

APPROVED FOR PUBLIC RELEASE

C/ORNL93-0228

ornl

OAK RIDGE
NATIONAL
LABORATORY

LOCKHEED MARTIN

RECEIVED
NOV 20 1997
OSTI

CRADA Final Report
for
CRADA Number ORNL93-0228

GAS PRESSURE SINTERING
OF SILICON NITRIDE

T. N. Tiegs
Oak Ridge National Laboratory

L. Leaskey and R. O. Loutfy
Materials and Electrochemical Research
Corporation

Prepared by the
Oak Ridge National Laboratory
Oak Ridge, Tennessee 37831
managed by
Lockheed Martin Energy Research Corporation
for the
U.S. Department of Energy
under contract DE-AC05-96OR22464

APPROVED FOR PUBLIC RELEASE

UNLIMITED DISTRIBUTION

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

MANAGED AND OPERATED BY
LOCKHEED MARTIN ENERGY RESEARCH CORPORATION
FOR THE UNITED STATES
DEPARTMENT OF ENERGY

ORNL-27 (3-96)

MASTER

This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P. O. Box 62, Oak Ridge, TN 37831; prices available from (423) 576-8401, FTS 626-8401.

Available to the public from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161.

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.

APPROVED FOR PUBLIC RELEASE

C/ORNL93-0228

CRADA Final Report
for
CRADA Number ORNL93-0228

GAS PRESSURE SINTERING OF SILICON NITRIDE

T. N. Tiegs
Oak Ridge National Laboratory

L. Leaskey and R. O. Loutfy
Materials and Electrochemical Research Corporation

Prepared by the
Oak Ridge National laboratory
Oak Ridge, Tennessee 37831
managed by
Lockheed Martin Energy Research Corporation
for the
U.S. Department of Energy
under contract DE-AC05-96OR22464

Unlimited Distribution

CONTENTS

ABSTRACT	1
OBJECTIVES AND TASKS	1
BACKGROUND AND BENEFITS.....	2
RESULTS.....	2
SUMMARY.....	3
DISTRIBUTION.....	13

Research sponsored by the U.S. Department of Energy, Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Transportation Technologies, as part of the Heavy Vehicle Propulsion System Materials Program, under contract DE-AC05-96OR22464 with Lockheed Martin Energy Research Corporation.

TITLE: GAS PRESSURE SINTERING OF SILICON NITRIDE

ABSTRACT

The Cooperative Research and Development Agreement (CRADA) with Materials and Electrochemical Research Corp. (MER) examined materials made with different starting α/β - Si_3N_4 ratios and with the addition of sintering aids as coatings instead of powders. The samples were sintered by GPS using optimum densification parameters developed for high toughness materials in the ORNL program.

High densities were achieved for all of the samples fabricated at ORNL and containing up to 50% β - Si_3N_4 . The effect of the type of β - Si_3N_4 seed on flexural strength and fracture toughness indicated seeds fabricated by the reaction of either yttrium nitrate or Y_2O_3 powder and Ube E-10 Si_3N_4 developed materials with the highest flexural strength. However, the fracture toughness of these materials (at the 25% addition level) showed no improvement over the baseline composition having no β -seed addition. The effects of the β -seed content on flexural strength and fracture toughness were mixed. Higher toughnesses were observed with 50% β -seed additions, while the other additive levels showed no consistent improvements.

OBJECTIVES AND TASKS

The objectives of the CRADA were to establish:

1. The effect of introducing the sintering additives as a coating compared to conventional powders. The goal was to use less additives and thus enhance high temperature mechanical properties.
2. The effect of using β - Si_3N_4 seeds to enhance acicular grain growth to achieve high fracture toughness.

The tasks of the CRADA were:

Task 1 - MER would fabricate samples with various starting α/β - Si_3N_4 ratios. Most of the samples were made with the sintering aids added as coatings. However, for direct comparison, at least one composition with the sintering aids added as powders was made. Approximately 4 samples of 6-8 different compositions were fabricated under this task.

Task 2 - ORNL fabricated samples with either rare earth silicates or rare earth apatites as intergranular phases and having various starting α/β - Si_3N_4 ratios. The sintering aids were added as powders. Approximately 4 samples of 6-8 different compositions were fabricated under this task.

Task 3 - ORNL gas pressure sintered the samples using about four different conditions of time and temperature appropriate to obtain high density parts.

Task 4 - Characterization of the samples was to be split between ORNL and MER. ORNL would determine density of the sintered specimens, perform SEM of selected sintered specimens, measure fracture toughness by indentation/strength techniques, and determine the flexural strength. MER was to determine density of the sintered specimens, perform

SEM of selected coated Si_3N_4 powders, measure fracture toughness by single edge notch beam techniques, determine the flexural strength at room temperature, and perform x-ray diffraction on selected samples.

BACKGROUND AND BENEFITS

Significant improvement in the reliability of structural ceramics for advanced engine applications could be achieved if the critical fracture toughness (K_{Ic}) were increased without strength degradation. Silicon nitride ceramics are the leading candidate materials for high temperature structural applications because of their combination of excellent strength, fracture toughness, wear resistance, thermal shock tolerance and high temperature properties. It has been long recognized that silicon nitride obtains its superior properties from the interlocking β - Si_3N_4 grain structure developed during densification. The growth of these elongated grains can lead to significant improvements in the fracture toughness of the materials.

Microstructural development to promote this type of growth was being examined by ORNL and MER. The ORNL work was being done under the Ceramic Technology for Advanced Heat Engines Project. The MER work was being done as part of a SBIR subcontract from DOD entitled, "Controlled Microstructure Development of Silicon Nitride to Enhance Fracture Toughness." As a small business, MER was able to use the money from the subcontract as their portion of the funds in a CRADA.

ORNL was currently examining gas pressure sintering (GPS) of silicon nitride for densification and development of high toughness materials. The sintering aids used were designed to either form (1) rare earth silicates or (2) rare earth apatites as intergranular phases. MER was presently studying the effects on fracture toughness of (1) different starting α/β - Si_3N_4 ratios and (2) additions of sintering aids as coatings (as compared to powders that are normally used). The samples were fabricated by hot-pressing or pressureless sintering.

This cooperative project was proposed as a joint development program between MER and Martin Marietta Energy Systems (MMES), the Contractor. Cooperative work was of benefit to both parties. ORNL was able to assess the properties of materials made with different starting α/β - Si_3N_4 ratios and also examine the effects of the addition of sintering aids as coatings instead of powders. MER was able to gain access to GPS facilities and expertise for the densification and development of high toughness materials. Through the combination of efforts, silicon nitride ceramics with improved properties compared to current materials was anticipated.

RESULTS

The test matrix is shown in Tables 1 and 2. Materials with different starting α/β - Si_3N_4 ratios and with the addition of sintering aids as coatings instead of powders were received from MER. Power batches were also made at ORNL with different starting β - Si_3N_4 types and sizes.

The β - Si_3N_4 seed was produced by heating various combinations of Si_3N_4 powders and Y_2O_3 as shown in Table 3. The powders were milled together and the fired at 1700°C for 4 hours to produce the β -phase materials. Scanning electron microscopy photographs of the β -phase powders are shown in Figs. 1 through 5. As shown, several different β - Si_3N_4 morphologies were produced.

An initial set of samples were sintered by GPS using the optimum densification parameters developed for high toughness materials in the ORNL program. These densification results are summarized in Table 4. Additional samples were sintered by GPS using the same optimum densification parameters developed for high toughness materials in the ORNL program. These additional densification results are shown in Table 5.

As shown in Tables 4 and 5, high densities were achieved for all of the samples fabricated at ORNL and containing up to 50% β - Si_3N_4 . The lowest densities were observed for samples containing the Shin-etsu β - Si_3N_4 and the material with the Y_2O_3 - SiO_2 plus the β - Si_3N_4 . The materials from MER containing the β - Si_3N_4 powder from Shin-etsu also showed low densities.

The samples that achieved densities > 90% were machined into test bars for mechanical property testing as summarized in Table 6. As shown, a wide range of strengths and fracture toughness were obtained.

The effect of the type of β - Si_3N_4 seed on flexural strength and fracture toughness are illustrated in Fig. 6. The seeds fabricated by the reaction of either yttrium nitrate or Y_2O_3 powder and Ube E-10 Si_3N_4 developed materials with the highest flexural strength. However, the fracture toughness of these materials (at the 25% addition level) showed no improvement over the baseline composition having no β -seed addition. High observed fracture toughness are usually associated with bimodal microstructures of high aspect ratio grains. The β -seeds made with Ube E10 Si_3N_4 were similar in size to the α -phase powder and during the initial stage liquid formation these seeds may have had dissolution rates similar or higher than the α -phase powder. In that case, the β -seeds would have a minor contribution to the β -nucleation and result in the development of a uniform grain size. This may explain the improved strengths with no increase in toughness, but microstructure analysis will be done to confirm this.

In contrast, the β -seeds made with the Ube E03 or Starck S1 Si_3N_4 (and Y_2O_3 powder) were generally larger than the starting α -phase powder. This resulted in materials with similar or slightly lower strengths, but significantly higher fracture toughness as shown in Fig. 6. The microstructures are believed to be more bimodal in grain size which would result in the increased fracture toughness. In the case of the samples made with the β -seed from Shin-Etsu, the low strengths are attributable to the poor densification exhibited by these materials. The higher toughness is probably due to a combination of some large β - Si_3N_4 particles in the powder and the low density.

The effects of the β -seed content on flexural strength and fracture toughness are summarized in Fig. 7. As indicated, improvements in strength were observed with the addition of 25% β -seed. At the other two additive levels (5 and 50%) generally lower strengths were obtained, however, the results were mixed. The fracture toughness also showed no definite trend. Higher toughnesses were observed with 50% β -seed additions, while the other additive levels showed no consistent improvements.

SUMMARY

The Cooperative Research and Development Agreement (CRADA) with Materials and Electrochemical Research Corp. (MER) examined materials made with different starting α / β - Si_3N_4 ratios and with the addition of sintering aids as coatings instead of powders. The samples were sintered by GPS using optimum densification parameters developed for high toughness materials in the ORNL program.

High densities were achieved for all of the samples fabricated at ORNL and containing up to 50% β - Si_3N_4 . The lowest densities were observed for samples containing the Shin-etsu β - Si_3N_4 and the material with the Y_2O_3 - SiO_2 plus the β - Si_3N_4 . The materials from MER containing the β - Si_3N_4 powder from Shin-etsu also showed low densities.

The addition of the sintering aids by using coatings resulted in lower strengths as compared to powder additions for all sintering aid types. The effect of coatings on the fracture toughness generally showed decreased values with the exception of the Y_2O_3 - Al_2O_3 system.

The effect of the type of β - Si_3N_4 seed on flexural strength and fracture toughness indicated seeds fabricated by the reaction of either yttrium nitrate or Y_2O_3 powder and Ube E-10 Si_3N_4 developed materials with the highest flexural strength. However, the fracture toughness of these materials (at the 25% addition level) showed no improvement over the baseline composition having no β -seed addition.

The effects of the β -seed content on flexural strength and fracture toughness were mixed. Higher toughnesses were observed with 50% β -seed additions, while the other additive levels showed no consistent improvements. The seed material fabricated from Ube E-03 powder exhibited the highest improvement in fracture toughness.

Table 1. Test matrix to determine effects of β -Si₃N₄ Content and type for samples fabricated at ORNL.

Test No.	Grain Boundary Phase Composition	Rare Earth Addition	β -Si ₃ N ₄ Content (%)	β -Si ₃ N ₄ Seed Source
MR-1	Sr ₂ La ₄ Yb ₄ (SiO ₄) ₆ O ₂ (8 eq % ox)	Powder	0	--
MR-2	Sr ₂ La ₄ Yb ₄ (SiO ₄) ₆ O ₂ (8 eq % ox)	Powder	25	ORNL #1
MR-3	Sr ₂ La ₄ Yb ₄ (SiO ₄) ₆ O ₂ (8 eq % ox)	Powder	25	ORNL #2
MR-4	Sr ₂ La ₄ Yb ₄ (SiO ₄) ₆ O ₂ (8 eq % ox)	Powder	25	ORNL #3
MR-5	Sr ₂ La ₄ Yb ₄ (SiO ₄) ₆ O ₂ (8 eq % ox)	Powder	25	ORNL #4
MR-6	Sr ₂ La ₄ Yb ₄ (SiO ₄) ₆ O ₂ (8 eq % ox)	Powder	25	Shin-Etsu
MR-7	Sr ₂ La ₄ Yb ₄ (SiO ₄) ₆ O ₂ (8 eq % ox)	Powder	50	ORNL #1
MR-8	Sr ₂ La ₄ Yb ₄ (SiO ₄) ₆ O ₂ (8 eq % ox)	Powder	5	ORNL #1
MR-9	Y ₂ Si ₂ O ₇ (5 eq. % ox.)	Powder	0	--
MR-10	Y ₂ Si ₂ O ₇ (5 eq. % ox.)	Powder	25	ORNL #1
MR-11	Sr ₂ La ₄ Yb ₄ (SiO ₄) ₆ O ₂ (8 eq % ox)	Powder	50	ORNL #2
MR-12	Sr ₂ La ₄ Yb ₄ (SiO ₄) ₆ O ₂ (8 eq % ox)	Powder	5	ORNL #2

Table 2. Test matrix to determine effects of β -Si₃N₄ content and rare addition method for samples fabricated at MER.

Test No.	Composition	Rare Earth Addition	β -Si ₃ N ₄ Content (%)	β -Si ₃ N ₄ Seed Source
MC-1	4 % Nd ₂ O ₃ -1% Al ₂ O ₃	Powder	0	--
MC-2	4 % Nd ₂ O ₃ -1% Al ₂ O ₃	Coating	0	--
MC-3	4 % Nd ₂ O ₃ -1% Al ₂ O ₃	Coating	25	Shin-Etsu
MC-4	4 % Nd ₂ O ₃ -1% Al ₂ O ₃	Coating	50	Shin-Etsu
MC-5	4 % Nd ₂ O ₃ -1% Al ₂ O ₃	Coating	5	Shin-Etsu
MC-6	4 % Y ₂ O ₃ -1% Al ₂ O ₃	Powder	0	--
MC-7	4 % Y ₂ O ₃ -1% Al ₂ O ₃	Coating	0	--
MC-8	Y ₂ Si ₂ O ₇ (5 eq. % ox.)	Powder	0	--
MC-9	Y ₂ Si ₂ O ₇ (5 eq. % ox.)	Coating	0	--
MC-10	Y ₂ Si ₂ O ₇ (5 eq. % ox.)	Coating	25	Shin-Etsu

Table 3. Fabrication of β -Si₃N₄ seed at ORNL.

β -Si ₃ N ₄ Seed Fabrication Number	Starting Si ₃ N ₄	Y ₂ O ₃ Addition	β -Si ₃ N ₄ Content (%)
ORNL #1	Ube E-10	0.7 wt.% (as nitrate)	93
ORNL #2	Ube E-10	1 wt.% (powder)	100
ORNL #3	Ube E-03	1 wt.% (powder)	78
ORNL #4	Starck S1	1 wt.% (powder)	100

Table 4. Summary of results on densification of samples from CRADA with MER Corp.

Sample No.	Weight Loss (%)	Density (g/cm ³)	Density (% T. D.)
MR-1	3.4	3.46	98.2
MR-2	2.5	3.49	99.0
MR-3	2.9	3.51	99.6
MR-4	3.5	3.43	97.4
MR-5	0.2	3.44	97.6
MR-6	3.9	3.12	88.6
MR-7	2.3	3.38	96.1
MR-8	3.2	3.40	96.5
MR-9	1.7	3.11	92.9
MR-10	2.5	2.90	86.5
MR-11	5.5	3.58	101.6
MR-12	3.8	3.48	98.9
MC-1	2.3	3.20	97.7
MC-2	2.6	3.14	95.6
MC-3	4.9	2.89	88.1
MC-4	5.5	2.59	79.1
MC-5	3.8	3.21	97.9
MC-6	2.3	3.12	95.9
MC-7	3.6	3.03	93.1
MC-8	2.3	3.34	99.6
MC-9	5.2	2.52	75.1
MC-10	4.9	3.13	93.3

Table 5. Summary of results on densification of samples from CRADA with MER Corp. gas pressure sintered at 1900°C/1950°C.

Sample No.	Weight Loss (%)	Density (g/cm ³)	Density (% T. D.)
MR-1	5.4	3.50	99.5
MR-2	4.5	3.53	100.3
MR-3	4.1	3.54	100.5
MR-4	4.3	3.53	100.4
MR-5	3.7	3.54	100.5
MR-6	4.3	3.31	94.0
MR-7	2.7	3.52	99.9
MR-8	3.4	3.51	99.6
MR-9	1.3	3.22	96.1
MR-10	2.0	3.11	92.9
MR-11	4.8	3.52	100.0
MR-12	4.2	3.50	99.4
MC-1	3.4	3.22	98.1
MC-2	2.4	3.22	98.3
MC-3	4.2	2.81	85.7
MC-4	4.5	2.66	81.2
MC-5	1.1	3.18	97.0
MC-6	1.1	3.18	97.9
MC-7	1.6	3.15	97.0
MC-8	0.6	3.23	96.4
MC-9	2.5	3.05	91.0
MC-10	2.1	3.16	94.4

Table 6. Summary of results on densification of samples from CRADA with MER Corp. gas pressure sintered at 1900°C/1950°C.

Sample No.	Density (g/cm ³)	Density (% T. D.)	Flexural Strength (MPa)	Fracture Toughness, K _{Ic} (MPa ^{1/2} m)
MR-1	3.50	99.5	646	6.6
MR-2	3.53	100.3	721	6.4
MR-3	3.54	100.5	704	6.3
MR-4	3.53	100.4	665	8.2
MR-5	3.54	100.5	498	7.9
MR-6	3.31	94.0	359	7.7
MR-7	3.52	99.9	425	7.7
MR-8	3.51	99.6	514	8.7
MR-9	3.22	96.1	550	6.9
MR-10	3.11	92.9	464	9.0
MR-11	3.52	100.0	682	8.1
MR-12	3.50	99.4	616	5.6
MC-1	3.22	98.1	627	8.5
MC-2	3.22	98.3	529	5.5
MC-3	2.81	85.7	--	--
MC-4	2.66	81.2	--	--
MC-5	3.18	97.0	669	6.1
MC-6	3.18	97.9	651	5.9
MC-7	3.15	97.0	348	6.2
MC-8	3.23	96.4	562	6.4
MC-9	3.05	91.0	508	6.3
MC-10	3.16	94.4	540	5.7

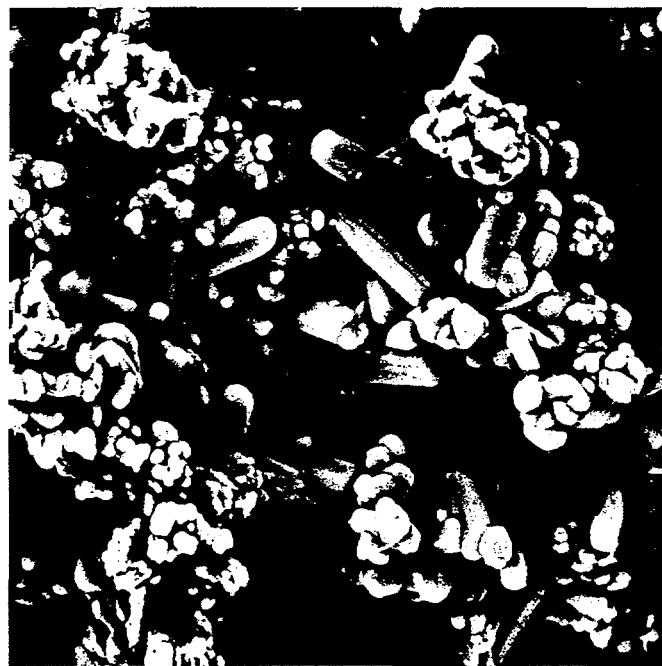


Fig. 1. SEM of β - Si_3N_4 seed material E10/Nit.

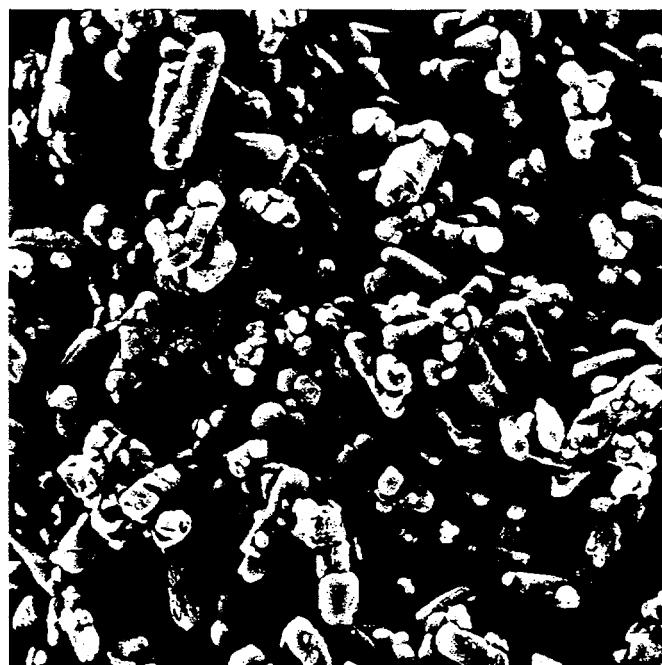


Fig. 2. SEM of β - Si_3N_4 seed material E10/Pwd.

Fig. 3. SEM of β -Si₃N₄ seed material E3/Pwd.

Fig. 4. SEM of β -Si₃N₄ seed material S1/Pwd.

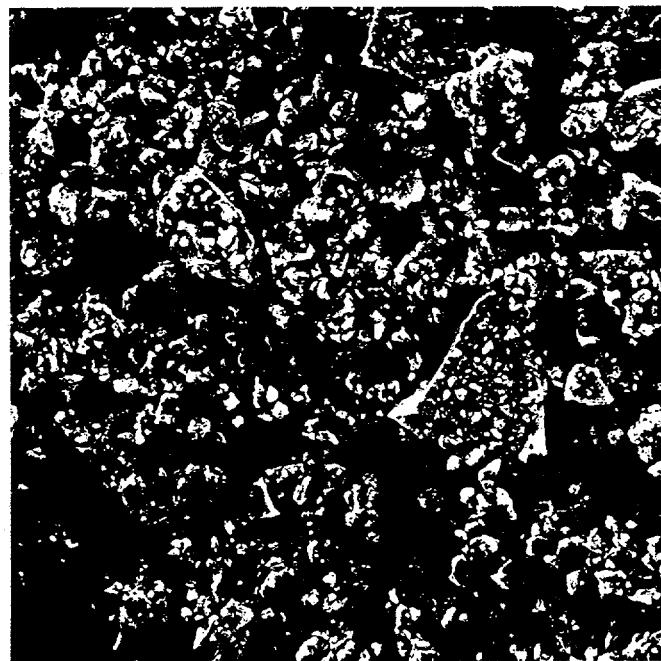


Fig. 5. SEM of β - Si_3N_4 seed material Shin-etsu.

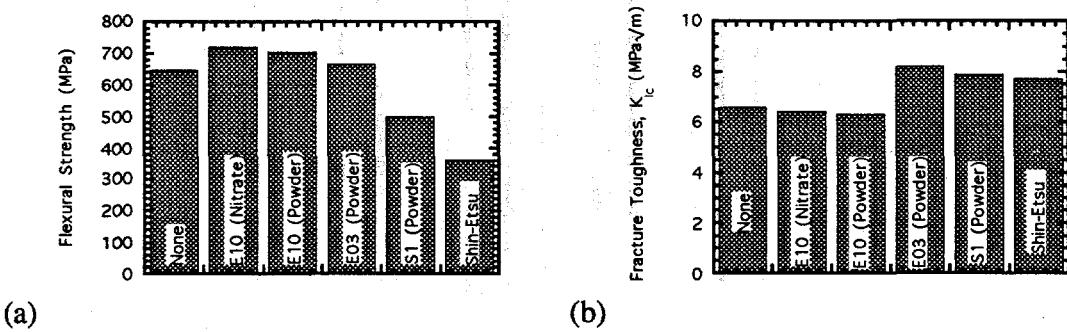


Fig. 6. Effect of β -seed type on the (a) flexural strength and (b) fracture toughness for gas-pressure sintered silicon nitride with $\text{Si}_3\text{N}_4\text{-Sr}_2\text{La}_4\text{Yb}_4(\text{SiO}_4)_6\text{O}_2$ composition.

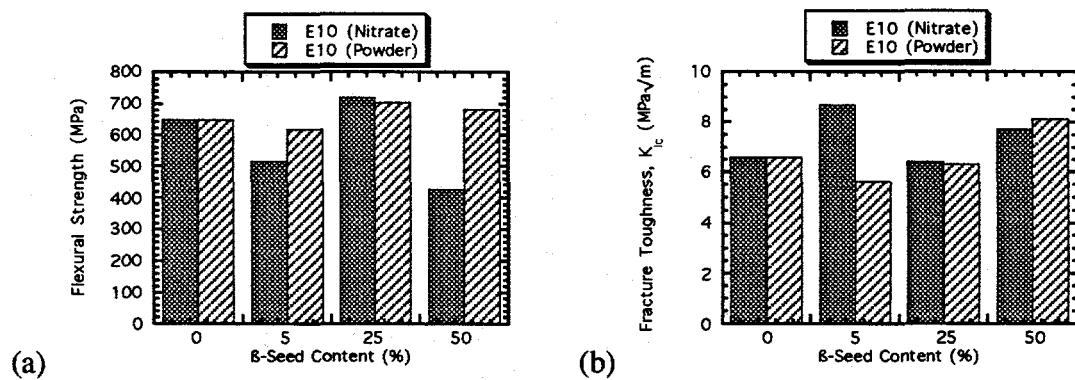


Fig. 7. Effect of β -seed content on the (a) flexural strength and (b) fracture toughness for gas-pressure sintered silicon nitride with $\text{Si}_3\text{N}_4\text{-Sr}_2\text{La}_4\text{Yb}_4(\text{SiO}_4)_6\text{O}_2$ composition.

DISTRIBUTION

1. Robert B. Schulz, Office of Heavy Vehicle Technologies, DOE, EE-33, 1000 Independence Avenue, S.W., Washington, D.C. 20585
- 2-3. Office of Scientific and Technical Information, P. O. Box 62, Oak Ridge, TN 37831
4. Work for Others Office, DOE-ORO, ER-113, P. O. Box 2001, Oak Ridge, TN 37831
5. P. L. Gorman, DOE-ORO, ORNL Site Office, P. O. Box 2008, Oak Ridge, TN 37831-6269
6. Materials and Electrochemical Research Corporation, 7960 South Kolb Road, Tucson, AZ 85706
7. R. A. Bradley
8. D. F. Craig
9. R. G. Gilliland
10. D. R. Hamrin
11. D. R. Johnson
12. R. J. Lauf
13. A. J. Luffman
14. A. C. Schaffhauser
- 15-24. T. N. Tiegs
25. C. A. Valentine