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Abstract

A formalism is developed for the tomographic inversion of seismic travel time
residuals. The travel time equations are solved both simultaneously, for velocity
model terms and corrections to the source locations, and progressively, for each set of
terms in succession. The methods differ primarily in their treatment of source mislo-
cation terms. Additionally, the system of equations is solved directly, neglecting
source terms. The efficacy of the algorithms is explored with synthetic data as we per-
form simulations of the general procedure used to produce tomographic images of

Earth’s mantle from global earthquake data.

The patterns of seismic heterogeneity in the mantle that would be returned reli-
ably by a tomographic inversion are investigated. We construct synthetic data sets
based on real ray sampling of the mantle by introducing spherical harmonic patterns of

velocity heterogeneity and perform inversions of the synthetic data.

Inversions of real data, supplied by the ISC, are also performed. We use P arrival
data from January 1964 through January 1987 and our inversion algorithms to solve
for three-dimensional P velocity models of the mantle and source mislocations. The
three-dimensional velocity model is presented in conjunction with the resolution esti-

mates produced by an inversion for a checkerboard test pattern. Covariance is
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estimated by averaging results from inversions of realistic errors and by a jackknife

procedure.

The three-dimensional velocity model shows a fast anomaly in the lower mantle
beneath the Tonga-New Hebrides subduction zone to a depth of 1670 km and another
fast anomaly beneath the Japanese Island arc and eastern Asia reaching nearly to the
core-mantle boundary. Continuity between these anomalies and shallower fast
anomalies is not clear. A fast anomaly extending from 670 km to 2070 km depth
appears beneath the eastern United States, Caribbean Sea, and Central South America.
In addition, a number of slow anomalies associated with hotspots extend through the
upper mantle but are extinguished in the lower mantle by our resolution weighting.
Mid-ocean ridges are associated with moderately slow ancmalies in the top 400 km of
our model. The transition zone between depths of 400 and 670 km shows large

/=1, 2, and 3 spherical harmonic components.
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Chapter 1

Introduction

In Earth’s mantle, lateral variations in a given material property generally amount
to only a few percent of the property’s value over thousands of kilometers while radial
variations typically reach one hundred percent over similar distances. Accordingly,
much effort and progress was made toward the elucidation of spherically-symmetric
Earth structure in early seismological and geophysical studies and studies of these
radially-varying properties remain important today. However, systematic lateral varia-
tions do cxist in the mantle and crust, at least, and with the advent of plate tectonics as
a framework to help describe large-scale lateral variations, seismologists began studies
of three-dimensional Earth structure on a global scale. The collection of data world-
wide from sets of standardized instruments and the development of practical and fast

computers facilitated these stud*=s.

This thesis documents attempts to image the three-dimensional seismic P velocity
heterogeneity in Earth’s mantle. The approaches considered here involve the tomo-
graphic inversion of body wave travel time residuals and differ primarily in their treat-
ment of the source location problem. The seismic inverse problem to determine struc-
tural parameters of the medium (Earth) and parameters that describe the source is a
complicated animal. The two sets of parameters are inextricably linked. Attempts to
retrieve one or both sets typically concentrate on minimizing the influence of one set
on the determination of the other set. This is the general approach we pursue here.
We are most interested in the accurate estimation of Earth structure and will first try to
simulate the general procedure by which tomographic inversions find models of Earth
with body wave travel time data. We then find the effects of inaccurate source loca-

tions on the velocity model estimate and show how the velocity model estimate may
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be improved by consideration of the source location.

1.1 Review of Previous Work

Previous attempts to retrieve models of P velocity in Earth’s mantle with body
waves differ in their approaches to parametrizing the model mantle and in their formu-
lation and solution of the constraining equations. Popular model parametrizations
include regionalization of the crust and mantle based on geograpnical association with
surface tectonic processes [e.g., Toksoz and Anderson, 1966; Okal, 1977; Tralli and
Johnson, 1986], spherical harmonic series expansion of the anomalous velocity field
le.g., Dziewonski, 1984; Morelli and Dziewonski, 1985, 1986], cubic splines [e.g.,
Hoviand et al., 1981] and division into a number of nou-overlapping blocks [e.g.,
Clayton and Comer, 1983; Inoue et al., 1990]. No one parametrization has been
demonstrated to be clearly superior to the others. While the bias inherent in a tectonic
regionalization renders such a scheme inappropriate for studies of the lower mantle,
incomplete ray coverage makes it useful for studies of the upper mantle. Spherical
harmonic expansions and cubic splines require fewer terms to describe a model to the
same level of detail as a block parametrization, but do not offer the blocks’ geometri-
cal simplicity. With independent block parameters, one may examine the ray sampling,

resolution, and covariance of a geographical location more easily.

In addition to differences in model parametrization, studics differ in the their con-
struction of the system of equations to be solved and the numerical methods employed
to solve them. Early efforts to map the three-dimensional velocity structure of Earth
[Aki et al., 1977; Dziewonski et al., 1977; Sengupta and Toksoz, 1976], all of which
use a block parametrization, were limited in their detail of structure by numerical
methods that calculate the explicit inverse of the coefficient matrix. These methods
allow the formal calculation of covariance and resolution matrices in order to evaluate

the reliability of the model, but severely restrict the number of parameters available to
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describe the model due to limitations of existing computers. Aki et al. [1977] use
1496 teleseismic P arrival times to find the 3-D slowness structure beneath the Norsar
array, parametrized into 405 blocks, using both the generalized inverse formed from
the products of singular value decomposition (SVD) of the coefficient matrix and the
stochastic inverse of damped least squares. Their results are elegantly presented with
the diagonal elements of the resolution matrix for direct evaluation of the models. On
a global scale, Dziewonski et al. [1977] use nearly 700,000 P arrivals to find velocity
pcrturbationé for 120 blocks by means of the generalized inverse. These values, asso-
ciated with individual blocks, are then expanded into spherical harmonics up to angular
degree 3. While the resolution is easily evaluated, precision of the block model is lim-

ited to wavelengths on the order of 4000 km.

Dziewonski [1984] follows Dziewonski et al. [1977] in using about 500,000 P
arrival times from 5,000 shallow (A<50 km) events from the International Seismologi-
cal Centre (ISC) catalog (1964-1979). All arrivals were teleseismic, in the epicentral
distance range 25° < A £ 100°. Similar observations, while not averaged, are weighted
so that all distinct raypaths receive the same weight in the riormal equations, regardless
of the actual number of observations. Sources are initially relocated and travel times
corrected for ellipticity and elevation. The solution is based on the generalized inverse
for 245 coefficients of spherical harmonics expanded with a depth function. After
each solution, sources are relocated using corrections to the travel times through the
one-dimensional model, PREM, caused by the new 3-D model, and the process is
repeated. Station corrections are calculated at each iteration. Standard errors for each
model term (spherical harmonic coefficient) are calculated, but resolution and covari-
ance are not formally assessed. The model’s maximum anomalies, reaching 1.5%, are

found at 670 km depth, the top of the model, and at the core-mantle boundary.

Attempts to obtain more detailed models of mantle velocities have turned to itera-

tive, backprojection methods that do not explicitly find the inverse of the coefficient

g



matrix. Sengupta et al. [1981] extend the work of Sengupra and Toksoz [1976] to
find velocities for 3008 out of a possible 3888 blocks spanning the entire mantle, with
3842 P arrivals. The block size, 10° x 10° x 500 km in depth, brings the model preci-
sion down to roughly 1000 km. They use a method of successive approximation in
which the velocity of each block is found one at a time by a weighted least squares
procedure, accounting for the contributions to the travel time residual from the other
blocks. This algorithm is iterated, considering the blocks in a random order, until con-
vergence is reached. This method does not allow the calculation of resolution and
covariance matrices. Their results for the first layer correlate qualitatively with surface

tectonic features. Maximum velocity anomalies reach somewhat more than 2%.

Clayton and Comer [1983, and preseunicd in Hager and Clayton, 1988] use a
Simultaneous Reconstruction Technique (SIRT), which is similar to a Jacobi iteration
technique for solutions to problems invelving sparse matrices, in conjunction with 1.7
milliocn ISC arrivals for the decade 1970-1980 to find 48,604 block parameters for the
mantle. Observations are restricted to the distance range 25° < A < 95°, leaving the
upper mantle relatively poorly sampled. A summarizing procedure for similar rays
reduces the dimension of the coefficient matrix to 110,000 rows. The dimensions of
the blocks are 5° x 5° x 100 km in depth, about 550 km on a side, and represent a
significant increase in precision over previous models. The cost of this increased pre-
cision is that resolution and covariance could not be calculated formally and presented
alongside the mantle model. Several means to approximate resolution and covariance
were developed in conjunction with, although they are not limited to, SIRT backpro-
jections. For exawple, Humphreys and Clayton [1988] calculate a "point spread func-
tion," a column of the non-symmetric resolution matrix, and invert model error distri-
butions to investigate the propagation of errors in the data through the algorithm to the
solution. Grand [1987] introduces an inversion of a set of anomalies, each of which

extends beyond the bounds of a single voxel, distributed throughout the model as a
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means to evaluate resolution. Clayton and Comer’s [1983; Hager and Clayton, 1988]
results show maximum slowness perturbations of *1% after layer averages are
removed. Long wavelength features generally agree with Dziewonski’s [1984] model,

with some notable exceptions.

Tralli and Johnson [1986] use a tectonic regionalization derived from Jordan
[1981] to find mantle P velocity anomalies associated with surface processes. Their
study incorporates over 1.25 million ISC (1964-1981) P arrival times from shallqw
sources (h<70 km) for 10° € A < 100° and divides the upper mantle into 5° x 5° celis
that are assigned to one of seven distinct types of regions, depending on a cell’s dom-
inant or characteristic tectonic activity. Tau functions, from which velocity or slow-
ness may be obtained immediately, are estimated as continuous profiles for each
region. Maximum velocity perturbations reach about -2% for the top of the region

representing young oceans.

Spakman and Nolet [1988] use the conjugate-gradient variant LSQR algorithm,
due to Paige und Saunders [1982], to find a 3-D P velocity model for the upper man-
tle beneath the Mediterranean. Their procedure solves simultaneously for 9360 model
blocks (1° x 1° with variable thickness), 105 station corrections, and 10,604 source
relocation parameters, for a total of 20,069 free parameters. The total data amounts to
over 480,000 rays from the ISC catalog (1964-1982) for the distance range
0° € A € 90°, which is reduced to slightly more than 300,000 composite rays by an
averaging procedure. Theoretical and practical concerns about the nonlinearity of the
travel time vs. delta function in the epicentral distance range 18° < A < 25° (due to the
triplication caused by refractions at the 400 km and 670 km discontinuities), the vali-
dity of a ray description of the wavefield in this range, and the data quality due to the
nonuniqueness of arrivals in this range prove surmountable with judicious weighting of

residuals based on their reliability. Maximum velocity perturbations reach over 3%.
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Inoue et al. [1990] use a block parametrization, with cells 5° x 5° and variable
thickness depending on depth, and over 2 million arrival times from the ISC catalog
(1964-1985) in the range 0° < A <95 to find P velocity perturbations for 32,768
blocks. Starting from relocations of events in a 1-D model based on Herrin et al.
[1968], an iterative algorithm is performed on subsets of the data in which sources are
relocated in an updated 1-D model calculated in the previous iteration, a new 3-D
model is generated by means of the LSQR algorithm, and the 1-D model is refined.
G.ven the epicentral distance range of data used, the authors are able to produce a
model for the entire mantle. Resolution and covariance are evaluated approximately
with synthetic test inversions of checkerboard patterns and by inverting distributions of

Gaussian errors. Slowness perturbations exceed 4% in the upper mantle.

All the studies mentioned in this chapter employ finite-dimensional parametriza-
tions. Consequently, assumptions are made regarding the smoothness of the medium
to be imaged or that seismic rays sample only the smooth parts of the medium’s struc-
ture. These assumptions follow from the fact that seismic ohservations are made at
finite frequencies, which irﬁplics that the rays are not infinitely thin but actually sample
a finite volume of Earth and contain information about the average properties of that
volume. For example, for a wavelength of 10 km, the maximum ray width varies
from 36 km for a ray of 1000 km length to 112 km for a ray of 10000 km length
[Nolet, 1987]. When inferences are made about parts of the medium which are
unsampled (or are assumed to be unsampled), an implicit assumption about the con-
tinuity of measured properties is made. Typically smoothness is imposed on the model
by the inclusion of a roughness penalty in the inversion, in addition to the finite
dimension of the parameterization. There are two complications with this approach.
First, the degree of smoothness is both arbitrary at the outset and indeterminate at the
conclusion of the inversion. Second, the estimation of uncertainties and resolution is

made more difficult and the estimates produced bear only indirectly on the problem of
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imaging the real earth. The uncertainty in the image depends directly on the smooth-
ness assumed, but this dependence is difficult to evaluate with the techniques

developed so far.

One alternative to a basis which spans Earth entirely is the "natural pixels" basis
advocated by Michelena and Harris [1991]. Rather than parametrizing all parts of the
medium under investigation, they estimate the actual sampling of the "fat" rays implied
by finite frequency observations and find model values only for regions sampled.
Explicit smoothing operators may then be used to interpolate between model values if
a complete model is required. The "natural pixels" basis is not orthogonal, but is more
flexible and rigorously correct in its representation of the reconstructed image.
Perhaps more importantly, it allows a model to be parametrized with far fewer terms
than are required with any of the orthogonal parametrizations mentioned above. This
reduces the computational demands of the inversion and thus allows greater flexibility

in the modeling process.

While the studies cited here generally vary in their methods for obtaining model
solutions and in their approaches to parametrizing the model, the data involved in each
study of P velocity are nearly identical. The International Seismological Center col-
lects seismic arrival times from around the world. They employ these times in a
sophisticated procedure in which times are associated into "events" and the events are
located with P arrival times and the one-dimensional, Jeffreys-Bullen (J-B) travel time
tables [Jeffreys and Bullen, 1940] with a standard least-squares technique [Adams et
al., 1982]. The system is far from perfect. Arrival times at stations around the world
are read locally by different individuals from seismic records produced by different
instruments. This variability surely propagates into the daty. For the purposes of
seismic imaging and accurate location of events, the geographical distribution of
sources (earthquakes and large explosions) and seismographic stations, that so far are

located almost exclusively on continents, is unfortunate. With the oceans nearly empty
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of stations, large portions of Earth, particularly in the southern hemisphere, are under-
sampled by recorded seismic energy and event locations are inadequately constrained
geometrically. Also, using the one-dimensional J-B model, that has known
deficiencies in its representation of the spherically averaged structure of Earth in addi-
tion to its inability to account for lateral velocity variations, produces inaccurate event
locations. Providing the means to correct this inaccuracy is one goal of our study.
Another goal is to provide modeling constraints for studies of Earth’s composition and
dynamic processes, in order to investigate possible means by which Earth coalesced

and evolved to its current state,

Wieland: [1987) offers a note of caution relevant to all the studies mentioned in
this chapter, including ours. The ray-theoretic approximation assumed to be valid in
tomography does not hold in the presence of diffracted or laterally refracted waves.
With a set of synthetic experiments, Wielandt [1987] shows that such waves should be
commonly included in seismic observations and will often hinder the identification of
direct phases. The effects of employing the linearity assumption required by tomo-
graphic inversions would be to overestimate the size of positive (fast) velocity
anomalies and to underestimate the amplitude of negative anomalies. He finds that the
ray approximation is inadequate for negative anomalies in excess of 4% at 200 km dis-
tance, 2% at 500 km, and 1% at 1000 km. In each case a diameter of 100 km is

assumed for the anomaly [Wielandt, 1987].

1.2 Topics Investigated in This Thesis

In chapter 2 we develop and investigate the performance of three different
schemes for inverting seismic travel time residuals. The first scheme solves simultane-
ously for corrections to the source locations and for three-dimensional perturbations to
the one-dimensional starting model. The second scheme solves the inverse problem

progressively, for each set of terms in succession. We also solve the system of
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equations directly, neglecting source terms, as a third approach t;hat is not t'mly distirfct
from the simultaneous inversion. The efficacy of the inversioﬁ schemes is exﬁlored
with both synthetic and real data. First, we perform simulations of the general pro-
cedure used to produce tomographic images of Earth’s mantle from global earthquake
data. Next, we invert real data supplied by the ISC. Results are summarized from both
the simulations and real inversions in terms of what they tell us about the problem of
ambiguous source locations and implications for contamination in our velocity models.
These results are emphasized above cqrrelations with tectonic features and geological
and geophysical interpretation of the models. Here our intent is to isolate the effects
of source mislocation and a complete treatment of the tomographic inverse problem is

not attempted.

In chapter 3 we investigate which patterns of seismic velocity heterogeneity in the
mantle would be returned reliably by a tomographic inversion in which the model
mantle is parametrized by a set of discrete, non-overlapping voxels. We construct syn-
thetic data sets based on real ray sampling of the mantle by introducing spherical har-
monic patterns of velocity heterogeneity and perform inversions of the synthetic data.
We expand the resulting voxel model in spherical harmonics and compare the power at
each degree and in each model layer with the input spherical harmonics in order to
determine which patterns produced by inversions of real data may be deemed reliable

and to identify patterns that must be viewed with skepticism.

In chapter 4 we present a more detailed model of P velocity in the mantle than
the ones presented in chapter 2. The model mantle is parametrized by approximately
equal-area blocks which are 5° x 5°, rather than the 10° x 10° blocks which are used
previously. Also in contrast to the study described in chapter 2, individual rays which
sample similar parts of Earth are averaged together to form summary rays. More than
3 million rays from 46,000 shallow events satisfying selection criteria are averaged

according to 2° x 2° x 10 km deep bins to construct nearly 726,000 summary rays for
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the inversion. The construction of summary rays tends to average out contributions to
the travel time residuals that arise due to heterogeneity of a scale too small to be
resolved by our model blocks, and also averages out contributions due to mislocated
sources. For the sake of completeness and in order to constrain as many degrees of
freedom as possible, we solve simultaneously for summary source mislocation terms
and demonstrate that these corrections are small. In this study we also solve for sum-

mary station corrections.

Resolution and co-variance are evaluated by approximate methods. Resolution is
estimated by the inversion of a synthetic, checkerboard test pattern and the calculation
of point spread functions for selected voxels. Covariance is estimated by averaging
results from inversions of realistic errors and by a jackknife procedure. We present
our three-dimensional velocity model in conjunction with the resolution estimates pro-
duced by our checkerboard test. Normalized checkerboard output values, ranging from
0 to 1, are used to modify each voxel’s red-blue velocity value from full color satura-
tion, indicating good resolution, to white, which indicates no resolution. This presenta-
tion aids us in a detailed interpretation of the correlation between our model and tec-
tonic features at the Earth’s surface and an evaluation of the significance of features

deep in the mantle.

Finally, we summarize the findings of these three separate studies in chapter 5

and make suggestions for further work on these topics.

The progressive inversion technique in chapter 2 was developed after a suggestion
by Lane Johnson, my committee chairman. Advice and guidance provided by him and
by Dan O’Connell contributed greatly to my understanding of the technique. Lane
Johnson’s programs to trace rays in one and three dimensions were important aids to
the work in this thesis. The work described in chapter 4 was undertaken in conjunc-
tion with Don Vasco and Lane Johnson, Their contributions are integral to the study

and cannot be identified individually. I thank them for the time they spent with me

TR R R IR B LA I T} TR I TIN TR TR ”v“vwwpvmw”vww TR TR TR T TR . TN A AR TR

me “W

i



Gy

Crpme e

11

and for sharing their ideas unselfishly. For the sake of consistency throughout the
thesis, I use the terms "we" and "our" rather than "I"' and "my" to refer to the work

carried out in these projects.
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Chapter 2

A Study of the Effects of Source Mislocation
in Mantle Travel Time Tomography

2.1 Introduction

In this chapter a formalism is developed for the tomographic inversion of seismic
travel time residuals. Once the tomographic system of travel time equations is con-
structed, two methods are presented for its solution: simultaneously for both velocity
model terms and corrections to the source locations and progressively, for each set of

terms in succession. Both algorithms perform least-squares inversions that minimize

the /2 norm of the residuals. The methods differ primarily in their treatment of source
| mislocation terms. Additionally, we solve the system of equations directly, neglecting
i source terms. The efficacy of the algorithms is explored in conjunction with synthetic
- data as we perform simulations of the general procedure used to produce tomographic
i images of Earth’s mantle from global earthquake data. A data set is constructed in a
E way that mimics the practice of the International Seismological Centre (ISC) as it col-

lects observations world-wide, associates observations with seismic events, locates the

events, and distributes the codified data to interested researchers. These data consist of

arrival times at reporting stations and estimates of earthquake locations calculated in a
one-dimensional Earth model. Because of the three-dimensional nature of Earth, the
ISC locations are only approximations to the true earthquake locations, so we investi-
gate the effects of mislocations on the velocity model obtained in an inversion, and the
ability of our simultaneous and progressive inversion techniques to correct mislocated
earthquakes and produce an accurate velocity model. To simplify the problem and
highlight the effects of source mislocation in our controlled simulations, we keep the

numbers of data and model parameters small.
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Finally, we invert real data supplied by the ISC. We use P arrival data from Janu-
ary 1964 through January 1987 and our inversion algorithms to solve for three-
dimensional P velocity models of the mantle and source mislocations, The model
mantle is parametrized by approximately equal-area blocks: 10° x 10° and generally
200 km in depth, Nearly 345,000 rays from more than 3,000 shallow events satisfying
selection criteria are included in the inversions. The data are weighted by the inverse
variance of travel time residuals as a function of epicentral distance; model parameters
are weighted by a measure of the q‘uality of sampling in each model block, or voxel.

A roughness penalty is included in the inversions.

We summarize results from both the simulations and real inversions in terms of
what they tell us about the problem of ambiguous source locations and implications for
contamination of our velocity models. These results are emphasized above correlations
with tectonic features and geological and geophysical interpretation of the models. In
this chapter we seek to isolate the effects of source mislocation and do not attempt a
complete treatment of the tomographic inversion problem. We may still obtain valu-
able insight into the structure of the problem, the inherent interdependence of the

parameters and limitations as we try to disentangle them.

2.2 Mathematical Development

The i arrival time from event J, that is recorded at a station k, may be

represented as
1)) = T + Ti(r) e ) + (€);, @2.1)
where
T; = origin time for event j,
T;(r j,r,;,c (r)) = travel time through the medium, ¢ (r), from event location, r;,

to station location, r,;,
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(g;); = reading error associated with ray i from event /,
and
i=120m;,  j=12..m,, k =1.2,..,n

where

m; = number of arrival times reported for the j* event,

m, = number of events in the data set,
n, = number of stations reporting arrivals in the data set.

In the general case, we have collected the observations (#;); but do not know any of
the terins on the right hand side of equation (2.1). If we assume we know the velocity
structure of the medium to within a few percent of the actual velocity, c(r), we may
take a first-order Taylor expansion about our model, call it £(r), and try to estimate the
error in our model by reconciling the perturbation terms of the expansion with the
deviations of observed arrival times from arrival times calculated through the reference
velocity model. Wielandr [1987] carries out a set of synthetic experiments to investi-
gate the validity of the linearity assumption inherent in this ray-theoretic formulation.

Performing the Taylor expansion and discarding higher terms we get
) =% + 81, + Ti(rj e () + 8T, (rj e () + &);) (2.2)
where %; is an estimate of event origin time calculated using the starting velocity

model.

2.2.1 Contributions to the Travel Time Discrepancy

Let 7A"1 (rj,r,;,c () = T;(r;ry X (9) (2.3)

Fj ,fk.f (l‘)

be the travel time for ray / connccting #; and f',; through velocity model é(r) , then

the first-order term of the Taylor expansion may be expressed as the sum of three
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terms:
8T (rj,ry,c(r)) = 8T, (rj.ri s O 5y + OTi(rT; N A (r))lr.i'r." +8T;(r;r’,c (r))I;j,C. -

(24)

The first term on the right hand side of equation (2.4) represents the perturbation in the
travel time due to a perturbation in the location of the earthquake’s hypocenter. The
second term represents the travel time perturbation due to perturbations in the velocity
model. The third term represents contributions to the travel time anomaly that are
unique to a particular station. Strictly, this term represents travel time discrepancies
due to poorly known station locations, but in practice the term serves to isolate the
effects of velocity anomalies occurring in the vicinity of a station on a scale too small
to be resolved by our model parametrization. Errors in observed travel time residuals
resulting either from incorrect observations, such as instrument errors and systematic
phase mispicks or misidentifications at a particular station, are also described by this

"station" term.

We define the travel time residual to be the observed arrival time minus a

predicted arrival time,
S(Ii )_] = (ti )J; - (\'tj + Ti (!'} ,l"k’,C (r))!"i-’:“'f(r)). (25)
Substituting equation (2.5) into equation (2.2) gives
8(5;); = 8t + 8T, (r; re.c () + (),
= 811 + BT‘ (l'j Tk I,C (r))l;ﬁ"é o)

+ 8T, (rjx s O, 5 + OT; (rj ki’ (Ol; oy + (1)) (2.6)
The perturbation to the origin time, &t j» may be viewed as a fourth hypocenter term.
Then

8t}aypocenler = 81!- + ST‘ (ri €I ’1C (r))l

7y .2(r)
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where
hy=1T, hy=8, h3=0, hy=z.
In matrix notétion,
ot; = H;3h;, | (2.8)
where
ot j = vector of travel time residuals for event j,
dT;
Hy); = _Bizl_lf“'é(") = matrix of source mislocation partial derivatives (1=1,2,3,4),

oh; = (81, 80, 89, 8z); = vector of hypocenter perturbations for event J.

The second term on the right hand side (RHS) of equation (2.6) represents the

deviation of our starting velocity model, ¢ (r) f.om the actual velocity structure, c(m),
Bttt = 8T, (rj.r "¢ (O 5, 2.9
ik
The travel time along a ray, S;, is given by

ds
= = A
L o ) (2.10)

where ¢ (r) is the velocity of the medium. Our task is to determine ¢ (r) from a set of
travel time observations #;, i = 1,2,..M. This task is made more difficult by the impli-
cit dependence of the ray path, §;, on the velocity model, ¢(r). Once again, we
assume that our starting velocity model is within a few percent of the true structure

and seek to reconcile the discrepancy by solving for the perturbation term. Let

Stmodel = 8T, (v ;1€ (Nhue = STi (050" (O, ey .11
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_ ds (. ds
5[6‘(") g{ér

Fermat’s principle justifies the assumption that the raypath persists relatively
unchanged in the presence of small three-dimensional velocities anomalies. This allows

us to perform the line integrals as one integral along the initial raypath, i.e.,

S[rwdel. S S
f Sj(c(r) C()>ds

. dc¢ (r) |
= =)z as, (2.12)
! (r)

where § ; is the path of the i *h ray through the starting velocity model, é(r) .

In order to represent the function of velocity perturbations over the medium of

interest, we must choose a set of basis functions. Two approaches are popular. The
first divides the medium under investigation into non-overlapping volume elements, or

voxels. Following Nolet [1987], let

v 2 if r is in cell &
fi(r) = 0 elsewhere ’ (2.13)

where v, is the volume of cell k. The functions f, form a basis that spans a subspace
of the Hilbert space of all possible velocity models, ¢ (r). Since the cells do not over-

lap,

[ F®f (ndr =8y, (2.14)

volume

A second popular set of basis functions consist of solid spherical harmonics [e.g.,

Dziewonski , 1984; Morelli and Dziewonski, 1986],

fi = fe(M)Y[(6,0),

where f, (r) is a set of orthogonal functions in radius.



21

Our choice of a local basis is arbitrary in many respects. A block parametrization
allows a more accurate assessment of ray sampling of Earth and the resulting
coefficient matrix is quite sparse. This sparseness may be exploited to solve the
matrix problem efficiently. Fewer terms are required to describe the model to the
same level of resolution with the global spherical harmonic basis (fewer by up to an
order of magnitude), but the coefficient matrix in the spherical harmonic case is dense.
It is important to note that choosing a model parametrization represents an opportunity
to introduce bias into the inversion. Depending on the geometry of the inverse prob-
lem, a particular model parameterization may or may not allow the accurate recon-
struction of interesting features of the real earth, or it may require an inaccurate (i.e.,
smeared or aliased) estimation of the model simply because of limitations in its
representation of features. Michelena and Harris [1991] suggest a way to make the
model parametrization more flexible and complete in its representation of model
anomalies sampled by a set of data. Their representation acknowledges the finite width
of the zone sampled by a given seismic ray and seeks to construct a solution in terms
of the portions of Earth sampled by these "fat" rays. They call this representation a

parametrization bLased on "natural pixels."

Choosing the set of functions described in equation (2.13), we may represent the
function of velocity perturbations as a linear combination of basis functions,
. n
e (r) = 2 Yefu(r). (2.15)

k=1

Substituting equation (2.15) into equation (2.12) results in an expression for the travel

time perturbations in terms of velocity perturbation basis functions,

2 Y 2 |
Brfrodel = 3 — j %Tds = XA (2.16)
k=1 §, €(r) k=1

where
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fr(r)
qo= - ~ds.
ik ‘S{ 6([‘)2 §

In matrix form,
Stmodel = Ay,

We express the "station" term of equatioﬁ (2.4) as
eration — g,

where

1 if k = stadon number
Si/c =

0 if k£ # staton number’

W, = the station correction for the k'™ station.

(2.17)

(2.18)

Substituting equations (2.8), (2.17), and (2.18) into equation (2.6) for all rays

(i =12,.m;) of all events (j = 1,2,....m,) we find the problem we wish to solve is

now
(Bt;); = (Befrodely; + (B fpocentery, 4 (BeFtaiony,,
or
dt=Av+Hdh +8 dyu,
where
S5t € RM*! = vector of travel time residuals,
A € RM* = matrix of ray segments in voxels,

Y€ R"™! = vector of coefficients in the expansion of perturbations
to the starting model,

H e RMxdn

= matrix of partial derivatives for all events,
5h e R**' = vector of perturbations to the hypocenters,

- xn . . . . .
S e RM™ = matrix of partial derivatives for stations,

(2.19)

(2.20)
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8 e R™™ = vector of station corrections,

X
I

number of data (reported arrivals),

- number of events,

&
©
]

n, = number of model blocks,

ny = number of reporting stations.

2.2.2 Progressive Inversion

At this point we could combine matrices and solve for all parameters simultane-
ously, but there are two reasons why we may choose not to do so. First, since re-
locating the hypocenter of each event consists of estimatihg four terms: origin time
plus three spatial coordinates, the number of hypocentral parameters totals 4m,, where
m, is the number of events in the data set. The combined matrix would therefore
have dimensions M X (n,+4m,), resulting in considerable demands for core memory
and mixing different classes of parameters. More importantly, it turns out that we may
exploit the natural separation of the parameters to solve for each set of parameters in a
step-wise fashion. This approach follows Pavlis and Booker [1980}, Spencer and
Gubbins [19801, Jordan and Sverdrup [1981], and O’Connell and Johnson [1991],
among others, and allows a more detailed analysis of resolution and uncertainty in the
determination of mislocation terms than would be practical otherwise. The idea is to
find an orthogonal transformation that will rotate the first coefficient matrix, in our
case H, so that only the first four elements of the travel ti"me residual vector have
non-zero projections into the parameter space. Actually, the number of independent
data providing in'formation to the specification of parameters is equal to the rank of the
original, unrotated matrix H, where 0 < rank (H) < 4. Pavlis and Booker [1980] call
this orthogonal transformation an "annulling transformation" because its effect is to

separate the problem involving two (or more) different classes of parameters into two

KR L L N N "U'JUI“JHH‘ Ry e 'u/)\mw IR }mmw'“ 1|M|Wl SiIL I]'l\‘!w}' fpewe s 7

1
|

K ”‘|‘|" e

[ ;!"J;‘



e

24

problems, the second of which is independent of the first class of parameters. The
independent problem involves data that have been "annulled" with respect to the first

parameter class.

The orthogonal transformation we choose to employ comes from the singular
‘value decomposition (SVD) of the matrix of hypocenter mislocation partial derivatives,
H. Any matrix may be factored into the form, H = usvT [Lawson and Hanson,
1974]. If H is an mxn matrix of rank k, then U is an mxm orthogonal matrix, V is
an nxn orthogonal matrix, and § is an mxn diagonal matrix of singular values in
which k values are strictly non-zero. The orthogonal matrix U" may serve as an
annulling transformation matrix, when used to pre-multiply through equation (2.20). A

heuristic proof of this annulling property follows.

Note that only k entries of the diagonal matrix S are non-zero, and that these

non-zero elements are all positive. Since
H = USVT,
then

UTH = UTUSV,

= SV7,
S1 0
_ l.Sk T
= 0, v,
.0 0

Only the first k rows of UTH contain non-zero elements, therefore only the first &

rows will project onto a non-zero (range) space.

By partitioning the data set into individual events and disregarding the station

term, equation (2.20) may be rewritten as
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m

e < et b 815 A e s s Sesni e % e i e

[ (6t), ]
(8t),

(80,

m;x1
R™™,

m;x4
R™I™,

4x
RXI’

Rm;xn,,‘

number of data for the j* event,

1,2,...,me .

H, 0
0 H,
.0
0 0
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[ (8h), |
(5h),

(Bh),,

(2.21)

The effects of the station term could be dealt with in a fashion similar to the treatment

of the source term, but the large numbers of data and parameters involved in our

whole-mantle inversions render the full problem unwieldy. We expect the deleterious

effects of the station errors on our retrieval of velocity parameters to be small com-

pared to the effects of source mislocation, Later we will test this assumption when we

solve for subsets of the three parameters classes with the simultaneous inversion algo-

rithm,

The orthogonal transformation matrix now has the form
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i U,T,L 0 0
! Ulg’
| 0 U 0
0 .
, (2.22)
Uk
0 0 n
| [U»é]me_
where

(UE); € R*4 = range space of hypocenter partial derivatives for the j th event,
b, e R~ = null space of hypocenter partial derivatives for the j* event,
j=12,..m,.

Applying the transformation matrix (2.21) to equation (2.22) we get

C e A ) ) - Y T
sl ] [ p
L tNJ 1 0 1 O e 0 .NJ 1
r -~ I<l ) ) ~
g:R 0 [ oR] 0l |
. N.J2 2 5h2 N,J2
. 0 C .
= ot Y (2.23)
- R
Sty 0 0o ... [ 0’*} Ag
i StN me ] L Me | ' AN m |
where

Btp); = (UD);8t € R™! = travel time residual in range space of hypocenter
R)j R)j y
partial derivatives,

(Hg); = Uuh iH; e R¥4 = rotated matrix of hypocenter mislocation partial
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derivatives,

for event i,

(Ag); = (UD)A; &

© (Bty); = (UH); 8 € R

m

partial derivatives,
(Ay); = (U;\lzl)jAj €
1,2,..,m,.

J =

Rearranging (2.22) gives

8h,
Sh,

((Hp);, O ... 0O

" (stR )1 7 0 (HR )2 v 0
(3tg), : 0

G| | 0O G,

8ty )y 0 0 ... 0
8ty ) 0 0
Bty ), |

0 0 0

We may now separate the two problems
otp =Hp 6h + Ap v,
and

Oty = Ay 7,

LR TR RN TR TR Ca coom [N T I

Sy,

R = portion of rotated Ay that contributes to Stz

H (Ap )y j
(Ap)2

(AR )m.

+ — |

(An)
(An)2

(AN )m,

" T e e

R*4 = matrix of hypocenter mislocation partial derivatives

= travel time residual in null space of hypocenter

R*" = portion of rotated Ay that contributes only to 3ty ,

(2.24)

(2.25)

(2.26)
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where

Sty & R,

Hy e R4Modme

5h e R,

Ay & R,

8ty € R™,

Ay € R™,

m =M — 4m, = (total number of data) - 4 x (the number of events).
For an individual event, equation (2,25) becomes

(Btg); = (Hp); (Bhy; + (Ag); ¥, (2.27)

where

(Btg); e R¥,

(Hp); e R™,

(Bh); e R,

(Ag); € ™™,

J = 12,..m,.

Equation (2.26) is independent of hypocenter mislocation, 8h. We will solve it first,
then use the solution obtained for ¥ to substitute into equation (2.27) for all events and
solve for (Bh)f. For the sake of standardization, note that equation (2.26) is of the

general form
Gx = Db, (2.28)

where
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G—’-‘-‘AN,
Xx=1,

b=8tN.

2.2.3 Simultaneous inversion

We may also choose to combine the three coefficient matrices and solve for all

parameters simultaneously, i.e.

v
[AIHIS] S—h = 3t, (2.29)
8
or
Gx = b, (2.30)
where
G = [als],
K
x = |5h|,
En
and
b = at,

I and & are first scaled so that each row has the same euclidean norm as the same

row of A,

Equations (2.28) and (2.30) present us with a classical linear inverse problem.
Typically, the M XN coefficient matrix, G, will have many more data than parameters
(M>»N) and, given that errors are contained in the data, the equations will be incon-

sistent. We need to adopt a criterion for minimizing the misfit of ‘parameters to data,
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~'We choose to minimize the euclidean (/2) norm, resulting in the least squares problem:
Min||Gx - bl* = Min (Gx — b) (Gx - b). (2.31)

Differentiating equation (2.30) and setting the result equal to zero yields the nor-

mal equations
G'G = GTp. (2.32)

These normal gquations will commonly be numerically close to singular, A direct solu-
tion will produce either no parameter values at all, or will produce a set of large-
magnitude, grossly disparate parameters that delicately offset each other nominally to
satisfy the least squares criterion. We may direct the solution of the normal equations
(2.32) toward a particular solution by appending additional equality constraints to
equation (2.28). This is often called "ridge regression" or "damped least squares" and
may be performed by appending the additional equations Ix=§& to Gx=b. This
expresses a preference for a solution vector, X, that is close to the vector €, but leaves
the degree of this preference to be determined implicitly by the relative magnitude of
the elements of I and G. To express the degree of preference explicitly, we introduce

a scaling factor, A. Equation (2.28) becomes

2]--

and the minimization we must perform is of the norm

IGx — bl|* + A%x - E[|%. (2.34)

2.2.4 Incorporating a priori Information
2.2.4.1 Conditioning the Data Space

Solving equation (2.28) directly involves the implicit assumption that all the data
have equal significance. In the absence of explicit weighting, all the rows of G are

treated equally. Should we have greater confidence in some of the data, and wish to
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avoid allowing these better observations to be overwhelmed by those of poorer quality,
we may add a weighting matrix to the scheme, If, for example, we are able to esti-
mate a priori the covariance matrix of the data, C;, we may multiply both sides of
equation (2.28) by the weighting matrix W, = C7", Here W, represents the inverse
matrix of standard errors of the data. In practice this left-multiplication serves as a

row-scaling operation. Equation (2.33) becomes

al
AE | T

and the least squares solution for x requires the minimization of

W,G

A% (2.35)

IW4(Gx = B> + AZ[x — &|. (2.36)

2.2.4.2 Conditioning the Parameter Space

If we recognize that an unwanted bias exists in the elements of B or have reason-
able estimates of the uncertainties in the elements of € as an a priori estimate of x we
may attempt to correct this pre-existing bias with a right-multiplication of G by a
weighting matrix W,. For example, we might have an estimate of the a priori
covariance matrix of the model, C,,. In this case W, would be the matrix of inverse
model standard errors: W, = C,;"é. Our intention is to transform the solution vector,
X, to a vector in which all elements have approximately equal uncertainty and zero

bias. We replace equation (2.35) with

-

where

-~

G =W,GW,,
b= W, (b - GE),

Xx=W7lx - §),
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and, assuming both W, and W, are diagonal, minimize
IIGx — bII? + AKIZ = W, (Gx — 802 + AW (x - E)II% (2.38)

In our case, our best estimate of the solution vector, X, is the zero vector, § = 0,
which assumes that our starting model is correct. We do not attempt to estimate the
uncertainties contained in § = 0 as an a priori estimate of x, as does Spakman [1988].
Instead, we assume that all these uncertainties are unity, so (at this point)
W,=C, =1L

A closer examination of the procedure used to construct the coefficicnt matrix, A,
leads us to conclude that its elements contain bias from at least three sources. First,
although the original voxels were constructed so as to have approximately equal sur-
face areas, the voxels have widely varying volumes. Larger voxels will generally have
longer ray segments, given a random or uniform sampling of voxels, than small vox-
els. This ultimately produces an A matrix that weights large voxels more heavily than
small voxels. Nolet [1987] offers an elegant demonstration of the deleterious effect of
differing volumes on the velocities obtained from inversion. Second, since the ray
sampling is not uniform, the A matrix will tend to over-weight more heavily sampled
voxels. A third source of bias is the non-uniform distribution of directions of rays
propagating through a voxel. Geometrically, a set of parallel rays will produce weaker
constraints on a voxel's velocity than a set of rays well-distributed over the three
orthogonal directions. We attempt to reduce the sampling bias inherent in the formula-
tion of A by right-multiplying equation (2.28) by a matrix representing the quality of
sampling of Earth afforded by the ISC data set. Our W, is diagonal, so right-
multiplication serves as a column-scaling operation to balance the euclidean norms of

the columns of A. Now W, consists of the elements

[IIS;CII~1 if lisell = 0

W, = n Wlle Il =0

-
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where the vector s, of length n,, is a measure of sampling quality. Examples of such
weighting schemes include (a) the vector of voxel volumes (in which case the norm of
the k** column of W_ is simply the inverse volume of the k' voxel), (b) the vector of
voxel "hits", (c) the vector of norms of A’s column vectors, (d) a vector of factors
indicating the distribution of directions of ray segments propagating through the vox-
els. The weighting scheme we employ consists of ratios of average sampling of a par-

ticular voxel to the size of the voxel, i.e.

1 M

—X

P i 2.39
WXu Vk1/3 ’ ( . )

where
I; = the length of the i ray segment in voxel &,
v, = the volume of the k™ voxel,

n, = the number of ray segments that sample the k™" voxel.

In equation (2.37), I may be replaced by by a more general "conditioning" matrix,
B, to influence the character of the solution vector X. Appending equations Bx = 0 to
equations (2.37) is equivalent to right-multiplying W,G by B. Because the matrix B
is full-rank (i.e., non-singular), the set of vectors x = Bk + £ where X minimizes
IIb = Gx|| is the same as the set of vectors X which minimizes ||b — Gx||. However,
because B is not normalized, the condition number of G will generally differ from that
of G. The pseudorank of G (rank of G) may be less than the rank of G and the
minimization of |[X|| alters the norm by which we determine the "minimum length"
vector. By minimizing [X|| (= liB"l(x - &) instead of x we will generally choose a
different vector from the set that satisfy equation (2.28) than we would choose from
the set that satisfy equation (2.17) [Lawson and Hanson, 1974]. For clarity, and to

keep the number of floating point operations to a minimum in our row-active
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implementation, we use the format of appended rows for the smoothing operation and

right-multiplication to equalize the a priori bias contained in columns of (}

Following Lees and Crosson [1989], we wish to minimize the variation of velo-
city between adjacent voxels and seek to minimize the inverse of a discrete representa-
tion of a three-dimensional Laplacian operator applied locally in the neighborhood of
each voxel. To do this, we append the rows Bx = 0, where B is an n, X n, matrix in
which, for the k** row of B, By, =1 and the columns corresponding to all adjacent
voxels in the same layer contain elements equal to (# of adjacent voxels)™!. Note that
our model parametrization varies the size, in degrees, of the voxels as we move from
the equator to the poles, so the number of immediate neighbors a given voxel has will

depend on its location in the model. The k* row of the equation Bx = 0O will be

Xneighbor
x;, - Y-rase -,
n n

where

n = the number of voxels adjacent to the k™ voxel.

The equation we solve is

{E 733 %, (2.40)
where
G = W,GW,,
i) = Wd b,
x= WX

subject to the minimization of II%|[>. It is important to recognize that once again we
are minimizing an altered functional, so that the particular solution we choose will, in

general, be different from the one we would choose if B = 1. One might minimize the
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norm (2.20) to find x and then apply the matrix B to find a smoothed solution

X;moorh = BX, but this procedure is not equivalent to minimizing the conditioned norm

B~ 1]
2.2.5 LSQR

Equation (2.29) is difficult and time-consuming to solve. Because the coefficient
matrix, G, is 0 (10°x10%), most common methods are not practical. Most computers
cannot accommodate the entire matrix in core memory, so I/O operations to retrieve
each row of the matrix from a disk file slow the inversion process even more. We can
take advantage of the sparseness of f}, however, and store only the non-zero elements
in a collapsed vector format. Still, memory requirements are daunting and row-active
methods, such as LSQR (a variant of the conjugate gradient method), Algebraic
Reconstruction Techniques (ART), and Simultaneous Iterative Reconstruction Tech-

niques (SIRT), must be used.

Theoretically LSQR will converge to the true least squares solution in n itera-
tions, where n is the size of the model space. Roundoff errors will interfere with this
convergence property in practice, but we normally deal with numerically singular
matrices of very large size, so we stop the algorithm after relatively few iterations.
LSQR resembles Singular Value Decomposition in that it constructs its solution in a
subspace of the model space that it generates by finding, at each iteration, one search
direction vector that is orthogonal to all the vectors found previously. After p itera-
tions, the solution is the vector x in the p-dimensional subspace that minimizes
IGx — ||, while also minimizing ||x]2. Complete descriptions of the LSQR algorithm
and its properties can be found in Paige and Saunders [1982] and Nolet [1985]. Spak-
man and Nolet [1988] and van der Sluis and van der Vorst [1987] conduct detailed

comparisons of SIRT and LSQR algorithms.
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2.3 Synthetic Tests of the Algorithms

In order to test the effectiveness of our algorithm in retrieving both velocity struc-
ture and source mislocations we conduct a controlled simulation of the general pro-
cedure used to produce tomographic images of the mantle from synthetic global earth-
quake data, similar to the data supplied by the ISC. These data consist of arrival times
at reporting stations and estimates of earthquake locations calculated in a one-
dimensional Earth model. Because of the three-dimensional nature of Earth, the ISC
location estimates are only approximations to the true locations, so we investigate the
effects of mislocating the earthquakes on the velocity model obtained in an inversion,
and the ability of our simultaneous and progressive inversion techniques to correct

mislocated earthquakes and produce an accurate velocity model.

The steps we follow to perform these simulations are outlined in figure 2.1. To
produce synthetic data such as those provided by the ISC we distribute sources and
receivers around a model Earth (step 1). We want to address the problem of source
mislocation in a three-dimensional medium, and not the problem of poor ray coverage
of Earth, so we intend to distribute sources and receivers adequately to allow accurate
retrieval of velocity anomalies given "true" source locations (i.e., the starting source
locations). To this end, we distribute nine sources around Earth, located at depths
ranging from 40 to 180 km, and a total of 207 stations, for an average of 45 reporting
stations per event (see figure 2.2). To check the adequacy of the geometrical con-
straint placed on the source location by the ray coverage we immediately re-locate the
introduced sources using a damped least-squares procedure and the one-dimensional
Jeffreys-Bullen (J-B) P velocity model (step 1a). At this point, no velocity anomalies
are present in the model. The standard errors on these direct re-locations tell us the

best we can expect to do later, when we correct the deliberately mislocated sources.

Next we introduce four velocity anomalies (step 2) and calculate travel times

through the new 3-D model (step 3). The raytracing performed here is for a fully 3-D
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medium, Travel times are calculated through the 3-D model by a shooting method
involving the direct numerical integration of the eikonal equations that uses a Newton-
type search for the solution to the two-point boundary value problem. We parametrize
the model Earth with approximately equal-area voxels, 30° x 30° at the equator and
six layers, which makes each layer about 500 km thick and gives a total of 276 voxels.
Figures 2.3 and 2.4 show the ray coverage for layers two and three. Highlighted in
light gray and black are the voxels in which positive and negative velocity anomalies,
respectively, are introduced. All four anomalous voxels are located in these two
layers. Magnitudes of the anomalies range from 1.5% to 2.0% of the local velocity.
These anomalies are located in reasonably well-sampled voxels, but not the most
heavily sampled.

Our choice of a block model parametrization causes problems for the 3-D raytrac-
ing required to produce synthetic data, The eikonal equations can only be solved prac-
tically for a reasonably smooth model. Instead of a smooth model, our blocks confront
the raytracer with an overwhelming set of discontinuities in both lateral and radial
directions that cause unwarranted and physically implausible complexity. We smooth
an introduced, "spike" anomaly by placing the anomalous velocity at the center point
of its assigned voxel and requiring the value to decrease linearly toward the voxel
boundaries. Thus the velocity experienced by each ray that visits an anomalous voxel
will be well below the peak value located at the voxel center. This is a technical point
that affects only the velocity perturbations returned by our inversion scheme and not
the relative values as they are altered by the effects of source mislocation. To find the
absolute values, we perform an inversion based on the travel times through the 3-D
model from the true source locations (step 3a). In practice, these true locations are
never known. The purpose of this exercise is to construct a controlled simulation in
which we isolate the effects of just one type of error. Here we retain control of the

velocity problem and seek to isolate the effects of source mislocation.
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At this point, we have synthesized data analogous to those provided to the ISC by
observers located around the world. Next we use the travel times through the 3-D
model as arrival times to re-locate the sources in a 1-D model (step 4). Again we use
the J-B model. Now we have a set of data analogous to the catalog provided by the
ISC to researchers world-wide. Next we calculate residuals by subtracting the synthetic
arrival times from the travel tilmes through the J-B model from the new, re-located
source (step 5) and invert these residuals in three ways:

1.) directly, neglecting source mislocation terms (step 6a),

2.) simultaneously for velocity and source terms (step 6b), and

3.) by means of the progressive inversion scheme, in which the velocity problem

is separated from the source mislocation problem and solved separately (step 6c¢).
In each of these cases we use the conjugate-gradient projection method LSQR. Gaus-
sian noise with mean and variance matching those of the residual distribution is added
to the synthetic data. Finally, we compare the corrected source locations to the true
locations and the estimates of the four velocity anomalies produced in each inversion,

along with smearing and artifact anomalies (step 7).

2.3.1 Source Mislocations

Tables 2.1-2.9 show the source corrections resulting from both the simultaneous
and progressive inversions. The tables show, for each source parameter, the "a priori"
standard error in the first column. This is the standard error from the first computed
location of the sources introduced to the J-B model and "located" with the FORTRAN
program BERQLY (by Lane Johnson) in the J-B model with no anomalies present.
These standard errors represent the best our algorithm can hope to achieve with the
given ray coverage. The second column contains the initial parameter offset. For each
parameter, these are the amounts the source re-located in the 3-D model differs from
the true source location. Depending on the proximity of the introduced anomalies to

the earthquake hypocenter, a given hypocenter will be moved a great deal (e.g., events

T T T TR IN BRI N e ""”””W' I Ve ””]‘ P L L T K AR e T TR IR TR

e

"

NEE TRIRC



£45£ﬁ=m‘;c":\g

i
il

i

1

TN

39

4 and 5) or only slightly (e.g., events 1, 2, and 7). Column 3 contains the results after
source corrections obtained from simultaneous inversion have been applied to the ini-
tial parameter offset and it shows how far away the corrected location is from the true
source location. The fourth column shows how much the simultaneous inversion
improved the source location, Columns 5 and 6 present the same information as
columns 3 and 4, but for corrections that emerge from the progressive inversion. To
interpret these results, compare the second column to the first column of each table to
see if the improvements indicated are significant. Is the initial offset greater than the
"a priori" standard error? If so, does the correction applied reduce the parameter offset

or increase it?

For example, the origin time, latitude, and longitude parameters for Events 1 and
7 are not significantly offset. Therefore the resulting corrections may be misleading.
Events 2, 3, and 9 have unusually small initial offsets, locations this accurate would
not require corrections anyway. For both the simultaneous and progressive inversions,
event 4 shows significant improvement of an initially poorly located source. Perhaps
the latitude and longitude terms are less significant, Event § has the most dramatic
results, All parameters are initially offset a significant amount and for the progressive
inversion, all but the longitude term were corrected to well within the "a priori" stan-
dard error. Particularly with respect to the origin time and source depth parameters,
the progressive inversion performed better than the simultaneous inversion for these
two most significant events, 4 and 5, as it generally did throughout these tests, Of par-
ticular concern is the poor estimation by the simultaneous inversion of the corrections
to origin time and depth. Events 6 and 8 show good, though mixed, results. In all
cases in which a parameter is offset an amount greater than the standard error, the
correction produced by the progressive inversion reduces the offset to within the stan-
dard error. The simultaneous inversion produced just one exception to this rule (the

longitude correction for event 8). In cases in which the initial offset is still within the
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standard error the correctlon usually reduces the offset further, but it may also result in
a greater offset from the true source. In all but one of the cases in which the offset
rendered by the progressive inversion is an increase over the initial offset, the final
offset is still within the parameter’s "a priori" standard error. This is true for all but
four of the offsets rendered by the simultaneous scheme. Apparently once an offset is
within the Standard error, attempts to decrease the mislocation further result in a
waffling about within a range of the true value roughly bounded by the standard error.
This "loose" bound, rather than than a "hard", inviolable bound is expected for the
standard error, We tested this further by performing another iteration of the imaging
scheme in which our source location estimates are updated by applying the corrections
resulting from the first iteration and the entire algorithm is repeated, based on the new
locations. Indeed, in every case in which the first iteration’s offset still lay outside the
"a priori" standard error, the second iteration improved the offset to within this stan-
dard error. In addition, for the progressive inversion five more parameters corrected
after the first iteration to within the standard error jumped outside of the standard error
after the second iteration, Perhaps if the initial offsets were larger, and generally more
significant according to the "a priori" standard errors, the second iteration would be
warranted and helpful. In our test case, the second iteration produced negligible
improvement and, in fact, resulted in a degradation of source location estimates as
often as improvement. The important result, however, is that the "a priori" standard
error estimates allow the reliable determination of the significance of a particular
correction. These standard errors are supplied by the ISC along with their location

estimates,

Ideally, sources would be re-located in a three-dimensional model rather than with
corrections produced as a by-product of an inversion for velocity. Both the location
and velocity estimation problems are nonlinear and should be approached with an

optimization scheme. But an iterative scheme for a fully three-dimensional Earth that
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incorporates enough data and parameters to constrain interesting features of Earth is
beyond our computational capacity at present, At this stage our greatest interest is in

finding an inversion scheme that decouples the source location and velocity problems

as much as is possible. In the next section we explore the consequences of removing
the contributions of source mislocations from the travel time residual for our retrieval

of a 3-D velocity model,

2.3.2 Velocity model

Table 2.10 shows estimates for the four input anomalies and a fifth entry for the

next largest value emerging from the inversion, This fifth entry is the largest artifact

anomaly and does not represent the same voxel across the bottom row of the table,

Bl

Column 2 shows the number of rays sampling eath model block., The most-sampled

ST
.

‘é%: voxel had 96 hits; several voxels had more than 72 hits, The 3-D anomalies we intro-
;Pl ' duced to the J-B model are indicated as "peak" anomalies in column 3, However, in
45

;',fg‘ order to trace rays through the three-dimensional model, given the model parametriza-
g

}’;' l tion into discrete voxels, we first smooth the input velocity model. To smooth the
f;‘ input model, we place a "peak" anomaly at the center point of a voxel and constrained
1 I the anomaly to decrease linearly toward the voxel's boundaries. The average velocity

encountered by each ray is therefore well below the "peak" anomaly. To find the

actual image we are trying to rvecover, neglecting the effects of imperfect ray coverage

(i.e. to assess the effects of smoothing the four input "spikes"), we invert residuals cal-

culated by subtracting the synthetic travel times from travel times through the J-B

model from the true source locations. This result, listed in column 4 of Table 2.10,
contains the effects of imperfect ray coverage, which introduces a skewed average
velocity depending on what parts of each voxel are sampled by rays and the type of
funcﬁon employed to smooth the input velocity "spikes". Columns 5 and 6 show the
results of directly inverting the data from mislocated sources. Neglecting the effects of

source offset results in underestimating the velocity anomalies by over 50% in some
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cuses,

and produces artifact anomalies with abgolute values greater than estimates for true
values, Columns 7 and 8 show the sume information for the simultaneous estimation
of source and velocity terms, Note the overshoot in two cases, gross underestimate in
one case, and the large artifact anomaly. The last columng of Table 2.10 show the
results of our progressive invérsion scheme, Here we retrieve a much greater portion
of the velocity, with slight overshoot in one case, and with artifacts attaining a max-

imum magnitude of about one quarter the smallest true anomaly.

2.3.3 Summary of Results

With the simulations described in this section we discover that ignoring the
effects of source mislocation in a tomographic inversion results in underestimating
velocity anomalies by up to 50%, creating smeared anomalies in adjacent voxels with
values up to 50% of the retrieved velocity of its neighbor, and creating anomalies else-
where in the mantle with values greater than those estimated for true anomalies.
Simultaneous inversion for corrections to the source location and for a velocity model
usually improves source locations when initial offsets are "significant” in the sense that
ray coverage is distributed in azimuth and distance well enough to constrain the source
location to a range smaller than the offset. Velocity estimates are generally accurate,
though the magnitudes of the anomalies are less reliable. Also, entirely inaccurate
anomalies, produced as artifacts of the inversion, reach disturbingly high values. Pro-
gressive inversion improves source locations 60-80% and successfully retrieves velo-
city anomalies after one iteration for velocity anomalies of 1-2%. The largest ghost

image is small compared to the smallest true anomaly.

The success of these tests in correcting the source mislocation and in retrieving

the overwhelming portion of the anomalous velocity is probably due to the small
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source offsets produced by our four velocity anomalles. These small offsets are due,
in part, to the relatively good constraints provided by our source-receiver geometry
and, in part, to the small number of low-amplitude anomalies introduced to the velo-

city model.

These results were obtalned with tomographic imaging based on raytracing
through a one-dimensional velocity model. For larger anomalies, more iterations and
three-dimensional raytracing may be necessary., However, computational requirements
may not be feasible for such a scheme and better results are not guaranteed. When we
perform a second iteration of our algorithms in which the source corrections are
applied and rays are calculated from the new locations through the same 1-D model
we started with initially, results for both source corrections and velocity terms are
mixed. This is probably due to the success of the first iteration. The remaining offsets

are small with regard to the standard errors of the first computed source locations.

In our row-active implementation, the progressive inversion scheme used 40%
more CPU time than the direct LSQR in vectorized mode, Requirements for disk
space (or core memory if the application is small enough to allow the coefficient
matrix to be stored in core) is about 5 times the requirements of the simultaneous
inversion. As the projections are performed in the progressive scheme, columns of the

previously sparse coefficient matrix are filled in, resulting in a more dense matrix,

2.4 Inversions of Real Data
2.4.1 Data selection

The data inverted in this study were obtained from the catalog of the International
Seismological Centre (ISC) for the period January 1964 through January 1987 (frontis-
piece). To avoid contamination of our mantle phases by Earth’s core we limit the
range of our coverage to epicentral distances between 0° and 96°. The scatter caused

by refractions from the 400 km and 670 km discontinuities, at about 15° to 25°, is
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dealt with in the inversion process by weighting each summary ray by the inverse of
the standard error of travel time residuals as a function of delta. To ensure that
sources are well-located, each event must have a minimum of forty reporting stations,
and source depths, as reported by the ISC, must be greater than 0 km and less than 70
km. In addition, maximum standard errors for the ISC locations must be 1 sec for ori-
gin time, 0.1° for both latitude and longitude, and 10 km for depth. We discard all
events located by the ISC at Earth's surface, but retain events located at the other
default depths, To ensure adequate and reasonably uniform ray coverage of Earth we
keep a maximum of twenty-five events in each voxel. The set of events retained for
each voxel always includes the events with the most observations. In this study we do
not form summary rays. All observations are corrected for ellipticity by numerical
integration along the raypath of the tra rel time perturbation arising from deviations of
a hydrostatic figure from a sphere. Lengths of ray segments in voxels are found by
integrating dJistance along the curved raypath and finding the intersections of rays with
voxel boundaries. Rays associated with residuals greater than seven seconds are dis-
carded, Approximately 345,000 rays satisfy these criteria, Figures 2.6 and 2.7 show

the locations of the selected events and seismographic stations, respectively.

Figure 2.9 shows a histogram of travel time residuals binned in 1° intervals asso-
ciated with sources located by the ISC at depths between O and 70 km, inclusive,
Poorly constrained events are assigned by the ISC to default depths of 0, 5, 10, 15,
and 33 km. We examined histograms of travel time residuals associated with events
assigned by the ISC to these five different default depths, and compared the residual
distributions for these events to the residual distribution of remaining events, The
travel time residuals associated with sources located at 0 km depth (figure 2.10) show
a much different distribution than that of the remaining residuals. Due to a problem
with our FORTRAN subroutine, ISC records in which the source depth was left blank

defaulted to zero source depth, Although the residual distribution shows a clear
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bimodal pattern, we are unable to distinguish reliably between true, zero-depth loca-
tions and defaulted locations after the data are been extracted from the ISC master set,
For this study we discard all events with source depth equal to zero, Histograms for
the remaining default depths ‘ure nearly identical to the histogram for all remaining
events, so we cannot justify culling events with source depths of 5, 10, 15, or 33 km.
A histogram of the winnowed data set, along with the first four moments of the travel

time residual distribution is shown in figure 2,11,

2.4.2 Model

The starting model used in this study is a one-dimensional, spherically-symmetric
P velocity model modified from Jeffreys [1960]. Modifications to the Jeffreys velo-
city model are necessary to obtain a model congistent with the Jeffreys-Bullen
[Jeffreys and Bullen, 1940] travel time tables. These modifications are small but
important because they remove a systematically slow trend for the mid-manile from
the model published by Jeffreys and make the model more consistent with the tables,

‘that were used by the the ISC to find source locations originally.

The model mantle is divided into 14 layers, approximately 200 km thick, with
radial boundaries located at Earth’s major discontinuities, Each layer contains 406
approximately equal area voxels, 10° x 10° at the equator, for a total of 5,684 model
parameters. The exceptions to the 200 km thick layers occur in the upper mantle, in
order to place a radial boundary at the 670 km discontinuity (resulting in a 270 km
thick layer) and above the core-mantle boundary, where the lowermost layer is 228 km

thick. One layer of our model parametrization is shown in figure 2.8.

Figures 2.12a-h show the ray coverage of the mantle provided by the approxi-
mately 345,000 observations included in our data set. Sampling is described in terms
of the number of rays that traverse each voxel. The most-sampled voxel has over

50,000 samples. Only 166 of 5684 voxels are unsampled. Figure 2.12a shows the
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clear demarcation of plate boundary source regions that, along with Asia, North Amer-
ica, Europe, and Australia, are well-sampled. In contrast, other regions tend to be
quite poorly-sampled. There are also large oceanic areas in the first few laycrs that are
completely unsampled by our data set. These voxels do not enter into the inversion.
The next depth layer, figure 2.12b, shows a broadening of the well-sampled regions
and a slight reduction of the unsampled oceanic areas. At 400-670 km and 670-870,
figures 2.12¢ and d, these trends continue, and by the mid-mantle, figures 2.12¢ and f,
virtually all voxels are sampled. In general, sampling becomes more homogeneous
with depth and at the bottom of the mantle, figures 2.12g and h, the sampling is much
more uniform than in the first layer. Note in all eight figures the strong bias toward
the northern hemisphere, in general, and toward continents in particular. However, in
absolute numbers the sums of ray segments in voxels decrease with depth, even as
more voxels are sampled in each layer. Table 2.11 details the average number of hits
for sampled voxels in each layer along with the the average sum of ray segments in a
voxel at a given depth and the number of voxels sampled in each depth interval.
These averages include only voxels that have non-zero sampling. The trends in Table
2.11 show that while homogeneity of sampling increases with depth, voxels tend to be

less frequently and less heavily traversed by recorded seismic rays.

2.4.3 Inversion Results

Inversions of the ISC data were performed directly, neglecting source terms,
simultaneously for source mislocation and velocity terms, and progressively for each
set of terms. The resulting models are named ISCI10_direct, ISCI10_sim, and
ISC10_pro, respectively. The weights applied in each inversion are identical and the
LSQR algorithm is performed for 20 iterations in each case. Convergence was deter-
mined by the relative change of the residual norm after each iteration. At 20 itera-
tions, each model produces a slightly different variance reduction of the travel time

residual distribution. For modsl ISCI10_direct the variance reduction is 12%, for
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model ISC10_sim it is 14%, and for model ISCI0_pro it is 16%. Minimum and max-
imum velocity perturbations are [~1.8%, 2.0%] for ISC10_direct, [~1.5%, 1.9%] for
ISC10_sim, and [-2.1%, 2.2%] for ISC10_pro.

Figures 2.13a-f, 2.14a-f, and 2.15a-f show six of the fourteen layers for each
inversion. Despite the large voxel size, the top layers, 0-200 km depth (figures a) and
200-400 km (figures b), show quite strong correlations with surface tectonics. All
models show fast anomalies in the Asian, Australian, and North American shield
regions. The Indian subcontinent and southern Africa are consistently fast in all the
models’ top layers. Also in the top layers, a ring of slow anomalies surrounds the
Pacific basin, though the ring is not as continuous a feature of the progressive model.
Nevertheless, the Central American subduction zone, Nazca Plate, Galapagos hotspot,
northwestern South America and all of the North American Great Basin and Range
Province, including the Yellowstone and Raton, New Mexico hotspots, are covered by
a broad, unusually slow anomaly. All models share this feature in the 0-200 km layer.
In the 200-400 km depth range ISC10_direct and ISC10_sim show an intruding fast
anomaly that extends across northern Mexico and Baja California while ISC10_pro
remains slow, consistent with the layer above. The first two models show this same

fast anomaly in the 400-670 km depth range while ISC10_pro remains slow.

Elsewhere around the Pacific, slow backarc basins appear to compete with fast
subducting lithosphere to claim the dominant anomaly for a particular region. From
southern Alaska westward along the Aleutian island arc all the models begin with a
fast anomaly and switch to a slow anomaly as the backarc basin comprises a larger
portion of the next voxel to the west. Still further west, the next voxel also includes
parts of the Kurile arc as well as the Aleutian arc and model ISC10_pro returns a posi-
tive anomaly while ISC10_direct and ISC10_sim are marked by slow anomalies.
Similar differences between the first two models and the progressive model appear in

the northern Japanese, Manana, Philippine, Micionesian, Tongan, and Chilean
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subduction zones.

Further similarities between all three models include slow anomalies in East
Africa, which are associated with a broad slow anomaly that persists through the first
three layers of each model, the Mediterranean Sea, and the Hawaiian/Emperor hotspot.

Another common feature is the abrupt change at the 400-670 km layer in each model

of the sign of the anomaly associated with continental shields. Only the Australian
shield remains largely a fast region. In the northem hemisphere, slow anomalies have

displaced the fast anomalies in the continents’ southern portions.

Further differences between the models arise in a comparison of mid-ocean

ridges. Models ISC10_direct and ISC10_sim are fairly consistently marked by slow

anomalies in the top layers, with exceptions arising almost exclusively in the southern
hemisphere, where ray coverage is relatively poor. ISC10 pro shares the same nega- .

tive sign for most anomalies, but ridges in the southern hemisphere are more con-

sistently slow and the mid-Atlantic ridge is not marked by the same broad slow ano-

maly as in the first two models.
Figures 2.13d-f, 2.14d-f, and 2.15d-f present the three models for the 1270-1470

km, 1470-1670 km, and 2470-2670 km depth ranges, respectively. In the mid-mantle

(figures d and e), models ISC10_direct and ISC10_sim show larger-scale anomalies,

g
§
less broken by small-scale intrusions, than does model ISC10_pro. Surprisingly, con- '
tinental regions in the northern hemisphere are generally associated with fast anomalies I
and oceanic regions are generally associated with slow anomalies. Continents in the

southern hemisphere are not marked by fast anomalies. Most striking are fast I

anomalies beneath eastern North America, the Caribbean, and northwestern South

America, and the fast features beneath Tonga and Japan/eastern Asia. The fast ano-
maly beneath eastern North America and the Caribbean appears in the same location as
a large S-velocity anomaly reported by Grand [1987]. Similar features for P velocity

appear in the inversions perfonmed by van der iHilsi [1990] for ¢
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Central American region, The fast feature beneath Tonga broadens and continues to

dip to the west to a depth of 1670 km. Beneath Japan and eastern Asia the fast ano-

maly is diffuse but extends all the way to the core-mantle boundary.

& The 2470-2670 km depth layer (figures f) shows a more broken, fast pattern
E beneath the Pacific basin at the mantle’s bottom. A ring of slow anomalies around the
)
',L‘

Pacific is emerging, but is not nearly as strong as the ring observed by Dziewonski
i [1984), Morelli and Dziewonski [1985, 1986], and Clayton and Comer [1983; Hager
and Clayton, 1988] in the lowermost mantle. Seeking to avoid contamination of our
data by diffractions at the core-mantle boundary, we impose an epicentral distance
limit of 96° on our observations. The resulting ray coverage does not allow us to be
confident f our results for the lowermost layer (D"). Regardless of differences
| between our models and models produced previously by others, it is clear that

differences between the upper mantle layers of our three models are greater than are

differences between layers of the lower mantle.

2.4.4 Comparison of Small-scale Model Features

The upper mantles of our three models apparently differ from each other more

than do the lower mantles. To test this observation more rigorously at the scale of
individual model blocks we employ a statistical correlation technique. Because we do
not know the probability distribution function from which our sample model values are
drawn we prefer a non-parametric procedure, and since we already know that our
models generally differ in the amplitudes of individual model values we are most
interested in a technique that compares the heterogeneity patterns of two models rather
than the individual values of heterogeneity. For these reasons we choose to evaluate
model layer correlations with a non-parametric rank-order correlation procedure.
When comparing a given layer of two models we replace cach velocity value from the

first model with its rank among the N—1 other values in the same layer, and do

L T T AT B S T T T T (A TN '/rmmww W} wm; LRl I wuw o H‘}‘ g me W“M” "|”||‘H\|“ “M”“HWWW |!W|Hl|\|"‘”|mu'll le\””.’"



50

likewise with values from the same layer of the second model. Now the series to be
examined for correlation consist of integers, 1 to N, that are drawn from a perfectly
known distribution. If some of the velocity values are identical, they are assigned rank
equal to the mean of the rank they would have had were they distinct. This assigned
rank will not, and need not, necessarily be an integer. Regardless, the sum of all
assigned ranks will equal the sum of the numbers 1 to N. What results is two sets of
rankings, generally the integers 1 to N, for which statistics have been invented and
well-used. As the most straight-forward of the common rank-order correlation statistics

we choose to employ the Spearman statistic, which is defined as

N — —
L R-R)S=S)

ro= 'N i=1 T > (2.41)
S(R-R)?| | 365;-5)?
i=1

i=]

where

=
il

series indicating the rankings of the first model’s velocity
values for a given layer,

§ = series indicating the rankings of the second model’s velocity
values for the same layer.

Figure 2.16 shows the Spearman rank-order correlations between layers of each set of
two models. Clearly the models ISC10_direct and ISC10_sim are quite similar even at
the scale of individual model blocks. Still, the small differences that do exist tend to
be located in the upper portions of the models. These difference disappear with depth.
Correlations between models ISC10_sim and ISC10 _pro are fairly consistent
throughout the lower mantle, though a small peak appears again at the 1270-1470 km
depth layer. In the upper mantle, however, the top two layers display a marked

decrease in correlation. This concentration of differences in the top layer, in which all
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our sources are located, and the next lower layer indicates that our inversion pro-
cedures’ different treatment of the source location terms portends important differences

only for these layers at short wavelengths.

2.4.5 Comparison of Large-scale Model Features

To serve as a low-pass filtering procedure, we calculate surface spherical har-
monic series expansions to degree 10 by integration around the globe for each
coefficient, rather than by fitting coefficients to model values by least squares. The
associated Legendre polynomials are fully normalized, i.e.,

Ya
_ 1o (l—m)! m
pl®) = {2 8’"'0)(21+1)m(1+m)! P["(cos ©). (2.42)

Figures 2.17, 2.18, and 2.19 show the total power in the series expansions for
each model plotted as a function of depth. The distribution of power with depth is
quite similar for ISC10_direct and ISC10_sim, though the total power contained in the
direct model is greater than that in ISC10_sim. ISC10_pro shows a slightly different
pattern, Unlike the first two models, the most heterogeneous iayer is the topmost, 0-
200 km. The anomalously low power in the 200-400 km layers of all our models is
probably due to the fact that rays bottoming in this layer, which emerge at the epicen-
tral distance range 15° < A £ 20°, have the largest variance of all the travel time resi-
duals. These rays are the most sensitive to velocity perturbations in the 200-400 km
layer, but in our inversion their influence on the final model is downweighted by the
inverse of the residuals’ standard errors. The trangition zone, 400-670 km, contains
the highest power in models ISC10_direct and ISC10_sim, indicating the greatest
heterogeneity in these models occurs at these depths. Note that the absolute magni-
tudes of these transition zone power totals are comparable to, and do not exceed, the
power in the ISC10_pro transition zone. Because our starting model does not contain

discontinuities, our theoretical ray coverage of the transition zone is more uniform than
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is the case for models of the mantle that include discontinuities at 400 and 670 km
depth. As a result, we are probably mapping more power into the transition zone for
all three models than is justiﬁéd. Deeper in the mantle a relative peak appears at
about 1300 km depth and is followed by diminished heterogeneity at greater depths.
This increase in power at the 1270-1470 km depth layer may be attributed to
anomalously large / = 1, 2, and 3 components in all three models. At the bottom of
the mantle, ISC10_direct and ISC10_sim show a dramatic increase in heterogeneity
while the ISC10_pro shows only a modest increase. The drop in power from the
2470-2670 km layer to the lowermost layer, 2670-CMB, is probably due to the poor

ray coverage in this bottom layer that results from our epicentral distance limit of 96°,

Figures 2.20, 2.21, and 2.22 show, for each model, the power in series expansi‘ons
of each layer as a function of angular degree. As figures 2.17-19 would lead us to
expect, power at all degrees in the top two layers of models ISC10_direct and
ISC10_sim is smaller than the power contained in the top two layers of ISC10_pro.
Particularly striking are the large values of the / =5 and / = 6 components and the
consistent importance of the / = 6 component throughout the upper third of the mantle.
The finding of a large / =2 component in the transition zone confirms previous
reports, but a prominent / = 3 also appears in all models. The progressive model
shows a large / = 6 harmonic as well. In the mid-mantle, 1070-1670 km, the / = 2 and
3 components rise above the higher-degree harmonics with nearly the same pattern for
all models. More differences arise in the lowermost mantle, where the dominant
heterogeneity of model ISC10_pro is concentrated in the { =3 term, while the first

two models show anomalous / = 1 components.

Since sign information is not included in power calculations, figures 2.20-2.22 do
not offer any clues as to how the distribution patterns for all layers combine construc-
tively or destructively to form a pattern for the whole mantle. Figures 2.23-2.25 show

the power in the spherical harmonic expansions for the respective models averaged
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through the whole mantle and through the upper and lower mantle separately. The
averaging is performed on the the individual harmonic coefficients, weighted at each
layer by the square of the layer mid-point’s radius, which normalizes the power in
each layer to the layer's surface area. Here, differences between the models appear
‘ most dramatically. For the upper mantle the ISC10_pro (figure 2.25) power spcctrum
| shows a dominant / = 6 component, along with prominent [ =2, 5, and 8 terms. In
,il contrast, the ISC10_direct (figure 2.23) and ISC10_sim (figure 2.24) ‘power spectra
! show no constructive patterns other than & quite prominent / = 2 pattern. When aver-
}]‘ aged over the lower mantle alone the three models show quite similar patterns, apart

from a slightly more prominent / = 2 harmonic in the progressive model. Apparemly
it there is some type of compensation at work, either numerical tradeoff between layers
of our computed models or physical compensation of velocity heterogeneity in the real
Earth. When individual layer series are averaged over the entire mantle, the prominent
patterns of the ISC10_pro upper mantle nearly disappear and the components of the

ISC10_direct and ISC10_sim upper mantles decrease in power. Only the large / =2

{
[, term survives the whole mantle average.

In an effort to find the location in the mantle of the primary long-wavelength

differences between our three models, we calculate correlation coefficients between
spherical harmonic expansions of a given layer for two models at a time. We employ

a correlation coefficient, r, defined as

i (R11711S11)11+R1n1251m 2)
m=0

ro=— ; , (2.43)
l Z (Rlln12+ern2“)]l/2l E (SImIZ+SIm22)]1/2

m=0 m=0

where
R!m = first model harmonics (superscript i = 1 refers to cosine term,

i = 2 refers to sine term),
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§im = gecond mode! harmonics.

Figures 2.26, 2.27, and 2.28 show the correlations between spherical harmonic degrees

as functions of depth between models ISC10_direct and ISC10_pro, The differences

found at small-scales (figure 2,16) are not duplicated exactly here, but some trends are
similar, Most degives show relatively low correlation in the first two layers, 0-200 km
and 200-400 km, which improves in the upper part of the lower mantle. Correlations
in the lowermost mantle are erratic, though the higher degrees (I = 8, 9, and 10), show
a gradual decrease in correlation with depth. Exceptions to these general trends
include ! = 4 (figure 2.26) and ! = 6 (figure 2.27). Results in the lowermost mantle
do not reflect the results found for the small-scale correlations, but simulations per-
formed elsewhere (see chapter 3) with long-wavelength patterns indicate that
higher_degree harmonics are not resolved reliably in the lower mantle, Most impor-

tant to our purpose here is the observation that correlations between models are gen-

erally weak in the upper mantle.

2.4.6 Source Corrections

Figures 2.29 and 2.30 show source correction vectors produced by the simultane-

ous and progressive inversions, respectively, for the same 400 events. These reloca-
tions are representative of the corrections required by each inversion procedure for the
3077 events used in this study. In each case the starting location (found by the ISC) is
indicated with either an asterisk or hexagon and a scaled vector points in the direction
of the correction required by the latitude and longitude adjustments. For each event
the direction of the depth correction is indicated by the type of symbol marking the
relocation vector’s endpoint. Events that receive a shallowing correction are marked
with asterisks; events that are relocated deeper are marked by a hexagon. Origin time
corrections are not shown. Both figures 2.29 and 2.30 are scaled to the same max-

imum vector length,

i
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The most striking feature of these figures i that the corrections produced by the
progressive inversion (figure 2.30) are clearly larger than the corrections produced by
the simultaneous inversion (figure 2.29). Overall the progressive corrections are gen-
erally two to four times the simultaneous corrections, although in some cases the pro-
gressive corrections are far greater, The corrections required in remote regions, where
we might expect the constraints provided by the station distribution to be relatively
weak, are not generally the largest in either case. The simultangous inversion, particu-
larly, produces small corrections in such remote regions as the Carlsberg and Indian
Ocean ridges. The progressive inversion produces much larger corrections, but these
corrections are not generally larger than the corrections produced in well-instrumented
regions such as western North America, the eastern Mediterranean, and the Japanese
subduction zone. The progressive corrections do not claim to be unerringly correct,
they simply find that more of the travel time residual can be explained by moving the
source than does the simultaneous, which finds a best-fitting location, Recall that
poorly-located events, as determined by the standard errors of the ISC locations, were
culled from our data set originally, Each source used here is one of the best-

constrained of the I1SC events located in its vicinity,

Though the corrections from the two inversions differ in size, some recognizable
patterns and similarities emerge from a comparison of figures 2.29 and 2.30. In the
northern parts of Japan, both sets of corrections are overwhelmingly oriented north-
ward and slightly west of north. These corrections are some of the largest in each set,
Whether this direction is correct, or at least expected from what we know of the loca-
tion of lithosphere subducting underneath Japan, depends on whether the events actu-
ally occur predominantly on one side of the descending slab or are well-distributed
throughout the slab, The depth corrections are moderate (5< 64 <10) for both inver-
slons. Along the west coast of North America an interesting pattern shows up in both

sets of corrections, Proximate events, in regions well-covered by seismic
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ingtrumentatlon, are corrected large amounts In nearly opposite directions. This result,
along with non-systematic und unexpected corrections elsewhere, such ag at Hawali,
the Mediterraneun Sea and Middle East, lead us to the expected conclusion that the

progressive inversion did not find a realistic source correction,

2.4.7 Discussion

Our visual comparison of models ISC10_direct, ISC10_sim, and ISC10_pro
reveals that upper mantle differences are located overwhelmingly in source regions,
implying that the model differences result from the differences in our treatment of the
source terms. That the differences between models ISC10_direct and ISC10_sim are
smaller than the differences between ISC10_sim and ISC10_pro is surprising, but is
probably due to the fact that the progressive scheme actually extracts all of the travel
time residual that may be attributed to source mislocation, not just the portion that is
independent of the velocity terms. Despite the concentration of model differences in
source regions, the effects of different treatments of the source appear in the velocity
models at both long and short wavelengthy in the upper mantle. Differences between

the models diminish with depth,

Our comparison of the source corrections produced by simultaneous and progres-
sive inversion support this interpretation, Source corrections emerging from the pro-
gressive inversion are generally two to four times greater than the simultaneous
inversion’s corrections, Some events get extremely large corrections with the progres-

sive inversion, but only moderate corrections with the simultaneous inversion,

Progressive inversion is intended to remove as much of the travel time residual as
can possibly be attributed to source mislocation and then use the remainder to find a
velocity model, While this procedure might be expected to remove the contamination
due to source mislocation from the velocity inversion, it should also tend to overesti-

mate source corrections, Included in the source termg are the effects of vagaries in ray
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coverage and some portlon of the nolse in the data, These effects show up most
noticeably in the estimates of origin times and source depths. The direct P phase is

notorious for its poor control of these two parameters, Due to the downward takeoff

angles of P phases from the source, there is generally a strong tradeoff between them.

The addition of pP and/or S phases to the inversion better constrains these two param-

eters [Q’'Connell and Johnson, 19911,

2.5 Conclusions

For simulations of a global tomographic inversion scheme, ignoring the effects of
source mislocation results in underestimating velocity anomalies by up to 50%, creat-

ing smeared anomalies in adjacent voxels with values up to 50% of the retrieved velo-
city of its neighbor, and creating anomalies elsewhere in the mantle with values greater

than those estimated for true anomalies. We would expect these results to be even
more exaggorated in the real case, in which source mislocations and velocity contrasts
are greater than in our simulations. Clearly, careful treatment of the source location
problem ig critical to the accurate retrieval of three-dimensional velocity variations.
The progressive inversion developed here generally produces more accurate source
corrections and velocity anomaly estimates than does an inversion scheme in which
- both source corrections and velocity terms are found simultaneously, These results are
| superlor particularly with respect to the suppression of artifact anomalies in the velo-
city estimation. The success of the progressive scheme, and the satisfactory perfor-
mance of the simultaneous scheme, may be attributed to the strong geometrical con-
straints provided by our set of stations on the source locations and the relatively small
amplitudes of the introduced velocity anomalies. There is no reason to expect that
corrections to source locations provided by a progressive inversion will be more accu-
rate that those provided by a simultaneous inversion for cases in which reporting sta-

tions are not well-distributed around a source or additional systematic errors are
In such cases, the progressive inversion will generally

present in the data,
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overestimate the source correction in ity effort to find a velocity model free of contam-
ination. Looking at the source mislocation terms themselves reveals that the sizes of
corrections emerging from the progressive inversion are generally two to four times
greater than corrections produced by the simultaneous inversion. In some cases the
progressive cotrections are far greater, In the simultancous case, the relative scaling of
velocity and source terms is critical, With a judicious choice of weights, one could
emphasize fitting the source terms at the expense of the fit to the model, but this is not
the same as ﬁrst extracting the entire portion of the travel time residual that may be
explained by source mislocation, In the first case, the simultaneous inversion with
hypocentral partial derivatives more heavily weighted than velocity coefficients, the
algorithm is still trying to find a best-fitting solution to the source mislocation problem,
In the second case, the progressive inversion, the algorithm is not finding a solution for
the source corrections initially, It simply considers the geometry of the problem,
including the strength of the constraints on hypocenter location, and finds the max-
imum travel time discrepancy that might be accounted for by moving the source loca-

tion.

As our inversions of real data demonstrate, the two inversion schemes produce
clearly different velocity models. Moreover, these differences are concentrated near
the models’ surfaces, in general, and in source regions, in particular, The bulk of the
models’ differences are therefore due to the algorithms’ differences in their treatment
of source terms, and, as the simulations performed at the beginning of this chapter
attest, the progressive inversion is more successful at retrieving accurate estimates of

velocity anomalies,
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2.7 List of Tables

Table 2.1 The source corrections resulting from the simultaneous and progressive
inversions for Event 1, located under the Kamchatka Peninsula. For each
source parameter the first column indicates the "a priori" standard error. This
is the standard error from the initial location of the sources introduced into the
J-B model and located in the J-B model with no anomalies present. These
standard errors represent the best any algorithm can hope to achieve with the

given ray coverage. The second column contains the initial parameter offset.

S tmni b

For each parameter, these are the amounts the sources re-located in the 3-D
model differ from the true source locations. Column three contains the results
after source corrections obtained from the simultaneous inversion have been
applied to the initial parameter offset and it shows how far away the corrected

source are from the true sources. The next column shows how much the

simultaneous inversion improved the source locations. Columns five and six

contain information similar to columns three and four, but for corrections that

emerge from the progressive inversion.

Table 2.2 The information contained in Table 2.2 is similar to the information con-

tained in Table 2.1, but for Event 2, located in the Chilean Subduction Zone.

Table 2.3 The information contained in Table 2.3 is similar to the information con-

tained in Table 2.1, but for Event 3, located in the Mariana Subduction Zone.

Table 2.4 The information contained in Table 2.4 is similar to the information con-

tained in Table 2.1, but for Event 4, located in Mongolia, China.

Table 2.5 The information contained in Table 2.5 is similar to the information con-

tained in Table 2.1, but for Event 5, located in the Aleutian Islands.

Table 2.6 The information contained in Table 2.6 is similar to the information con-

tained in Table 2.1, but for Event 6, located in the Cenmal Amernicaii
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Subduction Zone.

Table 2.7 The information contained in Table 2.7 is similar to the information con-

tained in Table 2.1, but for Event 7, located in the South China Sea.

Table 2.8 The information contained in Table 2.8 is similar to the information con-

tained in Table 2.1, but for Event 8, located in the Himalayas.

Table 2.9 The information contained in Table 2.9 is similar to the information con-

tained in Table 2.1, but for Event 9, located in the South Pacific Ocean.

Table 2.10 Estimates tor the four input anomalies and a fifth entry for the next larg-
est value emerging from the inversion. This fifth entry is the largest artifact
anomaly and does not represent the same voxel across the bottom row of the
table. Column 2 shows the number of rays visiting each anomalous block. We
place a "peak” anomaly at the center point of a voxel and constrain the ano-

maly to decrease linearly toward the voxel’s boundaries. To find the actual

image we are trying to recover, neglecting the effects of imperfect ray cover-

age, we invert residuals calculated by subtracting the synthetic travel times

from travel times through the J-B model from the true source locations. This
result is listed in column 4. Columns 5 and 6 show the results of directly
inverting the data from mislocated sources. Columns 7 and 8 show the same
information for the simultaneous estimation of source and velocity terms. The

last two columns show the results of our progressive inversion scheme.

Table 2.11 Details of the model parametrization and the sampling provided by our
data set. Include are the average number of hits for sampled voxels in each
layer along with the the average sum of ray segments in a voxel at a given
depth and the number of voxels sampled in each depth interval. These aver-

ages include only voxels that have non-zero sampling.
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2.8 List of Figures

Figure 2.1 Flow chart outlining the steps performed in the tomography simulations.

Figure 2.2 Locations of sources (lvarge gray spheres) and stations (small black dots)

used to construct the synthetic data set for the simulations. The data set con-

sists of 9 events and a total of 207 stations. An average of 45 arrivals are cal-

o

culated for each event.

CEEED

Figure 2.3 Mode!l parametrization and input anomalies for layer 2: 483-966 km. The

model mantle is parametrized as voxels, 30° x 30° at the equator and 500 km

thick, for a total of 276 model parameters. Voxels in a given layer have
approximately equal surface area. The introduced velocity anomalies are

highlighted in gray (0.15 km/s) and black (=0.20 km/s).

Figure 2.4 Input anomalies for layer 3, 966-1449 km depth, are 0.30 km/s and
0.10 km/s.

Figure 2.5 (a-f) Ray coverage of the mantle is indicated in terms of the number of

rays that sample each voxel. The most-sampled voxel has 96 hits; several vox-

els has more than 72 hits. All six depth layers of our model are shown: (a) O-

483 km, (b) 483-966 km, (c) 966-1449 km, (d) 1449-1932 km, (e) 1932-2415
i km, (f) 2415-2898 km.

Figure 2.6 Locations of sources used in the inversions of real data. The data set
% consists of about 3,000 shallow events located by the ISC for the time period
January 1964 - January 1987. A minimum of forty observations was required

to include an event.

& Figure 2.7 Locations of seismographic stations that reported the observations used

in this study.

Figure 2.8 The model mantle is parametrized as voxels, 10° x 10° at the equator

and generally 200 km thick, for a total of 5684 model parameters. Voxels in a
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given layer have approximately equal surface area.

Figure 2.9 Histogram of approximately 409,000 travel time residuals for sources
located by the International Seismological Centre (ISC) at depths between 0
and 70 km, inclusive. Also shown are the first four moments of the distribu-

tion.

Figure 2.10 Histogram of about 65,000 travel time residuals for sources located by
the ISC at O km, which is an ISC default depth. The bimodality of the distri-
bution arises from a programming problem in which a blank depth field in the

ISC catalog is read as 0 km.

Figure 2.11 Histogram of the nearly 345,000 travel time residuals associated with
the events included in this study, Source depths are greater than O km and less

than 70 km,

Figure 2.12 (a-h) Ray coverage of the mantle provided by the approximately
345,000 observations included in our data set is shown in terms of the number
of rays that sample each voxel, The most-sampled voxel has over 50,000 sam-
ples. Only 166 of 5684 voxels are unsampled. The layers shown are: (a) O-
200 km, (b) 200-400 km, (c) 400-670 km, (d) 670-870 km, (e) 1270-1470 km,
(f) 1470-1670 km, (g) 2470-2670 km, and (h) 2670-2898 km.

Figure 2.13 (a-f) Six depth layers of model ISC10_direct, the direct inversion that
neglects source terms: (a) 0-200 km, (b) 200-400 km, (c) 400-670 km, (d)
1270-1470 km, (e) 1470-1670 km, and (f) 2470-2670 km. Each layer’s mean
has been removed. Velocity perturbations grade from red (slow) to blue (fast).

Maximum and minimum velocity variations are

Figure 2.14 (a-f) Six depth layers of model ISC10_sim, the simultaneous inversion

for both source and velocity terms. The layers shown are the same as in figure

2.13.
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Figure 2.15 (a-f) Six depth layers of model ISC10_pro, the progressive inversion for
source and velocity terms in succession, The layers shown are the same as in

figure 2.13.

Figure 2.16 The Spearman rank-order correlations between layers of each set of two
models as functions of depth. When comparing a given layer of two models
we replace each velocity value from the first model with its rank among the
N —1 other values in the same layer, and do likewise with values from the same
layer of the second model. This statistic allows us to examine correlations

between small-scale features of the models.

Figure 2.17 Power contained in surface spherical harmonic series expansions of

model ISC10_direct as a function of depth.

Figure 2.18 Power contained in surface spherical harmonic series expansions of

model ISC10 _sim as a function of depth.

Figure 2.19 Power contained in surface spherical harmonic series expansions of

model ISC10_pro as a function of depth.

Figure 2.20 Power in the spherical harmonic expansions for each depth interval of
model ISC10_direct as a function of angular degree. All values are normalized
to the maximum value appearing in the figure, Numbers on the right refer to

the maximum power for each layer.

Figure 2.21 Power in the spherical harmonic expansions for each depth interval of
model ISC10_sim as a function of angular degree. Figure conventions are the

same as in figure 2.20.

Figure 2.22 Power in the spherical harmonic expansions for each depth interval of
model ISC10_pro as a function of angular degree. Figure conventions are the

same as in figure 2.20.
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Figure 2.23 Power in spherical harmonic series generated by averaging
ISC10_direct layer expansions through the whole mantle and through the upper
and lower mantle separately. Figure conventions are the same as in figure

2.20. | )

Figure 2.24 Power in spherical harmonic series generated by averaging ISC10_sim
layer expansions through the whole mantle and through the upper and lower

mantle separately. Figure conventions are the same as in figure 2.20.

Figure 2.25 Power in spherical harmonic series generated by averaging ISC10_pro

layer expansions through the whole mantle and through the upper and lower

Tl R e R A

mantle separately, Figure conventions are the samc as in figure 2.20.
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Figure 2.26 Correlations between spherical harmonic degrees as functions of depth

e

between models ISC10_direct and ISC10 _pro. Shown are / =2, 3, and 4.
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These correlations allow us to compare large-scale features of the models,

Figure 2.27 Correlations between spherical harmonic degrees as functions of depth

between models ISC10_direct and ISC10_pro. Shown are [ =5, 6, and 7.

Figure 2.28 Correlations between spherical harmonic degrees as functions of depth

between models ISC10_direct and ISC10_pro. Shown are / = 8, 9, and 10.

Figure 2.29 Source correction vectors produced by the simultaneous inversion for
400 of the 3077 events used in this study. In each case the starting location is
indicated with either an asterisk or hexagon and a scaled vector points in the
direction of the correction required by the latitude and longitude adjustments.
For each event the direction of the depth correction is indicated by the type of
symbol marking the relocation vector’s endpoint. Size of the depth correction
is indicated by the size of the symbol. Events that require a shallowing correc-
tion are marked with asterisks; events that are relocated deeper are marked by a

hexagon. Origin time corrections are not shown. Both figures 2.29 and 2.30
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are scaled to the same maximum vector length.

Figure 2.30 Source correction vectors produced by the progressive inversion for the
same 400 events shown in figure 2,29, Figure conventions are the same as for

figure 2.29,
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Table 2.1

67

Event 1: Kamchatka Peninsula
(53.0°N, 160.0°E, 73.9 km)

After correction
"a priori" Initlal Simultaneous Progressive
Source standard parameter | parameter % parameter %
parameter error offset offsct improved offsct improved
origin time (sec) 0.00 0.00 -0.08 0.04
latitude (deg) 0.163 -0.008 0.003 63% 0.002 T7%
longitude (deg) 0.420 -0.080 -0.008 90% -0.034 58%
depth (km) 0.329 2.70 -0.75 2% 0.07 7%
Event 2: South American Subduction Zone
(31.1°S, 67.9°W, 72.2 km)
Table 2.2
After correction
"a priori" Initial Simultaneous Progressive
Source standard paramcler | paramcter % parameter %
parameter error offset offset improved offset improved
origin time (scc) 0.14 0.00 -0.09 0.00
latitude (deg) 0.022 -0.006 0.004 33% 0.002 75%
longitude (dcg) 0.029 0.006 0.004 33% 0.001 90%
depth (km) 0.18 0.10 1.00 -900% 0.16 -67%
Event 3: Mariana Subduction Zone
(18.9°N, 144.8°E, 41.0 km)
Table 2.3
After correction
"a priori" Initial Simultaneous Progressive
Source standard parameter | parameter % parameter %
parameter crror offsct offset improved offsct improved
origin time (sec) | 0.26 0.18 -0.03 83% 0.01 92%
latitude (deg) 0.019 0.031 -0.024 23% 0.003 92%
longitude (deg) 0.015 -0.012 -0.001 92% 0.001 90%
depth (km) 2.82 0.30 1.75 -483% 0.55 -85%
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Table 2.4
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Event 4: Mongolia
(50.0°N, 110.0°E, 180.0 km)

Afier correction

“a priori" Initial Simultancous Progressive
Source standard pargmeter | paramecter % parameter %
parameter error offset offset improved offset improved
origin time (sec) 0.00 -0.05 -0.02 60% 0,00 100%
latitude (deg) 0.031 0.005 0.003 40% 0.001 80%
longitude (deg) 0.047 0.041 0.015 63% 0.016 61%
depth (km) 0.31 8,70 458 47% 0.01 100%

Event 5: Aleutian Islands
(51.0°N, 178.0°W, 50.0 km)
Table 2.5
After correction

"a priori" Initial Simultaneous Progressive
Source standard parameter | parameter % parameter %
parameter error offset offset improved offset improved
origin time (sec) 0.69 2.09 2.04 2% 0.08 96%
latitude (deg) 0.024 0.024 -0.005 9% -0.006 4%
longitude (deg) 0.036 -0.159 -0.022 86% -0.066 58%
depth (km) 6.57 2430 23.81 2% 0.55 98%

Event 6: Central American Subduction Zone
(9.5°N, 84.1°W, 66.6 km)
Table 2.6
After correction

"a priori" Initial Simultaneous Progressive
Source standard parameler | parameter % parametcr %
paramceter error offset offset improved offsct improved
origin time (sec) || 0.23 0.00 0.15 0.09
latitude (deg) 0.013 -0.023 0,017 26% -0.009 63%
longitude (deg) 0.014 -0.012 0.024 -100% 0.003 76%
depth (km) 2.52 -3.10 -0.71 T7% -1.46 53%
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Event 7: South China Sca
(18.8°N, 111.9°, 53.0 km)

After correction

“a priorl" Initial Stmultancous Progressive
Source standard parameter | parameter % parameter %
parameter error offset offsct improved offset improved
origin time (scc) || 0.12 -0.01 -0.13 -1200% -0.10 -900%
latitude (deg) 0.208 0.029 0.01 66% 0.003 90%
longitude (deg) 0,228 0.010 0.003 70% 0.004 63%
depth (km) 15.84 2.50 0.46 82% 1.30 48%

Event 8: Himalayas
(30.5°N, 79.4°E, 88.0 km)

Table 2.8
After correction
"a priori" Initial Simultaneous Progressive
Source standard parameter | parameter % parameter %
parameter crror offset offset improved offsct improved
origin time (sec) 0.28 -0.12 -0.05 42% -0.06 50%
latitude (deg) 0.022 0.022 0.004 82% 0.000 100%
longitude (deg) 0.027 0.038 0.084 -120% 0.011 1%
depth (km) 2.84 0.20 1.45 -625% -0.13 36%
Event 9: South Pacific
(20.8 126.9°W, 87.8 km)
Table 2.9 :
After correction
"a priori" Initial Simultaneous Progressive
Source standard parametfcr | parameter % parameter %
parameter error offset offsct improved offset improved
origin time (sec) || 045 0.00 -0.08 -0.01
latitude (deg) 0.022 0.001 0.061 -6000% -0.002 -50%
longitude (deg) 0.020 -0.007 0.005 29% 0.001 80%
depth (km) 4.33 0.60 0.12 80% 0.23 61%
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Figure 2.1
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1. Distribute sources &
receivers around a
model earth.
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