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1. Introduction

This paper presents analytical perturbation theory results for fi\, 02, the beta functions

in the presence of linear coupling. It is a continuation of a previous paper1 that gave

analytical perturbation theory results for the tune v\, z/2 in the presence of linear coupling.

The results for /?i,/3o hold when vx,vy are close to the resonance line vx — vy = p. The

shift in beta functions is then linear in the skew quadrupole field given by a\ (s). When

vT. vy are far enough from the vx — vy = p resonance, then the shift in the beta function

becomes quadratic in the skew quadrupole field.

The analytical results show that the important harmonics in the skew quadrupole fields

for producing large beta functions shifts are the harmonics near vx + vy. The harmonics

near vx + vy are also the important harmonics for the higher order tune (see Ref. 1). It

is also shown that the beta function shift and the higher order tune shift have the same

driving terms, thus, one may expect that an a\ correction system that corrects the higher

order tune shift will also correct the beta function shift.
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2. Lowest Order Solution for ,3\ and ih

The presence of the skew quadrupole fields will couple the x and y motions. New beta

functions. ^1.^2 can be defined2 which are the beta functions of the normal modes and

which are different from l3x,0y, the beta functions of the unperturbed accelerator.

It will be shown below that j5\ and /% can be found from the solutions of the equations

of motiops, Eq. (2.1) in reference 1. These solutions were written there as

r\z = Cx + Cr, T)y = (y + (,y

£x = As exp (il/XfS6s) + Y^ A' e XP (iux,r0x) ,
r*s (2.1)

Cy = B3 exp (iVy.sQj ) Y^ 6)

Vx,s - Vy,s = P

C* is the complex conjugate of Cx.

The lowest order solution for the AT,B, are given by Eq. (2.7) Ref. 1, which can be

put into Eq. (2.1) to find Cx, Qy. The first two equations in Eq. (2.7), Ref. 1 show that the

two large coefficients AS,BS are related. For the v\ mode, where v\ —> vx when a\ —* 0,

and using vx^3 ~ vT one finds

B. = :{p-V'\A, . (2.2a)
A ( )

For the vi mode, using vys ~ vy, one finds

A, = -^-"'\B. . (2.26)

Ai/fcx,,,^,,) is defined by Eq. (2.8), Ref. 1.

The last two equations of Eq. (2.7), Ref. 1. can be solved for AT and B r , which can

then be put into Eq. (2.1) to find the Floquet solutions. Note that Ar ^ 0 only for

ux y = uy,s + n, n ^ p, and BT ^ 0 only for vy,T — vx,s + n, n ^ —p. Assuming that i/x, vy

is close to the resonance line vxs = vy s + p, so that vxs ~ ux, and vys ~ vy, then

. -2vx bx{isXtT,vyiS)
Ar = — -2 —o3

n + v,, , I" — vz.v' ' x (2.3)

( n + i/z + vy)(n - p)
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when1 n / y/. i'IS — 'V*" + " a i l d bx is defined by Eq. (2.6), Ref. 1.

Similarly, one finds for Br

~2l/y

(2.4)

(n + vx + uy){n + p)'

where n ^ —p, i/j,ir = fIiS + n

We can now find Cr for the v\ mode using Eqs. (2.3) and (2.2a) for AT and putting

these result* into Eq. (2.1) for Cr,

^ _
/ ( I / I I S , I/J,IS) (n - vx — vy)(n + p)

= - — / ds CL\ (/3 r^j,)5exp[z((n - vy)8x + uy6y)]

A similar result can be found for Cy for the vn mode

Cy = Bse^-ey ll + Y,9n
{ n*P

_ i/2 - vy 2vy cn exp [-i {n - p) dy) (2.6)

At/* (vx,s^y,s) (n- vx - vy)(n-p)

1 f l

I ds a\ (f3xf3y)- exp [z ( (n — vx) 8y + z/j;0r)]

From the above Floquet solutions for Cj,Cy, one can find 3̂i and fa the beta functions

of the normal modes. This will be done below. It may be noted that bn and cn are just

the integrals involved in computing the stopbands of vx + vy = n sum resonance, but at

certain choices of the i/-values on the resonance line. The bn corresponds to the tune choice

n — vy, vy. and cn to vx,n — vx. The resonance denominator l / ( n — vx — vy) shows that

the important n is near vx + vy.

The x motion given by x = (}\'2 Ux + C* J is the i-motion when only the vx mode is

excited. Similarly, y - $\'~ \Cy + C*J is the y motion when only the v2 mode is excited.
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Results for 3\ and do

It was shown by Edwards and Teng" that one can transforin from the x,x',y,y' coordi-

nates to a new set of coordinates v, v'u, u1 whicli are uncoupled. The solutions of equations

of motions for u and v can be written as"

v = yj(i\e.\ exp (ir/'i) + c.c.
(2.7)

u = y #2^2 exp (ii/'o) + c.c.

S\ and /?2 are periodic functions and are the beta functions in the presence of linear

coupling. If no solenoids are present, the ipi and 02 a r e related to /?i,/?2 by2

1//?! =dfa/ds
(2.8)

l/#2 = dxl^/ds

t\ and eo are two constants that turn out to be the emittances of each normal mode.

The x,z ' ,y,y' and the v,v',u,u! coordinates are related by"

x = Rv (2.9)

where R is a 4 x 4 matrix given by

(lcosy DsinyA

D and Z) are 2 x 2 matrices, and D = D~l. I is the 2 x 2 identity matrix. D and ip can

be computed from the one turn transfer matrix."

Let v, v1 be the coordinates that have the tune u\ where u\ —> fr when aj —+ 0. Then

if only this mode is present then x is given by

x = cos 9 v (2.11)

From Eq. (2.11) one finds

cos^V^ie] exp(iri'i) = \/^^x (2.12)

where Cr is given by Eq. (2.5). It follows that

/3-, = dtp/ds
(2.13)

C | C | ( i V 0
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and t,' can be found from Eq. (2.5).

1 +

/„ + /;) ]exp
(2.14)

IT ~ T ~ IT + o IT
3\ ds ux[3x 2vT/3z ^

Using 1/fr - 1//3Z ~ - (ft - /?z) /02 one finds

(-n - p)

0x

01 ~ 0x

2«/r
(fn + /H*) •

A r ^
Al/( 1/1,1/] - p J H - I / x -I/y

(2.15)

:.c. \ . (2.16)

'^—^—^-—^exp[-i{n-p)ey]+c.c.\ . (2.

all R

In a similar way, one also finds

02 - 0y _

all n

Eq. (2.16) can be written in an integral form by using the result

TT- exp[in(6-6')]

alln

17)

n — v sin nu
(2.18)

where the top sign is used for 6 > 8', and the bottom sign for 6 < &. Replacing bn using

Eq. (2.5) one finds

01 - 01 ~ Vx 1
,v\ - p) I 2/3sin-(i/r f vy)

(2.19a)

COS
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6\ = phase [Ai ' ( i ' i , i ' i - ]>)], and in the ± sign, the -f sign is used for 0 > 6'', and the

sign for 8 < 0'.

In a similar way one can find ( .h - ,Jy) / / ^ j , as

3-1 - By __ {Vo - fy) 1

3y \Av(v2+p,V2)\2psimr{vx+ vy)

s'a^s')^)^*'))* ( 2 i g 6 )

COS [±7T (l/ r + l/j,) - (l/x + I/p) (0y - O'y)

+vx (9'x - e'y) + Pey + 6o] .

So — phase [Ai/ (1/2 + p, ̂ 2)]-

Eq. (2.16) shows that the important harmonics in a\ are the harmonics near ux + uy.

However, Eq. (2.16) shows that the dominant harmonic excited in 3\ due to the a\ field

is the 2ux harmonic, and in Bo the 2uy harmonic.

One may note the factor (u\ — vx) /Av. Close to the resonance line vx = vy + p where

|Ai/| > > \vx — vy — vp\, then this factor approaches 1. This may be seen from Eq. (2.10)

m Ref. 1 for v\ and i/2. According to Eq. (2.10), Ref. 1, (1/1 — vx) / |Ai/| —» 1 for large Az/,

and (v\ — vx) /|Az/| ~ 2|Ai/|/|i/r — vy\ for small enough AIA Thus (B\ — 8X) /Bx is linear

in a.\ for large enough Av, vx,vy close enough to the resonance line, and quadratic in a\

for small enough Av, far enough from the resonance line. For small enough Av where

{3\ — 3X) IBz becomes quadratic in a\, then Eq. (2.16) is no longer correct because of the

neglect of a\ terms in deriving it.

A result for the rms value of (3\ — 8X) /3X due to a random distribution of a\ errors

may be obtained from the integral form Eq. (2.19), for the case when \Av\ » \vx — vy—p\.

In this case \v\ — vT\l\Av\ ~ 1 and

k,TTTlS

(2.20)

where the index k indicates the different types of magnets. JVfc is the number of magnets

of a certain type. Eq. (2.19) also gives the result for {{Bo - By) /'8y)rms. One also sees
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that

((,*-, -dx)/0x)rws = [47r/(2.Ssm7r(i/r + ^ ) ) ]Ai / r m s (2.21)

where A;/r,,,., is the rms value of Au.

3. Correction of ^i,/39

The above analytical results for the beta function shifts show that when the higher

order tune shifts u\ — ux and vi — uy are corrected, then the beta function shifts are also

corrected. This can be seen by comparing Eq. (2.5) for the beta function shift with Eq.

(3.2 and 3.3) in Ref. 1, for the higher order tune shift. Both these effects have the same

driving terms bn and cn, and for both effects the important bn,Cn are those for which n is

close to ux + vy.

This result has been observed in numerical computations3 for the RHIC accelerator,

where an a\ correction system has been provided to correct the higher order tune shift.4'5

In order to correct the shift in the beta functions it is important that in correcting the

higher order tune shift, that one correct not only the tune splitting \v\ — 1̂ 21 but also the

shift in the average tune (ẑ i + vo) /2. The harmonic closest to vx + vy do not have much

effect on \v\ — wi\ but are most important for the average tune {y\ -f wi) /2 , and also for

the beta function shift. One might be able to correct the average tune {y\ + 1/2) /2 using

the normal tune adjusting quadrupoles instead of the a\ correctors, but this would not

help to correct the beta function shift.
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