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ABSTRACT

This report presents theoretical aspects of Lagrange analyses used
in Lagrange gage studies of explosives, nonideal detonation, and over-
driven detonation. The work on reactive flow Lagrange analysis (RFLA)
was concerned with Lagrange particle velocity histories that eszhibit !
double maxima similar to thoss recorded in RX26 and PBX9404. Conditions
for particle velocity histories to exhibit extrema were formulated in
terms of envelopes formed by Lagrange pressure histories to show that
the second maximum in the particle velocity 1s not directly associated

with the chemical energy release rate. It is therefore not necessary to

incorporate the gecond maximum in particle veloeity into RFLA calcula-
tions of the energy release rates in RX26 and PBX9404. Lagrange analy-
sis of the flow produced by the expansion of a detonation wave at a free
surface was proposed to extend the determination of the release adiabat
of detonation products from the Chapman-Jouguet (CJ) state to zerp pres-
sure. A solution for the expansion of a Taylor wave at a free surface

was constructed to guide such determinations.

Solutions were constructed for steady-state nenideal detonation
waves propagating in polytropic explosive with two reacting compo-
nents. Particular attention was gilven ro the case when one of the
reactions is exothermic and the other is endothermic. The equation
relating the detonation velocity, the particle velocity, and the reac-
tion coordinates were combined with simplified reaction rate expressions
to identify the CJ point as a saddle and to show that the flow in such a
nonideal detonatfon is determined by the rear-boundary particle velocity

condition.
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Overdriven detonation was treated both as a reactive discontinuity
and as a Zeldovich-von Neumann-Doering (ZND) wave. The Rankine-Hugoniot
(RH) jump conditions were used to calculate the first and second deriva-
tives on the detonation velocity versus particle velocity Hugoniot at
the CJ point. Methods of differential geometry were used to determine
the conditions that allow the flow equations and RH boundary conditions
to admit similarity solutions for overdriven detonation waves. This

geometric approach led to the following conclusions:

(1) The equations governing a reactive discontinuity with
polytropic detonation products do not admit a similarity
soiution for nonsteady overdriven detonation waves.

(2) The equations gaverning a spherical (ZND) wave do not in
general admit a gelf-similar flow.

(3) Under the strong shock condition, the equations governing a
spherical ZND wave admit a similarity solution when the
explogive and its products are treated as polytropic
materials with the same index.
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I INTRODUCTION

The long range objective of this research program is to develop a
more bagic understanding and 2 more realistic description of the initia-
tion and propagation of detonation. Explosives were studied jointly by
Lawrence Livermore National Laboratory (LLNL) and SRI Interpational to

obtain some of the information required to attain this objective.

The technical work performed at SRI was concerned with theoretical
aspects of the following toples:

® Lagrange analysis

e  Nonideal detonation

® QOverdriven detonation

Details of this theoretical work are presented in the remainder of this

Tepott.



I1 LAGRANGE ANALYSTS

Particle~Velecity Historieg Exhibiting Double Maxima

Particle velocity histories exhibiting double maxima were recorded
in multiple Lagrange gage studies of the shock initiatien process in
RX26 and PBX9404 performed at LLNL. The work to understand the sign-
ificance of wultiple extrema in particle veloeity records was undertaken
because difficulties were encountered in performing reactive flow
Lagrange analyses (RFLA) with these records exhibiting double maxima.
The reality of such flow features and their relationship to the global
energy release rate were established to determine the consequences of

omitting the second maxitum in particle veloeity from the RFLA.

The conditions needed for Lagrange partiecle velocity histories to
exhibit maxima and minima were formulated in terms of envelopes formed
by Lagrange pressure (p) historles. Recalll that an envelope E formed
by intersection points of a family of curves C, deseribed by the equa-
tion £(%,y,x) =0 with a a parameter, is determined by the equations
f(x,y,&) =0 and 3f/dx = 0. E is tangent to C and its equation
¥ = Ya{x) can be obtained by elininating @ between £(x,y,¢) = 0 and
3ffda = 0. It 1s convenlent to consider the Lagrange pressure histories
as a famlly of curves parametrized by the Lagrange coordinate h and
describe this family as £(t,p,h) = p - p(t,h) = 0, where t denotes the
time. The condition needed for the pressure histories to form an enve-
lope is thus 3p/dhk = 0.

It follows from the momentun equation, p  du/dt = - (3p/dh), where
po denotes the initial density and u denotes the particle velocity, that
extrema In the Lagrange particle velocity histories lie on envelopes
formed by the Lagrange pressure histories. It also follows that the
particle velocity histories will not exhibit extrema unless the pressure
histories at neighboring Lagrange positions iutersect.
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We now formulate conditions needed for the Lagrange particle
velocity to attain a maximum or a minimum on an envelope formed by a set

of Lagrange pressure histories. We use the following identities:

dp _ 3 _ dp db
P T )
and
2 2 2 2 2
d_Ea_a__p+26__p_Sl£ Q__P.(it_l)é-.af_g_h(z)
7 dt a2

d:2 a:2 amte dr oh

Along an envelope E formed by a set of Lagrange pressure-time histories
£ = () (3)

and

(4)
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o
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o
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Combining equations (3) and (4) with ejuations (1) and (2) leads to the

equations
d
Pe B My
at £ dt ot %)
d
an d2pe RN
- Sl BT (6)
dt st ont

It is convenlent at this stage to use the momentum equation written as

poazu/ét2 = - bzplatbh and rewrite equations (4) and (6) as

%o 0 o Zufor? 0
d
t 0 a2p/ah2
and 2
Lo dp ., o D .
dt at o i &

In this veport we consider only the case when dh,/dt > 0, and the
partial derivatives azulat2 and azp/ah2 are coustrained by equation (7)



to have rhe same signs. In rhis case, bzu/btz( 0 when bzplbh2 <0, and
azu/at2 > 0 when azplahz > 0, and we are led to conclusion Cl:

Cl: When dh,/de > 0, efther the maxima in the (u-t) and (p-h)
profiles or the minima in the (u-t) and (p-h) profiles lie on
an envelope formed by a set of (p-t) profiles.

We now derive an equation that allows us o use the (p-t) profiles
to distinguish between these maxima and minima. We expand the pressure
in a Taylor series from a point op an envelope (te, he) along the

envelope and along the Lagrange coordinate he to obtain the equations

do, 1 dz"e 2
Plt, T81) =p (£ )+ bt +g —dt-z- (B + . . . (9)
dp 1 62p 2
p(te + Bt, he) = pe(te,he) +a_t- 5t +E (; ) (6t) +. .. (]_0)

Subtracting equation (10) from equation (9) and waking use of the
tangency condition aquation (5), and equation (B), lead to the equation

Po bzu dhe 2
Ap(ot) = pe(te + 6t) - p(te + 6t,he) =~ = — —EE»(ét) + .0(11)
[)

which can be combined with equation (7) to give the equation

2
1 QER dhe 2
Ap(bt) = - 3 { ahz) {-EE-) o+ ... (12)

It follows from equation (12) that Ap(6t) > 0 when (azp/ahz) <0 and

that Ap(S8t) < 0 when (bzplahz) > 0, and we are thus led to conclusion
C2:

C2: When dhe/dt > 0, maxima in the (u~t) and (p~h) profiles lie
on an envelope formed by a set of (p-t) profiles when the
envelope is tangent to the (p-t) profiles from above.

Alternatively, minima in the (u-t) and (p-h) profiles lie on



an envelope formed by a set of (p-t) profiles when the envelope

1s tangent to the (p-t) profiles from below.

A set of schematic (p-t) profiles for a reactive shock wave with
three envelopes, Eq, EZ' and Eg, is shown in Figure 1 to {llustrate Cl
and C2. It 1s clear from Figure 1 that dhe/dt > 0 along E|, Ey, and Eq,
that dp,/dt > € along Ey, and that dpe/dt < 0 along Ey and Ey. Maxima
in tha (u-t) and (p-h) profiles lie on E; and Ey because sp(5t) > 0
along these envelopes, but minima in the (u-t) and (p-h) profiles lie on
Ez because Ap(6t) < 0 along this envelope. Thus along a particle path
in this region of the flow, the particle velocity rises from the shock
particle velocity to a maximum, then falls to a mirimum, and then again
rises to a maximum. On the (p-t) profile shown as OSPT, for example,
the particle velocity rises from the shock fronr shown as 0S, attalns a
maximum at I, falls to a minimum at 2, rises to a maximum at 3, and then
falls.

We are now in a position to address whether the second maximum in
the Lagrange particle velocity histories is explicitly associated with
the chemical energy release rate and thus needs to be fncorporated into
the RFLA. Because the energy release rate becomes zero close to a pres-
sure peak when the pressure starts to fall, we claim that the chemical
reaction is not directly responsible for the second maximum in the

particle velocity and reach conclusion C3:
C3: There is no need to incorporate the second maximum in Lagrange
particle velocity into a RFLA for calculating the global energy

release rate in a shocked explosive.

Construction of a Self-~Similar Sclution for Particle Velocity Gages

Lie-group techniques2 were used to construct a self-similar
sclution to a partial differential equation formulated for particle
velocity gages by Dr. J. Nutt of LLNL. Methods of differential geo-

netry3 were used to find the infinitesimal generator of a Lie group
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FIGURE 1 A SET OF SCHEMATIC LAGRANGE PRESSURE HISTORIES

FORMING THREE ENVELOPES E,, E;, AND E3.

Maxima in the corresponding Lagrange particle velocity histories
lie on Ey and €4, and their minima lie on E,.
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admitted by the partial differectial equation. First integrals of this
infinitesimal penerator were then used to construct the invariant solu-
tion that reduces the partial differential equation inte an ordinary

differential equation.

Expansion of a Taylot Wave at a Free Surface

Lagrange gage studies of the flow produced by the expansion of a
Taylor wave at a free surface in principle provide a meane of extending
the determination of the release adiabat of the detonation products from
the Chapman~Jouguet (CJ) point to zero pressure. The solution for the
expansion of the detonatfon products at a free surface was corstructed
to guide such Lagrange page determinations of the release adlabat

through the CJ point.

The equations for the particle velecity and pressure in the rare-
faction wave reflected into polytropic detonation products with an Index
K = 3 are presented here, but their derivation is not given. With the
notation {ntroduced earlier, we let L and D denote the length of the
charge and the detonatlon velocity, and we let the subscript CJ denote
the CJ condition. Then the equations for the particle velocity and

pressure in the refle-ted rarefaction wave can be written as

Yer 1-30 - w2 - 1
< = ; 13
b - o 4
and
b -t @
Pes a-1ey'?

where T = L/D denotes the time the detonmation wave reaches the end of

the charge, h< Land t > T,



IIT NONIDEAL DETQNATION

We consider a composite explosive with two components capable of
reacting, denoted by the subscripts 1 and 2. We denote their mass frac-
tions by o and x, and thei;»reaction coordinates by *1 and AZ' For the
sake of tractability, we assume that the components and their reaction
products are polytropic with the same index K. Our prime concern will
be with nonideality that arises because one reaction is exothermic but
the othes is endothermic. We iet v and e denote specific volume and
specific Internal energy, the subscript o denote the unshocked state,
and the superscript x denote the explosive. In this case,
the e = e(p,v,kl,kz) equation of state of the reacting explosive can be
written as

PV

X
R R U P = (15)

where eﬁ = al(ez]l ta, (e§)2’ and q; and q, are related to the specific
heats of reaction Q) and Q, by the equations q, = alQl and 9, = a2Q2'

It 15 clear from Eq. (15) that Kl = KZ =0 in the unreacted explosive
and that xl = AZ =1 when the explosive has fully reacted. We will
consider steady-state one-dimensional detonatlon and denote the detona-

tion veloeity by D.

The equation relating the particle velocity and reaction coordi-~
nates is readily obtained by combining Eq. (15) with the
Rankine-Hugoniot (RH) conditions, expressing the balance of nass,

momentum, and energy in the steady-state wave, written as

pv = (D - u)u (16)
X u2
e-e = 3 an



The combination of Eqs. 15 through 17 to eliminate (e - ez) and pv leads
to the equation

2 _ W | _2AX-1)
u i+l ®F1) M9 FAay) (18)

2

We now introduce the sound speed ¢ with the equation e = Kpv,

set A, =}, and Az =\, 1n the CJ state, and use the CJ condition

1 1 2

U + oy = D to obtain an expression for the detonation velocity. With

these equatfons, Eq. (16) given the CJ conditions as

Lo
K

D
K T RFL (19)

CJ

and the equation for D follows from Eq. (18) as
2 _ 2 2 2 " :

It is then convenient to combine Eqs. (18) and (20) and write the

equation for particle velocity as
u " - 1/2
o 1=t [p 0= h) +8,00 = 2))] (21)

vhere B, = qll()\lql + quz) and B, = qzl(xlq1 + A58
Al = Az = 0 in Eq. (21) gives two values for Ug, the particle velocity

2)- Setting

at the wave front: U = 0 and ug = Z“CJ' The negative sign in Eg. (21)
thus gives the equation for the classical CJ detonation,4 and the posi~
tive sign gives the equation for a Zeldovich-von Neumann-Doering (ZND)

wave -5

When q > 0 and qy > 0 1n our polytropic explosive we use the
condition A] = iz =1 to define 1deal detonation, and the conditions
(K =1, A 1), (l <1, k =1}, and (k <1, k <1) to define
nonideal detonation In this case the problem of nonideal detonation

can be considered as that of calculating the values of A, and 12 for

1
incomplete reaction at the CJ point.



We will now consider the case when both reactions go to completiom,
but one of them fs endothermic and assume that q; > 0 and gy < 0.
Formally, there are three cases to comslider, axllat = a}\zlat, a}\llat >
bkz/bt, and alear ¢ bkllat, but we reject the last case on physical
grounds. It is convenient to introduce the differential equation

governing the flow

- bkl axz
- @+l = K- g5 +a,52) (@

when considering the first two cases.

Whan ahllbt - alea:, it 1s clear from Eq. (22) that the detonation
wave 1s equivalent to 2 wave gupported by & single reaction with a
reduced heat of reaction q = q; + qp. The CJ point lies at the end of
the reaction zone, and the equation for the detonation velocity follows
from Eq. (20) as p? = 2&2 - 1) (91 + g5).

When 6k1/6t > aleat, complications arise because the right-hand
side of Eq. (22) will become zero when the reactions are proceeding, and
the GJ point will lie within the reaction zone. This type of wave with
an infinite reaction time has becn discussed in some detali by Fickett
and Davie.? Here we will adopt a different approach and also consider a
wave with a finite reac:ion time T We assume that the reaction
coordinates satisfy the equations

-0
N R (23)
T
R
n
= (1- (t - T))
T
R

2
-3y (24)
where 7 1s the Lagrange time and the parameters ny and ny satisfy the
condition n > my. It follows from Eqs. (23) and 24) that Al and A 2
are related by the equation

n,/n
(Long) =(1-a) 2t (25)
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In our approach, we rewrite Eq. (18) as

D=

CXD 4 B2 D g 49y (26)

and show that the CI point is a saddle point on the D =D (u,hl)
surface., Differentiating Eq. (26) partially with respect to u and A
glves the equations to determine if the surface has a critical point C

as
3D (k+1) (K- K- 1)
5 " Tt (M thgg) 27
u
3
B, ®-1) !
B, — (g, *q, ‘”‘1) (28)
n
2
with a n —n—“l
2 2 1
o, = a (1 -2) (29)

It follows from Eqs. (27) and (28) that the surface satisfies the condi-
tions for a critical point 3D/du = OD/B}\1 = 0, so we denote quantities
evaluated at the critical point C by the subscript C. Differentiating
Eqs. (27) and (28) gives the equations for the second derivatives

required to determine the nature of the critical point C as

2

3D _ 2(1( 1)
~3 (Mg 20, (30)
du
2 o

2D (K - 1) 2
o - T (9 Y5 ) (31)
1w u 1
2
2 A
o oa-p 2N o2
% 4 2 mi
with a
bzkz n n 32-2
2 ( 2 1
— e Uy (33)
axf non 1



Setting 3D/du = 3D/d\ = O in Eqs. (27) and (28) shows that the
following equations are satisfied at C

2 _(K-1)

T D [0 gt (gl 9] G4
28 q
2 1

) x - .= 5

) "G (35)

and ¢ follows ron B3. (30) that (a%0/au? ) > 0and trom Eg. (31) that
(b n/ax bu) = (. Moreover, because n > ny and 9 < 0, it follows from

(32) and (33) that (a D/ar ) ¢ 0. Thus the second derivatives
satisfy the lnequality

2 2 2
(&%) - &) 2F) > o
Oy an’ au’
c 1 ¢ ¢
and the critical point C is a saddle point. The combination of Egs.

(26) and (34) leads to the equation
D = (K+1) U (36)

which shows that the sonic condition 1s satisfied at C and allows us to
identify the saddle point with the CJ point in the flow. We accordingly
set [kl) = 1, (RZ) = 2, and up = gy “Recflling that the flow is
governed by Eq. (21), we can now calculate Al’ AZ’ and upy and thereby
obtain a solution for this type of nonideal detonation. The combination

of Eqs. (35) and (29) leads to the following equations for i and £2’

1
n
» 1 Y
S B (37
My
i)
A n.gq n.-n
1y N
}\2-1-_1_ (38)
Dy4y
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and the corresponding values of upy and D follow from Eqs. (34) and
(36).

We now consider the significance of identifying the saddle point as
the CJ point in the ZND wave. In the ZND wave, the flow before the CJ
point whefe kl and hz satisfy the conditions 0 < hl < il and
0¢< hz < Ay 1s governed by Eq. (24) with the positive sign. But because
the CJ point 1s a saddle point, the flow after the CJ point, where
kl and kz satisfy the conditions il < AI <1 and iz < kz < 1, ecan be
governed by Eq. (24) with efther the positive sign or the negative
sign. After the CJ point, the particle velocity decrezges in the flow
governed by the positive sign, but increases in the flow governed by the
negative sign. As discussed by Fickett and Davis,S the flow behind the
CJ point 13 determined by the rear-boundary condition because both waves
must be supported by a constant velocity piston. Lagrange particle
velocity histories were calculated for both types of wave, but they are

not presented here.
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IV OQVERDRIVEN DETONATION

For overdriven detonation, we considered the properties of the
detonation velocity-particle velocity (D-u) Hugoniot for detonation
products and looked for a similarity solution for overdriven detona-~

tion. We discuss the Hugoniot first and then the similarity solution.

Properties of the (D-u) Hugoniot of a Reactive Discontinuity.

We derive equations for the slope and second derivative of the
(D-u) Hugoniot at the CJ point. It is convenient to write the RHE
equations expressing the conservation of mass and momentum across the

reactive discoatinuity as
v=v (L-3) (39
B =p, D (40)
where Py = 1/vD denotes the initial density of the explosive.

Differentiation of Eqs. (39) and (40) with respect to u leads to the

following equations

dv  _ _v o ., Yo' ap
du ) D—f du (41)
d2 2 2 2 u 2
SRAACI I T N v I
du2 57_ du D du D du
dp dp
FARERRERE )
2 2
d dD LY
3 bow te 7 ()
du du

14



Equations for the derivatives at the CJ point follow readily by

combining Eqs. (41) through (44) with the equation

[:1:1 R
= pD
du e o &J

(45)

expressing the condition that the Rayleigh line is tangent to the

detonation products Hugonlot at the CJ point. Cumbiuation of Eqs. (45)

and (43) gives the equation

dD

du cJ

and it follows from Egs. (41), (42), and (44) that

dv ,-“_o
d“CJ D
&L, (o) (P
a? Jos o), \&?),,
s?g= g?g
du2 G du2
cJ a
We now differentlate the identity
o _ b v
du dv du
to obtain the following equation
2 2 2

dp [dvf | & 4V
du dv du dv du

NI
L
N

for the second derivatives along the Hugoniot curve.

(46)

47)

(48)

(49)

(50)

(51)

The combination of

Eq. (51) at the CJ point with the CJ condition written as (dp/dv)CJ =

"(D/Vo)%J and Eqs. (47) and (48) leads after some manipulation to the

equation
2
dof (% | &
du 2(pD) dv2

(W) ot

(52)


file:///d/ij

relating the second derivation of the (D-u) and (p-v) Hugoniots at the
€I potnt. Because (d%p/dv); > O and (da2p/dud)g; > 0, it follows from
Eqs. (46), (49), and (52) that the (D-u) Hugoniot curve for a reactive
discontinuity has a minimum at the CJ point. This being the case, we
suggest that (D-u) Hugoniots for detonation products may be
conveniently fitted with the following function form:

D = DCJ + A ("/uCJ - l)rl (53)

where A and n > 1 are parameters to be determined from experimental

data.

Similarity Solutions for Overdriven Detonation

In our approach, a similarity solution to a set of goveraing
equations is constructed in terms of a Lie group admitted by the
equations. We thus used methods of differential geometry to look for a
Lie group admitted by the equations governing overdriven planar and
spherical detonation waves. These detomation waves were treated as a
nonreactive flow induced by a reactive shock discontinuity or as a ZND
wave --a reactive flow induced by a nonreactive shock discontinuity.

In efther case, we nust find a Lie group admitted by the differential
flow equations and the RH jump conditions. We summarize the results of

our iovestigation as follows:

® The equations governing a reactive discontinulty with polytropic
detonation products do not admit a similarily solution for
nonsteady overdriven detonation because the group admitted by
the RH jump conditions is not admitted by the energy equation.

® The equation governing a spherical ZND wave do not in general
adnit a self-similar flow because the group admitted by the RH
junp conditions is not admitted by the continuity equation for
divergent flow.

16



# Under the strong shock condition, the equations governing a
spherical ZND wave admit a similarity solution when the
explosive and its reaction products are treated as polytrople

materials with the same index.

17
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