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Abstract

A contact enforcement algorithm has been developed for matrix-free quasistatic finite element
techniques. Matrix-free (iterative) solution algorithms such as nonlinear Conjugate Gradients
(CG) and Dynamic Relaxation (DR) are distinctive in that the number of iterations required
for convergence is typically of the same order as the number of degrees of freedom of the
model. From iteration to iteration the contact normal and tangential forces vary significantly
making contact constraint satisfaction tenuous. Furthermore, global determination and
enforcement of the contact constraints every iteration could be questioned on the grounds of
efficiency. This work addresses this situation by introducing an intermediate iteration for treat-
ing the active gap constraint and at the same time exactly (kinematically) enforcing the linear-
ized gap rate constraint for both frictionless and frictional response.




Nomenclature
(1)

() motion of body i

o® local reference configuration of body i

r® surface of body i on which contact is expected
o surface of body i

X material point (location) on body 1

Y material point (location) on body 2

t time

g(X,t) gap function

v outward normal vector

t Piola traction

tN contact pressure (normal traction)

ty contact tangential traction

an(X, t) normal gap

gr(X, t) tangential gap

g'N normal gap rate

g'T tangential gap rate

18 Coulomb friction coefficient

V(i)(X) instantaneous material volocity at X

¢ admissible material variation of body’s motion
H((T), (p) sum of internal and external virtual work
Hc((’f), (p) contact virtual work

d(t) unknown solution vector i.e. the discrete form of ¢
o internal force vector due to the stress divergence
F, contact force vector

™ applied force vector

Ad(t) unknown incremental solution vector

v unit normal at node i

8;1 discrete normal gap

gér discrete tangential gap at node i




transformation matrix from Ad(t) to the discrete normal gap at node 1

Gér transformation matrix from Ad(t) to the discrete tangential gap at node i
Deon number of discrete constraints

I (Adj(t)) residual vector

8; conjugate gradient search direction for iteration j

M conjugate gradient diagonal preconditioner

B: conjugate gradient Gramm Schmidt constant

Q; conjugate gradient line search parameter
€ residual force convergence tolerance

d
eN gap penalty

gap rate penalty
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1 Introduction

Finite element implementations of contact problems have appeared frequently in the
literature, (e.g. [1-4]), and have traditionally emphasized problems amenable to quasistatic
and implicit dynamic frameworks using direct (matrix) solution methods. In such treatments it
is typical to define a contact constraint wherein the contact force is conjugate to the approach,
or gap, between opposing surfaces. Among the most recent methods applied to enforce the
contact constraints is the method of Augmented Lagrangians (e.g. [5,7]) which is able to
circumvent ill-conditioning while still providing accurate constraint enforcement.

The distinctive nature of an iterative (matrix-free) solution methodology, on the other hand,
motivates this investigation. Although several contact treatments have been presented for
explicit transient dynamic applications (e.g. [8,9]) the focus here is on explicit quasi-static
applications. Algorithms such as nonlinear Conjugate Gradients and Dynamic Relaxation are
examples of explicit iterative solvers. They typically require a significant number of iterations
for convergence particularly for nonlinear applications. In this setting, the contact normal and
tangential forces vary dramatically from iteration to iteration making constraint satisfaction
tenuous. Furthermore, although global determination and enforcement of the contact
constraints every iteration has been demonstrated in SANTOS [10] and JAC3D [11], the
efficiency of this approach could be questioned. This work addresses these shortcomings by
introducing an intermediate iteration for treating the active gap constraint and at the same time
exactly (kinematically) enforcing the linearized gap rate constraint for both frictionless and
frictional response.

The application of the proposed algorithm is in JAS3D [12] a general purpose code developed
at Sandia National Labs for the solution of nonlinear solid mechanics problems. It has both a
nonlinear Conjugate Gradient and a nonlinear Dynamic Relaxation solver. In the work that is
presented here, the focus is on the nonlinear Conjugate Gradients solver, with application to
Dynamic Relaxation being straightforward.

Section 2 presents the formulation of the general contact problem with specialization to
Quasistatics in Section 3. Following a summary of the Conjugate Gradient algorithm in
JAS3D, a detailed description of the choices for contact constraint enforcement is given in
Section 4 including the presentation of the proposed algorithm. Finally, Section 5 presents
example problems that demonstrate the effectiveness of the proposed algorithm.




2 Problem Formulation

Contact constraint definition

Consider the motions (p(l) and (p(z) of two deformable bodies, denoted in their reference

configurations by Q" and Q@ | andselect T c2Q™ and T c3Q® to include all
prospective contact points over the time interval [0,T] . Choosing any material point

XerTW , the gap function g is defined with respect to I as:

g(X,1) = Yf;i;mllm(”(m — @ (7)|sign(e) )

where

1 if ¢'{X) lies in the interior of ¢ (Q®),
1 otherwise

sign(g) = { )

Figure 1. Motion of two bodies and definition of the contact gap

The material point of T'®) satisfying the minimization of (1) is denoted as Y(X, t) , as
shown in Figure 1. The contact pressure acting on the point X is written as
ty = —tv (positive if compressive) 3

and the contact tangential traction acting on the point X as

where t is Piola traction acting at X and v is the outward normal at (p(z)(?(X, t)) .Further,
the normal and tangential gaps are written as:

en(X,t) = veg(X,t)

&)
gT(X’ t) = (1 —V) . g(Xa t)



With these notations, the contact constraints to be enforced for all X e I“(l) and for all
t € [0,T] are summarized for frictionless response as:

gn20
tn20
(6)
tngn = 0
Graphically, these normal contact constraints are shown in Figure 2.
p EN-EN
Figure 2. Graphical representation of normal contact constraints
The additional contact constraints required for frictional response are:
trgy = 0 i [u]
: t] <pt
trgy = 0 N )

trgr20 if [t = piy

which are shown graphically in Figure 3.

gt ’gT

Figure 3. Graphical representation of tangential (frictional) contact constraints

Notably, the persistency condition, i.e. tNg'N = 0 in (6),4 and tTgT = 0 in (7), is ordinarily

not used in traditional direct solution implementations but becomes particularly useful for
matrix-free iterative solution techniques. Finally, it is noted that the material time derivative of
the gap functions can be evaluated without approximation as:




ve (VI x) - v®(¥))

g
W @), ®)
I-v)e(V(X)-V(Y))

gr

where V(X) and V®(F) are the instantaneous material velocities of X and Y,

respectively. Linearity of both g'N and gT in the respective material velocities is useful
computationally as will be seen later.

Variational principle

Integrating the weighted local momentum balance in each body and combining, one can show
that the following variational principle holds for the two body system (see e.g. [6]):

H((’E (p)+ Hc((’f; (p») =0 9)

where ¢ is the collection of the (p(i) and & is an admissible material variation. H((”ﬁ, (p) is
the sum of the inertial virtual work and the virtual work of the specified boundary tractions
and body forces, and includes contributions from both bodies. Hc(c’f), (p) is the contact virtual

work, which has the following form (with a contribution from both normal and frictional
response):

Hc(c"fa (p) = jr‘" (tNSgN+tT8gT)dI‘(1) (10)

where 8gy and g are the directional derivatives of gy and gy in the direction of ¢, i.e.:

d _ -
ogy = ic gN((p+a(’f))_

1 and an

d _
dgp i= G gT((p + ou"ﬁ)

It is noted that ty and t; in (10) are subject to constraints (6) and (7), respectively.

10




3 Numerical Implementation: Quasistatics
Application of the finite element method to the variational principle summarized by (9) gives
rise to the following set of nonlinear equations:

Fd(t) + F (d(t)) = F™(t) (12)

which holds for all t € [0,T]. In equation (12) the inertial force term has been omitted
(quasistatic assumption) but t still serves as the load step indication, d(t) is the unknown

solution vector i.e. the discrete form of @, F™ is the internal force vector due to the stress

divergence, F is the contact force vector, and F™" is the applied force vector. Typically,
nonlinear problems will require load steps, in which case (12) becomes

F™(d(t— At) + Ad(t)) + F_(d(t— At) + Ad(t)) = F'(t) 13)

where now d(t— At) is the known solution and Ad(t) is the unknown incremental solution.

Because of the temporal and spatial discretization, the contact constraints are assumed to
apply to nodes on one surface and finite element faces on the other at specific times during the
solution. In this case, the discrete forms of the gap functions are:

gh = v'e (Ad'(t) — Ad (1))
) . : . (14)
gr = (1-v") e (Ad'(t)-Ad (1))

where i denotes a particular surface node (called a slave node) with incremental motion

Adi(t) , which is contacting a point on the opposing surface with incremental motion Adci(t) .

Almost always this point requires interpolation of the nodal quantities defining the discrete
representation of the surface (called a master surface).

It will be convenient, then, to write equation (14) as:
i i
gn = GpAd()
where G;I and Gfr include the interpolation, differences and orientation required (when
multiplied by Ad(t)) to provide the discrete gap at node i. Combining all qu and Gfr gives:
gy = GnAd(Y)

16
g, = GrAd(1) (1o

which are the normal and tangential n_ -vectors of the discrete constraints.

11




At this point the iterative solution methodology can be considered. Although a description of
the Conjugate Gradient (CG) algorithm is given here, it is not intended to be a review of the
theory. A well presented review of the theory and concepts behind linear CG can be found in
[13]. Also in [13] is some discussion of nonlinear CG including other references on the
subject.

Conjugate Gradient Iterative solution

The CG algorithm of interest, Preconditioned Nonlinear Conjugate Gradients with Secant
Method and Polak-Ribiere, can be summarized as follows (further details can be found in
JAC3D [11] and JAS3D [12]) :

introduce the CG iteration counter j, and for j = 0, max iterations

Compute the residual,
1;(Adi(1)) = F(1) = [F(d(t - At) + Ady(1)) + Fo(d(t - At) + Ady(1)]

Compute the conjugate search direction,
-1
Sj+1 =M rJ+B]SJ

where M is the Jacobi diagonal preconditioner and the Gramm Schmidt constant is
based on the Polak-Ribiere formula:
-1

Compute the incremental displacement,

where the line search parameter minimizes the residual along the search direction using
the Secant Method:

r.'s
i’
T

- T
rj (Adj+Sj+1)Sj—rj Sj

aj_

Convergence is obtained when 1; (Adj(t)) <e ,and Adj(t) is the desired solution.




4 Choices for Constraint Enforcement

The basic issue in constraint implementation is whether to directly enforce the gap constraint
tnEn = O (equation (6)3), the gap rate constraint i.e. the persistency condition tyygy = 0
(equation (6),), or some weighted average of both. Use of the displacement penalty parameter
and/or the velocity penalty to enforce (6)3 and (6)4 has been explored by [9] and can be
achieved in the current iterative scheme by expressing F_ via:

Fo(d(t-At) + Ady(1) = exGy GnAdy(t) +exGy Gys; 4 g a7

which is the sum of a gap penalization (using eﬁ;) and a gap rate penalization (using 31‘:1 ).
Recall that Gy is an n.,, X n ., matrix, generally depending on the deformation, which

multiplies Ad;(t) and s, ; to produce an n_,, - vector of the discrete normal constraints,

see equation (16). For notational simplicity, this vector is assumed to contain zero entries for
those constraints which are not currently active. The vector is then penalized to obtain normal

contact forces. Note that the matrix Gy in (17) is the same for both kinematic constraints; this
is a direct consequence of equation (8).

Algorithm 1 summarizes CG with displacement penalty only, where it is seen that the
constraints at the known iterate j are penalized. As noted in [4], this makes the Lagrange
multipliers singular.

Algorithm 1: CG with displacement penalty - frictionless

r,(Ady(1)) = F'(1) — [F™(d(t— At) + Ad; (1)) + exGy GnAd;(D)]

-1
$;41 =M rj+|3jsj

Adj+1 = Adj+(xj5j+1

Experience shows this the case to be as well, i.e. the displacement penalty method by itself is
ill-conditioned when seeking accurate contact enforcement and is particularly true in the CG
iterative framework. A stiff penalization combined with the line search (Alg. I); consistently
overpredicts the contact force resulting in loss of contact. Yet, a soft penalization that
underpredicts the contact force combined with the conjugacy of the CG search directions (Alg.
I), will be extremely slow to converge. Handling of the tangential constraint is even more

difficult since neither ty or tr in equation (7); is well defined during the CG iterations. For

the moment, without further numerical treatment, the gap constraints will remain difficult to
satisfy. The proper treatment of the rate constraints, however, will lay the necessary
foundation for their eventual treatment.

13




Gap Rate Constraints - Normal Constraint

The rate constraint can be effectively implemented with some numerical approximation. To
show this, the CG algorithm with velocity penalty is written in a Langrange multiplier form as
Algorithm 2.

Algorithm 2: CG with velocity penalty - frictionless

1;(Ady(1)) = F™(t) - [F™(d(t - At) + Ad;(1)) + GyAS™]

-1
Sj+1 =M rj+ﬁj5j

Adj+1 = Adj+ajsj+1

j+

Solving Algorithm 2 for k}m yields:

-1,.T i
GNM ™G\ -Gy B;s; = B —F™ (18)

ext ext

= F*(t) has

int int

where the simplified notation Fj =F (dt-At)+ Adj(t)) and F

1T

been adopted. The coefficient matrix [GyM 1GN] on the left hand side of (18) is not in
general diagonal. This is troublesome in practice, yet the real difficulty with (18) stems from
the Gramm Schmidt constant’s dependence on the Lagrange multipliers, i.e.:

T
r; (r.—-r._.)
B M B et
Bj -t T,

T
j-1
ext int T,nor T, _int _int T T
_-IF —F =Gy T [(E - FL 1) + (GyA]™ — GyA{ o]

i T T i T
[F™ - F - GaA T3] B - FjY - Gyl %)

rj—l

19

where it is now evident that (18) also contains a polynomial in the Lagrange multipliers Xj-m .

Practically, this makes (18) unsolvable in the iterative setting since the solution of the tightly
coupled system would be prohibitive every CG iteration.

Numerical approximation to Algorithm 2 is possible with a specialization of the rate constraint
to one-sided contact (so called master-slave contact) such that the difficulty of directly solving
equation (18) is addressed.



Specialization to one-sided contact

Specialization of Algorithm 2 to one-sided contact is made by writing the rate constraint (Alg.
2),4 with its slave and master contributions:

GnSj,; = GxSj, 1 +Grsj,p = 0 (20)

and assuming a solution to (Alg. 2); as:

0 = Gir; = GN(F™ ~F;™ - Gy(A}™) i) Q1)

Combining (20) and (21), one can show that
i T
GRE™~F}™) = GG At = 4 e @)

ext

where taken advantage of in (22) are the useful properties of Gy and Gy :

T
Gn(Gy) = 0 (23)
nconxncon
and
S s T
Gn(Gr) = 1 (24)
nconxncon

Interestingly, a physical interpretation of (22) is seen in Figure 4:

nor

Figure 4. Physical interpretation of the Lagrange multipliers (A; )yiq

where is seen that only one side of the contact is considered (namely those constraints defined

on Body B). The trial solution for the contact forces (?»?or)trial are a direct result of the stress
divergence at the contact surface nodes of the slave Body B alone.

15




Substituting result (22) into (Alg. 2);, the residual at the jth CG iteration can be computed as:
> i T i
rj (AdJ(t)) - Fe Kt _ ijt _ (GN) Glsq(Fext _ ijt)
(23)

- "(GN) GN (Fext_F mt)
[, ("

Because of assumption (21), the search direction must now be augmented to include slave
node contributions, i.e.:

Sie1 = (M1 +Bysy) +8%5 41 (26)

where s° j+1 1s found using the kinematic constraint, equation (20):
T _
s%+1 = ~(GR) GN(M'1; +B;s;) @7

Note that the slave node degrees of freedom are now explicitly determined, and the resulting
algorithm is no longer a penalty method. Summarizing, the CG algorithm with frictionless
velocity constraint (Alg. 3) is written as:

Algorithm 3: CG with kinematic velocity constraint and one-sided contact - frictionless

ry(Ady(D) = [n -(GN)TG;](F“‘(t) ~F(d(t- At) + Ad,(1))

eq eq

S-

i1 = [n q><nq-(GN) GN](M 5+ Bys;

Gap Rate Constraints - Tangential Constraint

The tangential rate constraint is applied analogously to the normal rate constraint, i.e.
assuming a sticking condition (Alg. 2); is written as:

r; = Fe"t—(F;llt + G§A?°’+G§(l?n)sﬁck) 2%

And again making the one-sided contact assumption, equation (28) is written as:
T T
0 = Gyrj = GHF™ — (F" + GyA]™ + Gr(A™) )] (29)

ext int

from which (Kjt-an) stick can be found as:

16




H T T
GL(F™ -F") - GIGA™ = Gp(G1) (AW e = M g B0)

The stick - slip discontinuity in the contact force can now be considered:

Mg Ao SHAT

y N

j (31)

()“;an)slip = W‘}mr if (A’;an)stick> W‘?m

where Coulomb friction is assumed to hold. Finally, the search direction must be modified for
sticking conditions:
. s\ _,m -1 . . .
Jgticf _ {—(GT) Gr(M 1+ Bjsj) if sticking 32)
0 otherwise

Summarizing, the CG algorithm with kinematic velocity constraint and one-sided contact
(Alg. 4) is written as:

Algorithm 4: CG with kinematic velocity constraint and one-sided contact - general

eq XN

ag) = [ 1 q—(GN)TG;](F"“-F;“‘)-(GT)Tx;a“

k;an - min[G-sr(FeXt _ Fjint), uG;I(Fext _ Fjint)]

T .
) - 1 (S m —1. o ;tlck
Sja1 [neqmeq (Gl GE| My, + Bis,) + 2

T -
Sstick _ {-(Gfr) Gr(M lrj+ Bis;) if sticking
j+1 —

0 otherwise

Adj+1 = Adj+aij+1

Gap Constraints

Remaining now is the treatment of the normal and tangential gap constraint. Consideration of
the displacement penalty during the CG iterative process was shown to be problematic
because of its interaction with the CG methodology. Yet, with the gap rate constraint treatment
(Alg. 4) as a foundation, the gap constraints can now be effectively considered.

17




Intermediate Iterations with Rate Constraint Linearization

It is proposed that the normal and tangential gap constraint be treated with the introduction of
an intermediate iteration to (Alg. 4) - where the normal gaps are kinematically removed and
some amount of frictional slip is allowed if required. This is accomplished in a loop around
the CG algorithm and an incremental kinematic prescription of the gap removal, i.e.:

Adg,; = Ady +Adj + BNGNGn(d(t—Ab) + Ady + Ad;y) (33)

for the normal gap constraints. In equation (33), the second iteration counter k is the gap

. . . th . .
enforcement loop, Ady is the accumulated displacement increment for the k~ intermediate

solution, Adj* is the displacement increment for the current (k + 1)th intermediate solution,

and By is a pushback factor, i.e. 0 < By <1 on the normal gap. A graphical depiction of this

treatment is shown in Figure 5. It is seen that after a kinematic removal of a portion of the
normal gap (horizontal lines), the rate constraints alone are active during the CG iterations

(vertical lines); note that the CG algorithm converges at iteration j = j* .

Figure S. Incremental enforcement of normal gap constraint

The tangential gap constraints are treated in a similar manner, i.e.:

Ady,, = Adg+Ad, +aM (G (Brr™) 34)

where o is the line search parameter, B is a allowable slip factor, ie. 0 < By <1, and rfn is
the residual tangential force unbalance, i.c.

rp” = min[0, (Gy—HGR)(F™ ~F12)] | (35)
As shown in Figure 6, the tangential constraints are also gradually enforced. The frictional
slip (horizontal lines) is determined from a line search along the steepest descent direction

- T . . . . . .
M 1(G-Sr) ([5Tr;:m ), and the rate constraints are active during the CG iterations while
assuming sticking conditions (vertical lines), i.e.

18




M = ()0 = GHF—F}™) 66

Importantly, equation (36) avoids the stick-slip decision during the CG iterations and allows
the gap constraints (normal and tangential) to be enforced properly without interacting with
the CG solution methodology.

Figure 6. Incremental enforcement of the tangential gap constraint

The importance of this approximation can be understood by considering the behavior of the
frictional constraint from iteration to iteration. It is seen in (Alg. 4) that a stick-slip decision is
made based on the external forces and internal forces every iteration. However, the stress field
is not yet in equilibrium and in some cases the external forces are still changing (i.e. in the
case of an applied pressure). This can lead to errors in satisfying the frictional constraint since
the slip is irrecoverable in a kinematic treatment.

Algorithmic Efficiency

This approach has an additional benefit via linearization of the active rate constraints. Rather
than updating Gls\I and G;? (global degree-of-freedom to constraint transformations) every
CG iteration j, they are held fixed until equilibrium. Recognizing that this is an intermediate
equilibrium anyway (due to possible additional normal or tangential gap removal), (Glsq)k
and (Gy), areupdated (to (Gy)y,; and (Gy)y ., ; ) and another equilibrium configuration

is sought. The updates k = 0, 1, 2, ... naturally converge when the residual after an update is
below the user specified amount. The algorithm can be summarized in Algorithm 5.

19




Algorithm 5: CG with displacement penalty, kinematic velocity constraint and one-sided
contact - general

introduce the gap constraint enforcement loop counter k, and fork = 0,1, 2, ...

Ady, 1(t) = Ady +(Ad;), +ByGNGr(d(t- At) + Ady + (Ad,),)

+ oM (G2 Bymin[0, (G5 — pGY) (F™ - F™(d(t— At) + Ad, + (Adj) )]

where Ady _ o = 0, and (Ad;4), is determined by introducing the CG iteration counter j,
andfor j = 0,1,2,...

Compute the residual, rj(Adj) = [n >1< N ‘(GN)TG; _ (GT)TG;](FW _ Fjint)
eq” Teq

Compute the conjugate search direction,

T m T -1
$i41 = [neq}(neq—(G;) Gy - (G7) G?](M 1+ B;s;)

where M is the diagonal preconditioner and the Gramm Schmidt constant is based on
Ty 1
. M (r;-r;_4) .
the Polak-Ribiere formula: B; = max J = ! - 1==2,0 | (with B, = 0)

r_1 M 1j-1

Compute the incremental displacement, Ad; , ; = Ad;+ 085, 4

where the line search parameter minimizes the residual along the search direction using

the Secant Method: @; = - i

T T
I; (Adj +8; +1)sj —I;'s;

Convergence of the CG algorithm is obtained when rj((Adj(t))k) <& ,and
(Adj*(t))k = (Adj(t))k is the desired solution.

Convergence of the gap enforcement loop is obtained when r; _ o((Ady(t)), )< and

Ady. = Ady(t) is the desired solution.
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5 Numerical Examples

Two examples are provided to demonstrate the important aspects of the proposed algorithm.
Namely, that the extremely non-linear stick-slip frictional phenomenon can be robustly treated
and that the efficiency of the contact constraint enforcement benefits from the constraint
linearization.

Frictional Stick-Slip Example

The following problem is proposed by [14] and is solved here because of the analytical
solution available (with small strain, one dimensional assumptions). As shown in Figure 7, it
consists of a flat bar sliding against a rigid foundation. The loading is sequenced in the
following manner. First, a vertical deflection of the top of the bar is prescribed such that the
contact surface can support a tangential traction. Second, as a result of an applied load, p, the
bar is gradually stretched causing progressive slipping along its length.

The bar has alength L = 20, aheight h = 2, a thickness t = 1 and is meshed with 40
elements along its length, 4 thru its height and 4 thru its thickness. The elastic material is
assumed to have the following properties: Youngs modulus E=10000 psi and poisson’s ratio

v =0.0. Unless explicitly stated otherwise, the force convergence tolerance used in obtaining
these results was € =0.005.

0.0 +— =
0.0 0.01 1.0
time (non-dimensional)

0-0 1 1 1 »
0.0 0.01 1.0

Figure 7. Bar sliding against a rigid foundation time (non- dimcnsiénal)

The normal and tangential tractions for various times (several applied loads p ) are shown in
Figures 8 and 9 respectively. It is seen that the applied vertical deflection results in a nominal
normal contact traction of 20 psi, although there is some two dimensional effect. The two
dimensional effect is a result of the pressure “following” the non-planar deformation of the
initial straight cross-section.

Notice that the tangential tractions are converged to that supported by the normal traction.
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contact normal traction [psi]

0 Distance along Bar [in.] 20
Figure 8. Contact normal traction along bar at various times
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0 Distance along Bar [in.] 20
Figure 9. Contact tangential traction along bar at various times

Figure 10 is presented to indicate the quality of the constraint satisfaction that can be
achieved. The frictional constraint satisfaction is shown to converge from “above” (that is to
say it is always higher than that supported by the normal traction) as the convergence
tolerance is progressively made smaller, in this case €=0.05, 0.005, and 0.0005. Thisis a
direct result of the slave node stiffness being higher than the stiffness corresponding to any of
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the overall structural deformation modes. Thus, the amount of slip is determined based on the

- - T
slave nodal stiffness M (Aslip = GzaM 1(GST) rLa " ) and is always conservatively

predicted.
2.10 % y T y T g T T
= | e—o &= 0.05
%- g—a €= 0.005
2 o—& £=0.0005
8 205 ~
&
=
p=!
o ~
[>)
on ——_________,.-- ————
§ | eEeeeseeee0000000s
5 2.00 | -
8
=
Q
o K 4
1.95 &— . . 1
0 Distance along Bar [in.] 20
Figure 10. Tangential traction for various force convergence tolerances at t=0.5

Figure 11 shows the accumulated axial slip at the end of the bar as a function of time. The
comparison between the analytical solution and the numerical solution appears acceptable.

0.05
— 0.04 u
=
g
g 003
[
g
5
5 002
=l
g B
2 o01 |
0.0 P 2 L . I L
0.0 0.2 0.4 0.6 0.8
Time [non-dimensional]
Figure 11. End-point horizontal displacement

1.0

23




A more precise comparison can be made by looking at the axial slip along the length of the
bar. Figure 12 shows the accumulated axial slip at various times. It is seen that the proposed
algorithm (Alg. 5) solves for the slip/no slip boundary (i.e. at time t=0.3 the slip/no slip
boundary is located at approximately 12.5 in. along the length of the bar).

0.05 ¥ T T T T
analytical JAS3D
o) t=0.1
0.04 [ —_— O t=0.3
| —_— O t=05
—_— A t=0.7
0.03 [ —_— t=1.0

0.02

axial slip[in.]

0.01

0.0
0 Distance along Bar [in.] 20
Figure 12. Accumulated axial slip along length of bar at various times

Example Problem with many Contacts

The following problem highlights the efficiency of linearizing the contact constraint
definition. Figure 13 shows a symmetric model of an extrusion process. The Aluminum

material is elastic-plastic with the following properties: Youngs modulus E = 68900 MPa,
poisson’s ratio v = 0.3, yield stress o, = 68.9 MPa, and Hardening Modulus H=0 MPa.

WSV IIVIIIII SIS

s/ /s

Figure 13. Symmetric half of an extrusion process
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The force convergence tolerance was € = (.005 and both the CG and Dynamic Relaxation
nonlinear iterative solution strategy was used. Figure 14 shows the typical deformed shape
after prescribing a displacement § = 0.038m in 10 equal increments. The corparison made

I/////////////////l// >
) /
i%
L)/ /S

& = 0.038m

_—_q"-

Figure 14. Extrusion of billet after ram displacement 0.038 m

here is between the CG (and DR) iterative solution using Alg. 4 and Alg. 5 (and DR
counterpart to Alg. 4 and Alg. 5, denoted as (Alg. 4)pg and (Alg. 5)pg) for the contact
constraint treatment. Table 1 summarizes the computational resources required (on a CRAY
J90) for these simulations. It is seen that the linearized contact treatment (i.e. Alg. 5) using
either CG or DR is considerably more efficient than not linearizing. Note also the added
benefit of reducing the number of iterations for DR applications using (Alg. S)pg. This is due
to a more optimal algorithmic damping that results from linearizing the contact constraints.

Table 1: Computational resources required for Extrusion simulation

Algorithm Memory (Mb) | CPUs (J90) iterations CPUslitr.
CGAlg. 4 2.243 445 12964 0.0343
CGAlg. 5 2.243 303 13810 0.0219
DR (Alg. 4)pp | 2.243 854 30911 0.0276
DR (Alg. S)pr | 2243 349 23144 0.0151
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6 Conclusions

A contact enforcement algorithm has been developed for matrix-free Conjugate Gradients
(CG) and Dynamic Relaxation (DR) quasistatic finite element techniques. The algorithm
introduces an intermediate iteration for treating the active gap constraint and at the same time
exactly (kinematically) enforces the linearized gap rate constraint for both frictionless and
frictional response.

The essential feature of this approach is to move the normal gap constraint and tangential
stick-slip constraint outside the CG (or DR) iterative solution loop. Thus, the inherently non-
linear stick-slip frictional phenomenon can be robustly treated.

Furthermore, global determination of the contact constraints every iteration is no longer
necessary making contact constraint definition much more efficient.

Two examples were provided to demonstrate these important aspects of the proposed
algorithm.
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