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1. Introduction

This paper presents analytical perturbation theory results for 8, 2, the beta functions
in the presence of linear coupling. It is a continuation of a previous paper! that gave
analytical perturbation theory results for the tune v, v; in the presence of linear coupling.
The results for 31, 52 hold when v,, v, are close to the resonance line v; — vy, = p. The
shift in beta functions is then linear in the skew quadrupole field given by a; (s). When

Vs, vy are far enough from the v — v, = p resonance, then the shift in the beta function

becomes quadratic in the skew quadrupole field.

The analyvtical results show that the important harmonics in the skew quadrupole fields
for producing large beta functions shifts are the harmonics near v; + vy. The harmonics
near v; + vy are also the important harmonics for the higher order tune (see Ref. 1). It
is also shown that the beta function shift and the higher order tune shift have the same

driving terms, thus, one may expect that an a; correction system that corrects the higher

order tune shift will also correct the beta function shift.
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2. Lowest Order Solution for 3; and 5>

The presence of the skew quadrupole fields will couple the r and y motions. New beta
functions. 31. 5> can be defined® which are the beta functions of the normal modes and
which are different from Sz, By, the beta functions of the unperturbed accelerator.

It will be shown below that 31 and $3 can be found from the solutions of the equations

of motions, Eq. (2.1) in reference 1. These solutions were written there as
- e %
e =6z +6,, ny:Cy+€y

C, = Asexp (v 40;) + Z Arexp(tvg0:),
T#s

Gy, = Bsexp(ivy0;) + Z B, exp (ivy,r6y) ,
r#s

(2.1)

Vs — Vys =D

( is the complex conjugate of Cr.

The lowest order solution for the A,, B, are given by Eq. (2.7) Ref. 1, which can be
put into Eq. (2.1) to find ¢;,%¢,. The first two equations in Eq. (2.7), Ref. 1 show that the

two large coefficients Aq, B, are related. For the v; mode, where v1 — v; when a1 — 0,

and using v; s >~ v- one finds

- (V] - VI)
B,= ———— A, . 2.2a
° AV(VI,STVy,S) ° ( )
For the v, mode, using vy s > vy, one finds
- (Vf) - l/y)
A, = — B, . 2.2
AV (Ve vys) s (2:26)

Av(vz s, vy,s) is defined by Eq. (2.8), Ref. 1.

The last two equations of Eq. (2.7), Ref. 1. can be solved for A, and B;, which can
then be put into Eq. (2.1) to find the Floquet solutions. Note that A, # 0 only for
Vry = Vys+n,n#p, and By # 0only for vy = vz s+n, n # —p. Assuming that vz,vy
is close to the resonance line v, s = v, s + p, so that vy, > v, and vy ; > vy, then

"21/1: bI (Vr,rs Vy,s)

A=
3 s
(n+rys) ~ Vz

(2.3)

 =2up by (vrr,vys)
(n+ v +vy)(n—p)

A, B,
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where 11 3 o vpr = vy + 1 and by is defined by Eq. (2.6). Ref. 1.

Similarly, one finds for B,
=20y by (v ratrs)
Sy Oy Py Pros
B, = - As

2 2
(n+wves) — vy

(2.4)
=2y by (vy sz s)

B, =
(n+v: +vy)(n+p)

A
where n # —p, vy, = v s+ n

We can now find ¢, for the vy mode using Egs. (2.3) and (2.2a) for A, and putting
these result= into Eq. (2.1) for ¢,

CI = Age 1w 6¢ Z fn

n#—p
fo_ v 2u; by exp[—i(n + p)b,] (2.5)
" AI/(I/I s Vys) (mM—vr—vy)(n+p)
l .
by = o ds ay (B:0y) T exp [i ((n — vy) O + 1y6,)]

A similar result can be found for Cy for the v» mode

Cy =B {1+ 5 g,
n#p

vy — v 2vy ¢ exp|—i(n—p)0 (2.6)
y y y
Av* (Vz:,s-,Vy,s) (n_Vr _Vy)(n_p)

gn =

1 1 .
Cn = m /dS ay (B:8y)? exp [t ((n — vz) 0y + v206;))

From the above Floquet solutions for ¢,,(,, one can find #; and B, the beta functions
of the normal modes. This will be done below. It may be noted that b, and ¢, are just
the integrals involved in computing the stopbands of v; + 1, = n sum resonance, but at
certain choices of the v~values on the resonance line. The b, corresponds to the tune choice

n — vy, vy, and ¢, to v;,n — v;. The resonance denominator 1/ (n — v, — vy) shows that

the important n is near v; + v,

The z motion given by z = 1/ (Q + ¢ ) 1s the z-motion when only the v; mode is

exc.ted. Similarly, y = 1/ (Q + ¢ ) is the y motion when only the v» mode is excited.
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Results for .3; and 39

~ b .
It was shown by Edwards and Teng- that one can transform from the z, r',y,y' coordi-
nates to a new set of coordinates v, v'u, u' which are uncoupled. The solutions of equations
. . 9
of motions for u and r can be written as®

v =+/Preexp (1Y) + c.c.
u = /P2ez exp (1¢2) + c.c.

31 and f, are periodic functions and are the beta functions in the presence of linear

coupling. If no solenoids are present, the ¥; and i are related to 1,3 by?

1/81 = di1/ds

(2.8)
1/82 = dy /ds
€; and €> are two constants that turn out to be the emittances of each normal mode.
The r.z',y,y' and the v, v',u,u’ coordinates are related by?
r=Rv (2.9)

where R 1s a 4 x 4 matrix given by

R= ( Icosy Dsuup) (2.10)

—Dsiny Icosy

D and D are 2 x 2 matrices, and D = D™, I is the 2 x 2 identity matrix. D and ¢ can

be computed from the one turn transfer matrix.?

Let v,v' be the coordinates that have the tune v, where v; — v; when a; — 0. Then

if only this mode is present then z is given by

I =Cos¢ v (2.11)
From Eq. (2.11) one finds

cos o/ Brey exp (1) = /3.6, (2.12)
where ¢, is given by Eq. (2.5). It follows that
3y = di/ds

(2.13
Cr = |Czexp (i) . )



Loweal Order Solulion for {31 and 32

and v can be found from Eq. (2.5).

Cp = Asexpliv6;) (1 + ) f")

n#—p
G, = A, (1+§ 3 (fn+f,:))exp z‘(ule b5 Y U f,,)
T n#—p n#—p (2.14)
v=nbet o Y (fam f2)
T ng-p
L& Z( n—p)(fat f) -

B db V:rﬁ:r VI':BI

Using 1/31 — 1/8; =~ — (51 — BI)/,B;” one finds

,6,15—5::_1/1;”:_2 (— 7; )(fn’*'f‘) (215)
n#F-p
l_/BI Vi — Vg bn . V
i Z {AV(V],Vl_p)n—VI—Vy exp[—z(n-}—p)GI]-{—c.c.} . (2.16)

all n

In a similar way, one also finds

P2 -8y _ Z { V2T by Cn exp[—i(n — p)6,] + C-C-} - (2.17)

6y AV‘(VQ—}-p,Vg)TL—l/I—l/y
all n
Eq. (2.16) can be written in an integral form by using the result
el =60 ew(Fim) uo-r) 2.18)
n—v SIn 7YV -
a]l n

where the top sign is used for 6 > #', and the bottom sign for 8 < ¢'. Replacing b, using

Eq. (2.5) one finds

- 8; o (vy —vz) 1
3r |Av(vy,v —p)|2psin7 (vy + vy)
x/ds' a1 (s') (B (s) B, (s'))? (2.19)

cos [:t‘/T(l/I + vy) — (v + vy) (6 — 6,)
+l/y (9; - GII) — pez - 51] .
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&1 = phase [Ar (1.1 — p)]. and in the £ sign, the + sign is used for 6 > ¢', and the —

sign for 6 < ¢'.

In a similar way one can find (3, - 3y) /3, as

3-8, (- 1

By - _IAV(V‘J +p, )| 2psin7 (v + vy)

i

x [ ds'ar () (52 () By ()

cos [:i:W(Vz + vy) = (v + 1) (91/ - 0;/)

(X[

(2.19b)

+vz (0, — 6,) + pby + 6] .
8> = phase [Av (v2 + p,v2)].

Eq. (2.16) shows that the important harmonics in a; are the harmonics near v; + vy.
However, Eq. (2.16) shows that the dominant harmonic excited in f; due to the a; field

is the 2v; harmonic. and in 3, the 2y, harmonic.

One may note the factor (v; — v;) /Av. Close to the resonance line v; = vy + p where
|Av| >> |vz — vy — 1p|, then this factor approaches 1. This may be seen from Eq. (2.10)
in Ref. 1 for vy and vp. According to Eq. (2.10), Ref. 1, (v — vz) /|Av| — 1 for large Av,
and (v) — vg) /|Av| ~ 2|Av|/|vz — vy| for small enough Av. Thus (8 — B;) /8; is linear
in a; for large enough Av, v,,v, close enough to the resonance line, and quadratic in a;
for small enough Av, far enough from the resonance line. For small enough Av where

(b1 — Bz) [ Bz becomes quadratic in a;, then Eq. (2.16) is no longer correct because of the

neglect of a? terms in deriving it.

A result for the rms value of (8 — ;) /B: due to a random distribution of a; errors
may be obtained from the integral form Eq. (2.19), for the case when |Av| >> |v; —vy —pl.

In this case |v; — v |/|Av| ~ 1 and

bi—B:\° B — B\’
( IBI )rms_z< '61' )

k krms
1/2
(ﬁl - ,6::) _ N1/2 ((ﬁzﬁy) al,rms)k
Bz k.rms k 28psinm (v + 1y)

where the index k indicates the different types of magnets. N; is the number of magnets

(2.20)

of a certain type. Eq. (2.19) also gives the result for ((82 — 8y) /By) One also sees

rms’
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=-~]

that

-] - ‘3 //jr rma [47—/ 2.8s1n (v + l’y))] AVrms (

N
3
}—
S

whiere Ay, 1s the rms value of Av.

3. Correction of (31, 3o

The above analytical results for the beta function shifts show that when the higher
order tune shifts v; — v; and vy — v, are corrected, then the beta function shifts are also
corrected. This can be seen by comparing Eq. (2.5) for the beta function shift with Eq.
(3.2 and 3.3) in Ref. 1, for the higher order tune shift. Both these effects have the same

driving terms b, and ¢y, and for both effects the important b,,c, are those for which n is

close to vz + vy,

This result has been observed in numerical computations® for the RHIC accelerator,
where an a; correction system has been provided to correct the higher order tune shift.4®
In order to correct the shift in the beta functions it is important that in correcting the
higher order tune shift, that one correct not only the tune splitting |v; — v2| but also the
shift in the average tune (v1 + 13) /2. The harmonic closest to v; + vy do not have much
effect on |v; — vo| but are most important for the average tune (v; + 12) /2, and also for
the beta function shift. One might be akle to correct the average tune (v + v2) /2 using

the normal tune adjusting quadrupoles instead of the a; correctors, but this would not

help to correct the beta function shift.

References

1. G. Parzen, Theory of the Tune Shift due to Linear Coupling, BNL Report, AD/RHIC-
100, (1991).

o

D. Edwards and L. Teng, IEEE 1973 PAC. p. 885 (1973).
G. Parzen, IEEE 1991 PAC, to be published and BNL Report AD/RHIC-92, (1991).

G. Parzen, IEEE 1991 PAC, to be published and BNL Report AD/RHIC-93, (1991).
G. Parzen, BNL Report, AD/RHIC/AP-93 (1991).

o

n



