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Abstract

Partitioning unstructured graphs is central to the parallel solution of problems in computational science and
engineering. We have introduced earlier the sequential version of an inertial spectral partitioner called HARP
which maintains the quality of recursive spectral bisection (RSB) while forming the partitions an order of
magnitude faster than RSB. The serial HARP is known to be the fastest spectral partitioner to date, three to
four times faster than similar partitioners.on a variety of meshes. This paper presents a parallel version of
HARP, called P-HARP. Two types of parallelism have been exploited: loop level parallelism and recursive
parallelism. P-HARP has been implemented in MPI on the SGI/Cray T3E and the IBM SP2. Experimental
results demonstrate that P-HARP can partition a mesh of over 100,000 vertices into 256 partitions in 0.25
seconds on a 64-processor T3E. Experimental results further show that P-HARP can give nearly a 20-fold
speedup on 64 processors. These results indicate that graph partitioning is no longer a major bottleneck that
hinders the advancement of computational science and engineering for dynamically-changing real-world
applications.
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1 Introduction

One of the most difficult problems to implement on distributed-memory parallel machines is a problem with a dynam-
ically-changing data structure. This situaticn is typical for applications which involve grid adaptation, variable-order
methods, or muitizonal grid technologies. Such problems yrequire repeated load balancing to equidistribute the compu-
tational work among the processors, while simultaneously reducing the runtime interprocessor communication. An
imporiant aspect of dynamically load-balancing such numerical simulations is the partitioning of the underlying com-
putational mesh. Significant progress has been made over the years in partitioning algorithms for static grids. The
ultimate goal for partitioning static grids is to reduce the cutsize of the partitions; however, for dynamically-changing
grids, partitioners need to be fast as well. This is important because frequent load balancing is required for adaptive
calculations. Some excellent serial partitioning algorithms are now available [5,6,7,8,10,11,13]. Only a few of them
have been parallelized to date {1,3,4,9,14], and some preliminary results reported.

In [11], we introduced the sequential version of a new inertial spectral partitioner called HARP. We showed how
a particularly successful approach for graph partitioning based on spectral algorithms can be extended to handle the
dynamic case. Our goal was to combine the overall effectiveness of the spectral partitioners in terms of reducing the
cutsize of the partition, with the speed of recursive inertial bisection. Special techniques were reported that used the
dynamic character of the calculation to produce a fast repartitioning of the grid.

This paper describes the algorithmic modifications that have been made for a distributed-memory implementation
of HARP[11]. The parallel version of HARP, called P-HARP, is described in Section 2. Some performance results for
the sequential HARP code is given in Secticn 3 for completeness; additional results are given in [11]. Section 4 gives
a detailed performance report of P-HARP. The paper concludes with a summary in Section 5.

2 P-HARP Algorithm

The idea behind HARP is to combine the proven high quality of recursive spectral bisection and the fast computational
feature of recursive inertial bisection. The relationships between the number of eigenvectors used and the partition
quality as well as the partitioning times have been investigated experimentally. Details and motivations of the original
HARP algorithm are described in [11]. The following pseudocode briefly outlines the serial version of HARP:

for (i=0; i<log(npart); i++) { /* npart = total # of partitions */
for (j=0; j<2'; j++) {
Find an inertial center of the unpartitioned vertices
Construct an inertial matrix using the inertial vector
Find the eigenvectors of the inertial matrix
Project the vertex coordinates on the dominant inertial direction (eigenvector 0)
Sort the projected coordinates
Divide the unpartitioned vertices into two sets according to the sorted values
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Suppose that the original eigenvectors of the graph are evec|[V][N], where N is the number of eigenvectors used
and V is the number of vertices. The partitioning algorithm consists of five major steps: inertia, eigen, project, sort,
and split. The first step, called inertia, finds the inertial center, center[N], of the unpartitioned vertices in Line 1, fol-




lowed by the computation of an inertial matrix inertia[N]J[N] in Line 2. Inertial center, center[N], needs N components
each of which bears the inertial distance between the vertices and the center. Inertia[N][N] indicates how far the N in-
ertial vectors are away from each other. The second step, called eigen, computes the eigenvectors of the inertial matrix
in Line 3. Two EISPACK routines: TRED2 and TQL! are used to compute the eigenvectors. TRED2 reduces a real sym-
metric matrix to a symmetric tridiagonal matrix using and accumulating orthogonal similarity transformations. TQuUI
finds the eigenvalues and eigenvectors of a symmetric tridiagonal matrix by the QL method. The third step in Line 4,
called project, projects the original eigenvector of each vertex on the dominant direction of the inertial eigenspace. The
fourth step, called sort, sorts the vertices based on the inertial value of their coordinates in Line 5. 32-bit and 64-bit
floating-point radix sort are used for the SP2 and the T3E, respectively. A radix of eight bits (bucket size of 256) is
used in the implementation. The last step in Line 6, called split, divides the sorted vertices into two halves. If an odd
numbers of partitions are desired, the vertices can be divided accordingly.

A parallel version of HARP, called P-HARP, has been designed and implemented on two distributed-memory par-
allel machines: SP2 and T3E. Parallelization of HARP “appears” to be simple and straightforward because HARP is
recursive. This recursive algorithmic nature can provide a large amount of natural parallelism which can be potentially
utilized by parallel machines. A key misconception of recursion, however, is that it “appears” to be naturally parallel.
In reality, it is not highly parallel until each processor is adequately load balanced.

Given P processors and S sets (or partitions), HARP runs log § iterations. In a naive implementation, there is only
one task to perform in the first iteration, hence only one processor is busy. This gives a poor processor utilization of
1/P. At the end of the first iteration, the mesh is divided into two partitions. Each partition is assigned to a processor.
Therefore, in the second iteration, two processors independently perform mesh partitioning on their respective sub-
mesh. The second iteration thus keeps only two processors busy, resulting in a processor utilization of only 2/P. The
recursion thus needs log P iterations before all processors have some work to perform. What is more probiematic by
relying on this type of task-level recursive parallelism is:

+ the amount of work that has to be performed in the first iteration is the most among all iterations since the orig-

inal mesh is partitioned into half, and

* only one processor performs this most time-consuming iteration.

It is therefore imperative that the recursive algorithm needs parallelization other than at the task level.

P-HARP exploits parallelism both at the task-level recursion and the function-level loop. When the number of cur-
rent partitions is smaller than the number of processors P, function level parallelism is exploited to improve
performance. When the number of subdomains reaches P, the partitioner turns to task-level recursive parallelism
where all processors operate independently of one another. Figure 1 illustrates the operation of P-HARP when eight
processors are used. Three of the five modules of P-HARP have been parallelized to date. In iteration 0, all eight pro-
cessors work together to find the inertial center of the unpartitioned vertices. This step is expensive since it involves
all the unpartitioned vertices and their original eigenvectors. Each processor finds an inertial matrix of V/P vertices.
At the end of the computation, the P inertial matrices are reduced to a single inertial matrix, that is then broadcast be-
fore the next step.
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Figure 1: P-HARP running on eight processors. The figure is not drawn to scale in time.

The second step of finding the eigenvectors of the inertial matrix is relatively trivial even for large meshes and is
therefore not parallelized. The third step, where the eigen coordinates of the unpartitioned vertices are projected on the
major inertial direction is somewhat expensive and has been parallelized. Each processor finds the projected coordi-
nates of V/P vertices. Unlike the first step where P inertial matrices are reduced to a single matrix, here P vectors each

of size of V/P are gathered in one processor to form a vector of size V, followed again by broadcasting.

Sorting is the most time-consuming step in HARP. Bitonic sorting is used to parallelize the sort step in P-HARP.
In particular, a balanced bitonic sorting is used in the implementation, which always sorts the elements in an ascending
order. Bitonic sorting, introduced by Batcher [2], consists of two steps: local sort and merge. Given P processors and

n elements, each processor holds n/P elements. In the local sort step, each processor sorts its elements in either ascend-

ing or descending order depending on the second bit of the processor number. The merge step consists of O(log?P)
steps. In each merge step, elements are sorted across processors in a pair. As iterations progress, the distance between
the pair of processors widens. The last iteration will sort elements on two processors with the distance of P/2. While
the original bitonic sorting may not be the fastest method on parallel machines, it was selected because of the regularity
in communication and the simplicity in implementation. The final step, where the unpartitioned vertices are divided

into two sets, requires a negligible amount of time and is thus not parallelized.

3 Performance of Sequential HARP

To verify the performance of HARP, we have performed a substantial number of experiments over the last few years.
The Cray T3E installed at NERSC and the IBM SP2 installed at NASA Ames Research Center are used for experi-
mentation. Seven different two- and three-dimensional test meshes are used in this study. They varied in size from
1200 vertices to more than 100,000 vertices. Table 1 shows the characteristics of the test meshes.




SPIRAL {LABARRE| STRUT | BARTHS | HSCTL [ MACH95 | FORD2
type, 2D or 3D 2D 2D 3D 2D 3D 3D 3D
# of vertices V 1200 7959 14,504 30,269 31,736 60,968 100,196
#of edges E 3191 22,936 57,387 44,929 142,776 118,527 222,246

Table 1: Characteristics of the seven test meshes used.

SPIRAL is a very small toy grid which is a long chain geometrically arranged in-a spiral. This mesh has no com-
putational significance other than to serve as a difficult test case for partitioners. STRUT is a three-dimensional mesh
used in civil engineering problems for structural analysis. BARTHS is a dual graph for a four-element airfoil. HSCTL
is a three-dimensional mesh for a high-speed civil transport configuration. MACHOS is a tetrahedral mesh around a
helicopter rotor blade. FORD?2 is a surface mesh of a model Ford car. '

The sequential HARP results are compared with the MeTiS2.0 multilevel partitioner. All HARP results in this
section are based on 10 eigenvectors, and are denoted as HARPa. Two parameters are usually used to characterize the
performance of graph partitioning algorithms: the number of cut edges C, and the partitioning time T. Tables 2 and 3

show the absolute numbers of edge cuts and the execution times on a single-processor SP2 for all seven test meshes.

#of SPIRAL LABARRE STRUT BARTHS HSCTL MACH95 FORD2
sets  (HARPafMeTiS2|HARPafMeTiS2[HARPoiMeTiS2[HARPa/MeTiS2|HARPaMeTiS2 [HARPo/MeTiS2 [HARPo[MeTiS2
2 5 51 189 | 142 32 82y 109 36| 1484 376 8i17] 815 324[ 319
4 29 29 423 325 539 528 296 201 | 1958 1322} 1657 1623 911 817
8 67 65| 759f s30| 1027{ 1005} S13] 381| 3180| 2393 3731| 3161| 1826| 1303
16 151 145} 1150 864 1970 1939 855 5881 5770 4371 5687 4600| 30621 2146
321 30t 290{ 1775( 1381 3757) 3261 1315{ 985| 9652| 6970 8664| 6128 4732] 3203
64 | 623| 3589| 2667 2132| 6879} 4947| 2012| 1561 | 15896 | 10306 | 11557 | 8467 7561{ 4928
128 | 1234| 985| 4093| 3227| 8723) 7287 3186 | 2427 22454 | 15102 | 15001 | 10981 | 11318 7616
256 | 2156| 1526 | 6140| 4806 | 13263 | 10551 4954 | 3672 34980 | 21857 | 20954 | 13966 | 17425 | 11332
Table 2: Comparison of the number of cut edges for varying number of partitions.
#of SPIRAL LABARRE STRUT BARTHS HSCTL MACH95 FORD2
sets  {HARPa|MeTiS2|HARPafMeTiS2[HARPuMeTiS2{HARPa|MeTiS2|HARPoMeTiS2[HARPa|MeTiS2[HARPc|MeTiS2
2 | 0011 | 002 | 0.039 | 0.10 | 0.066 | 0.1I9 | 0.133 | 028 | 0.140 | 048 | 0264 | 0.79 | 0431 | 1.18
4]0012] 003 | 0068 ] 022 | 0119 | 042 | 0249 | 060 | 0263 | 1.00 | 0.508 | 1.62 | 0.831 | 2.40
810018| 005 [ 0103 | 033 {0180 | 065 } 0375 | 088 | 0394 | 1.84 | 0.759 | 242 | 1.246 | 3.59
16 | 0.027 | 0.11 | 0.141 | 050 | 0243 | 092 | 0501 | 121 | 0527 | 224 | 1014 | 3.17 | 1.658 | 478
3210040 ) 0.14 | 0184 | 070 | 0311 | 1.22 J 0635 159 ] 0665 ) 293 | 1.275| 429 | 2090 | 592
641 0062 | 021 } 02361} 090 | 0.388 | 165 } 0776 | 208 | 0.813 | 3.76 | 1.541 | 546 | 2.503 | 7.50
128 [ 0099 | 028 | 0307 | 1.18 | 0485 | 2.17 | 0935 | 270 | 0978 | 490 | 1.832 | 677 | 2.947 | 9.23
256 | 0.169 | 0.45 | 0414 | 156 | 0614 | 2.87 | 1.132 | 329 | 1.180 | 597 | 2.163 | 823 | 3.427 | 11.35

Table 3: Comparison of the execution times in seconds on a single-processor SP2.

Figure 2 plots the ratio of HARPo: to MeTiS2.0. Figure 2(a) shows that HARP« gives partitions that are of poorer
quality than MeTiS2.0. We find that the maximum overall difference is about 60%. It should be noted however that
the HARPa results are based on 10 eigenvectors. Increasing the number of eigenvectors will improve partition quality
at the expense of increased execution time.

The results shown in Fig. 2(b) indicate that HARPa« is, on the average, three times faster than MeTiS2.0. This is
precisely the purpose of developing HARP. Since dynamicaily-changing computations require rapid runtime mesh
repartitioning, this fast algorithm is perfectly suitable for our purposes. The fact that the partition quality is somewhat




poor is not a major concern when dealing with adaptive computations. Since adaption and repartitioning has to be per-
formed fairly frequently, it is more important to decrease the partitioning time than reducing the number of cut edges.

HARPq. / MeTiS2.0

0.0 10

100

Number of partitions S

(b} Ratio of partitioning time

—>— FORD2 (100196,222246) i
—v— MACHOS (50968,118527)

—4— HSCTL 31736,142776% :
—a— BARTHS (30269,44929

—o— STRUT (14504,57387)

—8— LABARRE (7959,22936) ]
—e— SPIRAL (1200, 3191)

10
Number of partitions S

100

Figure 2: Comparison between HARPo and Metis2.0 on SP2 in terms of edge cuts and execution time.

4 Performance of P-HARP

4.1 Distribution of execution times

Figures 3 and 4 list the distribution of the five individual steps on T3E. Figure 3 shows the time distribution for the
MACH95 mesh with 1 and 64 processors. It is clear from the sequential results of Fig. 3(a) that inertia computation
and sorting are the major steps. It should be noted that sorting takes approximately half the total execution time. We
find almost an identical pattern for the larger FORD2 mesh in Fig. 4. The two steps of eigen solver and split which are

not considered for parallelization indeed show negligible computation time. Parallel results on 64-processor T3E are

also very similar for the two meshe
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Figure 2: Relative time distribution of MACH95(60968,118527) on T3E before and after parallelization.
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Figure 3: Relative time distribution of FORD?2(100196,222246) on T3E before and after parallelization.

(*** ANDREW: I think this section needs some work. What does “to effectively parallelize” mean? If each com-
ponent is 20% of the total time, is that good? I think good parallelization means each component shows good speedup.
Later in the paper, you show 20X speedup for the total time. I think we should show the speedup of each component.
Components that show poor speedup have a problem. Percentage of the total time is not the right measure.)

As seen from the plots, the inertia step has been effectively parallelized. In the sequential version, inertia compu-
tation required nearly 40% of the total execution time. However, the parallel version essentially eliminated this
bottleneck by reducing the time to approximately 10% of the total execution time. It is interesting to observe that the
relative time for the project steps has ‘effectively’ risen to almost 20% from the 10% of the sequential version. Two
reasons contributed to this relative rise, which are the computational complexity and communication complexity.

First, the inertia step has three nested loops while project has two nested loops. The amount of reduction in com-
putation time for three nested loops can be a lot more significant than the one for two nested loops. Second, the
communication complexity for inertia is substantially lower than the one for project. The inertia step requires a reduc-
tion and broadcasting of a NxN inertial matrix. The project step, on the other hand, needs gathering and broadcasting
of V/P vertices. The communication complexity of inertia is fixed to the dimension of the inertial matrix while that of
project is variable depending on the size of the mesh. This is precisely why the relative project times for MACH95
shown in Fig. 3(b) is slightly lower than the one for FORD2 shown in Fig. 4(b).

The relative time for split has also risen to approximately 15% from 5%. Again, the reasons are that the step has
only a single loop and hence is not parallelized. It is natural to see its relative time rising.

The most disturbing result, despite its parallelization, is the sorting step. The relative time of the parallel sort has
increased slightly compared to the sequential version. While the overall computation time has been reduced, it clearly
indicates that the sorting step has been less effective than other steps. There are several reasons for this increase. Sort-

ing, in general, is highly communication intensive. The typical ratio of communication-to-computation is about 2.

Each step again involves some barrier synchronization. Parallel bitonic sorting has O(log?P) complexity. For P=64, it
needs 21 (= 1+ 2 + 3 + 4 + 5 + 6) iterations, where each iteration involves all the processors sending 2V/P elements
{keys and vertices) to each other in pairs. Although the performance of parallel sorting is modest, we have identified
the problems and solutions to them can be addressed in the immediate future. One immediate solution is to reduce the

communication time by overlapping computation and communication, as reported in [12]. Other solutions to the com-




munication reduction include eliminating lclgzP barrier synchronizations. We do not foresee any major bottleneck in

solving these high communication times.

4.2 Effects of parallelization

Table 4 shows the execution time for MACH95 and FORD2 on T3E with 1 to 64 processors. These results are plotied
in Fig. 5. The corresponding SP2 results are shown in Table 5 and plotted in Fig. 6. P-HARP can péuﬁtion a mesh of
over 100,000 vertices into 256 partitions in a quarter of a second on a 64-processor T3E. '

#of MACH95 FORD2

Processors| 2 4 8 16 32 64 128 | 256 2 4 8 16 32 64 128 | 256
1 0329 {0681 | 1.054 | 1.418 | 1.794 | 2076 | 2.442 | 2.797 | 0508 | 1.111 | 1.710 | 2.310 | 2901 | 3.440 | 3.956 | 4482
2 0.188 | 0.373 { 0.563 | 0.745 [ 0.917 | 1.077 | 1.235 | 1.411 | 0.309 | 0.614 | 0.909 [ 1.212 [-1.513 | 1.789 | 2.043 | 2310
4 0.124 | 0.232 ] 0.324 | 0.413 | 0.499 | 0.577 | 0.656 | 0.743 | 0.198 | 0.374-| 0.523 | 0.677 | 0.823 | 0.962 | 1.088 | 1.223
8 0089 0.155] 0214 {0258 | 02299 | 0.333 | 0.380 | 0.422 | 0.147 | 0257 | 0349 | 0.421 | 0.493 | 0.558 | 0.620 | 0.636
16 0.071 1 0.119 | 0.151 { 0.177 | 0.200 ] 0.219 | 0.237 ] 0.261 | 0.123 | 0.197 | 0.254 | 0.296 | 0.332 | 0.360 | 0.395 { 0.425
32 | 0066 ] 0.105 | 0.128 | 0.141 | 0.156 | 0.167 | 0.176 | 0.186 | 0.106 | 0.166 | 0206 | 0.230 | 0.251 | 0.265 | 0.281 | 0.27
64 0.065 | 0099 | 0.119 | 0.135 | 0.142 { 0.149 | 0.154 | 0.157 | 0.106 | 0.160 | 0204 | 0.209 | 0.223 | 0231 | 0.244 { 0.248

Table 4: Partitioning times on Cray T3E.

#of MACHY5 FORD2

processors) 2 4 3 16 32 64 128 | 256 2 4 8 16 32 64 128 | 256

0264 [ 0508 | 0.759 { 1.014'} 1.275 | 1.541 | 1.8327[ 2.163 | 0431 | 0831 | 1.246 | 1.658 | 2.090 | 2.503 | 2.947 | 3427
0.178 | 0.294 | 0.426 | 0.548 | 0.677 | 0.812 | 0.956 | 1.123 | 0.287 | 0481 | 0.688 | 0.895 { 1.104 | 1.318 | 1.539 | 1.783
0.141 | 0.208 | 0.269 | 0.336 | 0.400 | 0467 | 0.538 | 0.622 | 0.211 | 0.341 | 0.440 | 0.545 | 0.651 | 0.757 | 0.869 | 0.987
0.111 | 0.165 | 0.211 | 0.242 | 0.275 | 0.308 | 0.350 [ 0.388 | 0.168 | 0.267 | 0.331 | 0.384 | 0.436 | 0.490 | 0.545 | 0:604
0.117 1 0.174 | 0214 | 0.242 ] 0.254 | 0.271 | 0.289 | 0.310 | 0.179 | 0.276 | 0.336 | 0.372 | 0.397 | 0.422 | 0.452 | 0.482
3R 0.162 | 0.139 | 0.173 | 0.193 | 0.208 | 0.217 | 0.224 | 0.234 | 0.207 | 0.209 | 0.260 | 0.289 | 0.307 | 0.322 | 0.342 | 0.346
64 0.234 1 0.139 | 0.226 | 0.194 { 0.209 | 0.258 | 0.236 | 0.259 { 0.263 | 0.225 | 0.261 | 0.278 | 0.301 | 0.340 { 0.313 | 0.333

Table 5: Partitioning times on IBM SP2.

[ N S

—_—

Figures 5 and 6 are plotted to illustrate the effectiveness of P-HARP. Figure 5(a) demonstrates that the execution
time increases much less than linearly as the number of partitions increases.
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Figure 4: The relation between partitions and the number of processors on T3E. The plots are in log scale.
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Figure 5: The relation between the number of partitions and the number of processors on SP2.

The T3E results clearly show that the total execution time is not proportional to the number of partitions. For ex-

ample, consider Fig. 5(a). The bottom curve which shows 64 processors indicates that as the number of partitions is

increased from 2 to 256, the execution time has risen only slightly to more than double: 0.065 sec to 0.157 sec. This

small increase indicates that even a larger number of partitions will not require substantial computation time. The ex-

ecution time for FORD?2 further confirms this behavior, where the T3E execution time for P=64 has risen to 0.248 sec

from 0.106 sec for P=2. A similar pattern is seen for SP2 in Fig. 6. Figure 7 summarizes the results that show negligible

increment for a large number of partitions for five of our seven test meshes when using 64 processors.
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Figure 6: Execution times for 2 to 256 partitions on 64 processors.

4.3 Scalability of P-HARP
Figure 8 shows the parallel speedup of P-HARP. A mere 10-fold speedup is obtained on 64 processors of the SP2.

100

However, the T3E shows almost a 20-fold speedup. The reasons that the T3E gives better scalability than the SP2 are

a faster network, a better communication optimization, and an one-sided communication paradigm. The SP2 is a pure

message-passing machine while the T3E is a “shared-memory” machine. Message-passing constructs on the SP2 are

used at runtime as they are specified in the program. However, the T3E has the capability of shared-memory program-

ming, where two-sided message-passing constructs can be converted to a single one-sided communication. A pair of




MPI_Send and MPI_Recv on the SP2 can be translated to a single PUT or GET construct, where PUT can write data to
a remote memory location while GET can read data from a remote memory location. While MPI_Send and MPI_Recv
are two-way communication which requires synchronization between the two processors, PUT and GET do not have
such a strict synchronization requirement. The only constraint for one-sided communication constructs is that data
read/write must be done properly so that program semantics are not violated. It is not clear how well the two-sided
communication constructs are translated to one-sided constructs on the T3E. Such a study on compiler behavior/opti-
mization is beyond the scope of this work.
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Figure 7: Speedup of P-HARP.

Another reason worth mentioning is that even though both the SP2 and the T3E are capable of overlapping com-
putation and communication, they have different hardware support. The SP2 provides an i860 communication co-
processor and a 4KB communication buffer for each Power2 computation processor. The T3E provides 512 external
registers (E-registers) along with a stream buffer to take some burden off the computation processor. The SP2.com-
munication co-processor runs at 40 MHz while the T3E communication logic runs at 75 MHz. This doubling of the
communication clock along with twice the communication buffer size could effectively give twice the overall com-
munication performance. These communication issues will be addressed in a future version of P-HARP as they are
beyond the scope of this report.

The 20-fold speedup is modest in spite of the efforts of exploiting parallelism both at the loop level and at the task
level. The main reason for this modest scalability is due to the fact that the current version of bitonic sorting is not
crafted for performance. The current implementation is our first attempt to parallelizing the sorting step. Bitonic sort-
ing provides a clean and regular communication pattern compared to other parallel sorting such as radix sort and
sample sort. This regularity in communication can be effectively utilized to improve the performance of P-HARP. Sev-
eral solutions are currently being undertaken, including the elimination of barrier synchronization, and the overlapping
of computation with communication. One can argue that performance will not drastically improve since not all the
steps are parallelized. In other words, linear speedup will be difficult to obtain because of the Amdahl’s law which
states that those portions that are not parallelized will eventually limit the overall performance. However, we do not

foresee that to be a bottleneck. The overall times for the two steps of eigen solver and split are indeed negligible.

5 Summary




Computational science and engineering problems that utilize dynamic remeshing require runtime mesh partitioning
when implemented on distributed-memory multiprocessors. We have presented in this paper a parallel version of the
dynamic inertial spectral partitioner HARP. The parailel version, called P-HARP, can quickly partition realistically-
sized meshes on a large number of processors while maintaining the partition quality of recursive spectral bisection.
To demonstrate the effectiveness of P-HARP, we have selected seven two- and three-dimensional meshes, with the
largest containing over 100,000 vertices.

P-HARP exploits parallelism in task-level recursion and function-level loop to overcome the misconception that
recursion is highly parallel. When the number of current partitions is smaller than the number of processors P, func-
tion-level parallelism is exploited to improve the performance. When the number of subdomains reaches P, the
partitioner turns to task-level recursive parallelism where all the processors operate independently of one another. Se-
quential HARP consists of five major steps: inertia computation, eigenvector solution, projection, sorting, and
splitting. The three most time-consuming steps of inertia computation, projection, and sorting have been parallelized.
The execution times of the eigen solver and the splitting phase are negligible, hence not parallelized.

P-HARP has been implemented in Message Passing Interface on two distributed-memory multiprocessors: the
Cray T3E installed at NERSC of Lawrence Berkeley and the IBM SP2 installed at NASA Ames. Experiments have
been performed on up to 64 processors of the two machines. Our largest test mesh with 100,196 vertices can now be
partitioned into 256 sets in less than a quarter of second. Results have shown that the total execution time is signifi-
cantly less than proportional to the number of partitions. As the number of partitions has increased from 2 to 256, the
execution times on the 64-processor T3E have risen slightly more than twice, i.e., 0.106 sec to 0.248 sec. A similar
pattern has been observed for other meshes and the SP2. All the meshes show that the partitioning times are relatively
constant in spite of the increase in the number of partitions when using a large number of processors.

The T3E has given nearly a 20-fold speedup while the SP2 has yielded 10-fold speedup on 64 processors. The
reasons that the T3E has given twice the speedup of the SP2 are a faster network and a different communication par-
adigm. The T3E communication logic runs at 75 MHz while the SP2’s i860 communication co-processor runs at 40
MHz. The speedup of 20-fold is modest compared to the efforts expended on paralielization. However, we do not fore-
see a major problem improving the performance in the immediate future. The results reported in this paper are the first
attempt to fully parallelize HARP. We were able to integrate bitonic sorting into HARP. The current implementation
has several places where performance can be further improved, including overlapping computation with communica-
tion for bitonic sorting and eliminating barrier synchronizations. In the near future, we will address the scalability issue
of P-HARP. These parallel partitioning times have indicated that graph partitioning can now be truly embedded in dy-

namically-changing real-world applications.
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