was accomplished directly with the data and was not dependent on analytical simulation. This capability was implemented through the arrangement of relations in terms of time increments allowing the amount of change to be mapped (Figure 7). Alternatively, when the tables are organized in increments of change, the time spans can be equally perceived. The relationship between the amount of change and units of time is one of the most important perceptions that any planner or decision maker can gain from urban data management. Perceived relationships are gained so directly using Rspeak that nonspecialists can visualize and implement these relationships.

Health Planning

Passage of the National Health Planning Resources Development Act (PL 93-641) has provided this country with a singular framework for health planning with goals written at the macro scale and guidelines written at the micro scale. The resulting differences in scale among the sources of information needed by health planners frustrated conventional information management approaches unable to deal with such inconsistencies among the data. The relational data approach was used to overcome these problems of scale of information and to explore a data management approach to the understanding of such issues as health status in a clinical and a social sense; incorporating the concepts of illness and wellness indicators and predictive epidemiological planning; the urban and natural environments as a context for health planning separated from the health and medical care delivery system; the use of the map as the means for seeing not only the spatial distribution of the population and their health status but also the care delivery system available to meet their needs; and facility planning based on the design of environments at the room scale to deliver specific kinds of care. The relational data model has managed successfully the varying scales of information both in original data and in the relationships between diverse data sets, and has proven to be a

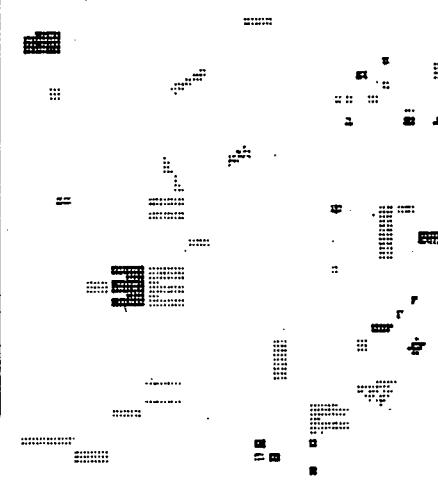

SELECTED DATA PATTERNS 1975/1939

1975

SINGLE FAMILY HOUSING

APARTMENTS

COMMERCIAL



1939

SINGLE FAMILY HOUSING

APARTMENTS

COMMERCIAL

most effective mechanism for representing the interrelationships among variously scaled data to the information manager.

The matrix organization of data relationships has proven to be a workable approach to organizing on a fundamental level the information relationships relating to this complex application (Figure 8). The relational data model was used to make functional a multi-dimensional matrix. RACL has been studying an urban area of Houston called the Montrose and a coastal region near Houston for ways in which information relationships could describe the forces which shape the development of an urban or natural environment, and with the addition of the Census information organization it is now possible to relate changes in populations to those forces. Joining the health care delivery system organization to the matrix has made it possible to incorporate the principles of demographic-based planning into the nature of growth and decay in the urbanization process, providing a comprehensive population-based planning capability. Spatially representing the management of those diverse data sets in the relational data model provides a very powerful visual aid to health planners.

The flow of relationships expressed in the matrix organization can best be represented in the connectivity of a network diagram. The health status of a population can be studied both clinically and socially, and in terms of the map, which serves as a context for the interrelating of the four major subject areas in the matrix: the urban and natural environments, the census and health (Figure 9). The impacts of changes in health status on services, facilities and manpower planning can be traced through the series of relations in each of those three health resource areas. Facility design is linked to the network through the International Classification of Disease Index (ICDA-8), making it possible to measure the impact on built form of changes in the health status indicators of a population. To be effective, population-based health planning must be able to incorporate this holistic approach to studying the interrelationships among the population, their environments, and the health care delivery system.

The use of generic facility names by health planners obscures the detail of design data, making it difficult to plan accurately for the allocation of manpower and service resources in the community. RACL has used the relational data base capabilities of RSpeak to discover how relationships functionally and structurally between designed environments for the delivery of care can be directly linked to specific population health care needs and related resources required for the delivery of care. Using a data base containing data describing the environment in each of approximately 500 rooms across 167 criteria, tremendous progress has been made into to very nature of design, particularly the potentials for systems design and modular construction. The relational approach has greatly aided research into a process for the design of population-based environments or collections of environments for the delivery of health care without relying on the generic facility planning process.

This approach offers the first workable solution that actually deals with the information associated with these complex areas. Managing the interrelationships between diverse data sets with differently scaled data has enriched the process of population-based health planning, and has allowed the development of a comprehensive analysis and

INFORMATION RELATIONSHIPS FOR PLANNING

- a matrix approach as an index to the organization of data -

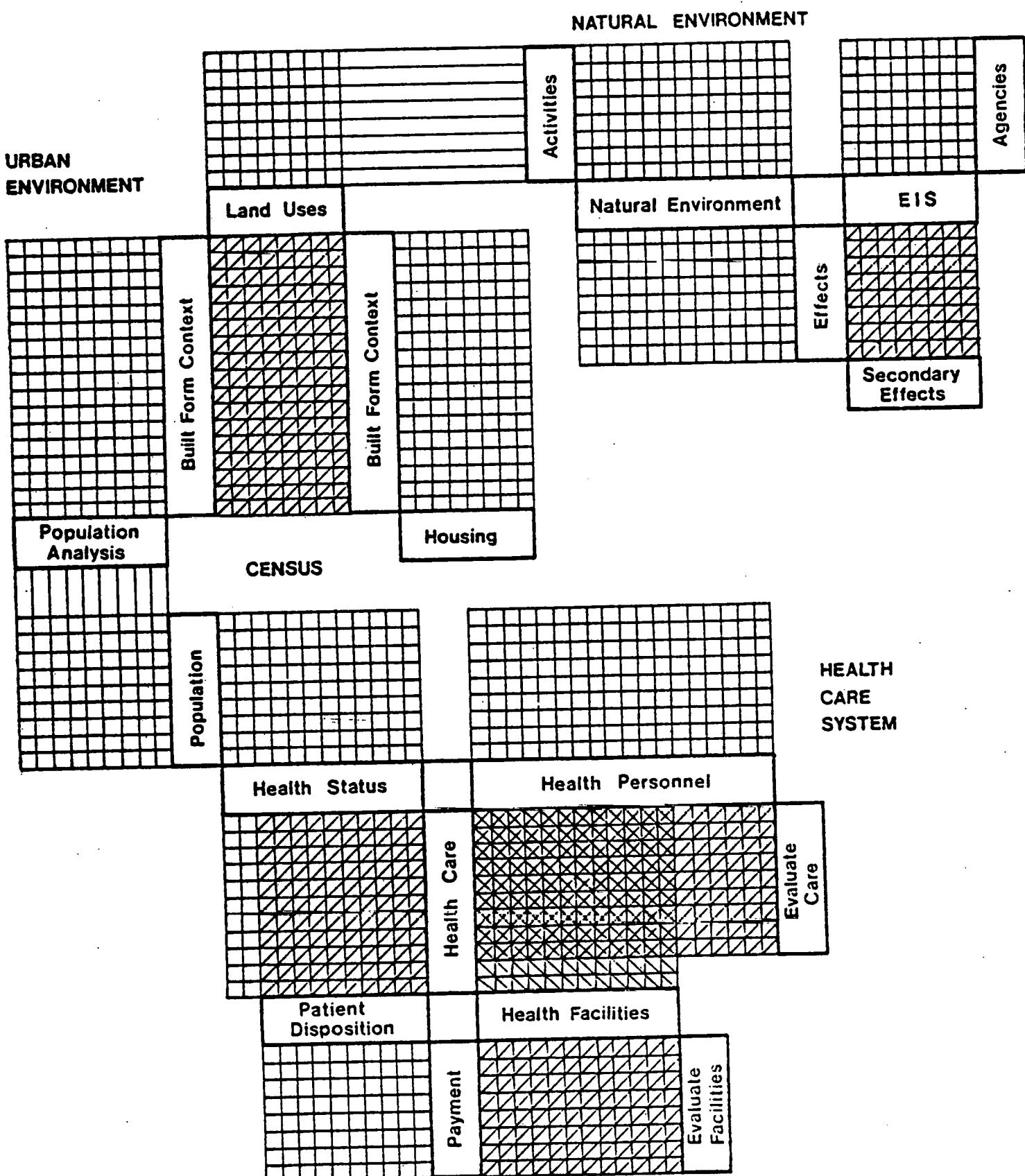


Figure 8

HEALTH STATUS

HEALTH STATUS SUMMARY			
POPULATION	MEASURE	INDICATE	
Overseas	Population Change		
Overseas	Fertility		
Overseas	Mortality		
Overseas	Reportable Diseases		
Overseas	Preventative Care		
Overseas	Health Utilization		
Children Under 10	Morbidity Health Resources	Infant Mortality	
Children Under 10	Morbidity Health Resources	Childhood Mortality	
Children Under 10	Morbidity Health Resources	Prevalence Indicators	
Children Under 10	Morbidity Health Resources	Primary Resources	
Children Under 10	Services Utilization	Short Term	
Children Under 10	Health Services Care		
Adults 10-34	Morbidity Health Resources	Morbidity Health Resources	
Adults 10-34	Morbidity Health Resources	Childbearing Conditions	
Adults 10-34	Services Utilization	Short Term	
Adults 10-34	Services Utilization	Long Term	
Adults 10-34	Health Services Care		
Adults Over 45	Morbidity Health Resources	Morbidity Health Resources	
Adults Over 45	Morbidity Health Resources	Childbearing Conditions	
Adults Over 45	Services Utilization	Short Term	
Adults Over 45	Services Utilization	Long Term	
Adults Over 45	Health Services Care		

HEALTH STATUS CLINICAL

HEALTH STATUS SOCIAL

DISEASES

ICD-9 CODE INDEX	
ICD-9 CODE	DESCRIPTION
070-0	Infectious hepatitis
071-0	Acute hepatitis
072-0	Chronic hepatitis
073-0	Cryptogenic
074-0	Acute commercial hepatitis
075-0	Chronic disease of peritoneum
076-0	Cholangitis
077-0	Gastritis
078-0	Cirrhosis of liver
079-0	Cholangitis
080-0	Cholangitis
081-0	Inflammatory disease of uterus
082-0	Hysteritis
083-0	Endometritis/strain around
084-0	Uterine fibroids
085-0	Endometriosis
086-0	Hysterectomy

EXAMINATIONS

ROOMS

ACCESSION NUMBER		FUNCTION	DATE
1			
2			
3			
4			
5			
6			
7			
8			
9			
10			
11			
12			
13			
14			
15			
16			
17			
18			
19			
20			
21			
22			
23			
24			
25			
26			
27			
28			
29			
30			
31			
32			
33			
34			
35			
36			
37			
38			
39			
40			
41			
42			
43			
44			
45			
46			
47			
48			
49			
50			
51			
52			
53			
54			
55			
56			
57			
58			
59			
60			
61			
62			
63			
64			
65			
66			
67			
68			
69			
70			
71			
72			
73			
74			
75			
76			
77			
78			
79			
80			
81			
82			
83			
84			
85			
86			
87			
88			
89			
90			
91			
92			
93			
94			
95			
96			
97			
98			
99			
100			
101			
102			
103			
104			
105			
106			
107			
108			
109			
110			
111			
112			
113			
114			
115			
116			
117			
118			
119			
120			
121			
122			
123			
124			
125			
126			
127			
128			
129			
130			
131			
132			
133			
134			
135			
136			
137			
138			
139			
140			
141			
142			
143			
144			
145			
146			
147			
148			
149			
150			
151			
152			
153			
154			
155			
156			
157			
158			
159			
160			
161			
162			
163			
164			
165			
166			
167			
168			
169			
170			
171			
172			
173			
174			
175			
176			
177			
178			
179			
180			
181			
182			
183			
184			
185			
186			
187			
188			
189			
190			
191			
192			
193			
194			
195			
196			
197			
198			
199			
200			
201			
202			
203			
204			
205			
206			
207			
208			
209			
210			
211			
212			
213			
214			
215			
216			
217			
218			
219			
220			
221			
222			
223			
224			
225			
226			
227			
228			
229			
230			
231			
232			
233			
234			
235			
236			
237			
238			
239			
240			
241			
242			
243			
244			
245			
246			
247			
248			
249			
250			
251			
252			
253			
254			
255			
256			
257			
258			
259			
260			
261			
262			
263			
264			
265			
266			
267			
268			
269			
270			
271			
272			
273			
274			
275			
276			
277			
278			
279			
280			
281			
282			
283			
284			
285			
286			
287			
288			
289			
290			
291			
292			
293			
294			
295			
296			
297			
298			
299			
300			
301			
302			
303			
304			
305			
306			
307			
308			
309			
310			
311			
312			
313			
314			
315			
316			
317			
318			
319			
320			
321			
322			
323			
324			
325			
326			
327			
328			
329			
330			
331			
332			
333			
334			
335			
336			
337			
338			
339			
340			
341			
342			
343			
344			
345			
346			
347			
348			
349			
350			
351			
352			
353			
354			
355			
356			
357			
358			
359			
360			
361			
362			
363			
364			
365			
366			
367			
368			
369			
370			
371			
372			
373			
374			
375			
376			
377			
378			
379			
380			
381			
382			
383			
384			
385			
386			
387			
388			
389			
390			
391			
392			
393			
394			
395			
396			
397			
398			
399			
400			
401			
402			
403			
404			
405			
406			
407			
408			
409			
410			
411			
412			
413			
414			
415			
416			
417			
418			
419			
420			
421			
422			
423			
424			
425			
426			
427			
428			
429			
430			
431			
432			
433			
434			
435			
436			
437			
438			
439			
440			
441			
442			
443			
444			
445			
446			
447			
448			
449			
450			
451			
452			
453			
454			
455			
456			
457			
458			
459			
460			
461			
462			
463			
464			
465			
466			
467			
468			
469			
470			
471			
472			
473			
474			
475			
476			
477			
478			
479			
480			
481			
482			
483			
484			
485			
486			
487			
488			
489			
490			
491			
492			
493			
494			
495			
496			
497			
498			
499			
500			
501			
502			
503			
504			
505			
506			
507			
508			
509</td			

Figure 9

management capability keyed to performance for health information and health planning.

A Management Application

The U.S. Department of Energy (DOE) for a number of years has sponsored research and field applications in the Enhanced Oil Recovery (EOR) program. In conjunction with a local research group the applicability of Speakeasy and Rspeak to manage data related to this project was explored. EOR processes are both highly technical and touch a number of specialized sciences including chemical engineering, and geology. Across the nation many different approaches have been taken to this problem which further compounds the complexity of gaining insight into the overall problem area. Data related to these many applications and different processes had to be organized and searched both for specific and general relationships.

The major advantage of Speakeasy and Rspeak was that a piece meal approach to the construction of a complex data base could be undertaken. Thus data related to the aspects of the overall problem which were well defined could be organized and used to clarify the problem aspects which were less well defined. There can exist no singular description of the overall problem area which satisfies all criteria. Chemical species, field conditions, research assumptions, recovery processes, government policy, and varying data conditions must all be interrelated and managed across time. Speakeasy and Rspeak supported a "cut and paste" approach to the construction of a complex data base. The relational approach to data management required that neither an overall framework be defined nor all of the specific relationships identified and understood. The result was that an overall schema for data management emerged from fragmented sections of the problem.

CONCLUSION

As computer applications leave the age of the individual data file and enter the age of data base management systems, a unique set of problems begins to appear. One of the major problems with packaged data management systems is that their command languages are generally so weak. As Speakeasy, which is one of the most powerful interactive command languages in use today, incorporates data base management capabilities (Gspeak and Rspeak) and concepts it offers a viable system for today's data management problems.

Through the various applications one theme remained constant. Rspeak was as much a tool for data management as a vehicle for seeing and understanding relational data management concepts. This understanding has greatly expanded RACL's problem organization and solving capabilities. Also, the perception of Speakeasy as a relational structure emerged. This is mainly an aspect of Speakeasy's "umbrella" effect on diverse data processing. The perception of Speakeasy as a growing concept emerged over the perception of Speakeasy as a set of finite capabilities.

REFERENCES

Bedient, Philip B., et. al., Preliminary Feasibility Report for the Bear Creek, Texas, Local Protection Project, The Southwest Center for Urban Research, Houston, Texas, May, 1978.

Date, C.J., An Introduction to Database Systems, Second Edition, Addison-Wesley, Reading, Massachusetts, 1977.

Rowe, P.G. and Blackburn, J.B., et. al., A Preliminary Investigation of Structural and Nonstructural Flood Control Alternatives for Cypress Creek, Texas, School of Architecture, Rice University, Houston, Texas, September, 1977.

Schlichting, Richard D., "Data Base Manipulation in Speakeasy", Speakeasy Computing Corporation, Chicago, Illinois, unpublished, 1977.

SURVEY ANALYSIS WITH SPEAKEASY

J.P. KIEFFER - G. LAPLANCHE

C.E.C.T.I. - UNIVERSITY OF LIEGE - BELGIUM

August 1978.

Two objectives underlie the development of the system described below. They are :

1. To satisfy an immediate need at the University of LIEGE for a specific and user-friendly tool to process survey data.
2. To define the nucleus of a larger system that should be all at once complete, independent and easy to maintain and extend without losing the basic advantages and facilities of interactive work under SPEAKEASY.

The present version of this system must be considered as a first attempt. Its main objectives actually concern its formal characteristics rather than its contents. A lot of extensions are still to be implemented and not presented here.

The data collected by surveys consist of vectors, that is statistical variables defined on the sample of people consulted. Most of these variables consist of categorical data. The processing of these data generally involves two types of statistical methods :

- Multivariate analysis like factor analysis. Such methods process all the data globally looking for general properties of the sample studied;
- Methods of analysis for single variables, pairs or multiplets of chosen variables. This leads, for instance, to cross-classifications or contingency tables.

So far, the present system is primarily concerned with the second approach. In fact, it is the only one where interactive processing is a major constraint as will appear from the example given below. In this approach, the survey analysis itself proceeds by chaining questions translated by specific but restricted statistical techniques.

So, the system appears as a set of functions (linkules). Each linkule matches an elementary function as needed by this kind of survey analysis. But in respect to this context, they work somewhat differently from the basic functions of SPEAKEASY so they may be considered as a subsystem. Their peculiarities may be summarized as follows :

- In order to ensure full-compatibility with the basic functions of SPEAKEASY and, at the same time, to optimize their processing, the linkules implicitly create SPEAKEASY objects to contain their results. These objects are automatically checked out and retrieved by further linkule executions. Thus, they behave like classical arguments but need not be predefined and if necessary they are conventionally named by the linkule that creates them.
- All results are automatically displayed on the terminal with explicit titles and in a friendly presentation. The system includes linkules to put them out on a printer in the same fashion or to display them back on the terminal without recalculations.
- All functions basically make allowance for various peculiarities of the survey data : they can indifferently process numerical and literal data; they process separately possible missing values; the reading in and writing out of data may be conditional i.e. that only those data are transmitted that correspond to individuals characterized by given responses to some variables ("men only" for instance!).

To be self-complete, the system offers specific functions for all needs encountered in the context of a survey analysis : not only statistical computation functions but also file access functions, for instance. Obviously, SPEAKEASY already contains a lot of basic functions that may be useful in survey analysis. These will not be listed in the classification given below. All of the linkules listed are currently available and most of them are used in the example listed at the end.

In agreement with the general character of SPEAKEASY, the use of each function in the system is described by a corresponding HELP.

Moreover, the system provides for explicit error messages.

List of available linkules

1. Input - Output functions

READFILE : (conditional) reading of data on file
 WRITEFILE : (conditional) writing of data on file
 PRINTOUT : writing out of results on a printer
 SCREEN : displaying back results on the terminal.

2. Manipulations - transformations of variables

VARGROU
 VARMOD } : variable transformations by { merging two variables
 VARCLAS } : value changes
 class definition

EXTRACT : Conditional subsample extraction on a set of variables.

GATHER : Merging multiple answers into a single variable

3. Statistical methods

FREQD1
FREQD2
FREQD3 } : single and crossed response distributions

PRECON2
PRECON3
INDEP2
QAS12
MARM02
SYMET2
CONTI3
MULCR02 } Preparing or processing 2-way or
3-way contingency tables with
various statistical null-hypotheses

4. System management

FREESURV : Scratching all objects created by the system.

Example

To illustrate the use of the system, we have listed a session using most of the functions above. The original data are taken from an actual survey stored in card-image on a file (FT10F001). The answers of one individual fill three punched cards but only variables from the cards coded 1 in column 80 are used in this example.

Although the listing was obtained by BATCH execution, the session illustrated simulates an actual session at a terminal. This explains why the results of the PRINTOUT and WRITEFILE functions appear on a separate file (FT20F001).

SPEAKEASY 3 MU+ 4:43 PM JULY 13, 1978
INPUT... FMT='(IX,F1.3,IX,F1.0,4X,F2.0,IX,A1,4LK,3A2,18X,A1)'
INPUT... READFILE(1),FAT,300:GIVSTAT,SEX,PROF,REASON,CL1,C2,C3,CODE:CODE,'1')

END OF FILE ENCOUNTERED
210 OBS. STORED FOR 630 OBS. PROCESSED ON THE FILE

INPUT... FREQU1(PR0F)

*** FFEJ. DIST. OF VAR. PROF
TOT. NUMBER OF OBS. 210
NO MIS. VAL. CCNSIC.
CAT1 OFTABLE PCTABL
**** ****
11 15 7.1429
12 36 17.143
21 9 4.2857
22 25 11.905
23 19 9.0476
32 28 13.333
33 2 .95238
41 8 3.8095
42 26 12.381
43 29 13.81
51 7 3.3333
52 1 .47619
61 5 2.381

INPUT... CLAS=1) 29 39 49

INPUT... VARCLAS(PROF|CLAS)

INPUT... FREQU1(PR0F)

*** FFEJ. DIST. OF VAR. PROF
TOT. NUMBER OF OBS. 210
NO MIS. VAL. CCNSIC.
CAT1 OFTABLE PCTABL
**** ****
1 51 24.286
2 53 25.238
3 30 14.286
4 63 30
5 13 6.1905

INPUT... FREQU1(REASON,'1')

*** FFEJ. DIST. OF VAR. REASCN
TOT. NUMBER OF OBS. 210
19 OBS. LOST FOR MIS. VAL. I.E. 8 9.048
REMAINING SAMPLE SIZE 191

CAT1 OFTABLE PCTABL
**** ****
1 46 24.084
2 32 16.754
3 7 3.6649
4 10 5.2256
5 40 20.542
6 9 4.712
7 23 12.166
8 11 5.7592
9 8 4.1885

INPUT... CLC=' 1 2 3 4 5 6 7 8 9'

INPUT... NEW=1 2 3 5 6 7 8 9

INPUT... VAFMIC(REASON:CLC,NEW)

INPUT... FREQD2(Y2,0:Y3,0)

*** 2-WAY CROSS-CLASSIFICATION

VAR. NAMES : Y2 Y3

MIS. VALUES : 0.0 0.0

OBS. LOST : 30 210 G.E. 1 14.286

SAMPLE SIZE : 180

MARG1 MARG2

1	25	1	19
2	40	2	35
3	53	3	24
4	62	4	52

CAT1 CAT2 OFTABL PCTABL

CAT1	CAT2	OFTABLE	PCTABLE
1	1	0	0
1	2	5	14.286
1	3	6	17.647
1	4	14	56
2	1	4	10
2	2	6	15
2	3	11	27.5
2	4	19	47.5
3	1	6	11.321
3	2	14	26.415
3	3	3	5.6604
3	4	30	56.604
4	1	9	14.516
4	2	10	16.129
4	3	14	22.581
4	4	29	46.174
			31.522
			16.111

INPUT... SYMET2

*** 2-WAY CONTINGENCY TABLE

TEST FOR SYMMETRY

STAT. CONCL. CANCER. : 1 THEOR. FREQ. < 1

STAT. CONCL. CANCER. : 25.000 & TH. FREQ. < 5

DEGFRNE CHIVAL PFCBA1 LOECHI PROBA2

*** *** *** *** *** *** ***

6 10.169 .1177 10.361 .11024

CAT1 CAT2 OFTABL TFTABL CHIELS

CAT1	CAT2	OFTABLE	TFTABLE	CHIELS
1	1	0	0	C
1	2	5	4.5	.055556
1	3	6	6	C
1	4	14	11.5	.54348
2	1	4	4.5	.055556
2	2	5	6	0
2	3	11	12.5	.18
2	4	19	14.5	1.3966
3	1	6	6	C
3	2	10	12.5	.18
3	3	3	3	0
3	4	39	22	2.9051
4	1	9	11.5	.54348
4	2	10	14.5	1.3966
4	3	14	22	2.9091
4	4	29	29	0

INPUT... TITLE=ARRAY(3,3:'USE OF SYMET2

INPUT... PRINTOUTITLE1

TEXT IN ARG. PRINTEC SCREEN PRINTED

ON VARS Y2 AND Y3')

INPUT... MARII02

*** 2-WAY CONTINGENCY TABLE
TEST FOR MARGINAL HOMOGENEITY
DECFRE CHIVAL PROBA1
000000 00000000
3 0.8471 .C19911

CAT1 CAT2 DFTABL
00000 00000

1	1	9
1	2	5
1	3	6
1	4	16
2	1	4
2	2	6
2	3	11
2	4	19
3	1	6
3	2	14
3	3	3
3	4	30
4	1	9
4	2	13
4	3	14
4	4	29

INPUT... CGNT13(SEX:CIVSTAT:REASON,C:0.3)

*** 3-WAY CONTINGENCY TABLE WITH HYPOTHESIS...

INDEF. OF VARS 3

VAR. NAMES : SEX CIVSTAT REASON
MIS. VALUES : NONE NONE 0.0
OBS. LOST : 19 OUT OF 210 I.E. 1 9.048

SAMPLE SIZE : 191

STAT. CONCL. DANGER. : 2. THEOR. FREQ. < 1

STAT. CONCL. DANGER. : 60.1112 TH. FREQ. < 5

DECFRE CHIVAL PROBA1 LCGCH1 PROBA2

000000 000000 000000 000000

25 11.127 .1E4E6 22.443 .14559

CAT1	CAT2	CAT3	DFTABL	TFTABL	CHIELS	CAT1	CAT2	CAT3	DFTABL	TFTABL	CHIELS
0000	0000	0000	00000000	00000000	00000000	0000	0000	0000	00000000	00000000	00000000
1	1	1	5	4.8168	.0069713	2	1	1	5	5.2584	.0160C9
1	1	2	3	2.3508	.036723	2	1	2	2	3.6859	.77109
1	1	3	6	1.7801	2.7683	2	1	3	3	1.9581	.55417
1	1	5	4	2.1399	.24926	2	1	5	2	5.644	2.3527
1	1	7	3	2.9319	.C0158	2	1	7	6	3.2251	2.3875
1	1	8	1	1.9855	.49216	2	1	8	4	2.1085	1.4955
1	2	1	16	10.356	3.0759	2	2	1	15	18.304	.59629
1	2	2	5	7.2042	.67439	2	2	2	14	12.733	.12608
1	2	3	2	3.8272	.87237	2	2	3	7	6.7644	.C0E206
1	2	5	10	11.031	.096435	2	2	5	22	19.497	.32123
1	2	7	7	6.3037	.C76921	2	2	7	8	11.141	.88572
1	2	8	3	4.2175	.38153	2	2	8	10	7.5602	.78736
1	3	1	2	6.4084	.C69247	2	3	1	3	6.8160	.68523
1	3	2	2	1.6754	.062893	2	3	2	6	3.3508	2.0945
1	3	3	0	.89005	.89005	2	3	3	1	1.7001	.34107
1	3	5	6	6.5654	4.5981	2	3	5	5	5.1309	.002339
1	3	7	0	1.466	1.466	2	3	7	4	2.9319	.38908
1	3	8	0	.95476	.95476	2	3	8	1	1.9895	.49216

INPUT... CONT(0)

*** 3-HIY CONTINGENCY TABLE WITH HYPOTHESIS...

NO 3-ORDER INTERACTION

STAT. CONCL. CANCER. : 4 THEUR. FREQ. < 1

STAT. CONCL. DANCEF. : 66.667 8 TH. FREQ. < 5

DEGFRE CHIVAL PROBAL LCGCHI PROBA2

***** ***** ***** *****

10 9.0451 44519 31.268 .33701

CAT1	CAT2	CAT3	CFTABL	TFTABL	CHIELS	CAT1	CAT2	CAT3	OFTABL	TFTABL	CHIELS
****	****	****	*****	*****	*****	****	****	****	*****	*****	*****
1	1	1	5	6.1263	.20705	2	1	1	5	3.8778	.32473
1	1	2	3	2.1427	.34301	2	1	2	2	2.8566	.25686
1	1	3	4	3.7158	.3212	2	1	3	3	3.9828	.24253
1	1	5	4	2.2268	.18526	2	1	5	2	2.7747	.21632
1	1	7	3	4.0594	.27648	2	1	7	6	4.9394	.22774
1	1	8	1	4.4262	.12738	2	1	8	4	3.5709	.051553
1	2	1	16	14.675	.11966	2	2	1	15	16.322	.10714
1	2	2	5	5.6841	.082344	2	2	2	14	13.316	.035154
1	2	3	2	2.7107	.18631	2	2	3	7	6.2905	.080033
1	2	5	10	14.744	.59072	2	2	5	22	19.256	.39111
1	2	7	7	4.7802	.03038	2	2	7	8	10.22	.48242
1	2	8	3	2.408	.14552	2	2	8	10	10.594	.033341
1	3	1	2	1.1989	.017992	2	3	1	3	2.7997	.014327
1	3	2	2	1.1732	.013797	2	3	2	6	5.8276	.0050558
1	3	3	0	.27356	.27356	2	3	3	1	.7267	.10278
1	3	5	6	4.0295	.56367	2	3	5	5	6.9656	.55659
1	3	7	0	1.1604	1.1604	2	3	7	4	2.8401	.47368
1	3	8	0	.16575	.16575	2	3	8	1	.83473	.03272

INPUT... FMT='(4F2.0,1X,3A2)'

INPUT... WRITEFILE(20,FMT,10:CEVSTAT,SEX,PROF,REASON,C1,C2,C3:SEX,1)

10 OBS. WRITTEN IN THE FILE FOR 32 OBS. PROCESSED

INPUT... PRINTOUT('VARS. SEX, CIVSTAT AND REASON')

TEXT IN ARG. PRINTED SCREEN PRINTED

INPUT... GATHER(C1,C2,C3:C)

INPUT... WHAT IS C1WHAT IS C

C1 IS NOT DEFINED

C IS A 210 BY 3 NAME-LITERAL ARRAY

INPUT... MULTVAR(C,*)

*** FREQ. DIST. OF MULTIPLE ANS. VAR. C

TOT. NUMBER OF OBS. : 210

MAX. NUMBER OF ANSWERS : 3

WEIGHTS USED : 3.000 2.000 1.000

MIS. VAL. : FREC.: 58

CAT1 HGTABL PCTHGT

**** ***** *****

11 165 14.175

12 34 4.0756

13 122 10.401

14 199 17.056

15 53 5.4124

16 26 2.2337

17 250 21.478

18 60 5.1546

19 31 6.5568

20 28 2.4055

21 46 3.9519

22 24 2.0619

31 1 .005911

33 3 .25773

61 2 171.02

INPUT... EXTRACT(Y1,Y2,Y3,SEX:SEX,1)

83 CES. EXTRACTED

INPUT... INCEP2(Y1:Y2)

*** 2-WAY CONTINGENCY TABLE

TEST FOR INDEPENDENCE

VAR. NAMES : Y1

Y2

SAMPLE SIZE : 83

STAT. CONCL. CANCER. : 4 THEUR. FREQ. < 1

STAT. CONCL. CANCER. : 71.000 & TH. FREQ. < 5

DECDFRE CHIVAL PROBA1 LOGCHI PROBA2

***** ***** ***** ***** *****

16 57.122 1.4693E-6 44.781 1.4992E-6

CAT1 CAT2 OFTABL TFTABL CHIELS CAT1 CAT2 OFTABL TFTABL CHIELS

***** ***** ***** ***** ***** ***** ***** ***** *****

0 0 6 .43373 29.323 2 3 8 4.261 3.3219

0 1 0 .28916 .28916 2 4 7 7.1566 .0034279

0 2 0 1.2048 1.2048 3 0 1 1.8436 .38586

0 3 0 .77108 .77108 3 1 0 1.2289 1.2289

0 4 3 1.3012 1.3012 3 2 6 5.1205 .15107

1 0 0 1.0843 1.0843 3 3 1 3.2771 1.5023

1 1 0 .72289 .72289 3 4 9 5.5301 2.1772

1 2 2 3.012 .34005 4 0 3 3.253 .019679

1 3 1 1.5277 .44646 4 1 4 2.1687 1.5465

1 4 7 3.253 4.316 4 2 13 9.0361 1.7388

2 0 1 2.3055 .80473 4 3 6 5.7831 .0081325

2 1 2 1.5504 .10551 4 4 4 9.759 3.3985

2 2 4 6.6265 1.0411

INPUT... OF=ARRAY(2,2817 25 80 32)

INPUT... PRECCN2(OF)

INPUT... INCEP2

*** 2-WAY CONTINGENCY TABLE

TEST FOR INDEPENDENCE

DECDFRE CHIVAL PROBA1 LOGCHI PROBA2

***** ***** ***** ***** *****

1 2.6745 .10197 2.6975 .1005

CAT1 CAT2 OFTABL TFTABL CHIELS

***** ***** ***** ***** *****

1 1 17 13.5 .90741

1 2 25 28.5 .42982

2 1 10 13.5 .90741

2 2 32 28.5 .42982

INPUT... SCREEN

*** 2-WAY CONTINGENCY TABLE

TEST FOR INDEPENDENCE

DECDFRE CHIVAL PROBA1 LOGCHI PROBA2

***** ***** ***** ***** *****

1 2.6745 .10197 2.6975 .1005

CAT1 CAT2 OFTABL TFTABL CHIELS

***** ***** ***** ***** *****

1 1 17 13.5 .90741

1 2 25 28.5 .42982

2 1 10 13.5 .90741

2 2 32 28.5 .42982

***** ***** ***** ***** *****

SPACE USED 19 K NODES 29 K PEAK, SIZE 80 K

***** ***** ***** ***** *****

♦ U221101 78.194 16.03.50 ♦
♦ U221101,FT,16001 ♦

*** 2-NAF CONTINGENCY TABLE

TEST FOR INDEPENDENCE
VAR. NAMES : SEX. REASON
PIS. VALUES : NONE 0.0
OBS. LOGT : IS OUT OF 210 I.E. 3 9.06

CAT1	CAT2	IFTABL	TFABL	CFIELS
1	1	23	17.581	1.6732
1	2	10	12.22	.40674
1	3	6	6.4974	.038075
1	5	29	18.720	.066429
1	7	10	12.702	.045993
1	9	6	7.2610	1.4651
2	1	23	28.419	1.0333
2	2	22	19.77	.25163
2	3	11	10.503	.023555
2	5	29	32.272	.033469
2	7	18	17.250	.020454
2	8	15	11.728	.060367

LSE OF SYNET 2
IN VARS 12 AND 13

*** 2-WAY (0) INDEPENDENCE TABLE
TEST FOR SYMMETRY
STAT. CRIT. DANGER. : 1 THEOR. FREQ. :
STAT. 15.23 DANGER. : 0.027 THEOR. FREQ. : 1

STAT. CCONC. CANGER. : 25.000 1 TH. FRE
 DECFRÉ CHIVAL PRIMAIR LOGCHI PROBAZ
 100000 100000 100000 100000 100000
 6 10.160 .1177 10.361 .11024
 DATA: 2015-07-10 10:45:00 2015-07-10 10:45:00

CAT1	CAT2	HTFTABL	HTFTABL	HTFTABL
1	1	0	0	0
1	2	5	4.5	.055556
1	1	6	6	0
1	5	14	11.5	.14348
2	8	4	4.5	.055556
2	2	6	6	0
2	1	11	12.5	.18
2	4	19	14.5	1.2866
1	8	6	6	0
3	2	14	12.5	.18
3	1	3	3	0
3	4	30	22	2.9051
4	1	9	11.5	.54348
4	2	10	14.5	1.2866
4	1	14	22	2.9051
4	6	29	29	0

2.1.2.1. 111712
 2.1.4.2. 111612
 2.1.3.2. 141017
 3.1.1.5. 121114
 2.1.3.2. 1420
 1.1.3.3. 131214
 2.1.4.4. 152211
 2.1.4.3. 141711
 3.1.4.5. 171113
 2.1.2.5. 131421

VAR5, SEX, CIVSTAT AND REASDN

*** 3-WAY CONTINGENCY TABLE WITH HYPOTHESIS...
AC 3-ORDER INTERACTION

			STAT. CCNCL. CANCER. 3		THEOR. FREQ. < 1		
			STAT. CCNCL. CANCER. 3		THE. FREQ. < 5		
			DECFRE	CHIVAL	PROBAL	LOGCHI	PROJA2
CAT1	CAT2	CAT3	DECFRE	CHIVAL	PROBAL	LOGCHI	PROJA2
10	1	1451	.61919	11.26E	.32701		
CAT1	CAT2	CAT3	DECFRE	CHIVAL	PROBAL	LOGCHI	PROJA2
1	1	1	5	6.1263	.20705		
1	1	2	3	2.1421	.36301		
1	1	3	4	3.0158	.3212		
1	1	5	4	3.2268	.10526		
1	1	7	3	4.0554	.21648		
1	1	8	1	1.4262	.12738		
1	2	1	16	14.675	.11566		
1	2	2	5	5.6843	.082344		
1	2	3	2	2.7101	.18631		
1	2	5	13	12.744	.05072		
1	2	7	7	4.1802	.0.0308		
1	2	8	3	2.408	.16552		
1	3	1	2	2.1989	.017592		
1	3	2	2	2.1732	.013757		
1	3	3	0	.27356	.21356		
1	3	5	6	4.0258	.56367		
1	3	7	9	8.1604	.1.1694		
1	3	8	0	.16535	.16515		
2	1	1	5	3.8776	.32473		
2	1	2	2	2.8566	.25666		
2	1	3	3	3.9828	.24253		
2	1	5	2	2.1741	.21622		
2	1	7	6	4.9394	.22774		
2	1	8	4	3.5705	.051553		
2	2	1	15	16.322	.10714		
2	2	2	14	13.316	.035154		
2	2	3	7	6.2905	.000033		
2	2	5	22	19.256	.39111		
2	2	7	8	10.22	.48242		
2	2	8	11	13.594	.033341		
2	3	1	3	2.7451	.014327		
2	3	2	6	5.8270	.0050558		
2	3	3	1	.7267	.10270		
2	3	5	5	6.5656	.55659		
2	3	7	6	3.0601	.47368		
2	3	8	8	.03473	.03272		

F4STAT and Its Future Under SPEAKEASY

D. Saxe and W. VanHassel

6th Annual SPEAKEASY Conference

August 18, 1978

The Linkules written at ETS are based on our statistical subroutines package, F4STAT. Special statistical matrix operators for performing least squares analysis form the core of both F4STAT and the ETS linkule library. Versions of the F4STAT routines for frequency distributions, crosstab analysis and summary statistics have been added to ETS links during the last year. During the coming year we will be working toward implementation of regression (univariate), analysis of variance (ANOVA), and perhaps other routines (multivariate regression, factor analysis, MANOVA). We hope to work closely with the University of Liege in order to complement and not duplicate efforts toward providing a wider assortment of statistical routines for SPEAKEASY.

So far, our Linkule writing has been at least partly experimentation with different techniques. This process will probably continue through this next year before we decide on a comprehensive approach to our goal of providing interactive statistical support for the novice user. Our help documents are attached for your review. We would welcome your comments on any aspect of our effort.

F4STAT lists words available from the ETS F4STAT library.

ACCUM	see ACCUMULATE
ACCUMULATE	computes weighted frequency distributions.
CROSSTAB	computes two-way weighted & unweighted tables.
DIRPRO	computes the direct product of 2 objects.
MSIG	returns means, standard deviations and ranges.
MSTD	returns a multistandardized square matrix or 2 dim object.
PFROMZ	returns the probability of a score in a normal distribution.
POLY	polytomizes a discrete variable.
SDG	returns a step-diagonalized square matrix or 2 dim object.
STD	returns a standardized square matrix or 2 dimensional object.
SWP	returns a swept square matrix or 2 dimensional object.
TCM	returns a transformed square matrix or 2 dimensional object.
XTAB	see CROSSTAB
ZFRUMP	returns the z score associated with a probability.

For more information on F4STAT operators and their uses see:
"The Use of Special Matrix Operators in Statistical Calculus" by
Albert Beaton, Educational Testing Service, Research Bulletin RB-64-51,
Princeton, NJ, 1964. Available on request.

To find out more about a command "XXX" enter "HELP XXX".

ahs

ACCUMULATE computes weighted frequency distributions.
ACCUMULATE(W:C) returns three new objects, the first contains the
distinct values found in 'C', the second contains the observed
frequencies of those values, and the third contains the weighted
frequencies of those values using the co-related weight values
contained in 'W'.

The default naming convention for the newly created objects
is as follows: The original name of 'C' will be truncated to four
characters, if necessary, in order to append the letters 'VALU'
for the distinct values, 'FREQ' for the observed frequencies and
the first four letters of 'W' name for the accumulated weights.
These defaults can be overridden by the call ACCUMULATE(W:C:NAME1,
NAME2,NAME3).

ACCUMULATE(W1,W2,...WN:C1,C2,...CN) COMPUTES MULTIPLE DISTRIBUTIONS.
When nc is the number of 'C' objects and nw is the number of 'W'
objects, nc*(nw+2) objects will be created. ACCUMULATE(W1,W2,...
WN:C1,C2,...Cn:NAME1,NAME2,...NAMEn) again overrides the default
naming conventions. Names should be entered in the following order,
C1VALU, C1FREQ, C1W1, C1W2,...C1WN, C2VALU, C2FREQ, C2W1, C2W2,
...C2WN...CnVALU etc.

If the number of 'given' names does not equal the number of
objects to be created, the routine either uses or defaults as many
names as needed. If an object with a created or 'given' name already
exists, it will be replaced. No indication of this action is
returned. An attempt to create more than one object with the same
name will terminate the routine.

'C' objects must be 1 dimensional real or name-literal, 'W'
objects must be 1 dimensional real objects. All objects must have
the same number of elements.

When there is only one 'C' object and no names are given, the calling sequence ACCUMULATE(W1,W2,...Wn,C) may be used (ie, the colon may be omitted).

ACCUMULATE W1 W2 ... Wn BY C1 C2 ... Cn is an alternate calling sequence when no names are given.

Unweighted distribution(s) may be computed by any of the following calls:

```
ACCUMULATE(C)
ACCUMULATE(:C1,C2,...Cn)
ACCUMULATE(:C1,C2,...Cn:NAME1,NAME2,...NAMEn)
```

ACCUM is a synonym for ACCUMULATE.

CROSSTAB computes two way weighted frequency distributions. CROSSTAB(R,C) returns three new objects, the first contains the distinct values found in 'R', the second containing the distinct values found in 'C', and the third contains the observed frequencies of those values (using the distinct values of 'R' for the row dimension and the distinct values of 'C' for the column dimension).

The default naming convention for the newly created objects IS AS FOLLOWS: THE ORIGINAL NAMES OF 'R' AND 'C' WILL BE TRUNCATED to four characters, if necessary, in order to append the letters 'VALU' for the first two objects respectively. The third object is named by concatenating the first two letters of 'R' name and 'C' name and appending the letters 'FREQ'. These defaults may be overridden by the call CROSSTAB(R,C:NAME1,NAME2,NAME3).

CROSSTAB(R,C,W1,W2,...Wn) returns the same three objects as above and in addition, returns a two dimensional object for each 'W', containing the two way weighted distribution of the distinct values found in 'R' and 'C' using the co-related values found in 'W'. The default names may be overridden by the call CROSSTAB(R,C,W1, W2,...Wn:NAME1,NAME2,...NAMEn).

Names should be entered in the following order: RVALU, CVALU, RCFREQ, RCW1, RCW2,...RCWn.

If the number of 'given' names does not equal the number of objects to be created, the routine either uses or defaults as many names as needed. If an object with a created or 'given' name already exists, it will be replaced. No indication of this action is returned. Any attempt to create more than one object with the same name will cause the routine to terminate.

'R' and 'C' objects must be 1 dimensional real or name-literal, 'W' objects must be 1 dimensional real. All objects must have the same number of elements.

XTAB is a synonym for CROSSTAB.

DIRPRO RETURNS THE DIRECT PRODUCT OF TWO OBJECTS.

DIRPRO(A,B) RETURNS THE DIRECT PRODUCT OF A AND B. IT IS OFTEN USED TO FORM A CELL MEMBERSHIP VECTOR FOR SEVERAL DISCRETE VARIABLES USING THE RESULT OF A POLY OPERATION. A AND B ARE REAL AND USUALLY VECTORS. THE RESULT IS AN OBJECT OF NOELS(A)*NOELS(B) ÉLÉMENTS CONTAINING ALL THE PAIRWISE PRODUCTS OF THE ELEMENTS OF A AND B. THE ELEMENTS OF B VARY MOST RAPIDLY SO THE RESULT CONTAINS (A(1)*B(1),A(1)*B(2),...). THIS IS EQUIVALENT TO VEC(NOELS(A)*NOELS(B):OUTERPRO(A,B)). IF A AND B ARE VECTORS, THE RESULT IS A VECTOR. IF EITHER A OR B IS A SCALAR, THE RESULT IS THE NORMAL SPEAKEASY PRODUCT. IF EITHER OR BOTH A AND B

ARE 1 DIMENSIONAL ARRAYS, THE RESULT WILL BE A 1 DIMENSIONAL ARRAY. IF BOTH A AND B ARE 2 DIMENSIONAL WITH THE SAME NUMBER OF ROWS, THEN THE RESULT WILL BE 2 DIMENSIONAL WITH THE SAME NUMBER OF ROWS AS A AND B AND NOCOLS(A)*NOCOLS(B) COLUMNS. IN THIS CASE, EACH ROW OF THE RESULT IS THE SAME AS THE DIRPRO EXPLAINED ABOVE; I.E. ROW ONE OF THE RESULT IS THE SAME AS DIRPRO(A(1),B(1)). THE RESULT WILL BE AN ARRAY UNLESS BOTH A AND B ARE MATRICES, IN WHICH CASE THE RESULT WILL BE A MATRIX. SEE ALSO THE HELP DOCUMENTS FOR POLY,OUTERPRO,HIWIDE,F4STAT. DHS

MSIG(A,B,...C) returns means, standard deviations and ranges. MSIG(A,B,...C) returns the mean, standard deviation and range for each 'column' of the input variable list. Input variables must be real, but may be vectors, arrays or matrices. If an input variable is a two dimensional object, the computations are done on the columns. The output is a two dimensional (nx5) real array containing one row for each 'column' in the input list. The columns of the output array are:
(1) number of observations, (2) mean, (3) standard deviation,
(4) lowest observed value and (5) highest observed value.
MISSING DATA: The routine checks for the presence of an object named MISVAL, if it exists, all observed values equal to its value(s) are eliminated from the computations.
The standard deviation is computed as:
$$\text{SQRT}(\text{SUMXSQ}-\text{SUMX}^2)/(\text{N}-1)$$

MSTD RETURNS A MULTISTANDARDIZED MATRIX OR 2 DIMENSIONAL ARRAY. MSTD(A,LIST) RETURNS THE RESULT OF MULTISTANDARDIZING THE OBJECT A USING A CHOLESKY TRIANGULAR FACTORIZATION OF THE SUBMATRIX, A(LIST,LIST). A IS A REAL, SQUARE, SYMMETRIC OR SKEW SYMMETRIC MATRIX OR 2 DIMENSIONAL ARRAY WITH A(LIST,LIST) SYMMETRIC. THE NUMBER OF ROWS (COLUMNS) OF A MUST BE GREATER THAN ONE. A REMAINS UNCHANGED BY MSTD. THE RETURNED OBJECT WILL HAVE THE SAME SIZE AND CLASS AS A. LIST IS A SCALAR OR 1 DIMENSIONAL OBJECT CONTAINING THE ROW AND COLUMN INDICES OF THE SUBMATRIX TO BE MULTISTANDARDIZED. MORE THAN ONE LIST MAY BE USED AS IN THE ALTERNATE CALLING SEQUENCE: MSTD(A,LIST1,LIST2,...LISTN). THE TRANSFORMATION MATRIX (CHOLESKY TRIANGULAR FACTORIZATION) MAY BE OBTAINED BY THE CALLING SEQUENCE: MSTD(A,LIST1,LIST2,...LISTN:T). UNLESS OTHERWISE SPECIFIED, T WILL BE DEFINED AND INITIALIZED TO AN IDENTITY MATRIX (2 DIMENSIONAL ARRAY IF A IS AN ARRAY) BEFORE THE TRANSFORMATION IS COMPUTED. T WILL HAVE THE SAME SIZE AS A. THE POSITIONAL PARAMETER, ASIS, MAY BE USED TO INDICATE THAT THE USER HAS ALREADY DEFINED AND PLACED INITIAL VALUES IN T. E.G.: MSTD(A,LIST:T,ASIS). USING THE PARAMETER UNIT IN PLACE OF ASIS IS THE SAME AS MSTD(A,LIST).. SEE ALSO THE HELP DOCUMENT FOR F4STAT. DHS

PFROMZ RETURNS THE PROBABILITY OF A SCORE IN A NORMAL DISTRIBUTION. PFROMZ(Z) RETURNS THE PROBABILITY OF A STANDARD SCORE IN A NORMAL DISTRIBUTION. THE PROBABILITY IS THE AREA UNDER THE NORMAL CURVE TO THE RIGHT OF THE GIVEN SCORE. THE RETURNED PROBABILITIES WILL HAVE THE SAME CLASS AND STRUCTURE AS Z, WHICH MUST BE REAL. SEE ALSO THE HELP DOCUMENTS FOR ZFROMP AND F4STAT. DHS

POLY POLYTOMIZES A DISCRETE VARIABLE.
POLY(NUMCAT,CATEGORY) POLYTOMIZES THE DISCRETE VARIABLE CATEGORY AND
RETURNS A VECTOR FOR USE IN FORMING A CROSS PRODUCTS MATRIX. NUMCAT
IS THE MAXIMUM NUMBER OF CATEGORIES AND CATEGORY IS A SCALAR GIVING
THE CATEGORY VALUE FOR ONE OBSERVATION. THE RESULT OF POLY WILL BE
A VECTOR OF NUMCAT-1 ELEMENTS. THE CONTENTS OF THE VECTOR DEPENDS ON
THE VALUE OF CATEGORY:

CATEGORY EQ NUMCAT: ALL THE ELEMENTS OF THE VECTOR ARE SET TO -1.
CATEGORY LE NUMCAT AND GT 0: THE CATEGORY ELEMENT IS SET TO 1 AND
ALL OTHER ELEMENTS ARE SET TO 0.
CATEGORY EQ 0: A WARNING MESSAGE IS ISSUED AND THE VECTOR SET TO 0.
CATEGORY LT 0 OR GT NUMCAT: AN ERROR MESSAGE IS ISSUED AND NO
RESULT IS DEFINED.

MORE THAN ONE OBSERVATION MAY BE HANDLED BY USING AN ALTERNATE
CALLING SEQUENCE: POLY(NUMCAT,CAT1,CAT2,...CATN) WHERE CAT1 TO CATN
ARE SCALARS OR ONE DIMENSIONAL OBJECTS. IN THIS CASE, POLY RETURNS
A MATRIX WITH NOCOLS = NUMCAT - 1 AND NOROWS = SUM OF THE NUMBER
OF ELEMENTS OF CAT1,...,CATN. EACH ROW OF THE RESULTING MATRIX
REPRESENTS THE RESULT OF A SINGLE POLY OPERATION AS DEFINED IN THE
FIRST CALLING SEQUENCE.

SEE ALSO THE HELP DOCUMENTS FOR F4STAT AND DIRPRO.

DHS

SDG RETURNS A STEP-DIAGONALIZED SQUARE MATRIX OR 2 DIMENSIONAL OBJECT.
SDG(A,LIST) RETURNS THE RESULT OF STEP-DIAGONALIZING THE OBJECT A USING
A MODIFIED JACOBI METHOD. THE ADVANTAGE OF THIS METHOD IS THAT WHILE
COMPUTING THE EIGENVALUES VECTORS, IT SIMULTANEOUSLY TRANSFORMS THE
REST OF THE OBJECT. A IS A REAL, SQUARE, SYMMETRIC OR SKEW-SYMMETRIC
MATRIX OR 2 DIMENSIONAL ARRAY WITH A(LIST,LIST) SYMMETRIC. THE NUMBER
OF ROWS (COLUMNS) OF A MUST BE GREATER THAN ONE. THE RETURNED OBJECT
WILL HAVE THE SAME SIZE AND CLASS AS A. LIST IS A SCALAR OR 1
DIMENSIONAL OBJECT CONTAINING THE ROW AND COLUMN INDICES OF THE
SUBMATRIX TO BE DIAGONALIZED. MORE THAN ONE LIST MAY BE USED IN THE
ALTERNATE CALLING SEQUENCE: SDG(A,LIST1,LIST2,...,LISTN). SEVERAL
OPTIONS ARE AVAILABLE AND MUST APPEAR AFTER A COLON, BUT MAY BE IN
ANY ORDER. THE OPTIONS HILO, LOHI, NOSORT SPECIFY THAT THE EIGENVALUES
AND CORRESPONDING PARTS OF A SHOULD BE SORTED HIGH TO LOW, LOW TO HIGH,
OR NOT AT ALL, RESPECTIVELY. HILO IS THE DEFAULT. IF AN ARGUMENT
APPEARS WHICH IS NOT A SORT OPTION AND NOT ASIS OR UNIT (EXPLAINED
BELOW), THEN THE ARGUMENT WILL BE DEFINED WITH THE SAME STRUCTURE AS
A AND WILL CONTAIN THE EIGENVECTORS OF A(LIST,LIST) IN THE
CORRESPONDING LOCATIONS. SPECIFYING THE OPTION UNIT INDICATES THAT
THE OBJECT TO RECEIVE THE EIGENVECTORS SHOULD BE INITIALIZED AS AN
IDENTITY MATRIX. ASIS INDICATES THAT THE OBJECT IS ALREADY DEFINED
AND INITIALIZED AND SHOULD BE TRANSFORMED. IF THE OBJECT IS T AND THE
EIGENVECTOR MATRIX IS V, THE RESULTING T (USING ASIS) WILL BE T*V WHERE
* DENOTES MATRIX MULTIPLICATION. IF NEITHER ASIS NOR UNIT IS GIVEN,
UNIT IS ASSUMED. AN EXAMPLE OF THE CALLING SEQUENCE USING OPTIONS IS:
SDG(A,1,2,I:ASIS,T,LOHI). SDG USES A CONSTANT, SDGCON, TO CHECK FOR
CONVERGENCE DURING ITS ITERATIONS. THE DEFAULT VALUE IS .00001.
THIS VALUE MAY BE CHANGED BY SETTING SDGCON TO THE DESIRED VALUE
BEFORE USING SDG. NEGATIVE VALUES ARE IGNORED AND THE DEFAULT USED.
SEE ALSO THE HELP DOCUMENTS FOR F4STAT, GEIGEN, EIGENSYS, EIGENVALS,
AND EIGENVECS.

DHS

STD RETURNS A STANDARDIZED SQUARE MATRIX OR 2 DIMENSIONAL ARRAY. STD(A) RETURNS THE RESULT OF STANDARDIZING THE OBJECT A, WHERE A IS A REAL SQUARE MATRIX OR 2-DIMENSIONAL ARRAY WITH NON-NEGATIVE DIAGONAL ELEMENTS. IF T IS A DIAGONAL MATRIX WITH SQRT(DIAGELS(A)) ON ITS DIAGONAL, THEN STD(A) IS THE SAME AS TRANSPOS(T)*A*T WHERE THE * DENOTES MATRIX MULTIPLICATION. IF A DIAGONAL ELEMENT IS NEGATIVE, STD WRITES AN ERROR MESSAGE AND RETURNS NO RESULT. IF A DIAGONAL ELEMENT IS EXACTLY ZERO, THE ELEMENTS OF THAT ROW AND COLUMN WILL BE SET TO ZERO AND A WARNING MESSAGE ISSUED. THE DIAGONAL ELEMENTS OF THE TRANSFORMING MATRIX, T, MAY BE OBTAINED BY AN ALTERNATE CALLING SEQUENCE: STD(A,D). THE RESULT OF STD WILL HAVE THE SAME CLASS AND STRUCTURE AS A. IF A IS A MATRIX, D WILL BE A VECTOR; IF A IS AN ARRAY, D WILL BE AN ARRAY. SEE ALSO THE HELP DOCUMENT FOR F4STAT. DHS

SWP RETURNS A SWEPT SQUARE MATRIX OR 2 DIMENSIONAL OBJECT. SWP(A,LIST) RETURNS THE RESULT OF SWEETING THE OBJECT A. EACH ROW AND COLUMN SWEEP REPRESENTS ONE STEP IN THE GAUSSIAN ELIMINATION MATRIX INVERSION ALGORITHM. A IS A REAL SQUARE SYMMETRIC OR SKW SYMMETRIC POSITIVE OR SEMI DEFINITE MATRIX OR TWO DIMENSIONAL ARRAY WITH NCROWS(A)=NCOLS(A) GREATER THAN 1. THE RETURNED OBJECT WILL HAVE THE SAME CLASS AS A. LIST IS A SCALAR, ONE DIMENSIONAL ARRAY OR VECTOR CONTAINING THE INDICES OF THE ROWS AND COLUMNS TO BE SWEPT. IF THE ELEMENTS OF LIST ARE NOT INTEGERS, THE THE TRUNCATED INTEGER VALUES ARE USED. AN ALTERNATE CALLING SEQUENCE, SWP(A,LIST1,LIST2,...,LISTN), WHERE LIST1 THROUGH LISTN ARE LIKE LIST ABOVE, RETURNS AN OBJECT WITH ALL THE ELEMENTS OF LIST1 THROUGH LISTN SWEPT FROM A. SWP(A) RETURNS THE MATRIX INVERSE OF A. INVERSE(A) SHOULD BE USED INSTEAD OF THIS LAST CALLING SEQUENCE WHEN ANSWERS OF HIGHER NUMERICAL ACCURACY ARE REQUIRED. SWP USES THE VALUE OF ACCURACY (DEFAULT=10E-8) TO CHECK THE MAGNITUDE OF THE DIAGONAL BEFORE SWEETING. IF THE DIAGONAL IS LESS THAN ACCURACY THEN THE MATRIX IS ASSUMED TO BE SINGULAR, AN ERROR MESSAGE IS WRITTEN, AND SWP RETURNS WITHOUT DEFINING A RESULT. SEE ALSO THE HELP DOCUMENTS FOR INVERSE, ACCURACY, DETERMINANT AND F4STAT.

DHS

TCM RETURNS A TRANSFORMED SQUARE MATRIX OR 2 DIMENSIONAL OBJECT. TCM(A,T) RETURNS TRANSPOS(T)*A*T WHERE THE MULTIPLICATION IS MATRIX MULTIPLICATION. A IS A REAL, SQUARE, SYMMETRIC OR SKW SYMMETRIC MATRIX OR TWO DIMENSIONAL ARRAY. T IS A REAL OBJECT WITH NCROWS(T)=NCOLS(A). NCROWS(A)=NCOLS(A) MUST BE GREATER THAN 1. THE RETURNED OBJECT WILL BE N BY N IF T IS M BY N. IF N=1, THEN THE RETURNED OBJECT WILL BE A SCALAR; IF N IS GREATER THAN 1, THEN IT WILL BE OF THE SAME CLASS AS A. SEE ALSO THE HELP DOCUMENT FOR F4STAT.

DHS

ZFROMP RETURNS THE Z SCORE ASSOCIATED WITH A PROBABILITY. ZFROMP(P) RETURNS THE STANDARD SCORE CORRESPONDING TO A PROBABILITY IN A NORMAL DISTRIBUTION. P IS ANY REAL OBJECT CONTAINING PROBABILITIES STRICTLY LESS THAN 1 AND GREATER THAN 0. THE PROBABILITY IS ASSUMED TO BE THE AREA UNDER THE NORMAL CURVE TO THE LEFT OF THE RETURNED STANDARD SCORE. SEE ALSO THE HELP DOCUMENTS FOR PFROMZ AND F4STAT.

DHS

SOLVING PARTIAL DIFFERENTIAL EQUATIONS IN SPEAKEASY

by Daniel F. X. O'Reilly(*)
Department of Mathematics and Statistics
Marquette University

The physical world offers a wide range of problems which can be mathematically modeled using partial differential equations (pde's). The heat equation and the wave equation are just two of the many examples which come to mind. However, finding analytic solutions for pde's is much more complicated than for ordinary differential equations. It frequently involves a clever guess regarding the nature of the solution. For example, in a textbook solution, it may look like the author is pulling a rabbit out of the hat when he says something like, "Suppose $u(x,y) = f(x)g(y)$." But there are many situations in which it doesn't matter how clever we are because an analytic solution simply does not exist. In these cases or in the situation where we have run out of clever guesses, we must be satisfied with a numerical solution.

Even numerical methods for the solution of pde's have problems, though. Many methods will exhibit instability if we are not careful as we refine the approximate solution using a finer and finer mesh. And even stable methods can prove totally useless on large problems. For behind every numerical approximation to the world of the continuum for a pde lurks a huge linear system, perhaps involving a 1000 by 1000 matrix. In fact, given present computer core sizes, our codes are severely limited in their ability to solve three-dimensional partial differential equations.

A rather successful subroutine package designed specifically for elliptic boundary value problems was recently developed at the National Center for Atmospheric Research by Swarztrauber and Sweet. Basically, it can solve the two-dimensional modified Helmholtz equation (and hence the more well known equations of Laplace and Poisson) using cartesian, polar, cylindrical or spherical coordinates, when either Dirichlet or Neumann boundary conditions are given. Recently, a large portion of this package was incorporated into a linkule called HELMHOLTZ in the Speakeasy language. It is the purpose of this paper to describe some of the features of this linkule. In addition, there have been some

(*) Work done as a faculty research participant at Argonne National Laboratory, June 5 to August 18, 1978.

advances in other directions which will soon make Speakeeasy one of the most potent and versatile tools for the numerical solution of pde's.

One of the more significant of these changes is the incorporation of the LINPACK subroutine package into Speakeeasy. LINPACK is a collection of state-of-the-art subroutines for the solution of linear systems which has been under development at Argonne and several universities over the past few years. Linkules like INVERSE, SIMEQ and SIMEQUAT, to name a few, will soon be replaced by much more efficient codes which will take advantage of band structure and symmetries in the arguments. There will also be added protection against overflow and underflow problems. Since the typical linear system which results from numerically approximating a partial differential equation is very large and sparse (probably with band structure), it is expected that the more sophisticated linear system solvers will help us considerably in this area.

Finally, I would like to indicate some future directions for development which should greatly enhance our capabilities. Numerical techniques for conformal mappings as well as the addition some additional orthogonal function families, like the Chebyshev polynomials, will enlarge the domain of the problems we can solve and also make the use of finite element and spectral methods quite easy.

The first problem I would like to consider involves the direction of fluid flow around a cylindrical object. For the purpose of simplification, let us assume that the flow is irrotational and that the fluid is incompressible with low viscosity. In such a situation the velocity potential is a harmonic function, ie. it is a solution to Laplace's equation:

$$(\frac{d}{dx})(\frac{du}{dx}) + (\frac{d}{dy})(\frac{du}{dy}) = 0$$

The elementary theory of complex variables tells us that this velocity potential is the real part of an analytic function and we know that the level curves of the imaginary part of this function will give us the streamlines associated with the flow. Rather than use some exotic subroutine package to solve this problem, we can make use of an obvious solution to the problem when there is no obstruction to the flow, and then use a conformal mapping to give the solution in the more complicated region. It is easy to see that $g(z) = z$ is an analytic function associated with the unobstructed flow of a fluid across the complex plane from say left to right. Now if we consider another complex plane where the fluid is constrained to flow around the unit circle, it suffices to find a conformal mapping which takes the upper half plane onto the upper half plane

minus the unit circle. Such a function is known to exist by the Riemann mapping theorem and in this case it is quite easy and can be written down in closed form:

$$f(z) = z + 1/z$$

Given these elementary results from physics and the theory of complex variables, let us now consider how easy it is to graphically display the streamlines associated with this flow using a handful of Speakeasy commands.

```
:_domain complex
:_x=colarray(grid(-2,2,1/8))
:_y=rowarray(grid(.01,4.01,1/8))
:_z=x + 1i*y
:_w=imag(z+1/z)
:_graphics tek4012
:_h=grid(0,max(w),max(w)/10)
:_contour w h
```

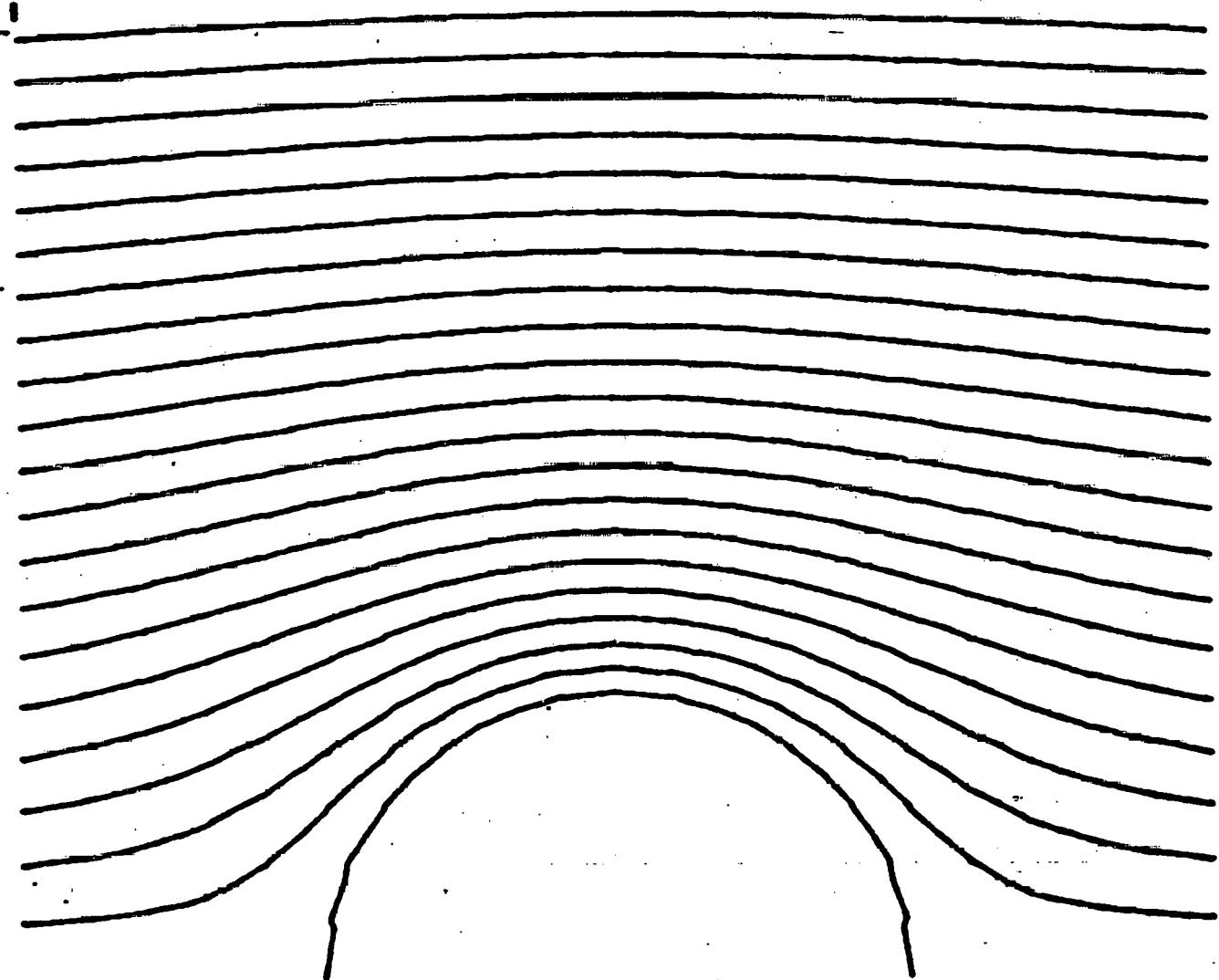
In figure 1 we see the associated streamlines. Note the use of the fact that points inside the unit circle above the real axis are mapped into the lower half plane, when we only consider positive values of w in defining the array h.

Needless to say, the above example is highly specialized and even when the domain is quite simple the nature of the boundary conditions will generally make the solution impossible to "guess". To aid us in this area, we have a new linkule in Speakeasy called HELMHOLTZ. This linkule calls the subroutine package of Swarztrauber and Sweet developed at NCAR. Specifically, it is possible to find numerical solutions to the modified Helmholtz equation (The actual Helmholtz equation is homogeneous.):

$$(\text{Laplacian})u + \text{const} \cdot u = f$$

in an interactive setting. At this time, one is limited to solving the above equation in 2 dimensions with either cartesian or polar coordinates. As an example of how one might use the new linkule, consider the following problem: it is desired to solve

$$(d/dx)(du/dx) + (d/dy)(du/dy) - 2 \cdot u = 0$$


on the unit square

$$\{(x, y) : 0 \leq x \leq 1, 0 \leq y \leq 1\}$$

subject to the boundary conditions:

$$u(0, y) = \exp(y) \quad u(x, 0) = \exp(x)$$

Figure 1. A two dimensional cross section of the streamlines associated with fluid flow around a cylindrical object.

$$u(1,y) = \exp(1+y) \quad u(x,1) = \exp(1+x)$$

The obvious analytic solution to this problem is

$$u(x,y) = \exp(x+y)$$

To obtain an approximate numerical solution on an 8 panel by 8 panel mesh using the NCAR package, one would proceed as follows in a typical Speakeasy session:

```
:_x=grid(0,1,1/8)
:_bda=exp(x)
:_bdb=exp(1+x)
:_solution=helmholtz(x,x,-2,0:0,bda,bdb,bda,bdb)
```

At this point, "solution" is a 9 by 9 array such that $solution(i,j)$ approximates the value $u(x(i),y(j))$. To verify this, we might try the following:

```
:_exact=exp(colarray(x)+rowarray(x))
:_max(abs(solution-exact))
```

which will cause the maximum entry of the difference array to be printed. In the first line, notice how the high-wide arithmetic feature of Speakeasy can be very useful in defining a function of two variables which might appear on the right hand side of the Helmholtz equation.

The syntax of the call to this linkule for cartesian coordinates is

```
HELMHOLTZ(x,y,const,f:'boundary data':<PERIODIC>:
<HORIZONTAL|VERTICAL>)
```

where the first four parameters are required.

x is the array of x -coordinates for the mesh points.

y is the array of y -coordinates for the mesh points.

$const$ is the scalar constant which appears in the Helmholtz equation given above.

f is the two-dimensional array which defines the right hand side of the Helmholtz equation.

'boundary data' is a list which

(i) contains 5 elements if the keyword PERIODIC is missing-- the first element is an integer mask, KBD, 1 to 4 digits in length (all of which are 0's or 1's) specifying the kind of boundary data which is being supplied in the next 4 elements of the 'boundary data' list. Basically, if the units digit of KBD is 0, the values of $u(x,y)$ for $x=a$ are known and given in the 2nd element of the 'boundary data' list. If the units digit of KBD is a 1, the values of the partial of u with respect to x are known for $x=a$ (Neumann boundary condition) and given in the 2nd element of the list.

If the ten's digit of KBD is 0, the values of $u(x,y)$ for $x=b$ are known and given in the 3rd element of the list. etc. the hundred's digit corresponding to $y=c$ and the thousand's digit corresponding to $y=d$.

(ii) contains 3 elements if the keyword PERIODIC and either HORIZONTAL or VERTICAL but not both are specified. The first element in the list is again the integer KBD described above and the next two elements are arrays which specify the boundary data (Dirichlet or Neumann). Note that the two digits of KBD corresponding to the unspecified boundary data will be ignored -- but should still be 0 or 1.

(iii) is empty if all the keywords PERIODIC, HORIZONTAL and VERTICAL are present, indicating periodic boundary conditions in both the horizontal and vertical directions.

When polar coordinates are used, the linkule solves the modified Helmholtz equation:

$$(1/r) (d/dr) (r * (du/dr)) + (1/r^{**2}) (d/d\theta) (du/d\theta) + \text{const} * u = f(r, \theta)$$

on the elementary polar region

$$\{(r, \theta) : a \leq r \leq b, c \leq \theta \leq d\}$$

subject to either Dirichlet or Neumann boundary conditions. The syntax of the call to this linkule when using polar coordinates is:

`HELMHOLTZ(r, theta, const, f: 'boundary data': <PERIODIC>: POLAR)`

where the first four positional parameters and the keyword POLAR are all required.

`r` is the array of r -coordinates for the mesh points.
`theta` is the array of θ -coordinates for the mesh points.
`"const"` is again the scalar constant in the modified Helmholtz equation.

`f` is the two-dimensional array which defines the right hand side.

'boundary data' is a list which

(i) contains 5 elements if the keyword parameter PERIODIC is not specified and the boundary data for $r=a$ is given. The first of these elements is an integer mask with the same interpretation as the one for rectangular coordinates (see above). The next 4 elements are one-dimensional arrays which contain the boundary data for $r=a$, $r=b$, $\theta=c$ and $\theta=d$, respectively (either the values of u or its normal derivative depending on the value of the integer mask).
(ii) contains 4 elements if the keyword parameter

PERIODIC is not specified and the boundary conditions for $r=a=0$ is left unspecified. (This can only be done when $a=0$.) In this case, we are of course assuming that Neumann boundary data is given for $\theta=c$ and $\theta=d$, so the first 2 digits of the integer mask should be 1's. The integer mask is followed by 3 elements which are one-dimensional arrays giving the boundary data for $r=b$, $\theta=c$ and $\theta=d$, respectively.

(iii) contains 3 elements if the keyword parameter PERIODIC is specified and the boundary conditions for $r=a$ are given. In this case, the integer mask is followed by 2 arrays which give either the value of u or its normal derivative for $r=a$ and $r=b$.

(iv) contains 2 elements if the keyword parameter PERIODIC is specified and the boundary conditions for $r=a=0$ are left unspecified. (again, this is only permitted when $a=0$.) in this case the integer mask is followed by a single one-dimensional array giving the boundary data for $r=b$. The value of the integer mask in this case should be either 0 or 10, since the units, hundreds and thousands digits of the mask are ignored.

In summary, here are the 8 basic ways to call the linkule HELMHOLTZ. The first four are cartesian coordinate variations and the last four are polar coordinate variations.

```
HELMHOLTZ(X,Y,CONST,F:KBD,BDA,BDB,BDC,BDD)
OR
HELMHOLTZ(X,Y,CONST,F:KBD,BDA,BDB:PERIODIC:VERTICAL)
OR
HELMHOLTZ(X,Y,CONST,F:KBD,BDC,BDD:PERIODIC:HORIZONTAL)
OR
HELMHOLTZ(X,Y,CONST,F::PERIODIC:HORIZONTAL,VERTICAL)
OR
HELMHOLTZ(R,THETA,CONST,F:KBD,BDA,BDB,BDC,BDD:POLAR)
OR
HELMHOLTZ(R,THETA,CONST,F:KBD,BDA,BDB:PERIODIC:POLAR)
OR
HELMHOLTZ(R,THETA,CONST,F:KBD,BDB,BDC,BDD:POLAR)
    if the first element of R is zero,
OR
HELMHOLTZ(R,THETA,CONST,F:KBD,BDB:PERIODIC:POLAR)
    again only if the first element of R is zero
```

Now let us consider some actual examples of the use of HELMHOLTZ. In each of these examples, except for one, the solution is known and therefore we will be able to compare

the accuracy of the numerical solution. It is important to realize that almost all the error in these examples is pure discretization error. That is to say, it results from a finite difference approximation and not from roundoff. In the first example we will solve Laplace's equation on the domain:

$$D = \{(x, y) \mid -2 \leq x, y \leq 2\}$$

subject to the boundary conditions

$$\begin{aligned} u(-2, y) &= u(2, y) = 4 - y^2 \\ u(x, -2) &= u(x, 2) = x^2 - 4 \end{aligned}$$

The solution to this problem is obviously

$$u(x, y) = x^2 - y^2$$

As is well known the level curves of this function are the contour lines associated with a saddle. The Speakeasy session follows and the plot is found in Figure 2.

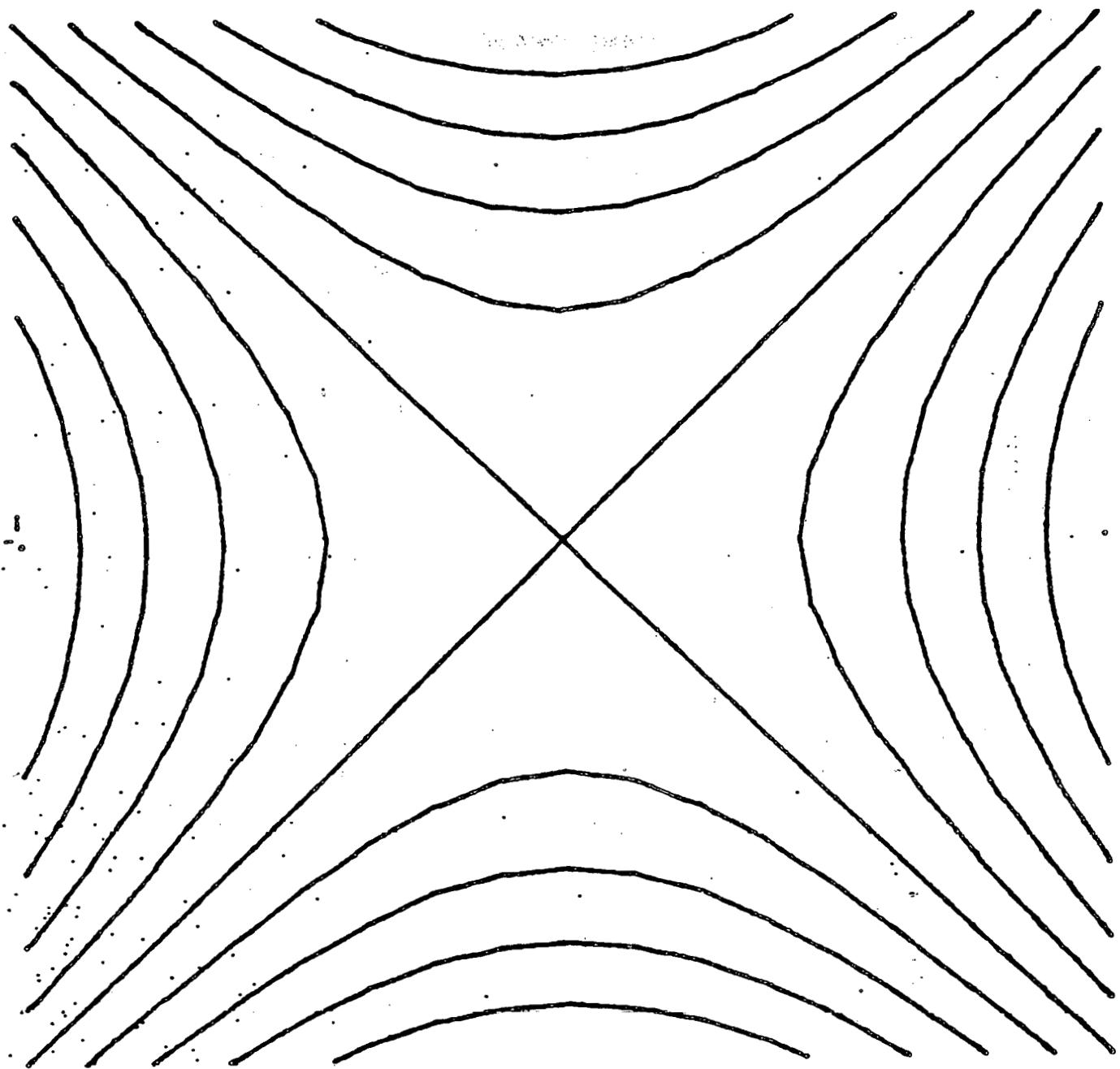
```
:_x=grid(-2,2,1/4)
:_bda=4-x**2
:_bdc=x**2-4
:_solution=helmholtz(x,x,0,0:0,bda,bda,bdc)
:_hmax=max(solution)
:_hmin=min(solution)
:_heights=grid(hmin,hmax,(hmax-hmin)/10)
:_graphics tek4012
:_contour solution heights
```

The following example demonstrates the use of HELMHOLTZ with periodic boundary conditions. We want to solve

$$\begin{aligned} (\partial/\partial x)(\partial u/\partial x) + (\partial/\partial y)(\partial u/\partial y) - 4*u = \\ (2 - (4 + \pi^2/4)*x^2)*\cos((\pi/2)*(y+1)) \end{aligned}$$

on the rectangle $0 < x < 2$, $-1 < y < 3$, subject to the boundary conditions

$$\begin{aligned} u(0, y) &= 0 \quad \text{for } -1 < y < 3 \\ (\partial u/\partial x)(2, y) &= 4*\cos((\pi/2)*(y+1)) \\ u &\text{ is periodic in } y. \end{aligned}$$


The exact solution to this problem is

$$u(x, y) = x^2*\cos((\pi/2)*(y+1)).$$

Here is the Speakeasy session which attacks this problem.

```
:_pi=4*atan(1)
```

Figure 2. The level curves of $u(x,y) = x^2 - y^2$,
a solution to an elliptic boundary value problem found by HELMHOLTZ.


```

:_x=grid(0,2,.25)
:_y=qgrid(-1,3,.5)
:_fx=colarray(2-(4+pi**2/4)*x**2)
:_bda=array(9:)
:_bdb=4*cos((pi/2)*(y+1))
:_f=fx*rowarray(bdb/4)
:_solution=helmholtz(x,y,-4,f:0010,bda,bdb:periodic:vertical)

```

Now let us determine the discretization error.

```

:_exact = colarray(x**2)*rowarray(bdb/4)
:_max(abs(solution-exact))
MAX(ABS(SOLUTION-EXACT)) = .054773

```

One might ask how the discretization error depends on the mesh size. For the finite difference approximation used in the NCAR package, it is easy to see that for a step size equal to h in both the x and y direction, the discretization error is on the order of h^{*2} . We can easily demonstrate this fact by repeating the above example with a mesh which is twice as fine (in other words, the arrays x , y and bda should each have 17 elements). The resulting discretization error would be .013478, which is roughly one fourth the discretization error we had before. It should also be pointed out that, even though we have been printing out the absolute error in our examples, the relative error would be more meaningful for those elements of the solution matrix which are very large.

For our next example we will solve an equation involving polar coordinates. The pde is:

$$(1/r) * (d/dr) (r * (du/dr)) + (1/r^{*2}) * (d/d\theta) (du/d\theta) = 16 * r^{*2}$$

on the quarter disk $0 < r < 1$, $0 < \theta < \pi/2$, subject to the boundary conditions

$$u(1,\theta) = 1 - \cos(4\theta), \quad 0 \leq \theta \leq \pi/2$$

$$(du/d\theta)(r,0) = (du/d\theta)(r,\pi/2) = 0, \quad 0 < r < 1.$$

Note that $u(0,\theta)$ need not be specified in this case since the origin is just a vertex of the domain.

```

:_pi=4*atan(1)
:_r=grid(0,1,1/8)
:_theta=grid(0,pi/2,pi/16)
:_f=colarray(16*r**2)
:_bdb=1-cos(4*theta)
:_bdc=array(9:)

```

```
:_solution=helmholz(r,theta,0,f:1100,bdb,bdc,bdc:polar)
```

Again we examine the discretization error.

```
:_exact=colarray(r**4)*rowarray(bdb)
:_max(abs(solution-exact))
MAX(ABS(SOLUTION-EXACT)) = .02351
```

In looking over the above examples, several limitations of the HELMHOLTZ linkule are immediately obvious.

- (1) The domain must be either rectangular or an elementary polar region.
- (2) The equations which can be solved involve no time derivatives.
- (3) The domain is only two-dimensional.
- (4) Certain more exotic boundary conditions are not allowed.

As for the first restriction, we have already seen a technique for handling more complicated regions, viz. conformal mapping. At present there are no built-in facilities in Speakeasy for mapping a mesh of points in one domain conformally onto another domain. Of course this topic has been a subject of considerable interest for numerical analysts, and several excellent algorithms are already available. In the case of Poisson's equation the conformal mapping approach will not work. Some techniques involving imbedding and splitting are discussed in [3]. Basically, the imbedding technique involves solving the equation on a rectangular domain which contains the more complicated region, while the splitting technique involves decomposing the more complicated region (say an L shaped region) into rectangles and piecing together the solutions for each rectangle.

The second restriction may also be avoided in certain cases. For example, suppose we are required to solve the wave equation

$$(\text{Laplacian})u = (d/dt)(du/dt)$$

Furthermore, suppose we are looking for periodic solutions. Then it is natural to assume that u has the following form:

$$u(x, y, t) = \exp(-i\omega t) * v(x, y)$$

Inserting this in the wave equation, we get

$$(\text{Laplacian})v = -\omega^2 v$$

which of course can be solved for v using HELMHOLTZ.

The third restriction can be removed using Fourier Transform techniques. The following example indicates how one should proceed. Suppose we wish to solve:

$$(\text{Laplacian}) u = -2 \cdot \exp(x+y) \cdot \sin(2z)$$

$$\text{on } 0 < x < 1, 0 < y < 1, 0 < z < 2\pi$$

subject to the following boundary conditions:

$$\begin{aligned} u(0, y, z) &= \exp(y) \cdot \sin(2z) & u(1, y, z) &= \exp(1+y) \cdot \sin(2z) \\ u(x, 0, z) &= \exp(x) \cdot \sin(2z) & u(x, 1, z) &= \exp(1+x) \cdot \sin(2z) \\ u(x, y, 0) &= u(x, y, 2\pi) = 0 \end{aligned}$$

If we assume that $u(x, y, z) = v(x, y) \cdot \sin(2z)$, then we can conclude quickly from the above pde that v must satisfy

$$(\text{Laplacian}) v - 4v = -2 \cdot \exp(x+y)$$

which can be solved using HELMHOLTZ. In general of course it is required to solve the more general Poisson equation

$$\begin{aligned} &(\text{Laplacian}) u = f(x, y, z) = \\ &\text{Sum}(v(x, y) \cdot \cos(nz) + w(x, y) \cdot \sin(nz)) \end{aligned}$$

assuming f has a Fourier expansion. When used in conjunction with a Fast Fourier Transform, this method can be quite efficient. Although Speakeasy has some Fourier transform linkules, they do not use the Cooley-Tukey algorithm so the very precise solution of three-dimensional problems still lies in the future.

As for the fourth restriction noted above, there is often very little that can be done. For example if the given boundary data for an elliptic problem involves both the values of u and its normal derivative on some component of the boundary, then it is well known that the resulting problem is not well posed. In other words, if we continually refine the definition of the boundary values, making the mesh finer and finer, it is quite possible that the numerical solutions might actually diverge.

Despite the wide range of problems we have dealt with, there are still many partial differential equations whose format does not match the existing facilities. If we are reasonably careful in replacing the pde by a linear system, we can then use some of the linkules designed to handle linear problems. There are some disadvantages to using the existing linkules when the systems are large and sparse. Linkules like SIMEQ, SIMEQUAT, INVERSE and DETERMINANT fail to take account of the band structure or symmetry which is common in these large linear systems. The incorporation of the LINPACK subroutine package into Speakeasy will greatly enhance the possibility of either direct or iterative

63

solutions to large linear systems. Some other advantages to the LINPACK routines include the avoidance of overflow-underflow problems to a much greater extent, and the ability to solve complex linear least squares problems.

In summary, it is clear that Speakeasy has already become a powerful tool for the solution of partial differential equations, at least for the very important class of elliptic boundary value problems. One of the great advantages of Speakeasy is its ability to incorporate the latest advances in the field of numerical analysis quickly and easily. Perhaps less obvious is the fact that once this is done, the language also becomes a valuable tool for the numerical analyst in the further development of algorithms. We have seen how the graphical capabilities of Speakeasy make possible the quick visualization of a numerical solution. With both the rapid advances in solutions to pde's and the rapid development of Speakeasy itself, we can expect this field to undergo some very big changes in the next few years.

REFERENCES

1. W. F. Ames,
Numerical Methods for Partial Differential Equations, 2nd ed., Academic Press, N.Y. (1977).
2. G. Birkhoff,
The Numerical Solution of Elliptic Equations, SIAM Regional Conference Series in Applied Mathematics, no. 1, (1972).
3. B. L. Buzbee, F. W. Door, J. A. George & G. H. Golub,
"The Direct Solution of the Discrete Poisson Equation on Irregular Regions", SIAM Journal on Numerical Analysis, 8 (1971), pp. 722-736.
4. B. L. Buzbee, G. H. Golub & C. W. Nielson, "On Direct Methods for Solving Poisson's Equation", SIAM Journal on Numerical Analysis, 7 (1970), pp. 627-656.
5. R. V. Churchill,
Complex Variables and Applications, McGraw-Hill, N.Y. (1960).
6. S. Cohen & S. C. Pieper,
The SPEAKEASY-3 Reference Manual, Level Mu, ANL-8000, Rev. 2, (1977).
7. G. E. Forsythe & W. R. Wasow,
Finite Difference Methods for Partial Differential Equations, John Wiley & Sons, N. Y. (1960).
8. P. Swarztrauber & R. Sweet, "The Direct Solution of the Discrete Poisson Equation on the Disk", SIAM Journal on Numerical Analysis, 10 (1973), pp. 900-907.
9. P. Swarztrauber & R. Sweet, "Efficient FORTRAN Subprograms for the Solution of Elliptic Partial Differential Equations", National Center for Atmospheric Research Technical Note, NCAR - TN/IA - 109, (1975).
10. R. Sweet, "Direct Methods for the Solution of Poisson's Equation on a Staggered Grid", Journal of Computational Physics, 12 (1973), pp. 422-428.
11. R. Sweet, "A Generalized Cyclic Reduction Algorithm", SIAM Journal on Numerical Analysis, 11 (1974), pp. 506-520.

***** THE SPEAKEASY COMPILER *****
by Thom Grace, Argonne Speakeasy Center

ABSTRACT.

The concepts of interpreting and compiling are introduced and discussed within the context of Speakeasy, with an introduction to the Speakeasy compiler. The linkule writing and function construction facilities are described, and an example applied to non-linear optimization is presented.

INTRODUCTION.

At the heart of the Speakeasy system is an interpretive processor. This means that each line of input is individually analyzed by the processor which, based on this analysis, performs the actions required. This is a common approach to the design of user-oriented software and command systems, as it allows great flexibility in syntax and quick execution of a user's command.

Many of the actions performed by the processor involve the invocation of linkules [1]: machine executable programs in the form of compiled code from a source language, typically Fortran. Data is passed to a linkule from the processor and used directly, no interpretation of code is necessary since the linkule has already been compiled. Thus, the execution of a typical Speakeasy statement will involve a syntax check of the statement, construction of parameter lists to be passed to the linkule(s) involved, and the access and execution of the linkule(s). This applies also to Speakeasy programs, which are collections of Speakeasy statements. In particular, each line is interpreted every time it is processed.

Interpreting a program has the effect of recompiling a line each time it is executed. Although negligible for programs of moderate length used occasionally, this interpretive overhead becomes slow and expensive in repeated executions. This arises when, for example, a program performs a great many operations (eg. a program with loops) or when a program must be executed a great many times. Operations such as numerical algorithms characteristically require a vast number of evaluations of a function. In these cases, the execution of Speakeasy programs is prohibitively costly.

In order to reduce this overhead, a new linkule may be written and added to the linkule libraries, to be accessed dynamically by the processor as a new Speakeasy word or by another linkule (eg. an optimization routine). The interpretive

THE SPEAKEASY COMPILER

phase of execution then involves one line: the statement that utilizes the linkule. All subsequent operations, carried out by the linkule are at the machine-instruction level, and the interpretive cost is dramatically reduced.

The incorporation of a new linkule, however, requires in-depth knowledge of several areas concerning the supporting environment [1]: familiarity with another programming language (usually Fortran) and all the processes necessary for its processing (compiling, link-editing, etc.). Since the design philosophy of Speakeasy has been to make such detailed knowledge of extraneous information unnecessary [2], an automatic linkule writer or Speakeeasy compiler has been developed.

Originally began in the context of differential equations [3], the compiler facilities now available can be utilized by a user, with only a minimum of extraneous knowledge, to construct personal linkules from a subset of the Speakeeasy language. The heart of the compiler is a translator which acts on Speakeeasy models (structures similar to programs) to produce Fortran source. The source is optionally compiled and added to the user's linkule library. The choice of Fortran as a target language for the translator allows more sophisticated users easy access to the intermediate stages of compilation, yet does not require any intervention from a casual or novice user.

It should be emphasized that the translator is evolutionary. Although not all Speakeeasy statements can be translated, the class of such statements is growing. Even at the early stages of development, the translator-compiler has been used successfully to write linkules and to solve large systems of numerical functions expeditiously.

This document gives an overview of the translator and the translation process in Section A, followed by highlights of the linkule writing and function construction aspects in Sections B and C. Section D contains an example of the construction of a function to be used dynamically by a minimization linkule. Since this is intended to be an expository presentation of the features available, details are given separately in [4], available from the Speakeeasy Center.

A. OVERVIEW OF THE TRANSLATOR.

The translator, invoked by a single Speakeeasy statement, is used primarily to translate a model into Fortran and optionally to install the result in the user's linkule library. The compiled model may then be invoked by other Speakeeasy linkules (eg. DEQ1E) or be used as a new Speakeeasy word. A model is defined similarly to a Speakeeasy program using the Speakeeasy Editor, but using a subset of the extensive Speakeeasy program language. Additionally, for use by other linkules, the model

THE SPEAKEASY COMPILER

may utilize a special symbol set and class of reserved variables.

In general, models to be translated may contain executable and keyword statements. The executable statements may be of any of the following forms:

Comments;
Assignments;
Conditional (IF) statements;
FOR loops;
GOTO's (or GO TO's).

These are quite similar to Speakeasy program statements (eg. comments begin with '\$', continuations begin with '&', statements may be labelled, etc.), but are restricted to involving only scalar expressions. Furthermore, identifiers may be at most six characters long, to conform with Fortran naming conventions. Most of the Speakeasy scalar functions may be used in a translatable model.

A model may access Speakeasy Named Storage to retrieve scalar values. This is done by means of a keyword statement. Other keyword statements are provided to allow the user to specify various parameters of the translation, such as the name of the resulting linkule, whether the result will be referenced by another linkule or be used as a new Speakeasy word, etc.

Unlike Speakeasy programs, all variables within a model are local in the sense that an access of a local variable will not alter any part of Named Storage. In this way, true linkules can be formed that depend only on values passed from the processor rather than on objects of specific names defined by the user.

By using options of the translator, the user may specify which portions of the compilation process are to be executed. This may range from a syntax check of the model by the translator, to saving the Fortran source in the user's KEEP library, to submitting the background job that installs the linkule.

Since the translator is in the developmental stages, restrictions and peculiarities of translation are evident. For example, the user must provide JCL if the translated model is to be placed into a linkule library. This is essentially the only knowledge outside the scope of Speakeasy itself that the user must have, and need only be applied once, since the JCL is obtained from the user's KEEP library. The restriction of expressions to scalars, disallowing more complex structures, may be relaxed in future releases of the translator, as efficient and effective methods of analyzing the rich and powerful Speakeasy vocabulary are developed.

THE SPEAKEASY COMPILER

B. AUTOMATIC LINKULE WRITER.

The translator may be used to construct a new linkule from a user's model. After translation, the linkule may be used as a new Speakeeasy word, just as if the linkule had been written independently in Fortran. The translator provides facilities specifically designed for the automatic construction of linkules. By means of a single option, various keywords are available to facilitate the design of such a linkule.

Although computation in a model is restricted to scalar operations, a linkule translated from a model will be interfaced with the Speakeeasy Highwide conventions. In this way, the new Speakeeasy word will be usable with any class of variable (scalar, vector, array, etc.) and return a value of corresponding structure. The translator will insert the appropriate Highwide subroutine to enable such an interface.

Since many calculations can be performed only in a certain domain, the translator recognizes a keyword statement which will assure that the arguments to the resulting linkule satisfy specified restrictions. In addition, arguments may be restricted to the integers or allowed to be any real number. This will also override the Fortran naming conventions for local variables passed by the processor. Using these facilities, the translated model can detect improper arguments and respond with an appropriate diagnostic message at execution time.

By using the translator as an automatic linkule writer, virtually any computable scalar function of up to 30 variables may be made into a linkule, with the aided power of automatic parameter checking, access to Speakeeasy Named Storage, and the Speakeeasy Highwide conventions. Thus, even a casual user may design and implement personal linkules of great flexibility.

C. DYNAMIC FUNCTION CONSTRUCTION.

The Speakeeasy language has well-developed capabilities for the manipulation of numerical structures. However, the discrete nature of Speakeeasy objects makes them unusable by processes which may request functional information at many arbitrary points. Such processes include, for example, optimization algorithms and numerical solution of differential equations. These often require vast numbers of precise evaluations not obtainable from a vector or array of fixed points. The translator may be used to construct a function that can be referenced dynamically by other Speakeeasy linkules, so that efficient evaluation of a numerical function at any point is possible.

Linkules have been written that solve systems of ordinary differential equations, minimize real-valued functions, and

THE SPEAKEASY COMPILER

minimize the sum of squares of vector-valued functions. In each case, the function is a translated model installed in the user's linkule library. Keywords are provided that indicate which type of function the model is to define.

In addition, a model to be translated as a dynamic function utilizes a set of reserved variables together with a special symbol set. These reserved variables and symbols define quantities to the model from which the function will be calculated. Although expressions within the model are restricted to scalars, certain reserved variables may be regarded as vectors. In this case, expressions involve elements of these variables, accessed by using the special symbol set.

For example, a typical model defining a system of ordinary differential equations will calculate the value of n derivatives depending on n dependent variables, the independent variable, and any values retrieved from Named Storage. The n derivatives are given by reserved variables $Y1'$, $Y2'$, ..., Yn' ; the dependent variables by $Y1$, $Y2$, ..., Yn ; and the independent variable by X . The number of equations in the system is also available as the reserved variable N .

D. AN OPTIMIZATION EXAMPLE.

This section presents an example of the use of the translator to construct a function to be minimized. The example is in two parts. In the first part, the model (describing a simple quadratic function) is defined. Guided by the HELP documents, the model is checked for syntax errors, then translated and installed in the linkules library. The compiled function is referenced in the minimization linkule and the minimum is found. In the second part, the model is changed to access Named Storage for a parameter, recompiled, and again minimized.

THE SPEAKEASY COMPILER

```
:-$ FIRST, WE DEFINE THE MODEL WE'LL TRANSLATE.  
:-$ NOTE THAT IN A MODEL TO BE OPTIMIZED, THE  
:-$ KEYWORD STATEMENT 'MINIMIZE' MUST APPEAR FIRST.  
:-$ THE FUNCTION VALUE IS THE RESERVED VARIABLE F,  
:-$ INDEPENDENT VARIABLE VARIABLES ARE X1, X2, ..., XN;  
:-$ AND N IS THE DIMENSION OF THE SYSTEM.  
:-$  
:_ MODEL FUNCTION  
EDIT INPUT MODE  
1 MODEL  
2 $  
3 $ THIS IS A SIMPLE QUADRATIC. THE  
4 $ MINIMUM IS AT X1 = X2 = ... = 0.  
5 $  
6 MINIMIZE  
7 F = 0  
8 FOR J = 1,N  
9 F = F + XJ**2  
10 ENDOLOOP J  
11 F = F/2  
12 END  
MODEL FUNCTION IS NOW DEFINED  
MANUAL MODE
```

:_ HELP TRANSLATE

TRANSLATE(MNAME:options) translates a model MNAME into a Fortran subroutine or function and optionally supplies the highwide convention for a linkule, and/or submits a batch job to install the module as a linkule in the user's KEEP library. One or more of the following options may be specified:

LIST/NOLIST LIST will print out on the terminal a copy of the subroutine or function, but not the linkule source if HIWIDE is requested. NOLIST will only print out error messages.

SAVE/NOSAVE Saves the linkule and/or subroutine in the user's KEEP library as member name, where name is either specified in the model, or defaults to the model name

HIGHWIDE/NOHIGHWIDE processes the highwide convention to make a linkule.
or

HIWIDE/NOHIWIDE

BATCH/NOBATCH Submits a batch job to compile the new linkule.

The default options are LIST,NOSAVE,NOBATCH,NOHIGHWIDE.

These can be changed by the user with the command SETTRANSLATE.

Note that a linkule will be installed only if BATCH is used and a member JCL exists in the user's or the system KEEP library. TRANSLATE should be used only under TSO.

:_

THE SPEAKEASY COMPILER

```
:_$  
:_$  NOW WE WILL TRANSLATE THE MODEL TO CHECK  
:_$  FOR ERRORS AND SEE THE FORTRAN SOURCE...  
:_$  
:_$ TRANSLATE FUNCTION  
C  
C  THIS IS A SIMPLE QUADRATIC. THE  
C  MINIMUM IS AT X1 = X2 = ... = 0.  
C  
SUBROUTINE FUNCTI(N,X,F,ISPMER,ISPARM)  
IMPLICIT REAL*8(A-H,O-Z)  
DIMENSION X(1),ISPARM(1)  
IF(ISPARM(1) .EQ. 1) RETURN  
F = 0  
J = 1  
GOTO 14  
11 IF ((1)-(N)) 12, 12, 13  
12 J=J+1  
IF (J.GT. N) GOTO 15  
GOTO 14  
13 J=(-1)+J  
IF (J.LT. (N)) GOTO 15  
14 CONTINUE  
F = F + X(J)**2  
GOTO 11  
15 CONTINUE  
F = F/2  
RETURN  
END
```

THE SPEAKEASY COMPILER

```
:-$  
:-$ GOOD...NO ERRORS. NOW, TO INSTALL  
:-$ THE FUNCTION IN OUR LINKULE LIBRARY  
:-$  
:_$ TRANSLATE FUNCTION:SAVE BATCH NOLIST  
JOB MINI SUBMITTED
```

```
:_HELP MINIMIZE  
MINIMIZE(MNAME,START,END) minimizes the nonlinear function MNAME.  
MINIMIZE(MNAME,START,END) will seek a local minimum of the nonlinear  
function defined by previously TRANSLATE'd model MNAME.  
START (real vector/array) is the starting point for the search.  
END (optional) will be defined, if the search is successful, to be a  
real array the same size as START containing the final estimate of the  
solution.
```

```
MINIMIZE returns a real scalar that is the function value at END.
```

```
:-$  
:-$ NOW WE'LL MINIMIZE THE FUNCTION,  
:-$ STARTING AT A POINT A LONG WAYS AWAY...  
:-$  
:_$ START = (10,10,10)  
:_$ MINIMIZE(FUNCTION,START)  
MINIMIZE(FUNCTION,START) = 0  
:_
```

THE SPEAKEASY COMPILER

```
:_$  
:_$ NOW WE HAVE CHANGED THE FUNCTION...  
:_$  
:_ EDIT FUNCTION  
EDIT COMMAND MODE  
:_L  
EDITING FUNCTION  
1 MODEL  
2 $ THIS IS THE SAME QUADRATIC, EXCEPT  
3 $ THAT THE MINIMUM IS NOW THE VALUE OF  
4 $ THE PARAMETER 'HEIGHT'. THE PARAMETERS  
5 $ KEYWORD GETS A VALUE FROM THE ALLOCATOR.  
6 $  
7 MINIMIZE  
8 PARAMETERS = (HEIGHT)  
9 F = 0  
10 FOR J = 1,N  
11 F = F + XJ**2  
12 ENDLOOP J  
*13 F = F/2 + HEIGHT  
EDIT COMMAND MODE  
:_END  
MANUAL MODE  
:_$  
:_$ FIRST, WE RETRANSLATE THE FUNCTION  
:_$  
:_ TRANSLATE FUNCTION:NOLIST SAVE BATCH  
JOB MINI SUBMITTED  
:_$  
:_$ NOW WE CAN MINIMIZE THE NEW FUNCTION,  
:_$ AFTER DEFINING THE SCALAR IT NEEDS  
:_$  
:_ HEIGHT = -10  
:_ START = (10,10,20,30)  
:_ MINIMIZE(FUNCTION,START)  
MINIMIZE(FUNCTION,START) = -10  
:_
```

REFERENCES.

- [1] Cohen, S., and Peiper, S., The Speakeasy-3 Reference Manual. Argonne National Laboratory Report, ANL-8000.
- [2] Cohen, S., Speakeasy - A Window Into a Computer. AFIPS Conference Proceedings, Vol. 45.
- [3] Grace, T., Solutions of Ordinary Differential Equations Using EPISODE Through Speakeasy. (unpublished), 1977.
- [4] Kane, M.L., and Grace, T., The Automatic Linkule Writer. (unpublished), 1977.