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HIGH-TEMPERATURE DIRECTIONAL~DRILLING TURBODRILL 

, 
J. W. Neudecker and J. C. Rowley 

T h i s  r e p o r t  summarizes t h e  development o f  a 
high-temperature t u r b o d r i l l  f o r  d i r e c t i o n a l  d r i  11 i n g  of 
geothermal wel ls  i n  hard formations. The t u r b o d r i l l  may be 
used f o r  s t ra igh t -ho le  d r i  11 i n g  but was especial l y  designed 
f o r  d i r e c t i o n a l  d r i l l i n g .  The turbodr i l -1  was t e s t e d  on a 
dynamometer stand eval uated i n  1 aboratory d r i l l  i n g  i n t o  
ambient temperatur g ran i te  blocks, and used i n  the  f i e l d  t o  
d i r e c t i o n a l l y  d r i l l  a 12-1/4-in.-diam geothermal wel l  i n  hot 
200°C (400°F) g ran i te  a t  depths t o  10 500 ft. 

I. INTRODUCTION 

e c t  concept'" , requires d i r e c t i o n a l  d r i l l i n g  hot g ran i te  a t  formation 
temperatures t o  300°C (600°F) and depths t o  15 000 f When the  t u r b o d r i l l  

n i t i a t e d  (1975), used for  o i l  and gas 
we1 1 d i r e c t i o n a l  d r i  11 i n g  were 

The Los Alamos National Laboratory, Hot D r  

ed t o  withstand the h igh 

ntered i n  geothermal wells. Consequently, a high-temperatu 
VelOped as a j o i n t  e f f o r t  by the Laboratory and Maurer Engi 

( M E I ) ,  Houston, Texas. 

A schematic d i  r i  11 i n g  syste presented i n  

Fig. 1. I n  a d d i t i o  era1 other e l  r e  depicted: 
(1) a bent sub t o  provide side ( l a t e r a l )  load on the  b i t ,  (2 )  a s tee r ing  t o o l  

o r  guidance w i  re1 i n e  instrument (usual l y  a magnetometer and i ncl  i nometer 
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Fig. 1. 
D i  r e c t i o n a l  d r i  11 i n g  system for  geothermal we1 1 s. 

combination) used t o  set  up and monitor t he  desired d i r e c t i o n  o f  d r i l l i n g ,  ( 3 )  
a r o t a t i o n a l  speed i n d i c a t o r  (pressure pu lser ) ,  (4) f l u i d  f l ow  from the  r i g  

mud pumps, and (5) a shock absorber subassembly t o  p ro tec t  t he  t u r b o d r i l l  

bearings from the  shock and v i b r a t i o n  loads as a r e s u l t  o f  rough d r i l l i n g  i n  
hard c r y s t a l  1 i n e  rese rvo i r  rock a t  Fenton H i  11 , New Mexico. 

11. DESIGN FEATURES AND GOALS 

Design ob jec t ives  o f  the  high-temperature t u r b o d r i l l  developed by ME1 

were the  t a r g e t  performance cha rac te r i s t i cs  l i s t e d  i n  Table I .  
These performance goals were selected t o  meet the  HDR p r o j e c t  d i rec t i on -  

a l  d r i  11 i n g  requi  rements and were p a r t i a l l y  der ived from 1 aboratory data for 
r o t a r y  d r i l l i n g  w i th  12-1/4-in.- and 9-5/8-in.-diam b i t s  i n  g ran i te  blocks. 

Thus, t he  general ob jec t i ve  was t o  match the  t u r b o d r i l l  performance as c l o s e l y  

as poss ib le  t o  the  b i t  d r i l l i n g  requirements o f  grani te.  O f  special  impor- 
tance were (I) the r e l a t i v e l y  low d r i l l i n g  r o t a t i o n a l  speed needed t o  y i e l d  a 
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TABLE I 

TURBODRILL TARGET PERFORMANCE CHARACTERISTICS 

Temperat u r e  Rat i ng: To d r i l l  i n  hot, 275OC (53OOF) very hard 
(g ran i te )  rock. The t u r b o d r i l l  s h a l l  
wi thstand t h i s  temperature f o r  extended 

per iods o f  t ime dur ing  d r i l l i n g  opera- 
t i o n s  and withstand a soak a t  3 O O O C  

( 6 O O O F )  f o r  a few (12) hours w i t h  no 
f l u i d  flow. 

D r i l l  Speed: 100 rpm nominal w i t h  a 50-200 rpm range. 

B i t  Weight: 35 000 l b f  w i t h  a 20 000-50 000 l b f  
range . 

Penetrat ion Rate: I n  hard grani te;  >10 f t / h .  
B i t  S ize  and Type: Both 12-1/4-in. and 9-7/8-in. hard rock, 

Torque: Capab i l i t y  s u f f i c i e n t  t o  t u r n  both b i t  

carb ide but ton b i t s .  

s izes a t  above rpm. 

F 1 ow Capacity : 
B i t  Power on Bottom: 

4 0 0  gpm. 
e25 hp minimum. 

Maximum Bent Sub Angle: <3O. 

Downhol e Makeup: 6-5/8-in. standard A P I  threads (box) on 

both ends; used w i t h  8-in.-diam co l l a rs .  

C i r c u l a t i n g  F lu id :  Water. 
Tota l  Length o f  Motor: <30 ft. 
Useful  D r i l l i n g  Depths: 6 km. 
0.d .  o f  Housing: 7-3/4-in. maximum. 
V ib ra t i on  Protect ion:  Shock absorber may be used. 

- 

reasonable l i f e  f o r  the  three-cone carbide i n s e r t  b i t s  t o  be used, (2 )  a shor t  

length f o r  downhole eccentr ic  o f fset  w i t h  the  bent sub, (3) high torque t o  

match b i t  requ i rements  and h i g h - l a t e r a l  b i t  l oads  generated because o f  

d i r e c t i o n a l  d r i l l i n g  forces, and (4) temperature to lerance up t o  ~1300OC. 

3 



The design features and considerat ions t h a t  were required t o  meet these 

ta rge t  performance cha rac te r i s t i cs  are 1 i s t e d  below. 
Turbine blades should provide maximum torque i n  the  shor test  poss ib le  

length, This would requ i re  an e f f i c i e n t  t u rb ine  blade design and 
would g ive  desired d i rec t i ona l  con t ro l  i n  h i g h l y  deviated boreholes. 

Low rpm charac te r i s t i c ,  provided f o r  enhanced b i t  l i f e ,  must be a de- 
s ign t radeo f f  w i t h  d r i l l  motor operat ing s t a b i l i t y .  
Mater i  a1 s f o r  both tu rb ine  blades and s t r u c t u r a l  elements (housing, 
shafts, etc.) were chosen f o r  high-temperature performance, t h a t  i s ,  

s t rength and d i  f f e r e n t i  a1 expansi ons/contract i  ons . 
Ro l le r  bearings were selected t o  g ive  enhanced bear ing l i f e  because 

o f  reduced contact forces as compared t o  b a l l  bearings. 
Because c lea r  water was t o  be used as the  d r i l l i n g  f lu id ,3 i t  was 

poss ib le  t o  consider operat ion o f  the  bearings unsealed, t h a t  i s ,  t o  
f low a percentage (up t o  40%) o f  the  water through the  bearings f o r  
cool ing and "1 ubr icat ion."  This approach avoided the  problems of t h e  
(then) u n a v a i l a b i l i t y  o f  high-temperature seals. (The conf igura t ion  
o f  the  seal-bearing sect ion o f  t he  t u r b o d r i l l s  used would a l low 

r e t r o f i t  o f  s u i  t ab1  e h i  gh- tempera ture  sea l  s when t h e y  became 

a v a i l  able .) 
Steel a1 loy, heat treatment, and s t ress concentrat ion f a c t o r  (geo- 

met r ic  s t ress r i s e r s )  se lect ions were d i c ta ted  by the  high-soak tem- 

perature requirement, hot  aqueous operat ing environment, and the  

severe s h o c k / v i b r a t i o n  s t r e s s e s  expected t h a t  would c r e a t e  a 
po ten t i a l  f o r  fa t igue fa i l u res .  

The 7-3/4-in.-diam d i rec t i ona l  t u r b o d r i l l  developed i n  t h i s  p r o j e c t  i s  
shown i n  d e t a i l  i n  the  assembly manuals (Appendix A) and par ts  l i s t  (Appendix 

B) 

I I I. LABORATORY TESTS 

The as-bui l  t performance cha rac te r i s t i cs  o f  t he  7-3/4-in.-diam t u r b o d r i l l  

were measured on a dynamometer t e s t  stand a t  t he  ME1 t e s t  f a c i l i t i e s  and a lso  
whi 1 e d r i  11 i n g  i n t o  g ran i te  t e s t  specimens a t  t he  D r i  11 i n g  Research Laboratory 

(DRL), S a l t  Lake City, Utah. 

4 
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A sketch of the  ME1 dynamometer t e s t  stand i s  shown i n  Fig. 2, and Fig. 3 

i s  a photograph o f  the  t e s t  f a c i l i t y .  Figure 4a shows t u r b o d r i l l  torque vs 
r o t a r y  speed as measured i n  the  ME1 f a c i l i t y .  

qn. HIGHPRESSURE 
mi ROTARY HOSE 

-01 FRWWMPTRUOC 

n. 

Fig.  2. 
Dynamometer t e s t  f a c i l i t y  schematic. 

Fig.  3. 
Photograph of ME1 dynamometer t e s t  f a c i l  i ty .  
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The torque output o f  t he  t u r b o d r i l l  decreases 1 i n e a r l y  w i t h  increased 
r o t a r y  speed as shown i n  Fig. 4a. A t  a f l ow  r a t e  o f  400 gpm, the  t u r b o d r i l l  
output torque decreases from 1100 t o  540 f t - l b f  as the  r o t a r y  speed i s  i n -  
creased from 0 t o  600 rpm. The 12-1/4-in. carbide i n s e r t  b i t s  requ i re  approx- 
imate ly  800 f t - l b f  torque a t  20 000 l b f  b i t  weight t o  d r i l l  gran i te ,  so a f l ow  

r a t e  of 370 gpm should be adequate a t  a t u r b o d r i l l  r o ta t i ona l  speed o f  about 
250 t o  350 rpm. This i s  shown i n  Fig. 4b. However, i t  should be noted t h a t  

i n  d i r e c t i o n a l  d r i l l i n g  some a d d i t i o n a l  t o r q u e  must be d e l i v e r e d  t o  
accomnodate the  l a t e r a l  load appl ied t o  the  b i t .  

The pressure drop across the  t u r b o d r i l l  increases l i n e a r l y  w i t h  increased 

ro ta ry  speed, as shown i n  Fig. 5. A t  400 gpm, the  pressure drop increases 
from 705 t o  890 p s i  as the  r o t a r y  speed i s  increased from 0 t o  600 rpm. These 
data then suggest t h a t  a pressure drop o f  approximately 800 p s i  w i l l  be 
required t o  r o t a t e  the  12-1/4-in. i n s e r t  b i t  a t  250 rpm w i t h  a b i t  load o f  

20 000 l b f .  
The power output o f  the  t u r b o d r i l l  increases w i th  rpm and passes through 

a maximum as the  ro ta ry  speed i s  increased. A t  a low f low r a t e  o f  280 gpm, 

7-%-in.diam TURBODRILL 
PERFORMANCE 

12-%-in.-diam CARBIDE INSERTBIT 

IN GRANITE BLOCKS 
REQUIREMENT - ROTARY DRILLING 

" 0  200 '400 6 0 0 0  10 20 30 40 50 

ROTATIONAL SPEED (rpm) WEIGHT ON BIT (10%~) 

Fig. 4. 
Grani te rock d r i l l i n g  torque requirements r e l a t i v e  t o  t u r b o d r i l l  operat ing 
charac ter is t i cs .  
(a) T u r b o d r i l l  torque charac ter is t i cs .  (b) Grani te  rock d r i l l i n g  requirements. 
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the  power output passed through a maximum o f  22 hp, a t  a ro ta ry  speed o f  400 
rprn. With 500 gpm, a maximum power output o f  100 hp was reached a t  a r o t a r y  
speed o f  600 rpm. A t  h igher f low rates,  the  maximum power output was no t  
reached a t  600 rprn. 

The load (LB) on t he  t u r b o d r i l l  t h r u s t  bearings i s  equal t o  the  b i t  re- 

ac t i on  fo rce  ( b i t  weight) (FB), l ess  the  sum o f  the  hydrau l i c  downthrust (FH) 
and the  r o t o r  weight ( W ) .  

LB = Bearing Load = FB - (FH + W )  = FB - Total Downthrust Force (FT) 

w i t h  FH = APxAeff, where LP = pressure drop across t u r b o d r i l l ,  and Aeff - - 
ef fec t i ve  cross-sectional area. These forces are shown i n  Fig. 6. The hydrau- 

l i c  downthrust under s t a l l  condi t ions was measured dur ing the  t e s t s  conducted 
a t  the  Terra Tek D r i l l i n g  Research Laboratory ( A p r i l  1979). The t o t a l  down- 

t h r u s t  force (FH + W) increased from 700 t o  33 900 l b  as the  f low r a t e  was 

I I I I I I 

200 400 Mx) 

ROTATIONAL SPEED (rprn) 

Fig. 5. 
Tu rbodr i l l  pressure drop vs r o t a t i o n a l  
speed character i  s t  i cs . 

ROTOR WEIGHT (W) 

PPER THRUST BEARING 

LWER THRUST BEARING 

Fig. 6. 
Load on t u r b o d r i l l .  
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increased from 0 t o  500 gpm. The 700-lb downthrust w i t h  no f l ow  r a t e  corre- 

sponds t o  the weight ( W )  o f  the  t u r b o d r i l l  r o t o r  assembly as shown i n  Fig. 7. 
A t  s t a l l  condi t ions,  t he  t o t a l  downthrust on the  r o t o r  sha f t  increased from 

8 500 t o  33 900 l b  as the  f low r a t e  through t h e  7-3/4-in. t u r b o d r i l l  increased 
from 200 t o  500 gpm. The t o t a l  downthrust increases w i t h  increased r o t a r y  

speed because o f  increased pressure drop across the  t u r b o d r i l l .  It was noted 
t h a t  the  e f fec t i ve  area decreased from 39.0 t o  29.9 in.' as the  flow r a t e  was 

increased. 

The s t a l l  torques measured w i th  the dynamometer (Fig. 2 )  were obtained 

w i t h  f u l l  hydraul ic  downthrust ac t i ng  on the  lower t u r b o d r i l l  t h r u s t  bearing. 
(No b i t  loads were appl ied o r  simulated i n  the  dynamometer f a c i l i t y . )  F r i c -  
t i o n  i n  the  t h r u s t  bearing there fore  reduced the  output  (measured) torque. 
During the DRL tes ts ,  the  output s t a l l  torques were measured a t  balanced load 
condi t ions;  and therefore,  

F = F,, + W (LB = 0, balanced t h r u s t  load condi t ions),  
BO 

where there i s  no load on the  t h r u s t  bearings (LB = 0). I n  t h i s  case, t he  

measured t u r b o d r i l l  output torques were higher than those measured i n  t h e  
dynamometer t e s t s  because the  lower t h r u s t  bearing was heav i l y  loaded i n  the  

dynamometer tests .  The d i f f e rence  i n  torque between the  two operat ing condi- 
t i o n s  corresponds t o  the  f r i c t i o n  torque i n  the  bearings as recorded i n  Fig. 8. 

The penetrat ion r a t e  determined i n  the  DRL t e s t s  d r i l l i n g  i n  g ran i te  blocks 
(Fig. 9)  increased r a p i d l y  as the  r o t a r y  speed was increased (Fiq. 10). For 

example, w i t h  30 000 l b f  b i t  weight, t he  d r i l l i n g  r a t e  increased from 5 t o  24 

f t / h  as the  ro ta ry  speed was increased from 50 t o  200 rpm. This  ind ica tes  

t h a t  r e l a t i v e l y  high d r i l l i n g  rates can be obtained i n  g ran i te  w i t h  downhole 
d r i l l i n g  motors. But it must be reca l led  t h a t  higher rpm w i l l  r e s u l t  i n  de- 

creased b i t  l i f e  as compared t o  ro ta ry  d r i l l i n g .  The torque requi red t o  d r i l l  
using a 12-1/4-in. b i t  i n  g ran i te  i s  shown i n  Fig. 4b. Not ice t h a t  torque was 

only s l i g h t l y  inf luenced by rpm i n  these ro ta ry  d r i l l i n g  tests .  
The t e s t  arrangement used dur ing the  t u r b o d r i l l  t e s t s  a t  DRL i s  shown i n  

Fig. 11. A shock absorber was used beneath the  t u r b o d r i l l  t o  i s o l a t e  t h e  
t u r b o d r i l l  bearings from the  h igh b i t  impact and v i b r a t i o n  loads. F igure 12 

i s  a t u r b o d r i l l  sumnary performance char t  der ived from the  DRL t e s t  data. As 
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can be seen from these data, the  t u r b o d r i l l  achieved a l l  o f  the  performance 

design targets,  except t h a t  rpm i s  higher than desired. The t o o l  remained t o  
be tes ted  i n  a hot we l l  and under d i r e c t i o n a l  d r i l l i n g  condit ions. 

Fig. 9. Fig. 10. 
pink g ran i te  d r i l l i n g  

f o r  r o t a r y  and t u r b o d r i l l  t e s t s  a t  
Terra Tek D r i  11 i n g  Research Labor- 
atory. 

Grani te d r i l l i n g  penetrat ion r a t e  
vs b i t  weight, 12-1/4-in.-diam b i t ,  
a t  various rpm. 



0 10 P 3 0 4 0  5 0 6 0  

BIT WEIGHT ( 1 0  Ibf ) 

Fig. 11. 
DRL t u r b o d r i l l  t e s t  setup. 

I V . F IELD PERFORMANCE 
The high-temperature t u r b o d r i l l  

Fig. 12. 
Summary o f  t u r b o d r i l l  performance cha r t  
der ived from DRL tes ts .  

had i t s  f i r s t  f i e l d  t r i a l s  i n  J u l y  1979 

(see Fig. 13 f o r  view o f  t u r b o d r i l l  i n  de r r i ck )  and was used t o  d i r e c t i o n a l l y  

d r i l l  i n  HDR geothermal wel l  Energy Ex t rac t ion  wel l  No. 2 (EE-2). The summary 

of these f i e l d  t r i a l s  i s  given i n  Table 11. Table I 1 1  i s  a t y p i c a l  bottom- 

hole assembly (BHA) used w i t h  the  ME1 t u r b o d r i l l s .  The average performance o f  

the  20 d i rec t i ona l  runs i s  shown i n  Table I V .  I n  reviewing Table I V ,  i t  

should be noted t h a t  the  d i rec t i ona l  d r i l l i n g  procedures genera l ly  d r i l l e d  

down two j o i n t s  ( 6 0  ft) o f  d r i l l  p ipe and the  b i t  l i f e  was about 120 ft. An 

example of t u r b o d r i l l  f i e l d  performance deep i n  EE-2, a t  a formation tempera- 

t u r e  o f  22OoC, i s  presented i n  Table V. (This i s  Run 21 i n  Table 11.) The 
t u r b o d r i l l  l i f e  was t y p i c a l l y  greater  than the  59.8-ft  average run ind ica ted  
i n  Table I V  because most of the  b i t  runs were terminated because o f  s tee r ing  
t o o l  problems o r  b i t  gauge wear, not as a r e s u l t  o f  t u r b o d r i l l  f a i l u r e ,  A 

t u r b o d r i l l  would be expected t o  wear out  two t o  th ree  b i t s  i n  the  hard abra- 

s i ve  gran i te  before the  bearings had t o  be maintained. The two M E I  turbo- 

d r i l l s  were disassembled on s i t e  a f te r  each d i r e c t i o n a l  run i n  EE-2 (Fig. 14). 
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Fig.  13. 
ME1 t u r b o d r i l l  i n  d e r r i c k  f o r  d i r e c t i o n a l  d r i l l i n g  run i n  EE-2. 

Fig.  14. 
On-site disassembly o f  7-3/16-in. ME1 t u r b o d r i l l  fo l lowing  d i r e c t i o n a l  d r i l l  
run (using Houston Engineering break-out too l  ). 
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TABLE I 1  
SUMMARY OF DIRECTIONAL D R I L L I N G  RUNS AND RESULTS FOR WELL EE-2 

A1 1 runs w i t h  12-1/4-in.-diam b i t s  

13 Yes 1 4 / 2 0  

14 Yes/SSTC 2O 

15 Yes 20 

16 Yes 2O 

17 Yes 2O 

18 Yes 2O 

19 Yes 20 

20 Yes 20 

21 Yes 1-1/20 

1 No -0- 

2 Yes 1-1/2O 

3 Yes 1-112" 

4 Yes 1-1/2O 

5 Yes 1-1/29 

6 Yes 1-1/20 

7 Yes 1 4 / 2 0  

8 Yes 20 

9 Yes 20 

10 Yes 1 4 / 2 0  

11 Yes 2" 

12 Yes 1-1/20 
(9311) 
2854 

(9363) 
2854 

(9363) 
2885 

(9467 ) 
2900 

(9513) 
2905 

(9531 ) 
2980 

(9776) 
3021 

(9912) 
3059 

(10,035 ) 
3216 

( 10,552 ) 

1497 
(4912) 
2538 

(8326) 
2538 

(8328) 
2564 

(8414) 
2604 

(8545) 
2613 

(8575) 
2613 

(8575) 
2754 

(9035) 
2754 

(9035) 
2768 

(9082) 
2800 

Measured Uistance 
Depth Borehole D r i l l e d  

O r i l l  Motor Steering Bent Sub m I n c l i n a t i o n  and m Shock 
o e v i a t i  onb ( f t )  Absorber' Run No. Tool Angle (ftla 

15',N34'E 

13-1 12' ,N40°E 

13-1 /4 ', N42 "E 

12-114 ', N44OE 

12-1/4O ,N44OE 

Yes 

17.7 Yes 

Yes 

Yes 

Yes 

(58) 

(2) 
0.6 

26 

Yes 

Yes 

(131) 
9.1 

(30) - 0- 
18.3 Yes 

Yes -0- 
(60) 

13 Yes 

Yes 

Yes 

Yes 

Yes 

(106) 

(123) 
37.5 

15.8 

-0- 
(52) 

(119) 

Remarks 

F i r s t  f i e l d  t r i a l  o f  7-3/4-in.-diam ME1 t u r b o d r i l l .  

A l l  subsequent runs required i n t e n e d i a t e  reaminq o f  hole. 

Considerable operational d i f f i c u l t i e s  experienced frm 
8300-9303 ft w i th  Eastman-Whipstock (DOT) s teer ing t o o l  .d 

Turbine would not  rotate. 

Turbine would not  ro tate;  Sperry-Sun (SST) s teer ing 
fa i l ed .  

Reached temperature l i m i t  o f  shock absorbers. 

Motor run used t o  increase inc l i na t i on .  

:Depth a t  end o f  run. 
Based on single-$hot magnetic surveys. 

:Refer t o  Williams e t  al.. 1979, Ref. 1. 
Most o f  the motor runs were t e n l n a t e d  because o f  s teer ing t o o l  f a i l u r e s  or b i t  gauge wear, not, as a r e s u l t  of t u r b o d r i l l  problems. 

t o o l  



I 

i 
i 
I 
I TABLE I11 

TYPICAL BOTTOM-HOLE ASSEMBLY FOR FIELD TRIALS 
OF 7-3 /4- I N. -D I A M  TURBODR ILLS 

12-1/4-in.-diam b i t  

Shock absorber 

Tu rbodr i l l  

F loa t  valve 

Crossover sub 

! 

I i 

i 
I 
I 

Bent o r i e n t i n g  suba 

8-in.-diam Monel c o l l a r  

Twelve 8-in.-diam d r i l l  c o l l a r s  

Twenty-one j o i n t s  o f  HWDP b 

'a1-1/20 o r  2' bent sub 
b D r i l c o  HEVI-WATE d r i l l  pipe; 5-in. 0.d. a t  

50 lbm/f t .  

TABLE I V  

AVERAGE FIELD PERFORMANCE, WELL EE-2, 

13 



The operating data from Table V are p l o t t e d  on Fig. 3 t o  show the  i n t e r -  

act ions between required torque a t  t he  d r i l l  b i t  and torque output of the t u r -  
b o d r i l l ,  t h a t  i s ,  750 f t - l b f .  

The t u r b o d r i l l  f i e l d  operat ional  map i s  depicted i n  Fig. 15, where the  

f i e l d  data have been p l o t t e d  on the same graph as the  DRL t e s t  r e s u l t s  (Fig. 
12). It i s  emphasized t h a t  t he  b i t  d r i l l i n g  c h a r a c t e r i s t i c s  are those of t he  
12-1/4-in.-diam b i t s  obtained i n  the  DRL t e s t s  i n  Texas p ink g ran i te  blocks. 

The d i r e c t i o n a l  d r i  11 i n g  o p e r a t i o n a l  problems a t  t h e  p r e s e n t  t i m e  
(January 1980) center p r i m a r i l y  around inadequate high-temperature s tee r ing  

t o o l  instrumentat ion t o  set  and monitor t u r b o d r i l l  d i rec t i on .  Excessive 

bearing wear i n  the t u r b o d r i l l  i s  the downhole motor l i m i t a t i o n  o f  most 

concern. B i t s  should be developed t h a t  would have extended l i f e  a t  t u r b o d r i l l  

r o t a t i o n a l  speeds o f  300-450 rpm. 
An o u t l i n e  f o r  t u r b o d r i l l  operat ion procedure i s  presented as Appendix C. 

V. FUTURE DEVELOPMENT PROSPECTS 

Several d i rec t i ons  t o  achieve improved d i r e c t i o n a l  d r i l l  i n g  performance 

have been ind icated by t h i s  development pro ject .  

4 

A. Turbodri 11 s 
1. Bearing l i f e  could be extended i f  an e f f e c t i v e  method o f  seal ing the  

bearings i n  a high-temperature o i l  o r  grease could be developed. ME1 has a 
cont inuing e f f o r t  i n  t h i s  area. 

Improved bearing designs'and conf igurat ions may be possible. 2. 
3. Reduced t u r b o d r i l l  r o t a r y  speed would enhance b i t  l i f e .  One approach 

The higher torque obtained from i s  t o  use a planetary reduct ion gear system. 

the reduct ion gear would also be useful  for  using drag bits,- such as diamond 

O r  p o l y c r y s t a l l i n e  diamond compact ( f o r  example, GE Stratapax 1 b i t s .  03 

B . Instrumentat ion 

Sperry Research Center, Sudbury, Massachusetts, i s  i n v e s t i g a t i n g  a r o t a r y  

speed measurement system developed by M E I .  I n i t i a l  f i e l d  t r i a l s  have shown 
promise. See Appendix D f o r  d e t a i l s  o f  t h i s  system. 

5 
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C. D r i l l  B i t s  

The b i t s  used w i t h  the t u r b o d r i l l  t o  date have shown excessive wear on 

bearings and gauge surfaces (maximum diameter) and b i t  l i f e  was usua l l y  l e s s  
t h a n  t u r b o d r i l l  l i f e .  Improved h i g h  speed r o l l e r - c o n e  b i t s  would be 

desirable. Long l i f e  and high d r i l l i n g  rates would be poss ib le  i f  a s u i t a b l e  
PDC ( S t  ratapaxa) b i t  were avai 1 ab1 e. 

TABLE V 

SUMMARY DATA FOR LAST TURBODRILL  RUN,^ WELL EE-2 

- Date: October 12-13, 1979. 

Depth: 
D r i  11 i ng I n t e r v a l  : 
Approximate Formation Temperature: 220OC. 

Shock Absorber: None 

- B i t :  

B i t  Load: - <20 000 lb f .  

Bent Sub:. 1-1/Z0. 

Flow Rate: 

Estimated Rotary Speed: 300-400 rpm. 
I n c l i n a t i o n  Angle Change Achieved: do. 
To ta l  Rotat ing Time: >4.5 h. 
Nominal Penetrat ion Rate: >26 f t / h .  

10 433 t o  10 552 ft. 
4 1 9  ft . 

Smith Tool Co. 0931 (12-1/4-in. diam). 

77 pump strokes/min. @360 gpm. 

Condit ion o f  Bearing: No broken races, w i t h  
estimated > 1/2-h d r i l l i n g  l i f e  remaining i n  
rad i a1 beaFi ngs . 

Other Data: No f l ow  meter o r  pump desurgers were 
used; run was i n  two segments: 3-h d r i l l i n g ,  
i n te r rup ted  by *3/4-h i n t e r v a l  f o r  s teer ing t o o l  
problems, fo l lowed by @1-1/2-h d r i l l i n g  time. 

%ee Run 21, Table 11, t u r b o d r i l l  and d i r e c t i o n a l  
system used t o  b u i l d  i n c l i n a t i o n .  

15 



APPROXIMATE 

DESIGN "POINT" 

10 

I I 
0 10 m m 0 P 

UT WEffiHT (10W 

Fig. 15 
Tu rbodr i l l  f i e l d  operat ional  map. 

COMMERCIAL AVAILABILITY 
The ME1 t u r b o d r i l l s  are now ava i lab le  commercially through ONCOR D r i l l i n g  

Tools (Houston, Texas) i n  the  U.S., and Komatzu, Ltd. (Tokyo, Japan) i n  
southeast Asia. For more information, contact  W i l l i a m  C. Maurer, Maurer Engi- 
neering, Inc., 2916 West T. C. Jester Blvd., Houston, TX 77018; telephone 

71 3-683-8227. 
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The authors wish t o  thank the  many f i rms  and i n d i v i d u a l s  t h a t  supported 

the  t u r b o d r i l l  d i r e c t i o n a l  d r i l l i n g  operat ions w i t h  t h e i r  equipment, i n s t r u -  
ments, services , and expert ise.  However, reference t o  a company, product 

name, service,  t oo l ,  o r  equipment i tem does not  imply approval o r  recomnenda- 
t i o n  o f  the  product, service,  o r  t o o l  by the  Un ive rs i t y  o f  C a l i f o r n i a  (Los 

Alamos Nat ional  Laboratory) o r  the  U.S. Department o f  Energy t o  the  exclusion 

of others t h a t  may be su i tab le.  
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APPENDIX A 

ASSEMBLY INSTRUCTIONS 

The assembly o f  the  t u r b o d r i l l  should be ca r r i ed  out i n  s t r i c t  accordance 
the  fo l low ing  two manuals prepared by Maurer Engineering, Inc. 
ME1 TR 79-16 dated May 7, 1979: Assembly Manual, 7-3/4-in. Bearing Pack 
and Turbine, by Joh 

ME1 TR 79-17 dated Assembly Ins t ruc t i ons  f o r  7-3/4-in. 
Bearing Pack and Tur 

D. Nixon, and David D. Nagel. 

Lower Seal Assem and Upper Seal Assembly. 

77 
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Index No. P a r t  No. 

1 
2 
3 

4 
5 

6 

7 
8 
9 

10 
11 
12 
12A 
13 
14 
15 
16 
17  
17A 
18 

19 
20 
21 
22 
23 

24 
25 
26 
27 
28 
29 

80- 96 
80-87 
80-88 
P 1-437-1 

80-80 
80-81 

80- 89 
77-64 
P1-042-1 
77-62 
7 7- 62 
77-35 
80-34 
80-196 
77-31 
78-303 
77-26 

77-9-1 
80-1 95 
77-27 
77-159 
77-28 
77-23 
78-758 
77-61 

PARTS LIST 

D esc r i  p t  i on Quan t i t y  
1 FLOATING PISTON ASSEMBLY (Variseal ) 

- VARISEAL, f l o a t i n g  p i s ton  
- VARISEAL, f l o a t i n g  p is ton  

- BODY, f l o a t i n g  p is ton  

- SPIROLOX, f l o a t i n g  p is ton  
- SLEEVE, bearing shaf t  

PLUG, p ipe  
SPACER, r ing ,  housing upper 
SLEEVE, bearing shaf t  
SPACER, bear ing housing 
SPACER, bear i ng housi ng 

SPACER, t h r u s t  bearing 
THRUST BEARING ASSEMBLY 

SLEEVE, bear ing shaf t  
DISK, spr ing  

RETAINER 
RETAINER 
SLEEVE, r a d i a l  bearing 

SPACER, bearing housing 
SPACER, r ing ,  sha f t  upper 
RADIAL BEAR I NG ASSEMBLY 
HOUSING, bearing pack 

- O-RING 

- BUCK-UP R I N G  

O-RING 

P1-364-1 * O-RING 

77-19 RING, lower lock 
78-644 SCREW, se t  
79-269 BEARING MAKE-UP SUB ASSEMBLY 
P1-046-1 O-RING 
77-15 RING, end 
77-55 SHAFT, bear ing 

2 
1 
2 

1 
3 

2 
1 

1 
4 

1 
1 
1 
1 

2 

2 
8 

2 
2 
2 
1 

1 
3 

1 
1 

1 
6 

1 
1 
1 
1 
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30 
30A 

31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 

80-99 
80-95 
N 5002 -62 5 
80-83 
P1-360-1 
80-82 
80-84 
79-270 
77-16 
P1-256-1 
77-53 
77-52 
77-40 
P1-363-1 
77-51 
77-50 
77-49 
76-16 
76-17 
77-48 
77-47 
77-46 
77-45 
77-44 
77-43 
77-42 
77-39 
77-38 

LOWER SEAL ASSEMBLY (Var i  seal ) 
- VARISEAL, lower seal 
- R I N G ,  r e t a i n i n g  

- RETAINER, seal end 

- RETAINER, c u t t e r  seal 
- SPACER, back-up 
- SEAL, l a b y r i n t h  
- SLEEVE, seal 

STATOR HOUS I NG SUB ASSEMBLY 
SCREW, se t  

R I N G ,  lock  

SCREW, set 

NUT, r o t o r  make-up 
SPACER, s t a t o r  

BLADE, s t a t o r  
BLADE, r o t o r  
WIRE, r o t o r  lock 

SPACER, r o t o r  
SHAFT, r o t o r  

SLEEVE, s t a t o r  make-up 

END, sp l ine  box 

HOUSING, s t a t o r  

P I N ,  s p l i n e  
SPACER, spl i n e  

END, spl i n e  p i n  

- O-RING 

- O-RING 

\ 

O-RING 

1 
4 

2 
2 
3 
1 
1 
50 
50 
10 ft 
1 
1 
1 
1 
1 
4 
1 
1 
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APPENDIX C 

TURBODRILL OPERATION PROCEDURES 

I* HOLE CONDITION AND PREPARATION 
Hole cond i t ion  i s  extremely important t o  making a d i r e c t i o n a l  ho le  w i t h  

a t u r b o d r i l l .  The hole must be reamed f u l l y  t o  the  gauge o f  t he  b i t  s ize  t o  

be used and must not have " t i g h t "  sect ions o r  bad doglegs. Although a 3-point  

reamer passed t o  bottom may be s u f f i c i e n t  t o  get a sa t i s fac to ry  hole, i t  i s  
b e t t e r  t o  use a s t i f f  assembly cons is t ing  o f  one ( o r  more) 6-point  r o l l e r  

reamers f r e e l y  operated t o  bottom o f  t he  hole before s t a r t i n g  t o  d r i l l  w i t h  a 
tu rbodr i  11 . 

It i s  advisable t o  c i r c u l a t e  the  hole completely f o r  about 2 h and t o  

sweep the  cu t t i ngs  w i t h  a h igh v i s c o s i t y  gel p i l l  before a t u r b o d r i l l  run. 

I I TURBODRILL BOTTOM-HOLE ASSEMBLY 
I n  a t y p i c a l  BHA f o r  d i rec t i ona l  d r i l l i n g  w i t h  the  t u r b o d r i l l ,  i t  i s  

extremely important t o  inc lude the  f l o a t  valve, which i s  i nse r ted  i n  a sub 

immediately above the  t u r b o d r i l l .  Th is  f l o a t  prevents reverse f low and 

subsequent damage t o  o r  plugging o f  t he  t u r b o d r i l l  w i t h  cut t ings.  A second 
f l o a t  added i n  a sub imnediately above the  t u r b o d r i l l  w i l l  g ive  added 

protect ion.  High-temperature elastomer seats are requi red i n  the  seals.* 
The bent sub may be up t o  2O, but 1 - 1 / 2 O  i s  recommended. 

111 TURBODRILL INSERTION PROCEDURES (TRIPP 
A t  surface, hang t u r b o d r i l l  from c i r c u l a t i n g  head and swivel w i t h  b i t  

and shock sub i n  hole. Increase pump strokes s lowly  and note f l u i d  f l ow  r a t e  
a t  which t u r b o d r i l l  r o t a t i o n  begins (usual1 about 50 t o  70 gpm). If 

turbodr i  11 ro ta tes  f ree l y ,  disconnect nd cont inue t r i p p i n g  toward 

p ipe every 20 o 
A t  bottom, r a i  onnect swivel,  and 

s t a r t  f l ow  t o  ensure 

* Baker l ine (San An eve1 oped a geothermal (6OO0F, 300°C). 
seal k i t  f o r  t h e i r  l i n e  o f  f l o a t  valves. 
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I V .  START OF DRILLING 
This  s t a r t - o f - d r i l l i n g  procedure should be fol lowed a t  t ime o f  i n i t i a l  

d r i l l  ng and a t  every i n t e r r u p t i o n  o f  d r i l l i n g ,  such as adding a stand of 
p ipe, adjustment o f  d i rec t i ona l  instrument, o r  resumption o f  d r i l l i n g  a f t e r  

" s t a l  i n g  out"  t u r b o d r i l l  on bottom. 
1. Raise t u r b o d r i l l  10 ft or more o f f  bottom. 
2. 
3. Lower t u r b o d r i l l  t o  touch bottom. Do not  exceed 5000 l b f  b i t  

4. 
5. 

S t a r t  f low a t  approximately 250 gpm. 

weight . 
Increase f l o w  t o  approximately 400 gpm. 
Raise b i t  weight t o  10 000 lb f .  Observe d r i l l - o f f  (es tab l i sh  an 

ROP) t o  v e r i f y  d r i l l i n g ;  a pressure increase o f  about 125 t o  150 
p s i  w i l l  i nd i ca te  d r i l l i n g  has started. 

6. Raise b i t  weight i n  5000-lbf increments (10 000, 15 000, 20 000 
l b f ,  etc.). 

7. Try  t o  es tab l i sh  steady d r i l l i n g  a t  approximately 20 000 t o  25 000 
l b f  o f  b i t  weight. 

8. If t u r b o d r i l l  s t a l l s  out, d r i l l - o f f  w i l l  i n d i c a t e  no penetrat ion 
r a t e  and a decrease i n  pressure o f  about 125 t o  150 psi .  

9. If t u r b o d r i l l  s t a l l s ,  lower b i t  weight by a t  l e a s t  5000 l b f  and 

t ry t o  res ta r t ,  v e r i f i e d  by d r i l l - o f f .  I f  t u r b o d r i l l  w i l l  no t  
s t a r t ,  reduce f l ow  r a t e  t o  250 gpm and p u l l  up o f f  bottom. 

10. Go back t o  Step 1 and repeat sequence. 
11. I f  steady-state d r i l l i n g  i s  achieved, consul t  w i t h  d i r e c t i o n a l  

d r i l l e r  t o  see i f  t o o l  face angle i s  acceptable. 

12. S m a l l  co r rec t ion  t o  'tool face angle may be achieved by small 

adjustments i n  f low rate. 

13. I f  la rge  correct ions o f  t o o l  face angle are required, stop turbo- 

d r i l l  by Step 9 above and fo l low i n s t r u c t i o n s  o f  d i r e c t i o n a l  
d r i l l e r  t o  make correct ions;  f o r  example, r o t a t e  r o t a r y  t a b l e  w i t h  

s l i p s  on d r i l l  pipe. 

V. DIRECTIONAL ADJUSTMENTS 
The d i rec t i ona l  d r i l l e r  w i l l  o r i e n t  downhole assembly before inser t ion .  
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During d r i l l i n g  the  d i r e c t i o n a l  d r i l l e r  w i l l  note d r i l l i n g  progress by 

the  s teer ing  t o o l  and w i l l  suggest t o  the  d r i l l e r  the  correct ions t h a t  can be 

made by small changes i n  f low rate. 
Large changes i n  azimuth, a f t e r  d r i l l i n g  i s  s tar ted,  w i l l  requ i re  turbo- 

d r i l l  shutdown (Step IV-9) and r e o r i e n t a t i o n  o f  s t r i n g .  
To s t a r t  t u r b o d r i l l  a f t e r  reor ien ta t ion ,  go back t o  Step I V - 1  and repeat 

sequence . 
V I .  STEADY-STATE DIRECTIONAL DRILLING 

1. D i rec t i ona l  d r i l l e r  w i l l  f o l l o w  progress by r e f e r r i n g  t o  h i s  t o o l  

2. 

3. 
4. 

face ind ica tor .  

Make small adjustments by changing f l ow  r a t e  s l i g h t l y .  

Note d r i l l i n g  progress by chalk marking s t r i n g  a t  surface. 

Acceptable d r i l l i n g  rates are 20 t o  60 ft per hour. 

V I I .  DRILLING INTERRUPTION AND RESTARTING 

I f  d r i l l  i n g  i s  i n te r rup ted  f o r  any reason, f o l l o w  shut-down procedure 

of IV-9 above and when d r i l l i n g  resumes, fo l l ow  s ta r t -up  procedure beginning 
w i t h  Step I V - 1 .  

V I I I .  TURBODRILL END OF RUN 

Normally t u r b o d r i l l  runs stop when the b i t  wears out and d r i l l i n g  r a t e  

goes t o  zero. This can happen e i t h e r  gradual ly  o r  suddenly. Usually, t he  
d r i l l i n g  r a t e  decreases approximately 50% j u s t  before i t  stops completely. 

When d r i  11 i n g  stops, f o l  low Step IV-9 f o r  t u r b o d r i l l  shutdown . Other reasons 
fo r  terminat ion o f  a run may be t h a t  a s u f f i c i e n t  cor rec t ion  has been made, 

a s tee r ing  t o o l  has malfunctioned, a t u r b o d r i l l  has blocked, e tc .  

I X .  TURBODRILL EXTRACTION 

1. Maintain a small f low, approximately 250 gpm, t o  p u l l  t u r b o d r i l l  up 

from bottom as high as s t r i n g  permits. Shut o f f  flow. P u l l  up 

s lowly  and s teadi ly .  Do not exceed approximately 

100 000 l b f  (over s t r i n g  weight) dur ing  ext ract ion.  T r i p  out per 

standard r i g  procedures. 

Do not j e r k  up. 
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2. When t r i p p i n g  out i s  completed, a t tach  swivel and v e r i f y  t h a t  turbo- 

d r i l l  turns by pumping a small f low through bottom-hole assembly. 
See inspect ions below. 

X. INSPECTIONS 
1. A f t e r  t r i p p i n g  out, s t a r t  f l ow  t o  t u r n  tu rbodr i  

ra te  requi red t o  t u r n  a t  end o f  run w i t h  f low t o  
o f  run. 

Inspect b i t  f o r  wear informat ion.  2. 

1 . Compare f l ow  
t u r n  a t  beginning 

3. Inspect t u r b o d r i l l  a f t e r  each run for evidence o f  bear ing o r  t u rb ine  

wear. If s i g n i f i c a n t  wear i s  found, t u r b o d r i l l  i s  t o  be d is-  
assembled and r e f u r b i  shed. 
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APPENDIX D 

TURBODR ILL TACHOMETER* 

I. INTRODUCTION 

The short- length, high-torque t u r b o d r i l l  s for  geothermal d i r e c t i o n a l  

d r i l l i n g  operations can operate a t  any speed from s t a l l  t o  runaway, depending 
on load on b i t .  Maximum torque i s  developed a t  s t a l l  and the torque decreases 
toward zero a t  high speeds (Fig. D-1). I n  the f i e l d ,  t u r b o d r i l l  speed i s  con- 
t r o l l e d  by b i t  torque, which i s  i n  t u r n  re la ted  t o  weight on b i t .  During 

d i r e c t i o n  d r i l l i n g ,  i t  i s  sometimes d i f f i c u l t  t o  know and con t ro l  weight on 
b i t ,  p a r t i c u l a r l y  i n  i n c l i n e d  holes. Excessive weight on b i t  can lead t o  

s t a l l i n g  o f  the t u r b o d r i l l ,  whereas with too l i t t l e  t h rus t ,  motor speed can 

become high. It i s  p a r t i c u l a r l y  important i n  the EE-2 d i r e c t i o n a l  operations 

t o  operate the motor a t  r e l a t i v e l y  low speeds t o  extend the  l i f e  o f  t he  car- 
b ide  i n s e r t  r o l l e r  b i t s  used i n  d r i l l i n g  grani te.  / I n  order t o  con t ro l  turbo- 

d r i l l  speed w i t h i n  a p r a c t i c a l  range, a rpm tachometer system was developed. 

11. OPERATING PRINCIPLE 

\ 

A f l u i d  pulse generator tachometer was developed f o r  the ME1 7-3/4-in. 

t u r b o d r i l l  . The puls ing tachometer produces one ssure pulse each t ime t h e  
t u r b o d r i l l  ro ta tes one revo lu t i on  . These pres pulses are t ransmi t ted 

through the d r i l l i n g  f l u i d  i n  the d r i l l  p ipe t o  the  surface. Instrumentat ion 
on the r i g  f l o o r  monitors the  frequen f the  pressure pu es. Th is  fre- 

quency i s  a d i r e c t  and continuous measu the t u r b o d r i l l  speed. 

The pressure pul ses are produced by blanking appro a t e l y  40% each of 
r s t  stage o f  t he  t u r b i n e  i n l e t  r o t o  

r o t o r  turns on the  tu rb ine  ces pass over 
those i n  the s ta t i ona ry  stator.  The t o t a l  f l ow  area thus var ies c y c l i c a l l y  as 
the  tu rb ine  sha f t  rotates.  When t h  anked b l  ades are l i n e ,  40% o f  t he  

f l o w  area i s  blanked areas are 

*This work was supported i n  p a r t  by M rgy Research Center, DOE, 
under contract  No. DE-AC21-79MC11251, t o  Maurer Engineering, Inc. Sperry 
Research Center, Sudbury, Massachusetts, pa r t i c i pa ted  i n  t h i s  development. 
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f l o w  area i s  blocked. This momentarily r e s t r i c t s  f l ow  through the  blades and 
produces a pressure pulse t h a t  can be detected a t  the surface. The pressure 
pulse appears s inusoidal  a t  t he  surface and i n  phase w i t h  the  changing blade 

area as shown i n  Fig. D-2. 

111. SYSTEM 

I n  add i t i on  t o  the blanked tu rb ine  blades, t he re  are four surface compo- 

nents t o  the pulse tachometer system: r i g  pumps, desurgers, pressure t rans-  
ducer , and spectrum analyzer. 

No changes were made t o  the  r i g  pump or 
t o  the  c i r c u l a t i o n  system except f o r  t he  add i t i on  o f  pressure desurgers i n  t h e  
pump o u t l e t  f l ow  l ines.  

The pumps used on r o t a r y  d r i l l i n g  r i g s  produce severe pressure f l uc tua -  

t i o n s  (+lo0 - t o  400 ps i ) .  This noise masks the  pressure pulses produced by t h e  

pul  s ing tachometer blades . Hydrodyne Indus t r i es  10-gal. desurgers (Type 
AA30-10) were used t o  reduce the  pump noise. I n  these, n i t rogen a c t i n g  

against  a rubber bladder absorbs the  f l ow  r a t e  v a r i a t i o n s  and reduces t h e  

pressure f l uc tua t i ons .  The desurgers are charged t o  about 70% o f  t he  pump 

Standard r i g  pumps were used. 

12-3641 

Turbine Blade Revolutions 

Fig. D-1. Fig. D-2. 
Geothermal t u r b o d r i l l  rpm i n d i c a t o r  
sys tern. 

Typical  pressure response a t  surface. 
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operat ing pressure f o r  maximum e f f i c i ency .  IJp t o  fou r  desurgers were used 

du r ing  the  f i e l d  tes ts .  The f i e l d  t e s t s  have shown t h a t  good desurgers a re  
e s s e n t i a l  w i t h  t h e  p u l s e  tachometer. W i thou t  good, p r o p e r l y  charged 

desurgers, the  pulse s ignals cannot be extracted from pump noise even a t  
shal low depths; w i t h  desurgers, t h e  tachometer performed we l l  a t  depths i n  

excess o f  10 000 ft. 

I n  a l l  f i e l d  t e s t s  the  pressure pulses were detected using Teledyne- 

Taber Model 206 0-5000 ps i  pressure transducers on the  standpipe f low l i n e .  
These transducers u t i l i z e  DC s t r a i n  gage bridges t h a t  were powered by a 

Gentran, Inc. Model GT-403G Transducer Ind ica tor .  This u n i t  both condi t ioned 

t h e  signal and provided an analog readout o f  steady-state pressure. 

Early t e s t s  showed t h a t  i t  i s  not possible t o  process pressure pulses 
d i r e c t l y  from an osc i l lograph record of t he  pressure s ignal  because o f  t h e  
high amplitude o f  t he  pump noise, even w i t h  desurgers i n  the  f low l ines .  

A fast  spectrum analyzer was used t o  process the  pulse signal. These 
t e s t s  were very successful w i t h  desurgers on the  f low l i nes .  The spectrum 

analyzer displays the  fundamental and harmonic frequencies o f  t he  pump noise 

i n  add i t i on  t o  the  pulse signal. Since the  pump speed (1.e. fundamental 
frequency) i s  known, i t  was possible t o  d i f f e r e n t i a t e  the  rpm pulse s ignal  

from the pump noise. 
Any h igh  q u a l i t y  spectrum analyzer can be used. Both a N ico le t  

S c i e n t i f i c  Corporation Model 466A and a Hewlett -Packard Model 3582A Spectrum 
Analyzer were sa t is fac to ry .  

I V, LABORATORY TESTS 
The pulse tachometer was tes ted  i n  the  7-3/4-in. t u r b o d r i l l s  i n  t h e  ME1 

t u r b o d r i l l  dynamometer t e s t  stand. A magnetic pickup tachometer was used t o  

d i r e c t l y  measure t h e  r o t a r y  speed t o  the  nearest rpm. Two desurgers were used 

du r ing  the  1 aboratory t e s t s  . The 1 aboratory t e s t s  demonstrated t h a t  t he  pul  se 

tachometer was accurate and r e l i a b l e  a t  a l l  speeds. I n  a l l  t es ts ,  t h e  elec- 

t r i c a l  and pu ls ing  tachometers agreed w i t h i n  a few rpm. 

V. FIELD TESTS 
The f l u i d  pressure pulse tachometer was tes ted  and used for t he  EE-2 

d i r e c t i o n a l  d r i l l i n g .  Water was used as the  d r i l l i n g  f l u i d  on t h i s  well .  The 
pulse tachometer performed very we l l  dur ing these t e s t s  t o  depths i n  excess of 
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10 000 ft. AttenuatIon o f  t he  s ignal  t ransmi t ted  up the  d r i l l  p ipe  was n o t  a 
pro b l  em. 

Although the  pump noise produced several spikes on the  spectrum analyzer 

record, it was easy t o  d i f f e r e n t i a t e  the  tachometer s igna l  from the  pump noise 

f o r  f ou r  reasons: (1) the  fundamental, pump speed was known; (2 )  t he  pump 
noise produced several harmonics t h a t  he1 ped’ i d e n t i f y  them; (3) the  rpm pulse 

s ignal  s lowly  moved back and f o r t h  on the  spectrum analyzer as the  tu rb ine  

speed varied, whereas the  pump s ignal  remained constant; and (4) the  pump 

s ignal  produces steep spikes, whereas the  pulse s ignal  produced a broader peak. 
The d r i l l e r s  and r i g  crew qu ick l y  learned t o  i d e n t i f y  t he  pulse s ignal  and t o  

use the tachometer as a t o o l  t o  opt imize the  f i e l d  operat ion o f  the  turbo- 
d r i l l  s. 

, 
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