

440
1-8-80

Ar. 519

DOE/JPL/954881-7

AUTOMATED ARRAY ASSEMBLY, PHASE 2

Quarterly Technical Progress Report, April-June 1979

By
Bernard G. Carbajal

July 1979

MASTER

Work Performed Under Contract No. NAS-7-100-954881

Texas Instruments, Incorporated
Dallas, Texas

U.S. Department of Energy

Solar Energy

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

This report has been reproduced directly from the best available copy.

Available from the National Technical Information Service, U. S. Department of Commerce, Springfield, Virginia 22161.

Price: Paper Copy \$4.00
Microfiche \$3.00

AUTOMATED ARRAY ASSEMBLY PHASE 2

Texas Instruments Report No. 03-79-40

Quarterly Technical Progress Report

April-June 1979

Bernard G. Carbajal

July 1979

DISCLAIMER

This book was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

JPL Contract No. 954881

Texas Instruments Incorporated
P.O. Box 225012
Dallas, Texas 75265

This work was performed for the Jet Propulsion Laboratory, California Institute of Technology, under NASA Contract NAS7-100 for the U.S. Department of Energy, Division of Solar Energy.

The JPL Low-Cost Solar Array Project is funded by DOE and forms part of the DOE Photovoltaic Conversion Program to initiate a major effort toward the development of low-cost solar arrays.

TABLE OF CONTENTS

SECTION	TITLE	PAGE
I.	INTRODUCTION	1
II.	TECHNICAL DISCUSSION	2
	I. Large Area Tandem Junction Cell	2
	1. Cell Design	2
	2. Process Verification	2
	3. Design Verification	9
	4. Cell Fabrication	9
	II. Tandem Junction Modules	10
	1. Define Cell - Module	10
	2. Modify Tooling	10
	3. Define Heat Treatment	10
	4. Porcelainized Substrate	11
	5. Design and Form Bus Bars	12
	6. Solder Fixture	12
	7. Assemble Cell Matrix	13
III.	CONCLUSIONS AND RECOMMENDATIONS	15
IV.	NEW TECHNOLOGY	16
V.	PROGRAM SUMMARY	17

LIST OF ILLUSTRATIONS

FIGURE	TITLE	PAGE
1.	SUBSTRATE IN FIXTURE BEFORE REVERSING BOW	11
2.	SUBSTRATE WITH BOW REVERSED PRIOR TO HEAT TREATING	11
3.	VACUUM CHUCK WITH 3 X 5 CELL MATRIX	12
4.	VACUUM CHUCK WITH 3 X 5 CELL MATRIX	13
5.	3 X 5 CELL MATRIX	14
6.	5 X 5 CELL MATRIX	14
7.	WORK PLAN STATUS	18

LIST OF TABLES

TABLE	TITLE	PAGE
1.	PROCESS LIFETIME MEASUREMENTS	3
2.	PROCESS VARIATION PHOTORESPONSE	4
3.	PHOTORESPONSE DURING ASSEMBLY FOR TEST	6
4.	PHOTORESPONSE WITH CORRECTED GOLD TAB BOND PROCESS	7
5.	PROCESS VARIATION TEST RUNS	7
6.	HEAT TREATMENT RESULTS	10

SECTION I

INTRODUCTION

The Automated Array Assembly Task, Phase 2 of the Low Cost Solar Array (LSA) Project is a process development task. This contract provides for the fabrication of modules from large area Tandem Junction Cells (TJC). The key activities in this contract effort are a) Large Area TJC including cell design, process verification and cell fabrication and b) Tandem Junction Module (TJM) including definition of the cell-module interfaces, substrate fabrication, interconnect fabrication and module assembly. The overall goal is to advance solar cell module process technology to meet the 1986 goal of a production capability of 500 megawatts per year at a cost of less than \$500 per peak kilowatt. This contract will focus on the Tandem Junction Module process.

During this quarter, effort was focused on design and process verification. The large area TJC design was completed and the design verification was completed. Process variation experiments led to refinements in the baseline TJC process. Formed steel substrates were porcelainized. Cell array assembly techniques using infrared soldering are being checked out. Dummy cell arrays up to 5 cell by 5 cell have been assembled using all backside contacts.

SECTION II

TECHNICAL DISCUSSION

Both major task areas are in progress. A brief description of the activities in each area follows.

I. Large Area Tandem Junction Cell

1. Cell Design

The photomasks for the large area TJC were received. The mask registration was checked by printing level 1 and etching an oxide layer (N+ diffusion area) then printing level 2 and etching the remaining oxide layer (P+ contact area). Level 3 (metal contacts) was developed in the photoresist over levels 1 & 2 but not etched. Level 4 (metal pattern) was developed in the photoresist over the etched patterns of levels 1 & 2 but not etched.

Levels 2,3, & 4 overlay with virtually no mismatch (well within the normal tolerance of 0.1 mil). The overlay of level 1 to level 2, however, shows a mismatch across the cell of approximately 0.5 mil (1.27×10^{-3} cm). The minimum N+ to P+ design spacing is 1.0 mil (2.54×10^{-3} cm) and this mismatch could lead to yield problems.

The level 1 mask was refabricated eliminating the level 1 to level 2 mismatch. Contact print of level 1 and level 2 now exhibit the correct N+ to P+ spacing of 1.0 mil (2.54×10^{-3} cm). This activity is now complete.

2. Process Verification

Two Czochralski (Cz) grown crystals were used to check minority carrier lifetime after a steam oxidation and again after a POCl_3 diffusion at 850°C .

Two slices from each crystal were oxidized in steam at 850°C the oxide was stripped and the lifetime was measured using the surface photovoltage (SPV) technique. The slices were then coated on one side with a low temperature plasma deposited silicon oxide and the other side was phosphorous diffused at 850°C for 60 minutes. The oxide was removed and the SPV lifetime measurement was repeated. Two fresh slices from each Cz crystal were coated on one side with plasma deposited silicon oxide and subjected to the same phosphorous diffusion conditions. The oxide was removed and the SPV lifetime measurement was made. The results are tabulated in Table 1.

TABLE I. PROCESS LIFETIME MEASUREMENTS

Crystal	Lifetime After Steam Oxidation	Lifetime After POCl_3 Diffusion (μsec)
548	6 - 8.5	24 - 27
548	No Oxidation	28
549	7.5 - 16	33 - 42
549	No Oxidation	45 - 50

The data suggests that while a steam oxidation degrades minority carrier lifetime, a subsequent phosphorous diffusion provides a gettering effect that substantially recovers the lifetime. The conclusion from this data is that any process sequence that uses a steam oxidation step must follow the steam oxidation with a phosphorous diffusion step to retain minority carrier lifetime for solar cell operation.

Contact resistivity to a P+ region formed by alloying evaporated Al at 850°C for thirty (30) minutes was rechecked using the concentric ring test pattern described earlier. Contact resistivity between the alloyed region and evaporated Ti-Pd-Ag metallization is in the range of 7×10^{-4} $\Omega \cdot \text{cm}^2$ without sintering. Sintering at 450°C does not improve contact resistivity.

Process variation test runs were completed on three groups. A baseline group (1×10^{14} atom/cm 2 B implant, 850°C POCl_3 diffusion), lot AAAP-II-107; a reduced implant group (5×10^{13} atom/cm 2 B implant, 850°C POCl_3 diffusion), lot AAAP-II-108; lot AAAP-II-108; and a high temperature phosphorous diffusion group (1×10^{14} atom/cm 2 B implant, 1000°C POCl_3 diffusion). Each group contained 100 μm and 150 μm thick wafers. The 2 X 2 cm cells were attached to gold ribbon tabs and measured at AMI. The results are shown in Table 2.

TABLE 2. PROCESS VARIATION PHOTORESPONSE

Lot No.	Thickness (μm)	V_{oc} (V)	J_{sc} (mA/cm 2)
AAAP-II-107	100	.575	26
	150	.575	27
AAAP-II-108	100	.577	31
	150	.52	10
AAAP-II-109	100	.50	~10
	150	.50	~10

The baseline process lot AAAP-II-107 results are typical for this modest lifetime crystal. The equivalent results for both thicknesses are encouraging. The reduced implant process, lot AAAP-II-108, is also encouraging at 100 μ m thickness. The optimum implant dose has a fairly broad range, $5 \times 10^{12} -- 1 \times 10^{14}$ atom/cm². The high temperature phosphorous diffusion process, lot AAAP-II-109, is not acceptable and apparently the high temperature causes lifetime degradation.

During this quarter it was noticed that V_{oc} values after mounting for test were lower than anticipated, see Table 2. A careful evaluation of the "tail end" mounting process sequence, strip front side process oxide, deposit AR coating, saw, gold tab bond, showed that the gold tab mounting process was causing a degradation in the cell photoresponse. The saw and gold tab bonding process are carried out in a separate facility as a service to this program. Careful checking of recent history showed that a change had been made in the routine gold bonding procedure several months ago. The bonding pressure had been increased significantly to improve bond strength on ICs. One wafer, containing two 2 X 2 cm cells was carefully monitored through the process to verify that the increased bonding pressure was the culprit. The front oxide strip, AR deposition steps were replaced by a thinning of the front oxide to eliminate the possibility of photoresponse degradation, increased surface recombination, while the front surface was bare. Data on the 150 μ m thick wafer from lot AAAP-II-116 is shown in Table 3. Prior to gold tab bonding all measurements are made with backside illumination (it is not convenient to make front side illumination measurements on a TJC without bond tabs) under an AM1 source (ELH lamp).

TABLE 3. Photoresponse During Assembly for Test

Assembly Process Step	Illumination Side	12 Finger TJC V_{OC} (mV)	12 Finger TJC I_{SC} (mA)	16 Finger TJC V_{OC} (mV)	16 Finger TJC I_{SC} (mA)
Before Saw	Back	589	94	588	87
After Saw	Back	587	86	585	79
After Bond	Back	576	80	576	74
After Bond	Front	586	130	589	128

The drop in I_{SC} after saw is due to the elimination of lateral collection from areas external to the cell, this is expected. After bond, both V_{OC} and I_{SC} show significant degradation. This degradation is attributed to damage generated in the diffused region under the bond. This effect is of no concern in the proposed module assembly scheme since reflow solder bonding will be used to assemble the modules. Reverse leakage across the collector-base junction at 1 volt did not change during the assembly for test process.

TJC's from lots AAAP-II-113 and -116 were assembled using a low pressure gold tab bonding process. Photoresponse was measured under an AM1 source (ELH lamp) using front illumination. The data on three cells from each lot is shown in Table 4. The increase in V_{OC} and I_{SC} for lot AAAP-II-116 is evident (compare to bottom line of Table 3).

TABLE 4. Photoresponse with Corrected Gold Tab Bond Process

Lot No.	Al Alloy temp (C)	V _{OC} (V)	I _{SC} (mA)	J _{SC} (mA/cm ²)
AAAP-II-113	650	.590	136	34
AAAP-II-116	850	.599	142	36

Five process variation test lots were completed through backside illumination testing. These process variations and back side photoresponse measurements are summarized in Table 5. Several useful correlations can be made from this and earlier data.

TABLE 5. Process Variation Test Runs

Lot Number	No.	Crystal Type	Res (Ω-cm)	Thickness (μm)	Back V _{OC} (v)	Illumination I _{SC} (mA)	Process Variation
AAAP-II-113	452	2" Cz	6	100,150	.588*	89*	Deep Front N+
AAAP-II-113A	348	3" Fz	10	150	.573-.579†	105-120†	Baseline
AAAP-II-114	348	3" Fz	10	150	.578-.581†	96-107†	1000°C Oxidation
AAAP-II-115	348	3" Fz	10	150	.571-.576†	104-116†	Silane Oxide
AAAP-II-116	348	3" Fz	10	100,125,150	.595-.599†	107-115†	850°C Al Alloy

* AM1 Illumination

† W-lamp

Lot AAAP-II-113 - the deep front N+ diffusion, ~0.5 - 0.6μm, does not severely impact current collection during back illumination. This effect was checked using front illumination, see Table 4, confirming the transistor model proposed earlier for the TJC.

Lots AAAP-II-113A, - 114 and -115, variations in the first oxidation process step, have only second order effects on photoresponse. In particular, the 1000°C dry O₂ oxidation does not exhibit any marked reduction in lifetime when followed by an 850°C phosphorous diffusion. The low temperature, 450°C, silane deposition does not offer any marked advantage.

Lot AAAP-II-116 - the increase in the Al alloy process step from 650°C to 850°C appears to offer a significant improvement in the baseline process.

The process variation data reported above coupled with earlier reported process variation data gives the outline for an updated baseline process relative to each of the high temperature operations. The optimal conditions for each critical process step are outlined below.

- Back side boron implant dose - 5×10^{13} to 1×10^{14} atom/cm² at 35KeV
- First oxidation - 850°C steam oxidation will be retained but the upper temperature limit could be raised if it offered a processing advantage so long as the oxidation is followed by a phosphorous diffusion.
- Phosphorous diffusion - 850°C appears to be near optimum, 950°C causes a marked loss in collection efficiency. The depth of the front N⁺ diffusion up to ~0.6μm does not appear to have a significant effect. This latter statement is still subject to verification using front illumination.

- Al alloy - An 850°C alloy process step appears to offer significantly better response than a 650°C alloy. This effect is probably due to improved electrical activation of the alloyed Al atoms.

Lots AAAP-II-113A, -114, -115 and -116 were all run using 3" (7.62 cm) wafers. No particular handling or breakage problems have been observed. The 150 μ m thick wafers are somewhat less fragile than the 100 μ m thick wafers.

3. Design Verification

Mask overlay registration has been verified and no mechanical or geometry problems remain. Process check out has been completed. Large area cells, 6.2 X 6.2cm, from lot AAAP-II-120 were back side probed after metallization definition. Initial measurements give $I_{SC} > 0.6A$ and $V_{OC} \sim 0.55V$. Since over 50% of the back is covered by metal, the expected I_{SC} for front illumination is >1A. The design verification is complete.

4. Cell Fabrication

Fabrication of 6.2 X 6.2cm TJC's to populate minimodules has been started. Initial cells are at metal plating.

II. TANDEM JUNCTION MODULES

1. Define Cell - Module

Complete

2. Modify Tooling

Complete

3. Define Heat Treatment

Formed steel substrates were stress relieved at 600 F (316 C).

Ten (10) formed substrates at each of two gauges (0.091 cm and 0.076 cm) were heat treated and ten (10) formed substrates from each gauge were not heat treated. After porcelainizing, the substrates were measured for bow. The measurements are given in Table 6. Heat treatment at 600 F has no significant effect on bowing of the formed substrates during the porcelainizing operation. Thickness or gauge of the formed substrate does not appear to be a significant factor.

TABLE 6. Heat Treatment Results

Substrate Number	Heat Treat	Gauge (cm)	Avg. (cm)	Convex Bow Range-Min-Max (cm)
1-10	No	0.091	.181	0.152-0.889
11-20	Yes	0.091	.150	0.127-1.09
51-60	No	0.076	.141	0.127-0.686
61-70	Yes	0.076	.163	0.064-0.828

Post porcelainized heat treatments are being checked on some of the extra samples.

4. Porcelanized Substrate

As reported above, all substrates exhibited some bow. A fixture was built to attempt a straightening operation after porcelainizing. See figures 1 and 2.

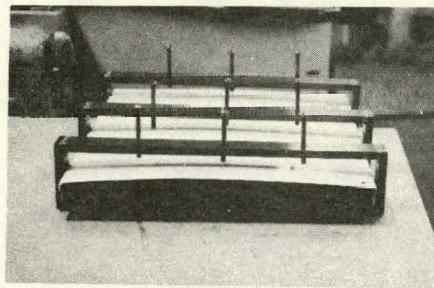


Figure 1

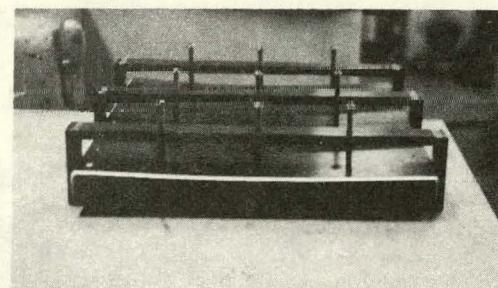


Figure 2

Figure 1 shows the substrate in the fixture before reversing the bow. Figure 2 shows the substrate with the bow reversed prior to heat treating. Preliminary tests indicate that a low temperature-time heat treat reduces the bow.

5. Design and Form Bus Bars

Copper clad Invar bus bar material has been completely processed to the required dimensions for minimodule assembly. The bus bar material will be pre tinned before assembly of the cell matrix.

6. Solder Fixture

A soldering fixture was completed which could accommodate up to a 5 x 6 matrix. It is basically a vacuum chuck on which the cells are positioned. The vacuum chuck is supported by a hot plate which pre-heats the chuck to minimize heat sinking, see Figures 3 and 4.

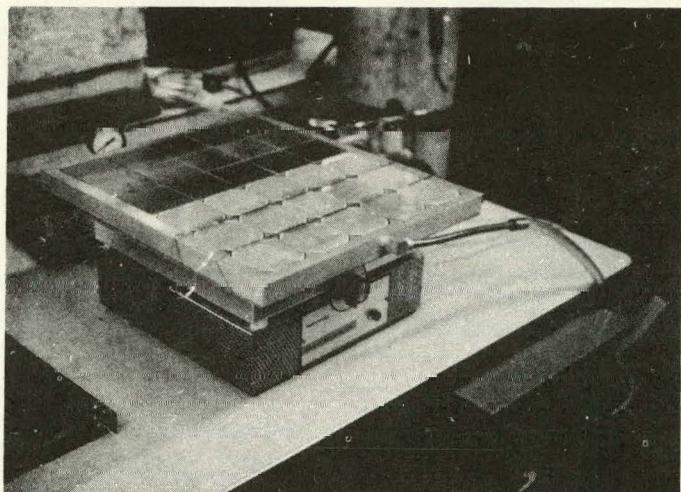


Figure 3. Vacuum Chuck with
3 x 5 Cell Matrix

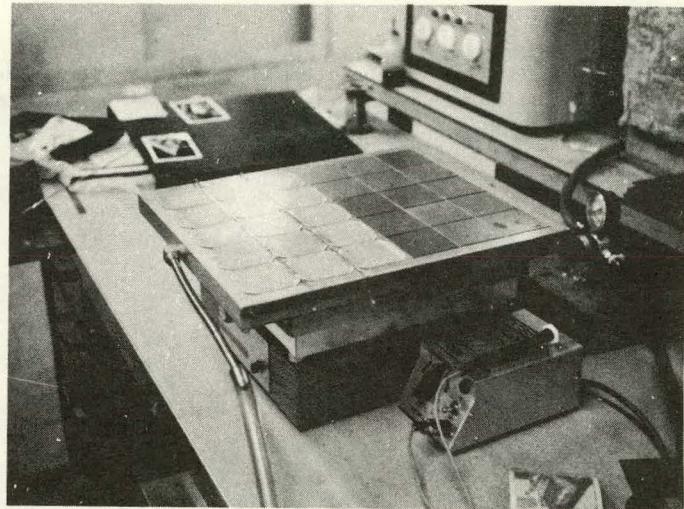


Figure 4. Vacuum Chuck with
3 x 5 Cell Matrix

7. Assemble Cell Matrix

Infrared soldering was first successfully demonstrated on a one-cell and a two-cell string of dummy cells. The dummy cells contain the correct metallization pattern but are not electrically active.

Using dummy cells a 3 x 5 cell matrix and 5 x 5 cell matrix were assembled to check out the assembly technique. The two parallel-series cell matrices are shown in Figures 5 and 6. The excellent cell nesting efficiency is evident in these figures.

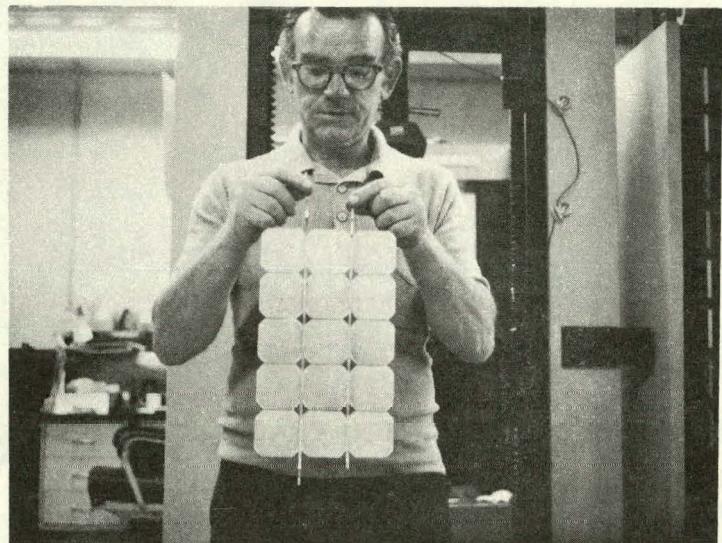


Figure 5. 3×5 Cell Matrix

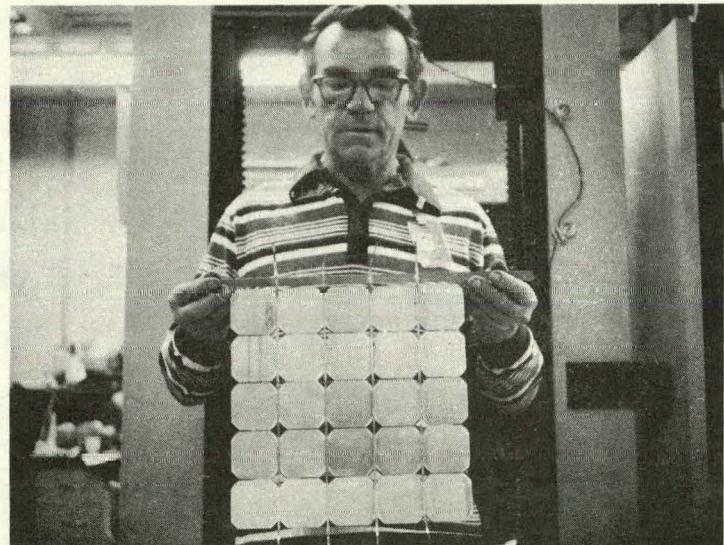


Figure 6. 5×5 Cell Matrix

SECTION III

CONCLUSIONS AND RECOMMENDATIONS

- Any process sequence that uses a steam oxidation step must follow the steam oxidation with a phosphorous diffusion step to retain minority carrier lifetime for solar cell operation.
- High temperature ($>1000^{\circ}\text{C}$) phosphorous diffusions degrade solar cell performance.
- Thermocompression bonding directly over the N+/P junction must be carefully controlled to avoid photoresponse degradation.

SECTION IV
NEW TECHNOLOGY

No areas of new technology were identified this quarter.

SECTION V

PROGRAM SUMMARY

Figure 7 shows the current work plan status. All scheduled activities are in process. No problems are apparent at present that will prevent attaining the indicated milestones.

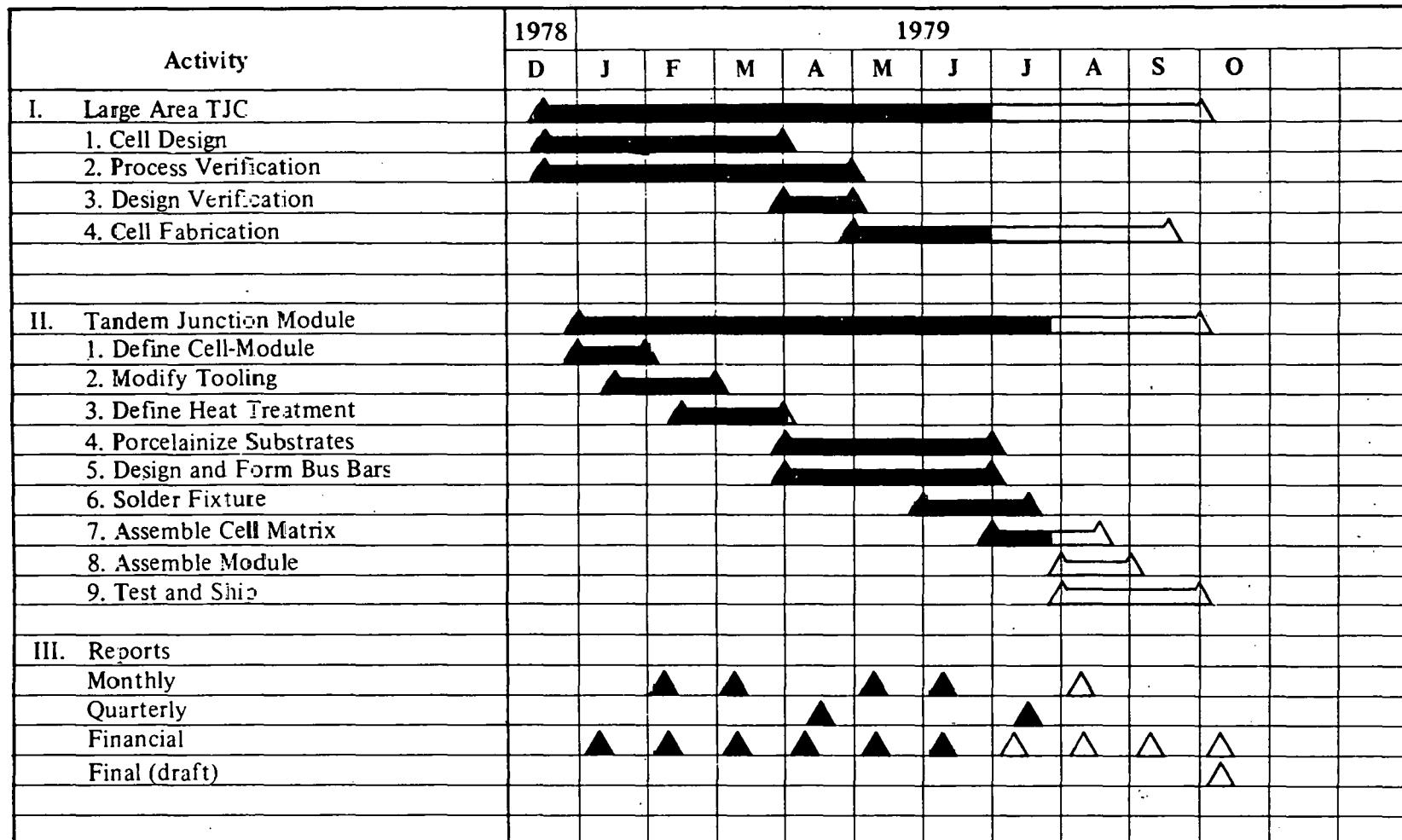


FIGURE 7. WORK PLAN STATUS