

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

READ INSTRUCTIONS  
BEFORE COMPLETING FORM

| REPORT DOCUMENTATION PAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                     |                                                                                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|------------------------------------------------------------------------------------|
| 1. REPORT NUMBER<br>DNA-TR-82-05-V1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2. GOVT ACCESSION NO.<br>ADA152 702 | 3. RECIPIENT'S CATALOG NUMBER                                                      |
| 4. TITLE (and Subtitle)<br>ANALYSIS OF RADIATION EXPOSURE FOR NAVAL<br>UNITS OF OPERATION CROSSROADS<br>Volume I—Basic Report                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                     | 5. TYPE OF REPORT & PERIOD COVERED<br>Technical Report                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                     | 6. PERFORMING ORG. REPORT NUMBER<br>SAI-84/1567 V1                                 |
| 7. AUTHOR(s)<br>R. Weitz C. Thomas J. Klemm<br>J. Stuart M. Knowles J. Goetz<br>E. Muller A. Landay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                     | 8. CONTRACT OR GRANT NUMBER(s)<br>DNA 001-82-C-0012                                |
| 9. PERFORMING ORGANIZATION NAME AND ADDRESS<br>Science Applications, Inc.<br>P.O. Box 1303<br>McLean, VA 22101-1303                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                     | 10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS<br>Task V99QAXNA-00011 |
| 11. CONTROLLING OFFICE NAME AND ADDRESS<br>Director<br>Defense Nuclear Agency<br>Washington, D.C. 20305                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                     | 12. REPORT DATE<br>3 March 1982                                                    |
| 14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                     | 13. NUMBER OF PAGES<br>168                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                     | 15. SECURITY CLASS. (of this report)<br>UNCLASSIFIED                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                     | 15a. DECLASSIFICATION/DOWNGRADING SCHEDULE<br>N/A since UNCLASSIFIED               |
| 16. DISTRIBUTION STATEMENT (of this Report)<br>Approved for public release; distribution unlimited.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                     |                                                                                    |
| 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                                                                                    |
| 18. SUPPLEMENTARY NOTES<br>This work was sponsored by the Defense Nuclear Agency under RDT&E RMSS Code B384082466 V99QAXNA00011 H2590D.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                     |                                                                                    |
| 19. KEY WORDS (Continue on reverse side if necessary and identify by block number)<br>Operation CROSSROADS Nuclear Test Personnel Review (NTPR)<br>Joint Task Force One Ship Contamination<br>Oceanic Nuclear Test<br>Radiation Exposure Assessment                                                                                                                                                                                                                                                                                                                                                                       |                                     |                                                                                    |
| 20. ABSTRACT (Continue on reverse side if necessary and identify by block number)<br>External radiation doses are reconstructed for crews of support and target ships of Joint Task Force One at Operation CROSSROADS, 1946. Volume I describes the reconstruction methodology, which consists of modeling the radiation environment, to include the radioactivity of lagoon water, target ships, and support ship contamination; retracing ship paths through this environment; and calculating the doses to shipboard personnel. The USS RECLAIMER, a support ship, is selected as a representative ship to demonstrate |                                     |                                                                                    |

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20. ABSTRACT (Continued)

this methodology. Doses for all other ships are summarized. Volume II (Appendix A) details the results for target ship personnel. Volume III (Appendix B) details the results for support ship personnel. Calculated doses for more than 36,000 personnel aboard support ships while at Bikini range from zero to 1.7 rem. Of those, approximately 34,000 are less than 0.5 rem. From the models provided, doses due to target ship reboarding and doses accrued after departure from Bikini can be calculated, based on the individual circumstances of exposure.

|                     |                                     |
|---------------------|-------------------------------------|
| Accession For       |                                     |
| NTIS GRA&I          | <input checked="" type="checkbox"/> |
| DTIC TAB            | <input type="checkbox"/>            |
| Unannounced         | <input type="checkbox"/>            |
| Justification       |                                     |
| By _____            |                                     |
| Distribution/ _____ |                                     |
| Availability Codes  |                                     |
| Avail and/or        |                                     |
| Dist                | Special                             |
| A-1                 |                                     |

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

## TABLE OF CONTENTS

| <u>SECTION</u>                                            | <u>PAGE</u> |
|-----------------------------------------------------------|-------------|
| List of Illustrations . . . . .                           | 2           |
| List of Tables . . . . .                                  | 3           |
| 1 INTRODUCTION . . . . .                                  | 5           |
| 1.1 Joint Task Force One Organization . . . . .           | 5           |
| 1.2 Shot Data . . . . .                                   | 7           |
| 1.3 Target Ship Arrays . . . . .                          | 7           |
| 1.4 Support Ships . . . . .                               | 7           |
| 1.5 Navy Personnel Summary . . . . .                      | 15          |
| 1.6 Dose Reconstruction Methodology . . . . .             | 15          |
| 2 RADIATION ENVIRONMENT . . . . .                         | 19          |
| 2.1 Shot ABLE Water Intensity . . . . .                   | 19          |
| 2.2 Shot ABLE Target Ship Intensity . . . . .             | 24          |
| 2.3 Shot BAKER Water Intensity . . . . .                  | 34          |
| 2.4 Shot BAKER Target Ship Intensity . . . . .            | 41          |
| 2.5 Shot BAKER Support Ship Contamination . . . . .       | 43          |
| 3 NAVAL OPERATIONS . . . . .                              | 55          |
| 3.1 Pre-shot Evacuation . . . . .                         | 55          |
| 3.2 Post-shot Maneuvers . . . . .                         | 55          |
| 3.3 Boarding Party Operations . . . . .                   | 63          |
| 4 DOSE RECONSTRUCTION . . . . .                           | 65          |
| 4.1 Computerized Methodology . . . . .                    | 67          |
| 4.2 Program Descriptions/Listings . . . . .               | 69          |
| 5 USS RECLAIMER OPERATIONS . . . . .                      | 129         |
| 5.1 USS RECLAIMER Dose Reconstruction . . . . .           | 129         |
| 5.2 USS RECLAIMER Boarding Parties . . . . .              | 137         |
| 5.3 Comparison with Film Badge Data . . . . .             | 139         |
| 6 UNCERTAINTY ANALYSIS . . . . .                          | 141         |
| 6.1 Uncertainty of Shot ABLE Water Doses . . . . .        | 141         |
| 6.2 Uncertainty of Shot ABLE Target Ship Doses . . . . .  | 142         |
| 6.3 Uncertainty of Shot BAKER Water Doses . . . . .       | 143         |
| 6.4 Uncertainty of Shot BAKER Target Ship Doses . . . . . | 144         |
| 6.5 Uncertainty of Ship Contamination Doses . . . . .     | 144         |
| 6.6 Total Uncertainty . . . . .                           | 147         |
| 7 CONCLUSIONS . . . . .                                   | 149         |
| REFERENCES . . . . .                                      | 157         |

## LIST OF ILLUSTRATIONS

| <u>FIGURE</u> |                                                                        | <u>PAGE</u> |
|---------------|------------------------------------------------------------------------|-------------|
| 1-1           | Joint Task Force One Staff Organization. . . . .                       | 6           |
| 1-2           | Summary of Shot ABLE Target Array . . . . .                            | 10          |
| 1-3           | Summary of Shot BAKER Target Array . . . . .                           | 11          |
| 1-4           | Shot ABLE Target Ship Locations . . . . .                              | 12          |
| 1-5           | Shot BAKER Target Ship Locations . . . . .                             | 13          |
| 1-6           | Dose Reconstruction Methodology. . . . .                               | 17          |
| 2-1           | Decay of Shot ABLE Water Samples. . . . .                              | 20          |
| 2-2           | Theoretical Model of Shot ABLE Water Intensity . . . . .               | 25          |
| 2-3           | ABLE Day Red and Blue Lines . . . . .                                  | 26          |
| 2-4           | Shot ABLE Ship Intensities Relative to Intensity at 24 Hours . . . . . | 29          |
| 2-5           | Shot BAKER Water Activity . . . . .                                    | 36          |
| 2-6           | Red and Blue Lines after Shot BAKER . . . . .                          | 37          |
| 2-7           | USS PENSACOLA Post-BAKER Ship Contamination . . . . .                  | 42          |
| 2-8           | Ship Contamination Model Parametric Curves . . . . .                   | 49          |
| 2-9           | Support Ship Contamination Model . . . . .                             | 51          |
| 2-10          | Interior Intensity Distribution for a Destroyer . . . . .              | 52          |
| 3-1           | CJTF-1 Sector Chart . . . . .                                          | 56          |
| 3-2           | Group Locations at BAKER Detonation . . . . .                          | 57          |
| 3-3           | Post-BAKER Reentry . . . . .                                           | 59          |
| 3-4           | PGM Operation Plan . . . . .                                           | 60          |
| 4-1           | Ship Position Calculation . . . . .                                    | 68          |
| 7-1           | Distribution of Calculated Doses . . . . .                             | 155         |

## LIST OF TABLES

| <u>TABLE</u>                                                                              | <u>PAGE</u> |
|-------------------------------------------------------------------------------------------|-------------|
| 1-1 Operation CROSSROADS Detonations . . . . .                                            | 8           |
| 1-2 Naval Vessel Types at Operation CROSSROADS . . . . .                                  | 9           |
| 1-3 Summary of Support Ships . . . . .                                                    | 14          |
| 1-4 Summary of Naval Personnel . . . . .                                                  | 16          |
| 2-1 Shot ABLE Water Intensity Data . . . . .                                              | 23          |
| 2-2 Elemental Compositions of Various Vessel Types . . . . .                              | 27          |
| 2-3 Shot ABLE Target Ship Intensities . . . . .                                           | 32          |
| 2-4 Calculated Average Exterior Ship Intensities at 24 Hours<br>after Shot ABLE . . . . . | 33          |
| 2-5 Summary of Shot BAKER Water Contamination Data . . . . .                              | 39          |
| 2-6 Contamination Model Data Base . . . . .                                               | 46          |
| 2-7 Ship Apportionment Factors . . . . .                                                  | 53          |
| 3-1 PGM Patrol Assignments . . . . .                                                      | 58          |
| 3-2 Dosimetry Summary for LCPL Crews . . . . .                                            | 62          |
| 4-1 Input Path . . . . .                                                                  | 71          |
| 4-2 Input Passing Ship Dose . . . . .                                                     | 76          |
| 4-3 Water Intensity . . . . .                                                             | 81          |
| 4-4 Late Water . . . . .                                                                  | 88          |
| 4-5 Target Intensity . . . . .                                                            | 92          |
| 4-6 Ship Contamination . . . . .                                                          | 98          |
| 4-7 Radiation Report . . . . .                                                            | 104         |
| 4-8 Update . . . . .                                                                      | 110         |
| 4-9 Update Target Ships . . . . .                                                         | 116         |
| 4-10 Update Passing Ship Dose . . . . .                                                   | 120         |
| 4-11 Path Report . . . . .                                                                | 123         |
| 4-12 Update Ship Contamination . . . . .                                                  | 127         |
| 5-1 Support Ship Information Summary . . . . .                                            | 130         |
| 5-2 RECLAIMER Path Report . . . . .                                                       | 131         |
| 5-3 RECLAIMER Radiation Report . . . . .                                                  | 136         |
| 5-4 Boarding Team Dose Reconstruction, USS RECLAIMER . . . . .                            | 138         |
| 5-5 Comparison of RECLAIMER Calculated Doses with Dosimetry . . . . .                     | 140         |
| 6-1 Sources of Uncertainty for Ship Contamination Doses . . . . .                         | 145         |
| 7-1 Film Badge Dose Summary for Support Ship Crews . . . . .                              | 150         |
| 7-2 Summary of Calculated Doses for Target Ship Crews . . . . .                           | 153         |



## Section 1

### INTRODUCTION

This report provides a description of the methodology and the results of the reconstruction of radiation doses received by test participants aboard the various support and target ships of Joint Task Force One at Operation CROSSROADS from 1 July 1946 until departure from Bikini Lagoon. The report consists of three volumes. Volume I, Methodology, contains the description of the dose reconstruction methodology, with supporting calculations. The methodology consists of modeling the radiation environment, determining the ship paths through this environment, and calculating the doses to personnel. The support ship USS RECLAIMER is selected to demonstrate the application of this methodology for a representative ship. This vessel is chosen because her movements were extensively documented, and because she was the flagship of the Director of Ship Material and therefore participated in nearly every maneuver and operation of radiological significance. The doses calculated for RECLAIMER personnel are compared with existing film badge data to gauge the accuracy of the results. Volume II (Appendix A, Target Ships) contains the results of target ship analyses. The data in this volume allow the calculation of doses received while aboard the target vessels. Volume III (Appendix B, Support Ships) contains the results of dose reconstructions for personnel aboard support ships during Operation CROSSROADS.

#### 1.1 Joint Task Force One Organization

Joint Task Force One was established by the Joint Chiefs of Staff to conduct Operation CROSSROADS, the first nuclear test series following the World War II bombings of Hiroshima and Nagasaki. The task force staff organization is shown in Figure 1-1. Much of the documentation on which these dose reconstructions are based emanated from the offices of the Technical Director and Director of Ship Material. Joint Task Force One was dissolved 1 November 1946 and was succeeded by the Joint CROSSROADS Committee. This committee was disbanded 10 June 1947 after publication of the final CROSSROADS reports.

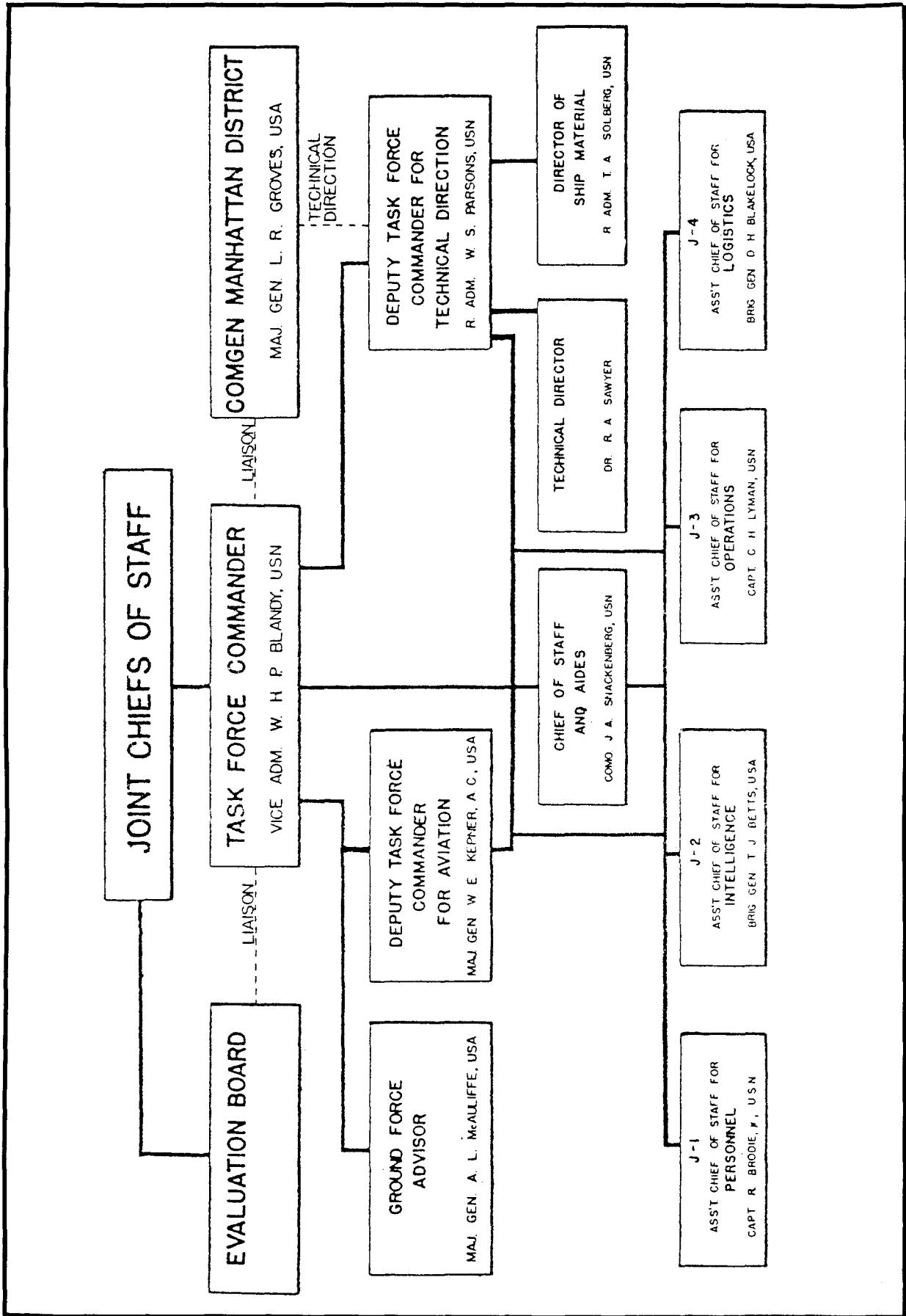



Figure 1-1 Joint Task Force One Staff Organization

Source: Reference 21

## 1.2 Shot Data

Operation CROSSROADS consisted of two nuclear detonations, Shots ABLE and BAKER, at Bikini Atoll in July 1946. The details of these shots are given in Table 1-1. Both nuclear devices were similar to that detonated over Nagasaki the previous year. Shot ABLE was a low airburst, Shot BAKER a shallow underwater detonation.

## 1.3 Target Ship Arrays

Since Operation CROSSROADS was primarily a Navy test, a large assortment of naval vessels was present in the lagoon during the operation. These various types of target and support vessels are listed for reference in Table 1-2.

Extensive arrays of target vessels were positioned in the lagoon of Bikini Atoll for both shots. Figures 1-2 and 1-3 outline the number and types of target vessels utilized for Shots ABLE and BAKER, respectively, while Figures 1-4 and 1-5 display the approximate target ship locations for each shot. The exact locations and orientations of most target vessels relative to surface zero are provided in Reference 1 (Chapters 10 and 20). While References 2 and 3 contain fairly complete listings of target vessels for Operation CROSSROADS, no single source has been found that contains a complete listing. Reconstructions of the target arrays reveal that there were 88 target vessels for each shot, of which 70 were anchored and 18 were beached. Between Shots ABLE and BAKER, some ships were removed from the target array and new ones added. In all, 95 naval units have been identified as target vessels during Operation CROSSROADS. A number of these were small non-commissioned or unmanned craft, some of which served as beached targets. The final count of target vessels for purposes of this analysis is 84; radiological data for these vessels are included in Appendix A, Target Ships. The remaining 11 vessels were either too small to be tracked or were sunk as a result of the tests.

## 1.4 Support Ships

A large number of support vessels were required to conduct the operation. The number and types of such vessels are summarized in Table 1-3 from data taken primarily from Reference 3. Of the 154 non-target support ships, it was possible to extract positional data from the deck logs of 121 ships in order to reconstruct their movements.

Table 1-1  
Operation CROSSROADS Detonations

• SHOT ABLE

Time: 0900 hrs, 1 July 1946  
Place: Bikini Lagoon  
Type Weapon: Plutonium Implosion  
Yield: 23 KT  
Type Burst: Airburst (520 ft) over water

• SHOT BAKER

Time: 0835 hrs, 25 July 1946  
Place: Bikini Lagoon  
Type Weapon: Plutonium Implosion  
Yield: 23 KT  
Type Burst: Shallow Underwater (90 ft depth)

Table 1-2  
Naval Vessel Types at Operation CROSSROADS

|                                        |                                          |
|----------------------------------------|------------------------------------------|
| AD....Destroyer Tender                 | ATR....Ocean Rescue Tug                  |
| AG....Auxiliary Miscellaneous          | AV....Seaplane Tender                    |
| AGC....Communication                   | AVP....Seaplane Tender, Small            |
| AGS....Surveying                       | AW....Water Distilling                   |
| AH....Hospital                         | BB....Battleship                         |
| AKA....Attack Cargo Transport          | CA....Heavy Cruiser                      |
| AKS....Cargo Transport, General Stores | CL....Light Cruiser                      |
| AN....Net Laying                       | CV....Aircraft Carrier                   |
| AO....Oiler                            | CVE....Aircraft Carrier, Escort          |
| AOG....Gasoline Tanker                 | CVL....Aircraft Carrier, Light           |
| AOW....Oiler/Water                     | DD....Destroyer                          |
| AP....Troop Transport                  | IX....Unclassified Miscellaneous         |
| APA....Attack Troop Transport          | LCI....Landing Craft, Infantry           |
| APB....Barracks Ship                   | LCM....Landing Craft, Mechanized         |
| APD....Troop Transport, High-Speed     | LCPL....Landing Craft, Personnel, Large  |
| APH....Hospital                        | LCT....Landing Craft, Tank               |
| APL....Troop Transport, Labor          | LCVP....Landing Craft, Vehicle/Personnel |
| AR....Repair                           | LSD....Landing Ship, Dock                |
| ARB....Battle Damage Repair            | LSM....Landing Ship                      |
| ARD....Dry Dock Repair                 | LST....Landing Ship, Tank                |
| ARDC....Dry Dock                       | PGM....Motor Gunboat                     |
| ARG....Engine Repair                   | SS....Submarine                          |
| ARL....Landing Craft Repair            | WAGL....Coast Guard Auxiliary            |
| ARS....Salvage                         | YF....Covered Lighter                    |
| ARSD....Salvage Lifting Ship           | YMS....Mine Sweeper                      |
| ARST....Salvage Craft Tender           | YO....Fleet Oil Barge                    |
| AS....Submarine Tender                 | YOG....Gasoline Barge                    |
| ASR....Submarine Rescue                | YOW....Oil/Water Barge                   |
| ATA....Auxiliary Ocean Tug             | YP....Yard Patrol                        |
| ATF....Fleet Ocean Tug                 | YW....Water Barge                        |

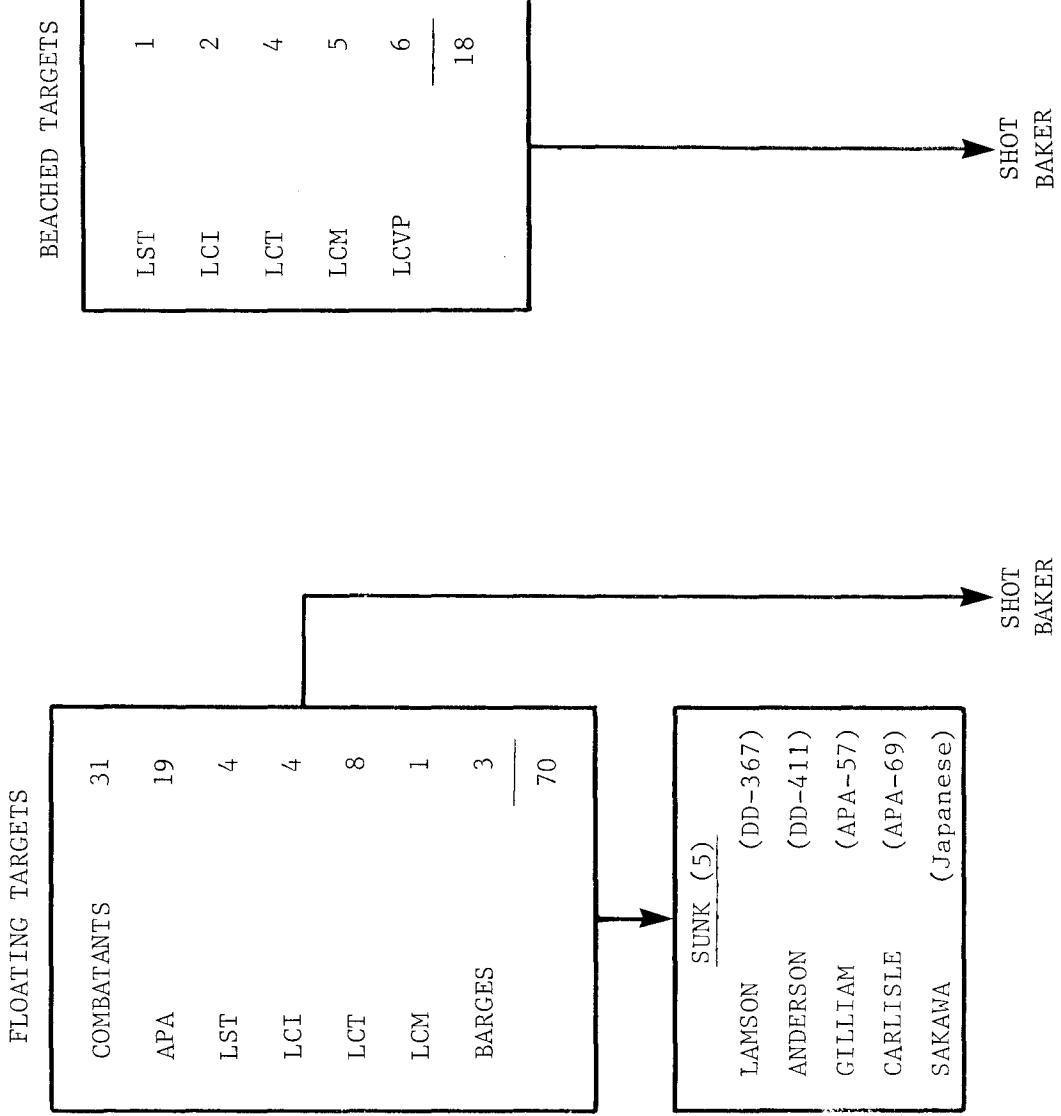



Figure 1-2 Summary of Shoot ABLE Target Array

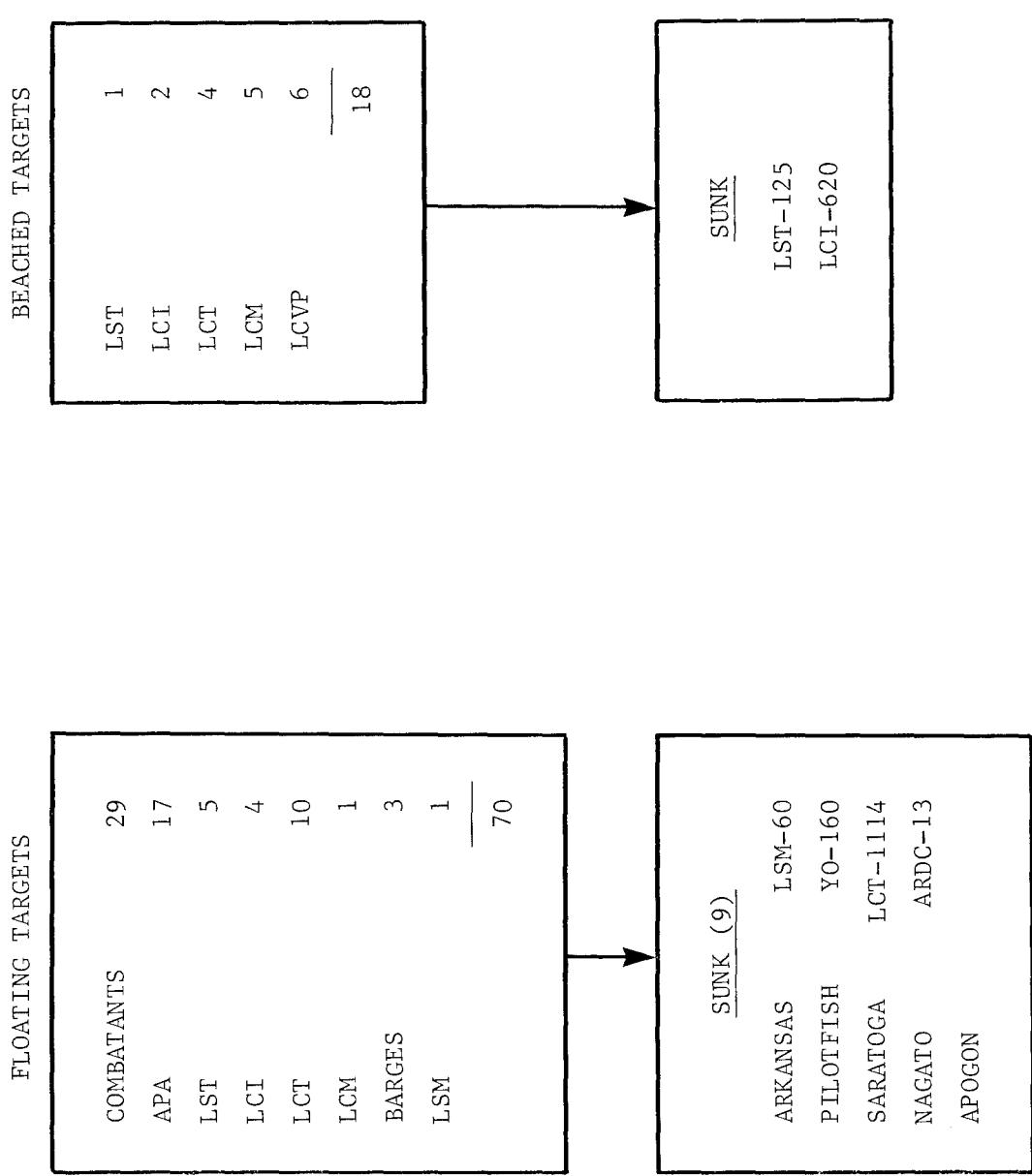



Figure 1-3 Summary of Shot BAKER Target Array

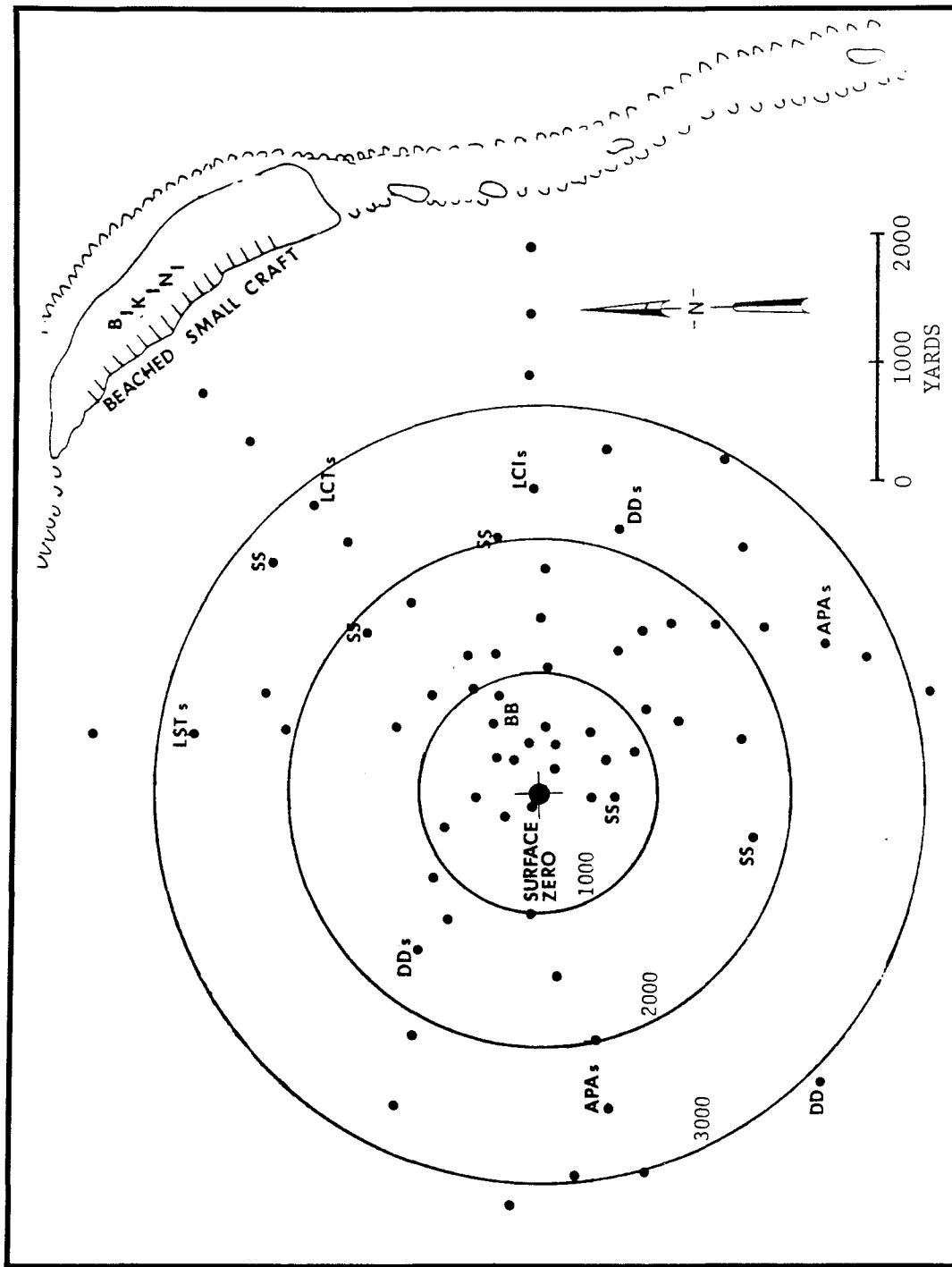



Figure 1-4 Shot ABLE Target Ship Locations

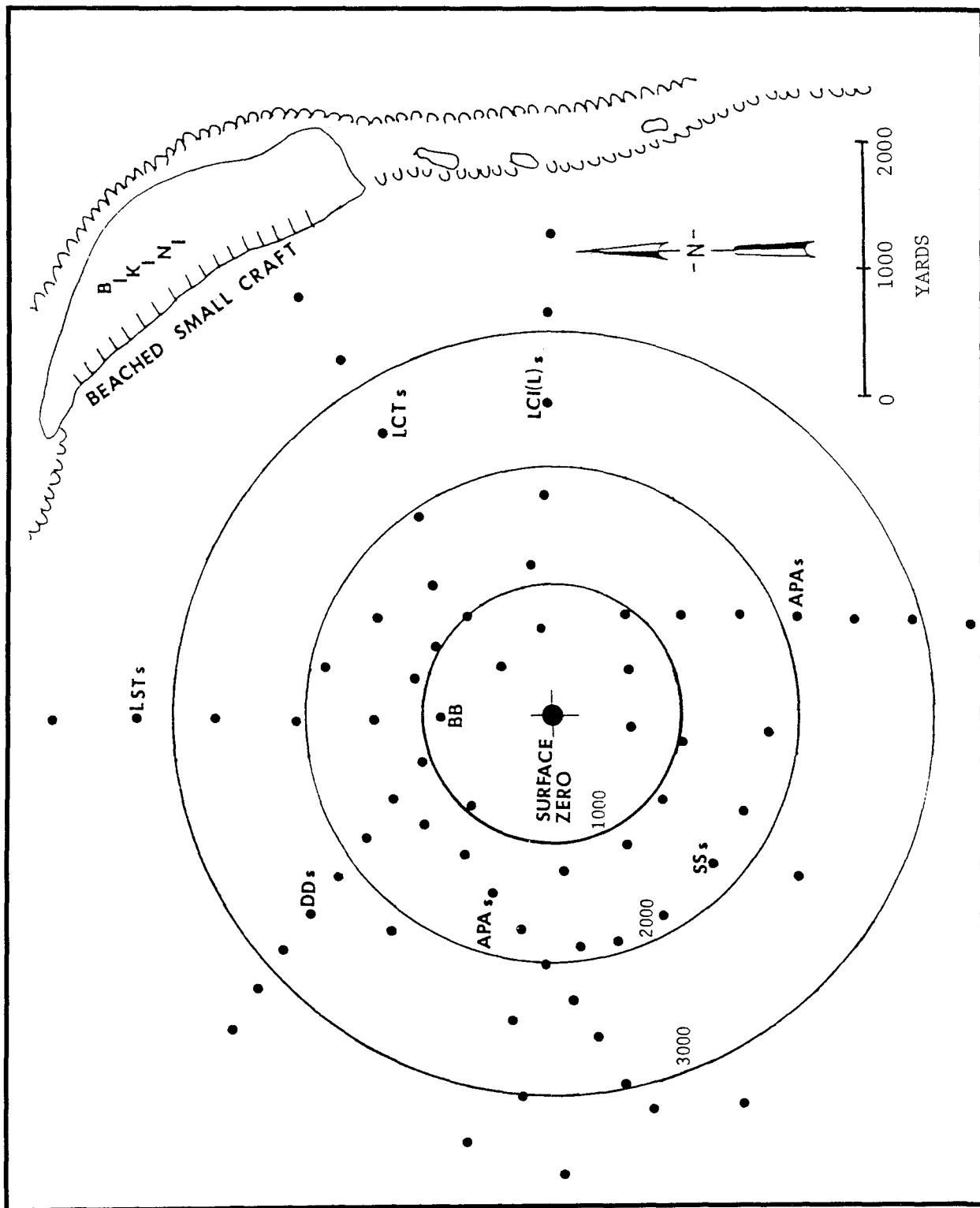



Figure 1-5 Shot BAKER Target Ship Locations

Table 1-3  
Summary of Support Ships

| <u>Group/Unit</u>                                                                                               | <u>Number</u> |
|-----------------------------------------------------------------------------------------------------------------|---------------|
| Flag and Technical Group<br>(AG, AGC, AH, AP, APA, APD, AV, CA, LCT)                                            | 11            |
| Transportation Group<br>(AGC, AKA, APA, LST)                                                                    | 18            |
| Naval Air Group<br>(AVP, CV, CVE, DD)                                                                           | 7             |
| Surface Patrol Group<br>(DD)                                                                                    | 10            |
| Salvage Group<br>(AN, ARS, ARSD, ARST, ASR, ATA, ATF, ATR, LCT,                                                 | 24            |
| Service Group<br>(AD, AG, AKS, AO, AOG, AR, ARB, ARD, ARG, ARL, AS, ATA, ATF, AW, IX, LST, YC, YF, YO, YOG, YW) | 43            |
| Dispatch and Boat Pool Unit<br>(APB, LCI, LCT, LSD, PGM)                                                        | 23            |
| Medical Unit<br>(AH)                                                                                            | 2             |
| Survey Unit<br>(AGS, AKA, WAGL, YMS, YP)                                                                        | 11            |
| Evacuation and Miscellaneous<br>(APL, LCT, LST)                                                                 | 5             |
|                                                                                                                 | <hr/> 154     |

The results of the dose calculations for these ships are contained in Appendix B. The other 34 were determined to be either small units with no permanently assigned crew, or non-commissioned vessels. No deck logs could be located for reconstruction of the movements of these vessels (types LCT, YO, YOG, YP, YF). The 34 naval units listed by the official historian as being support ships and participants of Operation CROSSROADS for which no deck logs have been located are:

|          |                    |        |
|----------|--------------------|--------|
| LCT-581  | LCT-1377           | YF-753 |
| LCT-746  | LCT-1415           | YF-754 |
| LCT-1116 | LCT-1420           | YF-990 |
| LCT-1130 | LCT-1461           | YF-991 |
| LCT-1132 | LIMESTONE (IX-158) | YF-992 |
| LCT-1155 | YC-1009            | YO-132 |
| LCT-1184 | YF-385             | YO-199 |
| LCT-1268 | YF-733             | YOG-63 |
| LCT-1341 | YF-734             | YOG-70 |
| LCT-1359 | YF-735             | YP-636 |
| LCT-1361 | YF-752             | YW-92  |

### 1.5 Navy Personnel Summary

Over 39,000 Navy personnel participated in Operation CROSSROADS. The distribution of personnel among the various types of support and target vessels is given in Table 1-4.

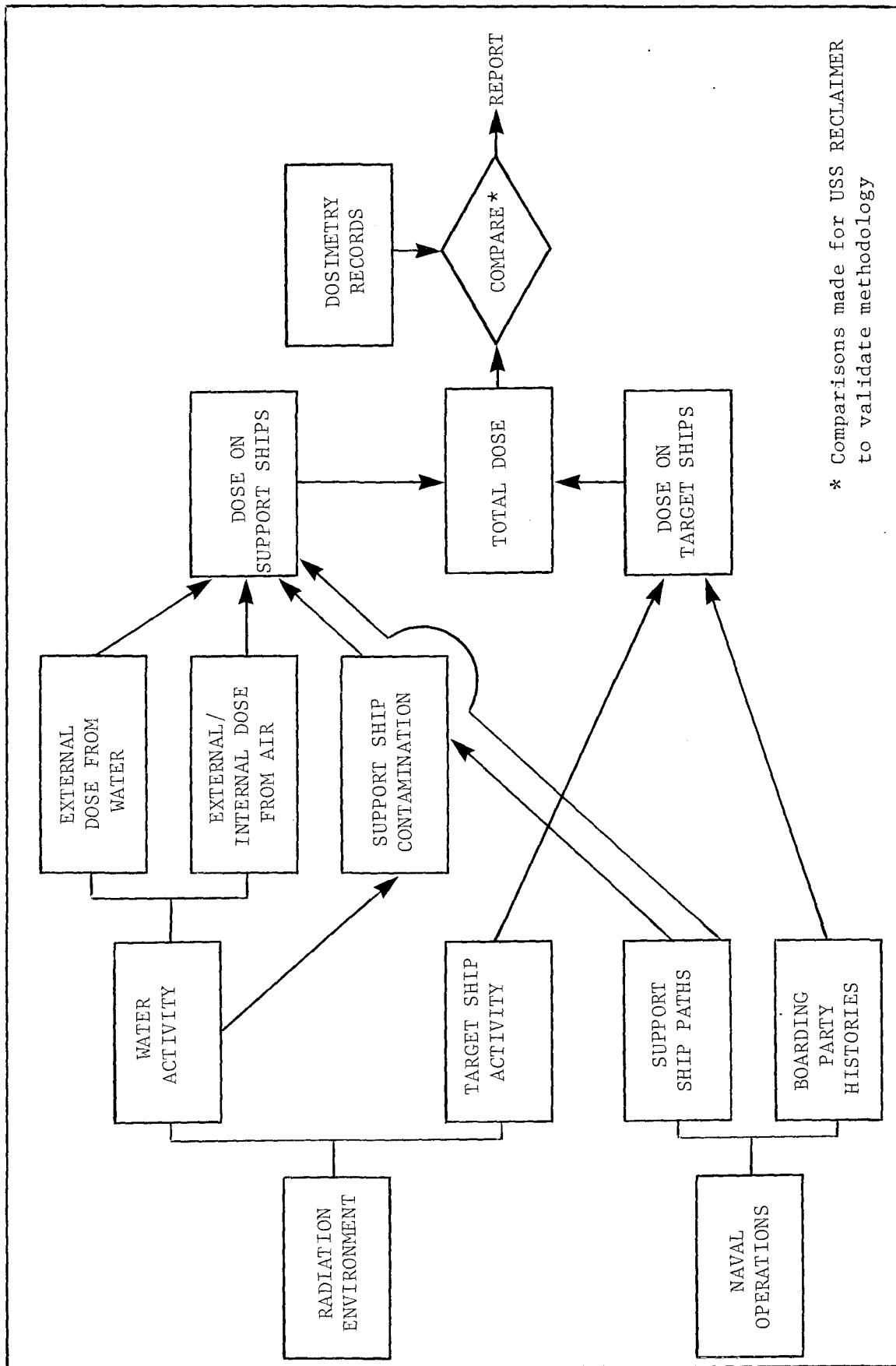
### 1.6 Dose Reconstruction Methodology

The methodology developed for dose reconstruction of Operation CROSSROADS personnel is shown schematically in Figure 1-6. The modeling of the radiation environment is described in detail in Section 2, the identification of relevant ship operations in Section 3, and the total dose reconstruction in Section 4. The basic approach used in dose reconstruction is to describe mathematically the radiation environment that existed in the Bikini Lagoon as a function of time and location, and then to overlay the physical movement of the naval units. The time integral of the radiation intensity at a vessel's location as it moves within the radiation environment determines the dose attributed to the crew of that vessel. Three major sources of radioactivity are considered: lagoon water, target ships, and support ship hull and internal (e.g., piping)

Table 1-4  
Summary of Naval Personnel

Support Ships:

|                              |               |
|------------------------------|---------------|
| Flag and Technical Group     | 5140          |
| Transportation Group         | 5288          |
| Naval Air Group              | 4177          |
| Surface Patrol Group         | 2376          |
| Service Group                | 5344          |
| Salvage Group                | 1698          |
| Dispatch and Boat Pool       | 1539          |
| Medical Unit                 | 1258          |
| Survey Unit                  | 809           |
| Evacuation and Miscellaneous | 23            |
|                              | <u>27,652</u> |
| JTF Staff and Air Units      | 2762*         |


Target Ships:

|               |               |
|---------------|---------------|
| Non-remannded | 7912          |
| Remanned      | 1092          |
|               | <u>9004**</u> |

Total: 39,418

\*Doses for these personnel are derived from the support ships to which they were assigned.

\*\*On transportation ships at time of shot and until radiologically safe to return to target ship.



\* Comparisons made for USS RECLAIMER to validate methodology

Figure 1-6 Dose Reconstruction Methodology

contamination. Suspended and dissolved fission products concentrated in the marine growth and rust on the hull at and below the waterline and in the internal salt water piping of support ships which sailed through contaminated water. Ship contamination is therefore considered for Shot BAKER only, since no fission products were detected in the lagoon water after Shot ABLE.

## Section 2

### RADIATION ENVIRONMENT

The radiation environments created at Bikini Atoll by Shots ABLE and BAKER were quite different--virtually all localized activity from Shot ABLE resulted from neutron activation, while Shot BAKER activity was predominantly from weapon debris. The magnitude of the radiation hazard after BAKER was much more significant than that of ABLE, and consequently the BAKER activity was measured and documented in more detail than was done for Shot ABLE. The measurements made to characterize the radiation environments were of two types: those taken by scientific personnel under the Technical Director, usually from samples (e.g., water, rust) collected in the lagoon and removed to a laboratory for analysis; and those made by radiation monitors for use by the Director of Ship Material in controlling operations in and around the radioactive areas. While the documentation on many of these measurements has not been located, sufficient information has been recovered to allow reconstructions of the environments for both shots. The approach taken here is to develop radiation intensity models from the best available data, and to use all other relevant documentation to check these models for consistency.

#### 2.1 Shot ABLE Water Intensity

It is well-documented (References 1 (Chapter 17), 4 (Enclosure J), and 5) that virtually all the radioactivity observed in the lagoon after Shot ABLE was due to neutron activation, and that little fallout (fission products and unfissioned plutonium) was deposited locally. A theoretical analysis of neutron-activated seawater was performed with computer codes ORIGEN (Reference 6) and ANISN (Reference 7), using the salt concentrations of typical seawater given in Reference 8. The results indicate that the gamma radiation emitted in sodium-24 (Na-24) decay was the major contributor to the intensity above the seawater from shortly after detonation until approximately one week later. This is the period during which all significant operations took place in the vicinity of the target array following Shot ABLE. These conclusions are confirmed by analysis of water sample data found in the archives at Los Alamos National Laboratory. The water samples were taken on 1 July 1946 (ABLE day), and activities were measured at various intervals through 8 July. The decay curves, shown in Figure 2-1, clearly demonstrate that the early radioactivity (through

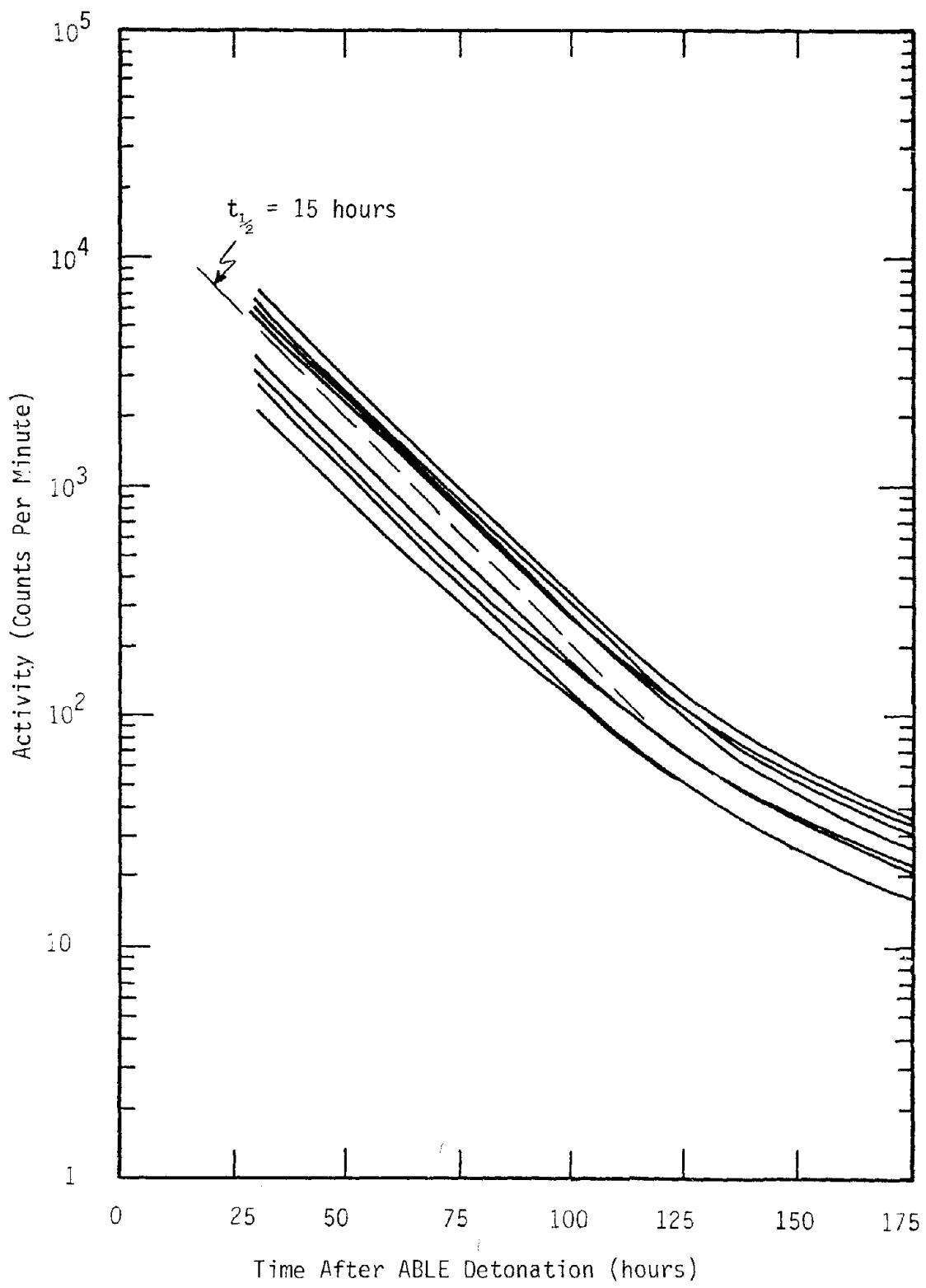



Figure 2-1 Decay of Shot ABLE Water Samples

the first 100 hours after detonation) was dominated by an isotope with a half life of approximately 15 hours; this isotope is Na-24. The change in slope evident in these curves indicates that another isotope (probably bromine-82) became significant after approximately five days. However, Na-24 would have continued providing the major contribution to the intensity above the water surface for another few days, due to the high energy of the Na-24 gamma rays (average energy greater than 2 MeV, compared to approximately 0.8 MeV for bromine-82). Therefore it is necessary to consider only one isotope, Na-24, in developing a water intensity model.

In determining the intensity from Na-24 in the lagoon water, it is necessary to specify the initial source distribution, model the time-dependent concentration of this isotope in the seawater, and develop a relation between waterborne activity and intensity in air. The initial distribution of radioactive sodium was closely related to the distribution of thermal neutrons at the water surface in the vicinity of surface zero (SZ). The approximate nature of the latter distribution is determined with computer code ATR4 (Reference 9); it appears that this distribution was so sharply peaked around SZ that, when considering subsequent diffusion, the initial distribution of Na-24 in the water can be taken as a point source at SZ for computational purposes. The concentration of Na-24 in the seawater changed with time due to horizontal diffusion, vertical diffusion, and radiological decay. Horizontal diffusion caused the radioactive area to spread, with the concentration at radius  $r$  and time  $t$  after detonation being approximately proportional to (Reference 8)

$$t^{-1} \exp \left[ -r^2 / 4D_h t \right],$$

where  $D_h$  = horizontal diffusion coefficient (assumed to be constant in this simplified model). Due to vertical diffusion, the concentration of Na-24 in the upper layer of seawater decreased approximately as  $t^{-1/2}$  (Reference 10), quickly becoming nearly uniform with depth. Radioactive decay caused a decrease in Na-24 concentration proportional to  $e^{\lambda t}$ , where  $\lambda = 0.0462 \text{ hr}^{-1}$  (decay constant for Na-24).

The intensity (measured, for example, in roentgen (R)/hour) above such seawater is proportional to the activity density of Na-24 in the seawater (e.g., in curies/cm<sup>3</sup>) which, in turn, is proportional to the concentration of Na-24. In each decay, a Na-24 nucleus emits two gamma rays with energies of 1.37 and 2.75 MeV, respectively.

Calculations performed with the radiation transport code ANISN (Reference 7) indicate that this decay results in an intensity of 3.51 R/hr at one meter above the water surface when the activity density of the water is one microcurie of Na-24 per  $\text{cm}^3$ . This value decreases only slightly to 3.44 at 2.7 meters and 3.23 at 9.1 meters above the water surface. Therefore, within at least ten meters of the water surface, the distance above the surface is not a significant parameter in determining intensity. Within this region above the surface, where personnel aboard ships are likely to be located, the intensity may be expressed as

$$I(r, t) = t^{-3/2} \exp \left[ -A \left( \frac{r^2}{t} \right) - \lambda t + B \right],$$

where parameter A depends on the horizontal diffusion coefficient, and B depends on the horizontal and vertical diffusion coefficients and the total number of neutrons captured in the water. The values of the diffusion coefficients and number of neutrons absorbed are largely uncertain; therefore A and B are empirically determined by fitting this expression to the existing measurements of intensity at specific times and locations.

Much of the recorded intensity data is contained in the messages from the Radiological Safety Control Center, which specify the coordinates of the 0.1 R/day and 1.0 R/day isointensity contours at frequent time intervals following the ABLE detonation. These contours, referred to as the "blue line" and "red line", respectively, in CROSSROADS literature, have the following significance. The daily dose tolerance allowed for most personnel during Operation CROSSROADS was 0.1 R/day. Therefore, a ship theoretically could have operated outside the blue line for an indefinite period without exceeding this tolerance. Operation between the blue and red lines was permitted only for certain ships ("red line ships"), and only for durations such that the daily tolerance was not exceeded. The red line was not to be crossed by any vessel. The red and blue line contours, although generally not closed due to insufficient numbers of readings, can be approximated by circles of appropriate radii. These radii are presented in Table 2-1, together with various other data found in the literature. The red line was eliminated early on the morning of ABLE +1 day (A+1), indicating that the maximum water intensity fell below 1 R/day during the previous night. The blue line was eliminated at 1008 hours on A+1. These data ( $I = 0.1 \text{ R/day} = 0.0042 \text{ R/hr}$ ,  $r = 0$ ,  $t = 25 \text{ hours}$ ) are used to evaluate the parameter B, giving

Table 2-1  
Shot ABLE Water Intensity Data

| <u>Source</u>     | <u>Radius (m)</u> | <u>Time After Detonation (hrs)</u> | <u>Reported Intensity (R/hr)</u> | <u>Model Intensity (R/hr)</u> |
|-------------------|-------------------|------------------------------------|----------------------------------|-------------------------------|
| References 5, 11  | 0                 | 2                                  | 1.0                              | 0.53                          |
| RSCC*             | 900               | 4                                  | 0.042                            | 0.068                         |
| Reference 4       | 810**             | 4                                  | 0.021                            | 0.081                         |
| RSCC              | 1800              | 4                                  | 0.0042                           | 0.0043                        |
| RSCC              | 2600              | 4.75                               | 0.0042                           | 0.0002                        |
| RSCC              | 1800              | 6.75                               | 0.0042                           | 0.0077                        |
| RSCC              | 1500              | 22.3                               | 0.0042                           | 0.0035                        |
| RSCC              | 700               | 24.7                               | 0.0042                           | 0.0039                        |
| Reference 4, RSCC | 0                 | 25                                 | 0.0042                           | 0.0042                        |

\*Radiological Safety Control Center

\*\*Inferred from reference, which was not specific.

$B = 0.503$ . The remaining data in Table 2-1 are then used to determine a mean value of the parameter  $A$  to be  $4.56 \times 10^{-6}$ . In these calculations,  $t$  is in hours,  $r$  in meters, and intensity  $I$  in R/hr. It may be noted that the associated value of the horizontal diffusion coefficient,

$$D_h = \frac{1}{4A} = 5.5 \times 10^4 \text{ m}^2/\text{hr},$$

is in excellent agreement with a value of  $5.4 \times 10^4 \text{ m}^2/\text{hr}$  derived by W.H. Munk, et. al. (Reference 12) from a study of the diffusion of radioactive material deposited in the lagoon water by Shot BAKER.

The intensities calculated from this model are displayed in Table 2-1 for times and radii corresponding to the available data. With the exception of two outlying data points, the agreement between the model and observed intensities is generally good. The intensity equation derived above can be used to predict isointensity contours at specific times. The radii of the 0.1 R/day and 1.0 R/day contours are plotted in Figure 2-2 as functions of time, and the predicted red and blue contours are compared with the reported red and blue lines in Figure 2-3 for 1255 hours on ABLE day. It is found that better agreement between model and measurement can be achieved by allowing the radially symmetric intensity pattern to drift northward (azimuth  $10^\circ$ ) at a speed of approximately 900 meters per day. This correction is included in all Shot ABLE dose calculations.

## 2.2 Shot ABLE Target Ship Intensity

The radioactivity detected on the target ships after Shot ABLE was due almost entirely to neutron activation of ship materials (Chapter 17 of Reference 1, Enclosure J of Reference 4). However, since the activity levels were rather low, few measurements were documented, thus necessitating the calculations which follow.

Listings of the elemental compositions of seven vessel types, representing most of the ships present in the target array for Shot ABLE, were found in the Operation CROSSROADS files in the archives at Los Alamos National Laboratory. This information is presented in Table 2-2. By analyzing the radioactive isotopes produced by thermal neutron capture in the ship material, and the gamma rays emitted

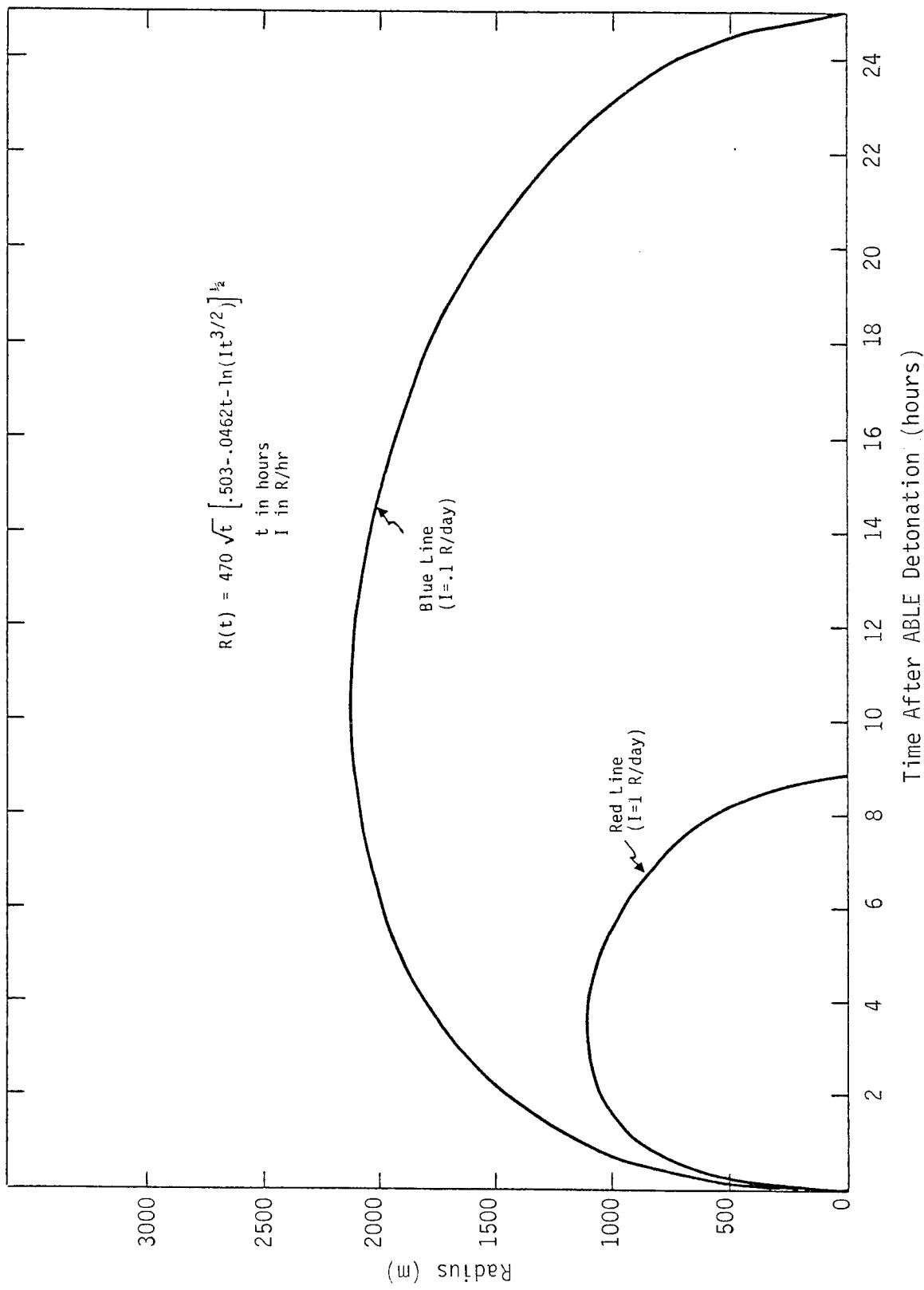



Figure 2-2 Theoretical Model of Shot ABLE Water Intensity

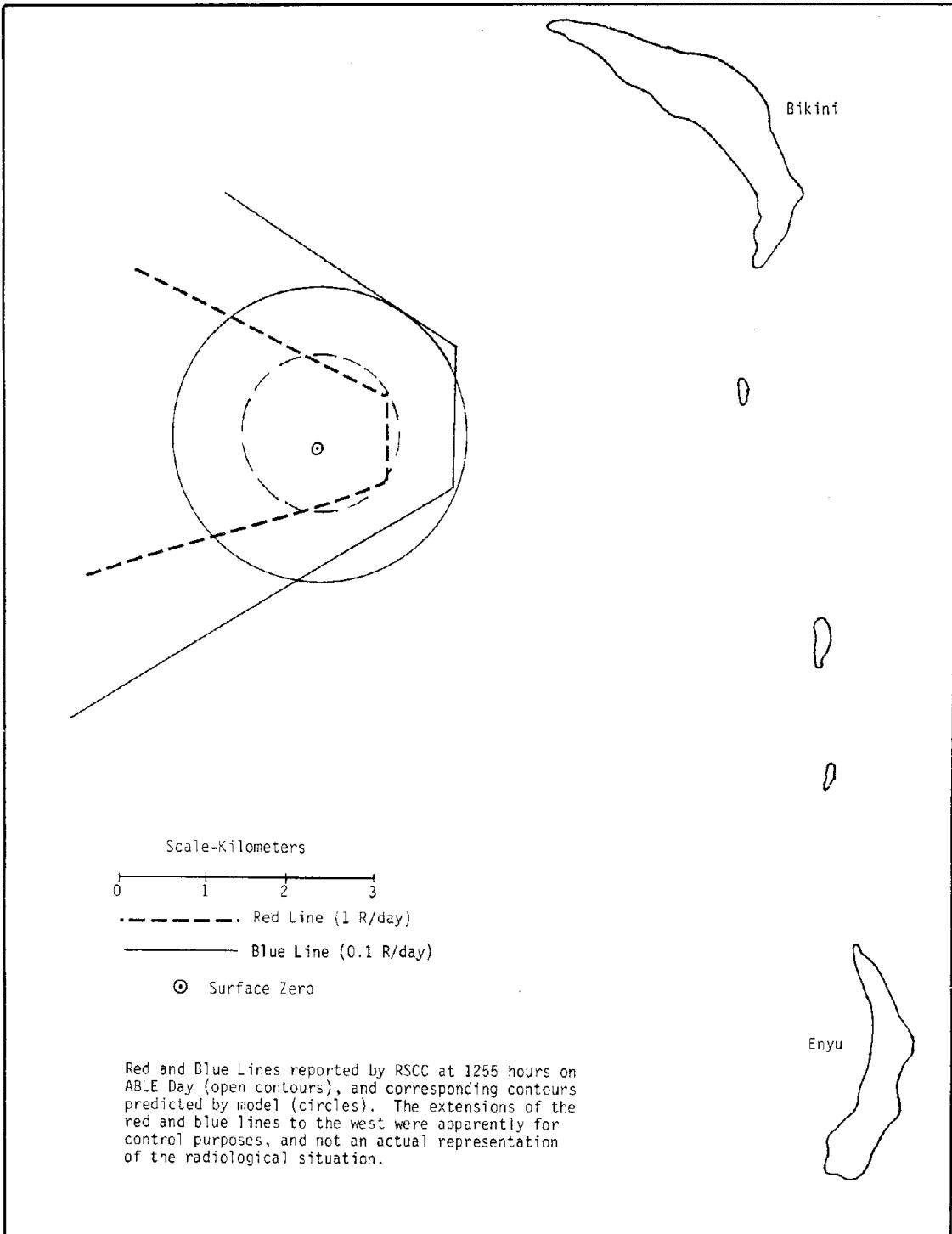



Figure 2-3 ABLE Day Red and Blue Lines

Table 2-2  
 Elemental Compositions of Various Vessel Types  
 (Quantities in this table are elemental weights in pounds)

| <u>Element</u> | <u>Battleship</u> | <u>Heavy Cruiser</u> | <u>Carrier</u> | <u>Light Carrier</u> | <u>Destroyer</u> | <u>Submarine</u> | <u>Attack Troop Transport</u> |
|----------------|-------------------|----------------------|----------------|----------------------|------------------|------------------|-------------------------------|
| Iron           | 4.8+7*            | 1.9+7                | 6.2+7          | 2.1+7                | 2.3+6            | 2.5+6            | 9.6+6                         |
| Aluminum       | 4.2+5             | 2.4+5                | 1.6+6          | 6.2+5                | 1.5+5            | 1.6+4            | 2.6+4                         |
| Magnesium      | 6.2+3             | 3.6+3                | 2.3+4          | 9.4+3                | 2.3+3            | 2.3+2            | 3.9+2                         |
| Copper         | 2.0+6             | 1.3+6                | 2.8+6          | 1.3+6                | 3.4+5            | 3.0+5            | 2.5+5                         |
| Nickel         | 9.7+5             | 3.8+5                | 1.1+6          | 4.5+5                | 4.7+4            | 4.0+4            | 5.4+4                         |
| Chromium       | 5.9+5             | 2.0+5                | 9.0+5          | 2.2+5                | 2.6+4            | 2.3+4            | 2.3+4                         |
| Tungsten       | 6.2+2             | 5.1+2                | 7.0+2          | 5.0+2                | 1.5+2            | 8.0+1            | 3.9+2                         |
| Molybdenum     | 2.4+4             | 9.6+3                | 2.1+4          | 9.7+3                | 1.8+3            | 1.3+3            | 5.2+3                         |
| Vanadium       | 6.4+3             | 2.6+3                | 6.3+3          | 2.6+3                | 4.8+2            | 3.6+2            | 1.4+3                         |
| Zinc           | 1.5+5             | 5.0+4                | 2.0+5          | 6.3+4                | 2.2+4            | 2.6+4            | 2.0+4                         |
| Lead           | 1.2+5             | 6.9+4                | 1.2+5          | 6.3+4                | 1.4+4            | 4.3+5            | 1.3+4                         |
| Tin            | 7.0+4             | 4.6+4                | 9.8+4          | 4.6+4                | 1.3+4            | 1.1+4            | 8.8+3                         |
| Antimony       | 7.0+3             | 4.6+3                | 9.8+3          | 4.6+3                | 1.3+3            | 1.1+3            | 8.8+2                         |
| Manganese      | 3.3+5             | 1.3+5                | 4.1+5          | 1.3+5                | 1.8+4            | 9.0+3            | 5.8+4                         |
| Cadmium        | 4.9+3             | 2.0+3                | 4.9+3          | 2.0+3                | 3.7+2            | 2.7+2            | 1.1+3                         |
| Sulfur         | 2.2+4             | 9.0+3                | 2.9+4          | 9.0+3                | 1.1+3            | 1.1+3            | 4.5+3                         |
| Phosphorus     | 2.2+4             | 9.0+3                | 2.9+4          | 9.0+3                | 1.1+3            | 1.1+3            | 4.5+3                         |
| Silicon        | 2.2+5             | 8.8+4                | 2.8+5          | 9.4+4                | 1.0+4            | 1.0+4            | 3.6+4                         |
| Carbon         | 1.5+5             | 5.8+4                | 1.9+5          | 6.5+4                | 6.7+3            | 7.0+3            | 2.9+4                         |
| Beryllium      | 6                 | 4                    | 6              | 4                    | 2                | 2                | .2                            |
| Cobalt         | 7.5+2             | 7.1+2                | 7.0+2          | 5.7+2                | 2.0+2            | 8                | 7.4+1                         |
| Titanium       | 5.4+3             | 3.0+3                | 5.5+3          | 2.7+3                | 4.2+2            | 4.8+2            | 4.8+2                         |
| Mercury        | 4.9+2             | 3.9+2                | 5.2+2          | 3.7+2                | 2.5+2            | 4.7+1            | 2.3+2                         |

-----  
 \*Read as  $4.8 \times 10^{+7}$

Source: Los Alamos National Laboratory archives.

therefrom, it is possible to calculate the relative levels of intensity induced by a fixed neutron fluence in the various types of vessels as a function of time after detonation. In these calculations, it is assumed that the ships were homogeneous mixtures of the materials given in Table 2-2, that all vessels had similar average densities, and that the contribution to the intensity from the activation of extraneous materials placed on or in the target ships (e.g., various types of military equipment placed on deck for effects testing) was negligible. The relative intensities at 24 hours after detonation, normalized to the intensity on a destroyer, are presented below.

| <u>Ship type</u>             | <u>Relative intensity at <math>t = 24</math> hours*</u> |
|------------------------------|---------------------------------------------------------|
| Destroyer (DD)               | 1.000                                                   |
| Submarine (SS)               | 0.737                                                   |
| Heavy Cruiser (CA)           | 0.539                                                   |
| Light Carrier (CVL)          | 0.495                                                   |
| Carrier (CV)                 | 0.379                                                   |
| Battleship (BB)              | 0.363                                                   |
| Attack troop transport (APA) | 0.256                                                   |

\*For fixed neutron fluence. These values are later designated  $M_i$ .

These values are most strongly affected by the fraction of copper present in the ship material. The time dependence of the intensities for the seven vessel types is shown in Figure 2-4, where the curves have been normalized to the intensity at 24 hours. The initial slope of these curves is due to the decay of copper-64 with a 12.8 hour half-life.

Vessel types LST, LCI, and LCT, for which elemental composition data are lacking, were determined to be similar in material composition to a destroyer, submarine, and heavy cruiser, respectively, and hence should display similar intensity and decay characteristics. These relationships are assumed for calculations involving these three types of ships.

The results of the neutron activation calculation allow an estimate of relative intensity levels at arbitrary times for various types of vessels exposed to identical neutron fluences, i.e., at a fixed range from SZ. It is necessary to develop a method of estimating intensity level as a function of range. Ideally this range dependence would

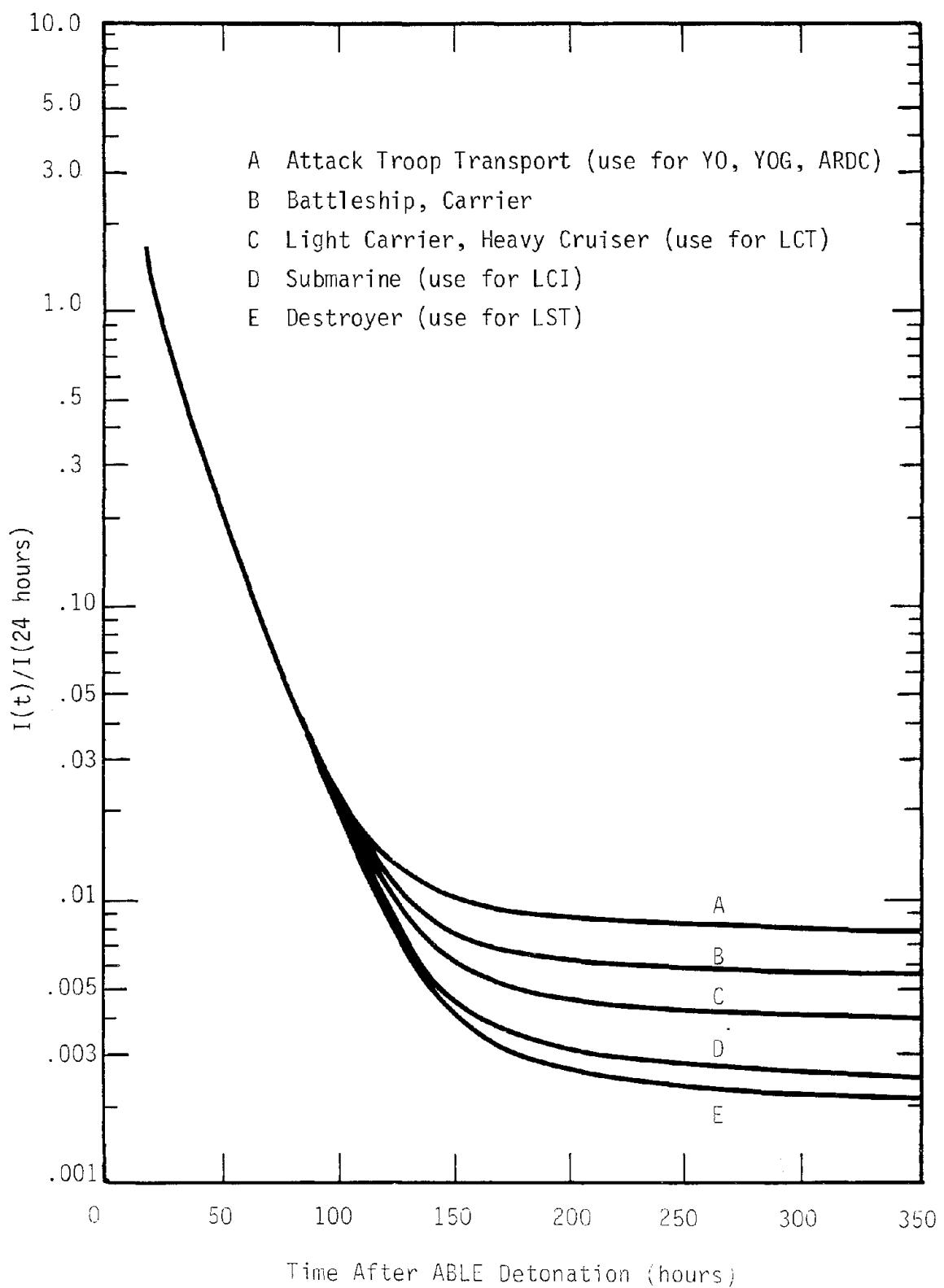



Figure 2-4 Shot ABLE Ship Intensities Relative to Intensity at 24 Hours

be estimated from thermal neutron fluence data, since the absorption of thermal neutrons is responsible for most activation interactions. Thermal neutron measurements were made during Shot ABLE, using activation of phosphate pills to determine the fluences at numerous locations on various target ships. The results are presented in Appendix XIII of Reference 15, a technical report compiled shortly after the ABLE detonation. Unfortunately the experimental technique and analysis of the data appear to have serious shortcomings (e.g., most activation samples were placed in shielded locations which were not well documented); consequently the data are considered unreliable. A much more sophisticated effort was undertaken by Dr. G. A. Linenberger of Los Alamos to measure fast neutron fluence by activation of sulfur samples placed on the target ships. These data, contained in Reference 16, are fit with the expression:

$$\phi = R^{-2} \exp \left[ -\frac{R}{\lambda_f} + B \right],$$

where  $\phi$  = fast neutron fluence,  
 $R$  = slant range,  
 $\lambda_f$  = fast neutron relaxation length = 209.1 yards,  
 $B$  = constant.

To develop the Shot ABLE ship activation model, it is assumed that the range dependence of ship activation was approximately the same as that of the fast neutron fluence. This assumption is valid, since the relaxation length for thermal neutrons is comparable to that of fast neutrons for typical neutron fission spectra transported in an air-over-seawater geometry (References 13,14).

The ship activation model is given by the expression

$$I_i(t) = CM_i f_i(t) R_i^{-2} \exp(-R_i/\lambda_f),$$

where

$I_i(t)$  = activation intensity on target ship  $i$  at time  $t$ ,  
 $M_i$  = intensity of ship  $i$  at  $t=24$  hours relative to that of a destroyer,  
 $f_i(t)$  = intensity of ship  $i$  at time  $t$  relative to that at  $t=24$  hours  
(given in Figure 2-4),  
 $R_i$  = slant range of ship  $i$ .

Here C is a constant which, ideally, is independent of target ship. A numerical value for C is determined by fitting the model to exterior ship intensity readings, a summary of which is given in Table 2-3(a). Data from the YO 160 and ARDC 13 cannot be used here, since elemental compositions of these vessels are not available. With intensity I in R/day and range R in yards, a good fit to the remaining data is achieved with  $C = 1.1 \times 10^7$ . With this, absolute intensities in R/day at 24 hours after detonation are calculated for all target vessels except the YO 160, YOG 83, and ARDC 13. All such intensities greater than 1 mR/day are listed in Table 2-4.

The vessels YO 160, YOG 83, and ARDC 13 were not similar in composition to other ships in the target array. However, intensity readings on the YO 160 and the ARDC 13 are available, as given in Table 2-3, so that these vessels may be normalized separately. It is assumed that the YOG 83 was similar in composition to the YO 160, and that the time-dependence of the intensity for these three vessels is similar to that of the attack troop transport. The 24-hour intensities thus derived are included in Table 2-4.

In summary, the intensity on a ship at time t is estimated by obtaining the 24-hour intensity from Table 2-4 and using the appropriate curve in Figure 2-4 to determine the factor which adjusts the 24-hour value to the value at time t. Ships not listed in Table 2-4 are considered to have had negligible induced intensity (<1 mR/day at 24 hours after Shot ABLE).

The consistency of these results is tested by comparing them with relevant statements on ship intensities contained in References 1, 4, 18, 19, and 20, and by analyzing the radiological reports and boarding times of target vessels documented in References 21 and 22. Reference 1 states that 13 vessels had intensities greater than 0.1 R/day on ABLE + 1 day; 14 such vessels are predicted by this model, as shown in Table 2-4. The most radioactive ships after Shot ABLE, as listed in the cited references, agree well with those predicted by the model. The maximum intensity of 8 R/day reported on the ARKANSAS (A+1 day reading) by Reference 1 was apparently a local "hot spot", composed mostly of radioactive sodium in a pool of water on deck. The reports of the radiological and reboarding status of the target ships, as given in References 21 and 22, generally agree with model predictions. An apparent exception is that six vessels (CATRON, SARATOGA, PENNSYLVANIA, LCT 874, LST 661, and

Table 2-3  
Shot ABLE Target Ship Intensities

| <u>Vessel</u>                | <u>Slant<br/>Range (yds)</u> | <u>Time of<br/>Reading (hrs)</u> | <u>Intensity<br/>Average</u> | <u>Measurement (R/day)</u> |
|------------------------------|------------------------------|----------------------------------|------------------------------|----------------------------|
|                              |                              |                                  |                              | <u>Maximum</u>             |
| <b>(a) Exterior Readings</b> |                              |                                  |                              |                            |
| CRITTENDEN (APA)             | 619-753                      | 28                               | 0.3                          | 0.5                        |
| INDEPENDENCE (CVL)           | 586-720                      | 30                               | 0.24                         | 0.34                       |
| SKATE (SS)                   | 436-513                      | 54<br>~75                        | 0.4-0.8<br>0.4               | 4.8<br>--                  |
| NEVADA (BB)                  | 639-811                      | 28<br>32                         | --<br>--                     | 0.45<br>0.43               |
| ARDC 13                      | 852-973                      | 5.5<br>25.5                      | 0.2<br>0.2                   | --<br>--                   |
| YO 160                       | 550-660                      | 30                               | 0.7                          | --                         |
| <b>(b) Interior Readings</b> |                              |                                  |                              |                            |
| SKATE (SS)                   | 436-513                      | ~96                              | 0.03                         | 0.06                       |
| APOGON (SS)                  | 951-1051                     | 26.5                             | 0.003                        | 0.006*                     |
| PARCHE (SS)                  | 1377                         | 24.5                             | 0.3**                        | 0.3**                      |
| DENTUDA (SS)                 | 1938-1956                    | 24                               | 0                            | 0                          |
| TUNA (SS)                    | 2200-2234                    | 48                               | 0                            | 0                          |

\*Maximum reading of 0.072 R/day taken around clock and depth gauges in control room probably due to radium dials.

\*\*Questionable data; see text.

Sources: Exterior data for days A+1 and A+2 taken from radio messages; SKATE 75-hour data from Reference 17. Interior data taken from Commanding Officer letter reports.

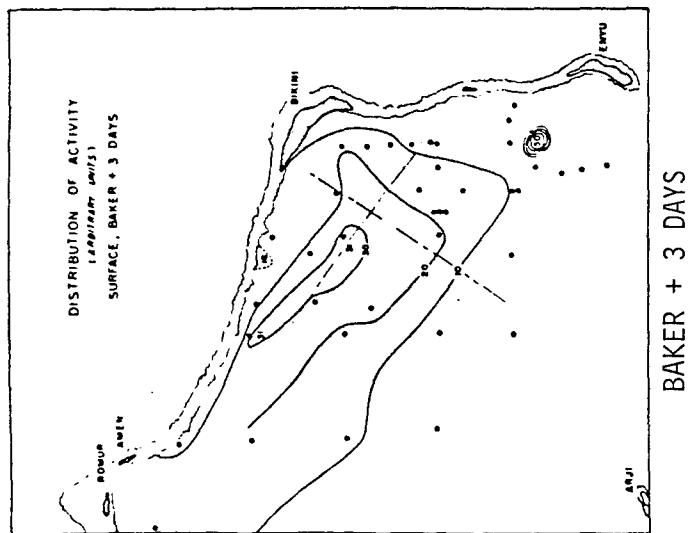
Table 2-4

Calculated Average Exterior Ship Intensities at 24 Hours after Shot ABLE  
 (Vessels not listed have calculated intensities less than 0.001 R/day)

| <u>Ship</u>                  | <u>Intensity (R/day)</u> |
|------------------------------|--------------------------|
| ARKANSAS (BB)                | 0.44                     |
| NEW YORK (BB)                | 0.001                    |
| NEVADA (BB)                  | 0.43                     |
| PENNSYLVANIA (BB)            | 0.001                    |
| NAGATO (Japanese battleship) | 0.11                     |
| PENSACOLA (CA)               | 0.31                     |
| SALT LAKE CITY (CA)          | 0.11                     |
| SAKAWA (Japanese cruiser)    | 2.7                      |
| PRINZ EUGEN (German cruiser) | 0.011                    |
| INDEPENDENCE (CVL)           | 1.0                      |
| TALBOT (DD)                  | 0.04                     |
| RHIND (DD)                   | 0.11                     |
| STACK (DD)                   | 0.013                    |
| WILSON (DD)                  | 0.005                    |
| HUGHES (DD)                  | 0.18                     |
| SKIPJACK (SS)                | 0.04                     |
| SKATE (SS)                   | 6.7                      |
| APOGON (SS)                  | 0.12                     |
| PARCHE (SS)                  | 0.01                     |
| LST 52                       | 0.005                    |
| LCT 816                      | 0.009                    |
| LCT 818                      | 0.004                    |
| BANNER (APA)                 | 0.008                    |
| BARROW (APA)                 | 0.003                    |
| BRULE (APA)                  | 0.027                    |
| CRITTENDEN (APA)             | 0.40                     |
| DAWSON (APA)                 | 0.073                    |
| FALLON (APA)                 | 0.004                    |
| YO 160                       | 3.9                      |
| YOG 83                       | 0.10                     |
| ARDC 13                      | 0.91                     |

TUNA) were reported "Geiger Sour" (i.e., having intensities greater than 0.1 R/day) on ABLE day, whereas the calculated intensities on vessels at these ranges are much lower. At the times these reports were made, the six vessels were located on or within the radiological blue line, indicating that the surrounding radioactive water, and not the ships themselves, was the major source of the intensity. Subsequent reports on these vessels indicate that they soon became "Geiger Sweet" (having average intensities less than 0.1 R/day) when the blue line had receded past their positions.

In addition to the exterior ship intensity readings on which this model is based, interior submarine intensity readings found in Commanding Officers' reports are included in Table 2-3(b). The measured interior intensities on the SKATE and APOGON are significantly smaller than the exterior intensities predicted by the model; this is consistent, since the interiors of the surfaced submarines were strongly shielded from the neutron fluence by the surrounding seawater. Both the data and model give negligible intensities for the DENTUDA and TUNA. The reported 0.3 R/day intensity on the interior of the PARCHE, however, is anomalous. Although the PARCHE was approximately 300 yards farther from surface zero than the APOGON, this intensity is two orders of magnitude larger than that measured for the APOGON. The A+1 PARCHE intensity data consist of sixteen reported readings for various interior locations, each recorded as ".3". Such uniformity is inconsistent with readings on other submarines. Further, the PARCHE was declared "Geiger Sweet" at 0935 hours on 2 July (Reference 21), indicating that the intensity levels at that time were below 0.1 R/day. Thus, these reported A+1 intensity readings on the PARCHE appear to be in error.


### 2.3 Shot BAKER Water Intensity

The radiological environment after Shot BAKER was dominated by fission products deposited in the water and on the target ships. Extensive measurements of water activity (e.g., in Curies/liter) were made by scientific personnel under the Technical Director. Unfortunately, only fragments of this information have been located. Concurrently, radiological patrols were reporting intensities (in R/day) above the water to the Radiological Safety Control Center; this information exists in the form of red (1.0 R/day) and blue (0.1 R/day) line coordinates, used by the Director of Ship Material to control ship movement in the lagoon. Both sets of data are utilized in the development of the Shot BAKER water intensity model.

Perhaps the best source of post-BAKER water activity data is Reference 12, which gives activity contours for one, two, and three days after the BAKER detonation. These contours, reproduced in Figure 2-5, are labeled in "arbitrary radiation units", or aru, which were normalized to a fixed time to correct for decay. This time normalization was performed so that the effects of diffusion could be examined. The normalization procedure is not described in the article, so the precise definition of aru is uncertain. Another valuable source of information is a set of tables authored by Dr. Kenneth G. Scott, which appeared in an unpublished manuscript (Reference 23) assembled by Dr. J. O. Hirschfelder and found in the archives at the Los Alamos National Laboratory. These tables include information on maximum radiation intensities and contaminated areas, total radioactivity in lagoon water, and simultaneous measurements of water activity and intensity. A third significant source of water activity data is Appendix V of Reference 24, a technical report submitted in September 1946 covering the BAKER detonation. This document contains tables giving total radioactivity in lagoon waters and variations in activity with depth for five days following the BAKER shot, with more detailed information presented on the water activity distribution on the fifth day after detonation (B+5). Other sources of water activity data include References 1 (Chapter 27), 4 (Enclosure J), and 21.

The red and blue line coordinates are contained in the transcripts of radio messages found at the Federal Records Center in Suitland, MD. Red line data are given for BAKER day through B+2; the red line was eliminated at 1455 hours on B+3. Blue line data are given through B+4; the blue line was eliminated at 0959 hours on B+5. Examples of red and blue lines for days B+1, B+2, and B+3 are presented in Figure 2-6.

The radiological condition of the lagoon water after B+5 is largely unknown. There is evidence that the water intensity decreased significantly between B+5 and B+8. Enclosure F of Reference 4 discusses the natural flushing of the lagoon water between five and eight days after BAKER day, thereby reducing water activity to very low levels by B+8. This is supported by data appearing in Reference 24, indicating a rapid decrease in the activity concentration in the lagoon water between these dates. The only quantitative data available on the water environment beyond B+8 is contained in a message from the Radiological Safety Officer (COL S.L. Warren) to CJTF-1 on 15 August 1946, in which he states "Lagoon water average 0.02 to 0.03 R per day."



Source: Reference 12

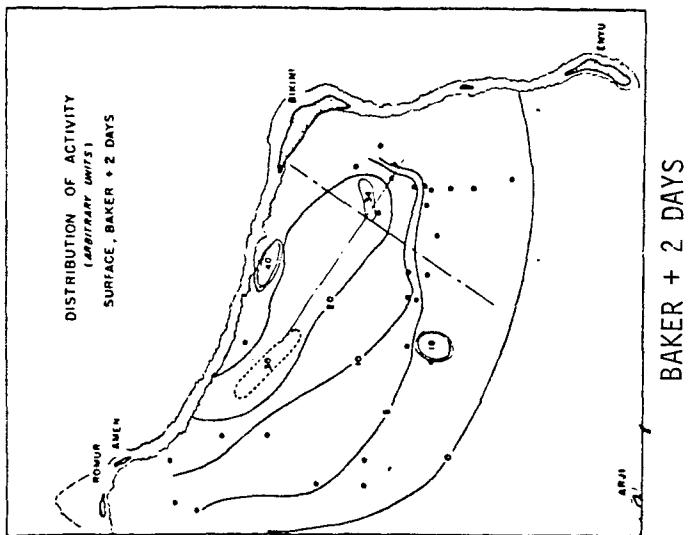
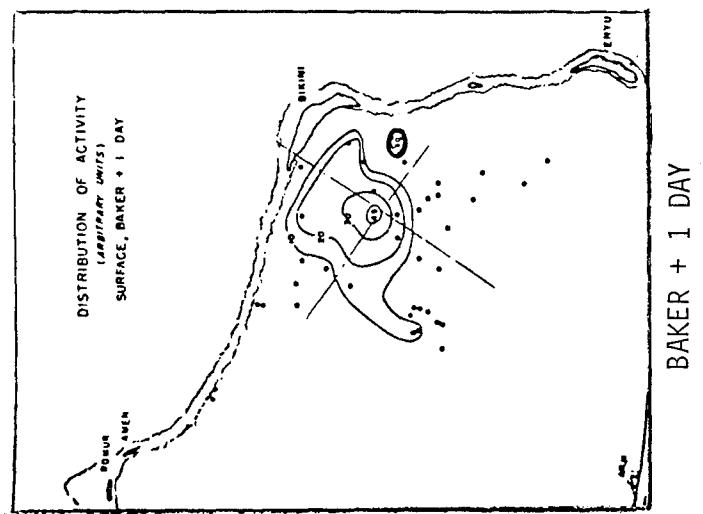
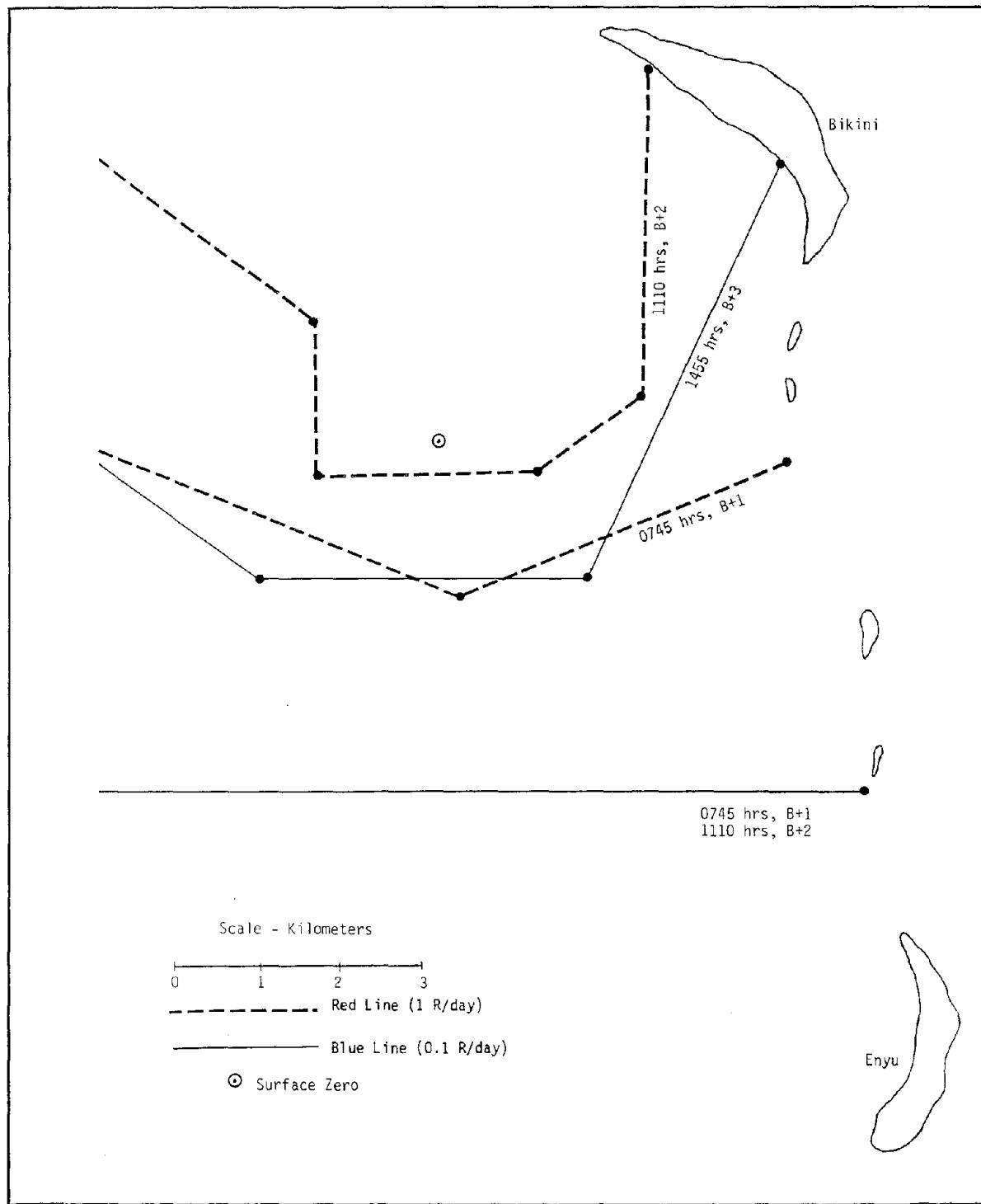





Figure 2-5 Shot BAKER Water Activity





Source: RSCC Messages

Figure 2-6 Red and Blue Lines after Shot BAKER

Water of such intensity must have been contained within a relatively small region of the lagoon, since it is easily demonstrated that the initial inventory of fission products available from a 23 kt detonation was much too small for intensities of this level to have existed throughout the lagoon three weeks after the shot. Unfortunately, the location of the contaminated pool is unspecified in the message.

The BAKER water intensity model is developed to estimate the intensity at any location in the lagoon at any time after the BAKER detonation. A summary of the data base utilized in the construction of this model is given in Table 2-5. A general computer-based calculational methodology based on this model estimates doses for specific ship paths through BAKER-contaminated water from B+1 until final lagoon departure. Due to the lack of data available for BAKER day, this day is not included in the generalized methodology. Doses accrued on BAKER day are analyzed separately, using primarily red/blue line information and data from ship logs. The development of this model is subsequently discussed.

To develop the model, the intensity distribution throughout the lagoon at a reference time on each of days B+1 through B+5 is approximated from available data. The graphical activity contours (in units of aru) provided in Reference 12 for days B+1 through B+3, and the areas within various activity density contours (in microcuries/liter) given in Reference 24 for B+5, form the basis of the intensity distribution modeling for this period. It is first necessary to convert these contours to intensity contours. The most direct method to achieve this conversion is the use of red/blue line data to calibrate the contours for each of these four days. The advantage of utilizing the red/blue lines, which were employed at CROSSROADS to control ship movements, is that those portions of the intensity contours most important in calculating personnel doses are modeled most accurately. The B+4 intensity contours are developed by using the area-integrated surface activity (in units of square miles-millicuries per liter, as given in Reference 24) and red/blue line data to interpolate between the B+3 and B+5 contours. It is assumed that, except for a contaminated pool that persisted in the vicinity of the target array (and apparently formed the basis of Warren's observation), the intensity distribution on B+5 decreased linearly to zero by 200 hours after the detonation (B+8). The intensity in the vicinity of a ship is estimated by linearly interpolating in time between the intensities at the ship location derived from the two reference intensity distributions bracketing the time of interest.

Table 2-5  
Summary of Shot BAKER Water Contamination Data

|                                                                | Day:     |            |            |            |            |            | After      |
|----------------------------------------------------------------|----------|------------|------------|------------|------------|------------|------------|
|                                                                | <u>B</u> | <u>B+1</u> | <u>B+2</u> | <u>B+3</u> | <u>B+4</u> | <u>B+5</u> | <u>B+5</u> |
| Activity contours (graphical)<br>(Reference 12)                |          | x          | x          | x          |            |            |            |
| Activity contours (areas)<br>(Reference 24)                    |          |            |            |            |            |            | x          |
| Integrated surface activity<br>(Reference 24)                  |          | x          | x          | x          | x          | x          | x          |
| Red/blue lines<br>(RSCC messages)                              | x        | x          | x          | x          | x          |            |            |
| Total contaminated area/max<br>intensity<br>(References 5, 23) | x        | x          | x          | x          | x          | x          | x          |
| S.L. Warren message<br>(dated 15 August 1946)                  |          |            |            |            |            |            | x          |

The intensity level reported in the Warren message forms the basis for characterizing the contaminated water environment for the month of August 1946. It is reasoned that the lagoon intensity levels observed by Warren (0.02-0.03 R/day on 14 August, B+20) were limited in spatial extent by the total activity deposited in the lagoon, which is calculated to have been  $5 \times 10^9$  Curies at H+1 hour (Reference 24). Assuming a  $t^{-1.3}$  decay (Reference 4) coupled with a 3.2 percent per day depletion by flushing (Enclosure F of Reference 4), the total activity available in the lagoon is calculated for each day. This activity is assumed to have been confined to a cylindrical slug of water 150 feet deep (the average depth of the lagoon), having a vertical distribution such that the surface concentration is about one order of magnitude higher than the concentration near the lagoon bottom. This distribution is consistent with the vertical profile data reported in Reference 24 for several days after detonation. Maintaining this vertical activity gradient throughout the period of interest, despite its likely dissipation through mixing, high-sides the intensity at the surface and thus the dose to shipboard personnel.

The radius of the cylinder is determined in the following manner. The intensity above the surface of the contaminated water, which is assumed uniform throughout the contaminated region, is modeled as a function of time by fitting a logarithmic function to the intensity readings of 0.1 R/day on B+5 (when the blue line was eliminated) and 0.025 R/day on B+20 (Warren's data). The activity concentration of the water corresponding to an intensity level as measured above the surface is then determined from measurements reported by Scott (Table 20.15 of Reference 23), which indicate that an activity concentration of one microcurie per liter of lagoon water (in situ) resulted in an intensity of approximately 0.024 R/day above the surface. This is in general agreement with a measurement taken by USS BURLESON personnel on B+5 (Reference 21, 0.029 R/day/ $\mu$ Ci/l) and the results of calculations with the radiation transport code ANISN (Reference 7, 0.013 R/day/ $\mu$ Ci/l). The required radius of the contaminated pool follows from the activity available in the lagoon on the day of interest, the assumed vertical profile, and the surface concentration on that day. The radius is approximately 5000 yards from B+8 through B+40. It is assumed that the decaying pool remained centered on surface zero, encompassing most of the target array and thereby maximizing potential exposure to this radioactivity. Ship movement data are then used to determine the periods when each ship was in contaminated water of the specified intensity.

## 2.4 Shot BAKER Target Ship Intensity

The contamination of target vessels from the BAKER detonation was quite extensive, due primarily to the base surge (a cloud of contaminated water droplets formed by the underwater detonation) and early rainout of fission products. The base surge extended approximately 1800 yards upwind, 2700 yards crosswind, and 4000 yards downwind, to the northwest (Reference 25). Target ships within the base surge generally received significant contamination, while many ships on the outer portions of the array experienced only light contamination. Detailed documentation of intensity levels exists for most of the target vessels. Appendix VII of Reference 24 lists maximum topside, average topside, and average interior readings for virtually every target vessel for numerous days following the BAKER shot. While these data are often inconsistent, and individual readings may be questionable, they nevertheless provide the best available estimates of target ship intensities. Also included in Reference 24 are readings taken alongside many of the target vessels during the period when they were too radioactive to board. Daily target ship status reports and transcripts of radio messages (found at the Federal Records Center) also contain detailed target ship radiological data. In addition, References 1 (Chapter 27), 4 (Enclosure J), 20, 21, and 22 quote numerous intensity readings for the target ships. Dr. W. E. Strope, in Reference 25, has evaluated much of this topside intensity data for many target ships.

The target ship intensity model for Shot BAKER is developed by accumulating all available data on ship intensities and organizing them in graphical form. It had been observed that the intensities on target ships generally followed a  $t^{-1.3}$  decay law, exclusive of decontamination (Reference 4). Therefore, the ship intensity data are fit with such curves except during documented periods of decontamination. When decontamination is known to have taken place, intensity-time curves based on  $t^{-1.3}$  decay are fit separately to the data taken before and after decontamination, while the data taken during decontamination are used to empirically construct a curve connecting these segments. When data are available, separate curves are constructed for average topside, amidships (alongside), and below deck readings. An example is shown in Figure 2-7 for the USS PENSACOLA. For each event involving a target ship (moored alongside, boarding, etc.), the appropriate ship intensity curve is used to estimate the radiation environment. Target ship intensity curves so derived are presented in Appendix A.

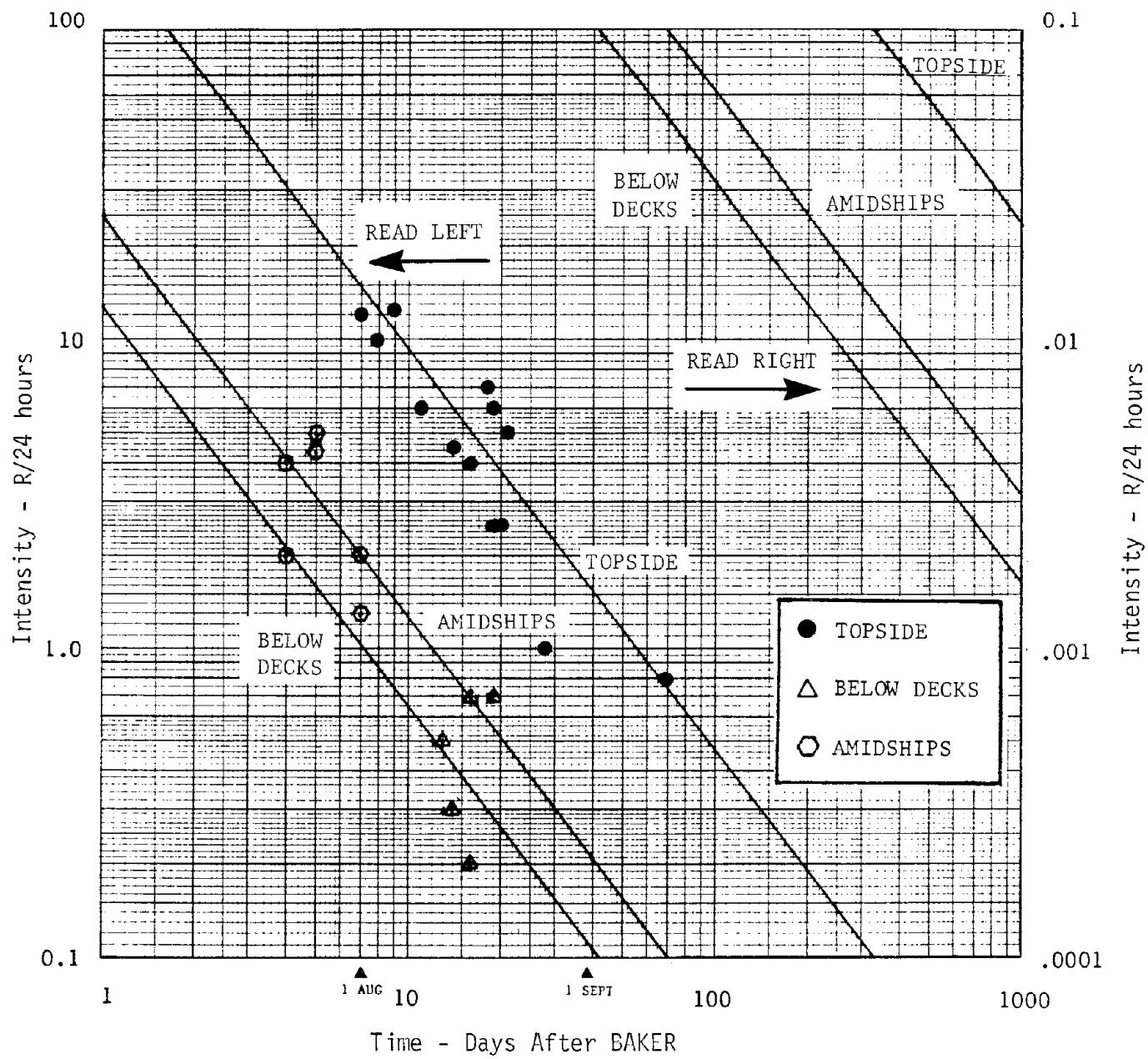



Figure 2-7 USS PENSACOLA (CA-24) Post-BAKER Ship Contamination

## 2.5 Shot BAKER Support Ship Contamination

During post-BAKER operations it quickly became apparent that support ships, when operating in contaminated water, accumulated radioactive materials on their underwater hulls and in salt water lines and evaporators. The resulting interior intensities were sufficiently large on some early re-entry ships, notably the PGMs, to require overnight crew evacuation (Reference 33). The intensities in other support ships were reduced to or maintained at a tolerable level through such decontamination processes as "hogging" (scraping the ship hull with rope or chain) or steaming in open seas. The physical processes responsible for this radioactive accumulation appear to include assimilation of radionuclides by aquatic organisms (e.g., algae and barnacles) that were or became attached to the ship, and ion-exchange absorption of the polyvalent fission products by inert material (e.g., paint or rust) on the ship hull or in the piping (References 24 and 34). A ship contamination model based on the microscopic details of these mechanisms is not feasible, due to the complexity of these processes and the uncertainties in the initial conditions of the hulls/piping and lagoon water contamination composition. The approach taken here is to develop a mathematical model that describes the macroscopic features of the support ship contamination process in a manner consistent with the observed data and underlying physics.

Two basic assumptions are made in developing this model. The first is that the mixture of fission products present in the accumulated radioactive material on the hull and in the piping of a support ship decayed radiologically as  $t^{-1.3}$ . This decay rate was verified experimentally for fission products deposited in seawater and on the decks of target ships (Reference 4). It is possible that selective absorption of fission products took place on the hull and in the piping of the support ships, such that a decay rate different than  $t^{-1.3}$  could be applied; however, since specific data on this point are lacking, the referenced decay rate is used. The second assumption is that the rate of contamination buildup on the hull and interior piping is initially proportional to the radiation intensity of the water surrounding the ship, but, as buildup progresses, a limiting or saturation value of contamination is approached asymptotically. Such a saturation effect has been observed in the accumulation of radioactive isotopes in various aquatic organisms (References 34 and 40). Saturation is indicated by hull intensity readings taken on various ships after their departure from the lagoon.

Specifically, the amount of foreign matter (i.e., fission products) accumulating on the hull and piping is assumed to approach saturation, therefore, the radiation intensity of the saturation level of this material decays as  $t^{-1.3}$ . The exterior intensity of the saturated hull at time  $t$  after detonation is therefore assumed to have the mathematical form

$$I_{\text{sat}}(t) = St^{-1.3},$$

where  $S$  is a constant.

With these assumptions, the intensity  $I_o$  of the contaminated hull of a support ship at time  $t$  may be written

$$I_o(t) = I_o(t - \Delta t) \left[ \frac{t - \Delta t}{t} \right]^{1.3} + C \left[ 1 - \frac{I_o(t)}{St^{-1.3}} \right] I_w(t) \Delta t,$$

where  $I_w(t)$  = intensity of surrounding water at time  $t$ ,

$\Delta t$  = small interval of time,

$C$  = constant.

The first term of the right represents the contribution from previously accumulated contamination, while the second term is the contribution from the contamination accumulated between  $t - \Delta t$  and  $t$ . The factor

$$1 - \frac{I_o(t)}{St^{-1.3}}$$

insures that this contribution vanishes as saturation is approached, that is, as

$$I_o(t) \rightarrow St^{-1.3}.$$

By rearranging this equation, taking the limit as  $\Delta t$  becomes very small, and solving the resulting differential equation, one obtains

$$I_o(t) = St^{-1.3} \left[ 1 - \exp \left\{ - \frac{C}{S} D_w(t) \right\} \right],$$

where

$$D_w(t) = \int_0^t \tau^{1.3} I_w(\tau) d\tau.$$

Note that  $I_w(t)$  is determined from the BAKER water intensity model and the ship path through the contaminated water. It is evident that saturation is approached as the integral  $D_w(t)$  becomes large; this occurs as a ship spends sufficient time in contaminated water.

The constants S and C in the contamination model are evaluated from support ship intensity data found primarily in messages sent to CJTF-1 by radiological safety officers at various shipyards. Combined beta-plus-gamma intensities were measured at points external to the hulls of numerous support ships during post-CROSSROADS decontamination operations, and were generally reported as port and starboard average and maximum intensities. Much of these data cannot be used in this analysis, because readings were taken after the hulls were partially decontaminated (by scraping) in the shipyard, or because the hulls were wet when readings were taken (the emission of beta particles from the contaminant material is inhibited when the material is wet; the intensity appears to be sensitive to the amount of moisture present). Intensity readings taken on dry, unscraped hulls were reported for nine support ships. This limited data set was selected for use in evaluation of S and C, since inclusion of the scraped and/or wet data would introduce a bias toward lower dose estimates. In addition, various reported intensity readings for three other ships are considered of similar quality. Reference 27 contains wet unscraped hull readings for the USS ROCKBRIDGE, with the notations that "readings on hull will be 3-6 times higher when dry." A factor of six is thus used to determine an equivalent average dry hull intensity. Reference 35 gives an exterior hull reading on the USS SAIDOR, while Reference 36 gives an interior hull reading for the USS MOUNT McKINLEY. The intensity readings for these twelve ships constitute the data base for determining best estimates of constants S and C. These intensity data are included in Table 2-6.

In performing the evaluation of S and C, the various hull readings are first converted to exterior hull gamma intensities. Since the beta particles (electrons) were almost completely attenuated by the hull material, while the gamma intensities experienced a much smaller attenuation (Reference 26), it is the gamma radiation that contributes to dose on the interior of the ship. Consequently, the exterior hull gamma reading is used as an indicator of the level of ship contamination. Contained in the reported hull intensity data are five sets of gamma and beta-plus-gamma readings, each set taken concurrently during decontamination operations. These data indicate

Table 2-6  
Contamination Model Data Base

| <u>Ship</u>          | <u>Type</u><br><u>Reading</u> | <u>Date of</u><br><u>Reading</u> | <u>Reported</u><br><u>Intensity</u><br><u>(mR/day)</u> | <u>S</u><br><u>(mR-day<sup>0.3</sup>)</u> |
|----------------------|-------------------------------|----------------------------------|--------------------------------------------------------|-------------------------------------------|
| QUARTZ (IX)          | Dry hull, $\beta + \gamma$    | 22 Oct 46                        | 22**                                                   | 1172                                      |
| HESPERIA (AKS)       | Dry hull, $\beta + \gamma$    | 6 Nov 46                         | 21*                                                    | 1355                                      |
| BRAMBLE (WAGL)       | Dry hull, $\beta + \gamma$    | 2 Nov 46                         | 23*                                                    | 1410                                      |
| SAIDOR (CVE)         | Gamma                         | 30 Aug 46                        | 7.2                                                    | 1518                                      |
| MOUNT MCKINLEY (AGC) | Interior                      | 19 Aug 46                        | 10                                                     | 1573                                      |
| ROCKBRIDGE (APA)     | Wet hull, $\beta + \gamma$    | 3 Oct 46                         | 12***                                                  | 2820                                      |
| HUNTINGTON (DD)      | Dry hull, $\beta + \gamma$    | 4 Nov 46                         | 20                                                     | 1257                                      |
| SUMNER (DD)          | Dry hull, $\beta + \gamma$    | 4 Nov 46                         | 27                                                     | 1699                                      |
| INGRAHAM (DD)        | Dry hull, $\beta + \gamma$    | 4 Nov 46                         | 29                                                     | 1824                                      |
| MOALE (DD)           | Dry hull, $\beta + \gamma$    | 4 Nov 46                         | 43                                                     | 2683                                      |
| PGM-23               | Dry hull, $\beta + \gamma$    | 2 Nov 46                         | 51                                                     | 3092                                      |
| PGM-24               | Dry hull, $\beta + \gamma$    | 2 Nov 46                         | 27                                                     | 1624                                      |

\* Arithmetic average of reported port and starboard average intensities.

\*\* Average of 7 hull readings.

\*\*\* Average of 22 hull readings.

that the approximate gamma intensity can be derived from a beta-plus-gamma reading by multiplying the latter quantity by 0.078. The value is consistent with various beta-gamma ratios measured during the CROSSROADS operation (Reference 38 and 39).

The resulting set of 12 exterior hull gamma intensities indicates that a form of saturation may have been acting to limit the accumulation of contaminant materials on the support ships. When these intensities are adjusted (via  $t^{-1.3}$ ) to equivalent readings taken on the same day, the adjusted intensities are similar in magnitude, even though the ships' exposure histories were quite different. Thus, it appears probable that all ships that spent sufficient time in contaminated water approached a limiting value of the amount of accumulated contaminant material and that at some later date these ships all exhibited similar contamination intensities, independent of the details of their individual exposures to contaminated water.

To evaluate S and C, the exterior hull gamma intensity derived for each of the 12 ships is adjusted to the value that would have existed on the day the support ship departed Bikini Lagoon. According to statements presented in Reference 2, steaming in uncontaminated water at full speed for 24 hours reduced the accumulated activity by 50 percent, but continued steaming did not result in further reduction. Reference 37 reports that the USS HENRICO experienced "a period of leaching the first night at sea, bringing her hull down to 0.4 (of departure intensity) and the auxiliary condensor down 0.6, but effecting the evaporators but little." In the present analysis, it is assumed that both hull and pipe intensities were reduced to half of their departure values during the first day after departure from the lagoon. An assumption concerning the subsequent radiological and physical decay of the remaining radioactive material must be made. Data presented in Reference 37 indicates that the decay during the first few days following departure may have been greater than  $t^{-1.3}$  (due to continued leaching), but that at later times the decay rate decreased significantly. Due to lack of definitive data on which to construct reliable post-departure intensity-time curves, the standard  $t^{-1.3}$  decay rate established for deposited BAKER fission products is used. The calculated intensity at lagoon departure,  $I_o(t_f)$ , for each of the twelve ships in the data base is determined by increasing the reported intensity by a factor  $(t_r/t_f)^{1.3}$ , where  $t_r$  is the time of the intensity reading, and  $t_f$  is the time of final lagoon departure; this adjusted value is then multiplied by two (to account for initial leaching of radioactive material in clear water) to arrive at  $I_o(t_f)$ . Substituting into the previously equation, one arrives at a relation between the constants S and C:

$$I_o(t_f) = S t_f^{-1.3} \left[ 1 - \exp \left\{ -\frac{C}{S} D_w(t_f) \right\} \right].$$

Thus, for each of the twelve ships, curves of  $S$  versus  $C$  are constructed. These curves have the general form shown in Figure 2-8 for representative ships. While unique values of  $S$  and  $C$  cannot be determined from these curves directly, they may be evaluated with one additional curve constructed from data given in Reference 2:

After re-entry of the non-target vessels to the lagoon, the same tendency of radioactive materials to adhere to the outer shell below the waterline was observed. The conditions here were ideal for ion-exchange and although the water itself showed intensity of radioactivity at and near the surface of only about .01 R/day, the active material was absorbed so efficiently from the lagoon waters that within a period of three days several of the non-target vessels began to show geiger counter readings of greater than 0.1 R/day of gamma radiation inside the hull in the vicinity of the waterline.

This statement appears to refer to support ships that re-entered the lagoon on BAKER day, and therefore applies to the first three days after detonation. It is assumed that the maximum hull reading was 0.12 R/day after three days; the  $S$ -versus- $C$  curve described from these values is shown schematically in Figure 2.8. As shown in the diagram, the latter curve crosses those derived from the support ship intensity data base in such a manner that unique values of  $S$  and  $C$  can be assigned to each of the twelve ships. The values of  $S$  thus determined are given in Table 2-6. It is seen that the individual values of  $S$  vary within each group. Part of this variation is undoubtedly due to the simplicity of the basic model, uncertainties in the calculated water intensities  $I_w(t)$ , and uncertainties in the exterior hull readings due to instrument inaccuracies and nonstandard measurement techniques. However, much of this spread may be physical, representing variations in the amount of accumulated contaminant material on ship hulls due to differences in type and condition of paint (Reference 2), cleanliness of the hull while at Bikini, and decontamination actions taken while in the lagoon.

The values of  $S$  used in this analysis are the geometric mean values of  $S$  appearing in the table, grouped by ship type. Specifically,  $S = 2240, 1800$ , and  $1570 \text{ mR-day}^{0.3}$  for PGMs, destroyers, and all other ships, respectively. The range in the derived values of  $C$  is small, and the dose calculations are relatively insensitive to the exact value chosen. An average value of  $C = 11.0 \text{ day}^{-1}$  is used for all support ships.

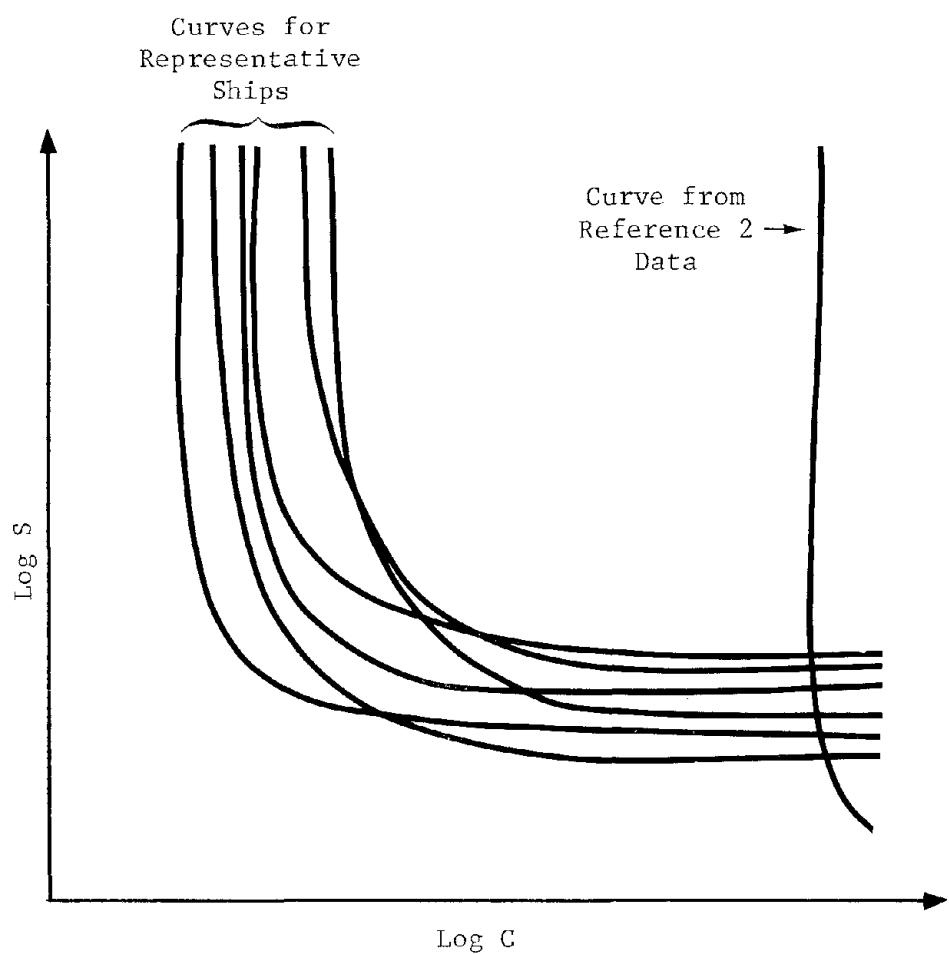



Figure 2-8 Ship Contamination Model Parametric Curves

A method is now developed whereby the exterior hull gamma intensity (the  $I_o$  calculated as described above) is used to determine interior ship intensities resulting from exterior hull contamination and contamination in salt water piping. A contaminated ship is modeled as a three-level structure with vertical sides (hull), as shown in Figure 2-9. The relevant geometric parameters are indicated in the figure. The hull contamination is modeled as a number (ten was found to be sufficient) of infinite line sources on each side of the lower exterior of the structure. The interior piping consists of two water mains (also taken as line sources) above level 2 in the structure. The structure is assumed to be symmetric about the centerline. Eight parameters ( $W$ ,  $H$ ,  $h_1$ ,  $v_1$ ,  $v_2$ ,  $t_1$ ,  $t_2$ ,  $t_3$ ) are determined for each ship type from analyses of ship diagrams. The value of  $Z$  (height above deck) is taken as 4.5 feet, the approximate height of a chest-worn badge. It is necessary to relate intensities measured in the salt water mains ( $I_p$ ) to the exterior hull gamma intensities ( $I_o$ ), which are assumed to have been read with the detector held at the nominal water line of the ship and with the hull exposed (i.e., in dry dock or listed to the other side). Readings available for the USS SAIDOR (Reference 35) and the USS ROCKBRIDGE (Reference 27) indicate that  $I_p \approx 1.5 I_o$ . This relationship is assumed to hold for all ships.

With the sources now fixed, the interior ship intensities are calculated. This step requires the computation of the attenuation and buildup of gamma radiation through the material interposed between each element of source radiation and the point of interest, and the summation (integration) of contributions from all source elements. This is accomplished by means of the kernel technique with the Taylor form of the buildup factor (Section 3.8 of Reference 28). A gamma energy of 0.8 MeV (representative of gamma radiation from fallout material) is assumed. The resulting relative intensity (i.e., relative to exterior hull gamma intensity,  $I_o$ ) distribution for each of the three levels of a destroyer is displayed in Figure 2-10. The relative intensity averaged over all three levels is used for contamination dose calculations in this report. These averaged relative intensities, referred to as apportionment factors,  $F_a$ , are listed in Table 2-7 for all ship types of interest.

Finally, an estimate is made of the intensity in the engine room of a ship. From the intensity data referenced above for the SAIDOR and ROCKBRIDGE, and from values given for the A.M. SUMNER in a radio message transmitted on 28 July 1946, it

REPRESENTATIVE SHIP TRANSVERSE CROSS SECTION AMIDSHIPS

|       |   |                                                    |       |   |                                           |
|-------|---|----------------------------------------------------|-------|---|-------------------------------------------|
| W     | - | SHIP BEAM                                          | $t_1$ | - | AVERAGE THICKNESS OF SIDE SHELL PLATING   |
| H     | - | AVERAGE HEADROOM                                   | $t_2$ | - | AVERAGE THICKNESS OF LEVEL 1 PLATING      |
| $V_1$ | - | DISTANCE FROM LEVEL 2 DECK TO WATER LEVEL          | $t_3$ | - | AVERAGE THICKNESS OF LEVEL 2 PLATING      |
| $V_2$ | - | VERTICAL DISTANCE OF WATER MAIN BELOW LEVEL 1      | $Z$   | - | REPRESENTATIVE FILM BADGE HEIGHT (4.5 FT) |
| $h_1$ | - | HORIZONTAL DISTANCE OF WATER MAIN FROM OUTER SHELL |       |   |                                           |

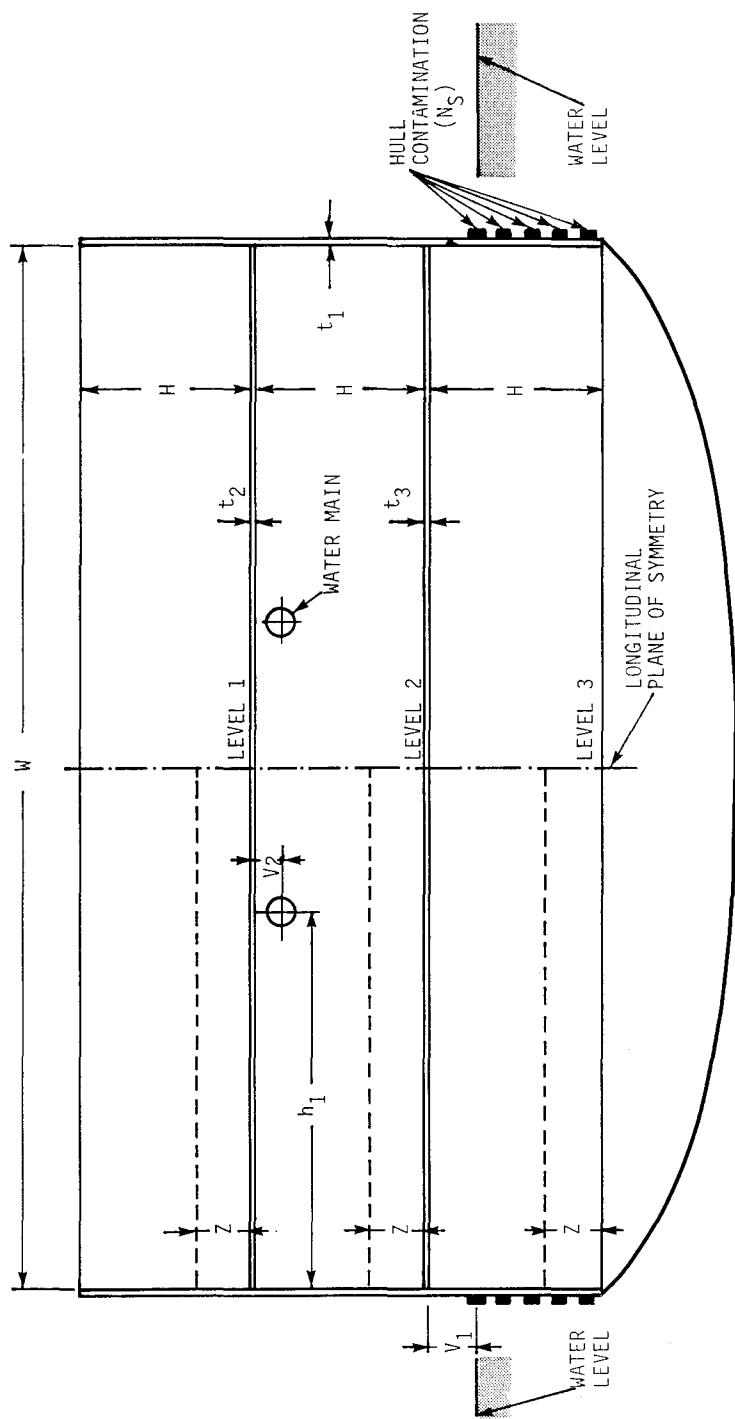



Figure 2-9 Support Ship Contamination Model

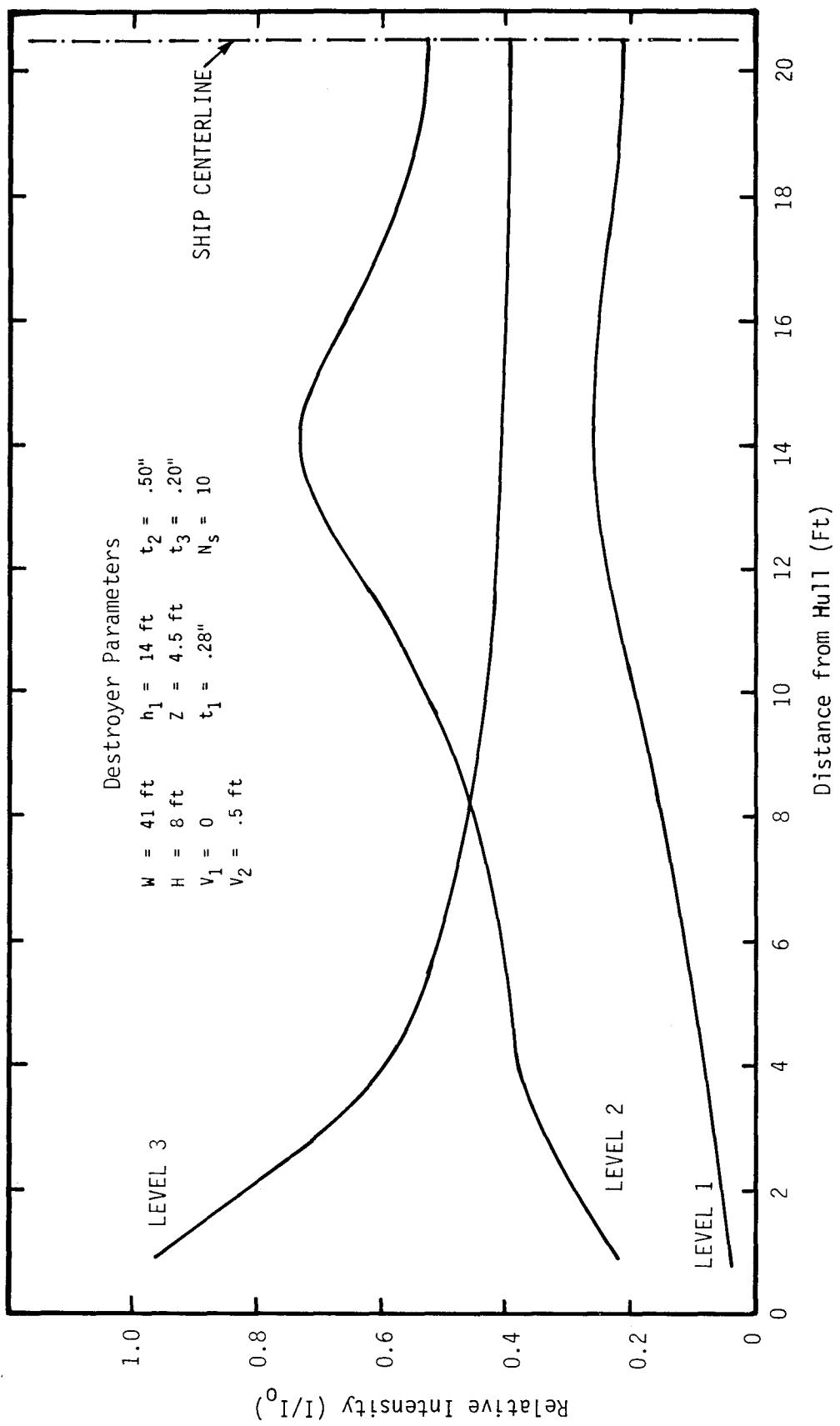



Figure 2-10 Interior Intensity Distribution for a Destroyer

Table 2-7  
Ship Apportionment Factors

| <u>TYPE</u> | <u>SHIP</u>                          | <u>DESIGNATION</u>                                                                                   | <u><math>F_a</math> *</u> |
|-------------|--------------------------------------|------------------------------------------------------------------------------------------------------|---------------------------|
| I           | Destroyer                            | DD                                                                                                   | .39                       |
| II          | Cruisers                             | CA-131                                                                                               | .05                       |
| III         | Carrier, Light                       | CVE                                                                                                  | .10                       |
| IV          | Mine Sweepers                        | YMS                                                                                                  | .55                       |
| VA          | Salvage & Rescue                     | AN, ARS, ARSD-1, ASR-1, ASR-8<br>ATA, ATF, ATR, WAGL-392                                             | .39                       |
| VB          | Small Survey                         | AGS (8, 10, 13) (not AGS-4)                                                                          | .55                       |
| VC          | Patrol Boats                         | PGM                                                                                                  | .67                       |
| VIA         | 300' Merchant                        | APD-27, AVP-49                                                                                       | .29                       |
| VIB         | 400-435' Merchant<br>(C2 Types)      | AG, AGC, AGS-4, AKA-21, AKA-44, .20<br>AKA-99, AKA-101, AKS-4, AKS-13,<br>APA 58, 67, 77 APA 228-237 |                           |
| VIC         | 465-508' Merchant<br>(C3 & C4 Types) | AH-4, 12, 13, AV-5, 14, 17<br>APA-27, APA-33, APA-45<br>LSD-5, LSD-25                                | .15                       |
| VIIA        | Tankers 300'                         | AOG(W)-11                                                                                            | .33                       |
| VIIB        | Tankers 400'                         | AW-2                                                                                                 | .28                       |
| VIIC        | Tankers 500'                         | AOW-61, AO-54, AO-69                                                                                 | .24                       |
| VIII        | Tenders & Repair                     | AD-14, AS-11, AR-6                                                                                   | .15                       |
| IXA         | Landing Craft                        | LCI                                                                                                  | .57                       |
| IXB         | Landing Craft                        | LCT                                                                                                  | .43                       |
| IXC         | Landing Craft                        | LST, ARL-24                                                                                          | .33                       |
| X           | Barges                               | YO, YOG, YW                                                                                          | .57                       |

\*The apportionment factor  $F_a$  is the average interior ship intensity relative to the exterior hull gamma intensity. It is calculated by averaging the interior intensity distribution over the three levels of the ship model.

appears that evaporators and associated equipment have average intensities ( $I_e$ ) similar to those of pipes, i.e.,

$$I_e \approx 1.5 I_o.$$

Therefore, the engine room is estimated to have an average intensity no greater than this value.

## Section 3

### NAVAL OPERATIONS

Only those portions of the CROSSROADS ship activities before and after tests ABLE and BAKER that are pertinent to radiological examination are discussed. Elaborate fleet operation plans were established by CJTF-1 for safety and operational control purposes. These plans are recorded in Reference 29. The ocean in and around Bikini Lagoon was sectioned into specific geographic regions. Centered on the Delta Beacon on Bikini Island, designated Point Auto, concentric circles and radials were drawn. The resulting annular sectors were assigned various automobile names. The sector chart, defining the operating areas for the task groups of the Joint Task Force, is shown in Figure 3-1. A sector axis was drawn through sections Benz and Graham. Radiological axes based on the local surface wind directions for ABLE and BAKER were established at azimuths  $050^{\circ}$  and  $120^{\circ}$ , respectively. The sector axis was then aligned with the radiological axis and the sectors were rotated accordingly. Each ship was assigned an operating area based on these sectors.

#### 3.1 Pre-Shot Evacuation

On the day before each test, 30 June and 24 July, the crews manning the target ships, approximately 9,000 personnel, were transferred to various units of the transportation group. Other transportation units visited the neighboring islands and took native personnel aboard in case a permanent evacuation might become necessary as a result of radioactive fallout. The various operating groups took positions as specified by the CJTF-1 Operation Order 1-46 and the sector chart of Figure 3-1 to await the test. Figure 3-2 shows the locations of the operating groups prior to the BAKER detonation; the radiological axis for this shot was at  $120^{\circ}$ , as indicated.

#### 3.2 Post-Shot Maneuvers

Immediately after Shots ABLE and BAKER, the PGMs, salvage units and technical group reentered the lagoon in that order. The 20 LCPL craft, each normally manned by a boat officer and a crew of four, were lowered into the lagoon to accompany the PGMs into the target array to define the radiological environment. The Director of Ship Material, located on the USS RECLAIMER (ARS-42), supervised

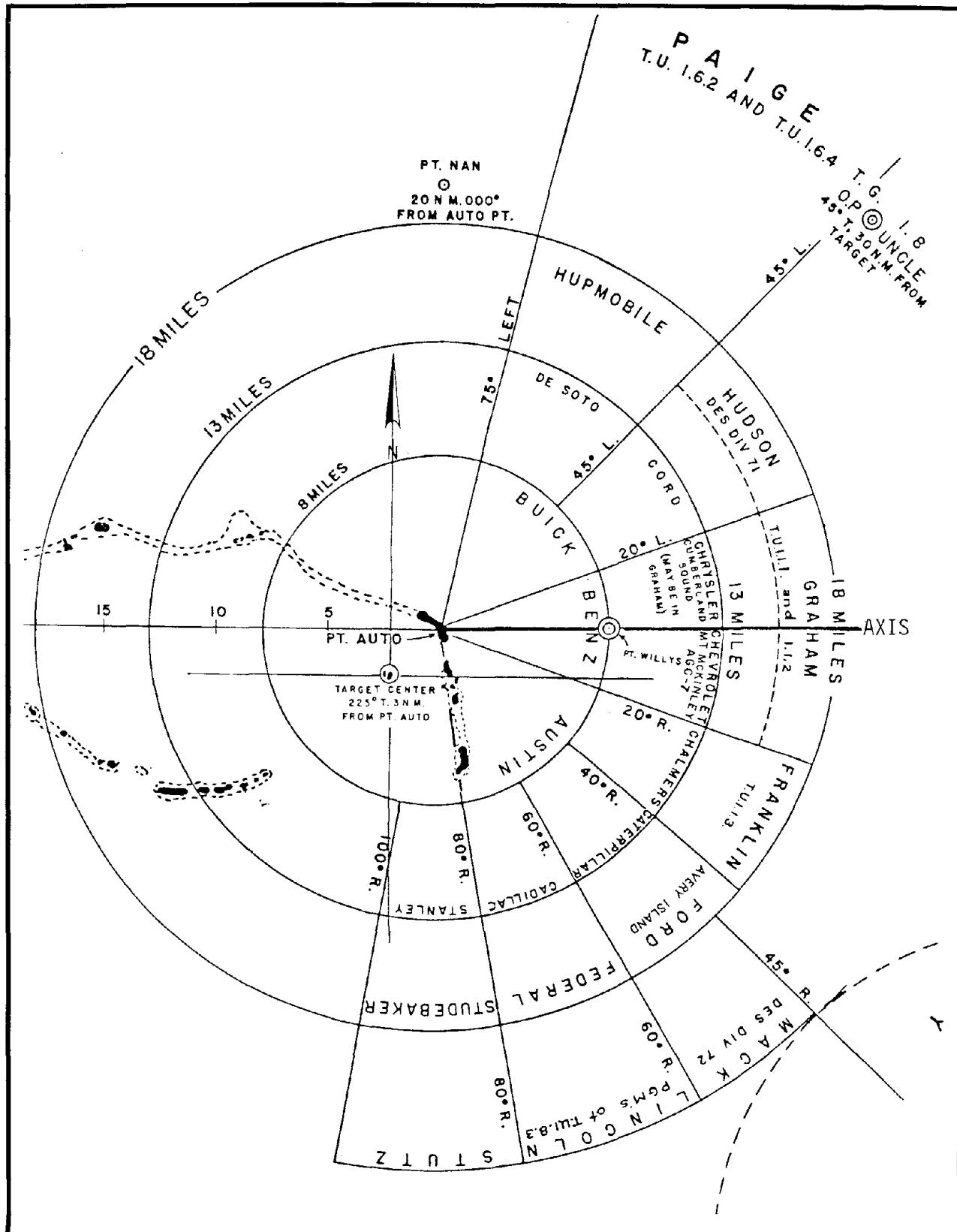



Figure 3-1 CJTF-1 Sector Chart

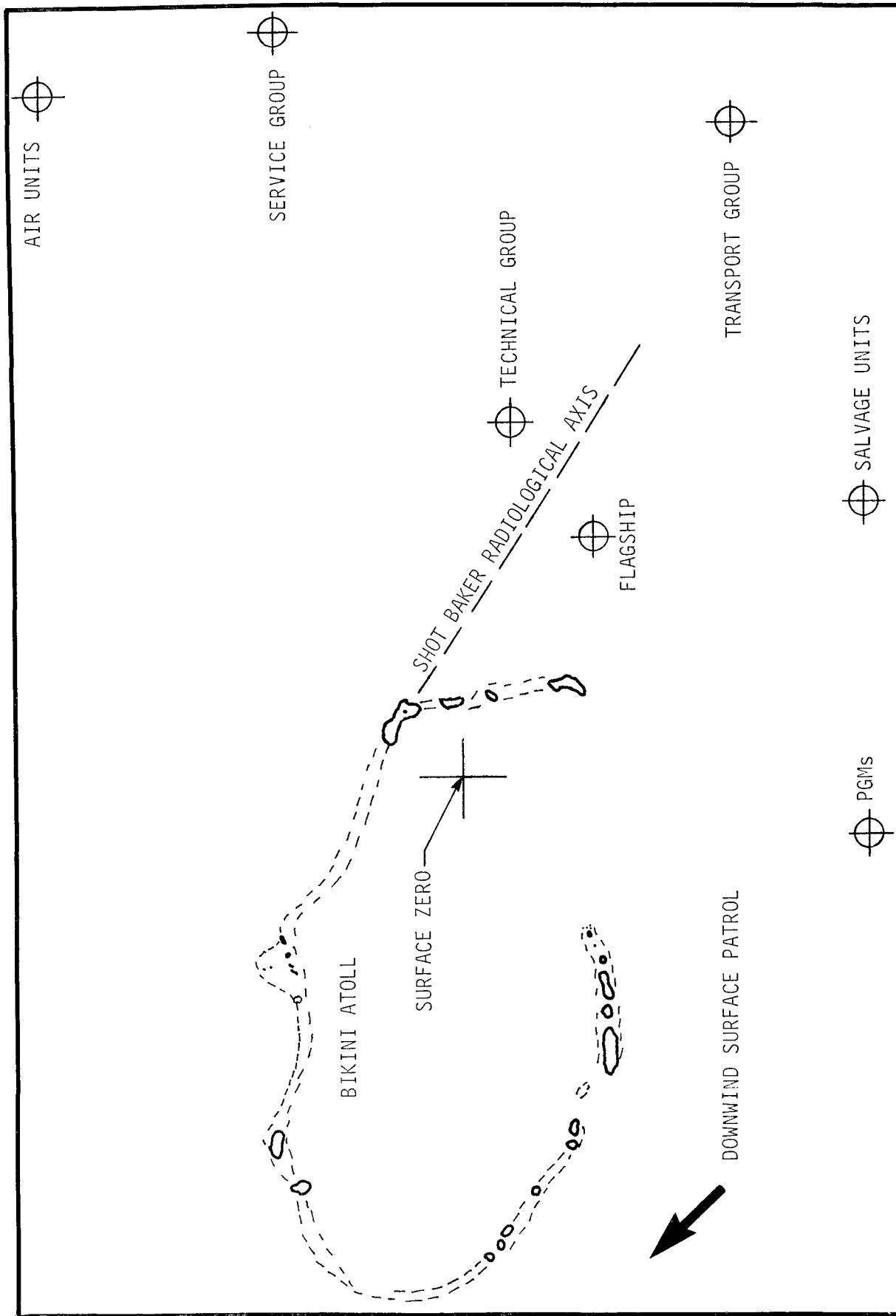



Figure 3-2 Group Locations at BAKER Detonation

the initial damage survey of the target array and also reported radiological readings of the water and target ships. The remaining salvage units and the technical group remained near the lagoon entrance, well outside radioactive waters. Their general location upon reentry are shown in Figure 3-3.

Little detailed information is available on the actual movements of the PGMs and LCPLs. Figure 3-4 shows the sector assignments of the PGMs for a hypothetical wind of 070°, nearly the actual condition for Shot ABLE. One hour before Shot ABLE, the sector assignments were shifted one segment clockwise for each PGM patrol and their attached LCPLs. The assignments of LCPLs and patrol areas for both shots are given in Table 3-1.

Table 3-1  
PGM Patrol Assignments

| <u>Metal/<br/>PGM</u> | <u>Assigned<br/>LCPLs*</u> | <u>Assigned Sector:</u> |              |
|-----------------------|----------------------------|-------------------------|--------------|
|                       |                            | <u>ABLE</u>             | <u>BAKER</u> |
| Steel<br>32           | A4<br>A5<br>B18<br>B20     | Greece                  | France       |
| Nickel<br>31          | B15<br>B16<br>B17          | France                  | England      |
| Iron<br>29            | B12<br>B13<br>B14          | England                 | Denmark      |
| Gold<br>25            | B9<br>B10<br>B11           | Denmark                 | Chile        |
| Cobalt<br>24          | B6<br>B7<br>B8             | Chile                   | Brazil       |
| Brass<br>23           | A1<br>A2<br>A3<br>B19      | Brazil                  | Argentina    |

\*As specified in Operation Plan

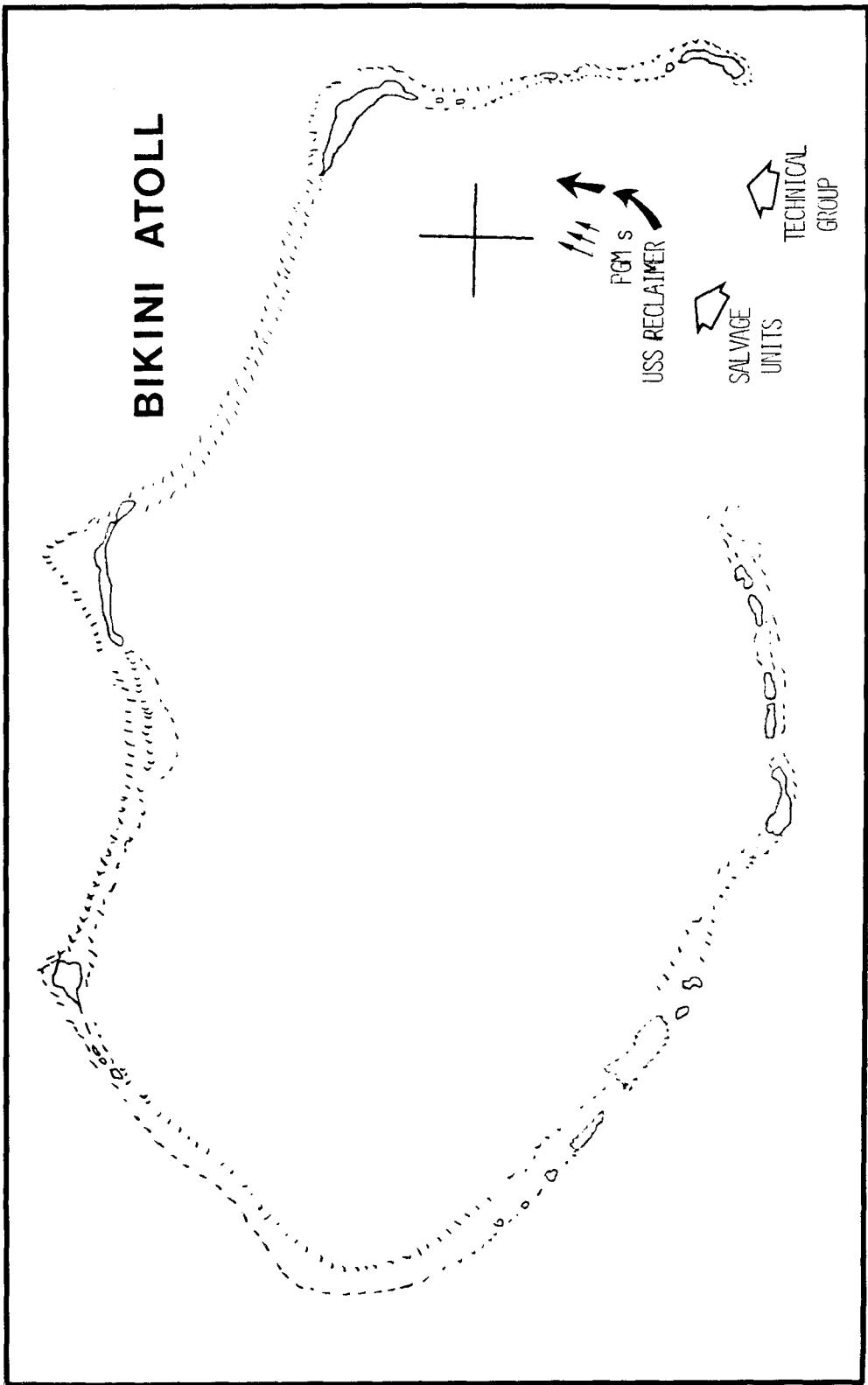



Figure 3-3 Post-BAKER Reentry

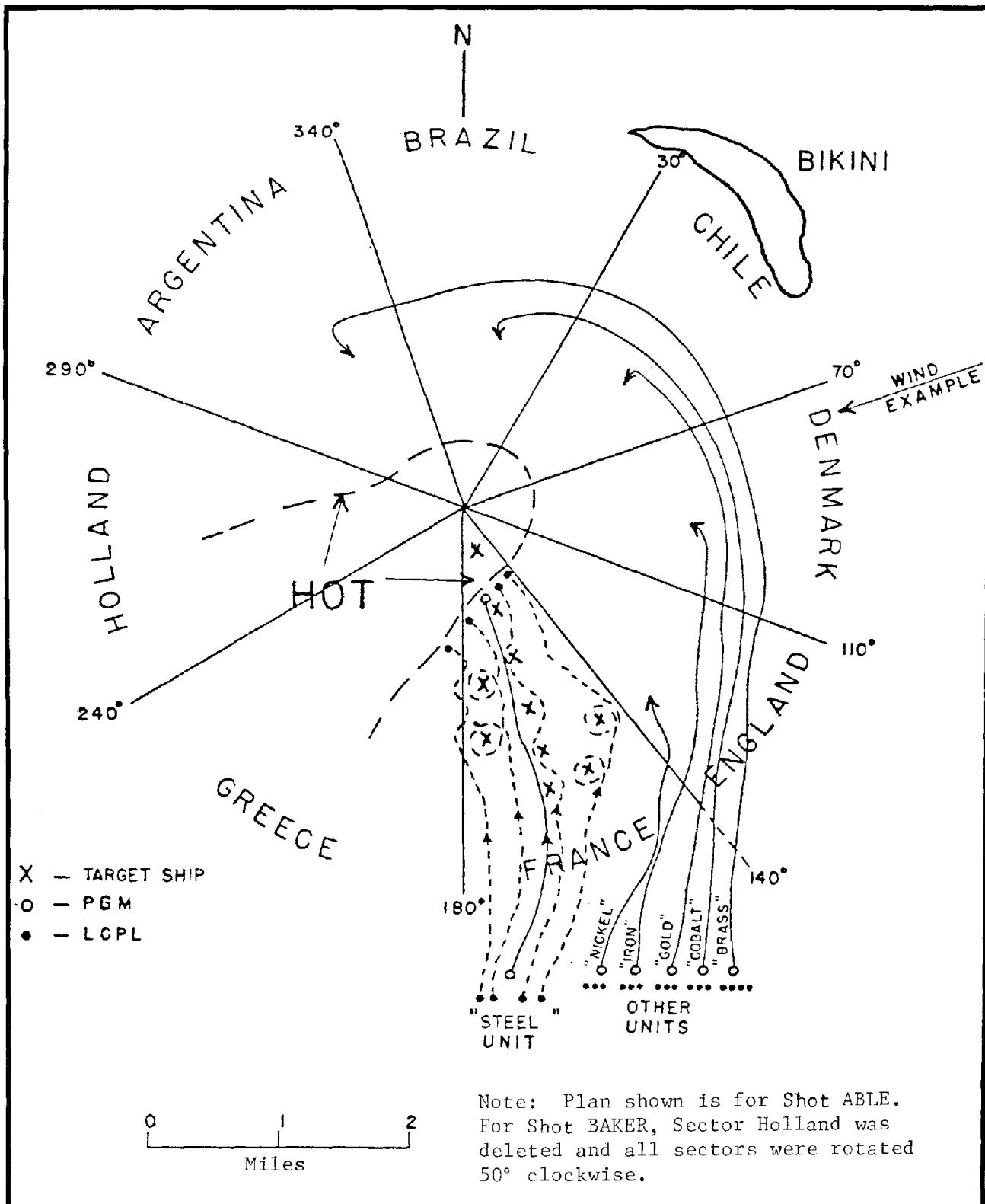



Figure 3-4 PGM Operation Plan

On ABLE day, the PGMs and attached LCPLs proceeded into the lagoon and to their assigned sectors. Beginning at the outside of the target array, the patrols proceeded toward the center of the array, reporting radiological intensities as they converged. In this manner, the red (1.0 R/day) and blue (0.1 R/day) lines were specified. The LCPLs then began to circle the target ships in their assigned sectors and report the radiological status of the water around the ships. On ABLE day plus one (A+1), the lagoon patrol followed straight grid lines and made east-to-west sweeps through the target array, allowing early clearance to be given to the center portion of the array. In the late morning on A+1, the blue line was discontinued. Later that day, the lagoon patrols searched for and identified remaining radiologically hazardous areas. By A+2, most of the target ships had been cleared, and the LCPLs of the lagoon patrol had become a water taxi service, performing various jobs not specified in the Operation Plan.

The PGMs and assigned LCPLs followed similar radiological reconnaissance procedures in the lagoon after Shot BAKER. Because of the intensity and size of the contaminated area, only seven target ships were cleared on BAKER day. During these patrols, some crews on the PGMs and LCPLs entered radiological "hot" spots and reached or exceeded their daily tolerance of radiation (0.1 R/day) in a period of several hours. Patrols were continued on subsequent days and by B+2, the water around approximately half of the target ships had been cleared. By B+5, the blue line and boating restrictions had been eliminated.

As previously stated, incomplete information exists on the actual movements of the PGMs and LCPLs while they were performing their assigned tasks. The PGM deck logs typically note "... various courses and various speeds while on radiological patrol ...". While not every position and maneuver is recorded, sufficient information is available on the PGMs to reconstruct major movements, from which dose calculations can be made. There is insufficient information, however, to accurately determine the movements of the LCPLs, and thus to reliably reconstruct doses for the crews. Fortunately, most of the crew members were issued film badges at the beginning of each day, and records exist on the dose levels for each crew for the periods 1-3 July 1946, and 25-31 July 1946. Dosimetry for the LCPLs is shown in Table 3-2. These dose levels represent the radiological data base that exists for the LCPL crews and can be used for dose determination of crews engaged in lagoon surveys.

Table 3-2 Dosimetry Summary for LCPL Crews

| LCPL                        | JULY 1946 |          |          |          |          |          |          |          |          |                     | OTHER                |
|-----------------------------|-----------|----------|----------|----------|----------|----------|----------|----------|----------|---------------------|----------------------|
|                             | 1         | 2        | 3        | 25       | 26       | 27       | 28       | 29       | 30       | 31                  |                      |
| A 1 70(70)                  | 0         | -        | -        | 85(100)  | 0        | 62(80)   | -        | 110(110) | 113(130) | 0                   | 200(200) (7/31-8/26) |
| A 2 0 0 0                   | 0         | 0        | 0        | 0        | 0        | 72(80)   | -        | -        | -        | -                   |                      |
| A 3 0 0 0                   | 0         | 0        | 0        | 70(70)   | -        | 100(100) | -        | -        | -        | -                   |                      |
| A 4 0 0 0                   | 0         | 0        | 0        | 0        | 0        | 8(40)    | -        | 34(50)   | -        | -                   |                      |
| A 5 0 0 0                   | 0         | 0        | 0        | 0        | 28(40)   | 28(30)   | -        | 50(50)   | -        | -                   |                      |
| A 6 - - -                   | -         | -        | -        | 0        | 0        | 110(120) | 152(180) | -        | -        | -                   |                      |
| A 7 - - -                   | -         | -        | -        | -        | -        | 80(80)   | -        | -        | -        | -                   |                      |
| A 8 - - -                   | -         | -        | -        | 0        | -        | -        | -        | -        | -        | -                   |                      |
| B 6 0 0 0                   | 0         | 0        | 0        | 0        | 0        | -        | -        | -        | -        | -                   |                      |
| B 7 0 0 0                   | 0         | 0        | 0        | 0        | 0        | -        | -        | -        | -        | -                   |                      |
| B 8 0 0 0                   | 0         | 0        | 0        | 0        | 52(60)   | 84(90)   | 124(150) | 100(100) | -        | -                   |                      |
| B 9 100(120) 0 0            | 0         | 0        | 0        | 0        | 0        | 62(70)   | -        | -        | 94(100)  | -                   |                      |
| B 10 50(60) 0 0             | 0         | 0        | 0        | 0        | 0        | 0        | -        | -        | -        | 80(100) (7/28-8/03) |                      |
| B 11 8(40) 10(50) 0         | 0         | 0        | 0        | 0        | 0        | 26(50)   | -        | -        | -        | -                   |                      |
| B 12 64(70) 0 0             | 0         | 0        | 0        | 0        | 0        | 66(80)   | 126(150) | -        | -        | -                   |                      |
| B 13 0 12(60) -             | -         | 106(120) | 0        | 78(90)   | 0        | -        | -        | -        | -        |                     |                      |
| B 14 0 0 0                  | 0         | 0        | 14(70)   | 0        | 80(90)   | 78(90)   | -        | -        | -        |                     |                      |
| B 15 0 0 0                  | 0         | 0        | 0        | 54(60)   | 8(40)    | -        | -        | -        | -        |                     |                      |
| B 16 0 0 0                  | 0         | 0        | 0        | 58(70)   | 48(60)   | -        | -        | -        | -        |                     |                      |
| B 17 0 0 0                  | 0         | 0        | 72(74)   | 60(60)   | 15(30)   | -        | 40(60)   | -        | -        | -                   |                      |
| B 18 0 0 0                  | 0         | 0        | 10(50)   | 198(240) | 40(80)   | 0        | -        | 60(80)   | -        | -                   |                      |
| B 19 40(50) 0 32(50)        | 0         | -        | 130(140) | 30(30)   | 102(120) | -        | -        | -        | -        | -                   |                      |
| B 20 0 32(50) -             | -         | 36(60)   | 44(50)   | 0        | -        | -        | -        | -        | -        | -                   |                      |
| NO. OF BADGES ISSUED (579)  | 98        | 92       | 20       | 97       | 96       | 97       | 35       | 27       | 5        | 6                   | 6                    |
| NO. OF ZERO EXPOSURES (329) | 69        | 82       | 18       | 65       | 56       | 33       | 4        | 2        | 0        | 0                   | 0                    |

Table gives average dose in mrem, maximum dose in parentheses.

Dash indicates no data available.

The 10 salvage units led by the RECLAIMER were the first ships to follow the PGM radiological patrol. Each ARS except the RECLAIMER was accompanied by a rescue tug carrying a fire fighting officer and team. The movements of the RECLAIMER are well documented and are discussed at length in Section 5. Following Shot BAKER, most other units remained outside the lagoon and did not enter until after B+4, by which time the water intensity had greatly diminished. Units operating within the lagoon generally anchored for the night in the southeastern corner of the lagoon. However, on B+3 some ships were forced to shift their anchorages 4-5 miles to the west to avoid the advancing radioactive waters.

### 3.3 Boarding Party Operations

Boarding parties were established to board target ships for purposes of inspection, damage control, instrument retrieval, and reactivation of target ships. The organization and mission of the major boarding parties are discussed below.

#### 1) Initial Boarding Teams

There were ten such teams, each composed of seven to eleven people. Key elements of each team included:

Representative, Director of Ship Material - In charge of team.

Assistant to Representative, Director of Ship Material - Deputy team leader.

Radiological Safety Monitor - Determined radiological conditions of all topside structures. Advised length of time personnel could remain onboard under existing conditions. Located and marked all unsafe spots.

Medical Safety Officer - Determined possible personnel hazards regarding air contamination; noted conditions of animals on topside structures, and served as Damage Control Safety Officer.

Bomb and Ammunition Safety Officer - Determined over-all condition of exposed ammunition and safety of ammunition in magazines as indicated by results of previous and existing fires.

Photographer - Obtained photographs of gross damage conditions as directed by DSM representative.

Six of the ten Initial Boarding Teams were located aboard salvage ships; four were aboard LCPLs and later transferred to other salvage units. The function of these teams was damage control, radiological monitoring and initial inspection and disposition of the target vessels. Boarding teams were kept together during the inspection of each ship insofar as practicable. The assignment of individuals to the various Initial Boarding Teams was made in accordance with the Initial Boarding Plan, Reference 30. However, the compositions of the teams were tailored to the nature of each day's operations.

In addition, salvage and firefighting teams from Task Unit 1.2.7 were embarked in vessels carrying Initial Boarding Teams.

## 2) Target Ship Crew Inspection Parties

The crew of each target ship was divided into four teams. Teams A, B, and C were headed by the commanding officer, engineering officer, and executive officer, respectively. Team A was to make a complete survey of the ship's superstructure. Team B would open the interior of the ship and make it habitable if possible. Team C would reactivate the administration functions, and team D, the remaining ship's personnel, would remain the ship. These parties included any Army personnel attached to the target ships.

## 3) Boarding Inspection Parties from the DSM Staff

These boarding parties were comprised of technical personnel on the DSM staff, many of whom were located on the USS WHARTON. These included Army, BuAir, BuShips, BuOrd, BuMed and BuShips electronics personnel.

## Section 4

### DOSE RECONSTRUCTION

Operations within Bikini Lagoon after the ABLE and BAKER shots were complicated not only by a complex radiological environment, but also because the unexpectedly high radiation levels from Shot BAKER necessitated revisions of the operation plans. The planned ship movements were revised on an ad hoc basis, and detailed reports are subsequently fragmentary. Central to the reconstruction of the dose to a crew is the knowledge of the vessel's path. This path must then be correlated with the radiological environment, which itself was changing with time due to radioactive decay and physical transport in the water.

Three sources of radiation are considered significant in this analysis. Each was present to various degrees after the ABLE and BAKER shots. Sources considered are:

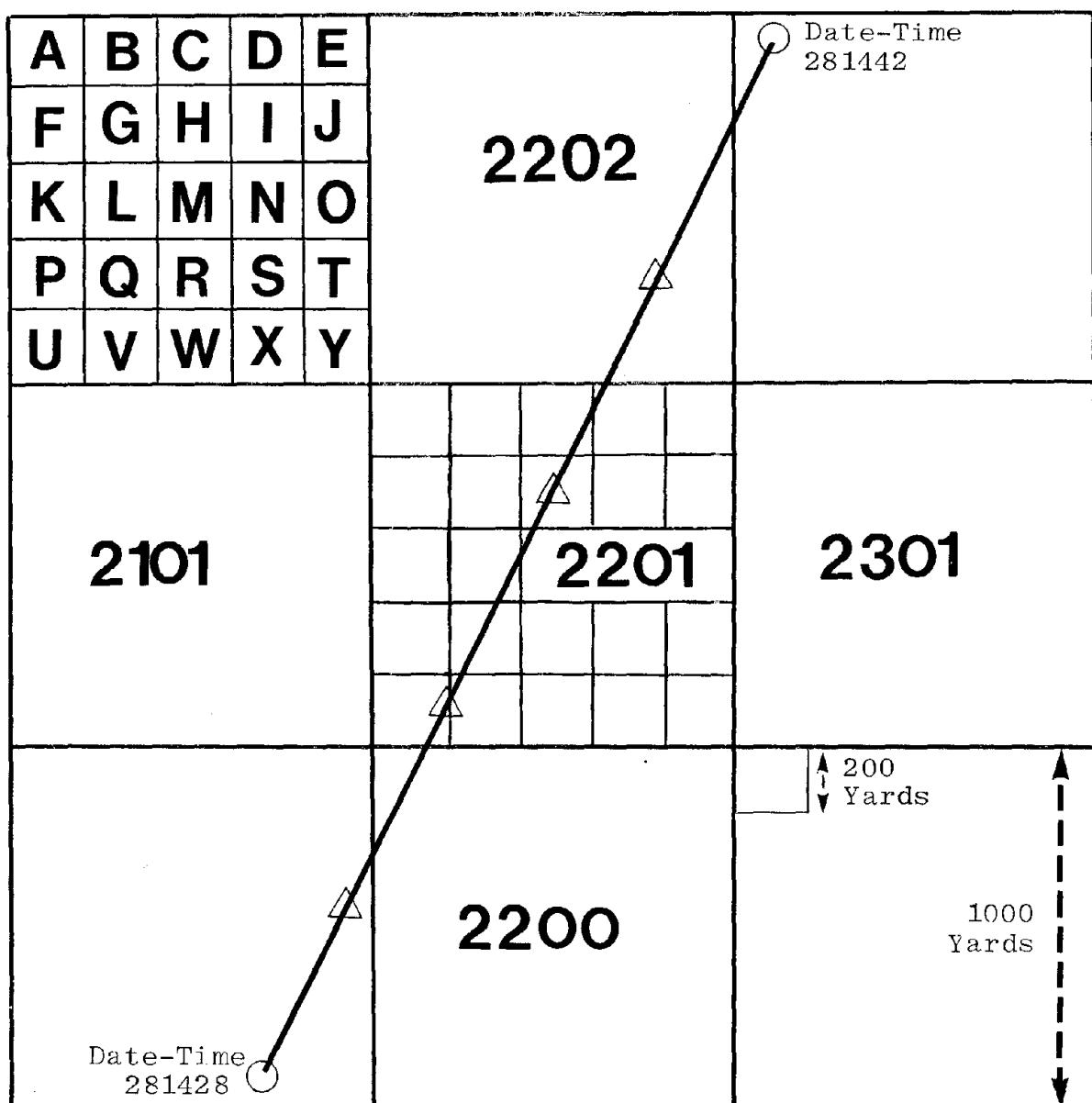
1) Radioactivity in the lagoon water. Analysis of the radioactivity of neutron-activated seawater after Shot ABLE is described in Section 2.1. Estimation of the radiation intensities from water contaminated by weapon debris after Shot BAKER is described in detail in Section 2.3. Occasionally it was reported that various support ships passed through radioactive "hot" spots. Most of these hot spots were oil slicks encountered by destroyers on patrol north of the lagoon, and therefore not included in the water activity model. Doses from these sources are estimated from measured or assumed intensities and durations in these locations. In calculating shipboard doses, the water is treated as an infinite plane, and shielding by the ship structure is assumed negligible for topside exposures.

2) Radioactivity on target ships. Separate models are constructed for Shots ABLE and BAKER. Since there was essentially no local fallout for ABLE, only the neutron activation of the target ships is considered for this shot. The analysis of this radiation source is developed in Section 2.2. The residual activity of target ships is more complex for Shot BAKER, because of the radioactive weapon debris that was deposited on many of the target ships. Since there is an abundance of radiological data available for the BAKER target vessels, an empirical, vice

theoretical, approach is taken. From reported readings, time-dependent gamma intensity curves for target ships of interest are developed, as explained in Section 2.4. Three curves for each target vessel cover most operational situations regarding close encounters of non-target support ships and crews with target vessels. When available, the effects of target ship decontamination are shown on the gamma intensity curves. These curves apply to the following locations:

- a) Topside on the target vessel. This curve describes the average topside intensity that was present on the upper exposed decks of a target vessel. This curve is applicable to boarding parties working topside on target ships.
- b) Below decks on a target vessel. This curve is applicable whenever personnel were below decks. Its use requires a determination of the time spent below decks for parties operating aboard.
- c) Moored alongside a target vessel while conducting reboarding, damage control or scientific operations. The amidships curve for the target ship describes the radiation intensity that existed near (6 feet) the side of a target vessel.

In addition to these encounters with target ships, there were occasional reports of various support ships passing near (within approximately 100 feet) radioactive target ships and measuring intensities. Doses accrued during such maneuvers are estimated from the reported intensities and an assumed exposure duration of three minutes.


3) Contamination buildup on ships operating in contaminated water. For target and non-target ships operating in the lagoon, radioactivity began to accumulate on those surfaces in contact with the contaminated water. The areas of greatest concern were the exterior hull at or below the water line, salt water piping, and the condensers/evaporators of the ships. The method developed to estimate dose contributions from these sources is described in Section 2.5.

The radiation environments described in Section 2 are free-field intensities. A conversion factor from free-field dose to film badge dose, 0.7 for a properly worn film

badge (Reference 26), is applied to all free-field doses. It is also necessary to consider personnel activity aboard a ship. A typical sailor will not be fully exposed to all radiation sources at the same time. Specifically, the water intensity contributed to the dose of a sailor topside, but the self-shielding of the water and shielding by ship structural material greatly reduced this contribution below decks. Similarly, the ship contamination dose contributed significantly to doses accrued below decks, but probably contributed negligibly topside. In computing total doses, it is assumed that the average sailor spent 8 hours daily topside, and 16 hours below decks. Therefore, 24-hour water doses are multiplied by 1/3, and 24-hour ship contamination doses by 2/3, to determine the total dose for a typical sailor.

#### 4.1 Computerized Methodology

The radiation environments described in Section 2 essentially define the gamma intensity in the lagoon as a function of position and time. The calculation of a ship's free-field dose can be obtained by correlating the unit's maneuver history with the radiation environment. A computerized methodology has been developed which allows input of ship path data and calculates the doses accrued by shipboard personnel from the previously described radiation sources. Figure 4-1 shows the reconstruction of a hypothetical ship's movement and the manner in which it is represented in this computer model. The lagoon is divided into 1000-yard grid squares, each assigned a unique number. Each grid square is subdivided into 200-yard squares. This coordinate system, used during the operation, allows the positioning of a unit to within 200 yards through the use of a five-digit alpha-numeric code. For example, the surface zeroes for Shots ABLE and BAKER were 2101L and 2201K, respectively. Figure 4-1 shows the input positions and four intermediate positions interpolated by computer on a three-minute basis. Straight-line interpolation between known position points is used, and incremental doses are calculated from the local radiation intensity and the size of the time step. The values of gamma intensity in the post-BAKER environment are stored for each grid square in the lagoon for each of six days (B+1 through B+5, and B+8) following the detonation. Linear interpolation in time between these data sets is employed. The post-ABLE water environment is described in the computer code by the mathematical expression developed in Section 2. A computer program calculates



Input Position

△ Interpolated Position

Figure 4-1 Ship Position Calculation

water doses through ABLE plus 3 days and BAKER plus 8 days. Doses from target ships and ship contamination are calculated on a daily basis until departure from the lagoon.

#### 4.2 Program Descriptions/Listings

A series of programs has been developed to perform these calculations and to provide various bookkeeping functions. A description of each program and its listing are included in this section. The following programs are included:

INPUT PATH  
INPUT PASSING SHIP DOSE  
WATER INTENSITY  
LATE WATER  
TARGET INTENSITY  
SHIP CONTAMINATION  
RADIATION REPORT  
UPDATE  
UPDATE TARGET SHIPS  
UPDATE PASSING SHIP DOSE  
PATH REPORT  
UPDATE SHIP CONTAMINATION

Program: INPUT PATH

Program Objective: To create files that define a ship's location in Bikini Lagoon as a function of time.

Description: The path is input as a set of discrete data points. Each data point includes a time, a place, and an indicator of the ship's proximity to any target ships. The time is input in days, hours, and minutes, e.g., 031650 is the 3rd of July at 1650. The place is input using the coordinate system described in Figure 4-1. The target ship proximity is indicated by the letters P, A, L, or N, where P = passing, A = alongside, L = leaving, and N = not near a target ship. All codes except N are then followed by the name of the target ship. This information is stored in a file created for each ship.

After this information is input, there is the option of supplying the doses received when passing radioactive target ships. This option need not be selected - a separate program can be used to input the passing numbers at a later time. See INPUT PASSING SHIP DOSE.

Input: Terminal input of a sequence of values for time, place and target ship proximity.

Output: File "ship" PATH containing path information  
File "ship" PASSES with passing dose information

Table 4-1 Input Path

```

10      HOME
20      DIM PLACE$(300),TIME$(300),SHIP$(300)
30      PRINT :
40      PRINT
50      PRINT "THIS PROGRAM CREATES A FILE WHICH"
50      PRINT "CONTAINS THE HISTORY OF THE PATH"
60      PRINT "OF A SHIP"
70      PRINT
80      INPUT "NAME OF SHIP ?" ; X$
90      Z$ = X$ + " PATH"
100     PRINT
110     PRINT "EACH DATA POINT CONSISTS OF A TIME"
120     PRINT "IN THE FORM DDHHMM AND THEN A"
130     PRINT "POSITION LIKE 2591M"
140     PRINT "AND THEN A SHIP CODE BEGINNING"
150     PRINT "WITH N,L,A OR P. WITH ALL BUT N A SHIP NAME FOLLOWS"
160     PRINT :
170     PRINT "HIT RETURN WHEN DONE"
180     PRINT
190     FOR I = 0 TO 300
200         GOSUB 3500
210         IF A1$ = CHR$(13) THEN 290
220         GOSUB 4000
230         GOSUB 4500
240         IF SHIP$(I) = CHR$(13) THEN
250             SHIP$(I) = "N"
260         NEXT I
270     PRINT "ONLY FIRST 300 POINTS USED"
280     PRINT CHR$(7) ; CHR$(7) ; CHR$(7)
290     N = I - 1
300     D$ = CHR$(4)
310     PRINT D$;"OPEN " ; Z$ ; D2"
320     PRINT D$;"DELETE " ; Z$
330     PRINT D$;"OPEN " ; Z$
340     PRINT D$;"WRITE " ; Z$
350     PRINT N + 1
360     FOR I = 0 TO N
370         PRINT TIME$(I)
380         PRINT PLACE$(I)
390         PRINT SHIP$(I)
400         NEXT I
410     PRINT D$;"CLOSE " ; Z$
420     PRINT "CREATE PASSING SHIP DOSE FILE NOW?"
```

```

430  GET A$:
PRINT A$:
440  IF A$ < > "Y" THEN 570
450  DIM PTIME$(300),PNAME$(300),PDOSE(300)
460  FOR I = 0 TO NTIMES - 1
470    T$ = LEFT$(SHIP$(I),1)
480    IF T$ = "A" THEN
        GOTO 560
490    IF T$ = "N" THEN
        GOTO 560
500    IF T$ = "L" THEN
        GOTO 560
510    L = LEN(SHIP$(I)) - 1
520    SHIP$(I) = RIGHT$(SHIP$(I),L)
530    IF T$ = "P" THEN
        GOSUB 730
540    IF TEST = 0 THEN
        GOSUB 820
550    TEST = 0
560    NEXT I
570    Z$ = X$ + " PASSES"
580    PRINT D$;"OPEN ";Z$;"",D2"
590    PRINT D$;"DELETE";Z$
600    PRINT D$;"OPEN ";Z$
610    PRINT D$;"WRITE ";Z$
620    PRINT PASSES
630    IF PASSES = 0 THEN 690
640    FOR I = 1 TO PASSES
650      PRINT PTIME$(I)
660      PRINT PNAME$(I)
670      PRINT PDOSE(I)
680      NEXT I
690    PRINT D$;"CLOSE ";Z$
700    PRINT D$;"NOMON,C"
710    PRINT D$;"PR#0"
720    PRINT D$;"RUN MENU,D1"
730    PRINT TIME$(I); " PASSING ";SHIP$(I);
740    INPUT " DOSE = ? ";D
750    PRINT
760    PASSES = PASSES + 1
770    PTIME$(PASSES) = TIME$(I)
780    PNAME$(PASSES) = SHIP$(I)
790    PDOSE(PASSES) = D
800    TEST = 11
810    RETURN
820    RETURN
830    PRINT "ERROR IN PATH FILE(NOT N,L,P,A)"
840    PRINT "DO YOU WANT TO CONTINUE? "
850    GET A$:
PRINT A$:
IF A$ = "Y" THEN
    RETURN
860    INPUT "WANT TO GO TO MENU ?";A$
```

```

870  IF LEFT$(A$,1) = "Y" THEN
        PRINT B$!"RUN MENU,B1"
880  PRINT "ERROR TERMINATION, RETURNING TO BASIC"
890  PRINT "TYPE CONT TO RESTART PROGRAM"
900  END
910  POKE 51,128
920  GOTO 450
3500 PRINT "TIME ";;
GET A1$;
PRINT A1$;;
3600 IF A1$ = CHR$(13) THEN
        RETURN
3710 GET A2$;
PRINT A2$;;
IF A2$ = CHR$(8) THEN
        GET A1$;
        PRINT A1$;;
        GOTO 3600
3720 GET A3$;
PRINT A3$;;
IF A3$ = CHR$(8) THEN 3710
3730 GET A4$;
PRINT A4$;;
IF A4$ = CHR$(8) THEN 3720
3740 GET A5$;
PRINT A5$;;
IF A5$ = CHR$(8) THEN 3730
3750 GET A6$;
PRINT A6$;;
IF A6$ = CHR$(8) THEN 3740
3800 TIME$(I) = A1$ + A2$ + A3$ + A4$ + A5$ + A6$
3900 RETURN
4000 PRINT " PLACE ";
GET A1$;
PRINT A1$;
4010 GET A2$;
PRINT A2$;;
IF A2$ = CHR$(8) THEN
        GET A1$;
        PRINT A1$;;
        GOTO 4010
4020 GET A3$;
PRINT A3$;;
IF A3$ = CHR$(8) THEN 4010
4030 GET A4$;
PRINT A4$;;
IF A4$ = CHR$(8) THEN 4020
4040 GET A5$;
PRINT A5$;;
IF A5$ = CHR$(8) THEN 4030
4100 PLACE$(I) = A1$ + A2$ + A3$ + A4$ + A5$
4200 RETURN
4500 PRINT " SHIP ";

```

```
4501  GET T1$:
      PRINT T1$:
4502  IF T1$ = CHR$(13) THEN
      T1$ = "N":
      GOTO 4504
4503  INPUT ":";T2$:
4504  T2$ = T1$ + T2$:
4510  L = LEN (T2$)
4520  T1$ = LEFT$(T2$,1)
4530  IF T1$ = "N" THEN 4600
4540  IF L > 1 THEN 4560
4550  FLASH :
      PRINT "BAD INPUT, TRY AGAIN":
      NORMAL :
      GOTO 4500
4560  IF T1$ = "L" THEN 4600
4570  IF T1$ = "P" THEN 4600
4580  IF T1$ = "A" THEN 4600
4590  GOTO 4550
4600  SHIP$(I) = T2$:
4700  RETURN
```

Program: INPUT PASSING SHIP DOSE

Program Objective: To create a file containing information on the radiation dose received while "passing" radioactive ships.

Description: Program cycles through the PATH file to locate passing code "P". For each occurrence as noted below, the dose received from passing a target ship is calculated. This dose, along with the time of occurrence and the name of the radioactive ship, is then inputted and saved in a new data file. This file is subsequently used as input for the Radiation Report.

Input: File "ship" PATH from INPUT PATH.  
Terminal input for dose received from passing ships (in mR).

Output: File "ship" PASSES containing passing ship dose information.

Note: This program is used only to create a new file. It need not be used if a file was created while running INPUT PATH. UPDATE should be used to modify an existing file. This file is created for every situation where a time and intensity are reported for a ship passing a radiation source.

Table 4-2 Input Passing Ship Dose

```

10  D$ = CHR$(4)
20  PRINT D$;"MON,C"
30  DIM PROSE(300),PNAME$(300),PTIME$(300)
40  DIM PLACE$(300),TIME$(300),SHIP$(300)
50  INPUT "NAME OF SHIP ";X$;
60  Z$ = X$ + " PATH"
70  PRINT D$;"OPEN ";Z$;"",D2
80  PRINT D$;"READ ";Z$;
90  INPUT NTIMES
90  FOR I = 0 TO NTIMES - 1
100    INPUT TIME$(I),PLACE$(I),SHIP$(I)
110    NEXT
120  PRINT D$;"CLOSE ";Z$;
130  IF NTIMES < 2 THEN 9000
140  FOR I = 0 TO NTIMES - 1
150    T$ = LEFT$(SHIP$(I),1)
160    IF T$ = "A" THEN
170      GOTO 240
170    IF T$ = "N" THEN
180      GOTO 240
180    IF T$ = "L" THEN
190      GOTO 240
190    L = LEN(SHIP$(I)) - 1
200    SHIP$(I) = RIGHT$(SHIP$(I),L)
210    IF T$ = "P" THEN
220      GOSUB 410
230    IF TEST = 0 THEN
240      GOSUB 500
230    TEST = 0
240    NEXT I
250  Z$ = X$ + " PASSES"
260  PRINT D$;"OPEN ";Z$;"",D2
270  PRINT D$;"DELETE";Z$;
280  PRINT D$;"OPEN ";Z$;
290  PRINT D$;"WRITE ";Z$;
300  PRINT PASSES
310  IF PASSES = 0 THEN 370
320  FOR I = 1 TO PASSES
330    PRINT PTIME$(I)
340    PRINT PNAME$(I)
350    PRINT PROSE(I)
360    NEXT I
370  PRINT D$;"CLOSE ";Z$;

```

```

380 PRINT D$;"NOMON,C"
390 PRINT D$;"PR#0"
400 PRINT D$;"RUN MENU,D1"
410 PRINT TIME$(I);" PASSING ";SHIP$(I);
420 INPUT " DOSE = ? ";D
430 PRINT
440 PASSES = PASSES + 1
450 FTIME$(PASSES) = TIME$(I)
460 PNAME$(PASSES) = SHIP$(I)
470 PDOSE(PASSES) = D
480 TEST = 1;
490 RETURN
490 RETURN
500 PRINT "ERROR IN PATH FILE(N,L,F,A)"
510 PRINT TIME$(I),PLACE$(I),SHIP$(I)
520 PRINT "DO YOU WANT TO CONTINUE? "
530 GET A$:
540 PRINT A$:
550 IF A$ = "Y" THEN
560   RETURN
570 INPUT "WANT TO GO TO MENU ?";A$
580 IF LEFT$(A$,1) = "Y" THEN
590   PRINT D$;"RUN MENU,D1"
600 PRINT "ERROR TERMINATION, RETURNING TO BASIC"
610 PRINT "TYPE CONT TO RESTART PROGRAM"
620 END
630 POKE 51,128:
640 GOTO 50
650 PRINT "NOT ENOUGH DATA, ONLY ";NTIMES;" POINTS"
660 GET A$:
670 PRINT !
680 PRINT D$;"RUN MENU,D1"

```

Program: WATER INTENSITY

Program Objective: To estimate the doses accrued by support ship personnel from radioactive water sources during post-ABLE and post-BAKER operations.

Description: The program first calculates doses from the Shot ABLE water environment, and then from the BAKER environment.

#### Shot ABLE

The intensity at time  $t$  after detonation and distance  $r$  from surface zero is determined from the equation

$$I(r,t) = t^{-3/2} \exp \left[ -4.56 \times 10^{-6} \left( \frac{r^2}{t} \right) - 0.0462 t + 0.503 \right],$$

where  $t$  is in hours,  $r$  in meters, and  $I$  in R/hr. This pattern drifts 900 meters per 24 hours on an azimuth of  $10^{\circ}$  east of north. The derivation of this model is discussed in Section 2-1.

Dose increments are calculated every 3 minutes while the vessel was in water with intensity greater than 0.01 R/day, as predicted by the water intensity model. The 3-minute time step can be changed by a single line program change (change value of S1T in first line of program). To decrease the execution time, the radius at which the intensity mathematically becomes less than 0.01 R/day was calculated for each hour, and is input via data statements. If the ship's radius is greater than this radius, no calculation is required.

As the program executes, any time interval for which the intensity exceeds 0.1 R/day is printed out. The accumulated dose for each hour is calculated and the first 72 hourly doses stored in the file "ship" WATER.

### Shot BAKER

For Shot BAKER, the water intensity data base consists of the intensities at six different times (28, 50, 78, 100, 120, and 200 hours after detonation) for each of the thousand-yard grid squares in the lagoon. The values of intensity in the data base are in arbitrary units. To convert to R/hr, these values are divided by the following scale factors, which were derived from the contours in Reference 12 and the red-blue line data (see Section 2.3).

| <u>Time</u> | <u>Scale factor</u> |
|-------------|---------------------|
| 28 hrs      | 10                  |
| 50          | 15                  |
| 78          | 100                 |
| 100         | 50                  |
| 120         | 100                 |

Linear interpolation in time is used to estimate intensities at other times.

Spatial and time interpolation along a ship path is performed in three-minute time steps (this can be changed by changing the value of SBT in the second line of the program). First, the position of the ship is determined by linear interpolation between two data points in the ship's PATH file. Then the intensity at the ship's position is determined by linear interpolation in time of the intensities of the appropriate grid square appearing in the BAKER data base.

Any calculated intensities above 0.1 R/day are printed out. The dose increments are added to determine hourly totals, and the hourly dose for each of the first 200 hours is written to the file "ship" WATER.

Note that this program does not include water dose contributions from BAKER day operations. These must be calculated and input separately.

Input: File "ship" PATH

Output: File "ship" WATER

Intensities greater than 0.1 R/day, and the dose for each hour for both ABLE and BAKER (excluding BAKER day).

Table 4-3 Water Intensity

```

60 S1T = 3
70 SBT = 3
80 HOME : VTAB 8
100 PRINT "DO YOU WANT TO USE THE PRINTER?"; 
110 GET A$: PRINT A$ 
111 IF A$ = "Y" THEN PRINT "WHAT SLOT IS THE PRINTER IN?"; 
: GET P$: PRINT P$ 
112 IF A$ = "Y" AND P$ > "3" OR A$ = "Y" AND P$ < "1" THEN 
80
120 PR = 0: IF A$ = "Y" THEN PR = 1
130 D$ = CHR$(13) + CHR$(4): REM CTRL-M + CTRL-D
400 DIM X2(24),Y2(24),R0(72)
410 DIM PLACE$(300),TIME$(300)
415 DIM SHIP$(300)
420 DIM DOSE(300)
450 INPUT "NAME OF SHIP ";X$:Z$ = X$ + " PATH"
460 PRINT D$;"OPEN ";Z$;D2"
470 PRINT D$;"READ ";Z$ 
480 INPUT NTIMES
490 FOR I = 0 TO NTIMES - 1
500 INPUT TIME$(I),PLACE$(I),SHIP$(I)
510 NEXT
520 PRINT D$;"CLOSE ";Z$ 
530 IF NTIMES < 2 THEN PRINT " NOT ENOUGH DATA, ONLY ";NTI
MES;" POINTS": END
1000 REM ****
1005 REM *
1010 REM * ABLE ACTIVATION *
1015 REM *
1020 REM ****
1025 CS = .98481
1026 SI = .17365
1027 DRFT = 1000 / 24
1030 TZERO = 51
1040 A1 = - 4.56 * 10 ^ - 6
1050 A2 = - .0462
1060 A3 = 0.503
1070 DEF FN ACT(T) = EXP (A1 * R * R / T + A2 * T + A3) / 
(T * SQR (T))
1080 ST = S1T
1085 REM READ IN GROUND ZERO & TIME FOR ABLE
1090 READ X0,Y0,TO
1100 DATA 21200,0400,33
1105 REM READ IN CODES FOR GRID SQUARES
1110 REM READ IN WHAT CODES STAND FOR IN RECTANGLES
1120 FOR I = 0 TO 24: READ X2(I),Y2(I): NEXT
1130 DATA 0,0,200,0,400,0,600,0,800,0
1140 DATA 0,200,200,200,400,200,600,200,800,200

```

```

1150 DATA 0,400,200,400,400,600,400,800,400
1160 DATA 0,600,200,600,400,600,600,800,600
1170 DATA 0,800,200,800,400,800,600,800,800
1175 REM READ IN DISTANCE TO ZERO RADIATION
1180 FOR I = 0 TO TZERO: READ R0(I): NEXT I
1190 DATA 1344,1771,2067,2298,2487,2646
1200 DATA 2783,2901,3004,3095,3176,3246
1210 DATA 3308,3362,3408,3448,3481,3509
1220 DATA 3531,3547,3558,3564,3565,3565,3562
1230 DATA 3553,3540,3522,3499,3472,3440
1240 DATA 3403,3360,3313,3261,3202,3139
1250 DATA 3069,2992,2908,2817,2718,2610
1260 DATA 2491,2360,2215,2054,1871,1660
1270 DATA 1409,1089,601
1290 GOTO 1530
1295 REM SUBROUTINE TO GET TIME
1300 DAY = VAL ( LEFT$ ( TIME$(I),2))
1310 HOUR = VAL ( MID$ ( TIME$(I),3,2))
1320 MINUTE = VAL ( RIGHT$ ( TIME$(I),2))
1330 MINUTE = ST * INT ((MINUTE + ST / 2) / ST)
1340 T = (24 * DAY + HOUR + MINUTE / 60) - TO
1350 RETURN
1355 REM SUBROUTINE TO GET POSITION FOR ABLE
1360 CODE = ASC ( RIGHT$ ( PLACE$(I),1)) - 65
1370 IF CODE > 24 THEN PRINT CODE
1380 X = 1000 * VAL ( LEFT$ ( PLACE$(I),2)) + X2(CODE) - X0
1390 Y = VAL ( MID$ ( PLACE$(I),3,2))
1400 IF Y > 50 THEN Y = Y - 100
1410 Y = 1000 * Y - Y2(CODE) - Y0
1412 REM INCORPORATE DRIFT
1415 X9 = X - SI * DRFT * T
1416 Y9 = Y - CS * DRFT * T
1420 R = SQR (X9 * X9 + Y9 * Y9)
1430 R = R * .9144
1440 RETURN
1530 IF PR = 1 THEN PRINT D$;"PR#";P$
1535 PRINT : PRINT
1540 IF PR < > 1 THEN HOME
1550 PRINT "RUNNING ABLE WATER ACTIVATION"
1560 PRINT " FOR"
1570 PRINT " :: FLASH : PRINT X$: NORMAL
1580 PRINT : POKE 34,4
1590 I = 0
1600 GOSUB 1300
1605 IF T < 0 THEN I = I + 1: GOTO 1600
1610 IF T > TZERO THEN GOTO 1980
1614 PRINT "TIME","PLACE"
1615 PRINT "HOURS AFTER","X-GRID(YD)","Y-GRID(YD)","RADIUS(M)", "DOSE RATE(R/HR)"
1620 GOSUB 1360

```

```

1630 X1 = X:Y1 = Y:R1 = R:T1 = T
1640 I = I + 1
1650 GOSUB 1300: GOSUB 1360
1660 PRINT TIME$(I - 1),PLACE$(I - 1)
1665 REM INTERPOLATE BETWEEN DATA POINTS
1670 N = (T - T1) / (ST / 60): IF N < 1 THEN N = 1
1690 I1 = INT (T1):I2 = INT (T)
1740 TX = (X - X1) / N:TY = (Y - Y1) / N
1750 FOR J = 1 TO N
1760 X = X1 + J * TX
1770 Y = Y1 + J * TY
1772 T = T1 + J * ST / 60
1773 REM INCORPORATE DRIFT
1775 X9 = X - SI * DRFT * T
1776 Y9 = Y - CS * DRFT * T
1780 R = SQR (X9 * X9 + Y9 * Y9)
1785 REM CONVERT TO YARDS
1790 R = R * .9144
1810 TI = INT (T)
1815 IF TI > TZERO THEN 1980
1820 IF R > R0(TI) THEN 1860
1830 D = FN ACT(T)
1840 DOSE(TI) = DOSE(TI) + D
1850 IF D > .004 THEN PRINT T,X,Y,R,D
1860 NEXT
1870 IF I = 72 OR I = NTIMES - 1 OR T > TZERO THEN 1980
1880 GOTO 1630
1980 PRINT TIME$(I),PLACE$(I)
1987 IF I = 0 THEN 2020
1989 REM ABLE 0-72 ALWAYS
1990 FOR L = 0 TO 72
1995 DOSE(L) = DOSE(L) / (60 / ST)
2000 IF PR < > 0 THEN PRINT L,DOSE(L)
2010 NEXT
2020 PRINT "DONE WITH ABLE ACTIVATION"
4900 REM ****
4910 REM *
4920 REM * BAKER CONTAMINATION *
4930 REM *
4940 REM ****
5000 ST = SBT
5020 REM BAKER AT 830 JULY 25
5025 REM TSTART IS MIDNIGHT, THE BEGINNING OF THE 26TH OF
JULY
5030 TO = 608.5
5040 TSTART = 624 - TO
5070 TLAST = 208
5075 REM H IS HOURS TO DATA FOR BAKER
5076 REM F IS SCALE FACTOR FOR DATA SET AT TIME H
5080 H(0) = 28:F(0) = 10

```

```

5090 H(1) = 50:F(1) = 15
5100 H(2) = 78:F(2) = 100
5110 H(3) = 100:F(3) = 50
5120 H(4) = 120:F(4) = 100
5130 H(5) = 216:F(5) = 0
5140 H8 = H(0):H1 = H8:H9 = H(1)
5150 PRINT D$;"OPEN BAKER,L3,D1"
5155 REM READ IN SURFACE ZERO
5160 READ X0,Y0
5170 DATA 22,1
5180 GOTO 5300
5240 REM SUBROUTINE TO GET PLACE FOR BAKER
5250 X = VAL ( LEFT$ (PLACE$(I),2))
5260 IF X > 50 THEN X = X - 100
5270 Y = VAL ( MID$ (PLACE$(I),3,2))
5280 IF Y > 50 THEN Y = Y - 100
5281 CODE = ASC ( RIGHT$ (PLACE$(I),1)) - 65
5282 X = X + X2(CODE) / 1000.
5283 Y = Y + Y2(CODE) / 1000.
5290 RETURN
5300 IF PR = 0 THEN HOME
5310 VTAB 1
5320 PRINT "RUNNING BAKER WATER CONTAMINATION"
5321 PRINT "FOR"
5322 PRINT ";;: FLASH : PRINT X$: NORMAL
5330 VTAB 5
5334 PRINT "TIME","PLACE"
5335 PRINT "HOURS AFTER","X-GRID","Y-GRID","DOSE RATE (R/DAY
)"
5340 IF I > NTIMES - 1 THEN 5910
5350 GOSUB 1300
5360 IF T > TLAST THEN GOTO 5910
5370 IF T < TSTART THEN I = I + 1: GOTO 5350
5380 GOSUB 5250
5390 X1 = X:Y1 = Y:T1 = T
5400 I = I + 1
5410 IF I > NTIMES - 1 THEN 5910
5420 GOSUB 1300: GOSUB 5250
5430 PRINT TIME$(I - 1),PLACE$(I - 1)
5440 N = (T - T1) / (ST / 60): IF N < 1 THEN N = 1
5470 IF PLACE$(I) = PLACE$(I - 1) THEN 5580
5480 TX = (X - X1) / N:TY = (Y - Y1) / N
5490 FOR J = 1 TO N
5500 X = X1 + J * TX
5510 Y = Y1 + J * TY
5520 T = T1 + J * ST / 60
5530 IF T > TLAST THEN 5910
5550 GOSUB 5650
5560 NEXT
5570 GOTO 5390

```

```

5580 FOR J = 1 TO N
5590 T = T1 + J * ST / 60
5600 IF T > TLAST THEN 5910
5620 GOSUB 5650
5630 'NEXT
5640 GOTO 5390
5645 REM SUBROUTINE TO GET DATA BETWEEN POINTS
5650 X9 = 29 - INT (X)
5660 Y9 = INT (Y + 10)
5670 R = 45 * Y9 + X9
5680 IF T > HB THEN 5720
5690 IF R = R1 AND K = K1 THEN 5820
5700 GOSUB 5880
5705 D8 = D9
5710 GOTO 5820
5720 IF T < = H9 THEN 5740
5730 H1 = H9:K = K + 1:H9 = H(K + 1)
5740 R = R + K * 1125
5745 IF T = HB + ST / 60 THEN R1 = 0
5750 IF R = R1 AND K = K1 THEN 5810
5760 GOSUB 5880
5770 D1 = D9
5775 R = R + 1125:K = K + 1
5780 GOSUB 5880
5785 R = R - 1125:K = K - 1
5790 A = (D9 - D1) / (H9 - H1)
5800 B = D9 - A * H9
5810 D8 = A * T + B
5820 D6 = D8
5830 IF D6 > .0999 THEN PRINT T,X,Y,D6
5840 D7 = D6 / 24
5845 TI = 73 + INT (T)
5850 DOSE(TI) = DOSE(TI) + D7
5860 R1 = R:K1 = K
5870 RETURN
5875 REM SUBROUTINE TO READ DOSE FOR POSITION FROM RANDOM
ACCESS FILES
5880 IF F(K) < > 0 THEN 5885
5882 IF SQR ((X - X0) ^ 2 + (Y - Y0) ^ 2) > 5.58 THEN D9 =
0: RETURN
5883 D9 = .069
5884 RETURN
5885 PRINT D$;"READ BAKER,R";R
5890 INPUT D9
5895 D9 = D9 / F(K)
5900 RETURN
5910 PRINT D$;"CLOSE BAKER"
5915 PRINT TIME$(I),PLACE$(I)
5920 Z$ = X$ + " WATER"
5930 FOR I = 73 TO TLAST + 73

```

```
5940 DOSE(I) = DOSE(I) / (60 / ST)
5950 NEXT
5960 PRINT D$;"OPEN ";Z$; ",D2"
5970 PRINT D$;"DELETE ";Z$;
5980 PRINT D$;"OPEN ";Z$;
5990 PRINT D$;"WRITE ";Z$;
6000 PRINT TLAST + 72
6005 REM 0-72 ARE FOR BAKER
6006 REM 73 TO TLAST ARE FOR BAKER
6010 FOR I = 0 TO TLAST + 72
6020 PRINT DOSE(I)
6030 NEXT
6040 PRINT D$;"CLOSE ";Z$;
6050 POKE 34,0
6060 IF PR = 0 THEN 6110
6070 FOR I = 73 TO TLAST + 72
6080 PRINT I - 73,DOSE(I)
6090 NEXT
6100 PRINT D$;"PR#0"
6110 PRINT D$;"RUN MENU,D1"
```

]

Program: LATE WATER

Program Objective: To allow input of manually obtained ship's late lagoon water dose; late water dose is that dose received after BAKER + 8.

Description: This program accepts inputs from the keyboard to daily lagoon water dose received after BAKER + 8. The daily doses, having been determined in a separate analysis, are input and edited by this program. The "late water" file created is a continuation of the "water" file created by program WATER INTENSITY. Both the WATER and LATE WATER files are read by program SHIP CONTAMINATION.

Input: From keyboard, daily doses

Output: File "ship" LATE WATER

Table 4-4 Late Water

```

100 REM THIS PROGRAM CREATES OR EDITS
110 REM THE LATE WATER DOSE FILE
120 D$ = CHR$(4)
125 DIM H30(100)
130 HOME
140 INPUT "EDIT(E) OR CREATE(C) WATER DOSE FILE?";A$
150 IF A$ = "E" THEN GOTO 400
160 IF A$ = "C" THEN GOTO 190
170 PRINT "ENTER "E" FOR EDIT OR "C" FOR CREATE"
180 PRINT
185 GOTO 140
190 REM BEGIN CREATE SECTION
200 HOME : INPUT "NAME OF SHIP? ";X$
210 INPUT "HOW MANY DAYS TO INPUT? ";NDAYS
230 FOR I = 1 TO NDAYS
240 PRINT "ENTRY # ";I;" B+";I + 8;" = "
250 HTAB 13
260 INPUT H30(I)
300 NEXT
310 HOME : VTAB 5: HTAB 5
320 INPUT "DO YOU WANT TO CHANGE ANY VALUES? (Y/N) ";A$
330 IF A$ = "Y" THEN GOTO 600
340 GOTO 800: REM WRITE OUTPUT FILE
400 REM INPUT DATA FOR EDITING
405 INPUT "NAME OF SHIP? ";X$
410 PRINT D$;"PR#0"
420 Z$ = X$ + " LATE WATER"
430 PRINT D$;"OPEN ";Z$;D2"
440 PRINT D$;"READ ";Z$
450 INPUT NDAYS
460 FOR I = 1 TO NDAYS
470 INPUT H30(I)
480 NEXT
490 PRINT D$;"CLOSE ";Z$
500 REM
510 REM EDIT PORTION OF PROGRAM
511 HOME : PRINT "CHANGE OR ADD VALUES?": INPUT "C OR A ";
A$
512 IF A$ = "A" THEN GOTO 1400
513 IF A$ = "C" THEN GOTO 620
514 PRINT "ENTER C OR A": GOTO 511
520 HOME : REM FIRST LIST THE VALUES
525 PRINT "ENTRY"; TAB( 12); "VALUE (MREM/DAY)"
530 FOR I = 1 TO NDAYS
540 PRINT I; TAB( 5); "B+";I + 8; TAB( 12); "=";H30(I)
550 NEXT
560 PRINT : PRINT "ENTER 0 TO QUIT"
570 INPUT "WHICH ENTRY TO CHANGE? ";E1

```

```

675 IF E1 = 0 THEN GOTO 1400
680 PRINT "OLD VALUE FOR ENTRY ";E1;" = ";H30(E1)
690 PRINT
700 INPUT "INPUT NEW VALUE ";H30(E1)
710 HOME : INPUT "ANOTHER CHANGE? (Y/N)";A$
720 IF A$ = "N" THEN GOTO 1400
730 IF A$ = "Y" THEN GOTO 620
740 PRINT : PRINT "ANSWER Y OR N": GOTO 710
800 REM WRITING THE OUTPUT FILE TO DISK
810 Z$ = X$ + " LATE WATER"
820 PRINT D$;"PR#0"
830 PRINT D$;"OPEN ";Z$; ",D2"
840 PRINT D$;"DELETE";Z$
850 PRINT D$;"OPEN ";Z$
860 PRINT D$;"WRITE ";Z$
870 PRINT NDAYS
880 FOR I = 1 TO NDAYS
890 PRINT H30(I)
900 NEXT
910 PRINT D$;"CLOSE ";Z$
915 PRINT D$;"RUN MENU,D1"
920 END
1000 REM ROUTINE TO ADD ADDITIONAL DATA ENTRIES I.E. MORE
DAYS
1010 REM
1020 HOME : INPUT "HOW MANY ADDITIONAL DAYS TO BE ENTERED?
";N2
1030 N3 = NDAYS + N2
1080 FOR I = NDAYS + 1 TO N3
1090 PRINT "ENTRY # ";I;" B+";I + 8;" = "
1100 INPUT H30(I)
1110 NEXT
1120 REM LIST THE INPUTED DATA
1130 HOME
1140 VTAB 3: HTAB 10
1150 PRINT "THE NEW VALUES ARE"
1160 PRINT
1200 PRINT "ENTRY"; TAB( 12); "VALUE (MR/DAY)"
1210 FOR I = NDAYS + 1 TO N3
1220 PRINT I; TAB( 5); "B+";I + 8;" = "; TAB( 12);H30(I)
1225 PRINT
1230 NEXT : PRINT "ENTER 0 TO QUIT"
1240 INPUT "WHICH ENTRY TO CHANGE?";E1
1250 IF E1 = 0 THEN GOTO 800
1260 PRINT "OLD VALUE FOR ENTRY";E1;" = ";H30(E1)
1270 PRINT
1280 INPUT "INPUT NEW VALUE ";H30(E1)
1290 HOME : INPUT "ANOTHER CHANGE? (Y/N)";A$
1294 IF A$ = "Y" THEN GOTO 1120
1295 NDAYS = N3

```

```
1300 IF A$ = "N" THEN GOTO 800
1320 PRINT : PRINT "ANSWER Y OR N ": GOTO 1290
1400 HOME
1410 INPUT "WANT TO ADD ANY ENTRIES? (Y/N)":A$
1420 IF A$ = "Y" THEN GOTO 1000
1430 IF A$ = "N" THEN GOTO 800
1440 PRINT "ENTER Y OR N": GOTO 1410
```

Program: TARGET INTENSITY

Program Objective: To estimate the radiation dose received by support ship personnel while alongside or passing radioactive target ships-- Shot BAKER only.

Description: As this program progresses through a ship path, two things are accomplished:

1. If the file indicates the support ship is alongside a target ship, the program calculates the radiation dose based upon the length of time alongside, the time after detonation, and the intensity of the particular target ship. The alongside target ship intensity  $I$  at one hour after the shot is obtained from the file TARGET SHIPS. The dose is calculated from:

$$D = \frac{I}{.3} \left[ \frac{1}{t_1^{.3}} - \frac{1}{t_2^{.3}} \right] ,$$

where  $t_1$  is the time the ship came alongside, and  $t_2$  the time it departed; both times are measured in hours after detonation.

2. If the file indicates the support ship is passing a target ship, the dose for this pass from "ship" PASSES is added to the dose received in that hour.

The output is a file indicating dose for each hour attributable to contact with radioactive target ships.

Input: File TARGET SHIPS with alongside one-hour intensity for each target ship.  
File "ship" PASSES with dose from passing target ships.  
File "ship" PATH with the path of the ship.

Output: File "ship" TARGETS with hourly dose from all target ships.

Table 4-5 Target Intensity

```

1      REM  ADOSE  = ABLE TARGET INTENSITY
2      REM  BDOSE  = BAKER TARGET INTENSITY
3      REM  PDOSE  = PASSING SHIP DOSE
4      REM  NTIMES = LENGTH OF PATH
5      REM  PTIME  = TIME PASSED TARGET SHIP
6      REM  PNAME  = TARGET SHIP PASSED AT PTIME
7      REM  NAME   = NAME OF A TARGET SHIP FROM TARGET SHIP FILE
8      REM  DO     = INITIAL RADIATION FROM TARGET SHIP
19     HOME :
20     VTAB 8
21     D$ = CHR$(4)
30     PRINT D$;"MON,C"
40     C = 0
50     PRINT "TARGET INTENSITY PROGRAM": 
51     PRINT
60     PRINT "SEND TO PRINTER ?":
61     GET A$
70     PRINT A$
80     IF A$ = "Y" THEN
90         PRINT "WHAT SLOT IS THE PRINTER IN?":
91         GET P$:
92         PRINT P$:
93         IF A$ = "Y" AND P$ > "3" OR A$ = "Y" AND P$ < "1" THEN
94             HOME :
95             VTAB 8:
96             GOTO 50
100    DIM ADOSE(25),BDOSE(300)
110    DIM PDOSE(300),PNAME$(300)
120    DIM PLACE$(300),TIME$(300),SHIP$(300)
130    DIM NAME$(90),DO(90)
140    INPUT "NAME OF SHIP "X$
150    PRINT D$;"OPEN TARGET SHIPS,D1"
160    PRINT D$;"READ TARGET SHIPS"
170    INPUT NSHIPS
180    FOR I = 1 TO NSHIPS
190        INPUT NAME$(I),DO(I)
200        NEXT I
210    PRINT D$;"CLOSE TARGET SHIPS"
220    Z$ = X$ + " PATH"
230    PRINT D$;"OPEN ";Z$;"",D2"
240    PRINT D$;"READ ";Z$
250    INPUT NTIMES

```

```

260  FOR I = 0 TO NTIMES - 1
270      INPUT TIME$(I),PLACE$(I),SHIP$(I)
280      NEXT
290  PRINT D$;"CLOSE ";Z$
300  IF NTIMES < 2 THEN 9000
310  Z$ = X$ + " PASSES"
320  PRINT D$;"OPEN ";Z$;",D2"
330  PRINT D$;"READ ";Z$
340  INPUT PASSES
350  IF PASSES = 0 THEN 390
360  FOR I = 1 TO PASSES
370      INPUT PTIME$,PNAME$(I),PDOSE(I)
380      NEXT I
390  PRINT D$;"CLOSE ";Z$
400  IF A$ = "Y" THEN
410      PRINT D$;"PR#";P$
411  REM
412  REM  N = NOT NEAR TARGET SHIP
413  REM  L = LEAVING PROXIMITY OF TARGET SHIP
414  REM  P = PASSING A TARGET SHIP
415  REM  A = COMING ALONGSIDE A TARGET SHIP
416  REM
417  FOR I = 0 TO NTIMES - 1
418      T$ = LEFT$(SHIP$(I),1)
419      IF T$ = "N" THEN
420          GOTO 520
421      IF T$ = "L" THEN
422          GOTO 520
423      L = LEN(SHIP$(I)) - 1
424      SHIP$(I) = RIGHT$(SHIP$(I),L)
425      GOSUB 3000
426      IF T$ = "P" THEN
427          GOSUB 1000
428      IF T$ = "A" THEN
429          GOSUB 2000
430      IF TEST = 0 THEN
431          GOSUB 4000
432      TEST = 0
433      NEXT I
434  REM
435  REM  FIND LAST TIME RECEIVED DOSE FROM A TARGET SHIP
436  REM
437  FOR I = 300 TO 0 STEP - 1
438      IF BDOSE(I) < > 0 THEN 570
439      NEXT I
440  PRINT "NO DATA FOUND FOR BAKER"
441  Z$ = X$ + " TARGETS"
442  PRINT D$;"OPEN ";Z$;",D2"
443  PRINT D$;"DELETE ";Z$
444  PRINT D$;"OPEN ";Z$
445  PRINT D$;"WRITE ";Z$
446  FOR J = 0 TO 24
447      PRINT ADOSE(J)
448      NEXT J

```

```

650 PRINT I + 1
660 FOR J = 0 TO I
670     PRINT BDOSE(J)
680     NEXT J
690 PRINT D$;"CLOSE "Z$
700 PRINT D$;"NOMON,C"
710 PRINT D$;"FR#0"
720 PRINT D$;"RUN MENU,D1"
730 REM
740 REM SUBROUTINE TO GET DOSE FROM PASSING TARGET SHIPS
750 REM
1000 PRINT TIME$(I);" PASSING ";SHIP$(I);
1010 C = C + 1
1014 REM
1015 REM MATCH PATH AND PASSES FILES
1016 REM
1020 IF PNAME$(C) = .SHIP$(I) THEN 1500
1030 PRINT "FILES DO NOT MATCH, NAMES ARE"
1040 PRINT C - 1,PNAME$(C - 1),PDOSE(C - 1)
1050 PRINT C,PNAME$(C),PDOSE(C)
1060 PRINT C + 1,PNAME$(C + 1),PDOSE(C + 1)
1070 PRINT
1080 PRINT "RUN PROGRAM TO UPDATE SHIPS PASSED"
1100 GET A$:
1110 PRINT :
1120 PRINT D$;"RUN MENU,D1"
1490 REM
1491 REM D IS DOSE FROM PASSES FILE
1492 REM ADD DOSE TO THE DOSE FOR THE PROPER DAY FOR ABLE OR BAK
ER
1493 REM
1500 D = PDOSE(C)
1510 POKE 36,32:
1520 PRINT D
1530 IF DAY < 25 THEN
    ADOSE(DAY - 1) = ADOSE(DAY - 1) + D:
    GOTO 1550
1540 BDOSE(DAY - 25) = BDOSE(DAY - 25) + D
1550 TEST = 1:
1560 RETURN
1600 REM
1610 REM SUBROUTINE TO GET DOSE FROM BEING ALONGSIDE TARGET SHIP
S
1620 REM
2000 IF DAY < 25 THEN
    TEST = 1:
    PRINT "NO ACTIVATION FROM ABLE YET":
    RETURN
2010 PRINT TIME$(I);" ALONGSIDE ";SHIP$(I);
2020 D = 0:
2030 T1 = 0:
2040 T2 = 0
2050 REM MATCH SHIPS
2060 FOR J = 1 TO NSHIPS

```

```

2040      IF SHIP$(I) < > NAME$(J) THEN
2050          GOTO 2060
2050      D = DO(J) :
2050      J = NSHIPS
2060      NEXT J
2065      IF D = 0 THEN
2065          PRINT :
2065          PRINT SHIP$(I) ;" NOT FOUND" ;;
2065          TEST = 1:
2065          RETURN
2067      REM   FIND OUT HOW LONG WAS ALONGSIDE
2070      T1 = TIME - 608.5
2080      FOR M = I + 1 TO NTIMES - 1
2080          IF LEFT$ (SHIP$(M),1) < > "L" THEN 2120
2100          IF SHIP$(I) < > RIGHT$ (SHIP$(M),L) THEN 2120
2110          GOSUB 3500:
2110          M = NTIMES - 1
2120          NEXT M
2124      IF DAY > D1Y THEN
2124          PRINT D1Y;H1R;M1N;;
2124          GOSUB 4000
2125      REM   IF SPANS TWO DAYS CALCULATE PART
2126      IF DAY < > D1Y THEN
2126          GOSUB 2500
2129      REM   GET DOSE FROM THIS CONTACT
2130      DOSE = (1 / T1) ^ .3 - (1 / T2) ^ .3
2140      DOSE = DOSE * D / .3
2145      DOSE = DOSE * 1000:
2145      REM   R TO MR
2146      DOSE = INT (DOSE)
2150      POKE 36,32:
2150      PRINT DOSE
2155      REM   ADD TO DOSE FOR DAY
2160      BDOSE(DAY - 25) = BDOSE(DAY - 25) + DOSE
2170      TEST = 1:
2170      RETURN
2400      REM
2410      REM   SUBROUTINE WHEN CONTACT OVER MULTIPLE DAYS
2420      REM
2500      T3 = T2
2510      ND = D1Y - DAY
2520      FOR J = 1 TO ND
2530          T2 = 24 * (DAY + 1) - 608.5
2540          GOSUB 2130
2550          T1 = T2:
2550          DAY = DAY + 1
2560          NEXT J
2570          T2 = T3
2580      IF DAY < > D1Y THEN
2580          PRINT D1Y,H1R,MIN:
2580          GOSUB 4000
2590      RETURN
2900      REM
2910      REM   SUBROUTINE TO GET TIME WHEN CONTACT TARGET SHIP

```

```

2920  REM
3000  DAY = VAL ( LEFT$ (TIME$(I),2))
3010  HOUR = VAL ( MID$ (TIME$(I),3,2))
3020  MINUTE = VAL ( RIGHT$ (TIME$(I),2))
3030  TIME = 24 * DAY + HOUR + MINUTE / 60
3040  RETURN
3400  REM
3410  REM  SUBROUTINE TO GET LEAVING TIME
3420  REM
3500  D1Y = VAL ( LEFT$ (TIME$(M),2))
3510  H1R = VAL ( MID$ (TIME$(M),3,2))
3520  M1N = VAL ( RIGHT$ (TIME$(M),2))
3530  T2 = 24 * D1Y + H1R + M1N / 60 - 608.5
3540  RETURN
4000  PRINT "ERROR IN PATH FILE(NOT N,L,P,A)"
4010  PRINT TIME$(I),PLACE$(I),SHIP$(I)
4020  PRINT "DO YOU WANT TO CONTINUE"
4030  GET A$:
PRINT A$:
IF A$ = "Y" THEN
    RETURN
4040  INPUT "WANT TO GO TO MENU ?" ; A$
4050  IF LEFT$ (A$,1) = "Y" THEN
    PRINT D$;"RUN MENU,D1"
4060  PRINT "ERROR TERMINATION, RETURNING TO BASIC"
4080  END
9000  PRINT "NOT ENOUGH DATA, ONLY ";NTIMES;" POINTS"
9010  GET A$:
PRINT :
PRINT D$;"RUN MENU,D1"

```

Program: SHIP CONTAMINATION

Program Objective: To calculate doses to support ship personnel due to ship contamination.

Description: This program provides daily estimates of doses accrued by support ship personnel due to ship contamination for the duration of post-BAKER operations in the lagoon. Contamination intensities are calculated numerically from the integral formulation developed in Section 2.5:

$$I_c(t_n) = 3.53 t_n^{-1.3} \sum_{i=0}^n t_i^{1.3} I_w(t_i),$$

where  $I_w(t)$  is the lagoon water intensity at time  $t$  after the BAKER detonation. The dose accrued between times  $t_1$  and  $t_2$  is then calculated from the equation

$$D(t_1 \text{ to } t_2) = \frac{1}{3} t_1^{1.3} I_c(t_1) \left[ t_1^{1.3} - t_2^{1.3} \right]$$

Output file contains the contamination dose accrued each day the ship was in the lagoon. In addition, the last element in the file is the ship contamination factor at the time the ship departed the lagoon.

Input:  
File "ship" WATER  
File "ship" PATH  
File "ship" LATE WATER

Output: File "ship" SELF

Table 4-6 Ship Contamination

```

1  REM  I=DOSE # WHICH STARTS AT 89 TO GO WITH WHERE CREATED
2  REM  H1=STARTING HOUR FOR CURRENT DAY
3  REM  H2=HOUR AFTER BAKER WHEN FIRST TOUCH HOT WATER ON A
DAY
4  REM  H3=ENDING HOUR FOR DAY IN HOURS AFTER BAKER
5  REM  H20=TOTAL DOSE FROM WATER FOR A DAY
6  REM  TD=SUM OF DOSE TIMES TIME TO 1.3 POWER
7  REM  ITEN=INTENSITY
8  REM  SELF=SHIP CONTAMINATION FOR DAY
9  REM  HR=ARRAY STORING VALUES OF H2
10 HOME : VTAB 8
11 T$ = " " : T1 = PEEK (- 15382) : T2 = PEEK (- 15380) : T3 =
PEEK (- 15378)
12 IF T1 < > 8 OR T2 < > 4 OR T3 < > 2 THEN 20
13 PRINT CHR$ (4); "IN#3"
14 PRINT CHR$ (4); "PR#3"
15 PRINT CHR$ (23); "C"
16 INPUT T$
18 PRINT CHR$ (4); "PR#0"
19 PRINT CHR$ (4); "IN#0"
20 ABLE = 3
30 BAKER = 100
35 DIM H30(100)
40 DIM DOSE(300), H20(300)
50 DIM HR(300), TD(300)
60 DIM SELF(300), ITEN(300)
70 D$ = CHR$ (4): REM CTRL-D
80 INPUT "NAME OF SHIP IS ? "; X$
90 PRINT
100 INPUT "SEND OUTPUT TO PRINTER?"; ANS$
110 PRINT
120 IF LEFT$ (ANS$, 1) < > "Y" THEN 160
130 INPUT "WHAT SLOT IS THE PRINTER IN?"; P$
140 IF P$ > "3" OR P$ < "1" THEN HOME : VTAB 6: PRINT X$:
GOTO 100
150 PRINT
160 INPUT "ENTER TOTAL DOSE ON BAKER DAY (MR) "; BDAY
170 PRINT
180 INPUT "HOW MANY HOURS AFTER BAKER DID IT FIRST ENTER TH
E LAGOON? "; HR(0)
184 PRINT
185 INPUT "WHAT IS THE BUILDUP FACTOR FOR THIS RUN?"; B9
186 REM B9 IS THE BUILDUP FACTOR "C" WHICH APPEARS IN THE
EQUATIONS IN THE TEXT
187 REM I9 = SATURATION FACTOR
188 INPUT " WHAT IS THE SATURATION FACTOR FOR THIS RUN? "; I
9
189 B9 = B9 / 24: REM CONVERT UNITS

```

```

190 Z$ = X$ + " WATER"
200 PRINT
201 I9 = I9 * 24 ^ .3: REM CONVERT UNITS
210 PRINT "READING "; Z$
220 PRINT CHR$(7)
230 PRINT D$; "OPEN "; Z$; ",D2"
240 PRINT D$; "READ "; Z$
250 INPUT N
260 FOR I = 0 TO N
270 INPUT DOSE(I)
280 DOSE(I) = 1000 * DOSE(I)
290 NEXT
300 PRINT D$; "CLOSE "; Z$
302 REM CALCULATE VALUES FOR BAKER DAY.
305 H20(0) = BDAY
310 TD(0) = H20(0) * HR(0) ^ 1.3
311 REM X7 = EXPONENT IN INTENSITY EQUATION
312 X7 = B9 / I9 * TD(0)
313 REM B9=BUILDDUP FACTOR "C"
314 REM I9=SATURATION FACTOR
315 ITEN(0) = I9 * HR(0) ^ (- 1.3) * (1 - EXP (- X7))
320 SELF(0) = (1 / .3) * (HR(0) ^ 1.3) * ITEN(0) * (HR(0) ^
(- .3) - 15 ^ (- .3))
325 H3 = 15
330 FOR J = 1 TO 8
335 ZR = 0:S1 = 0:S2 = 0
340 H1 = H3 + 1:H2 = H1:H3 = H3 + 24
345 FOR K = 1 TO 24
350 I = 73 + 24 * (J - 1) + 15 + K
355 IF DOSE(I) = 0 THEN 395
360 IF ZR = 1 THEN H20(J) = H20(J) + DOSE(I): GOTO 395
365 ZR = 1:H20(J) = DOSE(I):H2 = H1 + K - 1
370 IF H2 = H1 THEN 395
372 REM CALCULATE FOR PORTION OF DAY PRIOR TO HOT WATER CO
NTACT
374 X7 = B9 / I9 * TD(J - 1)
375 IO = I9 * H1 ^ (- 1.3) * (1 - EXP (- X7))
380 S1 = (1 / .3) * (H1 ^ 1.3) * IO * (H1 ^ (- .3) - (H2 -
1) ^ (- .3))
395 IF I = N THEN 405
400 NEXT K
405 IF ZR = 1 THEN 425
406 REM CASE WHEN HAD NO HOT WATER CONTACT FOR WHOLE DAY
407 TD(J) = TD(J - 1)
409 X7 = B9 / I9 * TD(J - 1)
410 IO = I9 * H1 ^ (- 1.3) * (1 - EXP (- X7))
415 S1 = (1 / .3) * (H1 ^ 1.3) * IO * (H1 ^ (- .3) - H3 ^ (- .3))
417 ITEN(J) = IO
420 GOTO 440

```

```

422 REM CALCULATE FOR PORTION OF DAY AFTER CONTACT WITH HO
T WATER
425 TD(J) = TD(J - 1) + H2O(J) * H2 ^ 1.3
426 X7 = B9 / I9 * TD(J)
430 ITEN(J) = I9 * H2 ^ (- 1.3) * (1 - EXP (- X7))
435 S2 = (1 / .3) * (H2 ^ 1.3) * ITEN(J) * (H2 ^ (- .3) - H
3 ^ (- .3))
440 SELF(J) = S1 + S2
445 HR(J) = H2
450 NEXT J
500 B8 = B9 * 24: REM CONVERT BACK TO ORIGINAL UNITS
501 I8 = I9 / 24 ^ .3: REM CONVERT BACK TO ORIGINAL UNITS
540 PRINT D$;"PR#";P$
542 PRINT : PRINT T$
545 PRINT
546 PRINT " ", "SHIP CONTAMINATION FOR THE USS "; X$
547 PRINT : PRINT "C FACTOR = "; B8
551 PRINT : PRINT "SATURATION FACTOR = "; I8
555 PRINT
560 PRINT "DAY", "HOUR", "WATER", "RATE", "DOSE"
570 PRINT "----", "----", "----", "----", "----"
580 FOR J = 0 TO 7
590 PRINT J, HR(J), H2O(J), ITEN(J), SELF(J)
620 NEXT J
625 REM CALCULATIONS WHEN NOT IN HOT WATER
630 Z$ = X$ + " PATH"
640 PRINT D$;"PR#0"
650 PRINT "READING "; Z$
660 PRINT CHR$(7)
670 PRINT D$;"OPEN "; Z$; ",D2"
680 PRINT D$;"READ "; Z$
690 INPUT NTIMES
700 FOR I = 0 TO NTIMES - 1
710 INPUT TIME$, PLACE$, SHIP$
720 NEXT
730 PRINT D$;"CLOSE "; Z$
740 PRINT D$;"PR#"; P$
750 DAY = VAL ( LEFT$ (TIME$, 2))
760 HOUR = VAL ( MID$ (TIME$, 3, 2))
770 MINUTE = VAL ( RIGHT$ (TIME$, 2))
780 T = 24 * DAY + HOUR + MINUTE / 60 - 608.5
790 T = INT ((T + 8.5) / 24)
810 IF T < 8 THEN 990
860 HR(9) = 208
870 J = 8
890 PRINT J, HR(J), H2O(J), ITEN(J),
900 SELF(J) = (1 / .3) * (HR(J) ^ 1.3) * ITEN(J) * (HR(J) ^
(- .3) - HR(J + 1) ^ (- .3))
910 PRINT SELF(J)
915 IF T = 8 THEN 990

```

```

916 REM READ LATE WATER DOSES
917 GOSUB 1300
920 FOR J = 9 TO T
940 HR(J + 1) = HR(J) + 24
949 TD(J) = TD(J - 1) + H30(J) * HR(J) ^ 1.3
950 X7 = B9 / I9 * TD(J)
951 ITEN(J) = I9 * HR(J) ^ (- 1.3) * (1 - EXP (- X7))
955 PRINT J, HR(J), H30(J), ITEN(J),
960 SELF(J) = (1 / .3) * (HR(J) ^ 1.3) * ITEN(J) * (HR(J) ^
(- .3) - HR(J + 1) ^ (- .3))
970 PRINT SELF(J)
980 NEXT J
981 TB = 0
982 FOR I = 0 TO T
983 TB = TB + SELF(I)
984 NEXT I
985 PRINT : PRINT "TOTAL SELF DOSE = "; TB
990 Z$ = X$ + " SELF"
1000 PRINT D$; "PR#0"
1010 PRINT "WRITING "; Z$
1020 PRINT CHR$(7)
1030 PRINT D$; "OPEN "; Z$; ",D2"
1040 PRINT D$; "DELETE"; Z$
1050 PRINT D$; "OPEN "; Z$
1060 PRINT D$; "WRITE "; Z$
1070 PRINT BDAY
1080 PRINT T
1090 FOR I = 0 TO T
1100 PRINT SELF(I)
1110 NEXT I
1115 PRINT ITEN(T)
1120 PRINT D$; "CLOSE "; Z$
1130 PRINT D$; "PR#0"
1140 HOME
1141 PRINT D$; "RUN MENU,D1"
1150 END
1300 REM      SUBROUTINE TO INPUT SHIP'S
1310 REM      LATE DAILY WATER DOSE
1320 REM      (I.E. GREATER THAN B+B)
1330 REM
1340 Z$ = X$ + " LATE WATER"
1350 PRINT D$; "PR#0"
1360 PRINT D$; "OPEN"; Z$; ",D2"
1370 PRINT D$; "READ"; Z$
1380 INPUT NTIMES
1390 FOR I = 1 TO NTIMES
1400 INPUT H30(I + 8)
1410 NEXT
1420 PRINT D$; "CLOSE "; Z$
1430 PRINT D$; "PR#"; P$

```

1440 RETURN

1

Program: RADIATION REPORT

Program Objective: To provide a written report of the radiation dose accrued by support ship personnel.

Description: This program reads files "ship" TARGETS, "ship" WATER, and "ship" SELF and prints a radiation summary report. This report contains a tabulation of daily film badge dose contributions from radioactive water and target ship sources for Shots ABLE and BAKER, and from ship contamination during the post-BAKER period. The free-field doses from the WATER, TARGETS and SELF files are converted to film badge doses via a conversion factor of 0.7. The water and ship contamination doses are multiplied by factors (1/3 and 2/3, respectively) to account for shielding afforded personnel above and below decks, as discussed in Section 4.

Input: File "ship" WATER  
File "ship" TARGETS  
File "ship" SELF  
Date ship leaves lagoon for the last time.  
Ship Apportionment Factor (see Table 2-7).

Output: Written report on daily dose contributions.

Table 4-7 Radiation Report

```

1  REM  DOSE  = HOURLY WATER ACTIVATION
2  REM  H20  = DAILY WATER DOSE
3  REM  SHIP = DAILY TARGET SHIP DOSE
4  REM  SELF = DAILY SHIP CONTAMINATION DOSE
5  REM  ALL  = DAILY TOTAL DOSE
6  REM  ABLE = NUMBER OF DAYS FOR ABLE
7  REM  BAKER= NUMBER OF DAYS AFTER BAKER ALLOWED
8  REM  ITEN = DEPARTING LAGOON INTENSITY
9  REM  FRAC = APPORTIONMENT FACTOR
10 REM    BDAY= BAKER DAY DOSE
11 REM    NDAY= NUMBER OF DAYS OF DATA FROM SHIP CONTAMINAT
ION PROGRAM
19 HOME : VTAB 8
20 ABLE = 4
30 BAKER = 150
40 DIM DOSE(300),H20(300),SHIP(300),ALL(300),SELF(300)
50 D$ = CHR$(4): REM CTRL-D
60 INPUT "NAME OF SHIP IS ? ";X$
70 PRINT : PRINT
79 INPUT "WHAT SLOT IS THE PRINTER IN?";P$
80 IF P$ > "3" OR P$ < "1" THEN HOME : VTAB 6: PRINT X$: G
OTO 70
81 PRINT
82 INPUT "USE PREVIOUSLY CREATED REPORT FILE?";PREP$: IF L
EN (PREP$) = 0 THEN PREP$ = "Y"
83 IF LEN (PREP$) > 1 THEN PREP$ = LEFT$(PREP$,1)
84 IF PREP$ < > "Y" AND PREP$ < > "N" THEN PRINT CHR$(13)
7): HOME : GOTO 82
85 IF PREP$ = "N" THEN 109
86 Z$ = X$ + " REPORT"
87 PRINT D$;"OPEN ";Z$;","D2"
88 PRINT D$;"READ ";Z$
89 INPUT X2$: INPUT ITEN: INPUT N: INPUT FRAC
90 PRINT D$;"CLOSE";Z$
91 HOME : IF X$ < > X2$ THEN PRINT " SHIP NAMES DO NOT MA
TCH": PRINT "FILE NAME WAS ";X2$
92 PRINT "SHIP NAME IS ";X$: PRINT "DEPARTING INTENSITY WAS "
";ITEN: PRINT "APPORTIONMENT FACTOR WAS ";FRAC
93 IF N < 7 THEN MM$ = "JUL ":MD = N + 25
94 IF N > 6 AND N < 38 THEN MM$ = "AUG ":MD = N - 6
95 IF N > 37 THEN MM$ = "SEP ":MD = N - 37
96 PRINT "LEFT LAGOON ";MM$;" ";MD
97 PRINT : PRINT
98 INPUT "WANT TO USE THESE INPUTS?";AN$: IF LEN (AN$) = 0
THEN AN$ = "N"
99 IF LEN (AN$) > 1 THEN AN$ = LEFT$(AN$,1)
100 IF AN$ = "Y" THEN 181
109 PRINT

```

```

110 INPUT "MONTH OF LAST DATA POINT?";MM$
120 PRINT
130 MM$ = LEFT$(MM$,3)
140 MM$ = MM$ + " "
150 INPUT "DAY OF MONTH OF LAST POINT?";MD
160 IF MD < 1 OR MD > 31 THEN PRINT : GOTO 150
170 PRINT
180 INPUT "HOW IS THE SHIP CONTAMINATION FOR THIS SHIP TO BE APPORTIONED?(0-1.0)";FRAC
181 PRINT
185 INPUT "PRINT APPORTIONMENT FACTOR?";PFRAC$: IF LEN (PFRAC$) = 0 THEN PFRAC$ = "Y"
186 IF LEN (PFRAC$) > 1 THEN PFRAC$ = LEFT$(PFRAC$,1)
187 IF PFRAC$ < > "Y" AND PFRAC$ < > "N" THEN PRINT CHR$ (7): HOME : GOTO 185
188 PRINT
189 INPUT "PRINT DEPARTING INTENSITY?";PITEN$: IF LEN (PITEN$) = 0 THEN PITEN$ = "Y"
190 IF LEN (PITEN$) > 1 THEN PITEN$ = LEFT$(PITEN$,1)
191 IF PITEN$ < > "Y" AND PITEN$ < > "N" THEN PRINT CHR$ (7): HOME : GOTO 189
194 PRINT
195 INPUT "WANT TO CREATE A NEW REPORT FILE?";AN$: IF LEN (AN$) = 0 THEN AN$ = "N"
196 IF LEN (AN$) > 1 THEN AN$ = LEFT$(AN$,1)
199 REM
200 REM READ IN DAILY SHIP CONTAMINATION
201 REM
209 Z$ = X$ + " SELF"
210 PRINT D$;"OPEN ";Z$;D2
220 PRINT D$;"READ ";Z$
230 INPUT BDAY
240 INPUT NDAY
250 FOR I = 0 TO NDAY
260 INPUT SELF(I + ABLE + 1)
270 NEXT I
280 INPUT ITEN
290 PRINT D$;"CLOSE ";Z$
294 REM
295 REM READ IN DAILY TARGET ACTIVATION
296 REM
300 Z$ = X$ + " TARGETS"
310 PRINT D$;"OPEN ";Z$;D2
320 PRINT D$;"READ ";Z$
330 FOR J = 0 TO ABLE: INPUT SHIP(J): NEXT
340 FOR J = ABLE + 1 TO 24: INPUT DUMMY: NEXT
350 INPUT K: IF K > BAKER THEN K = BAKER
360 FOR J = ABLE + 1 TO ABLE + K: INPUT SHIP(J): NEXT
370 PRINT D$;"CLOSE ";Z$
374 REM

```

```

375 REM READ IN HOURLY WATER ACTIVATION
376 REM
380 Z$ = X$ + " WATER"
390 PRINT D$; "OPEN "; Z$
400 PRINT D$; "READ "; Z$
410 INPUT N
420 FOR I = 0 TO N - 1
430 INPUT DOSE(I)
440 NEXT
450 PRINT D$; "CLOSE "; Z$
454 REM
455 REM CALCULATE DAILY WATER ACTIVATION
456 REM
460 PRINT
470 PRINT D$; "PR#"; P$
471 PRINT CHR$(9); "100N"
480 FOR I = 0 TO 15
490 H2O(0) = H2O(0) + DOSE(I)
500 NEXT
510 FOR J = 1 TO 3
520 FOR K = 1 TO 24
530 I = 24 * (J - 1) + 15 + K
540 H2O(J) = H2O(J) + DOSE(I)
550 NEXT
560 NEXT
570 W = ABLE + 1
580 H2O(W) = BDAY / 1000
590 FOR J = 1 TO 8
600 FOR K = 1 TO 24
610 I = 73 + 24 * (J - 1) + 15 + K
620 H2O(W + J) = H2O(W + J) + DOSE(I)
624 F1 = 1
630 IF I = N - 1 THEN 651
640 NEXT
650 NEXT
651 REM READ IN LATE WATER DAILY DOSE
652 Z$ = X$ + " LATE WATER"
653 PRINT D$; "OPEN"; Z$
654 PRINT D$; "READ"; Z$
655 INPUT N9
656 FOR I = 14 TO N9 + 13
657 INPUT H2O(I); H2O(I) = H2O(I) / 1000: NEXT
658 PRINT D$; "CLOSE"; Z$
660 PRINT CHR$(12)
670 FOR I = 0 TO 1 + ABLE + BAKER
672 REM *****
673 REM : APPLY FILM BADGE CONVERSION FACTOR = .7
674 REM : APPLY CREW ACTIVITY APPORTIONMENT FACTOR FOR WATER DOSE = .333
675 REM : APPLY CREW ACTIVITY APPORTIONMENT FACTOR FOR SHIP

```

```

CONTAMINATION = .667
676 REM *****
680 H2O(I) = H2O(I) * 1000 * .7 * .333
690 H2O(I) = INT (H2O(I))
700 SHIP(I) = INT (.7 * SHIP(I) + .5)
710 SELF(I) = FRAC * SELF(I)
712 SELF(I) = SELF(I) * F1 * .667
720 SELF(I) = INT (.7 * SELF(I) + .5)
727 REM
728 REM SUM FOR TOTAL DAILY DOSE
729 REM
730 ALL(I) = H2O(I) + SHIP(I) + SELF(I)
740 NEXT
750 CUM = 0
755 PRINT CHR$(27); "M"
760 PRINT : PRINT : PRINT : PRINT
770 PRINT " ,," USS ";X$;" CALCULATED FILM BADGE DOSE (IN
MREM)"
780 PRINT
790 PRINT
791 Z6 = 14
792 Z7 = Z6 + 9
793 Z8 = Z7 + 8
794 Z9 = 11
800 POKE 36,Z6: PRINT "DATE";: POKE 36,Z7: PRINT "TIME";: P
OKE 36,Z8: PRINT "LAGOON";: POKE 36,Z8 + Z9: PRINT "
TARGET";: POKE 36,Z8 + 2 * Z9: PRINT "SHIP";: POKE 36,Z
8 + 3 * Z9 + 5: PRINT "DAILY";: POKE 36,Z8 + 4 * Z9 +
5: PRINT "CUM"
810 POKE 36,Z8: PRINT "WATER";: POKE 36,Z8 + Z9: PRINT "SHI
PS";: POKE 36,Z8 + 2 * Z9: PRINT "CONTAMINATION";: POKE
36,Z8 + 3 * Z9 + 5: PRINT "TOTAL";: POKE 36,Z8 + 4 * Z9
+ 5: PRINT "TOTAL"
820 POKE 36,Z6: PRINT "-----"
830 M$ = "JUL "
840 J = 0
850 FOR I = 0 TO ABLE - 1
860 J = J + 1
870 CUM = CUM + ALL(I)
880 POKE 36,Z6: PRINT M$;J;: POKE 36,Z7: PRINT "A+";I;: POK
E 36,Z8: PRINT H2O(I);: POKE 36,Z8 + Z9: PRINT SHIP(
I);: POKE 36,Z8 + 3 * Z9 + 5: PRINT ALL(I);: POKE 36,Z8
+ 4 * Z9 + 5: PRINT CUM
890 NEXT I
892 CUM = CUM + SHIP(ABLE)
895 POKE 36,Z6: PRINT "JUL 5 THRU 24";: POKE 36,Z8: PRINT H
20(ABLE);: POKE 36,Z8 + Z9: PRINT SHIP(ABLE);: POKE
36,Z8 + 4 * Z9 + 5: PRINT CUM
900 PRINT

```

```

910 J = 24
920 FOR I = ABLE + 1 TO 1 + ABLE + BAKER
930 J = J + 1
940 IF J = 32 AND M$ = "JUL " THEN J = 1:M$ = "AUG "
950 IF J = 32 AND M$ = "AUG " THEN J = 1:M$ = "SEP "
960 CUM = CUM + ALL(I)
970 POKE 36,Z6: PRINT M$;J:: POKE 36,Z7: PRINT "B+";I - (1
+ ABLE);: POKE 36,Z8: PRINT H20(I);: POKE 36,Z8 + Z9
: PRINT SHIP(I);: POKE 36,Z8 + 2 * Z9: PRINT SELF(I);:
POKE 36,Z8 + 3 * Z9 + 5: PRINT ALL(I);: POKE 36,Z8 +
4 * Z9 + 5: PRINT CUM
980 IF J = MD AND MM$ = M$ THEN 1000
990 NEXT I
995 REM
996 REM SCALE DEPARTING INTENSITY
997 REM
1000 PRINT
1004 ITEN = ITEN * FRAC * .667
1005 ITEN = INT (24 * ITEN + .5)
1010 IF PITEN$ = "Y" THEN PRINT "SHIP CONTAMINATION DEPART
URE FACTOR = ";ITEN
1015 PRINT
1017 IF PFRAC$ = "Y" THEN PRINT "APPORTIONMENT FACTOR IS "
;FRAC
1020 PRINT D$;"PR#0"
1037 IF AN$ < ' > "Y" AND AN$ < ' > "N" THEN PRINT CHR$ (7)
: GOTO 1030
1040 IF AN$ = "N" THEN 1200
1044 REM
1045 REM PRINT FILE TO SAVE FINAL DOSE CALCULATIONS
1046 REM
1050 Z$ = X$ + " REPORT"
1060 PRINT D$;"OPEN ";Z$; ",D2"
1070 PRINT D$;"DELETE ";Z$"
1080 PRINT D$;"OPEN ";Z$"
1090 PRINT D$;"WRITE ";Z$"
1100 PRINT X$"
1110 PRINT ITEN
1120 PRINT I - (1 + ABLE)
1130 PRINT FRAC
1140 PRINT I + 1
1150 FOR J = 0 TO I
1160 PRINT ALL(J)
1170 NEXT J
1180 PRINT D$;"CLOSE ";Z$"
1190 PRINT
1200 END
1210 REM LATEST VERSION RAD REPORT 16 NOV 82 WITH MARGIN &
POSITION CORRECTIONS
1220 REM MODIFIED 6 FEB 84 FOR THE EPSON PRINTER

```

Program: UPDATE

Program Objective: To allow the modification of existing "ship" PATH and "ship" PASSES files.

Description: This program performs edit functions on the PATH file and automatically updates the PASSES file if required. Edit functions are of three types: add, delete, or modify lines of data. Four types of modifications to a line of data are supported. The user may choose to modify date-time, location, or remarks data individually or as a group. As a screen of data is presented, the user is queried as to the accuracy of the data. A "yes" response proceeds to the next screen of data. A response of "no" will produce a question for the type of edit function: add (A), delete (D), modify (M). At the program prompt "ARE THESE OKAY?", three additional responses are supported. A return is interpreted as a yes (Y). Control-A is interpreted to mean the data are correct and there is no need to view the remainder of the file. An "R" response allows the starting of the next screen of data at any line desired. At the end of an edit session, the option is given to the user to save the modified file.

Input: Existing files "ship" PATH  
"ship" PASSES

Output: Updated files "ship" PATH  
"ship" PASSES

Table 4-8 Update

```

10 D$ = CHR$(4)
20 PRINT D$;"MON,C"
30 DIM PDOSE(300),PNAME$(300),PTIME$(300)
40 DIM TIME$(300),PLACE$(300),SHIP$(300)
50 HOME : VTAB 6
60 INPUT "NAME OF SHIP ";X$;Z$ = X$ + " PATH"
70 PRINT
80 PRINT D$;"OPEN ";Z$;"1,D2"
90 PRINT D$;"READ ";Z$;
100 INPUT NTIMES
110 FOR I = 0 TO NTIMES - 1
120 INPUT TIME$(I),PLACE$(I),SHIP$(I)
130 NEXT
140 PRINT D$;"CLOSE ";Z$;
150 Y$ = X$ + " PASSES"
160 PRINT D$;"OPEN ";Y$;
170 PRINT D$;"READ ";Y$;
180 INPUT PASSES
190 IF PASSES = 0 THEN 230
200 FOR I = 1 TO PASSES
210 INPUT PTIME$(I),PNAME$(I),PDOSE(I)
220 NEXT I
230 PRINT D$;"CLOSE ";Y$;
240 I1 = 0;I2 = I1 + 19
250 POKE 34,0
260 IF I1 + 1 > NTIMES THEN 460
270 IF I2 > NTIMES - 1 THEN I2 = NTIMES - 1
280 HOME : PRINT " I TIME PLACE SHIP"
290 FOR I = I1 TO I2
300 IF I < 10 THEN PRINT " ";
310 PRINT I;" ";TIME$(I);";";PLACE$(I);";";SHIP$(I)
320 NEXT I
330 VTAB 23: POKE 34,21
340 PRINT "ARE THESE OK SO FAR?": GET A$: PRINT A$
350 IF A$ = "Y" THEN I1 = I2 + 1;I2 = I1 + 19: GOTO 250
360 IF A$ = "F" THEN 460
370 IF A$ = "N" THEN PRINT "TYPE OF UPDATE(A,D,M,T,P,S)?": GET
A$: PRINT A$
380 IF A$ = "D" THEN 1000
390 IF A$ = "A" THEN 1100
400 IF A$ = "M" THEN 1200
410 IF A$ = "T" THEN 1300
420 IF A$ = "P" THEN 1400
430 IF A$ = "S" THEN 1500
440 IF A$ = "R" THEN 1600
450 GOSUB 2000: GOTO 250
460 POKE 34,01 HOME : VTAB 8
470 PRINT "DO YOU WANT TO SAVE THIS AS THE DATA FOR THIS SHIP?": GET
A$: PRINT A$
471 IF A$ < > "Y" THEN 720
480 IF C1 = 0 THEN 600
490 PRINT D$;"OPEN ";Z$;"1,D2"

```

```

500 PRINT D$;"DELETE ";Z$
510 PRINT D$;"OPEN ";Z$
520 PRINT D$;"WRITE ";Z$
530 PRINT NTIMES
540 FOR I = 0 TO NTIMES - 1
550 PRINT TIME$(I)
560 PRINT PLACE$(I)
570 PRINT SHIP$(I)
580 NEXT I
590 PRINT D$;"CLOSE ";Z$
600 IF C2 = 0 THEN 720
610 PRINT D$;"OPEN ";Y$;"D2"
620 PRINT D$;"DELETE ";Y$
630 PRINT D$;"OPEN ";Y$
640 PRINT D$;"WRITE ";Y$
650 PRINT PASSES
660 FOR I = 1 TO PASSES
670 PRINT PTIME$(I)
680 PRINT PNAME$(I)
690 PRINT PPOSE(I)
700 NEXT I
710 PRINT D$;"CLOSE ";Y$
720 PRINT D$;"NOMON,C"
730 PRINT D$;"RUN MENU,D1"
1000 HOME : INPUT "FIRST LINE TO DELETE=";A$:D1 = VAL (A$)
1010 IF D1 < 0 THEN PRINT CHR$ (7) ;"TOO SMALL"; GOTO 1000
1015 IF D1 > = NTIMES THEN PRINT CHR$ (7) ;"TOO LARGE"; GOTO 1
090
1017 IF D1 < I1 THEN I1 = D1 - 1: GOTO 1620
1018 IF D1 > I2 THEN PRINT "CYCLE UNTIL COMES ON SCREEN": GET A$
1019 PRINT : GOTO 250
1020 INPUT "LAST LINE TO DELETE=";A$:D2 = VAL (A$)
1025 IF D2 < 0 THEN PRINT CHR$ (7) ;"TOO SMALL"; GOTO 1020
1030 IF D2 > = NTIMES THEN PRINT CHR$ (7) ;"TOO LARGE"; GOTO 1
020
1035 IF D1 > D2 THEN PRINT CHR$ (7) ;"FIRST LARGER THAN LAST"
GOTO 370
1040 GOSUB 5000: IF C1 = 2 THEN PRINT "ABORTED": GET A$: PRINT
1041 : GOTO 250
1050 GOSUB 2500:D1 = 1
1055 IF D2 = NTIMES - 1 THEN NTIMES = D1: GOTO 250
1060 J = D2 - D1 + 1
1065 FOR I = D2 + 1 TO NTIMES - 1
1070 K = I - J
1075 TIME$(K) = TIME$(I)
1076 PLACE$(K) = PLACE$(I)
1077 SHIP$(K) = SHIP$(I)
1080 NEXT I
1090 NTIMES = NTIMES - J:S2 = 0: GOTO 250
1100 J = 300 - (NTIMES - 1):J1 = - 1
1105 A$ = "N"
1110 IF I1 = 0 THEN PRINT "ADD TO START OF FILE ?": GET A$: PR
INT A$
1120 IF A$ < > "Y" THEN INPUT "LAST LINE BEFORE NEW DATA=";A$:

```

```

J1 = VAL (A$)
1130 IF J1 = NTIMES - 1 THEN 1150
1140 FOR S1 = NTIMES - 1 TO J1 + 1 STEP - 1
1142 TIME$(S1 + J) = TIME$(S1)
1144 PLACE$(S1 + J) = PLACE$(S1)
1146 SHIP$(S1 + J) = SHIP$(S1)
1148 NEXT S1
1150 A1 = 0: I = J1 + 1
1160 GOSUB 35001: IF A1$ = CHR$ (13) THEN 1180
1162 GOSUB 40001: GOSUB 4500
1165 C1 = 1
1170 IF A$ = CHR$ (13) THEN 1180
1175 I = I + 1: A1 = A1 + 1: GOTO 1160
1180 IF J1 = NTIMES - 1 THEN 1190
1181 FOR S1 = J1 + J + 1 TO 300
1182 TIME$(I) = TIME$(S1)
1184 PLACE$(I) = PLACE$(S1)
1186 SHIP$(I) = SHIP$(S1)
1188 I = I + 1: NEXT S1
1190 NTIMES = NTIMES + A1: I2 = I1 + 19: GOTO 250
1200 INPUT "CHANGE ALL OF WHICH POINT?": A$": I = VAL (A$)
1210 IF I < I1 OR I > I2 THEN PRINT "OUTSIDE OF CURRENT DISPLAY
, ABORTED": I1 GET A$: PRINT I: GOTO 250
1220 GOSUB 35001: GOSUB 40001: GOSUB 4500: C1 = 1
1230 GOTO 250
1300 INPUT "CHANGE TIME FOR WHICH POINT?": A$": I = VAL (A$)
1310 IF I < I1 OR I > I2 THEN PRINT "OUTSIDE OF CURRENT DISPLAY
, ABORTED": I1 GET A$: PRINT I: GOTO 250
1320 GOSUB 35001: C1 = 1: GOTO 250
1400 INPUT "CHANGE PLACE FOR WHICH POINT?": A$": I = VAL (A$)
1410 IF I < I1 OR I > I2 THEN PRINT "OUTSIDE OF CURRENT DISPLAY
, ABORTED": I1 GET A$: PRINT I: GOTO 250
1420 GOSUB 40001: C1 = 1: GOTO 250
1500 INPUT "CHANGE SHIP FOR WHICH POINT?": A$": I = VAL (A$)
1510 IF I < I1 OR I > I2 THEN PRINT "OUTSIDE OF CURRENT DISPLAY
, ABORTED": I1 GET A$: PRINT I: GOTO 250
1520 GOSUB 45001: C1 = 1: GOTO 250
1530 POKE 34701 HOME : VTAB 8
1605 PRINT "LAST LINE IS #": NTIMES - 1
1610 INPUT "START NEXT SCREEN AT LINE #": I1
1620 I2 = I1 + 19
1630 GOTO 250
2000 POKE 34701 HOME : VTAB 2
2002 PRINT "POSSIBLE UPDATE RESPONSES"
2004 PRINT I: PRINT
2010 PRINT " A = ADD POINTS TO PATH"
2015 PRINT
2020 PRINT " B = DELETE POINTS FROM PATH"
2025 PRINT
2030 PRINT " M = MODIFY ALL PARTS OF A POINT"
2035 PRINT
2040 PRINT " T = CHANGE TIME OF A POINT"
2045 PRINT
2050 PRINT " P = CHANGE PLACE OF A POINT"

```

```

2055 PRINT
2060 PRINT " S = CHANGE SHIP OF A POINT"
2063 PRINT
2065 PRINT " R = RECYCLE UPDATE TO A LINE NUMBER"
2066 PRINT
2067 PRINT " F = FINISHED WITH ALL CHANGES"
2070 VTAB 23: INVERSE : PRINT "HIT ANY KEY TO CONTINUE": NORMAL
2080 GET A$: PRINT
2090 RETURN
2500 T1$ = TIME$(D1):T2$ = TIME$(D2)
2510 FOR S1 = 0 TO PASSES
2520 IF T1$ > PTIME$(S1) THEN NEXT S1: RETURN
2530 IF T1$ < > PTIME$(S1) THEN S1 = S1 + 1: GOTO 2500
2540 D3 = D1
2550 IF LEFT$(SHIP$(D3),1) = "P" THEN 2590
2560 D3 = D3 + 1: T3$ = TIME$(D3)
2570 IF T3$ < > T1$ THEN S1 = S1 + 1: GOTO 2500
2580 IF LEFT$(SHIP$(D3),1) < > "P" THEN 2560
2590 IF RIGHT$(SHIP$(D3), LEN(SHIP$(D3)) - 1) < > PNAME$(S1)
    THEN 2560
2600 IF T2$ < PTIME$(S1) THEN S1 = PASSES: NEXT S1: RETURN
2610 FOR S2 = S1 TO PASSES
2620 IF PTIME$(S2) < T2$ THEN NEXT S2: GOTO 2700
2630 IF PTIME$(S2) > T2$ THEN S2 = S2 - 1: GOTO 2700
2640 D3 = D2
2650 IF PNAME$(S2) = RIGHT$(SHIP$(D3), LEN(SHIP$(D3)) - 1) TH
EN 2700
2660 D3 = D3 - 1
2670 IF TIME$(D3) = T2$ THEN 2650
2680 S2 = S2 - 1
2700 J = S2 - S1 + 1
2710 FOR K = S2 + 1 TO PASSES
2720 PTIME$(K - J) = PTIME$(K)
2722 PNAME$(K - J) = PNAME$(K)
2724 PPOSE(K - J) = PPOSE(K)
2730 NEXT K
2740 PASSES = PASSES - J
2745 C2 = 1
2750 RETURN
3000 FOR S1 = S2 TO PASSES
3010 IF PTIME$(S1) < TIME$(I) THEN NEXT S1: S1 = PASSES + 1: GOT
O 3060
3020 IF PTIME$(S1) = TIME$(I) AND PNAME$(S1) = T2$ THEN 3080
3030 FOR S3 = PASSES TO S1 STEP - 1
3040 PTIME$(S3 + 1) = PTIME$(S3)
3042 PNAME$(S3 + 1) = PNAME$(S3)
3044 PPOSE(S3 + 1) = PPOSE(S3)
3050 NEXT S3
3060 PTIME$(S1) = TIME$(I)
3070 PNAME$(S1) = RIGHT$(T2$, LEN(T2$) - 1)
3080 INPUT "DOSE FROM THIS PASS="; PPOSE(S1)
3085 IF S1 < PASSES THEN S1 = PASSES: NEXT S1
3090 PASSES = PASSES + 1
3100 RETURN

```

```

3500 PRINT "TIME " ; GET A1$; PRINT A1$;
3600 IF A1$ = CHR$ (13) THEN RETURN
3710 GET A2$; PRINT A2$; IF A2$ = CHR$ (8) THEN GET A1$; PRINT A1
$;: GOTO 3600
3720 GET A3$; PRINT A3$; IF A3$ = CHR$ (8) THEN 3710
3730 GET A4$; PRINT A4$; IF A4$ = CHR$ (8) THEN 3720
3740 GET A5$; PRINT A5$; IF A5$ = CHR$ (8) THEN 3730
3750 GET A6$; PRINT A6$; IF A6$ = CHR$ (8) THEN 3740
3800 TIME$(I) = A1$ + A2$ + A3$ + A4$ + A5$ + A6$
3900 RETURN
4000 PRINT " PLACE " ; GET A1$; PRINT A1$;
4010 GET A2$; PRINT A2$; IF A2$ = CHR$ (8) THEN GET A1$; PRINT A1
$;: GOTO 4010
4020 GET A3$; PRINT A3$; IF A3$ = CHR$ (8) THEN 4010
4030 GET A4$; PRINT A4$; IF A4$ = CHR$ (8) THEN 4020
4040 GET A5$; PRINT A5$; IF A5$ = CHR$ (8) THEN 4030
4100 PLACE$(I) = A1$ + A2$ + A3$ + A4$ + A5$
4200 RETURN
4500 INPUT " SHIP " ; T2$
4510 L = LEN (T2$)
4520 T1$ = LEFT$ (T2$,1)
4530 IF T1$ = "N" THEN 4600
4540 IF L > 1 THEN 4560
4550 FLASH ; PRINT "BAD INPUT, TRY AGAIN"; NORMAL ; GOTO 4500
4560 IF T1$ = "L" THEN 4600
4570 IF T1$ = "P" THEN GOSUB 3000; C2 = 1; GOTO 4600
4580 IF T1$ = "A" THEN 4600
4590 GOTO 4550
4600 SHIP$(I) = T2$
4700 RETURN
5000 J1 = B1 - 1; IF J1 < 0 THEN J1 = 0
5010 J2 = B2 + 1; IF J2 = NTIMES THEN J2 = J2 - 1
5020 POKE 34,0
5030 HOME ; PRINT " I TIME PLACE SHIP"
5040 J3 = J1 + 19
5045 IF J1 > NTIMES - 1 THEN 5140
5050 IF J3 > NTIMES - 1 THEN J3 = NTIMES - 1
5060 FOR J = J1 TO J3
5070 IF J > = B1 THEN INVERSE
5075 IF J > B2 THEN NORMAL
5080 IF J < 10 THEN PRINT " "
5090 PRINT J$ " ;TIME$(J) " ;PLACE$(J) " ;SHIP$(J)
5110 NEXT J
5120 NORMAL
5130 PRINT
5140 PRINT "OK?"; GET A$; PRINT A$
5150 IF A$ < > "Y" THEN C1 = 2; RETURN
5160 IF B2 < J3 THEN HOME ; RETURN
5170 J1 = J1 + 20
5180 HOME ; PRINT " I TIME PLACE SHIP"
5190 IF B1 = 0 THEN 5040
5200 K = B1 - 1
5210 IF J < 10 THEN PRINT " "
5220 PRINT K$ " ;TIME$(K) " ;PLACE$(K) " ;SHIP$(K)
5230 GOTO 5040

```

**Program:** UPDATE TARGET SHIPS

**Program Objective:** To modify the file TARGET SHIPS by deletion, addition, or modification.

**Description:** The file TARGET SHIPS contains the names of most target ships and their one-hour intensities after Shot BAKER. This program allows the intensities to be modified and ships to be added or deleted, as required.

**Input:** Existing file TARGET SHIPS

**Output:** Updated file TARGET SHIPS

Table 4-9 Update Target Ships

```

10      DIM NAME$(90)
15      DIM DOSE1(90)
20      D$ = CHR$(4)
30      PRINT D$;"OPEN TARGET SHIPS,D1"
40      PRINT D$;"READ TARGET SHIPS"
50      INPUT NSHIPS
60      IF NSHIPS = 0 THEN 100
70      FOR I = 1 TO NSHIPS
80          INPUT NAME$(I),DOSE1(I)
85          DOSE1(I) = DOSE1(I) * 24
90          NEXT I
100     PRINT D$;"CLOSE TARGET SHIPS"
110     ADDED = 0
115     PRINT "WANT TO ADD TARGET SHIPS? ";
120     GET A$;
125     PRINT A$;
130     IF A$ < > "Y" THEN 200
135     PRINT "NEW TARGET SHIP NAME ";
140     GET A$;
145     PRINT A$;;
150     IF A$ = CHR$(13) THEN
155         GOTO 200
160     INPUT " ";N$
165     N$ = A$ + N$
170     IF LEFT$(N$,1) = CHR$(13) THEN 200
175     CHECK = 0
180     INPUT "INTENSITY AT 1 HOUR(R/DAY) ";
185     IF D > 0 THEN 190
190     CHECK = CHECK + 1;
195     IF CHECK > 1 THEN 120
200     PRINT "BAD INPUT,TRY AGAIN";
205     GOTO 140
210     ADDED = ADDED + 1
215     NAME$(NSHIPS + ADDED) = N$
220     DOSE1(NSHIPS + ADDED) = D
225     GOTO 120
230     PRINT
235     PRINT "I";
240     POKE 36,5;
245     PRINT "NAME";
250     POKE 36,23;
255     PRINT "DOSE RATE (R/DAY)"

```

```

202 PRINT "-----"
205 FOR I = 1 TO NSHIPS + ADDED
210     PRINT I;
211     POKE 36,51
212     PRINT NAME$(I);
213     POKE 36,25
214     PRINT DOSE1(I)
220     NEXT I
230     PRINT
231     PRINT "ARE THESE OKAY ? ";
232     GET A$;
233     PRINT A$;
240     IF A$ = "Y" THEN
241         GOTO 500
250     INPUT "WHICH IS WRONG(I)?";J
260     PRINT NAME$(J),DOSE1(J)
270     PRINT "NEW NAME = ";NAME$(J)
272     CV = PEEK (37);
273     VTAB CV;
274     HTAB 12
275     INPUT " ";A$
276     IF LEN (A$) > 0 THEN
277         NAME$(J) = A$
280     PRINT "NEW INTENSITY = ";DOSE1(J)
282     CV = PEEK (37);
283     VTAB CV;
284     HTAB 17
285     INPUT " ";A$
286     IF LEN (A$) > 0 THEN
287         DOSE1(J) = VAL (A$)
290     GOTO 200
500     PRINT "WANT TO DELETE A SHIP ? ";
510     GET A$;
511     PRINT A$;
520     IF A$ = "N" THEN 1000
530     INPUT "WHICH ONE? ";J
540     FOR K = J TO NSHIPS + ADDED - 1
550         NAME$(K) = NAME$(K + 1)
560         DOSE1(K) = DOSE1(K + 1)
570     NEXT
580     NSHIPS = NSHIPS - 1
590     GOTO 200
1000    NSHIPS = NSHIPS + ADDED
1010    FOR I = 1 TO NSHIPS
1020        DOSE1(I) = DOSE1(I) / 24
1030    NEXT I
2000    PRINT D$;"OPEN TARGET SHIPS,01"
2010    PRINT D$;"DELETE TARGET SHIPS"
2020    PRINT D$;"OPEN TARGET SHIPS"
2030    PRINT D$;"WRITE TARGET SHIPS"
2040    PRINT NSHIPS
2050    FOR I = 1 TO NSHIPS
2060        PRINT NAME$(I)

```

```
2070      PRINT DOSE1(I)
2080      NEXT I
2090  PRINT D$;"CLOSE TARGET SHIPS"
2100  PRINT D$;"RUN MENU,D1"
```

Program: UPDATE PASSING SHIP DOSE

Program Objective: To modify doses in PASSES file, and to modify any entry in the PATH file that relates to a "passing" encounter with a target ship.

Description: This program reads "ship" PASSES file and allows modification of dose. Input and output are displayed on the screen only.

Input: Existing file "ship" PASSES

Output: Updated file "ship" PASSES

Table 4-10 Update Passing Ship Dose

```

10      D$ = CHR$(4)
20      DIM PDOSSE(300),PNAME$(300),PTIME$(300)
30      INPUT "NAME OF SHIP ";X$
40      Z$ = X$ + " PASSES"
50      PRINT D$;"OPEN ";Z$;D2"
60      PRINT D$;"READ ";Z$
70      INPUT PASSES
80      IF PASSES = 0 THEN 140
90      FOR I = 1 TO PASSES
100         INPUT PTIME$(I)
110         INPUT PNAME$(I)
120         INPUT PDOSSE(I)
130         NEXT I
140         PRINT D$;"CLOSE ";Z$
150         IF PASSES > 0 THEN 200
160         PRINT "USE UPDATE"
170         PRINT "TO ADD PASSING SHIP MEETINGS"
180         FOR I = 1 TO 3000:
190             NEXT I
200         PRINT D$;"RUN MENU,D1"
210         ISTART = 1
210         NTILL = ISTART + 19
220         IF NTILL > PASSES THEN
230             NTILL = PASSES
230             HOME :
240             PRINT *;"TIME", "SHIP", "DOSE"
250             FOR I = ISTART TO NTILL
260                 PRINT I;" ";PTIME$(I),PNAME$(I);;
270                 POKE 36,32
280                 PRINT PDOSSE(I)
290                 NEXT I
300             PRINT
310             PRINT "WANT TO CHANGE ANY ? ";
320             GET A$:
330             PRINT A$:
340             IF A$ = "N" THEN 470
350             INPUT "WHICH ONE ? ";A$:
360             J = VAL (A$)
370             IF J < ISTART THEN
380                 PRINT "BAD INPUT"
390                 FOR J = 0 TO 500:
400                 NEXT I

```

```

        GOTO 230
340  IF J > NTILL THEN
          PRINT "BAD INPUT"!
          FOR J = 0 TO 500:
          NEXT :
          GOTO 230
350  PRINT "DELETE?";:
GET A$:
PRINT A$:
360  IF A$ = "Y" THEN 390
370  INPUT "NEW DOSE = ";PDOSE(J)
380  GOTO 230
390  IF J = PASSES THEN 450
400  FOR I = J TO PASSES - 1
410    PTIME$(I) = PTIME$(I + 1)
420    PNAME$(I) = PNAME$(I + 1)
430    PDOSE(I) = PDOSE(I + 1)
440    NEXT I
450  PASSES = PASSES - 1
460  GOTO 220
470  IF NTILL = PASSES THEN 490
480  ISTART = NTILL + 1:
GOTO 210
490  HOME :
VTAB 10
500  PRINT "SAVE THIS VERSION OF FILE ? ";
510  GET A$:
PRINT A$:
520  PRINT :
PRINT
530  IF A$ < > "Y" THEN 650
540  PRINT D$;"OPEN ";Z$;"D2"
550  PRINT D$;"DELETE";Z$
560  PRINT D$;"OPEN ";Z$
570  PRINT D$;"WRITE ";Z$
580  PRINT PASSES
590  FOR I = 1 TO PASSES
600    PRINT PTIME$(I)
610    PRINT PNAME$(I)
620    PRINT PDOSE(I)
630    NEXT I
640  PRINT D$;"CLOSE ";Z$
650  PRINT D$;"RUN MENU,D1"

```

Program: PATH REPORT

Program Objective: To print out path data for ships in Bikini Lagoon.

Description: This program reads "ship" PATH and PASSES files and print information, either on screen or on printer. The dose for a passing ship is printed immediately after the target ship name.

Input: File "ship" PATH  
File "ship" PASSES

Output: A complete report on the input data for a ship, displayed either on the screen or on the printer.

Table 4-11 Path Report

```

1      HOME :  

2      VTAB 4  

10     D$ = CHR$(4)  

20     DIM PTIME$(300),PNAME$(300),PPOSE(300)  

30     DIM PLACE$(300),TIME$(300),SHIP$(300)  

40     INPUT "NAME OF SHIP " ; X$!  

50     Z$ = X$ + " PATH"  

60     Y$ = X$ + " PASSES"  

60     PRINT "SEND TO PRINTER ?"  

      SET A$:  

      PRINT A$  

61     IF A$ = "Y" THEN  

          PRINT "WHAT SLOT IS THE PRINTER IN?" ;  

          GET P$:  

          PRINT P$  

62     IF A$ = "Y" AND P$ > "3" OR A$ = "Y" AND P$ < "1" THEN  

        HOME :  

        VTAB 8!  

        PRINT X$!  

        PRINT 1  

        GOTO 60  

63     PRINT  

64     PRINT D$;"OPEN ";Y$;"",D2"  

65     PRINT D$;"READ ";Y$  

66     INPUT PASSES!  

67     IF PASSES = 0 THEN 140  

68     FOR I = 1 TO PASSES  

69         INPUT PTIME$(I),PNAME$(I),PPOSE(I)  

70         NEXT  

71     PRINT D$;"CLOSE ";Y$  

72     PRINT D$;"OPEN ";Z$;"",D2"  

73     PRINT D$;"READ ";Z$  

74     INPUT NTIMES  

75     FOR I = 0 TO NTIMES - 1  

76         INPUT TIME$(I),PLACE$(I),SHIP$(I)  

77         NEXT  

78     PRINT D$;"CLOSE ";Z$  

79     IF NTIMES < 2 THEN 9000  

80     IF A$ = "Y" THEN  

81         PRINT D$;"PRN";P$  

82     PRINT 1  

83     PRINT 1

```

```

        PRINT
250  IF A$ < > "Y" THEN
        HOME :
        PRINT :
        SPEED= 200
255  PRINT " *,"PATH REPORT FOR THE USS "IX$:
PRINT
260  PRINT "TIME"::
POKE 36,8:
PRINT "PLACE"::
POKE 36,15:
PRINT "REMARKS"
270  PRINT "----- ----- -----"
280  POKE 34,3:
VTAB 4
285  POKE 1786,106
290  K = 1
300  FOR I = 0 TO NTIMES - 1
        PRINT TIME$(I):
310  POKE 36,8
320  PRINT PLACE$(I):
330  L$ = LEFT$(SHIP$(I),1)
340  IF L$ = "N" AND LEN(SHIP$(I)) = 1 THEN
        PRINT :
        GOTO 440
350  POKE 36,15
360  L = LEN(SHIP$(I)):
370  SHP$ = RIGHT$(SHIP$(I),L - 1)
375  IF L$ = "N" THEN
        PRINT SHP$:
        GOTO 440
380  IF L$ = "A" THEN
        PRINT "ALONGSIDE " & SHP$:
        GOTO 440
390  IF L$ = "L" THEN
        PRINT "LEAVING " & SHP$:
        GOTO 440
400  IF L$ = "P" THEN
        PRINT "PASSING " & SHP$:
        GOSUB 490:
        GOTO 440
410  PRINT L$:
420  PRINT SHIP$(I),SHP$:
430  STOP
440  NEXT
450  IF A$ = "Y" THEN
        PRINT D$;"PR#0" :
        HOME
460  IF A$ < > "Y" THEN
        SPEED= 255
470  POKE 34,0
480  PRINT D$;"RUN MENU,D1"
490  IF C9 < > 0 THEN

```

```
        RETURN
500  IF TIME$(1) < > PTIME$(K) THEN 550
510  IF SHP$ < > PNAME$(K) THEN 550
520  PRINT * PPOSE(K)
530  K = K + 1
540  RETURN
550  PRINT "WHAT SLOT IS THE PRINTER IN?":!
560  GET P$:
570  PRINT P$:
580  IF P$ > "3" OR P$ < "1" THEN 550
590  A$ = "Y":!
600  SPEED= 255:!
610  PRINT :!
620  PRINT :!
630  PRINT :!
640  PRINT D$;"PRM";P$:
650  FOR J = 1 TO PASSES
660    PRINT PTIME$(J),PNAME$(J),PPOSE(J)
670  NEXT
680  PRINT "ERROR IN FILE":!
690  C9 = 1:!
700  RETURN
710  PRINT "NOT ENOUGH DATA , ONLY ";NTIMES;" POINTS":!
720  GET A$:
730  PRINT :!
740  PRINT D$;"RUN MENU.D1"
```

**Program:** UPDATE SHIP CONTAMINATION

**Program Objective:** To allow manual changes to the doses contained in the SHIP CONTAMINATION file to account for special circumstances.

**Description:** This program reads in "ship" SELF file, displays values on screen, allows the input of new values for any day, and outputs a revised file.

This program is not intended for use when the path of a ship has been changed - SHIP CONTAMINATION should be re-executed in that case. This program only allows the modification of specific values, as might be appropriate when sailing through a radioactive oil slick.

**Input:** Existing file "ship" SELF

**Output:** Updated file "ship" SELF

Table 4-12 Update Ship Contamination

```

10  D$ = CHR$(4)
20  HOME !
30  VTAB 8
30  DIM SELF(100)
40  INPUT "NAME OF SHIP IS ? ";X$
50  Z$ = X$ + " SELF"
60  PRINT D$;"OPEN ";Z$;D2
70  PRINT D$;"READ ";Z$
80  INPUT EDAY
90  INPUT NDAY
100 FOR I = 0 TO NDAY
110   INPUT SELF(I)
120   NEXT I
125 INPUT ITEN
130 PRINT D$;"CLOSE ";Z$
140 I1 = 0
140 I2 = I1 + 19
150 IF I2 > NDAY THEN
150   I2 = NDAY
160 IF I1 > NDAY THEN
160   HOME !
160   VTAB 10
160   GOTO 300
170 HOME
180 PRINT "DAY","SHIP-CONTAMINATION"
190 FOR I = I1 TO I2
200   PRINT I,SELF(I)
210   NEXT I
220 PRINT "ARE THESE OK?";A$
230 GET A$1
240 PRINT A$1
240 IF A$ = "Y" THEN
240   I1 = I2 + 1
240   I2 = I1 + 19
240   GOTO 150
250 IF A$ < > "N" THEN 170
260 INPUT "WHICH DAY NEEDS CHANGING?";K
270 INPUT "NEW VALUE = ";SELF(K)
280 GOTO 150
290 STOP
300 PRINT
310 INPUT "DO YOU WANT TO SAVE THESE CHANGES IN A NEW FILE?";AN$
```

```
320  IF AN$ < > "Y" THEN 430
330  PRINT D$;"OPEN " & Z$;,D2"
340  PRINT D$;"DELETE" & Z$
350  PRINT D$;"OPEN " & Z$
360  PRINT D$;"WRITE " & Z$
370  PRINT BDAY
380  PRINT NDAY
390  FOR I = 0 TO NDAY
400    PRINT SELF(I)
410    NEXT I
415  PRINT ITEN
420  PRINT D$;"CLOSE " & Z$
430  PRINT D$;"PR#0"
440  PRINT D$;"RUN MENU,D1"
```

## Section 5

### USS RECLAIMER OPERATIONS

To demonstrate the application of the dose reconstruction methodology, a detailed examination is made of the operations of the USS RECLAIMER (ARS-42).

#### 5.1 USS RECLAIMER Dose Reconstruction

As a salvage ship and the flagship of the Director of Ship Material (DSM), the RECLAIMER participated in nearly all radiologically significant operations, and her movements are well-documented. After each detonation, she followed the PGM/LCPL radiological monitors into the lagoon; onboard, the DSM made the first inspections of the target array and supervised the conduct of salvage operations. Data sources on ship operations include deck logs, salvage ship summaries (Reference 22), operation summaries (Reference 21), and reports of the Director of Ship Material activities (Reference 32). Additionally, operational data are obtained from original message traffic and Director of Ship Material target ship inspection reports.

An Information Summary for the RECLAIMER is contained in Table 5-1, and a Path Report in Table 5-2. The information recorded in the Path Report includes time, location, and ship activity (such as passing close to or moored alongside a target ship). The time is given as a six-digit date-time group, the first two digits of which is the day, with 1 July 1946 as day 01 and numbered consecutively thereafter (e.g., 1 August 1946 = day 32). The remaining four digits is the military time. The date-time group of each change of status of the RECLAIMER is recorded through 39 days after Shot BAKER, after which she departed Bikini Lagoon for Kwajalein. The location is given using a grid coordinate system, described in Section 4.1, which is based on Navy Hydrographic Office Misc. Chart Number 11854. Portions of this chart are reproduced in Figures B-1, 2, 3, and 4 of Appendix B. The results of the analysis of the RECLAIMER are contained in Table 5-3, the Radiation Report. This report is a day-by-day compilation of the reconstructed film badge doses from the various radiation sources that this ship encountered while in Bikini Lagoon. Daily and cumulative totals are also included until departure from Bikini. A detailed explanation of each source is found in Section 2 of this volume.

Table 5-1  
Support Ship Information Summary

SHIP: USS RECLAIMER (ARS-42)

CREW SIZE: 73

GROUP: SALVAGE

MISSION: RECLAIMER arrived at Bikini on June 1, 1946 and began to prepare for the operation. As a member of the Salvage Unit, RECLAIMER's duties included salvaging the damaged target vessels after the tests, performing emergency repairs, and fighting fires. In addition, the Director of Ship Material (DSM) was embarked aboard the RECLAIMER from where he coordinated all salvage operations. The DSM, in RECLAIMER, made the first inspection of the target array, operating on numerous occasions between the Red and Blue lines.

| SHOT DATA: | <u>TEST</u> | <u>DATE (TIME)</u> | <u>YIELD</u> | <u>TYPE DETONATION</u>        |
|------------|-------------|--------------------|--------------|-------------------------------|
|            | ABLE        | 1 July 46 (0900)   | 23 KT        | Air Burst (+520 feet)         |
|            | BAKER       | 25 July 46 (0835)  | 23 KT        | Shallow Underwater (-90 feet) |

PATH REPORT: This report contains the geographic locations of CTJF-1 support vessels within Bikini lagoon. The time is in Day-Hour-Minutes and begins 1 July 1946. All days are July (e.g., 1 Aug = 32 July, etc.). Place is the grid square within Bikini lagoon from Hydrographic Office Misc. Chart number 11854, portions of which are reproduced in Figures B-1, 2, 3, 4.

RADIATION REPORT: This report is a day-by-day compilation of the reconstructed film badge dose for this unit from the various sources which it encountered while at Bikini lagoon. A daily total and cumulative total are also included up to departure from Bikini. A detailed explanation of each source contribution is contained in the basic report, Section 2.

Total calculated dose received while at Bikini: 1.679 REM

Date unit departed Bikini: September 1, 1946 (BAKER + 38)

Ship contamination factor when departing Bikini: 4  
(this value is for use with the nomograph in Figure B-5)

Table 5-2 RECLAIMER Path Report

## PATH REPORT FOR THE USS RECLAIMER

| TIME   | PLACE | REMARKS                                                   |
|--------|-------|-----------------------------------------------------------|
| 010900 | 2591M | OBSERVED SHOT ABLE FROM APPROXIMATELY 27 MILES            |
| 011217 | 2592M | ENTERED BIKINI LAGOON                                     |
| 011300 | 2592M | PROCEEDING TO VICINITY OF USS SARATOGA                    |
| 011325 | 2399A | PASSING SARATOGA O                                        |
| 011524 | 2399A | LEAVING USS SARATOGA                                      |
| 011525 | 2200U | PASSING PENNSYLVANIA O                                    |
| 011600 | 2200U | LEAVING USS PENNSYLVANIA                                  |
| 011601 | 2301U | PASSING NEW YORK O                                        |
| 011625 | 2301U | LEAVING USS NEW YORK                                      |
| 011733 | 2201P | PASSING NEVADA O                                          |
| 011742 | 2201P | LEAVING USS NEVADA                                        |
| 011759 | 2001R | NEAR USS DAWSON                                           |
| 011812 | 1800W | NEAR USS COURTLAND                                        |
| 011820 | 2002V | NEAR PRINZ EUGEN                                          |
| 011828 | 2000J | MANEUVERING AS BEFORE                                     |
| 011839 | 2400J | ANCHORED IN VICINITY OF BERTH 190                         |
| 020800 | 2400J | UNDERWAY                                                  |
| 021131 | 2201P | PASSING NEVADA O                                          |
| 021135 | 2201P | SECURED FROM FIGHTING FIRE ON USS NEVADA                  |
| 021305 | 2102S | PASSING LAMSON O                                          |
| 021620 | 2101S | NEAR SKATE                                                |
| 021733 | 2101X | PASSING INDEPENDENCE O                                    |
| 021757 | 2101X | PROCEEDING AWAY FROM USS INDEPENDENCE                     |
| 021848 | 2404C | ANCHORED IN BERTH #42                                     |
| 030757 | 2404C | UNDERWAY                                                  |
| 031000 | 2100G | PASSING ARDC-13 O                                         |
| 031030 | 2100G | PROCEEDING TO USS NEVADA                                  |
| 031041 | 2201P | ALONGSIDE NEVADA                                          |
| 031210 | 2201P | LEAVING NEVADA                                            |
| 031220 | 2101E | ALONGSIDE ARKANSAS                                        |
| 031310 | 2101E | LEAVING ARKANSAS                                          |
| 031435 | 2795K | IN SALVAGE UNIT ANCHORAGE AREA                            |
| 031500 | 21010 | ALONGSIDE YO-160                                          |
| 031505 | 21010 | LEAVING YO-160                                            |
| 031530 | 2001I | ALONGSIDE CRITTENDEN                                      |
| 031556 | 2001I | LEAVING CRITTENDEN                                        |
| 031645 | 2795K | ANCHORED IN BERTH "BAKER"                                 |
| 031700 | 2795K | PASSING SUMMARY 12                                        |
| 042400 | 2795K | ANCHORED IN BERTH "BAKER" AS BEFORE                       |
| 250835 | 2591M | OBSERVED SHOT BAKER FROM A DISTANCE IN EXCESS OF 14 MILES |
| 251100 | 2592M | ENTERED BIKINI LAGOON                                     |
| 251250 | 2493M | APPROACHING TARGET ARRAY                                  |
| 251330 | 2297M | ESTIMATED POSITION                                        |
| 251405 | 2299A | ESTIMATED POINT OF CROSSING RED LINE                      |
| 251530 | 2001N | ESTIMATED POSITION                                        |

251545 2000J ESTIMATED POSITION  
251555 2000X ESTIMATED POSITION  
251605 2100L ESTIMATED POSITION  
251737 2595M ANCHORED IN BERTH #368  
251900 2595M PASSING PARCHE 2  
260001 2595M ANCHORED AS BEFORE  
261425 2595M UNDERWAY  
261450 2200G PASSING GASCONADE 15  
261500 2201N ALONGSIDE HUGHES  
261518 2201N LEAVING HUGHES  
261640 2793M ALONGSIDE HUGHES  
261648 2793M LEAVING HUGHES  
261740 2793M ALONGSIDE HUGHES  
261749 2793M LEAVING HUGHES  
261805 2101M IN VICINITY OF USS FALCON  
261815 2101M LEAVING VICINITY OF USS FALCON  
261822 2100I SUB AREA  
261854 2695M ANCHORED IN BERTH #370  
270815 2695M UNDERWAY  
270844 2201E PASSING SALT LAKE CITY 3  
270855 2101I PASSING FALCON 6  
270935 2200Q PASSING PENNSYLVANIA 9  
270940 2200X PASSING BRACKEN 9  
270946 2200S PASSING CATRON 6  
271025 2595M ANCHORED NEAR BERTH #368  
271200 2595M UNDERWAY  
271210 2793M PASSING HUGHES 0  
271220 2693M ANCHORED NEAR ENYU ISLAND - "A" 128.5 DEG "B" 27 DEG  
271540 2693M UNDERWAY  
271608 2200Q PASSING PENNSYLVANIA 12  
271610 2200G PASSING GASCONADE 3  
271616 2201Y PASSING NEW YORK 4  
271630 2202V PASSING NAGATO 4  
271631 2202K PASSING NEVADA 6  
271637 2100I SUB AREA  
271655 2000D PASSING INDEPENDENCE 4  
271733 2695M ANCHORED NEAR BERTH #370  
271900 2695M PASSING LST-133 3  
271901 2695M PASSING PARCHE 0  
271902 2695M PASSING RALPH TALBOT 1  
271903 2695M PASSING MUSTIN 3  
280821 2695M UNDERWAY FROM BERTH #370  
280835 2100U NEAR SUBMARINES IN TARGET ARRAY  
280845 2199F NEAR USS TUNA  
280852 2200P PASSING PENNSYLVANIA 4  
280900 2200H PASSING BRISCOE 4  
280903 2201S PASSING NEW YORK 4  
280923 2101Q PASSING PENSACOLA 4  
280937 2201I PASSING LST-133 0  
280940 2301A PASSING SALT LAKE CITY 4

280945 22020 PASSING NAGATO 4  
280950 2202K PASSING NEVADA 4  
281000 19030 NEAR LCT-1114  
281009 2105I NEAR LST-545  
281017 2104E PASSING LST-220 4  
281030 2202B PASSING LST-52 9  
281050 2100C PROCEEDING TO SUB AREA  
281219 2201Y PASSING NEW YORK 5  
281230 2200M MANEUVERING AS BEFORE  
281245 2695M ANCHORED IN BERTH #370  
281543 2695M UNDERWAY  
281555 2795M STANDING BY BEACHING OF USS DENTUDA IN BEACHING AREA O  
FF ENYU ISLAND  
281630 2200M PROCEEDING TOWARD USS BRISCOE  
281637 2200H PASSING BRISCOE 4  
281652 2202Q PASSING NAGATO 4  
281655 2002M PASSING NEVADA 4  
281810 2100C IN SUBMARINE AREA  
281825 20945 ANCHORED IN BERTH #380  
281900 20945 PASSING LST-661 2  
281901 20945 PASSING YDG-83 1  
281902 2095P PASSING CONYNGHAM 1  
281903 20945 PASSING MUGFORD 1  
281904 20945 PASSING RALPH TALBOT 3  
281905 20945 PASSING MAYRANT 3  
281906 20945 PASSING TRIPPE 1  
281907 20945 PASSING RHIND 2  
281908 20945 PASSING STACK 5  
281909 20945 PASSING WILSON 3  
281910 20945 PASSING MUSTIN 1  
281911 20945 PASSING WAINWRIGHT 1  
290855 20945 UNDERWAY FROM BERTH #380  
290920 2200Q PASSING PENNSYLVANIA 4  
290935 2201U PASSING SARATOGA 4  
290939 2200G PASSING GASCONADE 9  
290943 2200S PASSING CATRON 4  
290952 2200H PASSING BRISCOE 9  
291009 2201E PASSING SALT LAKE CITY 6  
291015 2202V PASSING NAGATO 6  
291020 2202K PASSING NEVADA 4  
291032 2101G PASSING BRULE 9  
291039 2101Q PASSING PENSACOLA 9  
291058 2201Y ALONGSIDE NEW YORK1  
291105 2201Y LEAVING NEW YORK1  
291120 2298S ANCHORED IN BERTH #282  
291429 2298S UNDERWAY  
291504 2793M OFF ENYU ISLAND  
291605 2793M OFF ENYU ISLAND  
291634 2201Y ALONGSIDE NEW YORK1  
291639 2201Y LEAVING NEW YORK1

291648 2201E PASSING SALT LAKE CITY 4  
291651 2202V PASSING NAGATO 6  
291653 2202K PASSING NEVADA 12  
291715 2101Q PASSING PENSACOLA 9  
291740 2094S ANCHORED IN VICINITY OF BERTH #380  
291900 2094S PASSING YOG-83 8  
301040 2094S UNDERWAY FROM BERTH #380  
301100 2201M IN TARGET ARRAY  
301140 2201M LEAVING TARGET ARRAY  
301157 2694M ANCHORED OFF ENYU ISLAND - "A" 151 DEG "B" 21 DEG  
301200 2694M PASSING MAYRANT 4  
301201 2694M PASSING TRIPPE 3  
301202 2694M PASSING RHIND 3  
301204 2694M PASSING WILSON 3  
301430 2694M UNDERWAY FROM ANCHORAGE  
301535 2201Y ALONGSIDE NEW YORK1  
301545 2201Y LEAVING NEW YORK1  
301600 2101Q ALONGSIDE PENSACOLA  
301605 2101Q LEAVING PENSACOLA  
301718 2101Q ALONGSIDE PENSACOLA  
301725 2101Q LEAVING PENSACOLA  
301825 2694M ANCHORED OFF ENYU ISLAND - "A" 166 DEG "B" 18 DEG  
310802 2694M UNDERWAY FROM ANCHORAGE NEAR BERTH #370  
310830 2201M INSPECTING TARGET ARRAY  
311100 2201M UNDERWAY TO ANCHORAGE  
311110 2402W ANCHORED IN BERTH #145  
311345 2402W UNDERWAY  
311400 2201M UNDERWAY AS BEFORE  
311425 2201E PASSING SALT LAKE CITY 4  
311505 1802D ALONGSIDE CONYNGHAM1  
311539 1802D LEAVING CONYNGHAM1  
311551 1902C ALONGSIDE WAINWRIGHT1  
311615 1902C LEAVING WAINWRIGHT1  
311621 1902E ALONGSIDE MUGFORD1  
311635 1902E LEAVING MUGFORD1  
311705 2402W ANCHORED IN VICINITY OF BERTH #145  
330835 2402W UNDERWAY FROM VICINITY OF BERTH #145  
331002 2101Q ALONGSIDE PENSACOLA  
331020 2101Q LEAVING PENSACOLA  
331030 2301A LAYING TO IN VICINITY OF USS SALT LAKE CITY IN BERTH #188  
331414 2301A PROCEEDING TO USS PENSACOLA  
331415 2101Q ALONGSIDE PENSACOLA  
331528 2101Q LEAVING PENSACOLA  
331537 2100B ANCHORED IN VICINITY OF BERTH #219  
331745 2100B UNDERWAY  
331805 2101Q ALONGSIDE PENSACOLA  
331810 2101Q LEAVING PENSACOLA  
331830 2195P ANCHORED IN VICINITY OF BERTH #356 - "D" 14 DEG "C" 3  
"E" 9 DEG "B" 71.5 DEG

341500 2195P UNDERWAY FROM ANCHORAGE  
341623 2000E ANCHORED IN BERTH #219  
341829 2000E UNDERWAY PROCEEDING TO ANCHORAGE IN VICINITY OF USS FA  
LL RIVER.  
341850 2194B ANCHORED IN BERTH #357  
352400 2194B ANCHORED AS BEFORE  
361425 21010 ALONGSIDE PENSACOLA  
361518 21010 LEAVING PENSACOLA  
370932 21010 ALONGSIDE PENSACOLA  
370937 21010 LEAVING PENSACOLA  
371335 21010 ALONGSIDE PENSACOLA  
371410 21010 LEAVING PENSACOLA  
381415 21010 ALONGSIDE PENSACOLA  
381548 21010 LEAVING PENSACOLA  
391509 21010 ALONGSIDE PENSACOLA  
391610 21010 LEAVING PENSACOLA  
400856 21025 ALONGSIDE MAYRANT2  
400946 21025 LEAVING MAYRANT2  
411025 21010 ALONGSIDE PENSACOLA  
411126 21010 LEAVING PENSACOLA  
441630 21010 ALONGSIDE PENSACOLA  
441638 21010 LEAVING PENSACOLA  
470800 2201Y ALONGSIDE NEW YORK2  
471500 2201Y LEAVING NEW YORK2  
480810 2201P ALONGSIDE NEVADA2  
481600 2201P LEAVING NEVADA2  
500835 2200Q ALONGSIDE PENNSYLVANIA  
501622 2200Q LEAVING PENNSYLVANIA  
510851 2200Q ALONGSIDE PENNSYLVANIA  
511745 2200Q LEAVING PENNSYLVANIA  
520820 2201Y ALONGSIDE NEW YORK2  
521238 2201Y LEAVING NEW YORK2  
521345 2200Q ALONGSIDE PENNSYLVANIA  
521412 2200Q LEAVING PENNSYLVANIA  
531435 2102S ALONGSIDE MAYRANT2  
531505 2102S LEAVING MAYRANT2  
571042 2591M ALONGSIDE CRITTENDEN  
571335 2591M LEAVING CRITTENDEN  
581247 2101M ALONGSIDE FALLON  
581415 2101M LEAVING FALLON  
581505 2101M ALONGSIDE FALLON  
581635 2101M LEAVING FALLON  
610723 2101M ALONGSIDE FALLON  
611210 2101M LEAVING FALLON  
631150 2101M ALONGSIDE FALLON  
631245 2101M LEAVING FALLON  
631500 2592M DEPARTED BIKINI LAGOON ON 1 SEPTEMBER 1946 - ENROUTE K  
WAJALEIN

Table 5-3 RECLAIMER Radiation Report

## USS RECLAIMER CALCULATED FILM BADGE DOSE (IN MREM)

| DATE          | TIME | LAGOON<br>WATER | TARGET<br>SHIPS | SHIP<br>CONTAMINATION | DAILY<br>TOTAL | CUM<br>TOTAL |
|---------------|------|-----------------|-----------------|-----------------------|----------------|--------------|
| JUL 1         | A+0  | 15              | 0               |                       | 15             | 15           |
| JUL 2         | A+1  | 6               | 0               |                       | 6              | 21           |
| JUL 3         | A+2  | 0               | 8               |                       | 8              | 29           |
| JUL 4         | A+3  | 0               | 0               |                       | 0              | 29           |
| JUL 5 THRU 24 |      | 0               | 0               |                       |                | 29           |
| JUL 25        | B+0  | 29              | 1               | 45                    | 75             | 104          |
| JUL 26        | B+1  | 9               | 127             | 42                    | 178            | 282          |
| JUL 27        | B+2  | 11              | 51              | 60                    | 122            | 404          |
| JUL 28        | B+3  | 18              | 57              | 59                    | 134            | 538          |
| JUL 29        | B+4  | 5               | 84              | 40                    | 129            | 667          |
| JUL 30        | B+5  | 3               | 32              | 31                    | 66             | 733          |
| JUL 31        | B+6  | 11              | 50              | 26                    | 87             | 820          |
| AUG 1         | B+7  | 16              | 0               | 21                    | 37             | 857          |
| AUG 2         | B+8  | 14              | 81              | 18                    | 113            | 970          |
| AUG 3         | B+9  | 1               | 0               | 16                    | 17             | 987          |
| AUG 4         | B+10 | 0               | 0               | 14                    | 14             | 1001         |
| AUG 5         | B+11 | 1               | 27              | 12                    | 40             | 1041         |
| AUG 6         | B+12 | 3               | 18              | 11                    | 32             | 1073         |
| AUG 7         | B+13 | 4               | 39              | 10                    | 53             | 1126         |
| AUG 8         | B+14 | 10              | 23              | 9                     | 42             | 1168         |
| AUG 9         | B+15 | 9               | 15              | 8                     | 32             | 1200         |
| AUG 10        | B+16 | 8               | 20              | 8                     | 36             | 1236         |
| AUG 11        | B+17 | 7               | 0               | 7                     | 14             | 1250         |
| AUG 12        | B+18 | 6               | 0               | 7                     | 13             | 1263         |
| AUG 13        | B+19 | 6               | 1               | 6                     | 13             | 1276         |
| AUG 14        | B+20 | 5               | 0               | 6                     | 11             | 1287         |
| AUG 15        | B+21 | 5               | 0               | 5                     | 10             | 1297         |
| AUG 16        | B+22 | 4               | 8               | 5                     | 17             | 1314         |
| AUG 17        | B+23 | 4               | 30              | 5                     | 39             | 1353         |
| AUG 18        | B+24 | 3               | 0               | 4                     | 7              | 1360         |
| AUG 19        | B+25 | 3               | 62              | 4                     | 69             | 1429         |
| AUG 20        | B+26 | 3               | 67              | 4                     | 74             | 1503         |
| AUG 21        | B+27 | 3               | 6               | 4                     | 13             | 1516         |
| AUG 22        | B+28 | 2               | 4               | 4                     | 10             | 1526         |
| AUG 23        | B+29 | 2               | 0               | 4                     | 6              | 1532         |
| AUG 24        | B+30 | 0               | 0               | 3                     | 3              | 1535         |
| AUG 25        | B+31 | 0               | 0               | 3                     | 3              | 1538         |
| AUG 26        | B+32 | 0               | 10              | 3                     | 13             | 1551         |
| AUG 27        | B+33 | 0               | 39              | 3                     | 42             | 1593         |
| AUG 28        | B+34 | 1               | 0               | 3                     | 4              | 1597         |
| AUG 29        | B+35 | 1               | 0               | 3                     | 4              | 1601         |
| AUG 30        | B+36 | 1               | 58              | 3                     | 62             | 1663         |
| AUG 31        | B+37 | 1               | 0               | 3                     | 4              | 1667         |
| SEP 1         | B+38 | 0               | 10              | 2                     | 12             | 1679         |

Although the RECLAIMER operated on numerous occasions between the blue and red lines, the water activation model indicates that she operated within the red line (i.e., greater than 1 R/24 hr) only once. It appears that constant attention was paid to total daily accumulated dose, as the model predicts a daily dose of approximately 100 mrem for the first few days after Shot BAKER. The standard at Bikini was 100 mrem daily dose.

The Information Summary, Path Report, and Radiation Report for each support ship of CJTF-1 are presented in Appendix B: Support Ships, and constitute the final results for each vessel.

## 5.2 USS RECLAIMER Boarding Parties

The term "boarding party" is found throughout the deck logs of the RECLAIMER without differentiation as to type, as defined in Section 3.3. The relevant documented boardings and calculated doses of the various boarding parties from the RECLAIMER are presented in Table 5-4. While several instances of target vessel boarding are found in RECLAIMER's deck log, only those for which dosimetry is available are shown. The total boarding time in each case is assumed to have been topside in the absence of additional information. Intensities are taken from the target ship intensity graphs of Appendix A. The below-deck (interior) intensity is used only when appropriate, as on B+8 when personnel were installing a pump on the USS PENSACOLA for dewatering purposes. The times spent onboard the target vessels are not well documented beyond B+25; hence, no entries are included after that date.

To calculate the dose for a member of a boarding party, the daily dose appearing in the Radiation Report (which includes a dose contribution for alongside the target ship) is supplemented by the additional dose accrued during boarding operations. This is accomplished by calculating the dose accrued while aboard the target vessel and subtracting the dose that personnel remaining aboard the alongside support ship accrued during the same time period. Both the daily (24-hour) dose and the supplemental dose from boarding operations are shown in the table.

Table 5-4  
Boarding Team Dose Reconstruction, USS RECLAIMER

| <u>Date</u>      | <u>Ship Boarded<br/>or Alongside</u> |                   |               |                              | <u>Calculated Dose (mrem)</u>       |                                                         |
|------------------|--------------------------------------|-------------------|---------------|------------------------------|-------------------------------------|---------------------------------------------------------|
|                  |                                      | <u>Time (min)</u> | <u>Aboard</u> | <u>Intensity<br/>(R/day)</u> | <u>Average<br/>Crew<br/>(daily)</u> | <u>Boarding Team<br/>(while aboard<br/>target ship)</u> |
| 31 July<br>(B+6) | CONYNGHAM                            | 34                | 34            | 0.5                          | 116                                 | 8                                                       |
|                  | WAINWRIGHT                           | 24                | 18            | 1.5                          |                                     | 17                                                      |
|                  | MUGFORD                              | 14                | 9             | 5.9                          |                                     | <u>26</u><br><u>51</u>                                  |
| 2 Aug<br>(B+8)   | PENSACOLA                            | 104               | Topside       | 20                           | 12.4                                | 120                                                     |
|                  |                                      |                   | Interior      | 69                           | 0.9                                 | <u>29</u><br><u>149</u>                                 |
| 5 Aug<br>(B+11)  | PENSACOLA                            | 53                | 53            | 8.2                          | 65                                  | 210                                                     |
| 7 Aug<br>(B+13)  | PENSACOLA                            | 93                | 93            | 6.6                          | 70                                  | 297                                                     |
| 8 Aug<br>(B+14)  | PENSACOLA                            | 61                | 60            | 6.0                          | 51                                  | 174                                                     |
| 13 Aug<br>(B+19) | PENSACOLA                            | 8                 | 8             | 4.0                          | 20                                  | 16                                                      |
| 17 Aug<br>(B+23) | PENSACOLA                            | -                 | 45*           | 3.1                          | 45                                  | 68                                                      |
| 19 Aug<br>(B+25) | PENSACOLA                            | -                 | 92*           | 2.8                          | 75                                  | 125                                                     |

-----  
\*4 five-minute boat trips subtracted.

### 5.3 Comparison With Film Badge Data

Analysis of the dosimetry and personnel rosters showed that most film badges were issued to members of boarding parties and the remainder to RECLAIMER crew members. To compare recorded dosimetry with a calculated dose, it is necessary to identify boarding events and recorded times with corresponding dosimetry. There are numerous records of target ship boardings in the deck log of the RECLAIMER, but most are unusable due to undetermined periods, unknown participants, and no corresponding dosimetry. Likewise, there is dosimetry for RECLAIMER, but some for periods in which RECLAIMER remained at anchor and did not participate in target ship boardings. In these cases, the film badge likely reflects an unrecorded activity for which no reconstruction or calculation is possible. Table 5-4 lists those target ship boardings reported in the deck logs of the RECLAIMER that are also supported by relevant dosimetry. It is assumed that film badges were issued for daily use to members of the boarding teams, and that the badges were exposed for an average 8-hour work day by a combination of support ship (i.e., RECLAIMER) and target ship boarding time.

Using the above assumption, the film badge dose for boarding parties is determined by adding the dose accrued on the support ship for the remainder of the 8-hour badge period to the dose accrued during actual boarding operations shown in Table 5-4. The total dose is shown in Table 5-5, as is the dosimetry for the same assumed badge period. Calculated values agree reasonably well with the film badge averages, except for 13 and 19 August. On 13 August, there were two additional reported boarding parties that left the RECLAIMER for a total of 3½ hours to service pumps aboard the PENSACOLA and MAYRANT. However, because the RECLAIMER was not reported alongside either ship during that time and because no realistic estimate of the time spent aboard those ships can be made, they are not included in this comparison. Inclusion would increase the calculated dose. For 19 August, film badge readings may be low due to time spent below. However, the calculated dose reflects only topside exposure and is thus high-sided in this instance.

Table 5-5  
Comparison of RECLAIMER Calculated Doses with Dosimetry

| <u>Date</u> | <u>Number of Badges</u> | <u>Range (mrem)</u> | <u>Average (mrem)</u> | <u>Calculated Dose* (mrem)</u> |
|-------------|-------------------------|---------------------|-----------------------|--------------------------------|
| 31 July     | 5                       | 50-50               | 50                    | 85                             |
| 2 Aug       | 6                       | 50-380              | 187                   | 185                            |
| 5 Aug       | 1                       | --                  | 300                   | 229                            |
| 7 Aug       | 1                       | --                  | 370                   | 316                            |
| 8 Aug       | 3                       | 100-230             | 147                   | 187                            |
| 13 Aug      | 6                       | 60-210              | 95                    | 23**                           |
| 17 Aug      | 2                       | 60-60               | 60                    | 82                             |
| 19 Aug      | 3                       | 50-60               | 53                    | 145                            |

-----  
\*Includes appropriate target ship and support ship doses for the assumed 8-hour badge period.

\*\*Does not include all reported exposure (see text).

## Section 6

### UNCERTAINTY ANALYSIS

Two features of Operation CROSSROADS stand out in the dose reconstruction analysis: the radiation environment and ship operations were complex, and relevant data are not abundant. Therefore it is not unexpected that the uncertainties in calculated doses are rather large. In all calculations the quantity of interest is the film badge dose of an average sailor, defined as one who moved about a support ship subject to the constraint that he spent 1/3 time topside and 2/3 below decks (eating, sleeping, working or participating in other activities, but remaining outside the engine room) and who was exposed to the average dose of the appropriate location (topside, amidships, below decks) while on a target ship. Although some crewmembers probably spent more than eight hours per day topside, this constraint provides higher calculated doses for average crewmembers. Each dose contribution (ABLE water, ABLE target ship, BAKER water, BAKER target ship, and ship contamination) must be analyzed separately, and an uncertainty assigned to each. Since the environmental models developed in Section 2 are generally based on data sets of limited extent and accuracy, it is impractical to perform error analyses using standard techniques in all cases. Rather, best estimates of upper and lower bounds, expressed in terms of error factors, and a description of the methodology are provided. Wherever possible, these error factors are derived such that the bounds correspond approximately to 90-percent confidence limits. The upper confidence limit of a calculated dose is the product of that dose and the error factor; the lower confidence limit equals the dose divided by the error factor. It often occurs in the following analyses that the uncertainty in dose is not symmetrical, so that the error factors used to determine the upper and lower confidence limits are not equal.

#### 6.1 Uncertainty of Shot ABLE Water Doses

The uncertainty in the calculated water intensity for Shot ABLE is the major source of uncertainty in these doses. Except for the PGMs and LCPLs, the paths of support ships through the radioactive environment are known with a high degree of accuracy. Therefore, it is sufficient to concentrate on the water intensity, which is expressed in Section 2.1 as:

$$I(r,t) = t^{-3/2} \exp \left[ -A \left( \frac{r^2}{t} \right) - \lambda t + B \right].$$

The value of  $B$  (0.503) is determined from the observation that the blue line vanished 25 hours after detonation. This is considered the most accurate data point in Table 2-1. The remaining data in this table are then used to determine a mean value of the constant  $A$  ( $4.56 \times 10^{-6}$ ). This is accomplished by calculating a value of  $A$  for each of the data points in this table (excluding the data corresponding to zero radius, for which a value of  $A$  cannot be determined) and deriving an average; this also provides a distribution in the quantity  $A$  on which to base an error analysis. From this distribution, which appears log-normal, 90-percent upper and lower bounds on  $A$  are derived. Since the intensity is inversely related to the magnitude of  $A$ , these values are used in the computerized methodology to determine lower and upper dose estimates, respectively, of the ABLE water doses for representative ships. The upper limit error factor ( $f_u$ ) derived from these dose estimates is approximately 2.4; the lower limit error factor ( $f_l$ ) approximately 3.1.

## 6.2 Uncertainty of Shot ABLE Target Ship Doses

The largest uncertainty in doses received from the activated target ships at Shot ABLE is due to uncertainty in target ship intensities. Times of boarding and stay times on target ships are relatively well known. Therefore, it is sufficient to examine the modeling of target ship intensity, which is developed in Section 2.2. The target ship intensity at time  $t$  is expressed as:

$$I(t) = CM f(t) R^{-2} e^{-R/\lambda}.$$

By fitting to the data of Table 2-3(a), the coefficient  $C$  is determined to be  $1.1 \times 10^7$   $\text{yd}^2\text{-R/day}$ . This value is used in ABLE target ship dose estimates. The distribution of the values of  $C$  derived from the data in Table 2-3(a) allows an estimation of 90-percent upper and lower limits on this quantity:

$$C \text{ (upper limit)} \approx 2.5 \times 10^7$$

$$C \text{ (lower limit)} \approx 3.1 \times 10^6.$$

Therefore upper and lower limit error factors may be calculated:

$$f_u = \frac{2.5 \times 10^7}{1.1 \times 10^7} = 2.3$$

$$f_l = \frac{1.1 \times 10^7}{3.1 \times 10^6} = 3.5.$$

### 6.3 Uncertainty of Shot BAKER Water Doses

As with Shot ABLE, the significant uncertainty for BAKER water doses is that of the water intensity. For most vessels (all except PGMs and LCPLs), the uncertainty in ship path is relatively small. As discussed in Section 2.3, the modeling of BAKER water intensities for BAKER Day through B+5 is accomplished primarily through analyses of reported red and blue line coordinates (e.g., Figure 2-3) and the water intensity contours of Reference 19 (Figure 2-5). The calibration of these contours (which were reported in arbitrary units) is accomplished so as to achieve maximum consistency with the red/blue line data for each day of interest. Upper and lower estimates of water intensities during this period are made by reviewing all relevant data, and determining maximum and minimum credible calibrations of the contours. The data base of the BAKER water intensity model is modified to incorporate these limiting calibration factors. The modeling of the water intensities after B+5 is based on a reported average intensity of 0.02 to 0.03 R per day on 15 August 1946 (a value of 0.025 R/day is used in the model), and on constraints imposed by the maximum initial inventory of radioactivity in the lagoon and subsequent decay and flushing rates. The size and location of the radioactive region, subject to these constraints, are chosen to maximize potential exposure to this environment. An upper estimate of the post-B+5 water environment is obtained by using the upper limit of the reported 15 August intensity range (0.03 R/day); the lower estimate is achieved by setting the water intensities to zero throughout the lagoon on B+8 (200 hours after detonation), as suggested by References 4 and 24.

Upper and lower limit BAKER water doses, calculated for nine representative ships, imply upper ( $f_u$ ) and lower ( $f_l$ ) error factors of approximately 1.7 and 5.8,

respectively. The large asymmetry in these factors results from the conservative assumptions incorporated into the model.

#### 6.4 Uncertainty of Shot BAKER Target Ship Doses

The major uncertainty is the average target ship intensity, which includes uncertainties in the intensity measurements themselves, the representativeness of these readings, and the techniques (see Section 2.4) used to interpolate/extrapolate from these measurements. Although this uncertainty is dependent on the amount of data available for a particular ship, it is estimated that for an average ship, and average times of boarding, the ship intensities can generally be predicted to within a factor of 1.5. Boarding times and stay times on target ships are usually known to a high degree of accuracy. Therefore the upper and lower error factors for this dose contribution are estimated to be 1.5.

#### 6.5 Uncertainty of Ship Contamination Doses

The methodology for calculating doses accrued during lagoon operations due to the radioactive contamination of support ships is developed by first reconstructing exterior hull intensities at the time of lagoon departure for each of twelve ships having documented post-Bikini hull intensity readings. These reconstructed intensities are then used to fix parameters in a mathematical model which allows hull intensities to be calculated for all support ships at any time during lagoon operations. Geometric models of the support ships and sources of radiation (hull and pipe contamination) are then used to calculate the radiation intensity distribution inside the support ships, and hence the doses to shipboard personnel. The methodology is described in detail in Section 2.5.

The uncertainty associated with the ship contamination doses can be estimated by considering possible sources of error in each step outlined above. These errors, quantified in terms of 90 percent error factors, are presented in Table 6-1. The error factors associated with the variations in the values of the parameter S are derived from the distributions of S given in Table 2-6; the error factor given for "other" ships

Table 6-1  
Sources of Uncertainty for Ship Contamination Doses

| <u>Uncertainty</u>                                             | <u>Error Factor<br/>(90%)</u>                            | <u>Source</u>                                                                                                                      |
|----------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| Post-Bikini hull intensity readings                            | 1.2                                                      | Systematic errors in detectors and methods of measurement (random errors appear as variations in S).                               |
| Reconstruction of exterior hull intensity at lagoon departure  | 2.0                                                      | Systematic error in $t^{-1.3}$ hull decay factor, based on analysis of other reasonable decay rates. Error in steaming factor (%). |
| Modeling of exterior hull intensities during lagoon operations | 1.5                                                      | Systematic errors in model.                                                                                                        |
| Variations in S-values                                         | 1.7 for destroyers<br>2.1 for PGMs<br>2.0 for all others | Ship-to-ship variations in affinity for hull contamination. Random errors in post-Bikini hull readings.                            |
| Ship apportionment factors                                     | 1.5                                                      | Systematic errors in geometric modeling of radiation sources and ship interior. Errors in calculated intensity distribution.       |

(all ships except destroyers and PGMs) has been increased somewhat over that derived mathematically to reflect the additional uncertainty inherent in applying a single value of  $S$  (1570 mR-day<sup>0.3</sup>) to a wide variety of ship types. The error factors assigned to other sources of uncertainty are based on semi-quantitative analyses and experience with radiation detection and modeling techniques. The combined error factor  $f$  is calculated by the relation (Reference 31)

$$f = \exp \left\{ \left[ \sum_i (\ln f_i)^2 \right]^{1/2} \right\},$$

where  $f_i$  are the individual error factors. The following combined error factors are thus derived from the data in Table 6-1:

$$\begin{aligned} f &= 2.9 \text{ for destroyers} \\ &3.3 \text{ for PGMs} \\ &3.2 \text{ for all other ships.} \end{aligned}$$

An additional uncertainty not addressed above is the possibility that an individual spent a significant amount of time in an engine room in the vicinity of radioactive sources such as evaporators and condensers. From the observation made in Section 2.5 that the engine room intensity was probably no greater than 1.5 times the exterior hull gamma intensity, it is possible to estimate the incremental dose received due to engine room duty. If a person spent eight hours per day in the engine room, eight hours topside, and eight hours below decks but outside the engine room, the contamination dose accrued by this individual is increased by a factor  $d$ :

$$d = \frac{F_a + 1.5}{2F_a},$$

where  $F_a$  is the apportionment factor (Table 2-7) for the appropriate ship type. For example, if  $F_a = .50$ ,  $d = 2.0$  and the contamination dose should be doubled to account for this hypothesized engine room duty.

This uncertainty analysis does not include operational constraints such as the 100 mR/day dose limit. For many ships, the calculated upper limit daily doses due to ship contamination exceed the 100 mR/day criterion by such an amount that it is

extremely doubtful a ship contaminated to that degree would have been allowed to continue operations without decontamination of the ship or evacuation of personnel. Thus, while these upper limits are mathematically consistent, they may be operationally unrealistic and therefore in excess of the true 90-percent upper confidence limit for some ships.

## 6.6 Total Uncertainty

Summarized below are the upper and lower error factors for the various dose components.

| Dose Component: |                   |                         |                    |                          |                                                                    |
|-----------------|-------------------|-------------------------|--------------------|--------------------------|--------------------------------------------------------------------|
| Error Factor    | <u>ABLE water</u> | <u>ABLE target ship</u> | <u>BAKER water</u> | <u>BAKER target ship</u> | <u>Ship contamination</u>                                          |
| $f_u$ (upper)   | 2.4               | 2.3                     | 1.7                | 1.5                      | 2.9 for destroyers<br>3.3 for PGMs<br>3.2 for all other ship types |
| $f_l$ (lower)   | 3.1               | 3.5                     | 5.8                | 1.5                      | same                                                               |

The confidence limits for a total dose are dependent on the magnitude of dose received from each dose component. The calculated film badge dose for the USS RECLAIMER, Table 5-3, serves as an example of how the approximate 90-percent upper and lower bounds of total dose may be determined from the component error factors developed in this section. From the data in this table and the component error factors, the dose in mrem from each component may be expressed as a best estimate plus and minus uncertainties in dose:

|                  |                     |
|------------------|---------------------|
| ABLE water       | $21^{+29}_{-14}$    |
| ABLE target ship | $8^{+11}_{-6}$      |
| BAKER water      | $209^{+146}_{-173}$ |

|                   |                      |
|-------------------|----------------------|
| BAKER target ship | $920^{+460}_{-310}$  |
| Contamination     | $521^{+1146}_{-358}$ |

(Since the RECLAIMER is an ARS, an error factor of 3.2 is used for contamination.)

The best estimates are added to determine the best estimate of total dose, 1679 mrem. However, it is incorrect to add the individual upper (or lower) uncertainties to determine the composite 90-percent total dose upper (or lower) limit. It is approximately correct to combine uncertainties in a manner similar to that used when combining standard deviations for summed quantities, i.e., the square root of the sum of the squares. These uncertainties then combine as follows:

$$\text{For upper dose: } \left[ (29)^2 + (11)^2 + (146)^2 + (460)^2 + (1146)^2 \right]^{\frac{1}{2}} = 1244 \text{ mrem.}$$

$$\text{For lower dose: } \left[ (14)^2 + (6)^2 + (173)^2 + (310)^2 + (358)^2 \right]^{-\frac{1}{2}} = 504 \text{ mrem.}$$

The approximate 90-percent upper and lower bounds for the RECLAIMER total film badge dose are then:

$$\text{Upper bound: } 1679 + 1244 = 2923 \text{ mrem}$$

$$\text{Lower bound: } 1679 - 504 = 1175 \text{ mrem.}$$

The combined upper and lower uncertainties in dose may be calculated by this technique for each support ship, based on the dose components presented in Appendix B.

## Section 7

### CONCLUSIONS

A methodology is developed that allows calculation of external gamma doses accrued by personnel aboard target and support vessels operating in Bikini Lagoon during Operation CROSSROADS. The significant radiation sources (radioactive lagoon water, target ships, and support ship contamination) are identified, analyzed, and mathematically modeled. Doses to personnel are calculated by developing the path histories of support and target vessels, and numerically integrating the local radiation intensities along the ship paths, as determined by the radiation source models. Calculations are presented in detail for the USS RECLAIMER. Mean film badge doses calculated for personnel aboard the various support ships during operations within Bikini Lagoon are presented in Table 7-1. This compilation is a summary of more detailed information (Information Summary, Path Report, and Radiation Report for each support ship) appearing in Appendix B, Support Ships. Calculated mean film badge doses for the crews of the various target ships are presented in Table 7-2. These values represent doses accrued aboard the support ships on which the target ship crews were embarked during the operation, plus doses accrued aboard the target ships for those that were remanned. More detailed information on target ship crew doses is contained in Appendix A, Target Ships. Also included in this appendix are intensity curves for target ships, from which boarding team doses may be calculated.

This report also provides the means to determine additional doses to crews after each ship departed from Bikini, based upon departure date, debarkation date, and the level of hull contamination at the time of departure (calculated in the methodology). Thus, the total external dose from all contributing sources, excluding post-CROSSROADS operations at Kwajalein Atoll, can be determined, based upon the specific parameters associated with each ship and with the crew (or individual) debarkation date for a particular ship. See Appendix B.

Mean film badge doses are reconstructed for 93 percent of the 39,418 Naval participants at Operation CROSSROADS. Doses are not specifically reconstructed for staff and air units, but can be derived from the ships to which they were assigned. Only 7 percent of the doses exceed 0.5 rem and less than 2 percent exceed 1.0 rem. The maximum mean dose is calculated to be about 1.7 rem. A summary of calculated film badge doses is displayed graphically in Figure 7-1.

Table 7-1  
Film Badge Dose Summary For Support Ship Crews

| <u>Support Ship</u>           | <u>Crew Size</u> | <u>Total Film Badge Dose (mrem)</u> |
|-------------------------------|------------------|-------------------------------------|
| USS ACHOMAWI (ATF-148)        | 80               | 1245                                |
| USS AJAX (AR-6)               | 753              | 191                                 |
| USS ALBEMARLE (AV-5)          | 569              | 0                                   |
| USS ALLEN M. SUMNER (DD-692)  | 278              | 467                                 |
| APL-27                        | 23               | 131                                 |
| USS APPALACHIAN (AGC-1)       | 614              | 1                                   |
| USS APPLING (APA-58)          | 226              | 116                                 |
| USS ARD-29                    | 106              | 265                                 |
| USS ARTEMIS (AKA-21)          | 160              | 216                                 |
| USS ATA-124                   | 44               | 359                                 |
| USS ATA-180                   | 45               | 547                                 |
| USS ATA-185                   | 43               | 593                                 |
| USS ATA-187                   | 33               | 347                                 |
| USS ATA-192                   | 15               | 547                                 |
| USS ATR-40                    | 68               | 903                                 |
| USS ATR-87                    | 69               | 485                                 |
| USS AVERY ISLAND (AG-76)      | 483              | 147                                 |
| USS BARTON (DD-722)           | 260              | 519                                 |
| USS BAYFIELD (APA-33)         | 428              | 63                                  |
| USS BEGOR (APD-127)           | 155              | 114                                 |
| USS BENEVOLENCE (AH-13)       | 673              | 236                                 |
| USS BEXAR (APA-237)           | 293              | 231                                 |
| USS BLUE RIDGE (AGC-2)        | 534              | 1                                   |
| USS BOTTINEAU (APA-235)       | 299              | 178                                 |
| USS BOUNTIFUL (AH-9)          | 585              | 0                                   |
| USS BOWDITCH (AGS-4)          | 296              | 143                                 |
| USCG BRAMBLE (WAGL-392)       | 49               | 302                                 |
| USS BURLESON (APA-67)         | 244              | 66                                  |
| USS CEBU (ARG-6)              | 357              | 229                                 |
| USS CHARLES P. CECIL (DD-835) | 287              | 0                                   |
| USS CHICKASAW (ATF-83)        | 78               | 400                                 |
| USS CHIKASKIA (AO-54)         | 176              | 198                                 |
| USS CHOWANOC (ATF-100)        | 88               | 401                                 |
| USS CLAMP (ARS-33)            | 88               | 651                                 |
| USS COASTERS HARBOR (AG-74)   | 195              | 195                                 |
| USS CONSERVER (ARS-39)        | 86               | 919                                 |
| USS COUCAL (ASR-8)            | 117              | 556                                 |
| USS CREON (ARL-11)            | 144              | 284                                 |
| USS CUMBERLAND SOUND (AV-17)  | 540              | 61                                  |
| USS CURRENT (ARS-22)          | 94               | 885                                 |
| USS DELIVER (ARS-23)          | 84               | 952                                 |
| USS DIXIE (AD-14)             | 835              | 214                                 |

Table 7-1 (Continued)  
Film Badge Dose Summary For Support Ship Crews

| <u>Support Ship</u>           | <u>Crew Size</u> | <u>Total Film Badge Dose (mrem)</u> |
|-------------------------------|------------------|-------------------------------------|
| USS DUTTON (AGS-8)            | 60               | 306                                 |
| USS ENOREE (AO-69)            | 152              | 198                                 |
| USS ETLAH (AN-79)             | 36               | 689                                 |
| USS FALL RIVER (CA-131)       | 817              | 204                                 |
| USS FLUSSER (DD-368)          | 146              | 428                                 |
| USS FULTON (AS-11)            | 733              | 267                                 |
| USS FURSE (DD-882)            | 293              | 2                                   |
| USS GEORGE CLYMER (APA-27)    | 270              | 248                                 |
| USS GUNSTON HALL (LSD-5)      | 305              | 211                                 |
| USS GYPSY (ARSD-1)            | 77               | 516                                 |
| USS HAVEN (AH-12)             | 476              | 250                                 |
| USS HENRICO (APA-45)          | 424              | 226                                 |
| USS HESPERIA (AKS-13)         | 139              | 245                                 |
| USS INGRAHAM (DD-694)         | 237              | 505                                 |
| USS JAMES M. GILLISS (AGS-13) | 40               | 202                                 |
| USS JOHN BLISH (AGS-10)       | 48               | 335                                 |
| USS KENNETH WHITING (AV-14)   | 539              | 195                                 |
| USS LAFFEY (DD-724)           | 251              | 332                                 |
| USS LCI-977                   | 35               | 176                                 |
| USS LCI(L)-1062               | 35               | 362                                 |
| USS LCI-1067                  | 34               | 93                                  |
| USS LCI-1091                  | 35               | 380                                 |
| USS LOWRY (DD-770)            | 244              | 326                                 |
| USS LST-388                   | 80               | 277                                 |
| USS LST-817                   | 63               | 182                                 |
| USS LST-861                   | 80               | 326                                 |
| USS LST-871                   | 81               | 0                                   |
| USS LST-881                   | 71               | 193                                 |
| USS LST-989                   | 84               | 0                                   |
| USS MENDER (ARSD-2)           | 49               | 307                                 |
| USS MOALE (DD-693)            | 247              | 759                                 |
| USS MOUNT McKINLEY (AGC-7)    | 824              | 193                                 |
| USS MUNSEE (ATF-107)          | 63               | 368                                 |
| USS NEWMAN K. PERRY (DD-883)  | 280              | 185                                 |
| USS O'BRIEN (DD-725)          | 237              | 175                                 |
| USS ONEOTA (AN-85)            | 45               | 582                                 |
| USS ORCA (AVP-49)             | 215              | 262                                 |
| USS OTTAWA (AKA-101)          | 67               | 63                                  |
| USS PALMYRA (ARS(T)-3)        | 299              | 378                                 |
| USS PANAMINT (AGC-13)         | 591              | 0                                   |
| USS PGM-23                    | 39               | 935                                 |
| USS PGM-24                    | 48               | 1293                                |

Table 7-1 (Continued)  
 Film Badge Dose Summary For Support Ship Crews

| <u>Support Ship</u>               | <u>Crew Size</u> | <u>Total Film Badge Dose (mrem)</u> |
|-----------------------------------|------------------|-------------------------------------|
| USS PGM-25                        | 53               | 1061                                |
| USS PGM-29                        | 48               | 1087                                |
| USS PGM-31                        | 55               | 812                                 |
| USS PGM-32                        | 27               | 1045                                |
| USS PHAON (ARB-3)                 | 160              | 331                                 |
| USS POLLUX (AKS-4)                | 154              | 117                                 |
| USS PRESERVER (ARS-8)             | 85               | 1122                                |
| USS PRESQUE ISLE (APB-44)         | 194              | 280                                 |
| USS QUARTZ (IX-150)               | 50               | 235                                 |
| USS RECLAIMER (ARS-42)            | 73               | 1679                                |
| USS ROBERT K. HUNTINGTON (DD-781) | 234              | 474                                 |
| USS ROCKBRIDGE (APA-228)          | 206              | 334                                 |
| USS ROCKINGHAM (APA-229)          | 297              | 241                                 |
| USS ROCKWALL (APA-230)            | 288              | 208                                 |
| USS ROLETTE (AKA-99)              | 151              | 241                                 |
| USS SAIDOR (CVE-117)              | 854              | 68                                  |
| USS SAINT CROIX (APA-231)         | 306              | 72                                  |
| USS SAN MARCOS (LSD-25)           | 631              | 249                                 |
| USS SEVERN (AO-(W)-61)            | 145              | 137                                 |
| USS SHAKAMAXON (AN-88)            | 38               | 643                                 |
| USS SHANGRI-LA (CV-38)            | 1935             | 0                                   |
| USS SIOUX (ATF-75)                | 66               | 301                                 |
| USS SPHINX (ARL-24)               | 155              | 290                                 |
| USS SUNCOCK (AN-80)               | 43               | 664                                 |
| USS SYLVANIA (AKA-44)             | 208              | 238                                 |
| USS TELAMON (ARB-8)               | 158              | 267                                 |
| USS TOMBIGBEE (AOG-11)            | 86               | 273                                 |
| USS TURNER (DD-834)               | 313              | 0                                   |
| USS WALKE (DD-723)                | 242              | 210                                 |
| USS WENATCHEE (ATF-118)           | 99               | 301                                 |
| USS WHARTON (AP-7)                | 493              | 245                                 |
| USS WIDGEON (ASR-1)               | 86               | 637                                 |
| USS WILDCAT (AW-2)                | 128              | 172                                 |
| USS YMS-354                       | 28               | 457                                 |
| USS YMS-358                       | 31               | 468                                 |
| USS YMS-413                       | 32               | 444                                 |
| USS YMS-463                       | 17               | 441                                 |

Table 7-2  
Summary of Calculated Doses for Target Ship Crews

REMANNED

|                        | <u>Crew Size</u> | <u>Total Film Badge<br/>Dose (mrem)</u> |
|------------------------|------------------|-----------------------------------------|
| USS BLADEN (APA-63)    | 111              | 222                                     |
| USS CONYNGHAM (DD-371) | 109              | 495                                     |
| USS CORTLAND (APA-75)  | 89               | 228                                     |
| USS DENTUDA (SS-335)   | 58               | 693                                     |
| USS FILLMORE (APA-83)  | 109              | 209                                     |
| USS GENEVA (APA-86)    | 115              | 230                                     |
| USS LCI(L)-329         | 16               | 208                                     |
| USS LCI(L)-549         | 22               | 205                                     |
| USS LCI(L)-615         | 16               | 644                                     |
| USS NIAGARA (APA-87)   | 271              | 197                                     |
| USS PARCHE (SS-384)    | 61               | 1097                                    |
| USS SEARAVEN (SS-196)  | 58               | 896                                     |
| USS TUNA (SS-203)      | 57               | 1489                                    |

NON-REMANNED

|                           |     |     |
|---------------------------|-----|-----|
| USS ANDERSON (DD-411)     | 105 | 192 |
| USS APOGON (SS-308)       | 54  | 248 |
| USS ARDC-13               | 4   | unk |
| USS ARKANSAS (BB-33)      | 441 | 178 |
| USS BANNER (APA-60)       | 104 | 250 |
| USS BARROW (APA-61)       | 114 | 206 |
| USS BRACKEN (APA-64)      | 108 | 0   |
| USS BRISCOE (APA-65)      | 112 | 202 |
| USS BRULE (APA-66)        | 111 | 217 |
| USS BUTTE (APA-68)        | 126 | 203 |
| USS CARLISLE (APA-69)     | 104 | 5   |
| USS CARTERET (APA-70)     | 119 | 219 |
| USS CATRON (APA-71)       | 116 | 238 |
| USS CRITTENDEN (APA-77)   | 112 | 258 |
| USS DAWSON (APA-79)       | 110 | 270 |
| USS FALLON (APA-81)       | 127 | 232 |
| USS GASCONADE (APA-85)    | 105 | 224 |
| USS GILLIAM (APA-57)      | 91  | 379 |
| USS HUGHES (DD-410)       | 81  | 314 |
| USS INDEPENDENCE (CVL-22) | 343 | 200 |
| USS LAMSON (DD-367)       | 119 | 2   |

Table 7-2 (continued)  
 Summary of Calculated Doses for Target Ship Crews

NON-REMANNED (continued)

|                                           | <u>Crew Size</u> | <u>Total Film Badge<br/>Dose (mrem)</u> |
|-------------------------------------------|------------------|-----------------------------------------|
| USS LCI-327                               | 18               | 311                                     |
| USS LCI-332                               | 17               | 311                                     |
| USS LCI-620 (officers)                    | 2                | 274                                     |
| USS LCI-620 (crew)                        | 14               | 249                                     |
| USS LSM-60                                | 44               | 0                                       |
| USS LST-52                                | 63               | 240                                     |
| USS LST-125                               | 56               | unk                                     |
| USS LST-133                               | 78               | 207                                     |
| USS LST-220                               | 59               | 226                                     |
| USS LST-545                               | 47               | 224                                     |
| USS LST-661                               | 62               | 229                                     |
| USS LST MAYRANT (DD-402)                  | 109              | 284                                     |
| USS MUGFORD (DD-389)                      | 126              | 255                                     |
| USS MUSTIN (DD-413)<br>NAGATO (EX-JAP BB) | 112              | 274                                     |
| USS NEVADA (BB-36)                        | 172              | 93                                      |
| USS NEW YORK (BB-34)                      | 403              | 261                                     |
| USS PENNSYLVANIA (BB-38)                  | 536              | 331                                     |
| USS PENSACOLA (CA-24)                     | 484              | 255                                     |
| USS PILOTFISH (SS-386)                    | 354              | 231                                     |
| PRINZ EUGEN (EX-GERMAN CA)                | 52               | 209                                     |
| USS RALPH TALBOT (DD-390)                 | 444              | 229                                     |
| USS RHIND (DD-404)                        | 132              | 267                                     |
| SAKAWA (EX-JAP CL)                        | 104              | 266                                     |
| USS SALT LAKE CITY (CA-25)                | 143              | 3                                       |
| USS SARATOGA (CV-3)                       | 335              | 330                                     |
| USS SKATE (SS-305)                        | 589              | 72                                      |
| USS SKIPJACK (SS-184)                     | 53               | 508                                     |
| USS STACK (DD-406)                        | 78               | 230                                     |
| USS TRIPPE (DD-403)                       | 102              | 223                                     |
| USS WAINWRIGHT (DD-419)                   | 135              | 224                                     |
| USS WILSON (DD-408)                       | 148              | 218                                     |
| USS YO-160                                | 115              | 222                                     |
| USS YOG-83                                | 10               | unk                                     |
|                                           | 10               | unk                                     |

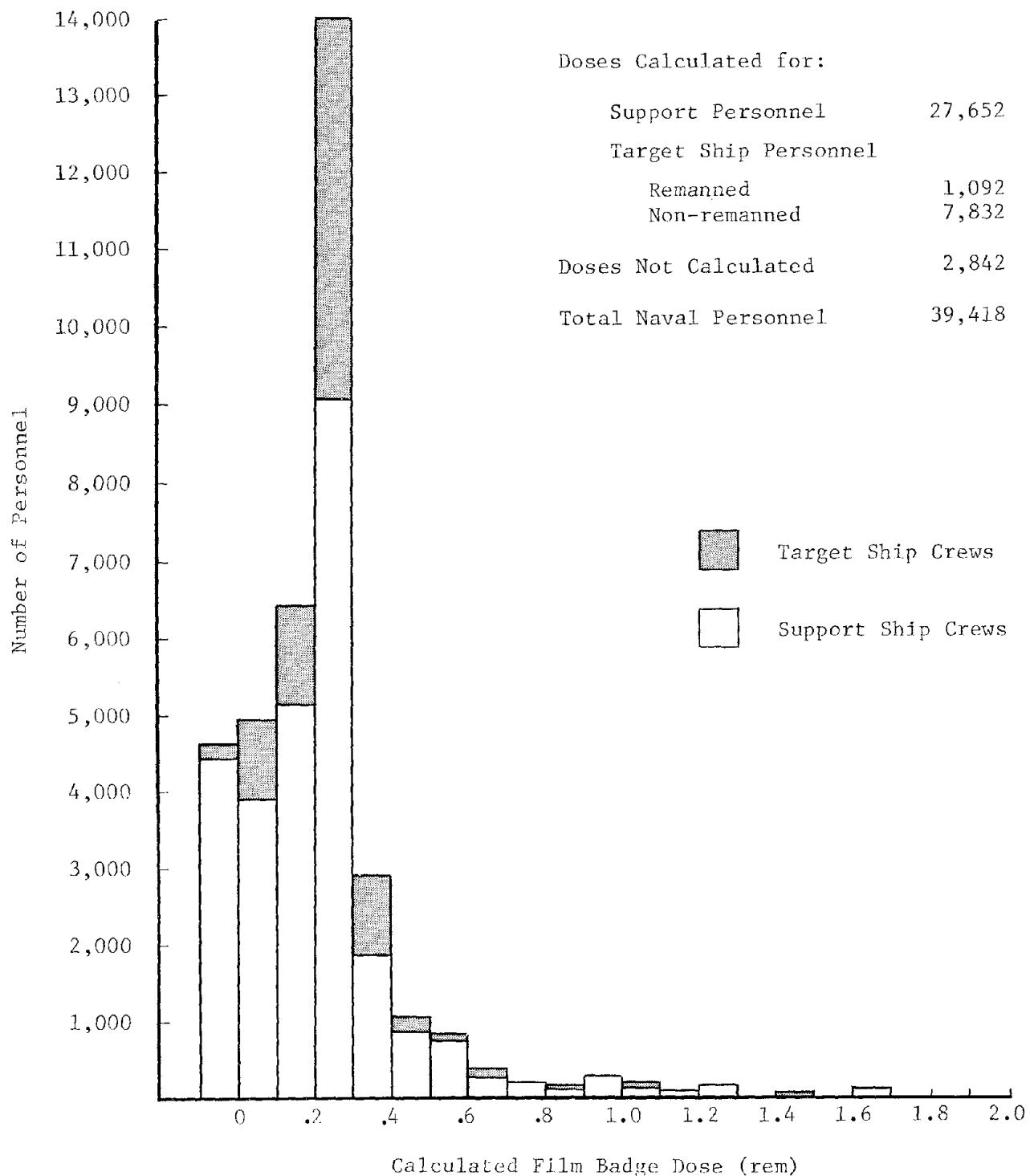



Figure 7-1 Distribution of Calculated Doses



## REFERENCES

1. "Technical Report of Operations," XRD-208, Commander, Joint Task Force One, 1946.
2. "Radiological Decontamination of Target and Non-Target Vessels," Vol. 1, XRD-185, Director of Ship Material, CJTF-1, 1947.
3. Bombs at Bikini, W. A. Shurcliff, Wm. H. Wise & Co., Inc., 1947.
4. "Report of Technical Director, Operation CROSSROADS," XRD-209, Technical Director, CJTF-1, 1946.
5. "The Effects of Atomic Weapons," S. Glasstone, ed., United States Atomic Energy Commission, 1950.
6. "ORIGEN Isotope Generation and Depletion Code - Matrix Exponential Method," CC-217, Oak Ridge National Laboratory, June 1977.
7. "A User's Manual for ANISN, A One-Dimensional Discrete Ordinates Transport Code with Anisotropic Scattering," Union Carbide Corporation, 1967.
8. Chemical Oceanography, Volume 1, J. P. Riley, ed. Academic Press, 1975.
9. "Version 4 of ATR (Air Transport of Radiation)," DNA 3995, Defense Nuclear Agency, January 1976.
10. The Mathematics of Diffusion, J. Crank, Clarendon Press, 1975.
11. "Nuclear Efficiencies of the Bikini Shots as Determined by the Radiochemical Method," Los Alamos Scientific Laboratory, 1946 (unpublished).
12. "Diffusion in Bikini Lagoon," W. H. Munk, et. al., Transactions, American Geophysical Union, February 1949.
13. "Time-Dependent Neutron and Secondary Gamma-Ray Transport in an Air-Over-Ground Geometry, Volume II, Tabulated Data," ORNL-4289, Vol. II, September 1968.
14. "Initial Radiation Protection Factors of a Spruance-Class Destroyer," Defense Nuclear Agency (unpublished)
15. A2 Report, a compilation of reports concerning the ABLE detonation assembled by the Technical Director in July 1946.
16. "Fast Neutron Measurements using Sulphur Detectors," Los Alamos Scientific Laboratory, September 1946, (unpublished).

17. "Technical Inspection Report, U.S.S. SKATE (SS 305), Test ABLE," Volume 1, XRD-49, Bureau of Ships Group, CJTF-1, 1946.
18. "Technical Inspection Report," XRD-1, Director of Ship Material, CJTF-1, 1947.
19. "Technical Inspection Report," Volume 1, XRD-2, Bureau of Ships Group, CJTF-1, 1946.
20. "Historical Report Atomic Bomb Tests ABLE and BAKER (Operation CROSSROADS)," Volume 1, XRD-189, Director of Ship Material, CJTF-1, 1946.
21. "Report on Atomic Bomb Tests ABLE and BAKER (Operation CROSSROADS)," Volume I, XRD-206, Joint Task Force One, 1946.
22. "Report on Atomic Bomb Tests ABLE and BAKER (Operation CROSSROADS)," Volume II, XRD-207, Joint Task Force One, 1946.
23. Untitled manuscript assembled and edited by Dr. J.O. Hirschfelder, circa 1949. Copy found in archives at Los Alamos National Laboratory.
24. B2 Report, a compilation of reports concerning the BAKER detonation assembled by the Technical Director in September 1946.
25. "Investigation of Gamma Radiation Hazards Incident to an Underwater Atomic Explosion," U.S. Naval Radiological Defense Laboratory, November 1963 (unpublished).
26. "Radiological Health Handbook," U.S. Department of Health, Education, and Welfare, January 1970.
27. "Radiological Decontamination of Target and Non-Target Vessels," Volume 2, XRD-186, Director of Ship Material, CJTF-1, 1947.
28. "Methods for Calculating Neutron and Gamma-Ray Attenuation," Chapter 3, Weapons Radiation Shielding Handbook, DNA-1892-3, April 1971.
29. Operation Plan 1-46, CJTF-1, Annex E, June 1946.
30. Operation Plan 1-46, CJTF-1, Annex X, Appendix X, 5 June 1946.
31. "Analysis of Radiation Exposure for Task Force WARRIOR, Shot SMOKY, Exercise Desert Rock VII-VIII, Operation PLUMBOB," DNA 4747F, Defense Nuclear Agency, May 1979.
32. "Chronological History of the Activities of the Director of Ship Material, Joint Task Force One, Aboard the U.S.S. RECLAIMER (ARS-42) During Test BAKER, Operation CROSSROADS," XRD-188, Director of Ship Material, CJTF-1, 1946.
33. Letter from Dr. William G. Myers to Col. Stafford Warren, 28 August 1946.

34. Eisenbud, M., Environmental Radioactivity, Academic Press, New York, 1973.
35. Memorandum dated 4 September 1946, Subject: "Measurement of Radioactivity aboard USS SAIDOR," from B. Groesbeck to Commanding Officer, USS SAIDOR.
36. Memorandum dated 21 August 1946, Subject: "Monitor Consultant Report on USS MOUNT McKINLEY," from Lieutenant Commanders R.A. Conrad and R.E. Hirsh to RADSAFE.
37. "Report on Decay Rates," R.R. Newell, undated report in S.L. Warren collection.
38. Memorandum dated 6 August 1946, Subject: "Final Report of the Alpha Beta Gamma Survey Section," by K.Z. Morgan.
39. Memorandum dated 19 August 1946, Subject: "Radiological Condition of the KENNETH WHITING Subsequent to Leaving Bikini," from Lieutenant Commander W.A. Kemper to Commanding Officer, USS KENNETH WHITING.
40. "Accumulation and Loss of Cobalt and Caesium by the Marine Clam, Mya Arenaria, under Laboratory and Field Conditions," presentation by Florence Harrison, Lawrence Livermore Laboratory, to the International Atomic Energy Agency Symposium 158, IAEA-SM-158/28, 1980.



## DISTRIBUTION LIST

### DEPARTMENT OF DEFENSE

Armed Forces Institute of Pathology  
ATTN: Director  
ATTN: Radiation Pathology Br

Armed Forces Radiobiology Rsch Institute  
ATTN: J. Hsieh  
ATTN: Director

Assistant Secretary of Defense  
ATTN: ASD(PA)  
ATTN: ASD(MI&L)  
ATTN: ASD(HA)  
ATTN: ASD(MRA&I.)

Asst to the Sec of Defense, Atomic Energy  
ATTN: Lt Col Riggs

Defense Nuclear Agency  
ATTN: Director  
ATTN: PAO  
ATTN: GC  
5 cy ATTN: STBE  
54 cy ATTN: STTI/CA

Defense Technical Information Center  
2 cy ATTN: DD

Dep Under Sec of Def for Rsch & Engrg  
ATTN: DUSDRE, Rsch & Adv Tech

Dep Asst Sec of Def  
ATTN: DASD(EE&S)

Field Command, DNA, Det 1  
Lawrence Livermore National Lab  
ATTN: FC-1

Field Command, DNA, Det 2  
Los Alamos National Lab  
ATTN: MS-635 FC-2

Field Command, DNA  
ATTN: FCPR  
ATTN: FCTT, W. Summa  
ATTN: FCTXE  
ATTN: FCTXE, Maj Evinrude

Interservice Nuclear Weapons School  
ATTN: TTV

### DEPARTMENT OF THE ARMY

Department of the Army  
5 cy ATTN: DAAG-AMR, ANTPR

Harry Diamond Laboratories  
ATTN: DELHD-TA-L, 81100

Office of the Chief of Staff  
ATTN: DACS-DMZ-A, T. Green

US Army Ballistic Research Labs  
ATTN: DRDAR-BLV-R, J. Maloney

US Army Medical Rsch & Dev Cmd  
ATTN: SGRD-SD

### DEPARTMENT OF THE ARMY (Continued)

US Army Nuclear & Chemical Agency  
ATTN: MONA-ZB, C. Davidson

Walter Reed Army Medical Center  
ATTN: Library

### DEPARTMENT OF THE NAVY

Bureau of Medicine & Surgery  
ATTN: NM&S-09  
ATTN: NM&S-00  
ATTN: NM&S-3C22

National Naval Medical Center  
ATTN: Medical Library  
ATTN: Dept of Radiology

Naval Medical Rsch Institute  
ATTN: Tech Ref Library

Naval Ocean Systems Center  
ATTN: Research Library

Naval Sea Systems Command  
ATTN: SEA-08, M. Miles

Naval Surface Weapons Center  
ATTN: Code F31, D. Levine

Naval Weapons Evaluation Facility  
ATTN: G. Binns

Navy Nuclear Test Personnel Review  
5 cy ATTN: W. Loeffler

Ofc of the Deputy Chief of Naval Ops  
ATTN: NOP 0455, CDR Bell  
ATTN: NOP 098, VADM Monroe

### DEPARTMENT OF THE AIR FORCE

Aerospace Medical Division  
ATTN: Library SCL-4

Air Force Institute of Technology  
ATTN: ENP, J. Bridgeman  
ATTN: Library

Air Force Nuclear Test Personnel Review  
4 cy ATTN: P. Fallon

Air Force Weapons Laboratory  
ATTN: NT  
ATTN: SUL  
ATTN: DYT

Air University Library  
ATTN: AUL-LSE

HQ USAF/SG  
ATTN: M. Chesney

US Air Force Occupational & Env Health Lab  
ATTN: CC  
4 cy ATTN: TSNTPR

DEPARTMENT OF THE AIR FORCE (Continued)

USAF School of Aerospace Medicine  
ATTN: J. Pickering

DEPARTMENT OF ENERGY

Department of Energy, Albuquerque Operations Office  
ATTN: R. Cuddihy

Department of Energy, Office of Military Application  
ATTN: OMA, DP-22

Department of Energy, Nevada Operations Office  
ATTN: Public Affairs  
ATTN: B. Church  
ATTN: L. O'Neal  
ATTN: Health Physics Div

Department of Energy, Human Health & Assessments Div  
ATTN: J. Thiesen, EV-32  
ATTN: H. Hollister, EV-4  
ATTN: Technical Info Ctr, E-201  
ATTN: W. Burr, EV-2  
ATTN: B. Wachholz, EV-30  
ATTN: J. Blair, EV-32  
ATTN: C. Edington, EV-31  
ATTN: J. Whitnah, EV-50  
ATTN: N. Barr, EV-32

OTHER GOVERNMENT AGENCIES

Cancer Center, NIH  
ATTN: A. Knudson

Centers for Disease Control  
ATTN: K. Choi  
ATTN: Consolidated Surveillance  
2 cy ATTN: G. Caldwell

Central Intelligence Agency  
ATTN: Office of Medical Services

Consumer Product Safety Commission  
ATTN: P. Pruess  
ATTN: M. Bloom

Department of Agriculture  
ATTN: M. Carter

Department of Agriculture  
ATTN: R. Jarrett

Department of Commerce  
ATTN: C. Kuyatt  
ATTN: J. Hubell

Department of Health & Human Services  
ATTN: Ofc of Regulation Review

Department of Health & Human Svcs  
ATTN: R. Murphy

Department of Labor  
ATTN: S. Weiner

Department of Transportation  
ATTN: H. Reighard

Dept of Health & Human Services  
ATTN: J. Villforth, HFX-1  
ATTN: C. Silverman, HFX-101  
ATTN: G. Johnson, HFX-4

OTHER GOVERNMENT AGENCIES (Continued)

Environmental Protection Agency  
ATTN: P. Magno  
ATTN: T. Thorslund, RD-689

Environmental Protection Agency  
ATTN: J. Knelson

Environmental Protection Agency  
ATTN: D. Rosendaum, ANR-458  
ATTN: W. Ellett, ANR-460  
ATTN: W. Nelson, ANR-460  
ATTN: W. Mills, ANR-460

Federal Emergency Management Agency  
ATTN: Asst Assoc. Dir for Rsch, J. Kerr  
ATTN: Ofc of Rsch/NP, D. Bensen  
ATTN: C. Siebentritt

Library of Congress  
ATTN: Science & Technology Div

NASA Headquarters  
ATTN: M/S SBR-3, P. Rambaut  
ATTN: M/S, SB-3, G. Soffen

National Cancer Institute, NIH  
ATTN: G. Beebe  
ATTN: R. Miller  
ATTN: O. Nyguard  
ATTN: J. Rall  
ATTN: S. Stever  
ATTN: V. Zeve  
ATTN: J. Murray  
ATTN: M. Knipmayer  
ATTN: E. Stonehill  
ATTN: C. Land  
ATTN: J. Fraumeni  
ATTN: W. Blot  
ATTN: J. Gart  
ATTN: J. Wyngaarden  
ATTN: A. Rabson  
ATTN: D. Pistenmaa

National Institute for Occupational Safety & Health  
ATTN: W. Murray

National Institutes of Health  
ATTN: Library, Acquisition Unit

National Library of Medicine, NIH  
ATTN: Library

National Science Foundation  
ATTN: K. Wong  
ATTN: P. Harriman

Natl Heart, Lung & Blood Institute, NIH  
ATTN: W. Zukel

Office of Technology Assessment  
ATTN: P. Sharfman

Office on Smoking & Health  
ATTN: J. Pinney

US Senate  
ATTN: J. Curtiss

US House of Representatives  
ATTN: Subcommittee on Mil Per & Comp  
ATTN: Subcommittee on Health & Envir

OTHER GOVERNMENT AGENCIES (Continued)

US Nuclear Regulatory Commission  
ATTN: R. Whipp for R. Minogue  
ATTN: R. Whipp for W. Mills  
ATTN: R. Whipp for F. Arsenault

US Public Health Service  
ATTN: Library

US Public Health Service Hospital  
ATTN: E. Nishimura

US Public Health Service Hospital  
ATTN: T. Robertson

US Senate  
ATTN: C. Cowart  
ATTN: K. Burdick  
ATTN: J. Susman  
ATTN: V. Raymond  
ATTN: S. Wallace  
ATTN: T. Harvey  
ATTN: W. Brew  
ATTN: S. Ulm

Veterans Admin Medical Center  
ATTN: K. Lee

Veterans Admin Medical Center  
ATTN: D. McGregor

Veterans Admin Medical Center  
ATTN: C. Tessmer

Veterans Admin Wadsworth Hospital Ctr  
ATTN: T. Makinodan

Veterans Administration  
ATTN: L. Hobson  
ATTN: J. Donsbach  
ATTN: J. Smith  
2 cy ATTN: D. Starbuck

The White House  
ATTN: Ofc of Policy Dev(DP)

FOREIGN AGENCIES

Canadian Embassy  
ATTN: Library

EDF - RETN 1  
ATTN: Library

Indian Council of Medical Rsch  
ATTN: A. Taskar

Japan-Hawaii Cancer Study  
ATTN: G. Glober

French Engineering Bureau  
ATTN: M. Delpla

McGill University  
ATTN: R. Oseasohn

Comitato Nazionale, Per L'Energia Nucleare  
ATTN: Library

FOREIGN AGENCIES (Continued)

Univ of Puerto Rico Sch of Medicine  
ATTN: Library

United Kingdom Scientific Mission  
ATTN: Publications, for MRC, SO 128

OTHER

Brookhaven National Laboratory  
ATTN: V. Bond  
ATTN: A. Brill, Med Dept  
ATTN: Technical Library  
ATTN: E. Cronkite, Med Dept  
ATTN: M. Bender, Med Dept

California Institute of Technology  
ATTN: E. Lewis  
ATTN: R. Christy

University of Chicago  
ATTN: P. Meier

University of Colorado  
ATTN: Library

Columbia University  
ATTN: Library  
ATTN: A. Bloom  
ATTN: Div of Biostatistics

Cornell University  
ATTN: W. Federer

Medical College of Georgia  
ATTN: L. Stoddard

Harvard School of Public Health  
ATTN: Library  
ATTN: R. Reed  
ATTN: B. MacMahon

Harvard University  
ATTN: W. Cochran

University of Hawaii  
ATTN: Y. Matsumoto

Indiana University  
ATTN: F. Putnam

Iowa State University  
ATTN: T. Bancroft

Johns Hopkins University  
ATTN: A. Lilienfield  
ATTN: R. Seltser  
ATTN: A. Kimball

Kansas Univ of Agri & Applied Science  
ATTN: H. Fryer

Kingston Hospital  
ATTN: K. Johnson

Memorial Hosp for Cancer & Allied Diseases  
ATTN: P. Lieberman

OTHER (Continued)

Memorial Sloan-Kettering Cancer Center  
ATTN: P. Marks  
ATTN: J. Laughlin

Merck, Sharp & Dohme Intl  
ATTN: A. Bearn

University of Miami  
ATTN: P. Hodes

University of Michigan Medical School  
ATTN: J. Neel

University of Michigan  
ATTN: R. Cornell  
ATTN: F. Moore

University of Minnesota  
ATTN: J. Bearman  
ATTN: L. Schuman  
ATTN: Library

Natl Council on Radiation Protection & Measurements  
ATTN: W. Sinclair

University of New Mexico  
ATTN: C. Key  
ATTN: R. Anderson

New York Univ Medical Center  
ATTN: N. Nelson

New York University  
ATTN: Library  
ATTN: A. Upton  
ATTN: B. Posternack

University of North Carolina  
ATTN: Library for Dean  
ATTN: B. Greenberg

Northwestern University  
ATTN: H. Cember

Oak Ridge Associated Universities  
ATTN: J. Totter  
ATTN: E. Tompkins  
ATTN: D. Lushbaugh

University of Oklahoma  
ATTN: P. Anderson

University of Oregon  
ATTN: B. Pirofsky

Pacific Northwest Laboratory  
ATTN: S. Marks

Pennsylvania Univ Hospital  
ATTN: S. Baum

University of Pennsylvania  
ATTN: P. Nowell

University of Pittsburgh  
ATTN: Library  
ATTN: E. Radford

OTHER (Continued)

University of Pittsburgh  
ATTN: N. Wald

Rochester Univ Medical Ctr  
ATTN: G. Casarett  
ATTN: C. Odoroff

University of Rochester  
ATTN: L. Hempelmann

Saint Francis Hospital  
ATTN: R. Blaisdell

Medical Univ of South Carolina  
ATTN: P. Liu

University of Southern California  
ATTN: J. Birren

Stanford Univ Medical Center  
ATTN: J. Brown

Stanford University  
ATTN: L. Moses

Stanford University Hospital  
ATTN: D. Dorfman

Texas A&M University  
ATTN: R. Stone

Univ of Texas at Austin  
ATTN: H. Sutton

University of Texas  
ATTN: R. Stallones  
ATTN: W. Sutow  
ATTN: G. Taylor

University of Utah  
ATTN: Library

University of Utah  
ATTN: Library  
ATTN: L. Lyons  
ATTN: E. Wrenn  
ATTN: C. Mays

Vanderbilt University  
ATTN: R. Quinn

University of Washington  
ATTN: D. Thompson  
ATTN: A. Motulsky

University of Wisconsin  
ATTN: J. Crow

Yale University Sch of Medicine  
ATTN: Library  
ATTN: J. Meigs

DEPARTMENT OF ENERGY CONTRACTORS

University of California  
Lawrence Livermore National Lab  
ATTN: Tech Info Dept Library  
ATTN: L. Anspaugh  
ATTN: Y. Ng

DEPARTMENT OF ENERGY CONTRACTORS (Continued)

Los Alamos National Laboratory  
ATTN: M/S634, T. Dowler  
ATTN: MS218, P. Whalen  
ATTN: Library  
ATTN: J. Dummer

Oak Ridge National Laboratory  
ATTN: J. Auxier  
ATTN: G. Kerr  
ATTN: C. Clifford  
ATTN: C. Richmond  
ATTN: T. Jones

Reynolds Electrical & Engr Co, Inc  
ATTN: Doc Con Facility  
ATTN: J. Brady

Sandia National Laboratories  
ATTN: D. Aldridge  
ATTN: Div 1314, S. Durpee

DEPARTMENT OF DEFENSE CONTRACTORS

Advanced Research & Applications Corp  
ATTN: R. Armistead

BDM Corp  
ATTN: J. Braddock

Colorado State University  
ATTN: M. Zelle

Energy Systems, Inc  
ATTN: W. Ogle

JAYCOR  
ATTN: J. Ozeroff

JAYCOR  
ATTN: J. Sperling

JAYCOR  
ATTN: E. Weary

Kaman Tempo  
ATTN: DASIAC  
3 cy ATTN: E. Martin

Kaman Tempo  
ATTN: DASIAC

Louisiana Univ Sch of Med  
ATTN: Library

National Academy of Sciences  
ATTN: S. Jablon  
ATTN: National Materials Advisory Bd  
7 cy ATTN: C. Robinette

DEPARTMENT OF DEFENSE CONTRACTORS (Continued)

R&D Associates  
ATTN: C. Lee  
ATTN: J. Marcum  
ATTN: P. Haas

R&D Associates  
ATTN: A. Deverill

Radiation Research Associates, Inc  
ATTN: N. Schaeffer

Rand Corp  
ATTN: Library  
ATTN: P. Davis

Rand Corp  
ATTN: B. Bennett

Science Applications, Inc  
ATTN: W. Scott  
ATTN: E. Straker  
ATTN: W. Woolson  
ATTN: G. Reynolds

Science Applications, Inc  
ATTN: J. Goetz  
ATTN: J. Klemm  
ATTN: J. Cockayne  
ATTN: W. McRaney  
ATTN: R. Weitz  
ATTN: J. Stuart  
ATTN: E. Muller  
ATTN: C. Thomas  
ATTN: M. Knowles  
ATTN: A. Landay  
5 cy ATTN: J. McGahan

Science Applications, Inc  
ATTN: D. Kaul

Science Applications, Inc  
ATTN: J. Novotney

Scientific Information Svcs, Inc  
ATTN: Library

Tech Reps, Inc  
ATTN: B. Collins

University of Nebraska  
ATTN: Library

Ohio State University  
ATTN: Library

Pacific-Sierra Research Corp  
ATTN: H. Brode, Chairman SAGE

