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ABSTRACT 

This report presents theoretical aspects of Lagrange analyses used 
In Lagrange gage studies of explosives, nonideal detonation, and over­
driven detonation. The work on reactive flow Lagrange analysis (RFLA} 
was concerned with Lagrange particle velocity histories that exhibit 
double maxima similar to those recorded in RX26 and FBX9404. Conditions 
for particle velocity histories to exhibit extrema were formulated in 
terms of envelopes formed by Lagrange pressure histories to show that 
the second maximum in the particle velocity is not directly associated 
with the chemical energy release rate. It is therefore not necessary to 
incorporate the second maximum in particle velocity into RFLA calcula­
tions of the energy release rates in RX26 and PBX9404. Lagrange analy­
sis of the flow produced by the expansion of a detonation wave at a free 
surface was proposed to extend the determination of the release adiabat 
of detonation products from the Chapman-Jouguet (CJ) state to zero pres­
sure. A solution for the expansion of a Taylor wave at a free surface 
was constructed to guide such determinations. 

Solutions were constructed for steady-state nonideal detonation 
waves propagating in polytropic explosive with two reacting compo­
nents. Particular attention was given to the case when one of the 
reactions is exothermic and the other is endothermic. The equation 
relating the detonation velocity, the particle velocity, and the reac­
tion coordinates were combined with simplified reaction rate expressions 
to identify the CJ point as a saddle and to show that the flow in such a 
nonideal detonation is determined by the rear-boundary particle velocity 
condition. 
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Overdriven detonation was treated both as a reactive discontinuity 
and as a Zeldovich-von Neuraann-Doertng (ZND) wave. The Rankine-Hugoniot 
(RH) jump conditions were used to calculate the first and second deriva­
tives on the detonation velocity versus particle velocity Hugonlot at 
the CJ point. Methods of differential geometry were used to determine 
the conditions that allow the flow equations and RH boundary conditions 
to admit similarity solutions for overdriven detonation waves. This 
geometric approach led to the following conclusions: 

(1) The equations governing a reactive discontinuity with 
polytropic detonation products do not admit a similarity 
solution for nonsteady overdriven detonation waves. 

(2) The equations governing a spherical (ZND) wave do not in 
general admit a self-similar flow. 

(3) Under the strong shock condition, the equations governing a 
spherical ZND wave admit a similarity solution when the 
explosive and its products are treated as polytropic 
materials with the same index. 
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I INTRODUCTION 

The long range objective of this research program is to develop a 
more basic understanding and a more realistic description of the initia­
tion and propagation of detonation. Explosives were studied jointly by 
Lawrence Livermore National Laboratory (LLNL) and SRI International to 
obtain some of the information required to attain this objective. 

The technical work performed at SRI was concerned with theoretical 
aspects of the following topics: 

t Lagrange analysis 
* Nonideal detonation 
• Overdriven detonation 

Details of this theoretical work are presented in the remainder of this 
report. 
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II LAGRANGE ANALYSIS 

Particle-Velocity Histories Exhibiting Double Maxiaa 

Particle velocity histories exhibiting double maxima were recorded 
in multiple Lagrange gage studies of the shock initiation process in 
RX26 and PBX9404 performed at LLNL. The work to understand the sign­
ificance of multiple extrema in particle velocity records was undertaken 
because difficulties were encountered in performing reactive flow 
Lagrange analyses (RFLA) with these records exhibiting double maxima. 
The reality of such flow features and their relationship to the global 
energy release rate were established to determine the consequences of 
omitting the second maximum in particle velocity from the RFLA. 

The conditions needed for Lagrange particle velocity histories to 
exhibit maxima and minima were formulated in terms of envelopes formed 
by Lagrange pressure (p) histories. Recall that an envelope E formed 
by intersection points of a family of curves C, described by the equa­
tion f(x,y,a) =* 0 with a a parameter, is determined by the equations 
f( x,y,a) = 0 and af/oa * 0. E is tangent to C and its equation 
y = y e M can be obtained by eliminating a between f(x,y,a) * 0 and 
bt/ba = 0. It is convenient to consider the Lagrange pressure histories 
as a family of curves parametrized by the Lagrange coordinate h and 
describe this family as f(t,p,h) = p - p(t,h) « 0, where t denotes the 
time. The condition needed for the pressure histories to form an enve­
lope is thus 8p/9h • 0. 

It follows from the momentum equation, p 3u/9t « - (5p/3h), where 
p 0 denotes the initial density and u denotes the particle velocity, that 
extrema In the Lagrange particle velocity histories lie on envelopes 
formed by the Lagrange pressure histories. It also follows that the 
particle velocity histories will not exhibit extrema unless the pressure 
histories at neighboring Lagrange positions intersect. 

2 



We now formulate conditions needed for the Lagrange particle 
velocity to attain a aaxlnua or a miniums on an envelope formed by a set 
of Lagrange pressure histories. He use the following identities: 

£̂ , ^1 + ̂ £ 5l n\ 
dt dt dh dt { l > 

a n d 2 2 2 2 2 2 
i-E » <LR + ? LP_ fill +LE. (Oh + &F U l /•» 
dt 2 3t 2 3ttt dt 3h 2 d t ah" dt 2 ( 2 ) 

Along an envelope E formed by a set of Lagrange pressure-time histories 
U ' ° O) 

d_ a£ . a_p_ + a_p _ i = o ,,s dt oh atoh ,.2 dt I*J on 
Combining equations (3) and (A) with equations (1) and (2) leads to the 

equations 

dp dp dh 

dt dt dt ot ^ 

a i , < 1 ^ P , 2 2 dh 
e 3 p . 3 p e 

~T ' 72 + " f I t (6) 
dt at 3h 

It is convenient at this stage to use Che monentun equation written as 
2 2 2 

p a u/6t » - 3 p/atah and rewrite equations (4) and (6) as 
dh A .. 2 
_ e _ a u/at 

a p/ah 

^ ^ P »2 a 2 dh 
e a p 3 a e 

, ^ - p ( 8 ) 

dt at at 
In this report we consider only the case when dhfi/dt > 0, and the 

2 2 2 2 partial derivatives 3 u/at and 3 p/ah are constrained by equation (7) 
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2 2 2 2 to have the same signs. In this case, o u/ot < 0 when o p/dh < 0, and 
2 2 2 2 3 u/ot > 0 when o p/3h > 0, and we are led to conclusion CI: 

CI: When dhg/dt > 0, either the maxima in the (u-t) and (p-h) 
profiles or the minima in the (u-t) and (p-h) profiles lie on 
an envelope formed by a set of (p-t) profiles. 

We now derive an equation that allows us to use the (p-t) profiles 
to distinguish between these maxima and minima. He expand the pressure 
in a Taylor series from a point on an envelope (t., h g) along the 
envelope and along the Lagrange coordinate h g to obtain the equations 

d p e 1 d pe 2 P e « : e + ° t ) . P e ( t e ) + ^ 6t+j -j(6t)'+. . . ( 9) 
dt 
2 

P(te • 6t, he) = Pe(te,he) + J£ St + i (^ ) (")2 + . . . ( 1 0 ) 

9t 

Subtracting equation (10) from equation (9) and making use of the 
targency condition aquation (5), and equation (8), lead to the equation 

P .2 dh 
Ap«t> - p e(t e + 6t) - P(t e + 6t,he) = - -f 2-« _ | (6t)N- .. .(ii) 

ot 

which can be combined with equation (7) to give the equation 

i J <"i 2 •> 
ip(6t) = - | ( ^ ( - j f ) ( 6 t ) 2

+ . . . (12) 
3h 

2 2 It follows from equation (12) that Ap(6t) > 0 when (B p/oh ) < 0 and 
2 2 that Ap(6t) < 0 when (5 p/dh ) > 0, and we are thus led to conclusion 

C2: 

C2: When dhg/dt > 0, maxima in the (u-t) and (p-h) profiles lie 
on an envelope formed by a set of (p-t) profiles when the 
envelope is tangent to the (p-t) profiles from above. 
Alternatively, minima in the (u-t) and (p-h) profiles lie on 
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an envelope formed by a set of (p-t) profiles when the envelope 
is tangent to the (p-t) profiles from below. 

A set of schematic (p-t) profiles for a reactive shock wave with 
three envelopes, Ei, E2, and E,, is shown in Figure 1 to illustrate CI 
and C2. It is clear from Figure 1 that dhg/dt > 0 along Ej, E 2, and E3, 
that dpe/dt > C along Ej, and that dpg/dt < 0 along Ej and E 2- Maxima 
in the (u-t) and (p-h) profiles lie on Ej and E 3 because Ap(6t) > 0 
along these envelopes, but minima in the (u-t) and (p-h) profiles lie on 
E 2 because Ap(6t) < 0 along this envelope. Thus along a particle path 
in this region of the flow, the particle velocity rises from the shock 
particle velocity to a maximum, then falls to a minimum, and then again 
rises to a maximum. On the (p-t) profile shown as OSPT, for example, 
the particle velocity rises from the shock front shown as OS, attains a 
maximum at 1, falls to a minimum at 2, rises to a maximum at 3, and then 
falls. 

We are now in a position to address whether the second maximum in 
the Lagrange particle velocity histories Is explicitly associated with 
the chemical energy release rate and thus needs to be Incorporated into 
the RFLA. Because the energy release rate becomes zero close to a pres­
sure peak when the pressure starts to fall, we claim that the chemical 
reaction is not directly responsible for the second maximum in the 
particle velocity and reach conclusion C3: 

C3: There is no need to incorporate the second maximum in Lagrange 
particle velocity Into a RFLA for calculating the global energy 
release rate in a shocked explosive. 

Construction of a Self-Similar Solution for Particle Velocity Gages 
2 Lie-group techniques were used to construct a self-similar 

solution to a partial differential equation formulated for particle 
velocity gages by Dr. J. Nutt of LLNL. Methods of differential geo-

3 metry were used to find the infinitesimal generator of a Lie group 
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FIGURE 1 A SET OF SCHEMATIC LAGRANGE PRESSURE HISTORIES 
FORMING THREE ENVELOPES E,, E 2 . AND E 3 . 

Maxima in ths corresponding Lagrange particle velocity histories 
lie on E, and E 3 , and their minima lie on E 2 . 

6 



admitted by the partial differential equation. First integrals of this 
infinitesimal generator were then used to construct the invariant solu­
tion that reduces the partial differential equation into an ordinary 
differential equation. 

Expansion of a Taylor Wave at a Free Surface 

Lagrange gage studies of the flow produced by the expansion of a 
Taylor wave at a free surface in principle provide a mean? of extending 
the determination of the release adlabat of the detonation products from 
the Chapman-Jouguet (CJ) point to zero pressure. The solution for the 
expansion of the detonation products at a free surface was constructed 
to guide such Lagrango gage determinations of the release adlabat 
through the CJ point. 

The equations for the particle velocity and pressure in the rare­
faction wave reflected into polytroi-ic detonation products with an Index 
K = 3 are presented here, but their derivation is not given. With the 
notation introduced earlier, we let L and D denote the length of the 
charge and the detonation velocity, and we let the subscript CJ denote 
the CJ condition. Then the equations for the particle velocity and 
pressure In the refle-ted rarefaction wave can be written as 

UCJ _ 1 - 3(1 - h/L) I / 2(2 - T/t) 
D " 4 (1 - T / t ) 1 ^ ( 1 3 ) 

and 

3 3/2 p _ (T/t) J (1 - h / L ) J ' Z 

p~ 372~ < 1 4> 
PCJ (1 - T/t) ' 

where T * L/D denotes the time the detonation wave reaches the end of 
the charge, h < L and t > T. 
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Ill NONIDEAL DETONATION 

We consider a composite explosive with two components capable of 
reacting, denoted by the subscripts 1 and 2. We denote their mass frac­
tions by a . and a . and their reaction coordinates by \. and X... For the 
sake of tractability, we assume that the components and their reaction 
products are polytropic with the same index K. Our prime concern will 
be with nonideality that arises because one reaction is exothermic but 
the other is endothermic. We let v and e denote specific volume and 
specific internal energy, the subscript o denote the unshocked state, 
and the superscript x denote the explosive. In this case, 
the e - eCp.vX.X.) equation of state of the reacting explosive can be 
written as 

where e = a J e ), + a„ (e L , and q^ and q 2 are related to the specific 
heats of reaction Qi and Q 9 by the equations q, = a,Q, and q. = a.Q,. A i £ 1 1 2 2 2 
It is clear from Eq. (15) that \ = X = 0 in the unreacted explosive 
and that \. = X = 1 when the explosive has fully reacted. We will 
consider steady-state one-dimensional detonation and denote the detona­
tion velocity by D. 

The equation relating the particle velocity and reaction coordi­
nates is readily obtained by combining Eq. (15) with the 
Ranklne-Hugoniot (RH) conditions, expressing the balance of mass, 
momentum, and energy In the steady-state wave, written as 

pv = (D - u)u (16) 

2 
e " e

0 - I <17> 



The combination of Eqs. 15 through 17 to eliminate (e - ex) and pv leads 
to the equation 

2 2uD 2(K - 1) ., _,_, . 
U " im = " l i m O ( V l + X 2 q 2 ) f 1 8) 

We now introduce the sound speed c with the equation ĉ  » Kpv, 
A A 

set X^ = X, and \^ = X 2 in the CJ state, and use the CJ condition 
u + c = D to obtain an expression for the detonation velocity. With 
these equations, Eq. (16) given the CJ conditions as 

CCJ D 
u « — • 
CJ K K + 1 

(19) 

and the equation for D follows from Eq. (18) as 

D 2 = (K + l) 2 ujj - 2(K2- 1) ( X ^ + \ 2q 2) (20) 

It is then convenient to combine Eqs. (18) and (20) and write the 
equation for particle velocity as 

~--l - i f o ^ - t y + 8 2 ( \ 2 - \ 2 ) ] 1 / 2 (21) 

A A A A 

where ^ = <l1/(\<ll
 + ^V a n d h * q2 / (H ql + ^2 q2 )" S e t t i n 8 

X, = X- = 0 in Eq. (21) gives two values for uf, the particle velocity 
at the wave front: u f = 0 and u f = 2u C J. The negative sign in Eq. (21) 
thus gives the equation for the classical CJ detonation, and the posi­
tive sign gives the equation for a Zeldovich-von Neumann-Doering (ZND) 
wave. 

When qj > 0 and q 2 > 0 in our polytropic explosive we use the 
condition \. » X = 1 to define ideal detonation, and the conditions 
(Xr = 1, X 2 < 1), (X: < 1, X 2 = 1), and (Xj < 1, X 2 < 1) to define 
nonideal detonation. In this case the problem of nonideal detonation 
can be considered as that of calculating the values of X 1 and X, for 
incomplete reaction at the CJ point. 



We will now consider the case when both reactions go to completion, 
but one of them is endothermic and assume that q̂  > 0 and q 2 <• "• 
Formally, there are three cases to consider, &\ /ot - SX./dt, 3X /at > 
oX„/6t, and &\./3t < aX./at, but we reject the last case on physical 
grounds. I t is convenient to introduce the differential equation 
governing the flow 

. ax ax 
[D - C» + D-] |=- - & - D ( « x w + q 2 - 5 t > (22) 

when considering the first two cases. 
When BX./at * BXj/ot, it is clear from Eq. (22) that the detonation 

wave is equivalent to a wave supported by a single reaction with a 
reduced heat of reaction q = qj + q 2. The CJ point lies at the end of 
the reaction zone, and the equation for the detonation velocity follows 
from Eq. (20) as D 2 - 2(R 2 - 1) ( q i + q 2 ) . 

When ax /at > BX./at, complications arise because the right-hand 
side of Eq. (22) will become zero when the reactions are proceeding, and 
the CJ point will lie within the reaction zone. This type of wave with 
an infinite reaction titre has been discussed in some detail by Fickett 
and Davis. Here we will adopt a different approach and also consider a 
wave with a finite reaction time T . We assume that the reaction 

R coordinates satisfy the equations 

( l - h ) - [ l - ^ - ) ( 2 3 ) 

nl 

(1-U-- fl--^>) («) 

where % is the Lagrange time and the parameters nj and n* satisfy the 
condition n, > n,. It follows from Eqs. (23) and 24) that X, and X „ 

1 * 1 2 
are related by the equation 

n,/n 
(1-X2) - ( 1 - ^ r (25) 
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In our approach, we rewrite Eq. (18) as 

^ • • ^ * , « . • » * » 

and show that the CJ point is a saddle point on the D = D (u,X.) 
surface. Differentiating Eq. (26) partially with respect to u and X 
gives the equations to determine if the surface has a critical point C 
as 

&D (K + 1 ) (K - 1) ,, , . •, 
. ^ - J - _L 2 ( ^ + ^ ( 2 7 ) 

u 
oD (K - 1) i . b \ 
W[ = V " K + q2oT^ < 2 8 > 

n 2 

w l t h M „ ^ 
o X . n . n . 

2 2 r, * P-S3̂  " ^ l 1 _ V (29) 

It follows from Eqs. (27) and (28) that the surface satisfies the condi­
tions for a critical point 3D/9u = 3D/3X. = 0, so we denote quantities 
evaluated at the critical point C by the subscript C. Differentiating 
Eqs. (27) and (28) gives the equations for the second derivatives 
required to determine the nature of the critical point C as 

(30) 

with 

a 2D 
au 2 = 

2(1 - 1) 
3 

u 
<Ml + X 2 q 2 ) 

a 2 D 
ax, a = 

1 u 

( K - 1) 

u 
h i * 

ax2 

' q 2 a T 7 ) 

a2D . ( K - y v 
a 2 x 2 

ax2 u 
y v ax* 

A X 
ax2 

n 2 f

n 2 
n l n l 

• i ) ( : 

(31) 

(32) 

(33) 
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Setting 9D/ou = 0D/0X - 0 in Eqs. (27) and (28) shows that the 
following equations are satisfied at C 

8X, ql 
^ - - q T < 3 5> 

c 
9 ? 

and it follows from Eq. (30) that (a D/ou ) > 0 and from Eq. (31) that 
*2 r

 C (9 D/aX 3u) « 0. Moreover, because n^ > n* and q2 < 0, it follows from 
Eqs. (32) and (33) that (a 2D/8X 2) < 0. Thus the second derivatives 
satisfy the inequality 

( A , . ( A , ,A, > 0 

1 0 8 V 1 C 8" C 
and the critical point C is a saddle point. The combination of Eqs. 
(26) and (34) leads to the equation 

D = (K + 1) u (36) 

which shows that the sonic condition is satisfied at C and allows us to 
identify the saddle point with the CJ point in the flow. We accordingly 
set (X ) » X , (X.) = X,, and u c = u C J . Recalling that the flow is 
governed by Eq. (21), we can now calculate X , X., and u C J and thereby 
obtain a solution for this type of nonideal detonation. The combination 
of Eqs. (35) and (29) leads to the following equations for \ and X , 

r , /ViW ni l i , 1 -ra (37) 

n i q i \ V n i 
VM-n^i W) 
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and the corresponding values of Upj and D follow from Eqs. (34) and 
(36). 

We now consider the significance of identifying the saddle point as 
the CJ point In the ZND wave. In the ZND wave, the flow before the CJ 
point where \. and X. satisfy the conditions 0 < A.1 < X. and 
0 < X. < X« is governed by Eq. (24) with the positive sign. But because 
the CJ point Is a saddle point, the flow after the CJ point, where 
X. and X. satisfy the conditions X. < X. < 1 and \ < X, < 1, can be 
governed by Eq. (24) with either the positive sign or the negative 
sign. After the CJ point, the particle velocity decreases in the flow 
governed by the positive sign, but Increases In the flow governed by the 
negative sign. As discussed by Fickett and Davis, the flow behind the 
CJ point Is determined by the rear-boundary condition because both waves 
must be supported by a constant velocity piston. Lagrange particle 
velocity histories were calculated for both types of wave, but they are 
not presented here. 
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IV OVERDRIVEN DETONATION 

For overdriven detonation, we considered the properties of the 
detonation velocity-particle velocity (D-u) Hugoniot for detonation 
products and looked for a similarity solution for overdriven detona­
tion. We discuss the Hugoniot first and then the similarity solution. 

Properties of the (D-u) Hugoniot of a Reactive Discontinuity. 

We derive equations for the slope and second derivative of the 
(D-u) Hugoniot at the CJ point. It Is convenient to write the RH 
equations expressing the conservation of mass and momentum across the 
reactive discontinuity as 

v " v
0 t1 " J) 09) 

p = P Q Du (40) 

where p = 1/v denotes the initial density of the explosive. 
Differentiation of Eqs. (39) and (40) with respect to u leads to the 
following equations 

dv 
du ~ 

d 2v 

du 

14 

o o dD 
- T > ^ 7 du (41) 

2v ._, 2v u ._ 2 v u , 2 . o dD o fdD \ . o d D 

•j- is " ~r larJ +~r ~i 
D D D du 

(42) 

Po D + " o u dU (43) 

, dD , d 2D 
2Podu" + P o u 7 7 

du 
(44) 



Equations for the derivatives at the CJ point follow readily by 
combining Eqs. (41) through (44) with the equation 

expressing the condition that the Rayleigh line is tangent to the 
detonation products Hugoniot at the CJ point. Combination of Eqs. (45) 
and (43) gives the equation 

(46) 

and it follows from Eqs. (41), (42), and (44) that 

(47) 

We now differentiate the identity 

du dv du ^°J 

to obtain the following equation 

d 2p d 2p /dv\ , dp d 2V 
i 2 r r 2 < S 1 > 
du dv \d\ij dv du 

for the second derivatives along the Hugoniot curve. The combination of 
Eq. (51) at the CJ point with the CJ condition written as (dp/dv)^ = 
-(D/v0)£j and Eq*. (47) and (48) leads after some nsanipulation to the 
equation 

/ d 2
D \ l Vo \ /d 2o\ 

(52) 
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relating the second derivation of the (D-u) and (p-v) Hugoniots at the 

CJ point. Because (d 2 p/dv 2 ) C J > 0 and (d 2 p/du 2 ) C J > 0, i t follows from 

Eqs. (46), (49), and (52) that the (D-u) Hugoniot curve for a reactive 

discontinuity has a minimum at the CJ point. This being the case, we 

suggest that (D-u) Hugoniots for detonation products may be 

conveniently fitted with the following function form: 

D - D C J + A ( u / u C J - l ) n (53) 

where A and n > 1 are parameters to be determined from experimental 

data. 

Similarity Solutions for Overdriven Detonation 

In our approach, a similarity solution to a set of governing 
equations is constructed in terms of a Lie group admitted by the 
equations. We thus used methods of differential geometry to look for a 
Lie group admitted by the equations governing overdriven planar and 
spherical detonation waves. These detonation waves were treated as a 
nonreactive flow induced by a reactive shock discontinuity or as a ZND 
wave —a reactive flow induced by a nonreactive shock discontinuity. 
In either case, we must find a Lie group admitted by the differential 
flow equations and the RH jump conditions. We summarize the results of 
our investigation as follows: 

• The equations governing a reactive discontinuity with polytropic 
detonation products do not admit a similarily solution for 
nonsteady overdriven detonation because the group admitted by 
the RH jump conditions i s not admitted by the energy equation. 

• The equation governing a spherical ZND wave do not in general 
admit a self-similar flow because the group admitted by the RH 
jump conditions is not admitted by the continuity equation for 
divergent flow. 
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Ip 

4 Under the strong shock condition, the equations governing a 
spherical ZND wave adnlt a similarity solution when the 
explosive and its reaction products are treated as polytroplc 
materials with the sane Index. 
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