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Abstract

Anomalously high quench velocities have been ob-
served in long 40mm aperture SSC dipole magnets. The
thermal conduction mechanism does not properly explain
the observed quench velocities in long SSC dipole mag-
nets. A helium hydraulic event within the insulated con-
ductor provides a plausible explanation for observed ve-
locities. Preliminary results of a coupled thermal con-
ductive and hydraulic numerical model of a conductor
quench event produce velocities comparable to observa-
tions. The normal operating conditions are force-flow
cooling at four atmospheres and 4.35 K temperature.
The model quench velocities are dependent upon am-
bient pressure and slow down under pool boiling condi-
tions. Slower pool boiling velocities in the model do not
explain observations in short SSC dipole test magnets
which are operated at pool boiling conditions.

I. Model

Recently, there have been several calculations of
quench velocities using a helium hydraulic mechanism
as the driving term in the time evolution of a quench
event.[1-3] Primarily this hydraulic mechanism has been
applied to conductor-in-conduit superconducting mag-
nets. The 40mm aperture 17m SSC dipole magnets ex-
perience quench velocities which cannot be explained by
thermal conduction models. An analytic model was de-
veloped which suggested that an annular helium expul-
sion model could explain the observed velocities. [4] This
model may provide an explanation for the intractable
events occurring beyond 80 milliseconds, but it does not
explain the fast quench velocities seen closer to the in-
ception of a quench event.

As an outcome of the annular model, there was spec-
ulation that there was a conduit within the Rutherford
cable surrounded by a porous boundary of kapton, fiber-
glass, and epoxy. In an attempt to model an interstitial
quench event, a coupled thermal conduction and ther-
mal hydraulic model was developed using a predictor-
corrector numerical technique. In this paper, results from
this model will be presented.

* Operated by Universities Research Association, Inc.,
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The model consists of a coupled solution of heat
generation and thermal conduction within the cable and
a hydraulic representation of interstitial helium by heat
transfer. The helium continuity, momentum, and energy
balance equations are
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The hydraulic solutions are time advanced using
predictor-corrector techniques. The conductor thermal
conduction is time advanced with an Euler technique.
All dependent thermodynamic state functions are com-
puted using a package subroutine.[5]

Some approximation must be made for hydraulic
properties of the area within the twisted wire cable. It is
not clear that a continuous path exists within the cable.
An estimate of the hydraulic diameter is dy = 10~4 m
and the friction factor is assumed to be / = 0.08 which
is somewhere between the laminar and turbulent flow
regimes. Estimates of the hydraulic diameter are based
on micrographs of collared conductors. The heat trans-
fer rate between the helium and the conductor is approx-
imated as h = Ix 103 J/irv—K for 4 atm and & = 3x 103
J/ml - K for pool boiling conditions. The heat trans-
fer rate is Q = AP(9cu — QHC) where P is the wetted
perimeter. It would be appropriate to add a transient
approximation for heat transfer and future plans include
this addition to the model.



II. Results

In figure 1, the forced flow calculations at 4 atm are
presented with long magnet data, the DD series mag-
nets.[6] The results are similar to 40mm aperture long
collider magnet data. The combination of hydraulic di-
ameter and friction factor can be considered as a tunable
parameter since there is inadequate information to eval-
uate these model parameters. As mentioned previously,
values were specified with the best information available.
The heat transfer coefficient is also poorly defined pa-
rameter for this transient model, but only generates a
velocity offset with little effect on the non-linear behav-
ior as seen in the two model cases with different 4 values.

Near short sample quench velocities are higher in
the forced flow conditions regardless of the heat transfer
rate. The pool boiling velocities are slower due to latent
heat, but are not significantly slower. Additional models
for sub-critical flow at 1.5 atm were performed and these
results were identical to the pool boiling results. An ex-
periment for a test magnet DD0012 was conducted at 1.5
atm and there was no significant difference in the short
sample quench velocities between 1.5 and 4 atm. The pri-
mary difference between supercritical and subcritical he-
lium models is that the supercritical velocities are much
more non-linear as a function of fraction of short sample
current. No experimental evidence is currently available
to confirm this prediction.

The models presented in this paper do not com-
pletely describe the velocities observed in short magnets.
Short sample quenches in these magnets are approxi-
mately 70 m/s.[7] A possible explanation is that quench
velocities accelerate significantly in the first 1-3 millisec-
onds and the entire data aquisition period is on the order
of 10 msec. The observed velocity is an average during
this period and is lower than the peak velocity.

Further analysis of the quench temperature profile
near wavefront reveals that a stationary state is formed
after an acceleration period. This is a coupled state
where the hot helium” extending beyond the wavefront
preheats the conductor as seen in figure 2. If the ther-
mal conductivity term is eliminated, a quench velocity at
1/1,, — 0.9 would drop to approximately 3 m/sec. Stan-
dard thermal conduction models predict approximately
2b-30 m/sec depending of heat transfer rates to the he-
lium “bath”. It is a combination of thermal conduction
and preheating of the superconductor beyond the wave-
front which develops that large quench velocities.

This probably would not be considered to be a "hy-
draulic quench back” as predicted for conductor-in-
conduit energy storage magnets. It is rather an extra
heat transfer term advancing the thermal conduction
propagation. The spacial region involved in this prop-
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Figure 2 - Axial quench temperature wavefront profile.

agation is on the order of 5 cm. It is likely that the
hydraulic mechanism would need to act within a short
distance due to a small hydraulic diameter.

This hydraulic model provides a feasible explana-
tion for the fast quench velocities observed in SSC dipole
magnets under different cryogenic conditions. There are
several issues which are unresolved in this mechanism.
The heat transfer outside the conductor is omitted. The
conduit for Rutherford cable is porous and would relieve
pressure. Both of these effects would slow down quench
propagation. Presently, there is a long sample test in
progress which could demonstrate the change in quench
velocities due to varying cryogenic conditions and with-
out a helium bath. This test should provide evidence to
support or refute hydraulic mechanisms.



In any case, the primary purpose for determining the
quench propagation mechanism is to insure that future
modifications to conductor and insulation design do not
change the fast longitudinal velocities which help protect
the SSC dipole magnets. A very porous insulation would
significantly reduce the quench velocities.
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