SANDIA REPORT

SAND97-8281 ¢« UC—-405
Unlimited Release
Printed August 1997

Enhanced Internet Firewall Design Using
Stateful Filters Final Report

James A. Hutchins, Randall W. Simons

OF THIS DOCUMENT 18 WRWDP;\

Prepared by BE CE ' V E D

Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550 SEP 2 6 1997

Sandia is a multiprogram laboratory operated by Sandia Corporation, e B
a Lockheed Martin Company, for the United States Department of e Gt @ S T ,
Energy under Contract DE-AC04-94AL:85000. LT

Approved for public release; distribution is unlimited.

SF2900Q(8-81)

Issued by Sandia National Laboratories, operated for the United States
Department of Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States Govern-
ment nor any agency thereof, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, makes any warranty,
express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, prod-
uct, or process disclosed, or represents that its use would not infringe pri-
vately owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or otherwise, does
not necessarily constitute or imply its endorsement, recommendation,
or favoring by the United States Government, any agency thereof, or any of
their contractors or subcontractors. The views and opinions expressed
herein do not necessarily state or reflect those of the United States Govern-
ment, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced
directly from the best available copy.

Available to DOE and DOE contractors from
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Prices available from (615) 576-8401, FTS 626-8401

Available to the public from
National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Rd
Springfield, VA 22161

NTIS price codes
Printed copy: A03
Microfiche copy: A0l

DISCLAIMER

Portions of this document may be fllesible
in electronic image products. Ima.g.es.are
produced from the best available original
document. -

UC-405

SAND97-8281

Unlimited Release

Printed August 1997

Enhanced Internet Firewall Design
Using Stateful Filters Final Report

James A. Hutchins
Infrastructure and Networking Research Department
Sandia National Laboratories/California
and
Randall W. Simons
Decision Support Systems Architectures
Sandia National Laboratories/New Mexico

ABSTRACT

The current state-of-the-art in firewall design provides a lot of security for
company networks, but normally at the expense of performance and/or
functionality. Sandia researched a new approach to firewall design which
incorporates a highly stateful approach, allowing much more flexibility for
protocol checking and manipulation while retaining performance. A prototype
system was built and multiple protocol policy modules implemented to test the
concept. The resulting system, though implemented on a low-power workstation,
performed almost at the same performance as Sandia’s current firewall.

Table of Contents

Introduction

Background Study Results

Design Approach

Services Investigated

Results

Appendix A - Background Study Results
Appendix B - Kernel Interface Specification

Introduction

With the explosive growth of public networks, such as the Internet, has come a
corresponding increase in the number of people and resources accessible to the research
and commercial sectors. This growth has also created opportunities for hackers to attack
systems on an international scale. To prevent attackers from gaining access, many sites
protect their computers by placing them on an internal network and connecting to the
public network through a "firewall", a device designed to only allow trusted and well-
controlled connections to pass. Most designs today are primitive, using one of two
mechanisms: simple packet filtering functions supplied in many of today's routers, or a
proxy machine through which all traffic must pass. These firewalls only provide users
with a limited functionality and generally fail when communicating with other sites that
also have a firewall. A new approach to firewall design needs to be found that increases
the available functionality while maintaining the required level of protection.

The biggest difficulty in using a filtering router in a firewall is that it must make the
decision of whether to allow a packet to pass based solely upon the information contained
in that one packet. This means the filter is “stateless”. Using a proxy machine allows
state to be kept, but at the cost of transparency and significantly more processing
overhead, and hence a decrease in performance. An approach needs to be found that
combines these two systems.

Background Study

A survey of current firewall products was conducted. (See Appendix A) The purpose of
this study was to determine the state-of-the-art in firewall technology, and also to explore
the possibility of identifying a commercial company that would be interested in building
a prototype system that incorporatef our design into their product.

We found that while many companies sold firewall devices, almost all of these
commercial products were simple enhancements, mostly in the area of the management
interface, to the two basic firewall components: packet filters and proxies. A few of the
more recently introduced commercial devices were more than a simple enhancement,
though not by much. These enhancements were mostly in the form of attempting to
employ some state-knowledge at a packet filter level - one of the techniques we were
employing, though at a much more simplistic level than our approach. The state
information maintained was limited to enhancing the handling of UDP packets and the
watching of the FTP control channel to selectively enable FTP data transfers. No other
state was kept; therefore if any more complex data manipulation was required a separate
device from the firewall would have to be installed and employed.

We also found that only a couple of the commercial firewall devices made any attempt to
improve, or even measure, their performance. This lack of interest in performance
unfortunately appears common since almost all of the companies connected to the
Internet today have a T1 (1.5 Mb/s) or slower connection, and these firewall devices
generally can operate up to about a T1 speed. This leaves any company with a
connection faster than a T1 with few or no options, other than compromising speed for
the ability to buy a commercial product. We believe it is primarily for this reason that we
found that most large companies prefer to build their own firewall. Such a custom
firewall can be built from publicly available software and hardware components and
allows a company to tailor the firewall to their specific environment, and thereby
maximize its performance.

In general, it appeared that no commercial firewall devices were available that would be
as robust from a security standpoint as our suggested approach while also maintaining
good performance. It did appear though that the industry was slowly moving in the
general direction of parts of our approach by beginning to employ state information into
packet filtering systems.

Design Approach

Our design utilizes a modular approach where information can be processed at multiple
levels depending on which level is the lowest, and hence most efficient, but also high
enough to fully analyze the data from a security perspective. The block diagram is shown
in Figure 1.

User Network Security Control Application

Space] T y T T
I I !‘CP I
| | TCP/UDP Buffer TCP/UDP |

A
I I I
Kernel | | P |
| | "] |
y | /
I TCP/UDP |
| Rewrite N, ARP l
Input / Output |
L o —] Filter Filter | — —I
Incoming Outgoing
Network Network
Driver Driver
~——p Data Path 1 l
— » Contro! Channel

Figure 1: Block diagram of stateful filter design

The flow of data through this structure depends on the state of the connection as
determined by the Network Security Control Application (NSCA). Itis the NSCA’s job
to test all data flows and determine whether to trust them, modify them, or reject them. It
does this by employing multiple modules, each of which performs a specific function.

Input Filter

The Input Filter is the first component of the firewall to act upon the packet. Its jobis to
inspect the packet according to a ruleset table defined by the NSCA and determine where
to send the packet next. It may send it to IP to be processed normally, to a TCP/UDP
rewriting module, to the NSCA, or any combination of these. The ruleset used by the

Input Filter can be updated as needed by the NSCA: for example to unblock an FTP data
port when an FTP file transfer is initiated, and then block it again when the transfer is
completed.

TCP/UDP Rewrite

The TCP/UDP Rewrite module takes a packet and modifies certain header fields. These
changes allow some or all source or destination IP addresses to be hidden from one or
both sides of the firewall, to provide a means of transparently gluing two different TCP or
UDP connections together, and to allow the firewall to transparently intercept a
connection, modify it, then allow it to resume.

To do this requires the module to be able to modify the IP source and destination
addresses, the TCP and UDP port numbers, the TCP sequence and ACK numbers, and
both the TCP/UDP and IP checksums. Which fields need to be modified and how they
will be modified is determined by a table supplied to the module by the NSCA.

TCP Buffer

The TCP Buffer module is similar to the TCP Rewrite module in that it allows two
separate TCP streams on the firewall to be connected after creation, but with a buffer in
between. Itis as if the creating application were reading from one of the TCP
connections then immediately writing the data to the other connection unmodified.

Network Drivers. ARP, IP. and TCP/UDP

These modules are identical to those in a normal UNIX workstation except they have
been modified to pass the data to the special modules shown in the block diagram instead
of following the normal data flow.

Services Investigated

We implemented a prototype system on a Sun workstation. The kernel portion of the
prototype software is dynamically loaded as a loadable kernel module, which allowed us
to load and test changes during development without having to reboot the machine. The
NSCA interfaces to the kernel modules through a special device file /dev/ipl. Data can be
retrieved from and sent to modules through read and write system calls, and filter
manipulations are performed through ioctl system calls. The interface specification is
included in Appendix B.

A few NSCA modules were written to allowing testing. These modules included FTP
and Telnet. A module for HTTP was also begun but was not completed before the end of
the LDRD project. Other protocols, normally easily handled by typical filtering
firewalls, such as ICMP and WHOIS, were also included in the base NSCA program.

The FTP module watched traffic on outbound FTP control connections (TCP post 21).
When it saw a PORT command, meaning a file transfer was about to take place at that
address and TCP port, it modified the filter to enable that port to get through. When the
transaction was complete, it then disabled the port. The ability of an FTP data connection
to connect from an external machine to an internal one has in general been one of the
hardest problems for firewalls to adequately address due to FTP’s popularity and
requirement for high throughput.

The Telnet module intercepted all incoming telnet connections from an outside machine
to an inside machine. It then presented a SecurlD challenge to the originating machine
on the telnet connection. When the challenge was completed successfully, the filter was
modified to make all future packets on this connection pass through the TCP Rewrite
kernel module without needing to go to the NSCA. Since the prompting caused the TCP
sequence numbers to become desynchronized, the TCP Rewrite module had to be used to
modify all future packets so they became resynchronized.

The function of the HTTP module is to intercept all HTTP requests and check them
against local policy rules. For example, if the user is attempting to access a forbidden
web server or URL, an appropriate error message can be returned. Also, returned header
information and data can be inspected for potential trouble. One such use is to block
MIME types that are considered unsafe, such as JAVA. Another possibility is to inspect
incoming binaries which appear to be executables and susceptible documents for viruses.

Through these implementations, certain limitations of the original design were identified
and addressed. One such limitation was that the original implementation had a floating
filter set, so the deletion of one filter rule cause the identifier of the other later ones to
change. If only one program was performing the filter manipulation, then this was not a
problem, but it was decided to segment the functions of the NSCA using modules. For
modules to be able to operate fairly independently, a unique filter identifier had to be
assigned to each rule at creation. This feature was added.

Results

The implementations were tested for functionality and performance. Even though the test
machine used was a low performance Sun Sparc IPC workstation, in the throughput test
with FTP it was able to sustain a 3-5 Mb/s transfer rate. For comparision, a pure filtering
Cisco router in the same test configuration was able to sustain a consistent 5-6 Mb/s. The
FTP connection and command responses showed no noticeable delays. It is reasonable
that a faster machine would be able to handle these transfers at full media rates, and
probably be able to keep up with faster media, such as FDDL.

The telnet module was tested and found to perform the intended function, again with no
noticeable impact on delay. Telnet is normally not a high throughput operation, though a
test of the prototypes throughput also found a 3-5 Mb/s rate after the SecurID challenge
was completed.

We speculate that the occasional drop in performance from the 5 Mb/s that a router
achieves to 3 or 4 Mb/s is due to the workstation’s need to periodically perform general
kernel operations, such as flushing its disk cache. If these operations occur during a
transfer, the momentary stutter impacts the throughput. If these operations could be
performed on a dedicated processor, such as if they were built into a router, then the
problem should go away.

Overall, the project was a success. The concept of the stateful filter was implemented
and tested. It performed the functions we were trying to achieve, and did so with good
performance, especially considering the CPU performance rating of the prototype
platform.

The development showed that the interface specification for the NSCA was general
enough to be able to handle a wide range of application, though special tweaking for
certain applications may become necessary. It also showed that once an approach for
addressing a protocol was developed, implementing a module to perform that approach
was fairly straight-forward, though more time consuming than originally anticipated.

Appendix A - Background Study Results

The Current State of Firewall Technology
1. Abstract

As the number of sites connecting to public networks like the Internet increases, so does
the concern about protecting these resources from hostile elements that are also
connected and growing in number. The primary method of protection today is to install a
firewall between a site and the public network. Most firewalls today are built out of a
small number of component types, many of which are available in the public domain.
This paper discusses the various component types, what commercial products are
available, and what they have to offer over the readily available, public domain packages.

2. Introduction

The Internet is a world-wide collection of networks all using the common protocols of the
TCP/IP suite. When the Internet was originally created, it was primarily populated by
researchers from educational institutions. The need for network security was low since it
operated by academic rules and little of real monetary value was attached to it. Since
those days, the resources available on the Internet have exploded. Many organizations
are in the process of connecting to take advantage of Internet services and resources.
Businesses and agencies are now using the Internet for a variety of purposes, including
exchanging electronic mail, distributing information to the public, facilitating
collaboration with partners, and conducting research. Many organizations are connecting
their existing internal local-area networks to the Internet so their workstations can have
direct access to Internet services.

Internet connectivity can offer enormous advantages, however security needs to be a
major consideration when planning an Internet connection. There are significant security
risks associated with the Internet that are often not obvious to new (and existing) users.
In particular, intruder activity as well as vulnerabilities that could assist intruder activity
are widespread. Such activity is often difficult to detect and correct. Many organizations
have lost productive time and money dealing with intruder activity; additionally, some
organizations have had their reputations suffer as a result of break-ins at their sites being
publicized.

There are two major ways to deal with these security threats. One method is to secure
every device that a company has connected to the Internet. This technique is almost
always impractical since the investment necessary to accomplish it is very large, or even
impossible. A far more practical approach is to build a "firewall” between the company's
internal network and the Internet. This device regulates the network traffic that flows
between the company and the outside world, restricting it to operations that are allowed
and considered safe.

Most firewalls in use today are either designed and built by the organization seeking
protection, or by a hired consultant. The mechanisms available for firewall construction
are very limited, comprised of packet filters, proxy servers, and circuit relays. These
mechanisms are discussed in section 3. A few commercial firewall products exist,
though almost all employ these same mechanisms with the only added value being a

better configuration/management interface. A few of the remaining firewall products
present some interesting features which are discussed in section 4.

3. Methods of Firewall Construction

Almost all firewalls today are constructed using one or more of these three basic
techniques: packet filters, proxy servers, and circuit relays. Each has its advantages and
disadvantages, so typically a firewall system is built using a combination of them.

3.1. Packet Filters

Most high-end routers today contain the ability to filter packets while routing, based upon
information contained in the packet. Examples of information available include what
machine the packet is to or from, what service it is for, or how big it is. Each packet is
filtered individually, so only information contained in the current packet is available to
make a decision, but due to the way TCP, UDP and IP work, this is often enough. Based
upon the packet's content, the router can then route it, drop it, or respond to it (with an
ICMP Unreachable for example). Each of these actions can occur with the operation
optionally being logged.

The use of a filtering router has certain advantages over proxy servers and circuit relays.
Since the filtering is normally performed in special hardware inside the router, it can be
done at very high rates so little or no performance penalty is usually paid. Additionally,
the filtering does not alter the packets, just inspects them, so its operation is transparent;
the user does not have to modify how he uses Internet services in any way. In fact, the
user may not even know there is a firewall installed.

Filtering routers also have certain disadvantages over proxy servers and circuit relays.
Since it can only decide the fate of a packet based upon the information contained in that
one packet, any service whose security cannot be determined with that limited amount of
information cannot be safely filtered. Some applications, such as outgoing telnet
connections, contain all the required information in each packet, but many applications,
such as incoming telnet connections, do not. Another concern with filtering routers is the
filter's programming interface. The interfaces tend to be very terse and difficult to
understand. The programmer is required to be knowledgeable in the operation of all the
protocols the filter will handle, including any possible interactions. This step has proven
to be highly prone to errors, with these errors resulting in undetected vulnerabilities to the
site.

3.2. Proxy Servers

A proxy server is a device that accepts network connections for a service, processes the
data, then passes the data on to the actual destination over a new network connection.
The data is processed by an application, which may make forwarding decisions for the
data, or require and process additional information such as for authentication. An SMTP
mail relay is an example of a proxy server. It accepts mail from a remote host, processes
the mail header to determine where the real destination is (or at least the next hop to it),
then forwards the message on. Mail relays, like other proxy servers, are necessary since
the destination may not be directly accessible from the source, or the destination may not
be able to handle direct connections from the source for a variety of reasons, security
being one.

The advantage offered by a proxy server over other firewall component types is its ability
to examine at the application layer all the information passed and to base decisions on it.
Since the information is from the entire data stream and not just one packet, the entire
context of the operation is available for the decision. Furthermore, the application can
modify the data stream to request additional security-related information, or to edit out
dangerous operations when possible.

Proxy servers do suffer from many disadvantages. The one often considered the most
significant is the potential performance penalty. All proxied network operations require
going through the proxy server, having the data processed by an application, then being
sent out on a new connection to the real destination. All of this takes time which can
significantly impact the operation's performance. Since all operations go through a proxy
machine, and there is normally only one such machine for each type of operation, indeed
normally one machine for most or all proxied operations, this machine can become a
performance bottleneck. Another disadvantage is the non-transparency of proxy servers.
For most operations, the users must know that the proxy server exists and perform special
actions to use it. These actions may be as simple as configuring a client at installation
time like in Netscape, or as cumbersome as going to a special machine, performing some
action like responding to a challenge-response, then telling the proxy where the real
destination is every time an operation is desired. An additional disadvantage of proxy
servers is the need for a different proxy server application for each service desired. Since
the proxy examines the data, it must understand the data and its security implications,
which is unique for each service.

3.3. Circuit Relays

A circuit relay is a special kind of proxy server, though different enough that it is
normally placed in a class by itself. Its function is to accept connections from inside
machines, determine the true destination and connect to it, then pass the data between
these two connections. The clients that use it are linked with special libraries that know
when and how to talk with the relay machine. The user's machine must have these
special client programs installed for each service that will need to use external resources.
After installation, the user does not have to do anything special, or even know there is a
firewall installed. The circuit relay passes data that an inside machine requested without
any interpretation, hence providing nothing more than a data pipe, or circuit. The most
popular such package today is the public-domain SOCKS library.

The circuit relay enjoys certain advantages over the other component types, though it
generally falls between a filtering router and a normal proxy server. Since it is in essence
a stripped done proxy server, it does not have as much overhead as a normal proxy server
does and may therefore be faster, though not as fast as a filtering router. Italsois
transparent to the user after installation like a filtering router. Since the relay is
performed in an application running on a workstation, the administrator is able to create
more extensive access control capabilities then normally available in filtering routers.

The circuit relay also suffers from certain disadvantages. Since it does not examine the
data that passes through it, it cannot protect against malicious data an outside server
might send in response to an insiders request. Also, a circuit relay is designed to allow
inside machines to get out, but has no provision for outside authorized users to get in.
Lastly, to use a circuit relay requires that a special client be created for each platform and
service. Some platforms may not be common enough to be in the "ported to" list so some
users would be unable to use it.

3.4. Bastion Hosts

A special kind of proxy server is a bastion host. A bastion host is a machine directly
connected to both the external "untrusted" network, and to the internal network. The
machine is explicitly configured to not act as a router. For an inside user to reach an
external resource, he must first login to the bastion host, then run the appropriate utility
for the desired service on the bastion. Likewise, for an approved user residing on the
external network to access internal resources, he must also first login to the bastion host,
however this login normally requires additional authentication actions like correctly
responding to a challenge-response.

Bastion hosts have the advantage of being the easiest (though in a sense also the hardest)
to install and administer. All that is needed is a machine with two network interfaces.
No additional hardware or software is necessary. Their major disadvantage is they are
the keys to the kingdom, and every authorized user has an unrestricted account on it.
Any authorized user is potentially capable of running a process that creates a
vulnerability in the machine which an outsider could exploit. Also, any authorized user
with malicious intentions could break the machine from inside, then subvert the security
measures, again opening the internal network to attack from the outside. This is why a
bastion host is considered by many people to actually be the hardest (and hence least
secure) firewall device to operate.

4. Special Firewall Products

There are many different definitions of what a firewall is, so there is wide disagreement
on how many firewalls are currently installed or what kind they are. If you limit the
discussion to IP-to-IP firewalls, and ignore those that act solely as email gateways, then it
is safe to say that most firewalls are home-grown. That is, most firewalls are constructed
by the site that wishes protection out of the components listed in section 3. There are
however many commercial firewall products available. Most of these products are
merely a vendor supported version of these same components, many with a more
administrator-friendly interface than available with the public-domain versions. Some
however, offer additional features designed to increase a firewall's security or usefulness.

4.1. FireWall-1

FireWall-1 is a software package that basically converts a Sun workstation into a filtering
router, but one that retains a small amount of state information. One of the major
problem areas (holes) for filtering routers is in the handling of outgoing FTP operations.
When FTP performs a data transfer, the client dynamically allocates a TCP port and
sends this port's address to the server over the FTP control channel. The server then
connects to this port from the server's TCP port 20 and begins the data transfer. Since an
outgoing FTP results in an outside machine making a TCP connection to a seemingly
random port on the protected internal network, a site with a filtering router is faced with
either letting such dangerous actions occur, or disallowing outgoing FTP. FireWall-1
watches the commands sent over the FTP control channel, and only lets incoming
connections proceed if they correspond to an observed request from an inside machine.

A similar problem exists for RPC, though it has traditionally not been as much of an issue
since there has been little need for RPC to pass through a firewall. Servers which will
offer RPC services dynamically allocate ports at startup which they listens on for RPC
requests. So that other programs can locate them, these ports are registered with a
program called the portmapper. When a client wishes to access an RPC server, it can

either send the request to the portmapper and have it forward it, or first ask the
portmapper what port the server is using, then send it directly. While RPC can use either
TCP or UDP, most developers have chosen to use UDP for their transport protocol. The
problem for FireWall-1 is, it is now faced with receiving UDP packets from a seemingly
random port, headed for a seemingly random port, and trying to decide whether these
packets pose a threat. FireWall-1 attempts to address this issue by watching results from
portmapper lookups and only allowing outgoing UDP packets to ports corresponding to
approved RPC services. When such a packet is let through, its address information is
entered into a table. When an incoming UDP packet is received that does not correspond
to an allowed non-RPC service, it is checked against this table to see if it could be an
RPC response, and if so, lets it pass.

4.2. JANUS and Raptor

Both the JANUS and Raptor firewall products are software packages that run on
workstations. They are unique in their ability to rewrite the TCP/IP headers to alter, and
therefore hide, the internal IP addresses from the outside world. Each outgoing packet's
TCP/UDP and 1P headers are rewritten to make all requests look like they are coming
from the firewall, thereby hiding all knowledge about machines on the internal network
from the outside world. Whenever a packet is received from an internal host, the firewall
first checks a table to see if a mapping already exists for the connection. If it does, then
the packet's headers are rewritten and the packet is sent out. If there is no mapping, a
new mapping is created. Incoming packets are also checked against this table. If the
incoming packet matches an assigned mapping, it is unmapped (the internal machine's IP
address and TCP/UDP port are substituted) and allowed in.

This address mapping presents certain difficulties for protocols that pass IP addresses in
their data. One of these occurs in how FTP handles data connections. Since the data
connection for an outgoing FTP will originate on the outside, a connection request will
arrive at the firewall which it must handle. When the port address for the data connection
is sent over the FTP control channel, the firewall intercepts it and substitutes the
firewall's address. It also creates a mapping for it. Then, when the connection occurs, the
firewall knows where to send the data. A consequence of this is both JANUS and Raptor
maintain the same state information as FireWall-1 about which ports FTP has requested.

4.3. Encryption

A few firewalls, including NSC BDF, Blackhole, and ANS Interlock, have implemented
a packet encryption capability. These firewalls allow packets destined for networks
behind cooperating compatible firewalls to encrypt the packets as they travel across the
untrusted network in between. So far, there is no standard for how the encryption and
key management are performed so each such product is incompatible with those from
other companies. They all use shared private keys for the establishment of the secure
connections, so only sites that have negotiated the use of the encryption through human
intervention can use it.

The benefit of data privacy as packets travel over the public network is obvious. A less
apparent benefit is the authentication of packets supposedly from a peer-encrypted
network. Forged packets masquerading as from another site behind an encrypting
firewall will be rejected since they are either unencrypted or encrypted with the wrong
key (if an encrypted site tries to masquerade as another). The difficulty with an
encrypting firewall is the encryption overhead can force maximum size IP packets to be
fragmented, increasing the probability for packet loss and decreasing the network
performance of the receiving host.

Appendix B - Kernel Interface Specification

Available operations:
READ If you open the file /dev/ipl, then read from it, it will return a buffer containing chained
struct raw_data structures. The actual structure's definition is different, but is
effectively defined as:

struct raw_data {

int rd_totsize;
u_short rd_pktlen;
u_short rd_flags;
u_char rd_srcaddr[6];
u_char rd_if;

u_short rd_ref;

struct timeval rd_tstamp;
u_char rd_dataf1];

rd_totsize the total size of struct including padding

rd_pktlen the length of packet -

rd_srcaddr the source MAC address (not yet working)

rd_if the network interface which the packet arrived on (not yet working)
rd_ref the filter rule that matched causing a capture

rd_tstamp a timestamp of when the packet arrived

rd_data the packet data

rd_flags or'ed together bitmasks as defined below

Flags for rd_flags:
RD_BROADCAST packet received as a broadcast

RD_CHAINED another raw_data struct follows this one
RD_HASMACADDR packet contains a MAC header (unused)
RD_HASIPHDR packet contains a IP header

RD_HASTCPHDR packet contains a TCP header
RD_HASUDPHDR packet contains a UDP header

Note: If you do not pass read a big enough buffer, you may be returned no data. The
read will return as many structures (in the order received) as it can fit in the buffer it
was passed.

Note: By default, if no filter rules exist, packets are silently discarded (DISCARD).
WRITE Same as read, except will put a packet on the wire. The struct raw_data structures
can also be chained.
IOCTL If you open the file /dev/ipl2, then perform an IOCTL on it, the kernel filter driver is
notified and filter manipulation is possible. All the IOCTL's take a (struct sni_frentry *)

as the third arg. The following ioctl's exist:

SIOC_GET_NUM_FILTERS takes an int and returns the numbr of rules in the
existing filter table

11

SIOC_PACKET_AT_A_TIME takes an int and enables/disables whether read returns
one packet or multiple chained packets

SIOC_INSERT_FILTER takes snl_frentry struct and adds the rule after the
existing rule with “handie”. The special handles of
zero and -1 mean to insert at the head and at the end
of the list, respectively. Upon successful completion,
the handle in the passed struct is filled in to contain a
unique handle for this new rule.

SIOC_DELETE_FILTER takes snl_frentry struct and deletes the rule with
“handle”.

SIOC_REPLACE_FILTER takes snl_frentry struct and replaces the rule with
“handle”. The new rule’s “handle” remains the same

SIOC_GET_FILTERS takes POINTER TO a struct snl_frentry array and
returns filter set (see SIOC_GET_NUM_FILTERS for
how many)

SIOC_TCP_SHORTCIRCUIT shortcircuit a TCP connection at the buffer level. This
needs a different IOCTL since it works at a different
protocol level and isn't a filter rule per se.

The IOCTL's take a struct snl_frentry, which is defined as:

struct snl_frentry {

u_short filter_num; /* which filter rule is this */

u_char action; #* what to do when match occurs */
u_char protocol; /* which protocol is this for */
u_long src_addr; /* src IP address */

u_long src_addr_mask; /* src |P address mask */

u_long dst_addr; /* dst IP address */

u_long dst_addr_mask; /* dst IP address mask */

u_short src_port; /* src port (or start of range) */
u_short dst_port; /* dst port {or start of range) */

u_short src_port_top; /* if non-zero, end of src port range */
u_short dst_port_top; /* if non-zero, end of dst port range */

/* it rewriting (either header or shortcircuit) */
u_long new_src_addr;
u_long new_dst_addr;
u_short new_src_port;
u_shont new_dst_port;
|5

Protocol is which protocol this rule should apply to. The protocol of IP (0) causes the
rule to only filter on IP addresses and masks, not on any ports or protocol. A protocol
of TCP (6) and UDP (17) cause the ports to also be checked. Any other protocol

number causes |IP addresses and masks to be checked, as well as the protocol field,
but not the ports..

The filters are applied in order, and the first match determines what happens to the
packet. Various actions are possible upon a match. They include DISCARD,
PERMIT, DISCARD_AND_LOG, PERMIT_AND_LOG and HEADER_REWRITE.
One other action is defined {TCP_BUFFER) but is used internally and is not directly
setable by the user.

The addr_masks are first applied to the packet's addrs, then these results are
compared to src_addr and dst_addr for a match. So, to match any addr in subnet 37
of the 134.252 network, you would set the addr to 134.252.37.0. and the mask to
Oxfittft00.

If src_port_top or dst_port_top is non-zero, then the port matches on a range where
src_port and/or dst_port is the bottom and src_port_top and/or dst_port_top is the top
of the range (inclusive).

For example, the following code fragment will delete the filter at rule position 20.

struct sni_frentry filter;

filter filter_num = 20;
ioctl(fd, SIOCC_DELETE_FILTER, &filter);

UNLIMITED RELEASE

INITIAL DISTRIBUTION:

MS 0806 C. D. Brown, 4621
MS 1138 B. N. Malm, 6532
MS 1138 R. W. Simons, 6532
MS 9003 D. L. Crawford, 8900
MS 9011 R. E. Palmer, 8901
MS 9011 P. W. Dean, 8910
MS 9011 J. A. Hutchins, 8910
MS 9012 J. E. Costa, 8920
MS 9012 S. C. Gray, 8930
MS9019 B. A. Maxwell, 8940
MS 9011 J Meza, 8950
MS 9011 D. B. Hall, 8970
MS 9001 T. O. Hunter, 8000;
Attn: J. B. Wright, 2200
J.F. Ney (A), 5200
E. John, 8100
A. West, 8200
J.
C.

M
L
A%
R

McLean, 8300
Wayne, 8400
P. N. Smith, 8500

MS 1436 LDRD Office,

MS 9018 Central Technical Files, 8940-2

MS 0899 Technical Library, 4916

MS 9021 Technical Communications Dept., 8815/Technical Library, 4916
MS 9021 Technical Communications Dept., 8815 For DOE/OSTI

