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Estimation of Fracture Toughness of Cast Stainless Steels
| during Thermal Aging in LWR Systems

O. K. Chopra

AbStract

A procedure and correlations are presented for predicting the change in fracture
toughness of cast stainless steel components due to thermal aging during service in light
water reactors (LWRs) at 280-330°C (535-625°F). The fracture toughness J-R curve and
Charpy-impact energy of aged cast stainless steels are estimated from known material in-
formation. Fracture toughness of a specific cast stainless steel is estimated from the extent
and kinetics of thermal embrittlement. The extent of thermal embrittlement is character-
ized by the room-temperature “normalized” Charpy-impact energy. A correlation for the
extent of embrittlement at “saturation,” i.e., the minimum impact energy that would be
achieved for the material after long-term aging, is given in terms of a material parameter,
@, which is determined from the chemical composition. The fracture toughness J-R curve
for the material is then obtained from correlations between room-temperature Charpy-im-
pact energy and fracture toughness parameters. Fracture toughness as a function of time
and temperature of reactor service is estimated from the kinetics of thermal embrittle-
ment, which is determined from chemical composition. A common “lower-bound” J-R
curve for cast stainless steels with unknown chemical composition is also defined for a
given material specification, ferrite content, and temperature. Examples for estimating
impact strength and fracture toughness of cast stainless steel components during reactor
service are described. ‘
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P

Q
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SI units

Shape factor of the curve for the change in room-temperature Charpy-impact en-
ergy with time and temperature of aging.

Half the maxdimum change in room-temperature Charpy-impact energy.

Ferrite content of the material (%).

Ferrite content calculated from the chemical composition of the material (%).
Measured ferrite content of the material (%).

Crack extension (mm).

Material parameter.

Mean ferrite spacing of the material (um).

Represents the aging behavior at 400°C; it is the log of the time to achieve B re-
duction in impact energy at 400°C.

Chromium equivalent for the material (wt.%).

Room-temperature “normalized” Charpy-impact energy, i.e., Charpy-impact en-
ergy per unit fracture area, at any given service and aging time (J/cm?2). The frac-
ture area for a standard Charpy V-notch specimen (ASTM Specification E 23) is
0.8 cm2. Divide the value of impact energy in J by 0.8 to obtain “normalized” im-
pact energy.

Initial room-temperature “normalized” Charpy-impact energy of the material, i.e.,
unaged material (J/cm2),

Room-temperature “normalized” Charpy-impact energy of the material at satura-
tion, i.e., the minimum impact energy that would be achieved for the material after
long-term service (J/cm2).

Deformation J per ASTM Specification E 813-85 or E 1152-87 (kJ/m2)

Nickel equivalent for the material (wt.%).

Aging parameter; it is the log of the time of aging at 400°C.

Activation energy for the process of thermal embrittlement (kJ/mole).

Service or aging time (h).

Service or aging temperature (°C).

of measurements have been used in this report. Conversion factors for measure-

ments in British units are as follows:r

To convert from to multiply by
in, mm 25.4

J* ft-lb 0.7376
kJ/m2 in.~b/in.2 5.71015
kJ/mole kcal/mole ) 0.239

® When impact energy is expressed in J/cm?2, first multiply by 0.8 to obtain impact energy of a standard Charpy V-
notch specimen in J.




EXecutive Summary

Cast stainless steels used 1n valve bodies pump casings piping and other components
in coolant systems of light water reactors (LWRs) suffer a loss in fracture toughness due to
_thermal aging after many years of service at temperatures in the range of 280-320°C (=535-
) 610°F) A program is being conducted to investigate and determine the cause and. signifi-
" cance of thermal ‘embrittlement of cast stainless steel primary system components under
LWR operating conditions. The scope of the investigation includes three goals: (1) develop
a methodology and correlations for predicting the toughness loss suffered by cast stainless
steel components during normal and extended life of LWRs, (2) validate the simulation of
in-reactor degradation by accelerated aging, and (3) establish the effects of key composi-
tional and metallurgical variables on the kinetics and extent of thermal embrittlement.

Work at Argonne National Laboratory and elsewhere has shown that thermal embrittle-
ment of cast stainless steel components can occur during the reactor lifetime of 40 y.
Different heats exhibit different degrees of embrittlement. Thermal embrittlement of cast
stainless steels results in a brittle fracture associated with either cleavage of the ferrite or
separation of the ferrite/austenite phase boundary. The degree of thermal embrittlement is
controlled by the amount of brittle fracture. In some cast steels, a fraction of the material
may fail in a brittle fashion but the surrounding austenite provides ductility and toughness.
Such steels have adequate impact strength even after long-term aging. A predominantly
brittle failure occurs when either the ferrite phase is continuous, e.g., in cast material with
a large ferrite content, or the ferrite/austenite phase boundary provides an easy path for
crack propagation, e.g., in high-carbon grades of cast steels with large phase-boundary
carbides. Consequently, the amount, size, and distribution of the ferrite phase in the duplex
structure and the presence of phase-boundary carbides are important parameters in con-
trolling the degree or extent of thermal embrittlement.

Thermal aging of cast stainless steels at temperatures <450°C (<840°F) leads to precip-
itation of additional phases in the ferrite matrix, e.g., Cr-rich o' phase and the Ni- and Si-
rich G phase, and precipitation and/or growth of existing carbides at the ferrite/austenite
phase boundaries. The additional phases increase strain hardening and the local tensile
stress. Consequently, the critical stress level for brittle fracture is achieved at higher tem-
peratures. The effects of material variables on the thermal embrittlement of cast stainless
steels have been evaluated. The kinetics and extent of thermal embrittlement are con-
trolled by several mechanisms that depend on material parameters and aging temperature.

This report presents a procedure and correlations for predicting fracture toughness of
cast stainless steel components due to thermal aging during service in LWRs at 280-330°C
(535-625°F). The fracture toughness J-R curve and Charpy-impact energy are estimated
from material information that can be determined from the certified material test record.
Fracture toughness of a specific cast stainless steel is estimated from the extent and kinet-
ics of thermal embrittlement. The extent of embrittlement is characterized by the room-
temperature “normalized” Charpy-impact energy. A correlation for the extent of embrit-
tlement at “saturation,” i.e., the minimum impact energy that can be achieved for the mnia-
terial after long-term aging, is given in terms of the chemical composition. Extent of
thermal embrittlement as a function of time and temperature of reactor service is then es-
timated from the extent of embrittlement at saturation and from the correlations describing




the kinetics of embrittlement, which is also given in terms of chemical composition. The
fracture toughness J-R curve for the material is then obtained from the correlation between
fracture toughness parameters and room-temperature Charpy—impact energy used to char-
‘acterize the extent of thermal embrittlement. A common lower-bound J-R curve for cast
.fstainless steels with unknown chemical composition is also defined for a given material
“specification, ferrite content, and temperature Examples for estimating impact strength
- and fracture toughness of cast stainless steel components during reactor service are de-
scribed




| 1 Introductlon

Cast duplex stainless steels used in light water. reactor (LWR) systems for prlmary pres-
sure—boundary components such as valve bodies, pump casings, and primary coolant piping
are susceptible to thermal embrittlement at reactor operating temperatures, i.e., 280-
 8320°C (=535-610°F). Aging of cast stainless steels at these temperatures causes an increase

in hardness ‘and tensile strength and a decrease in ductility, impact strength, and fracture
- toughness -of the material.” Most studies on thermal embrittlement of cast stainless steels
involve simulation of end-of-life reactor conditions by accelerated ‘aging at higher tempera-
tures, viz., 400°C (=750°F), because the time period for operation of power plant (=40 y) is
far longer than can generally be considered for laboratory studies. Thus, estimates of the
loss of fracture toughness suffered by cast stainless steel components are based on:an
: -Arrhenius extrapolation of the htgh—temperature data to reaetor operating condltions

o Work at Argonne Natlonal Laboratory (ANL)1’4 and elsewhere5-13 has shown that ther-
mal embrittlement of cast :stainless steel components (i.e., ASTM Specification A-351
grades® CF-3, CF-3A, CF-8, CF-8A, and CF-8M) can occur during the reactor lifetime of

.. 40y. Different grades and heats exhibit different degrees of thermal embrittlement. In

general, the:low-carbon CF-3 steels are the most resistant to thermal -embrittlement, and
the Mo-bearing, high-carbon CF-8M steels are the least resistant.  The extent of thermal
,,embrittlement generally increases With an mcrease in- ferrite eontent

P Embrlttlement of cast stainless steels results in a brlttle fracture associated with either
_-cleavage. of the ferrite or separation of the ferrite/austenite phase boundary. The degree of
thermal embrittlement is controlled by the amount: of brittle fracture. Cast stainless steels
- with poor impact strength exhibit >80% brittle fracture. : In some cast steels, a fraction of
the material may fail in a brittle fashion but the surrounding austenite provides ductility and
toughness. Such stecls have adequate impact strength even after long-term aging. A pre-
~dominantly brittle failure can occur when either the ferrite phase is continuous, e.g., in cast
- material with a large ferrite: content, or the ferrite/austenite phase boundary provides an
-:.easy path for crack propagation, e.g., in high-carbon grades of cast steels with large phase-
. boundary: carbides. Consequently, the amount, size, and distribution of the ferrite phase in
..+ the duplex structure and the presence of phase-boundary carbides are lmportant parame-
, iters in controlllng the degree or extent of thermal embrlttlement SR

Thennal aging of cast stalnless steels at temperatures <450°C (<840°F) leads to preclp-
itation of additional phases in the ferrite matrix, e.g., formation of a Cr-rich o' phase by

.. .spinodal decomposition and precipitation.of an Ni- and Si-rich G phase, M23Cg carbide, and

. .y2 (austenite); and additional .precipitation and/or growth of existing carbides at the fer-

“rite/austenite phase boundaries.14-17.. The additional phases provide the strengthening
.. mechanisms that increase strain hardening and the local tensile stress. Consequently the
- -critical stress level for brittle fracture ls aehieved at higher temperatures :

® In this report grades CF-3A and CF-8A are considered equivalent to CF-3 and CF-8, respectively. The A
designation represents high tensile strength. The chemical compositions of CF-3A and CF-8A are further
restricted within the composition limits of CF-3 and CF-8, respectively, to obtain a ferrite/austenite ratio that
result in higher ultimate and yield strengths.




The effects of material variables on the thermal embrittlement of cast stainless steels
have been evaluated.3:4 The kinetics and extent of thermal embrittlement are controlled by
several mechanisms that depend on material parameters and aging temperature. The

. chemical composition of the steel and the ferrite morphology are important parameters in
“controlling the extent and kinetics of thermal embrittlement. Small changes in the con-
~stituent elements of the ‘cast material can cause the kinetics of thermal embrittlement to
~vary significantly. The rate of thermal embrittlement for a specific cast stainless steel is
- controlled by the kinetics of ferrite strengthening, i.e., size and spacing of Cr-rich o' phase

- .produced from spinodal decomposition. Activation energies for thermal embrittlement can
- range from =65 to 230 kJ/mole (=15-to 55 kcal/mole)

Materlals aged at 450°C (=840°F) show slgniﬂcant precipitation of phase—bOundary
carbides (also nitrides in high-nitrogen steels) and a large decrease in. ferrite content of
the material.3.4 At reactor temperatures, such processes either do not occur or their kinet-
ics are extremely slow. Consequently, data obtained at 450°C aging do not reflect the
- mechanisms active under reactor operating conditions, and extrapolation of the 450°C data
to predict the extent of thermal embrittlement at reactor temperatures is not valid. -

. This report presents a procedure and correlations for predicting fracture toughness
J-R curves of aged cast stainless steels from known material information. The present
- analysis has focused on developing correlations for the fracture properties in terms of ma-
terial information that can be determined from the certified material test record (CMTR)
and on ensuring that the correlations are adequately conservative for both static-cast and
centrifugally cast components. Fracture toughness of a specific cast stainless steel is esti-
mated from the extent and kinetics of thermal embrittlement. The extent of thermal em-
brittlement is characterized by the room-temperature “normalized” Charpy-impact energy
(Charpy-impact energy per unit fracture area).” A correlation for the extent of thermal em-
- brittlement at “saturation,” i.e., the minimum impact energy that would be achieved for the
‘material after long-term aging, is given in terms of the chemical composition. Extent of
thermal embrittlement as a function of time and temperature of reactor service is then es-
timated from the extent of embrittlement at saturation and from the correlations describ-
ing the kinetics of embrittlement, which is also given in terms of chemical composition.
The fracture toughness J-R curve for the material is then obtained from the correlation be-
tween fracture toughness parameters and room-temperature Charpy-impact energy used to
characterize the extent of thermal embrittlement. A common lower-bound J-R curve for
cast materials with unknown chemical composition is also deﬁned for a given material
specification, ferrite content, and temperature ' :

Since the toughness of static—cast"materlals is generally lower than for centrifugally
cast materials, the correlations tend to be fairly conservative for centrifugally cast materials.
However, it was felt that at the present time the data base is not extensive enough to'war-
rant the development of separate correlations for the two types of castings.  Tests that
should provide sufficient data to develop separate less conservative correlations are under-
way. In this report the mechanical properties are expressed in SI units (see the section on
Nomenclature for units of measurements and conversion factors for British units).




2 Lower-Bound Fracture Toughness‘ '

For cast stainless steels of unknown chemical composition, a lower-bound fracture
toughness is defined for a given material specification and temperature. Charpy-impact
data indicate that for cast stainless steels within the ASTM Specification A 351, the satura-
tion room-temperature impact energy can be as low as 25 J/cm?2 (=15 ft-1b) for CF-3 and
CF-8 steels and 20 J/cm2 (=12 ft-1b) for CF-8M steel. A lower-bound fracture toughness
J-R curve at room temperature for CF-3 and CF-8 steels is given by '

Ja = 261[Aa]0-39 o o (2.1)
and for CF-8M steel by .
J4 = 119[Aa]0-37, ' ' (2.2)

At 290-320°C (=555-610°F) a lower-bound fracture toughness J-R curve for CF-3 and CF-8
steels is given by :

Jd = 245[Aa]0-34 e ‘ (2.3)
and for CF-8M steel by ; | :
Ja=152[Aa)027, (2.4)

The lower-bound fracture toughness ‘J-R_curves corresponding to Egs. 2.1-2.4 in
British units are given by : ,

Ja = 5266[Aal0-39, o B (2.1a)

Jd 522401Aa1°-37. B R (2.2a)

Jd=4t68[Aal°-34. o S (2.3a)
and o 7

J4 = 2060(Aal0-27, L 24a)

where Jd and Aa are expressed in in —lb/tn 2 and in, respectively

The J-R curves predicted from Eqs 2.1-2.4 are shown in Fig 1 The cast stainless

steels’ used in the U.S. nuclear industry generally have <15% ferrite. The lower-bound J-R
curves represented by Egs. 2.1-2.4 are based on the “worst case” chemical composition
(>20% ferrite) and structurally “weak” cast stainless steels and are thus very conservative
for most steels. - Less conservative estimates of lower-bound J-R curves can be obtained if
‘the ferrite content of the steel is known. : The ferrite content of a cast stainless steel com-
ponent can be measured in the field with a ferrite scope and a remote probe. When the
ferrite content is <15%, a lower-bound fracture toughness J-R curve at room temperature
for CF-3 and CF-8 steels is given by - B S o

Jd4 = 311[Aa)040 ' (2.5)
and for CF-8M steel by
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. Figure: 1 Lower—bound fracture toughness J-R curve at 290—320°C and room
temperature for aged cast stainless steels B :




Jd = 135[Aa]0-37, TR : (2.6)

At 290-320°C (~555-610°F) a lower-bound fracture toughness J—R curve for CF-3 and CF-8
steels with ferrite content <15% is given by '

Ja = 275[Aa]0-35 e e L | 2.7)
and for CF-8M steel by Y
Jd =166[4a]0-27, - . (2.8)

When the ferrite content is <10%, a lower-bound fracture toughness J-R curve at room
temperature for CF-3 and CF-8 steels is given by .

Ja = 394[Aa]° 43 v T S ) (2.9)
and for CF-8M steelby ‘ :
Jq = 186[Aa]0-38, cen P - ; . : (2.10)

At 290-320°C (=555-610°F) a lower—bound fracture toughness J-R curve for CF-3 and CF-8
steels with ferrite content <10% s given by -

Jd = 320]Aa]0-36 A o (2.11)
and for CF-8M steel by o »

Jd = 211[Aa]0-28, ) (2.12)

The lower-bound fracture toughness J-R curves correspondlng to- Eqs 2.5-2.12 in
British units are given by ‘

J3 = 6549[Aa]040, - . @5

Ja = 2551(Aa]0-37, Gt . 263
Jd = 4836[4al0-35, e (2.72)
Ja = 22711421027, L - @s8a)
Jd - 9041[Aa)® 43, e (2.9a)
Ja = 3625421038, T .~ (2.108)
Jd 5870[Aa]°35 e eaa
o st -
Jd=2957IAa]°28 T R e e (2.12a)

where Jgq and Aa are expressed in in. *lb/ in;2 and in., reSpectively

Lower bound J—R curves for cast stafnless steels with <15% and <10% ferrite are
shown in Figs. 2 and 3, respectively. The limited data available12 indicate that J values at
any other intermediate temperature can be linearly interpolated from the values at room
temperature and at 290-320°C.
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3 Saturation Fracture Toughness

The “saturation” fracture toughness of a specific cast stainless steel, i.e., the minimum
fracture toughness that would be achieved for the material after long-term service, can be
estimated from the degree of thermal embrittlement at saturation. The degree of thermal
embrittlement can be characterized in terms of room—temperature “normalized” Charpy-
impact energy. The variation of the impact energy at saturation for different materials can
be expressed in terms of a material parameter ¢ which is determined. from the chemical
composition S

The material parameter ¢ is estimated from the information airailable in the CMTR,
e.g.. chemical composition. The ferrite content is calculated in terms of the Hull's equiva-
lent factors : :

Cl‘eq—Cr+ 121(Mo)+048(Si)—499 | | @3
and E
Nieq = (NI) + 0.11(Mn) - O: 0086(Mn)? + 18.4(N) + 24.5(C) + 2.77. (3.2)

where chemical composition is in wt %. - The concentration of nltrogen is often not avail-
able in the CMTR; it is assumed to be 0.04 wt.% if not known. The ferrite content S is
given by the relation

8 = 100.3(Creq/Nieq)2 ~ 170. 72(Creq/Nieg) + 74.22. | (3.3)

The measured and calculated values of femte content for the various heats used in
studies at ANL,3.4 Framatome (FRA),!! Georg Fischer Co. (GF),7 Electricité de France
(EdF),? Central Electricity Generation Board (CEGB),10 and Electric Power Research
Institute (EPRI)!13 are shown in Fig. 4. The chemical composition, ferrite content, and
room-temperature Charpy impact energy of the various materials is givenin Table 1 and 2.
For most heats, the difference between the estimated and measured values 1is within 6%
ferrite. ” : :

Different correlations -are used for estimating the saturation impact errergy of the vari-
ous grades of cast stainless steel.. For CF-3 and CF-8 steels, the material parameter ® is
expressed as - ~ T

@ = 8(CresN(C+0.4N) - . L (3.4)
and the saturation value of room-temperature normalized" impact energy Cvsat is given by

longvSat =115+1 374exp(—0 10365@). (3.5)
For the Mo—bearing CF—8M steels, the material parameter (D is expressed as

o= ScCr(C+O 4N)(Ni+S1)2/100 P E T Ay (3.6)
and the saturation value of room—temperature normalized" impact energy CVsat is given by

logwcvsat = 1.15 + 1. 532exp(—-0 046790). - ot we (3.7)

In Egs. 3.4 and 3.6 nitrogen content can be assumed to be 0.04 wt.% if the value is not
known.
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- Table 1. Product Jorm, chemical composition, ferrite content and kinetics of thermal embrit-
tlement for various heats of cast stainless steel -

: - R Ferrite  Impact Constant Activation
Chemical Composition (wt.90). . “Content? (%) Energy %] Energy

Heat Grade Mn . Si - - Mo Cr - NI N C . Calc.: Meas. {J/cm?) {kJ /mole)

Keel Blocks? - = -
50 CF-3 060 1.10:-033 1789 9.14:.0079 0.034 - 30 44 231 =" -
~49 CF-3 060 0095032 19.41 1069 0065 0010 44" 7.2 183 - -

A¥I838 2Q22B 2L

48 CF-3 0.60 108 0.30-1055 1046 0072 0011.. 51 87 213 - - -
~47 CF-3 0.60 :.1.06 .059 19.81 10.63 0028 0018 84 163 - 229 - 235 187
52 CF-3 057 ..092 .0.35- 1949 - 040 .0.052 0.009 103 135 - 247 - -
51 CF-3 063 086 032 2013 906 0058 0010 143 180 217 300 221
58 CF-8 0.62 112 033 1953 1089 '0.040 0056 32 - 29 286 = - -
54 CF-8 055 103 035 1031 9.17 0084 0063 4.1 ~ 18 ' 187 - -
57 CF-8 062 108 034 1868 927 0047 0056 44 40 189 - -
CF-8 064 116 0.39 1953 923 0049 0065 63 87 191. - -
CF-8 0,57 105 034 1965 928 0030 0066 7.3 10.1. 206 - -
CF-8 060 108 0.32 2033 . 931 0045 0.062 88 135 227 3.12 229
CF-8 0.65 101 0.32 2065 886 0080 0054 100 131 250 - -
CF-8 067 085 031 2105 834 0058 0064 154 -21.1 196 2.95 227
CF-8M 0.72 056 257 1829 1239 0030 0063 28  ‘45: 228 . - -~
CF-8M 0.61. 058 ‘257 10.37 11.85 -0.031 .0.055 64 104 = 245 3.20 119
CF-8M 0.60 049 239 1945 9.28 0029 0047 186 198 221 3.02 203
CF-8M 050 048 257 2078 ©0.63 0.064 00490 209 234 222 = 293 191
CF-8M 0.60  0.63 246 2076 9.40. 0.038 0.038 200 -284. 200 2.75 156
- 76-mm Slabs¢ g o :
CF-3 0.63 '1.13 034 20.18 859 0028 0023 210 236 207 3.05 167
CF-8 072 .1.09 025 1943 854 0053 0070 70 7.7 = - i = -
CF-8 064 107 031 2064 808 0062 0063 149 234 ° 245 3.00 169
CF-8M 055 072 230 10.17 901 0049 0066 142 189 360 - -
CF-8M 054 073 251 19.11 9.03 0048 0064 155 184 210 - -
CF-8M 0.53 067 258 20.86 9.12 0.052 0.065 248 278 237 2.76 146
~Reactor Componentsd

P3 CF-3 106 088 001 1883 845 0.168 0021 28 18 300 - -
P2 CF-3 074 094 0.16 -20.20 938 0.040 0.019 125 156 386 - -
| CF-3 047 083 045 20.14 870 0.032 0021 196 17.1 180 - -

Cl CF-8 122 118" 065 10.00 9.37 0.040 0039 78 22 €0 - -

Pl CF-8 059 112 004 2049 8.10 0.057 0.036 176 24.1 228 2.38 249
P4 CF-8M 1.07 102 205 '19.64 1000 0.151 0040 59 100 227 2.95 143
205 CF-8M 093 063 337 -17.88 8.80 - 0.040 - 21.0° 159 272 - -
758 CF-8M 091 062 336 1791 870 - 0030 242 ;19 24 270 - -

" _Service Aged®

KRB CF-8 - 031 117 0.17 2189 - 803. 0038 0062 277 340 232 2.30 -

2 Calculated from the composition with Hull's equivalent factor. o
Measured by ferrite scope AUTO Test FE, Probe Type FSP-1, - o v
b Static Cast Keel Blocks: Foundry ESCO; Size 180 x 120 x 90-30 mm.
€ Static Cast Slabs: Foundry ESCO; Size 610 x 610 X 76 mm. ‘
d Centrifugally Cast Pipes:
P3 Foundry SANDUSKY; Size 680 mm O.D. 76 mm wall.
" P2 Foundry FAM, France; Size 930 mm O.D., 73 mm wall
P1 Foundry ESCO; Size 890 mm 0.D., 63 mm wall.
P4 Foundry SANDUSKY; Size 580 mm O.D., 32 mm wall
205 Size 305 mm O.D., 25 mm wall. ‘ B
Static Cast: . . :
Elbow 758: Size 305 mm O.D., 30 mmwall. -~ =~
Pump Impeller : Foundry ESCO; Size 660 mm diameter, =~ -
Pump Casing C1: Foundry ESCO; Size 600 mm 0.D., 57 mm wall.
€ KRB Reactor Pump Cover Plate: Foundry GF; Size 800 mm diameter.
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“Table 2. -Chemical composition, ferrite content, and kinetics of thermal embrtttlement Jor
Georg Fischer and Framatome heats of cast stainless steel . :
: ;o . Ferrite Impact Constant Activation
, " Chemical Composition (wt.%) -_Content (%) Energy 0 Energy
" Heat Grade Mn .. Si Mo- Cr N1 N C - Cale.. Meas. (J/cm?) {kJ/mole)
_ Georg Fischer Heats
-280 CF-3 050 137 0.25 .21.60 8.00 .-.0.038 ' 0.028 36.3 38.0 303 . 330 - 87
- 284 CF-3 0.28. 052 0.17 2300 ' 823 0037 0.025 43.6 420 287 371 87
277 CF-8 054 181 0.06 -20.50 ' '8.13 0,019 '0.052- 22.5 - 28.0 280 3.65 88
278 CF-8 0.28 - 1.00 0.13 -20.20 827 0030 0038 185 15.0- ' 346 4.05 63
279 CF-8 0.37 1.36 022 2200 7.85 - 0.032 0.040 395 40.0 316 3.21 92
''281 CF-8 041 ‘045 0.17 23.10:° 8.60 0.053 - 0.036 31.4 300 280 3.76 - o3
282 CF-8 043 035 0.15. 2250 . - 853 -0.040 0.035 29.7. 38.0 299 3.73 . .98
283 CF-8 048 053 023 2260 :7.88 0.032  0.036 426 42.0 304 - 3.65 - 83
291 CF-8 028 159 - 066 19.60 10.60: 0.054 0.065 4.2 6.0 346 3.89 - T
292 CF-8 034 157 0.13 :21.60:- .752. .0.039. 0.090 239 28.0. 91 3.08 - 99
285 CF-8M 048 086 ‘235 1880 949  0.039 0.047 140 100 254 3.76 - 82
286 CF-8M 040 1.33° 244 2020 9.13° 0062 '0072 189 220 299 3.11 106
287 CF-8M 050 051 258 -20.50 - 8.46 -0.033 0.047 372 380 - 28 3.52 92
288 CF-8M 0.47 170 253 19.60 840 0.022- 0.052 356 28.0 346 3.02 106
289 CF-8M 048 144 230 19.70 825 -0.032 0.091 226 30.0 264 - 3.32 20
:-290 CF-8M 0.41 1.51. 240 20.00 8.30 0.050 :0.054 31.3 320 300 3.49 81
B = Framatome Heats o : 7 v :
C CF-8 109 109 013 2070 819 0035 0042 208 246 306,  3.30 - 83
E CF-8 0.80 054 “0.08 21.00- 847 -0.051 0.035 176 - 216 2.63 133
F CF-3 026 1116 034 1970 833 0.026 0.038 17.7 - 328 2.45 176
B CF-8M 0.83 093 252 2010 1056 0042 0053 140 205 235 = 255 129
D CF-8M 1.12 094 244 '19.20 :10.32 0.063° 0.026 11.8 :23.0 268 3.30 90
L CF-8M 0.79 0.81 246 20.76 10.56 0.042 0.040 186 . - - 204 . - -
50 _1 | L] | LI I LIS I | BRI I i 1 l_
? 40 — .
q = -
[ . _
o = .
= - -
= 30 —
[+ P -
(19 - -
- - -
o - o
T 20— -
== - o
o N -
8 » -
: V Closed Symbols: CF-8M =1
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o—llI'IIIIIIIIIII]‘I!IIIII—
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Figure 4. Measured and calculated ferrite contents for

various heats of cast stainless steel
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The saturation values of room-temperature impact energy predicted by Egs. 3.4 and
3.5 and those observed experimentally for the studies at ANL, FRA, GF, EdF, CEGB, and
EPRI are shown in Fig. 5a. 'The curves shown by dashed lines represent +26% deviation
from the predicted values. The difference between the predicted and observed values is
<+15% for most of the materials. The observed room-temperature impact energy at satu-
ration and values predicted by Egs. 3.6 and 3.7 are shown in Fig. 5b for the data from ANL,
FRA, GF, and EdF studies. The difference between ‘observed and predicted values for the
CF-8M steel is larger than that for the CF—3 or CF-8 steels. The curves shown by dashed
lines represent 158% deviation from the predicted values. The correlations expressed in
Eqs 3 4-3.7 do not include Nb, and may not be conservative for Nb—bearing steels.

The saturation fracture toughness J-R curve for a speciflc cast stainless steel can be
estimated from its room—temperature impact energy at saturation. The J-R curve is ex-
pressed by the power-law relation Jq = CAan, where Jq is deformation J per ASTM
Specifications E 813-85 and E 1152-87, Aa is the crack extension, and C and n are con-
stants. The coefficient C at room and at 290-320°C (=555-610°F} and the room-tempera-
ture Charpy-impact energy Cy for aged and unaged cast stainless steels are plotted in Fig. 6.
Fracture toughness data from ANL,3-5 FRA,12 and EPRI!3 studies are included in the figure.
At both temperatures, the coefficient C decreases with a decrease in impact energy.
Separate correlations are obtained for CF-3 or CF-8 steels and for CF-8M steel; the latter
shows a larger decrease in fracture toughness for a given impact energy. The correlations
used to estimate J-R curves were obtained by subtracting the value of ¢ (standard deviation
for the fit to the data) from the best-fit curve. They are shown in dash/dot lines in Fig. 6,
and help ensure that the estimated J-R curve is conservative for all material and aging
conditions. The saturation fracture toughness J-R curve at room temperature for CF-3 and
CF-8 steels is given by s :

Jdd = 49[cvsat1°.-52ma1r} - R (3.8)
and for CF-8M steel by g ) -
' Ja= 16[Cvsad®67(Aaln. e S (3.9)
‘At 290—320°C (=555-610°F), the saturation J—R curve for CF—3 and CF—8 steels is given by
~Jd = 82[Cvsatl®-34[Aa]” S L . (3.10)
and for CF—8M steel by ~ | . N | o
Jd 35[Cv5ad° 49[Aa]" ' o o (3.11)

The exponent n of Aa is correlated to the coefficient C Fig 7. The correlations shown in
the figure were obtained by subtracting standard deviation from the best-fit curves, and
~ help ensure that the estimated J-R curves are conservative These correlations and the
best-fit curves in Fig. 6 are used to obtain the relationshlp between exponent n and satura-
tion room-temperature impact energy At room temperature the exponent n for CF-3 and
CF-8 steels is given by .- : SRR CE R L RTES S S S =

n =032 + 0.0131[CvSat]° B2 o i B (3.12)
and for CF-8M steels by ( o
n = 0.35 + 0.0025[Cygat]0-67. (3.13)

At 290-320°C (=555-610°F) the exponent n for CF-3 and CF-8 steels is given by
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n=025+ 0.0293[Cvsat]9-34,_ ST . (3.14)
and for CF-8M steels by . T L
n = 0.24 + 0.0063[Cysat]®49. - et e e T (3.15)

The fracture toughness J-R curves corresponding to Egs. 3. 8—3 11 in Brltish units are
given by B N
-Ja = (280(25. 4)n(cvSat)0 52}[Aa1n - 5 R (3.8a)

Jd = (9125.97(Cvsat®83)iaaln, R (3.92)
:Jd = (468(25.4)n(Cysat)0-35}{Aaln, C ey T (3.10a)

and T T
Jd = {200(25. 4)n(cv5at)° 52}[Aa]n ST ‘ (3.11a)

where room temperature impact energy Cv is nd /cm2 and Jq and Aa are expressed in in.—
Ib/in.2 and in., respectively. Exponent n is determined from Eqs. 3.12-3.15. The expres-
sion enclosed in { } represents the coefﬂcient C of the power—law J-R curve.

J values at any other intermediate temperature can be linearly interpolated from the
values at room temperature and at 290°C (=555°F). ' The fracture toughness J-R curve at
saturation for a specific cast stainless steel can be obtained from its chemical composition
using the correlations expressed in Egs. 3.1-3.15.. Comparisons of the experimental and
estimated J-R curves at saturation, i.e., the minimum fracture toughness that would be
achieved for the material by thermal aging, are shown in Figs. 8-17. For most heats, the
saturation fracture toughness is achieved after aging for 5,000 h at 400°C (=750°F). The
experimental and estimated J-R curve for the unaged materials is also shown for compari-
son; the J-R curves were estimated from Egs. 3.8-3.15 using the measured initial room-
temperature impact energy Cvint of the unaged materials rather than Cysat. The estimated
J-R curves show good agreement with the experlmental results in many cases and are
essentially conservative. The room-temperature J-R curves for unaged static-cast Heats
68, 69, and 75 (Figs. 9, 12, and 14) are non—conservative. It is believed that the poor frac-
ture toughness for these unaged static-cast slabs is due to residual stresses introduced in
the material during the casting process or production heat ‘treatment. ‘Annealing these
heats ‘for a short time at temperatures between 290-400°C~ (=555—750°F) increases the
fracture toughness and decreases the tensile stress without signiﬁcantly affecting their im-
pact energy. Consequently. the fracture toughness would initially lncrease during reactor
service before it decreases due to thermal aging ~

The fracture—toughness data for unaged cast stainless steels indicate that the J-R curve
for some heats are lower than those for wrought stainless steels. The available J-R curve
data at 290-320°C (555-610°F) for. unaged cast stainless steels are shown in Fig. 18a. The
static-cast pump casing ring (Heat C1 with 5.=8%) shows the lowest and centrifugally cast
pipes (Heat P2 with 8§.=12% and Heat C1488 with §.=21%) have the highest fracture
toughness. Fracture toughnes J-R curves for wrought stainless steels are ,higher than the
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J-R curve for static-cast pump casing ring, Fig. 18b. The fracture toughness of unaged cast
stainless steels at room temperature is slightly higher than at 290-320°C (<555-610°F).
temperatures up to 320°C, a lower-bound J—R curve for unaged static-cast stainless steels
can be expressed as

Jd = 400[Aa}0-40 ' ' » (3.16)
and for centrifugally cast stainless steels as .
Jg = 650[Aa]0-43, - = (3.17)

The lower-bound fracture toughness J-R curves for unaged static—cast and centrifugally
cast stainless steels in British units are given by

Ja = 8330[Aa]0-40 o _— | ) (3.16a)
Jd = 14916[Aa]0-43, | | - (3.17a)

The correlations given in Egs. 3.1-3.15 account for the degradation of toughness due to
thermal aging. They do not explicitly consider the initial fracture properties of the original
unaged material. To take this into account, when no information is available on the fracture
toughness of the unaged material, the lower bound estimate given by Egs. 3.16 or 3.17 is
used as upper bound for the predicted fracture toughness of the aged material, i.e., Eqgs.
3.16 or 3.17 are used when fracture toughness predicted by Eqs. 3.1-3.15 is higher than
that predicted by Eqgs. 3.16 or 3.17. If the actual fracture toughness of the unaged material
or the initial Charpy impact energy is known, the use of the higher value may be justified.

4 Servuce—Tlme Fracture Toughness

The emphasis to this point has been on the saturation values of the fracture toughness,
i.e., the lowest values that would be obtained. These of course represent conservative esti-
mates of the fracture toughness at any given time. Less conservative estimates of fracture
toughness can be obtained by considering the kinetics of thermal embrittlement. As in the
case of the saturation toughness, the thermal embrittlement for a specific time and tem-
perature is characterized in terms of the room-temperature impact energy Cv. The satura-
tion room-temperature impact energy CvSat is also required and can be estimated by the
method described in Section 3. '

The activation energy 'Q (kJ/mole) for thermal embrittlenient is expressed in terms of
both chemical composition (wt.%) and a constant 6 to incorporate the effects of heat
treatment and the casting process on the kinetics of thermal embrittlement. Thus

-10[7406 (7.66 - 0.46 11) 6 - 4.35 Si + 1.38 I3 Mo
' ,—167Cr—(222+35611)Mn+(1088 75.311) N}, (4.1)

where the indicators I} = 0 and Io = 1 for CF-3 or CF-8 steels and assume the values of 1
and O, respectively, for CF-8M steels and € is a constant that characterizes the aging
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behavior at 400°C (=750°F), i.e., it is the log of the time to achieve half the maximum re-
duction in impact energy at. 400°C

The activation energy Q in keal/mole is expressed by

Q@ =177.0 - (10.31 - 1.10 I;) 6 - 10.40 St + 3.30 Iy Mo
' -3.99 Cr - (5.31 + 8.51 I1) Mn + (260.0 - 180.0 I) N, (4.12)

where the indicators It =0and Iz = 1 for CF-3 or CF—8 steels and assume the values of 1
and O, respectively, for CF-8M steels.

Values of @ are not available for cast stainless steel components in the field, and can
only be obtained from aging archive material for 5,000 to 10,000 h at 400°C (=750°F).
However, parametric studies show that the aging response at reactor temperatures is
relatively insensitive to the values of 6. As discussed later in this section, a value of 2.9 for 0
can be used to estimate thermal embrittlement at reactor temperatures, i.e., 280-330°C
(=535-625°F). If the nltrogen content is not known, it can be assumed to be 0.04 wt.%.

The estimated and observed values of Q for the ANL FRA, CEGB, and GF heats are plot-
ted in Fig. 19. The error bars represent 95% confidence limits for the observed values of Q.
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Figure 19. Observed and estimated activation energy of cast stainless steels
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The dashed lines represent +20% range. The predicted values are within the 95% confi-
dence limits for all the heats. Equation 4.1 is applicable for compositions within the ASTM
Specification A 351, with a upper limit of 1.2 wt.% for Mn content. Actual Mn content is
used up to 1.2 wt.% and is assumed to be 1.2 for steels with->1.2 wt.% Mn. Furthermore,
.. the values of Q predicted from Eq. 4.1 should be between 65 kJ/mole (~15 kcal/mole)
minimum and 250 kJ/mole (~60 kcal/mole) maximum; Q is assumed to be 65 kJ/mole if
the predicted values are lower and 250 kJ/mole if the predicted ‘values-are higher than

. these limits.

The aging parameter P is determined from the equation

_ rmiam looog . 1 1 - e . . B P .
P“'l°g1,°[ﬂ,'19.143{Ts+273 73 . B2

where Q is the activation energy and t and Ts are the time and temperature of aging.

... Equation 4.2 considers aging at 400°C (=750°F) as the baseline aging behavior for the ma-

~terial and parameter P is the log of the aging time at 400°C The variation of the Charpy-
" ‘impact energy Cy with time can be expressed as

1og10Cv = log10Cvsat + B{1 - tanh [P - O)/al), =+ - T (4.8)
where Cysat Is the saturation minimum impact energy reached after long-term aging, B is

;. half the maximum change in log)oCyv, 6 is the log of the time to achieve B reduction in im-

pact energy at 400°C, o is a shape factor, and P is the aging parameter. The constant B in
' Eq. 4.3 can be determined from the initial impact energy of the unaged material Cvmt and
*-the saturation impact energy CvSat. thus :

B = (og10Cvint - logioCvsad/2. o (4.4)
Data for the kinetics of thermal embrittlement indicate that the shape factor a increases

... linearly with Cvsat. The best fit of the data for the various heats yields an expression

| @=-0821+0947og1oCvsar. R X

o CvSat can be calculated from Eqs 3 5 or 3 7 if the chemical composition is known. In prac-
tice the initial impact energy is unlikely to be available. A-typical value of 200 J/cm2 may be

-assumed for Cyijnt. if not known. Once Cy is known, the service time J-R curve is deter-
mined from correlations described earlier in Section.3. For convenience they are repeated
here. The J-R curve at room temperature for CF-3 and CF—S steels is given by

| Ja= 49lCvIo52Ag - BN C X
andforCF—BM steelby - , e ,
. da= 16[cv1° 71aa)n. f o : : , (4.7)
VAt 290—320°C (=555-610°C), the saturation J—R curve for CF—3 and CF—-S steels is given by
o das= 82lel°34lAa1“ RN T T e (48
rﬂand‘forCF-BMsteelby AL SRR IV i e
ga=ssloviOSlaan. (4.9)
At i'oom temperature the exponent n for CF-3 and CF-8 steels is given by :
n = 0.32 + 0.0131[Cysat]0-52 (4.10)
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and for CF—SM steels by o )
0 =0.35 + 0.0025[Cysarl®67. R o (a1
© At 290-320°C (+555-610°C) the exponent n for CF-3 and CF-8 steels is given by
~ n=025+0. 0293[cvm10 34 - A | | (4.12)
and for CF—8M steels by S s L
n = 0.24 + 0.0063[Cysat]0-4°. ' (4.13)

The fracture toughness J-R curves corresponding to Egs. 4.6-4.9 in Brltish units are
given by , N ; S
- Ja = {280(25. 4)n(Cv)° 52}[Aa]n - : o ‘ (4.6a)

Jd = (125.97CY0 ST Aa, | o (4.72)
Jd = (468(25.4)n(Cy)0-34}[Aaln, e (4.8a)
Ja= (200(25. 4)n(cv)° L » (4.9a)

. where room temperature lmpact energy Cy is in J/cm?2, and Jd and Aa are expressed in in.-
Ib/in.2 and in., respectively. Exponent n is determined from Eqs. 4.10-4.13. The expres-
~ sion enclosed in { } represents the coefficient C of the power-law J-R curve.

The J values at intermediate temperature can be obtained by linear interpolation be-
tween the values at room temperature and at 290°C (=555°F). The fracture toughness J-R
curve for a specific material and aging condition can be obtained from the correlations ex-
pressed in Eqgs. 4.1-4.13 and the saturation room-temperature impact energy Cysat esti-
mated from Eqgs. 3.1-3.7. Comparisons of the experimental and estimated Jq values at 0.5-,
1.0-, 2.5, and 5.0-mm crack extensions are shown in Figs. 20 and 21. The estimated Jgq
values are always lower but within a factor of two of the experimental values of J4. The es-
timated room-temperature Jq values for unaged static-cast slabs alone are higher than the
experimental values. As discussed in Section 3, these heats have poor fracture toughness
because of residual stresses in the material. Fracture toughness of the static-cast slabs
would initially increase during reactor service before it decreases due to thermal aging.

Examples of the experimental and estimated J-R curves for several partially aged cast
stainless steels are shown in Figs. 22-30. The estimated J-R curves show good agreement
with the experimental results and are essentially conservative. Estimations for centrifugally
cast steels in particular are quite conservative. As discussed in Section 3, when no infor-
mation is available on the fracture toughness of the unaged material and a typical value of
200 J/cm? is assumed for room-temperature impact energy, lower bound fracture tough-
ness of the unaged material (Eqgs. 3.16 or 3.17) is used if the fracture toughness predicted
by Egs. 4.6-4.13 is higher than that predicted by Egs. 3.16 or 3.17.
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The kinetics of thermal embrittlement were estimated using the actual experimental
values of 6 in Egs. 4.1 and 4.3. As mentioned earlier in this section, a value of 2.9 for 6 can
be used to estimate thermal embrittlement at temperatures between 280-330°C (=535-
625°F). With a assumed value of 2.9 for 0, estimations of fracture toughness before satura-
tion, may be non—conservative for service temperatures >330 and <280°C (>625 and
<535°F). Comparisons of the coefficient C at 290°C (=555°F), computed using the actual
value of 6 and 6 = 2.9 are shown in Figs. 31 and 32, respectively, for Heats 278, 281, and
287 (measured 6 value 3.5-4.0) and Heats EPRI, KRB, and B (measured 6 value 2.1-2.5).
For all heats the two estimates are essentially the same at a service temperature of 300°C
(=570°F). With 6=2.9, estimated values of C are up to 20% higher at 280-300°C (=535
570°F) for heats with 6 >2.9 (Fig. 31) and at 300-330°C (=570-625°F) for heats with 6 <2.9
(Fig. 32). A 6 value of 2.5 should be used for estimating fracture toughness at 330-360°C
(=625-680°F) and 3.3 for estimating at <280°C (<535°F).

The estimated J-R curves at 290-320°C (-555—610°F) for some of the heats after ser-
vice for 16, 32, and 48 effective full power years (efpy) at 290 and 320°C are shown in Figs.
33-39. The saturation fracture toughness for the specific cast stainless steel and the lower
bound fracture toughness defined in Section 2 are also shown for comparison. The results
show the benefit of knowing the chemical composition of the steel. The saturation fracture
toughness of only few heats, e.g., KRB and EPRI material and Heat 75, is close to the lower
bound fracture toughness defined by Eqs. 2.1-2.4. Furthermore, depending on the service
temperature, the saturation fracture toughness may not be achieved within the design life-
time of the reactor. For the EPRI material, saturation fracture toughness is reached after
=16 efpy at 320°C but not'at 290°C even after 48 efpy. Thermal embrittlement of Heats 75
and L is much faster; saturation fracture toughness is reached in 16-32 efpy at 290 and
320°C. Figure 33 shows that the saturation J-R curve for Heat 68 is close to the lower-
bound J-R curve for cast stainless steels with <15% ferrite. However the saturation frac-
ture toughness is not achieved within the design lifetime

5 Flow Diagram for Estimating Fracture Toughness

A flow diagram of the sequential steps required for estimating fracture toughness J-R
curves is shown in Fig. 40. In Section A, “lower-bound” fracture toughness J-R curves for
cast stainless steels of unknown chemical composition are defined. Different lower-bound
J-R curves are defined when the ferrite content of the steel s known. Sections B and C
present procedures for estimating J-R curves when some information is known about the
material, e.g., CMTR, is available. Section B describes the estimation of “saturation” J-R
curves, l.e., the lowest toughness that would be achieved for the material after long-term
service. The only information needed for these estimations is the chemical composition of
the material. Nitrogen content is assumed to be 0.04 wt.% if not known. The lower-bound
J-R curve for the unaged cast stainless steels is used as saturation J-R curve of a material
when the J-R curve estimated from the chemical composition is higher. Additional infor-
mation, e.g.. J-R curve of the unaged material or room-temperature Charpy impact energy
of unaged material for estimating fracture toughness is required to justify the use of higher
J-R curves.

Estimation of “service time” J-R curves, i.e., fracture toughness at any given time and
temperature of service, is described in Section C. The service time J-R curves depend on
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" thé kinetics of thermal embrittlement, i.e., the rate of decrease of fracture toughness as a
function of reactor service time. The initial impact energy of the unaged material and the
constant 6 are also required for estimating the kinetics of thermal embrittlement. The im-
pact energy can be assumed to be 200 J/cm? if not known. The value of 6 depends on the
- -service -temperature; it is assumed to be 3.3 for <280°C (<535°F), 2.9 for 280-330°C
(=535-625°F), and 2.5 for 330-360°C (~625-680°F). If the initial impact energy of the
B unaged material is not known, the lower—bound J-R curve for the unaged cast stainless
steels is used when the J-R curve estimated from the chemical composition is higher than
the lower bound for the unaged steel.

6 . _Conclusions and Future Work

A procedure and correlations are presented for predicting fracture toughness J-R
curves and impact strength of aged cast stainless steels from known material information.
" Fracture toughness of a specific cast stainless steel is estimated from the extent and kinet-
ics of thermal embrittlement. Embrittlement of cast stainless steels is characterized in
terms of room-temperature Charpy-impact energy. The extent or degree of thermal em-
'brittlement at “saturation,” i.e., the minimum impact energy that ¢an be achieved for the
‘material after long-term aging, is described in terms of a material parameter, @, that is de-
‘termined from chemical composition. Room-temperature impact energy as a function of
time and temperature of reactor service is estimated from the kinetics of thermal embrit-
tlement, which is also determined from the chemical composition. The fracture toughness

~ J-R curve for the material is then obtained from correlations between room-temperature

Charpy—impact energy and fracture toughness parameters. A common “lower-bound” J-R
' curve for cast stainless steels with unknown chemical composition is also defined for a
given material specification, ferrite content, and temperature. Examples for estimating
impact strength and fracture toughness of cast stainless steel components during reactor

 'service are described; estimations show good agreement with the experimental results and

‘are essentially conservative.

~_ Fracture toughness J-R curve data have been mostly obtained on 1-T compact tension
specimens. "According to ASTM Specification E 1152-87 they are valid only for crack

"”',growth up to 10% of the initial uncracked ligament However, it is widely accepted that

the J-R curve crack growth validity limits fall between 25 and 40% of the initial uncracked
ligament,24 or ~8 mm of crack extension. In future work under this program these ex-

~ tended validity limits for J-controlled crack ‘growth will be qualified and better defined for

“cast stainless steels in terms of specimen size, toughness, and crack extension.
Representation of J-R curves by expressions other than power law (e. g.. by power-expo-

- nential relation) will also be evaluated for more accurate extrapolation of J-R curve data.

- Mechanical—property tests are being conducted on long-tenn—aged materials as well as

“on reactor-aged components to further benchmark the laboratory data’and validate the cor-
relations. This additional data will be used to modify the correlations to ‘account for the
casting process and macrostructure of the steel because the toughness of centrifugally cast

- ‘steels is generally higher than that of static-cast steels. Correlations are also being devel-

" oped to estimate the flow stress of service—aged cast stainless steels Typically, thermal
: aging increases ﬂow stress by 25 to 30% for materials that are sensitive to aging At pre-

57




sent, fracture toughness analyses of cast components are based on the tensile properties of
unaged material. This gives conservative estimates of applied J for load—control situations.
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