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DISPERSIVE-DISSIPATIVE
' INTERACTIONS

Philip Rosenau

School of Mathematical Sciences
Tel Aviv University, Tel Aviv 69978, Israel

July 29, 1997

Abstract

We study the prototypical, genuinely nonlinear, equation; u; +
a(u™)g + (U™ ez = w(uF)ez, a,pu = consts., which encompasses a
wide variety of dissipative — dispersive interactions. The parametric
surface k = (m + n)/2 separates diffusion dominated from dissipation
dominated phenomena. On this surface dissipative and dispersive ef-
fects are in detailed balance for all amplitudes. In particular, the
m = n + 2 = k + 1 subclass can be transformed into a form free of
convection and dissipation making it accessible to theoretical studies.
Both bounded and unbounded oscillations are found and certain exact
solutions are presented. When a = (24/3)? the map yields a linear
equation; rational, periodic and aperiodic solutions are constructed.

1. Introduction.

The complexity of nonlinear phenomena, and the very limited analytical
means presently available for their modelling, severely limits the scope of
our scientific endeavors. Though in reality one rarely encounters phenomena

which are either purely dissipative or dispersive, the means available for the




study of these phenomena differ to such an extent that, unless a head-on

computing is employed, with rare exceptions, these phenomena are studied
separately. In this context the celebrated KdV and the Burgers equations

Up +UUg + Uy = 0 and  uy + vty = Uy (1a,b)

-

have became the outstanding paradigms deséribing convective-dispersive
and convective-dissipative interaction, respectively.

However, it is not only a matter of fashion, convenience, or herd in-
stincts, that we study separately patterns shaped by dispersion and dissi-
pation. Pushed to extremity one might say that while dispersive systems
cannot forget their past, the dissipative ones do not remember it. The old
parable of Archilochus; the fox knows many things, but the hedgehog knows
one big thing, acquires a new meaning when one identifies dispersion with the
fox aned dissipation with the hedgehog. Indeed, while the conservation laws
of a dispersive system, at all times carry the memory of the initial startup,
dissipative systems respond like the fabled hedgehog; care very little about
their initialization, shaping the future according to their own, predetermined,
blue-print.

It is thus not surprising that models which combine 'fox-like’ with "hedgehog-
like’ features, say; the combined KdV — Burgers equation

Up + Uy + Uppy = Uz, (2>

are so hard to analyze. The competition between such a different entities
as dispersion and dissipation, very rarely turns into a cooperative interac-
tion, but when it does, an analytical glimple into these phenomena becames
possible.

The typical model, derived in the weakly nonlinear limit, eliminates most
of the phenomena related to large gradients and/or amplitudes like wave

breaking, their collapse, fusion or saturation. The use of linear dissipation or

dispersion in such a model is, as a rule, done out of convenience or necessity




(as usually nothing better is available) then from the conviction that this
is the true state of affairs. The linearity, however, takes its toll; it brings
in undesirable features as, say, the infinite tail of the typical soliton (or the
infinite Gaussian tail), being the consequence linear dispersion (or diffusion).
The compactification of thermal pulses due to the nonlinear conductivity,
is perhaps the.simplest and the most striking example, that reveals how
nonlinearity can combat the nuisance of an infinite tail.

Similarly, it was recently found that nonlinear dispersion can compactify
solitary waves and generate compactons-solitons with a compact support [1-
3]. Asa prototypical dispersive model that describes compact patterns, I have
recently proposed [1-3] to extend the K-dV type equations into a genuinely

nonlinear dispersion regime and to consider

Km,n); w+aw™)e+ U)ee=0, mmn>1, a=const. (3a)

For a > 0, compact solitary travelling structures are possible, and for

n = m have a very simple form

2
2An n—1 n=1 2nw
u {n cos[ (x )\t)]} or |x— At] < — (4)

4n

and zero otherwise. For a < 0 solitary patterns having cusps, peaks or
infinite slope may form, all being the manifestation of nonlinear dispersion
in action [4]. Its dissipative counterpart, a fully nonlinear variant of the

Burgers equation

B(m,k); u+ a(u™), = p(u*)ee (3b)

also admits simple solutions {5]. Returning to our modest goal we propose
herein a new model equation which goes beyond Eq.(2), and merges into one
equation the interaction between convection, dispersion and dissipation, all
assumed to be genuinely nonlinear functions of state variable. Merging Eq.
(3a) and (3b) we thus propose a combined dispersive-dissipative entity
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n

DD(k,m,n); u+ a(u™); + (U)ses = p(u)ee , @, = consts. (5a)

The exponents m,n and k in (5a) span a wide variety of nonlinear scenar-
ios. In fact while in each of equations (3) the pattern is formed via balance

between dispersive {or dissipative) forces and convection, having three mech-
P )

anisms enables, roughly speaking, three kinds of scenarios.

A. Phenomena dominated by balance between dispersion and convection
with dissipation playing secondary role that manifests itself mainly on long

temporal scales.

B. Phenomena dominated by balance between dissipation and convection
with dispersion playing a secondary role and

C. phenomena characterized by a detailed, three ways, balance between
dissipation, convection and dispersion.

To unfold these classes we look first at the scaling properties of solutions
to equation (5a) as a function of the exponents k,m and n. Invariance of
Eq. (5a) under shifts in space and time affords steadily progressing waves
and the associated scaling relations between speed, width and the amplitude
of these structures.

So far the DD(k,m,n) was addressed only in two special cases , the
Burgers-KdV, Eq.(2),[6], and Burgers — mKdV, [7]. In both cases the
main effort was directed to elucidiate the limiting behaviour when either
the dissipation or dispersio tend to zero . This usually is motivated by a
mathematical quest to understand how weak solution of the purely convec-
tive problem u; + (¥™), = 0 are modified by dispersion and/or dissipation.
From physical point of view, the main interest is to understand the formation
of patterns and their topology, and will be our main concern here.

One could say that since the combined structure is not integrable there is
no apriori reason to consider a KdV-like like extension of dissipative process
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rather then a BBM like extension. With an equal vigor one could make an

argument in favor of

ur + a(u™)y = Uggs + p(u)ee , @, p = consts. (5b)

This equation and its fully nonlinear dispersive extensions, have a life of
their own that"ﬁerha}\)s warrants a separate consideration. However, as a
first step, Eq.(5a) should certainly suffice. We thus return to Eq.(5a) and

consider

2.Scales and scalings.

Let s = = — At, then integrating once Eq. (5) and setting

u=alU(s), a=\/m1 (6a)

we obtaln

—U 4 aU™ + o ™(U™) s = pa*"™(U¥); + Py(const.) (6b)

Let further define n = A¥s, @ = (m — n)/(2m — 2). Rescaling again and
neglecting the integration constant P,, and setting U = U[A¥"(x — At)]), we
obtain

_2k—(m+n)

U+aUm + UMy =0(U")y, o=pX, B 3m = 1) . (Bc,d,e)

(3 vanishes when

k=(m+n)/2 (7)

In this special case thé emerging patterns are universal in the sense that
they are independent of speed, and thus of amplitude. Otherwise U = U(n, o)
and the effective dissipation coefficient dependents on the amplitude of the
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wave. For 2k < m+n, the dissipation is inhibited at high amplitudes and the

pattern is dominated by dispersion, while for 2k > m+n the opposite occurs;
the process is governed by balance between convection and dissipation, with
dispersion playing secondary role.

A. Consider first a dissipative extension of the KdV equation; now o =
pXe=3/2 For‘k” = 1 we have the KdV — Burgers equation (2) (or the
DD(1,2,1) equation, in the notation (5a)), with ¢ = u/v/A. At large am-
plitudes o decreases and, on a short time scale, the dissipative effects are
secondary. The opposite occurs for small amplitudes, which are dominated
by dissipation, and therefore will quickly merge into high amplitude patters
and disappear. Recent numerical simulations carried for equation(2),[8], fully
confirm these conclusions.

Now let the assumed dissipation be quadratic in u; then k =2 = o=
pvA. The effective dissipation increases with amplitude and high amplitudes
patterns dissipate quickly, while the low amplitude phenomena persist on a
much longer time scale.

B. Consider now a dissipative extension of the m-KdV equation; m = 3
and n = 1 imply that o = pX*2. For k=1, 2 and 3,0 = /), 4, and ul,
respectively. Here k = 2 is the critical value; the effective dissipationdoes
not depend on amplitude.

The total mass of a travelling structure is another way to look at the

effects of scaling. In the purely dispersive K (m,n) case the mass scales as

M,y =/udx=/\ﬁ/U(s)ds, B=(n+2-m)/2(m—-1), (9)

while for the dissipative case (3b) we have; § = (k+ 1 — m)(m — 1).
Consequently the total mass of a pattern in the DD(k,m,n) equation is
independent of the amplitude, if m=n+2 =k + 1.

Let us now consider the implications of invariance under a group of
stretchings and the consequent similarity solutions. For the K (m,n) one

has




wu=tYAF(), ¢(=zt7*, a=(n-m)/2A, A=1+(n—3m)/2 (10a)
provided that a > 0, while for the purely dissipative case (3a) {(a > 0)

u=tVAR(Q) =2t , a=(k—m)/A, A=1+k-2m.  (100)

When o < 0, the self-similar solutions represent phenomena that termi-

nate within a finite, say tq, time. Instead of (10a) we now have

w=(to — t)l/AF@)Q ¢ = a(ty—t)m /24 (11)

and a similar modification applies to the dissipative variant. It thus fol-
lows that the combined case admits a stretching symmetry iff 2k = m + n,
which is nothing more than the universality condition (7). In this case the
symimetries of the dissipative and dispersive processes have a non-empty over-
lap. In Sec. 4.2 we shall present a family of such solutions. If consistency
condition (7) is not satisfied, self-similar structures may emerge only asymp-
totically, when either the dissipative or the dispersive mechanism becames
suppressed.

We also note two exceptional cases that occur when either o or A vanish.
Exploiting the invariance under shifts in time or space, one finds that each

of these cases reflects a spiral symmetry, and induces similarity structures of

the form
u=t""F(z+Xnt), if m=n and m=Fk, (12a)
and
uw=eMFlze®™ V) if n=3m~2 and k=2m-1. (12b)




The presented discussion is not a systematic study of symmetries of Eq.

(5a) but rather an outline of system’s response to changes in scales. For
a particular choice of nonlinearity exponents, additional symmetries may
emerge. For instance, the KdV-Burgers equation (2) has a solution in an

accelerated frame of reference

w(z,t) =UE) - M, E=z+at’. (13)
The reader is challanged to find U(¢).

3. Travelling Patterns

In this section we shall outline some basic features of the steadily travelling
structures of Eq.(6). We shall

1. Determine the topology of these structures and in particular their
limiting forms like kinks or solitons.

2. Seek their explicit forms.

We start with Eq.(6) and note that without dispersion this equation is
immediately integrable. Without dissipation, energy integral is available
which as a rule reduces the problem into an integrable, albeit not necessarily
in terms of elementary functions. However, the presence of both dissipation
and dispersion makes the problem next to impossible and save for the special
case m = n+ 2 = k + 1, a first integral of motion is not available. One
has thereforeto resort either to numerical or to phase space methods. Let
M = 8,U. Since 8, = M3, then from (6c) we have

—U +aU™ +nM3,(U" M) = keU* M (14a)
or, if N=U"'M (14b)
—U" +aU™"™ 1 + nNO,N = kU IN. (14¢)

In what follows we shall assume that ¢ + 1.




3.1 Elements of phase portrait.

It is clear from(6¢) that U = 0 and U = 1 (or -1 if a = —1) are singular
points that need special attention. When u = 0 is not involved, we linearize
the flow near the singular manifold at U = 1. If U ~ exp(y;) , then

= ok + VA

= TS where &= 0%k —dn(m — 1) ~(15)

When A > 0 and n > 0, U =1 is a node which is characteristic of kink
type solutions. When A < 0; U = 1 is a spiral and the solution in its vicinity
is oscillatory, a typical setup for underdamped oscillations. In the present
context this means that dispersion dominates dissipation. The critical value

of the normalized dissipation

il

peA = %\/n(m - 1). (16a, b)

separates between dissipation and dispersion dominated solutions. It as-

Oc

sociates a critical speed with every value of p; A, = (u/o.)"/?. Thus the
traveling wave is oscilatory if ¢ < o, or, what amounts to the same, if
M < A8, '

"3.2 The front line.

If n > 1 and k > 1, then at v = 0 nonlinearity degenerates and, typically,
the solution has there a weak discontinuity. It is clear that this point plays
a special role in our discussion as the singular manifold may be essentially
nonlinear. The assumption that both & > 1 and n > 1 is needed (and
occasionaly that a > 0) to assure the existance of a front, otherwise the
front of the propagating wave(s) will run away to infinity. Consideration
of the K(m,n) reveals that for dispersive structures like compactons [1-3],
near the front line located at, say z = 0, we have u ~ 2/ while for the
dissipative Eq. (3b), u =~ z/*~1), Both effects are in balance only when

n + 1 = 2k. Otherwise, comparing the dispersive part with the dissipative

9




contribution, we find that near the front dispersion (dissipation) dominates
forn +1<2k(n+1> 2k).
Thus, for n = k& = 2,the behavior near the front line is shaped by the

dispersive part and u ~ x2. Without the dispersion, the behavior of the
front is determined by the nonlinear diffusion which dictates here u ~ x. For
n=3and k= 2,'dispersi0n and dissipation are in balance; each considered
separately predicts that u = xz. Note that convection has not entered into

these considarations. Its crucial role is reserved to the overall dynamics.

3.3 Explicit solutions.

The difficulty to derive explicit solutions makes it necessary not to dismiss
any approach even if of a very limited scope. In what follows we describe
two atttempts at our problem,;
1. Factoring of Operators ;
Alet n=1, ¢ =a, and k = m, then Eq.(6c) may be rewritten as(9, =
9)
(0 ~ 1)U =a(0 - 1)U™. (17a)

B.leta=-1, k=0=1 m=mn, and A=1— A= —1, then Eq.(6c)
in its defocusing version may be rewritten as

(O —1)U™ = (8- 1)U. (17b)

The presence of a common factor enables to simplify our search for solu-
tions. For (17a) the reduced problem reads

(04 1)U — aU™ = Uge". (18)
When Uy = 0 the solutions are easily found to be kinks (a = 1)

1 1
U= [1+ Aexp(—n/a)]®’ T =1 (19)

10




Let Uy # 0. For m = 2 (18) is a Riccati equation. When put into a linear
form it generates an unbounded solution. Though for m # 2 no explicit
solutions of (18) are known, the presence of the exponential part in (18),
precludes bounded solutions for m # 2 as well.

The operator factoring may be better seen if we note that for m =

k and n = 1 equation (5a) may be rewritten as

Us + A%up + (—A + 0;)0z[uy — vu™ + Au] =0 where A=ajv.  (20)
Similarly, for m = n and k = 1 we write
Uy + Avtty + (A + 0;)0:[(u™)s — Au™ — vu] = 0 where A> = —a > 0. (21)

We now move into a frame of reference free of the linear advection (i.e.,
T —y=x—AXandt — 7 =t where A = A? and Av , respectively).
In the new travelling coordinates we seek a stationary solution. This yields
exactly the previous results and clarifies their very special nature. Since
the resulting subsystem is governed by a polynomial first order differential
equation, for those cases that afford such a split, in general one should not
expect oscillatory patterns.

A more evolved operator factoring is found via

[0+ A(1-w)][0+ B(1+u)|u = upe + (2B — A)urg + (A+ B)u, + ABu(l —u?).
(22)
There are two natural choices; either A = 2B or A = —B. In the first

case

us — 2B%(43)g + Ugze = 3BUgs (23)

is factored into two first order pieces

uy — 2B%uy + [0+ 2B(1 — u)][0 + B(1 + u)ju = 0. (24a)

11




Eliminating the linear advection via z — y =z + 2B%*, t — t, we find a

kink solution: u = 1/[Cyexp(By) + 1]. The second case enables to factor

up — oty + @(u)y + Ugge = V(u?)ee where o = 412/9 (24b)

into two parts. This case will be shown shortly to be exactly linearizable
and thus need ;og to be persued-any further here.

The possibility to factor operators is a topic of a far wider applicability
than can be treated here. Let us only note that if m = & and a = p then

equation (5b) can be factored as

(1 —9,)[(L+ 3y )uy + po,u™ =0

which enables to find solutions to equation (5b) by solving the second
order equation

Ugt + U + p(u™), = 0.

2. A Direct Ansatz; the various approaches presented overlap to some
extent but not completly. This gives some hope for something new. The idea
explored now is simple: a change of variables introduces a degree of freedom
which is then utilized to decompose the problem into a solvable sequence of
simpler ones.

Consider the KdV — Burgers case; k = n = 1,m = 2. We restore the

integration constant P, in (6c) and use the ansatz
U = Uy + e*F(e*").

The choice of the powers in the exponent is dictated by the balance be-

tween nonlinear advection and dispersion. Eq.(6c) now takes the form
Ag + Aze®™ 4 Azeden 4+ Ayt = (. (25a)

We solve (25a) equating each A, to zero. This leads to four equations
which determine the parameters as follows

12




a=0/5 U():~1——I~3—Ui P, =2Uy—Uya (25b)
’ 2a 250" "
and an equation for F';

o F" + 25aF? = 0. (25¢)

The solution of (25¢)is given in terms of an elliptic function, but the solution
to U

U=Uy+s*F(s), where s = explon/5|, (26a)

develops unbounded oscillations as 7 — oo0. A bounded solution is ob-
tained when F degenerates into an algebraic entity;

R

(14 e—om)2’

The solution trajectory connects Uy with Uy — Fy. Since we have to

U=Uy— Fy = 60%/25a. (260)

connect the steady states, U = 0 and U = 1, we need Uy = Fy = 1, which
implies ¥/A = 0? = 25/6. Thus the speed of the kink for a given upstream-
downstream pair is, again, limited to one definite value.

A similar ansatz may be used in a number of other cases , say; m =k =
2andn =1orn =1,k = 2,m = 3. In each case a balance between the
dominant parts dictates an ansatz of the form

U =Uy+ sF(s), where s=¢e". - (27)

Repeating the analysis we find that the sought after bounded solutions
are restricted to the simple kinks already presented. Of course, another
ansatz could perhaps do the trick, but the challange to to find it remains

unanswered.
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4. The Distinguished Case: m=n+2=%k+ 1.

This case will emerge as the only where a meaningful progress can be made.
We start with
4.1: Potential-Representation.

Let i = 6,. Integrating once, Equation (5a) becomes

O; + a(0:)™ + [(0:) ez = ,u[(&z)k]w , a,p = consts. (28)

The next step is to look for an integrating factor which enables to cast
(28) into a conserved form. Upon integration by parts, we find this to be
possible only if m =n+ 2 =k + 1, and yields

i+ 8 {£(0)[(02)"]e + af (0)(6:)"} = 0, (29)

provided that the integrating factor f’(6) satisfies the auxiliary linear

condition

e 1f’"(9) +uf"(0)+af'(6)=0. (30)

If 4 > y/4an/(n + 1) then f takes the form f(0) = exp(r.0), where

a(n+1) _n+1

/
Tn = —~ln £ \/,u% — and py, = 5 k- (31la)

These solutions represent an 'overdamped’ mode of propagation. In con-

trast, if u < y/4an/(n+ 1)

f(0) = exp(—pnb)cos(wnd) where w, = \[M — 2. (31b)

n

We digress to note that the purely dissipative equation (3b), begets

0 + af™ = p(6F),. (32a)
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Under the action of the integrating factor, in normalized time units, this

equation is cast into

vy = [U(’bm/v)k}z . (320)

For k = 1, the quest for an integrating factor in (32a) (which for k = 1 isa
potential representation of the Burgers equation), reconstructs the Hopf-Cole
map, and Eq. (32b) reduces to the linear heat equation. Fork = 1/20rk =2

using another potential function w ( v = w,) we have

(we)? = Wetzy and wowy = [weg]” (33)

respectively.
Returning to our problem one observes that in the overdamped case, the
f — @ relations enable to use f as a dependent variable and cast Eq.(29) into

n=1, ~f;= [f“‘”(f‘“f)m]m where v=1/2+p/r;

= i [BF( ], vhere y=184p2m )

etc., Clearly, the trace of dissipation is carried by . The original variable u

is recovered via

fo
e 22 39
R (38)
The « as defined in (34a) has two branches
1 1 1
—_— U — ——-— =, 34
V=St T 1= = (34c)
where

s=afu’. (344)

Observe that a and p enter into the problem only via §. While v as a function
of 4 is continuous, with —1 / 2 < vy_ < 1/2, ~, is discontinous and unbounded
at 6 = O (this corresponds to a = 0). As is clear from (34c), both branches

15




coincide at § = 1/2 (the upper limit of the overdamped mode), and § = —oo-
the purely dispersive limit.

We note the following invariance property of Eq.(34a);

Let f* = {2 and v* = 1/4~, then Eq.(34a) is invariant under f — f*,
v = v* (and t — t/27v). Proof by substitution.

The lemma assures that every solution obtained for a particular value
of v, can be used to generate another solution via its ‘conjugate’ value ~*
corresponding to the same 0. In the purely dispersive case v =1/2, v = v*
and Eq.(34a) is invariant under f — 1/f. This is the potential counterpart
of the invariance of the mKdV, which associates with every speed A two
solutions; v and —u.

That v depends only cn 4§, merely reflects the fact that for the distin-

guished class, we are dealing here, defining

v=ypu, §=afp® and T =t/p"", (34e)

yields

vr + 5(vn+2)m + (vn)azzz = (Un+1)$:c' (34f)

Thus ¢ is the only relevant parameter in terms of which all properties of
this class can be expressed.

Is the representation (34) of Eq.(5a), really a simplification? Though the
convection and dissipation parts of the original problem have been eliminated,
their replacement is quite cumbersome. Yet, insofar as special solutions
are concerned, equations (34a,b) offer a great advantage over the original
Eq.(5a). Here we consider the implications of two obvious symmetries, that
of stretchings and Galilean boosts;

Let n = 1. The invariance of Eq.(34a) under the group of stretching

provides similarity solutions of the form

F=r"18®(n), n=z/(3r"%), r=t/y, (36a)

16




and @ satisfies
—nd = @7“(‘1)'7),7,, + Cy, Cy = const. (36b)
If Cy = 0 then in terms of Z = &~ we have a linear equation
Zpy +1Z =0, (37a)
solved via the Airy functions Ai (n) and Bi (n);

f=7""Ai(n) + CBi(n)] 77, Ci = const. (37)

In terms of u we have (/ = d/dn)

yo oA+ CUBL()
(37)1/3 LAy(n) + C1Bi(n)
However, due to the divergence of either A}(n) or Bi(n) as |n| — oo, this

] ) Ug = ’7/7'1 . (38)

solution is unbounded. If the integration constant Cjy is kept, the problem
is far more difficult. Apart of two special cases; v = —1 , which renders the
problem linear

—-n® = ¢, + Cy, (39)

and the purely dispersive v = 1/2 case, which yields a second Painleve tran-
scendent in terms of V = ®~1/2, ] cannot say much about its solution.
The constant Cy in (39) induces an additional part in the solution;
n
fr= Con? Za3nn3n where as, = (—1)"(—37%_%!5)—!.
To understand the origin of the special linear subcase (37a), let us derive
the similarity form directly. Since m = k + 1 = n + 2, we obtain, see sec.1,

u= t'FﬁI‘EF(g = x/t"%'%r'i), After one integration

-1
n+42

(CF) 4+ aF™? + (F™) = p(F™Y + Oy, (40a)
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where C) is a constant. We now observe that in the overdamped case

presently considered , equation (40a) may be factored into

1 ,
(0 + )=+ aF™ o (F™1Y] = G (400)

where Cy = 'y — 1/(n + 1) is another constant. If Cy = 0, then Eq:(40b)
reduces into a‘{irst order equation. For n =1 it is a Riccati equation, which
can be linearized via an uplift to a second order. The resulting form coincides
with (37a). For n # 1 even the first order equation does seem to be solvable

in an explicit form.

4.2: A Few Special Cases

For certain values of v, Equation (34a) takes a particularly attractive form.
Thus when the radical in (31a) vanishes, we have a double root p/r = —1 (
=> v = ~1/2), then in terms of ¢ = v/f our problem reads

VPP = [¢¢a:a:]z (410‘)

For future reference we record another interesting form forn =2 and vy = -1
WeWy = WepWeze where f = w,. (41b)

Perhaps the most remarkable particular case occurs when v = —1 (thus

d = 4/9), for in this case Fq.(34a) reduces to the linear dispersive equa-
tion

To recapitulate; Eq.(42) represents the DD(k = 2,m = 2,n = 1) for
a = 4u*/9. We turn now to exploit the linearity of Eq.(42) and consider

Travelling waves; depending on the direction of propagation there are
kinds of waves;
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A. Waves propagating to the left. We set s = x — At and f has to be of
the form f = fy + Y ancos(v/A,s). A one mode solution is (ug = 3/2u)

u VA sin(v/Ags)

u _fl + cos(\/Xls)’ Ju = const. (43)

Certainly, for |fi] > 1 this is a nice periodic wave. However when two (or
more) modes are involved and their speed ratio 1/ A; /A, is not commensurate,

periodicity is lost. Let A} =1 and Ay = 2 and write a two mode solution as

u _ bisin(s) + byv/2sin(v2s)
up 1+ bcos(s) + bycos(v/2s)
If |b1] + |b2] < 1, the solution stays bounded but the periodicity is lost.

(44)

However if |b] + |bo] = 1 (or > 1), things change drastically; depending
on how closely the two periods overlap one, obtains bursts of intermittency.
The theory of Diophante approximations assures that in an arbitrarily large
interval, u will attain any value with a frequency inversely dependent on
the amplitude. This means that on an open interval we should expect both
bounded and unbounded burst(s).

For a periodic motion the strength of the intermittancy depends on the
_period; there is a minimal interval of periodicity in which u, with a prede-
termined level of proximity, will attain at least once a prescribed value.

B. Waves propagating to the right; Now f is of exponential type and can
be used to describe interaction of kinks. However, a more interesting interac-
tion emerges if one mixes waves moving in both directions. A simple example
is one in which a periodic waves (traveling to the left) are superimposed on
a kink which travels to the right (« and 3 are arbitrary constants);

u _ asinho(z + o?t)] - byBsin[B(z — %)
U coshla(z + a?t)] + bocos[F(z — §%t)]
The resulting solution is a bounded (]by| < 1) oscillating breather; the

, lbol <1 (45)

largest oscillations are at the center, they travel out and decay exponentially.
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The overall solution is best seen in a frame moving with the kink. If s =

T + o’t, then the composite solution reads

u __asinh(as) — bySsin Bls — (8% + a?)i]

Uy cosh(as) + bgcosf[s — (52 + a)t]

As can be seen from the example in Fig.(1), the oscilatory part decays

, lbol < 1. (46)

quickly away from the center.
Rational solutions; In analogy with the polynomial solutions to the
Laplace (or heat) equation, one constructs polynomial solutions P,(z) to

Eq.(42). In terms of u, these are rational functions. We use, for instance

6

Ps(z,t) = 5 x5 1 tz® + 3t + Cy, and Cy = const., (47a)
to construct
u % — 60tz?
—_—— 47b
Ugp Pﬁ(l‘v t) ( )

This solution, which starts at ¢ = 0 as a nice pulse

U 625

w28+ 120C,°

develops a singularity within a finite time, ¢,. This singularity is due the the
emergence of a double, bi-cubic root (for t, = /Co/27 and z, = 60t.}/?) in
Ps. Since Cy is a constant, the time of blow-up and its location are adjustable.
This evolution is clearly seen in Fig.(2). A similar effect is observed for other,
even order, polynomials, c.f.,Py = 2*—24tz+C) ( In polynomials of odd order
singularity is present at all times). The solution (47b)is useful to elucidate
the emergence of a singularity.

Remarks:

A. The linearization ’'miracle’ which occurs for a specific ratio between
the coeflicients of dissipation and dispersion,i.e., when § = 4/9, provides us
with an analitical handle which otherwise is completly beyond our reach.

Since, however, this value of § has no particular physical distinction , one
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can use the explicit forms at hand as an initial input, to study numerically
the formation of patterns for other values of 4.

B. The formation of a singularity in the last example, reflects the fact that
for negative u’s the dissipation in the DD(3,1,2) equation turns into an anti-
dissipation, which is to say that for © < 0 energy is deposited to the wave.
This is a highly destabilizing mechanism which in the present example leads
to a blow up in a finite time. However, in other cases, to be discussed shortly,
this instability will cooperate with dispersion and convection to generate
stable, permanent, patterns.

C. Observe (see (34b)) that the n = 2 case does not admit a linearizable

subcase. In fact looking at the 'reverse problem’

and taking u = f./f, we find that u satisfies

4 3, .
U + (u’4)m + —(u3)zm + §(u2)zzz + Uzozz = 0. (49)

3
This equation is the DD(3,4,2), but with an additional, fourth order,

term. Its presence thus precludes the DD(3,4,2) from being linearizable, at

least in the sense that applies to the Burgers and DD(2,3,1) equations.

D. We remind the reader that all the special solutions presented so far
this section, are based on the fact that f was used as a new dependend
variable, and are thus limited to the overdamped mode. The fact that in the
underdamped case such representation is impossible, restricts our analysis to

travelling waves.

4.3:Travelling waves

We now consider three ways of finding traveling waves in the distinguished
case. Two are presented next and one in the Appendix.
First approach; we reconsider ab initio the solutions of Eq.(6¢c) which

now reads
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—U + aU™2 + (U"),, = (U™, (50)

Intermsof v="U,, z=U"'v and y=U""! we have
—1+4+ay+n(n+ l)z%;- =o(l+n)z.
Define ¢ = (ay — 1)/(n +1) and F = z/¢. The resulting equation

dF o —1—6,F? an

= * — 1 ,b
dn ¢ 5 F where 0 T (51la,b)
may be immediately integrated to yield
ln—C— = —0d, / Far where D =6,F*—-oF +1. (52)
Co D

Clearly, the nature of the solutions depends on the roots of D. Each of
the three different cases yields a different solution manifold ®((, F') which
still has to be unfolded in terms of the original variables U and v, for the
last integration n = fdU/v to be carried out. The program, while quite
straightforward, is in practice too involved to be carried out even when D
has a double root. In this case the integration of (50) yields an implicit

expression for z

oz — 2¢ = ulpexp (0225%). (53)

Further unfolding yields an expression for v, which cannot be made ex-
plicit in terms of U and thus cannot be used to determine 7. For other cases
the affairs are even more complicated. Thus even the availability of a first
integral could not render the problem solvable explicitely.

Second Approach; we now exploit directly the potential representation
(29) of our problem. Each n has to be considered separately. In addition, it
is also necessary to treat separately the overdamped and the underdamped
cases.

The overdamped, n==1, case ;
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Let s =z~ At and R = =7, then after two integrations Eq.(34a) yields

(v # —-1/2) |

R+ P.(R)=E, where P,=\R?+ AR*/", (54a)
and R ,
u=—12 =+ JER2> Ny - ARV (54b)
7’1R 1

A and FE are integration constants( E plays a role of the ”total energy”).
In terms of R we thus arrive at an equation describing a motion of a particle
in a central field. The only trace of disipation is carried by 7. Recall
that two +'s correspond to the same 4. In fact, we can transform equation
(54a) into an equivalent form with +, replacing .

Consider first the purely dispersive case; this is the defocusing, a < 0,
variant of the m — KdV. Now v = 1/2, f = 1/R?, and potential function
P +(R) has a shape of a double hump, if A > 0, and A < 0, or a double well,
if A <0 and A > 0.(see Figs.(3a) and (3b)).

1. The double hump case; depending on whether A\?2/164AF < 1,=
1, or > 1, we have in R(s), a periodic motion, a runaway or a kink, re-
spectively. However, since u is a logarithmic derivative of R, passing through
the bottom of the potential implies that at B = 0 u becames unbounded un-
less R; vanishes as well. Thus, for instance, the zero of the kink in R-units,
is an unbounded crest of a soliton in u.

2. the double well; for £ < 0, R undergoes a periodic motion with R # 0
consequently the motion is bounded and periodic in both R and u. When
E = 0, R describes a soliton, with R and R, vanishing simultanously. In
terms of u this trajectory is a kink. When E > 0 the periodic motion in R
samples R = 0, (here R, = V'E), thus in u, the resulting wave is periodic,
but unbounded. :

Let us now restore the dissipation, thus v # 1/2.

Given the wave speed A, the freedom to choose E and A, generates a large
variety of patterns. Seeking the bounded ones, we have to assure that R is
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kept away from 0, which necessiates to take £ < 0 and consider a negative
potential well. Taking into account that a<0 — 7v>0 and a >
0 — v <0=>, when v >0, ARY" is superquadratic, and thus controls
the behavior of the potential at large R’s, it is then easily seen that bounded

oscilations in u Will be found for

E<0, A<0, and Avy>0.

We note the two special values of v = +1 and — 1. In the first case
the periodic waves can be expressed in terms of ratio of elliptic functions, in
the other, which is the exactly linearizable case, in terms of trigonometric
functions.

Actually, when v = 1,4 > 0, and A < 0 the resulting potential (see
Fig.(3c)), has exactly the same form as the potential of the travelling waves
of the KdV!. For F < 0, R never vanishes and we obtain bounded oscillations
with periodicity expressed in terms of elliptic function. When E = 0, motion
of R describes a soliton with u being again a nice kink.

The fact that we obtain a self sustained oscillatory motion can, again,
be attributed to the peculiar form of our dissipative term, which for v < 0
becames anti-dissipative. Thus for z > 0 the wave deposits energy to the
medium, but for u < 0 the opposite occurs; the medium transfers energy
to the wave! When the resulting motion is bounded and unattenuated, dis-
sipation and energy deposition are in a detailed balance. Indeed, since R,
changes sign at each of its crests, u takes both positive and negative values.

This process is a continuum analog of a well known phenomenon ocurring
in nonlinear oscillations; pumping energy into a damped motion can sustain
oscillations, and in a nonlinear case, even induce new ones.

n > 2; Let s = z — At and n = 2, then after two integration Eq.(b) yields

F3 —\F* + AF**YY = E here F = f7. (55)

The form of this eqution is quite unusual and defies a simple physical
interpretation. When either of the integration constants £ or A vanishes,
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one can derive an a simple solitary solution. However it is easier to derive
this solution directly from (28); an integration in a traveling frame, and

simple rearrangments, yield

—Af+2f'0,0,, +af(0,)* = Co. (56a)

" The sought after solution is obtained upon assuming that Cy = 0. Since

f = exp(r26) and u = 6,, equation (56a) simplifies

A+ ro(u®)s + au® = 0. (56b)
Let us assume that al > 0 and introduce u = (\/a)}*V, then

vav 1 A )
— 5 = 2ar2(5)1/38 = kys. (56¢)

This is an elementary integral which yields;

(V-1
VIivV 1

1+2V) K
V3 V3

Note that if in (56d) dissipation is removed, the resulting defocusing

In| ] + 2v/3tan"Y( = 6kys + (56d)

m — KdV yields a dark soliton with a cusp at the origin. This can be seen
from (56); now ry = +,/—8a/3, and for a < 0 the solution is composed from
two branches of the solution that join to form a cusped soliton ( a cuspon,
see ref[4]). When dissipation is restored its impact is to distort the cusped
solitary wave to the effect that the resulting solitary wave is asymmetric,
see Fig.(4). Again to construct this solitary wave, we use the two branches
of the solution (ry takes both positive and negative values, see (31a)). If
instead dissipation, dispersion is removed, the resulting solution is a kink
with u vanishing on the front line z;(¢). Near the front, u ~ /7 for x <
0 (and w = 0, for x > 0), and as required, the dissipative flux vanishes at
this point. However, when both dissipation and dispersion are present then,
since the dispersive flux ((u?),.) does not vanish at u = 0, this point can no
longer serve as a front line.
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For the solitary wave of the last example, the integration constant was
discarded, which enabled us to return to the original variable u. In this
case the long detour via the potential representation was needed to deduce
Eq.(56b). This procedure can be reapplied to other solitary structures in the
overdamped case as follows;

Let s=x ;'At, and integrate equation (29) once. Discard the integration

constant to obtain

_)‘f + fl(e)[(es)n]s + af(es)n_H =0
Using f = exp(r,f) and u = 6, we obtain
—A 7 (u™)s + au™tt =0, (56¢)
which yields (u = (A/a)* V)

vrldgy 1 A Unt1) . —
1— V.n'*'l = na’[‘n(a) S = kns. (56f)

For integer n's the last integral is known. For n = 1 and n = 3 we obtain

kink solutions as follows
n=1 V = tanh(k;s) (569)
1+V

1-V
Note that all kinks which we have obtained so far, are monotone. Oscil-

n=23; In{ ] —2tan™' V = 4kss (56h)

latory kinks will be found in the underdamped case to be considered shortly.
Observe that the last kink has a perfectly vertical slope at the origin
which is in the center of the sharp transit (u ~ s'/3), and where dissipation
collapses exactly. §
Unlike the n = 2 case, for odd n’s, both positive and negative a's are
permitted, provided that aX > 0. Since
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a<0= k>0, k, <Owhilea>0= ki <0, k, <0,

and k= is corresponding branch of r,+ (see (56e)). In the first case, the
orientation of the resulting kinks is opposite, while in the second case, we
have an unusual situation, wherein both kinks have the same orientation.
Example of such pair of kinks is shown in Fig.(5). The various questions
which this situation raises, must at this stage be left unanswered.

One cannot leave the present topic without pausing to understand how a
first order equation in u, Eq.(56e), relates to the full travelling wave equation
(50) (apart of a slightly different normalization). The answer is to be found
in the possibility to factor Eq.(50) into a product of two operators. Using

the present notation we have

(05 + Tpu)[— A + 1 (u™)s + au™t] = 0, (56i)

which clarifies how factorization leads to the solitary wave solution. Clearly,
for other solutions one has to address the full equation. Note, that unlike
the cases considered in sec.2, the present factorization does not restrict the
solution to one, definite, speed of propagation. Similarly to the factorization
in (40a), the factorization is limited to the overdamped mode. In the purely
dispersive case this allows factoﬁzatz’on only in the defocusing variant of the
m-KdV, with r, = +v/—2a.

The Underdamped n = 1 Case;

Now i < v/2a, 4y = it and w; = w. Since in the present case e no longer
can replace 6 with f, We shall use equation (29) directly. Integration in a

travelling frame yields

“Af+ fOss + f02 =Co, s=1z— At. (57)

no simplification of the kind made in (56) seem to be possible now. As it
stands, Eq.(57) looks even more complicated then the original in (6). What
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makes the difference is the existance of an an integrating factor; multiply
(57) by v6, - the integrating factor is then defined via

(f'v) = 2afv.

If R = f'v/2, then our problem may be cast into

~AR, + a[R82], = Cyvf,.

Integrating and solving for v and R yields

6% + R,cos(wh)et’ = 2 , R. = const. (58a)

Equation (58a) looks like an energy equation for a nonlinear oscillator.
The trace of dissipation is kept in the exponential part of the potential shown
in Fig.(6).The invariance of the problem under shifts in 8 is used to assure
that the potential function vanishes when # = 7/2 . This rescales the inte-
gration constant (in Fig.(6) we assumed a = 1, andR, = 1). One is now left
with one, final, integration to determine 4.

The crucial features of the solution will be now deduced directly from
(58a), without solving explicitely for 6.

We consider first the m — KdV equation, now a > 0, and set u = 0
in(58a). (= w = v/2a).

(85)* + R.cos(wh) = % , R. = const. (58b)

In terms of §, Eq.(58a) is now an energy equation for the travelling waves
of the m — KdV. Here A/a plays the role of the total energy of the system.
When A/a is above the potential well (i.e., when R, < A/a), then 6,(= u)
never vanishes ( u always resides in one of the wells in (59)). The class of
large oscillations in u is obtained when A/a resides within the potential well,
i.e., Afa < R.. The transitory state wherein R, = A/a describes one kink

solution in @ which in terms of u is a one soliton solution.
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Note that Eq.(58b) has exactly the same form as the equation describing
the motion of a nonlinear pendula with 8 describing the angle of deflection.
In this description u represents the angular velocity. The soliton in u would
then represent that particular scenario wherein the pendula starts at one
horizontal position and, as ¢ — oo, approaches the other horizontal position.

It is also useful to write the energy equation for the m — KdV in terms

of the original variable u;
u? — M+ aut/2=FE. (59)

For X > 0 its potential has a double well, with two equilibrium points
u = %/ A/a. It is seen from (58a) that these equilibrium points are attained
when § — —oo. For E < 0, Eq.(59) has two separate bands (u > 0
and v < 0) of travelling waves, which for E > 0 merge into a one, large
amplitude domain. We see that the particle motion in the potential well in
(59) corresponds in (58b) to an unconfined motion (so that §, never vanishes)
and vice versa.

Returning to the dissipative problem we note that the exponential factor
causes the potential function to oscillate with an ever increasing amplitude
thus, irrespective of the value of the 'total energy’, A/a, it has to cut the

“potential well at a certain point, say; 8 = 6,,.

Assume first this point is not one of the crest points of the potential.
Then starting at § — —oo where 8, = u? = \/a, the solution develops an
ever growing oscillations until § = §,, where #; = 0 and thus u vanishes. This
is a turning point of the potential well in (58a) (see Fig.(6)), which means

that now u has changed its sign, on its way back to the equilibrium point

at 8§ = —oo. In terms of u, the traveling wave is thus an oscillatory kink
connecting the two equilibrium points; u = —y/A/a with u = /A\/a. Using

a mechanical analogy, the anti-dissipative nature of the diffusive part for
negative u’s, drives the 'particle’ out of u = —;/\/a in the left well, toward

the stable equilibrium point u = +/A/a in the right well in (59). Throughout
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this drive the ’'particle’ oscillates with an ever decreasing amplitude, around
the final rest point at the bottom. The traveling wave thus acts as a bi-stable
system. Three such kinks are shown in Fig.(7). The crest near § = 0 is at
1.0032. In Fig.(7a), A = 0.9. In Fig.(7b), A = 1.002, placing it very close to
the top. The resulting change in the pattern is clearly visible. Now note tha
kink in Fig.(9¢) with- A = 1.0034, which is slightly ’over the top’, and allows
the particle to cross the top and roll into the next well where it executes one
more oscilattion and then is reflected back by the barrier of the well. This
one extra oscillation is clearly noticible in the resulting shape of the kink.
In the limiting case, shown in Fig.(7c), wherein A = 1.0032, to be discussed
shortly, the uphill push is such that as s — oo the particle approaches the
top (where u = 0), 'without having the time’ to roll to the second well.
We note that unlike the monotone kinks found in the overdamped regime, all
kinks found here oscillate! ; '

The same ’energy level’ A/a which generates the kink, also enables an
infinite number of oscillating waves, each of which resides in its own potential
well. As can be anticipated from Fig.(6), as one moves in the right direction
from one well to another, the well deepens and narrows. The corresponding
amplitudes and the frequancy of these waves, increase in discrete quantas.
With each wave having its own eigen-frequency. Two such cases are shown
in Fig.(8a) and (8b), respectively ( using the notation in Fig.(6); one wave
resides in valley (1) and the other in valley (3)). The pattern shown in
Fig.(9a), share the same well with the one in (8a), but the ’energy level’ A
is different. As in all other cases, the persistance of undamped oscillations is
due to energy deposition whenever u assumes negative values.

The exceptional case, aluded before, wherein the energy line is tangent
to one of the crests, say at ¥, = wf., necessiates that

g =—tan(y,) and A= aR*cos(wc)eﬁ’” (60a)
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where

g

it

S VBT (608)

to be satisfied. Given R, as a measure of the initial energy of the wave,

7 1
w

condition (60) is satisfied by a denumerable number of wave eigen-speeds
Ai, 1= 1,2,.. given via ¥, + 2im. Each eigen-speed represents energy line
tangent to a specific crest. Approaching now the crest point near § = 0,
corresponds to the tail of u — 0 as s = co. The resulting solution is also a
kink in u and is accompanied by a train of damped oscillations connectiong
the upstream at v = 0 with a downstream at u = +XA/a (see Fig.(9a)). A
countable number kinks corresponds to a countable number of eigen speeds
in (60a). In addition to the oscillatory bands of travelling solutions residing
each in its own well, one well, namely; the well to the right of the critical
crest (6.) , stands out. It hosts a solitary wave in 6. In terms of u, this is
a traveling doublet - see Fig.(9b). Using the potential double-well of the
m — KdV, (59), we can interpret this solution as follows; a particle starting
at the u = 0 top, rolls into the left, unstable well. Due to anti-dissipation,
it gains energy and its return to the top of the hill at u = 0, occurs in a
finite time. Now it rolls into the right well. Here, however, the process is
dissipative, and the motion is such, that its return from to the top of the hill,
will take now an infinite time.

The underdamped cases for n > 1; Similarly to the n = 1 case, we
obtain an expression which is completly analogous to (58a), namely;

(93)n+1 + R*Cos(wne)e“”e = 2 , R* = const. (61)

The main difference is between odd and even n’s. For odd n’s, say n =
3, the analysis for n = 1, carries through, with quartic root replacing the
quadratic root, but where for n = 1 we had a solitonic tail, the pulse has a
sharp front, compare Fig.(7c) with Fig.(11a) In fact, even the doublet seen in
Fig. (10a), has a compact support! In Fig.(12) we display a typical periodic
waves which have a weak discontinuity at u = 0. These waves are exactly
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the n = 3 analog of Fig.(8) Similarly, the kinks in Fig.(11) are the n = 3
replica of Fig.(7a) and (9c), respectively. As for n = 1, the frequency and

the amplitude of these waves change as we move to another potential well.

For n = 2, taking third root in (61) has a very different meaning. Because

both positive and negative values are admitted, we can no longer interpret

equation (61) as describing a motion of a particle in a central field. In

fact all oscillations grow indefinitely. The only bounded solutions arise in

the exceptional case when A/a is tangent to the crest. In terms of u, this

represents a semi-infinite wave train with a sharp front.

5.Summary

We have seen in this work that unless the distinguished m = k+1 = n+2 case,
is considered , very little can be said about patterns emerging from dispersive-
dissipative interactions. Explicit solutions for particular wave speeds have
been obtained and this is pretty much all that can be said in terms of the
ensuing patterns. It is only in the distinguished case that a glimpse into the
dispersive- dissipative interactions became possible. While the stability and
the attraction basin of the presented patterns is yet to be determined, their
variety is truly remarkable. Some of the permanently oscillating patterns
emerge as a result of a global balance between dissipated and deposited
energy. We obtain a global bi-stable dynamical system in which for negative
u’s the system deposites energy to the wave, while for positive u’s it dissipates
it. Without nonlinear convection and dispersion, a system with negative
dissipation, is unstable to the point of ill posedness. It is the presence of
these mechanisms which mitigates the unstable process and generates stable
patterns. One expects that if at ¢ = 0 the negative part of u is not too large,
these bi-stable patterns will be evolutionary. Otherwise, as the example in
Fig.(1) clearly demonstrates, we can expect a blow-up in a finite time.
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Appendix; Traveling Waves Via A Lagrange Map

We define new variables via;

y=U"" and Cz/Udn. (1a)
When m = n + 2 =k + 1, then in terms of y and ¢ equation(6c)yields
n d%y dy
-1 i A 4 16
Tt Tae T %A (18)
‘which is a linear equation. Define
2
nflfyzai\/x where A = 0% — dan/(n + 1), (1c)
then the solution reads
y = 1/a+ yoe* cosh(VAC) when A >0, (2a)
and
y = 1/a + e cos(+/|Al¢) when A <O. (2b).

When A =0 then y = 1/a + yoCe™. In each case the solution has to be

reexpressed in terms of the original coordinate 7, via the integral

¢ ¢

n= / — (3)
o [y(Q)]7+

The present approach provides a uniform representation for all n’s, how-

ever, inspite of its simplicity the map is limited to U’s that do not change
sign, which considerably restricts its applicability.

33




References

[1] P. Rosenau and J.M. Hyman: Compacton — A Soliton with Finite Wave-
length, Phys. Rev. Letters 70, 564 (1993).

[2] P. Rosenau; Nonlinear Dispersion and Compact Structures. Phys. Rev.
Letters 73, 1737 (1994) -

[3] P. Rosenau; On solitons, éompactons, and Lagrange maps. Phys. Letters
A 211, 265 (1996).

[4] P. Rosenau, Phys. Letts A 230, 305 (1997).

[5] P. Rosenau and S.Kamin; Thermal Waves in an absorbing and convecting
medium. Physica D 8,273 (1983).

[6] J.L.Bona and M.E.Schonbek; Travelling wave solutions to the KdV-Burgers
equation. Proc.Roy.Soc.Edinburgh,Sect.A 101,207 (1985).

[7] D.Jacobs,B.McKinney, and M.Shearer; Travelling Wave Solutions of the
mKdV-Burgers Equation. Jour. of Diff. Eqs. 116,448 (1995).

[8] Y. Kondoh and J.W. Van Dam; Self-organization of Solitons for the Dis-
sipative KdV equation. Phys. Rev. E 52,1721 (1995).

t=0 —
) W10 -
15 F 320 - o

Figure 1: A breathing kink in a steadily traveling frame (see Eq.(46).
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Figure 2: Formation of a singularity within a finite time (Cy = 0.1, see
Eq.(47)).
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Figure 4: A dark solitary wave for the overdamped » = 2 mode. Note its
asymmetric shape (see Eq.(56d).
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Figure 3: Types of effective potentials in the overdamped mode, that support
bounded oscillations. In cases (a) and (b), v =1/2, A = £1, and A = F1,
respectively. In (¢); v=1, A=-3and A=1.2
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Figure 5: A kink with a sharp transient at u = 0, where the dissipation flux
vanishes. Here n = 3, a = 1 and u = 2. Note that for a > 0, two kinks ,
having the same orientation, as shown, are possible. In (a), k3 = —1/2, and
in (b), k3 = —1/6 (see Eq.(56)).

Captions of Figures 6-12

Figure 6.- Potential function of the underdamped traveling waves (see Eq.(58a)).

Figure 7.- Three kinks for the n=1 case. The point of reflection of the
kink in (7b) is very close to the crest as is evident from its shape near u = 0.
The kink in (7c) corresponds to the limiting case wherein the ’energy line’ is
tangent to the crest and ’the particle’ is never reflected.

Figure 8.- Two travelling waves having the same speed A = 0.9 but re-
siding in a different wells. The wave in (a) resides in well (1) and the one in
(b) resides in well (3), see Fig.(6).

Figure 9.- Three typical patterns as they occur in the potential well (2)
for n = 1. The periodic wave in (a) has the same speed as the kink in (7b);
its counterpart on the other side of the hill. Both are very close to the crest.
The doublet in (9b) is the counterpart of the special kink in (7c). Their
speed is tangent to the crest.
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Figure 10.- Two kinks for n = 3. Note the sharp angle of approach near
u = 0. The kink in (10a) and (10b) are the n = 3 counterparts of the kinks
in (7a) and (9¢), respectevily.

Figure 11.- The n = 3 counterparts of the n = 1 doublet in (9b) and the
kink in (7c). Note the sharp front of these structures.

Figure 125The 7 = 3 counterparts of the n = 1 travelling waves in
Fig.(8).
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