

21
12/26/79
24cuf to NTS

MASTER

UCID-18293

Lawrence Livermore Laboratory

INTERIM REPORT: GEOTHERMAL AQUATIC ECOSYSTEM PROGRAM: GEYSER-CALISTOGA KGRA

Robert R. Ireland

October 12, 1979

This is an informal report intended primarily for internal or limited external distribution. The opinions and conclusions stated are those of the author and may or may not be those of the laboratory.

Prepared for U. S. Department of Energy under contract No. W-7405-Eng-48.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

INTERIM REPORT:

GEOTHERMAL AQUATIC ECOSYSTEM PROGRAM: GEYSER-CALISTOGA KGRA

R. Ireland
Environmental Sciences Division

The formulation of a study plan for assessing the impact of geothermal development in the Geysers-Calistoga KGRA upon the local aquatic ecosystem was based largely upon the need to be consistent with the issues and recommendations set forth by the LLL Geothermal Environmental Overview Project, sponsored by ASEV. Of the eight volumes of UCRL-52496, the following four were taken into consideration in making our decisions.

Volume 1: Issues and Recommendations

Volume 4: Environmental Geology

Volume 5: Ecosystem Quality

Volume 6: Water Quality

A second major consideration was avoiding duplication of previous efforts. We sought to fill the data gaps which would be most meaningful in light of the recommended studies by implementing a program which could not only stand on its own but also add to and complement the myriad of previous and ongoing studies within the KGRA.

From the overview project, three key issues were apparent: erosion, cooling tower drift, and long-term ecosystem effects. The problem due to erosion with regard to the aquatic environment is siltation and sedimentation within the streambed. Both physical and chemical impacts may be effected. Physically, siltation may impede the development and reproduction of the aquatic invertebrates essential to a healthy stream. Secondly, siltation has a proven effect upon the fish spawning capacity of a streambed by filling in the interstices of gravel beds needed for egg development. Chemically,

DISCLAIMER
This book was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

erosion activities adds organic matter thereby decreasing available oxygen in the water. This in turn may lead to changes in redox potentials and resolubilization of bound elements within the sediment, particularly in regard to certain potentially toxic elements such as mercury and arsenic.

The issue of cooling tower drift is not unrelated. Emissions of H_2S , NH_3 , B, Hg, and As have been proven to be at times far above recommended standards. The natural washing of rainfall, as well as infrequent accidental spills, leads one to ponder the fate of the constituents as they enter the aquatic environment.

Thirdly, long-term ecosystem effects have not been adequately characterized, although a number of studies have been conducted or are in progress to add data bits to the overall picture.

In order to simultaneously address the key issues and fill a much needed data gap, we have designed a program for chemically characterizing the various partitions of the streambed sediment. This is currently being done on a quarterly basis in the Big Sulphur Creek drainage. The goal is to provide information about transfer, cycling, and the accumulation of potentially toxic trace elements such as Hg, As, B, and NH_3 .

Sediments are separated into different size classes in the field using nylon sieves. These sizes are $849\mu - 590\mu$, $590\mu - 250\mu$, $250\mu - 149\mu$ and less than 149μ (see Figure 1). The last fraction is recovered quantitatively by centrifugation in the laboratory. All of these fractions are leached with 0.5 N HCl for trace metal extraction which provides us values we can compare to the literature.

The less than 149 μ fraction is further characterized by a sequential extraction procedure. Unfortunately, most of the numbers in the literature are generated by acid leach methods as mentioned in the previous paragraph. However, these numbers consider the total concentration of any given element to be indicative of equal availability and reactivity, which is not the case. A sequential extraction scheme yields much more information about the biogeochemistry of the sediment sample, the biological and physicochemical availability of the trace elements, as well as their origin, mobilization potential, and probable transport.

Table I lists the chemicals used to peel away the elements from the sediments. The exchangeable phase refers to that held by sorption - desorption phenomena which could likely be affected by salinity and thermal changes. The carbonate bound fraction would be susceptible to changes in pH. The iron and manganese oxide bound fractions are held by these precipitating scavengers which are thermodynamically unstable under low oxygen or reducing conditions. A dynamic equilibria always exists with regard to trace elements and organic matter such that complexation or release depends upon type, quantity, and a host of environmental variables. The residual phase tells us about the lattice structure of the minerals and generally is reflective of the geology of the area rather than as a source of available elements.

Table 2 is our field data sheet which we compiled and utilize at each sampling location (Figure 3). One can see that while our thrust is at the characterization of the sediments, we have not ignored any facet of transport phenomena: soluble, particulate bound, or sediment bound.

We are employing a wide range of analytical tools to chemically define these facets. Most of the analyses are done in a liquid acidified medium so atomic absorption spectroscopy (AA) and ion coupled plasma optical emission spectroscopy (ICPOES) are most commonly utilized. For difficult elements like Hg and As, a state-of-the-art cold vapor hydride reduction AA system is used. Other tools used include X-ray diffraction for determining the crystal content of the sediment and particulate minerals, selective ion meters for analyses such as ammonia, the ion chromatograph for anions, an organic carbon analyzer for dissolved and particulate organic matter, and a host of common water quality instruments for conductivity, flow pH, etc.

The goal of this program is to maximize the yield without compromising the quality or duplicating the efforts of others. Toward this end, we have established a complementary and coordinated effort with the aquatic biology arm of Pacific Gas and Electric. P.G.&E. has been conducting a variety of studies in past and present years. These include sedimentation studies to physically characterize the size percentages of the streambed sediment above and below the power plants from pre-operational through post-operational time periods to determine the extent of siltation caused by erosion. They have also conducted fisheries resource inventories to determine any effect upon population dynamics due to alteration of spawning areas as well as general water quality surveys.

We have selectively modified our program so that it harmonizes well with P.G.&E.'s. Our chemical characterization studies of the different sediment partitions will provide a enhancement of their physical size

classing of the total streambed load. We overlap in the area between 839 μ to 590 μ for commonality. Naturally, their data will provide us with a more total picture of the load movement within the aquatic environment. A data blend like this will be of mutual benefit in that it will provide a synergistic picture of the origin and extent of imposed additions to the ecosystem. We are in the process of establishing a common computerized data base here at LLL for ourselves and P.G.&E. for this program in order to manipulate the physical and chemical data.

We have also established working relationships with other researchers and agencies for a more complete picture. One group at the University of California, Berkeley has been studying the benthic invertebrates at selected sites within the watershed for the past several years. We invited them to our coordination meeting when we were initially determining our sampling locations. Another group is at U.C. Davis who are studying the migrational dynamics of selected fish species for several watersheds in the area. Yet another group is the California Department of Fish and Game who have also conducted siltation and fisheries inventory studies.

All of the above groups are very much interested in the type of chemical characterization data we are making available. We hope to integrate our data with each of theirs to provide a better insight and understanding of not only physicochemical processes and dynamics, but also what role all of this has upon bioavailability and bioaccumulation.

As evidence of the workability of our plan, we recently were invited to a meeting of the California Energy Commission. The CEC is attempting to organize researchers in the Geysers KGRA to avoid duplication of effort and

to guide those willing toward filling uncertain data gaps. After presentation of our plan as put forth here, detailing our already integrated program with P.G.&E., and outlining the existing working relationships with other organizations, the CEC was pleased to note that we seemed to be well on our way toward fulfilling what they perceived to be their function. It was generally conceded that this plan would be of benefit to most all of the participants. These benefits would come from the blending of physical, chemical, and biological inputs and could be of considerable value to decision makers in the areas of control technology and mitigation.

We had originally intended to implement this program in the Putah Creek watershed, where new Units 13, 16, and 19 are in varying stages of development. However, as yet, none of these have come on-line due to various delays. Instead, we chose to test our detailed scheme in the Big Sulphur watershed, where development has been ongoing since Unit 1 was placed in operation in 1960. We aim, even in the absence of baseline data, to address ourselves to providing information about the transfer, cycling, and accumulation of potentially toxic trace elements of geothermal concern such as Hg, As, B, and NH₃. Our goal is to provide data to show the relative contributions from different sources, i.e., geothermal units, natural geothermal input such as hot springs, and fumaroles, and the many abandoned mercury mines in the area. We want to answer the following questions. What is the extent of the additions? How are the constituents mobilized and transported? To what extent are they accumulated? What is their bioavailability? What effect are they having on the aquatic ecosystem?

We then feel this program can be applied to Putah Creek watershed with its new development. It would also be an especially viable program in the third

watershed in the Geysers KGRA, the Kelsey Creek drainage, where mounting evidence indicates a large liquid-dominated geothermal reservoir remains to be tapped.

We are currently preparing for a third field trip to the area. Trip #1 in the spring was a preliminary effort to iron out the bugs and provide samples for analytical experience. Trip #2 was the summer quarter and the first one to be considered real from A to Z. Trip #3 will be in October just after the first rains wash the hillsides and mobilize to a great extent the trace elemental burden of the cooling tower drift. Trip #4 will be in the winter to determine the extent of natural flushing in the drainage due to high flow. Trip #5 will be in the spring, 1980 and will overlap Trip #1 from 1979.

We also anticipate moving into the Putah Creek drainage in the spring to implement this program there prior to any significant contributions from new power units.

Figure 1. Sediment Chemical Characterization

I. $849 \mu - 590 \mu$ }
 $590 \mu - 250 \mu$ }
 $250 \mu - 149 \mu$ }
 149 μ

0.5 N HCl

II. $<149 \mu$

1. Exchangeable

1 M MgCl2

2. Bound to carbonate

NaOAc

3. Bound to iron and manganese oxides

NH2OH + HCl + HOAc

4. Bound to organic matter

HNO3, H2O2

NH4OAc

5. Residual

HF - HC1O4

FIELD DATA SHEET

Date	Initial Time	Final Time	Station	Elevation	Weather	Bottom Type
Photographs	Film	Air Temp.	Sfc Temp.	Mid Temp.	Bot. Temp.	pH
Conductivity	DO	Turbidity	H ₂ S	Alkalinity	Flow #	Comments: _____
Water Velocity	Width	Mid depth	Qt. depth	Qt. depth		_____
Total Suspended Solids:						_____

Filter #	Vol. (mls)

IONS: T.E., Anions, NH₃

UNFILTERED

Bottle #	Fix

FILTERED

Filter #	Vol. (mls)	Bottle#	Fix

Reference

Total TE

Hg

DW Blank

DW Spike 1

DW Spike 2

Reference

Partic. TE

Dissolv. TE

Hg

NH₃

Anions

Water OC:

Ampule #

Total OC

Dissol. OC

Part. OC

	Vol (mls)

SEDIMENT:

>849 μ

590-849 μ

297-590 μ

149-297 μ

<149 μ

Composite

Weight

Weight

Weight

Figure 2

AQUATIC ECOLOGY SAMPLING LOCATIONS

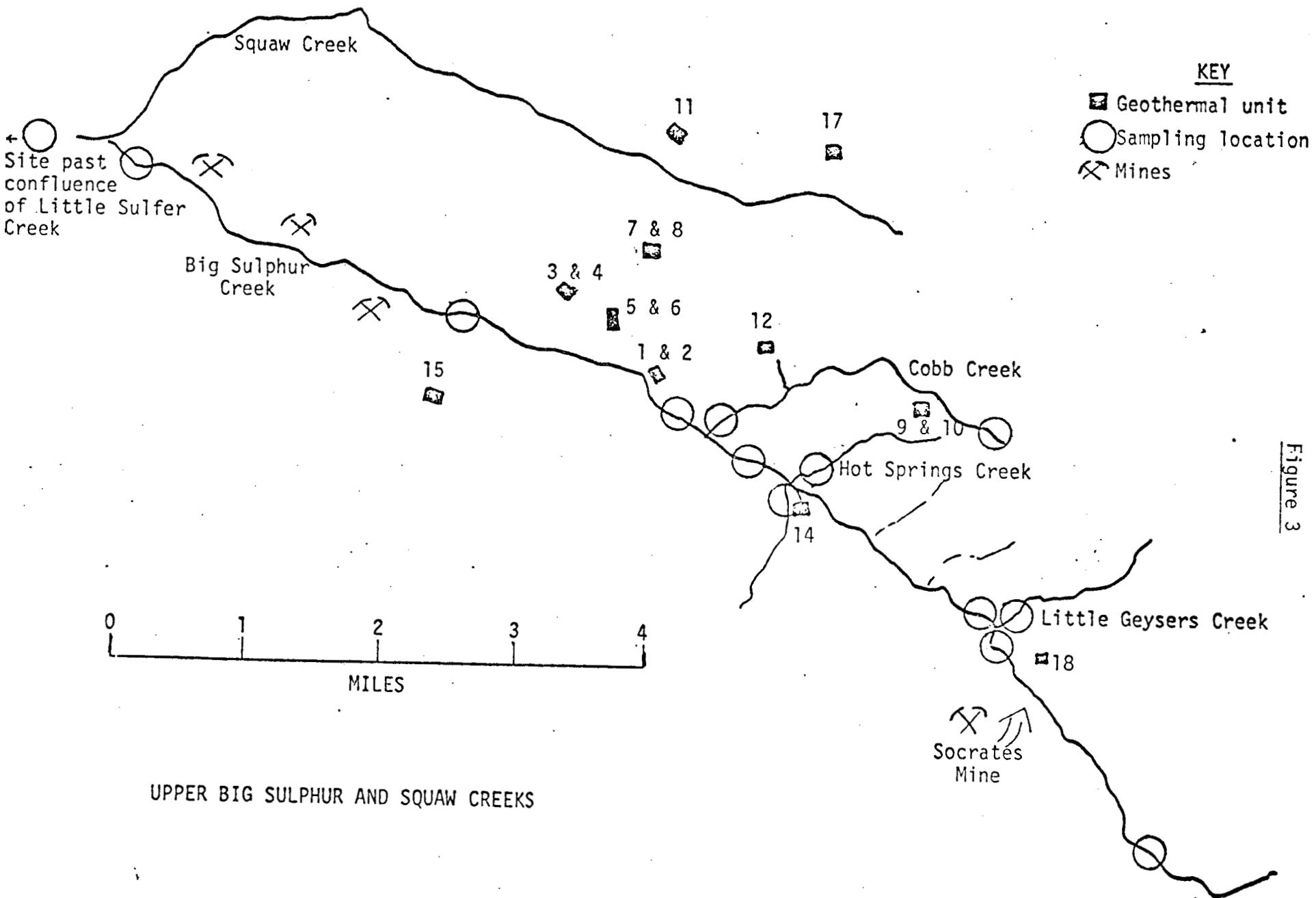


Figure 3

NOTICE

"This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately-owned rights."

NOTICE

Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U.S. Department of Energy to the exclusion of others that may be suitable.

Printed in the United States of America

Available from

National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Road
Springfield, VA 22161

Price: Printed Copy \$ Microfiche \$3.00

Page Range	Domestic Price	Page Range	Domestic Price
001-025	\$ 4.00	326-350	\$12.00
026-050	4.50	351-375	12.50
051-075	5.25	376-400	13.00
076-100	6.00	401-425	13.25
101-125	6.50	426-450	14.00
126-150	7.25	451-475	14.50
151-175	8.00	476-500	15.00
176-200	9.00	501-525	15.25
201-225	9.25	526-550	15.50
226-250	9.50	551-575	16.25
251-275	10.75	576-600	16.50
276-300	11.00	601-up	—
301-325	11.75		

11 Add \$2.50 for each additional 100 page increment from 601 pages up.

4

Technical Information Department
LAWRENCE LIVERMORE LABORATORY
University of California | Livermore, California | 94550