

VORTEX LATTICE STRUCTURES IN $\text{YNi}_2\text{B}_2\text{C}$.

CONF-970814

M. Yethiraj¹, D.McK. Paul², C. V. Tomy² and E. M. Forgan³¹*Solid State Division, Oak Ridge National Laboratory, Oak Ridge TN 37831-6393*²*Department of Physics, University of Warwick, Coventry, UK*³*Department of Physics, University of Birmingham, Birmingham B15 2TT*

ABSTRACT

We observe a flux lattice with square symmetry in the superconductor $\text{YNi}_2\text{B}_2\text{C}$ when the applied field is parallel to the c-axis of the crystal. A square lattice observed previously in the isostructural magnetic analog $\text{ErNi}_2\text{B}_2\text{C}$ was attributed to the interaction between magnetic order in that system and the flux lattice. Since the Y-based compound does not order magnetically, it is clear that the structure of the flux lattice is unrelated to magnetic order. In fact, we show that the flux lines have a square cross-section when the applied field is parallel to the c-axis of the crystal, since the measured penetration depth along the 100 crystal direction is larger than the penetration depth along the 110 by approximately 60%. This is the likely reason for the square symmetry of the lattice. Although we find considerable disorder in the arrangement of the flux lines at 2.5T, no melting of the vortex lattice was observed.

PACS :74.70.-b, 74.60.-w, 61.12.Ex

Presenting Author: Mohana Yethiraj

YET-15R revised

Address: Neutron Scattering Group

Oak Ridge National Laboratory

Oak Ridge TN 37831-6393

MASTER

Telephone: (423) 576 - 6069 Fax: (423) 574 - 6268

Email: YethirajM@ornl.gov

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

ORNL is managed by Lockheed
 Martin Energy Research Corp. under
 Contract No. DE-AC05-96OR22464
 for the U.S. Department of Energy.

"The submitted manuscript has been authored
 by a contractor of the U.S. Government under
 contract No. DE-AC05-96OR22464.
 Accordingly, the U.S. Government retains a
 non-exclusive, royalty-free license to publish or
 reproduce the published form of the
 contribution, or allow others to do so, for U.S.
 Government purposes."

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

**Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.**

Shortly after rare earth nickel borocarbides of the type RNi_2B_2C (R =rare-earth) were found¹ to be superconducting in 1994, it was found that some of these compounds containing a magnetic rare earth ion exhibited coexistence^{2,3} of magnetic order with superconductivity. The interplay between superconductivity and magnetism is a topic of considerable interest. In order to separate out those effects that are due to magnetic order, we have studied the compound YNi_2B_2C , which does not order magnetically.

The neutron scattering measurements were carried out on the 30-m SANS facility at Oak Ridge National Laboratory and on D-22 at the Institut Laue-Langevin. The sample was a single crystal of YNi_2B_2C which was grown by a high temperature flux method using Ni_2B flux with isotopic ^{11}B to reduce neutron absorption. The crystal (of dimensions $3.4\text{mm}\times 3.7\text{mm}\times 0.6\text{mm}$ thick) had a mosaic, determined by neutron diffraction, of less than 0.2° . The crystal had a T_c (onset) of 15.7K.

With the field parallel to the c-axis (long axis of the nuclear tetragonal cell) of the crystal, four-fold symmetry was observed for the flux lattice diffraction pattern (Fig. 1) for an applied field was 0.4Tesla. The first order (10 and 01) spots were aligned along the 110 crystallographic axes. The lattice had reasonably long range translational order so that second order (11) peaks were also detectable. In this respect, it resembles the square flux lattice observed in Pb ⁴. A square lattice is also seen in Nb ⁵ under certain conditions, when the field is parallel to the 110 direction. The square lattice existed⁶ in the field range from $0.4T$ - $2.5T$ but a hexagonal lattice was seen below⁷ about $.012T$ studied. Clearly, the fll structure is completely unrelated to the magnetic order, contrary to the suggestion of Yaron et al⁸ based on data for the magnetic Er analog.

Rocking curves (about the vertical axis) perpendicular to the incident neutron and applied field directions gave a width for the flux line crystal of $0.45^\circ\pm 0.05^\circ$. Our measured rocking curve width translates to a minimum length, l , of $9.2\mu\text{m}$ over which the flux lines scatter coherently. From the temperature dependence of the intensity for an applied field of 1T, it is seen that the temperature (T) dependence of the second-order peak is identical to that of the first order reflection, evidence that the mosaic does not change with T .

The London penetration depth, λ_L , is obtained⁹ from the Bragg intensity from the relation:

$$\frac{I}{I_0 V} = \frac{2\pi}{q} \left[\frac{\gamma}{2} \right]^2 \lambda_n^2 \left(\frac{1}{\Phi_0} \right)^2 \left(\frac{B}{(1+q^2\lambda_L^2)} e^{-(2\pi^2 B \xi^2 / \Phi_0)^2} \right)$$

where V is the sample volume, γ is the neutron gyromagnetic ratio, B the applied field, ξ is the coherence length and λ_n is the neutron wavelength. At 0.4T, the London depth is $1100 \pm 80 \text{ \AA}$, which is considerably larger than that for $\text{ErNi}_2\text{B}_2\text{C}$ from Yaron's SANS measurements. This measure represents an upper limit on the penetration depth.

We see¹⁰ that the penetration depth along the 110 is nearly 60% smaller than that along the 100, using the c-axis London depth as a gauge¹¹. This results in the cross-section of a single flux line having square symmetry, when the applied field is parallel to the c-axis. Consequently, the stacking is square when the vortices begin to overlap, which occurs at approximately 0.1T in this geometry. This agrees well with the field where the change in symmetry is observed.

A monotonic increase in disorder is observed with applied field possibly prefaces a change in structure of the lattice as the effect of the cores becomes more significant. The drop in intensity that we observe here is continuous. We can identify no sharp changes in behaviour (expected for a solid-liquid transition); the relative intensities of first order to second order peaks at 0.4Tesla imply little or no ($0.4\% \pm 3\%$) disorder. We have a well formed lattice at 0.4 Tesla and this lattice becomes progressively more disordered as the field is increased. Detailed analyses indicate that **no** glassy transition is implied by the data in contrast to previous interpretations of magnetic data.

ACKNOWLEDGEMENTS: This work was carried out at Oak Ridge National Laboratory, which is managed by Lockheed Martin Energy Research Corporation under contract No. DE-AC05-96OR22464 and was funded in part by grants to University of Warwick and University of Birmingham from the EPSRC, UK.

Figure Captions

Fig. 1 A lattice with square symmetry is observed when the applied field (0.4T) is parallel to the c-axis of the crystal.

1. C. Mazumdar et al, Solid State Commun. 87, 413 (1994); R. Nagarajan et al., Phys. Rev. Lett., 72, 274 (1994); R. J. Cava et al., Nature 367, 146 (1994).
2. C. V. Tomy et al., Physica B 213&214, 139 (1995).; A. I. Goldman et al., Phys. Rev. B 51,678 (1995).
3. J. Zarestky et al., Phys. Rev. B 51, 681 (1995).
4. B. Obst, p. 139 and J. Schelten, p 113, "Anisotropy Effects in Superconductors", ed. By H. W. Weber (Plenum Press, New York 1977).
5. D. K. Christen et al., Phys. Rev. B 21, 102 (1980).
6. M. Yethiraj et. al. Phys Rev. Lett, 78, 4849, (1997).
7. D. Mck. Paul et. al, Phys. Rev. Lett., submitted.
8. U. Yaron et al., Nature, 382, 236 (1996).
9. E. H. Brandt and A. Seeger, Adv. Phys. 35, 189 (1986).
10. M. Yethiraj et alia, in preparation.
11. $\lambda_{100}/\lambda_c = 1.36 \pm 0.03$ and $\lambda_{110}/\lambda_c = 0.86 \pm 0.035$.