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MACR01: A CODE TO TEST A METHODOLOGY FOR ANALYZING 
NUCLEAR-WASTE MANAGEMENT SYSTEMS 

ABSTRACT 

The MACROl computer code has been wri t ten to tes t a methodology for 

analyzing nuolear-waste management systems. The code is primarily a manager 

of p robab i l i s t i c data and determinist ic mathematical models. The user 

determines the desired aggregation of the avai lable models into a composite 

model of a physical system. MACROl then propagates the f i n i t e probabi l i ty 

d i s t r i bu t ions of the inputs to the model to f i n i t e probabil i ty d i s t r ibu t ions 

over the outputs. MACROl has been applied to a sample analysis of a 

nuclear-waste repos i tory , and i t s r e su l t s compared s a t i s f a c t o r i l y with 

previously obtained Monte Carlo s t a t i s t i c s . A more refined and extensive 

version of the code, MACR02, i s current ly being prepared. 

INTRODUCTION 

Lawrence Livermore Laboratory is engaged in a study of the performance of 
deep geologic repositories for high-level nuclear wastes. The purpose of the 
study is to aid the U.S. Nuclear Regulatory Commission in making decisions 
about waste-repository regulations and licensing applications. 

The following paragraphs, from a report prepared in 1978, describe the 
ramifications involved in such a study. 

"Evaluating the hazards associated with the disposal of 
high-level radioactive wastes in deep geologic strata demands that 
we acknowledge the uncertainties implicit in our predictions. 
These uncertainties by no means invalidate the findings of waste 
disposal studies, but only by properly accounting for the 
uncertainties can we assure that conclusions and forecasts will 
stand up to criticism. And only, if the uncertainties are dealt 
with quantitatively is it likely that some disposal sites can be 
confidently evaluated as safe and that the sites with the greatest 
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margins of safety can be identified. In addition, by identifying 
the sources of the uncertainties we can separate disposal sites 
that are merely unacceptable today (but that might become 
acceptable as technology improves and uncertainties diminish) from 
those that are clearly inappropriate for waste disposal. 
Identifying those same sources of uncertainty also provides 
direction for future research. Prediction uncertainties in this 
scheme arise from three sources, which can be described as follows: 

"• Descriptive uncertainties. These include uncertainties in 
all the parameters used to describe the disposal site, for example, 
the dimensions of aquifers, the porosity of surrounding rock, the 
thickness of rock layers, and the temperature. 

"o Dynamic uncertainties. These are the uncertainties in the 
mathematical model used to predict the future dispersion of the 
waste. They include, for example, uncertainties in the dynamical 
laws that govern the interactions between the waste and the 
geologic environments. 

"• Random-event uncertainties. Events such as meteor strikes 
and earthquakes cannot be predicted, but they can be dealt with 
statistically. They form a third group of uncertainties. 

"If we were to take these sources of uncertainty to be 
independent, the total uncertainty in the predicted hazard from the 
buried waste could be written as 

/ 2 . 2 
\ ' C T D + CTM CTTOT = \ ' C T D + CTM + CTR 

where a_, a , and 0" are the uncertainties in the hazard due respectively 
to descriptive, dynamic, and random-event uncertainties. The total 
uncertainty is a reflection of the state of current technology—which 
determines how accurately we can describe the site and how accurately 
we can model future behavior—and is a measure of how confidently 
decisions and predictions can be made. Thus one of the obvious aims 
of residual uncertainty analysis is suggesting ways to reduce the 
size of ^ T O T by pointing to the sources of uncertainty most 
likely to yield to further work." 

k 
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We wrote the MACROl computer code to test the implementation of the 
2 probabilistic arithmetic methodology proposed by Kaplan. Because it is a 

:-«>st code, MACROl's primary purpose is to aid in the design and development of 
MACR02, a more extensive and refined code for analyzing uncertainty in 
nuclear-waste disposal systems. 

MACROl is primarily aimed at the propagation of descriptive uncertainties 
through dynamic models. It does not provide for the rigorous correlations and 
constraints necessary to describe accurately the physics of the system. Input 
variables and portions of the system are treated as if they were statistically 
independent. 

This assumption of independence has the effect of overstating the degree 
of uncertainty concerning system parameters and system performance. For 
example, measurements of permeability and porosity for a particular formation 

3 indicate a relatively strong correlation. Ignoring this correlation 
results in computation of unrealistically large spreads in water velocities. 

The simple physics models available in MACROl are nuclide transport 
models and one-dimensional hydrology models. ' Since physical constraints, 
correlations between variables, and laws of conservation are not rigorously 
satisfied, any probabilistic results must be interpreted with great care. 
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MATHEMATICAL METHODOLOGY 

PROBLEM DESCRIPTION AND SOLUTION 

MACROl solves a class of problems that determine the probability 
distribution on a set of output variables, given the probability distribution 
on a set of input variables and a deterministic function from the input 
variables to the output variables. 

This transformation problem is expressed as 

p(Y) = / p(x)6(f(x) - Y)c 
Ja 

dx (1) 
S I 

where 

Y is a vector of output variables, Y = (y , y.,..., y ) 
x is a vector of input variables, x = (x,, x„,..., x ) 

1 2 m 

S is the m-dimensional input sample space = Jx|x is an inpu t ! 

S is the n-dimensional output sample space = | ¥ | Y = f ( x ) , XES j 

f is the de terminis t ic function from S. to S_ 
I 0 

p(x) is the probability density function over S 
p(Y) is the probability density function over S 
6(f (it) - Y) is the Dirac delta function. 
The MACROl computer code approximates the probability density functions 

over S and S n by partitioning S_ and S Q into a union of disjoint subsets 
I i and 0.: 

I 
S H U I. , I. n I. = 0 if i ? j (2) 

i=l J 

s = u o , o n o = 0 if i ? j (3) 
j=0 -1 J 

and 

V • 1 p(xelj) = /x p(x) dx, i = 1,2,..., I (4) 
i 



L p(yeO ) = J p(y) dy, j = 1 , 2 , . . . , J . (5) 
J 

MACR01 then approximates the i n t e g r a l s of Egs. (1) and ( 5 ) , g iven the 

d i s c r e t i z a t i o n of Eqs. (2) and ( 3 ) , the input d i s t r i b u t i o n , Eq. ( 4 ) , and the 

d e t e r m i n i s t i c model f. This approximation u s e s the p r o b a b i l i s t i c ar i thmet ic 
2 

descr ibed by Kaplan. 

FINITE PROBABILITY DISTRIBUTIONS 

Since we are i n t e r e s t e d in computer c a l c u l a t i o n s , we def ine f i n i t e 

p r o b a b i l i t y d i s t r i b u t i o n s as s e t s of d o u b l e t s , 

<x,., P i >; i = 1 , 2 , . . . , I | , (6) 

where 

x. is a representative value denoting neighborhood (some I. of Eq. 2) 

P. is the probability that x is in the neighborhood of Eq. (4). 
For example, in MACR01, if x is a scalar variable, we may define 

i/M 
xt = 10 , i = 0,±1,±2,... , 

where M i s some f i xed number per decade (say M * 5 ) . We then def ine the 

neighborhoods as the ha l f -open i n t e r v a l s 

/ 2 i - l 

,3 = U 2M . 
2i+l"| 

N ( V = ( x i - i / 2 ' X i + V 2 3 = V10 " • 1 0 2 " J <7> 

and let P. be the probability that variable xeN(x.) 
Now, if we truncate and normalize, we say that 

i=i 
{<x i f P i>|± = i., i+1,..., 1-1, I ; ^ PL = 1 J (8) 

is a finite probability distribution (FPD) and may be thought of as a discrete 
approximation to the continuous probability density function, :p(x) , of the 
variable x. 
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The general izat ion to vector-valued x i s straightforward. We need only 

decide on neighborhood and truncat ions to reduce the continuous density 

function to a d iscre te approximation. For, example, in MACROl, we consider 

t ha t , if x = (x,y) , then 

/ 2 i - l 2i+l"l / 2 j - l 2j+ri 
, _ ( 2M 2M | _ ( 2N 2N 

N(x.y.) = \x , x J © \ y , y J - i - 3 - - ' ( 9 ) 

wh r e , as before, M and N descr ibe the number per decade. The jo in t FPD then 

is described by the se t 

i=i j=j 
o ^ y j . Pij>|i=i,i+i,...,i,-j=i,i+i,...,j . 2 , 2 , p i j = 1 i ( 1 0 ) 

i=i j=i 

and PJJ is the probability that x and y are in the half-open rectangular 
neighborhood N(x.y.). 

PROBABILISTIC ARITHMETIC 

Suppose x and y are independent, uncertain variables and suppose our 
states of knowledge with respect to x and y are expressed by the FPDs 

x = |<xi,Pi>|i=i,i+l,...,i-l,i 
(11) 

y = {<yi»Qj>|j=i.i+i....,j'-ii"j} • 

Let 0 stand for a deterministic combining of the inputs x and y to an 
output variable z: 

z = x e y , 

where © may be a simple arithmetic operator such as +, x, -, -f, or where ffi 
may, in fact, be a physics model. Then, following Kaplan's methodology, we use 
nested DO loops to compute the output FPD, first by 

Krvl= (<xi9 v w i=i^i+l,...,i-l,i, j=i»i+i»...»T-i»j J 
(12) 
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and then by applying a condensation to a previously discretized output 
space to obtain 

j<z k ,S k >|k=k,k+l, . . . ,k-l ,k; ^ S k=ll (13) 

where 

(i.il«i3V*c»k>) 
P . Q . 

and 
k = minimum 

k = maximum 

k|sk t 0 

k|s k * 0 

The extension to more than two independent input variables is the obvious 
one. However, if possible, we "factor" models using the condensation at 
intermediate steps (see the section on Factorization of Models). 

If the inputs are mutually dependent, that is, are represented by a joint 
FPD, the procedure is essentially the same as above. We merely use 
R. . P.. = the probability that x and y are in the neighborhood 
represented by N(x.y.) in the first step. 

Some MACROl modeJ 3 allow for joint inputs of the form z = f(x,y). 
However, if, for example, y is jointly distributed with w and our model is to 
compute z = f(x,y), we require P(y) be extracted from the joint FPD to some 
new variable (say, n), and then we perform the function z = f(x,a). 

MULTIPLE OUTPUT FUNCTIONS 

Suppose we have a mathematical function from some input space to a 
two-dimensional output space: 

(a,b) = f (x,y,z). 

The MACROl methodology is then extended to produce an output joint FPD of the 
form of Eq. (10). KACROl does not make the general extension to more than two 
dimens s. 
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TRUNCATION OF FPDS 

A large number of probability density functions, p(x), have nonzero 
values for the full range -°° < x < °° , a range that is impractical for 
discrete computer usage. Hence, when we input an FPD, we allow for truncation 
of the tails. Further, FPDs that result from a model calculation may be 
truncated. MACR01 offers the user several choices: 

1. For input of normal or lognormal distributions, the user may specify 
some number N of standard deviations. The resultant FPD is truncated such 
that, if u is the mean and a the standard deviation, then 

if x < y - No, p(x) = 0 
or 

if x > u + NO, p(x) = 0. 

2. FPDs may be nonsymmetrically truncated at the tails on the basis of 
the values of the accumulated probability, that is, 

P. = 0 for all i such that \ P. < (input value 1) 
i<i 

P. = 0 for all i such that \ (1-P.) < (input value 2). 
i>i. 

3. MACROl includes a maximum value truncation. In this case, 
let P be the maximum probability in a generated FPD and let f be an input 

— *\ factor for which 0 < f < 1. Then, for all i, where i < i < i, if P. < fP, P. 
— l l 

is set to zero. 
In all the above truncations, the resultant FPD is normalized so that 

Generally we use truncations not only on the tails'of distributions, but 
also on relatively low values of probability. Thus, low values are not 
necessarily properly taken into account. For lognormal distributions in 
particular, truncation of the tails may result in highly incorrect values of 
the mean. The median is not significantly affected. 

and 
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ACCURACY OF THE MATHEMATICAL METHODOLOGY 

In MACROl we have not attempted to include the "mean preserving" 
discretizations as discussed in Refs. 2 and 6. In fact, in using MACROl as a 
test code, we have assumed that all variables are positive definite and that 
all variables can be reasonably discretized by Eqs. (7) and (9). 

The default value for M, the number per decade, is 5. However, the user 
may choose different positive integer values for M, both for input variable 
discretization and for "prediscretization" of output variables. 

As with any discrete approximation to continuous (or even discontinuous) 
mathematics, the accuracy is highly dependent on the step-size chosen for the 
discretization. We consider two examples, both provided by W. J. O'Connell, 
Lawrence Livermore Laboratory. 

Strobe Effect 

Consider an FPD for x as follows. The bins for x are centered on the 
values shown. 

p(x): 1/5 1/5 1/5 1/5 1/5 

0.0 0.2 0.4 0.6 0.8 

Now consider z = a"x, where a = 1.2 only, (a may be a constant, or 
a = 1.2 may be a value in a discretization of the ~a range.) The bin z = 0.6 
is missed in the condensation operation. This pattern would be repeated 
regularly at z = 1.8, 3.0, 4.2..., because of the regular discretization of x. 
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p(ax): 1/5 1/5 1/5 1/5 1/5 

0.00 0.24 0.48 0.72 0.96 

P(z>: 1/5 

z: 

1/5 

Condense (re-bin) 

1/5 1/5 1/5 

0.0 0.2 0.4 0.6 0.8 1.0 

As the next example, consider z = a"x, where a = 0.8 only. For the 

same p(x) and d i sc re t i za t i ons as above, the resu l t for z i s : 

P(z) 1/5 1/5 2/5 1/5 

0.0 0.2 0.4 0.6 

Fuzziness Propagation 

In the representation of p (z) shown below, we define the uncertainty 
in P (z) at z as the uncertainty in its value at z (the vertical arrow), and 
the fuzziness as the uncertainty in z as to which z bin an eleraent of the 
total probability properly belongs. The total sura of p (z) over z is fixed 
at 1.0. 

10 



N 
Q. 

Z 

If we d i sc re t i ze x a t Ax = 0.2, the FPD's a b i l i t y to represent the 

probabi l i ty d i s t r i bu t ion of x is limited to in te rva l s of Ax = 0 .2 . 

Normally, when we add n var iables , each having an uncertainty A, the 

r e su l t has an uncer ta inty AVn. If we add the n variables pairwise with a 

condensation operation af ter each s tep , however, the error in the r e su l t wil l 

be l a rge r . 

If we have x and y with d i sc re t i za t ions a t A x and Ay, z = x 'y wi l l have 
2 2 2 2 2 2 2 

an error Sz = x «Ay + y "Ax + Ax *Ay . If this is followed by a condensation 
operation, the fuzziness 6z is compounded by the discretization Az and by the 
summing over bins in (x,y) that have different values for 6z. 

Improvements in Accuracy 

It is possible to increase accuracy, at the cost of an increase in 
computer time. More finely discretized input parameters usually remove or 
reduce the strobe effect as well as the fuzziness. Smaller values for 
truncation factors and larger values for the number of standard-deviation 
truncations on input will reduce the truncation inaccuracies. 

We have not presently developed algorithmic quantifiers for how much 
discretization and/or truncation is acceptable. Users of MftCROl must consider 
each case, consider results in terms of "over several bins," and make 
decisions accordingly. 
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STRUCTURE OF MACROl 

The MACROl computer code is a user-oriented manager of models and data. 
The data consist of both certain and uncertain variables (that is, FPDs); in 
the latter case, probabilities are propagated throughout the system as the 
models are executed. For readability, MACROl is coded in LRLTRAN in the form 
of subroutines. The MACROl code is highly interactive and contains an 
extensive HELP package, reproduced in Appendix A. 

MACRO LANGUAGE 

The MACRO language is a versatile one that allows the user—who will be 
an analyst—to choose, interactively, the models for his analysis and their 
order of execution. The commands are of the general form 

TYPE MODEL [inputl,...,inputlO; outputl,...outputio], 

where input and output are either variable names or specifications of 
input-output devices. 

The user names the variables, choosing names of up to 10 alphanumeric 
characters (for example, HEAD, LENGTH1, T1+T2). Since variable names 
primarily refer to the pointers to an FPD, its storage location, and its type, 
the FORTRAN conventions of decimal and integer naming have no meaning. Th^s, 
K2 can refer to a floating-point variable. 

The designated MODEL must be the name of a subroutine in MACROl. These 
subroutines are the mathematics and physics models discussed in more detail in 
the next major section. They are listed in the HELP package (Appendix A). 

MACRO recognizes four TYPEs of command: 
1. INPUT - A series of models to input variable names and generate FPDs. 
2. OUTPUT - A series of write and plot routines to display data 

numerically or graphically. 
3. PROPAGATE - Executes the mathematics and physics models and 

propagates FPDs associated with uncertain inputs through these models to form 
output FPDs. 

4. UTILITY - Executes a series of "housekeeping" routines; includes a 
set of commands that set up looping over a contiguous subset of commands for a 
prescribed number of times. The command set to be looped over may be altered 
by deleting or adding commands. 
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DATA MANAGEMENT 

The amount of data to be generated during any analysis is never known in 
advance. The number of input and output variable names and their associated 
FPDs are specified by the user. To maintain the necessary flexibility and to 
conserve computer memory spacef MACR01 uses a data-naming and management 
methodology that is largely a set of pointers and attributes coupled with a 
dynamic linear memory allocation for FPD data. 

MACR01 memory consists of an expandable array, named DAT, in large-core 
memory. It contains the FPD probability values and 

NNAM - pointer to next available pointer and attribute set. 
NDA - pointer to next available location in DAT array. For each 

variable, N=l,2,..., NNAM-1. 
NAME(N) - ASCII variable name. 
NPD(N) - number of points per decade, M, where x. = 10 . 
IMIN(N>1 lower and upper index for an FPD, 
IMAX(N)J " {<x.,P.>; i = IMIN(N),...,IMAX(N)}. 
NDA(N) - pointer to the start of P. in the DAT array. 
JPD(N) - if part of a joint FPD, points to the name of the other variable. 
NVC(N) - number of vector components if this is a vector variable. 
NT1(N) - indicates origin of this variable, input, computed, etc. 
NTS(N) - if input, member of standard deviations about the mean at which to 

truncate the FPD. 
VM(N) - median value of the FPD. 
SIG(N) - standard deviation of the FPD. 
PSTL(N) - total amount of probability truncated because of NTS x SIG about 

the median. 
PTFL(N) - total amount of probability truncated because of either accumulated 

truncation of tails or from P. < f.p means set P. = 0 . 
1 max I 

All FPDs are i n i t i a l l y generated, condensed, and truncated in a temporary 

work space. The f i na l values are normalized and then stored in the DAT array 

with appropriate values se t for the p o i n t e r s . 

The UTILITY DISCARD routine allows any variable to be discarded when i t 

i s no longer needed. Pointers are reset and the DAT array i s reduced in s ize . 
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INTERFACING WITH MODELS 

In general, the interface to any particular mathematics or physics model 
requi res 

1. A check fco see that the proper number of input variables has been 
specified and that each of these inputs has been previously defined. 

2. A check to see that the proper number of output variables has been 
specified and that output names have not been previously used. 

3. Proper sets of DO loops to compute the probability distributions. 
4. Calls to the deterministic mathematics and physics subroutines. 
5. Discretization of the output variables to complete the condensation 

operation. 
6. Truncations (if desired) and storage of the resultant FPDs. 
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MODELS IN MACROl 

A model in MACROl is a set of computer algorithms that take given input 
parameters and by some combination produce output parameters. The models 
themselves are deterministic; however, uncertain inputs produce uncertain 
outputs. In general, we have models that are purely mathematical and models 
that are mathematical algorithms to compute physical processes. 

The mathematics models are straightforward and virtually self-
explanatory. The physics models are those required for the analysis of Mock 
Site A, a hypothetical waste-repository site that has also been modeled by 
other means. Appendix B discusses the validity and rationale of the physics 
models, and Refs. 3, 4, 5 and 7 augment the discussion. 

FACTORIZATION OF MODELS 

The computing speed of MACROl is greatly enhanced by using the 
condensation operation described in Eq. (13) at intermediate steps of 
"factored" models. The concept of factorization can be most readily described 
by a simple example. 

Suppose our model is 

w = xyz 

2 and tha t each of x, y, and z are FPDs with 10 e n t r i e s of nonzero probabi l i ty . 
The straightforward three-deep DO loops of the methodology would then require 
10 mul t ip l i ca t ions . 

However, suppose tha t we "factor" the model to 

u = xy 

w = uz. 

Then w = uz is mathematically equivalent to w = xyz by the associative law. 
In this case, u = xy requires 10 multiplications, and if u "condenses" to 

4 2 any number of neighborhoods less than 10 - 10 , we gain computationally. 
2 4 

If, for example, u condenses to 10 neighborhoods, w = uz requires 10 
15 



m u l t i p l i c a t i o n s . In t h a t c a s e , w = uz = (xyiz requires a t o t a l of 2 x 10 , 

s t i l l considerably l e s s than 10 . 

Note t h a t , i f inputs are mutually dependent or i f mul t ip l e outputs are 

generated , extreme care must be taken in the f a c t o r i z a t i o n . I t may not be 

p o s s i b l e to factor some models readi ly or a c c u r a t e l y . For example, suppose we 

wish to so lve a one-dimensional hydrology and transport model. We are given 

AH = head d i f f e r e n c e 

L = length of flow path 

K = hydraul ic c o n d u c t i v i t y 

H = e f f e c t i v e p o r o s i t y 

and the equations 

where v = * and q = — . 

I f we assume that AH, L, K, and n. are a l l independent, we might compute, in a 

"factored" mode, 

q = -GK 

V = q/n 

t = L/v , 

which erroneously neglects the fact that the L in the last factor is identical 
with (and therefore dependent on) the L in the first factor. 

16 



\ 
If we now ignore the p h y s i c s involved ( t h a t i s , gradient , D'Arcy speed, 

v e l o c i t y , time) and wr i t e 

x = K/n 

y = -AHx 

t = L 2 / y , 

the deterministic result is the same and we use the probability over L only 
once. 

Suppose k and n are closely correlated (a "data" fact more than a 
"physics" fact, as described in Ref. 3), the computation of x in the above 
sequence can be readily accommodated and this factorization is acceptable. 
If, however, AH, K, and n were somehow correlated {a joint PPD), the above 
model would have to be factored differently or the basic methodology altered. 

The primary point is that factorization can gain computing speed, but the 
usei: must factor consistent with the mathematics of the methodology rather 
than with physical constraints. 

17 



SAMPLE HACR01 ANALYSIS OF A REPOSITORY 

Mock Site A i s a hypothetical s i t e for a waste repository. It i s based 
o 

on actual geologic data and has been studied intensively for the purpose of 
developing a methodology for evaluating nuclear waste repositories. 

We used MACR01 to analyze Mock Site A and compared our results with 
7 previously obtained Monte Carlo results. The next section, which was 

virtually copied from Ref. 7, describes the Monte Carlo results. 

MONTE CARLO ANALYSIS 

Goldec Associates devised the basic flow-path model of the preferred 
hydrology at Mock Site A. This model, containing five nodes and four flow 
paths, is shown in Fig. 1. The repository is located at node 1 in a layer of 
marIstone. Ground water leaving the repository flows downward to a lower 
aquifer (node 2), which at that point is at a lower hydraulic head than the 
upper aquifer. At the hinge line, the aquifer heads become equal. To the 
right of the hinge line, the lower aquifer is at a higher hydraulic head than 
the upper aquifer. Thus, at node 3 the ground water flows upward to the upper 

Hinge line 

FIG. 1. Flow-path model for Monte Carlo calculation. The drawing i s not to 
scale; the vertical scale has been exaggerated. 
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aquifer (node 4) . The ground water then flows in the aquifer to a discharge 
at node 5. Note tha t the lower aquifer ends a t a large sal ine zone. 

This five-node model was analyzed by the Monte Carlo code NUTRAN, which 
simulates the flow of waste from the reposi tory to the biosphere. Four types 
of inputs were used in NUTRMJ: the proper t ies of the flow paths, the head 
drops of the flow paths , the waste-dissolution p roper t i e s , and the retardat ion 
f a c t o r s . 

I n t r i n s i c Propert ies of Flow Paths 

Table 1 presents the length, c ross -sec t iona l area, permeabili ty, 
poros i ty , and dispersion of each flow path. All of these variables were 
assumed to be independent. All variables weie bounded below by 0, and 
porosi ty was also bounded above by 1. The value used for the permeability of 
the pathway from the depository to the local aquifer was 10 times larger than 
ac tua l ly found. This discrepancy causes only a very small change in r e s u l t s . 

TABLE 1. Assumed s t a t i s t i c s for pathway inputs . 

Pathway inputs 

Length, 
Pathway Parameter 

Cross 

s e c t i o n , 

m2 

Permeabil i ty , Dispersion, 
cm/s Poros i ty m 

Repository Dis tr ibut ion Lognormal 

to lower Median 59.50 

aqui fer Uncertainty 0.14 

Determinist ic 

2.82 x 10 6 

Lognormal 
8.56 x io" 

0.65 

Lognormal 
0.001 
0.5 

Lognormal 
63 
0.25 

Lower Distribution Normal 
aquifer Median 4,835 

Uncertainty 500 

Normal 
1.25 x 1 0 5 

2.09 x 10* 

Lognormal 

2.39 x 10~ 3 

0.18 

Lognormal Lognormal 
0.015 63 
0.5 0.25 

Lower to 

upper 

aqui fer 

Dis tr ibut ion 

Median 

Uncertainty 

Lognormal 
119 
0.14 

Deterministic 
3.34 x 10 6 

Lognormal 
3.87 x in - 7 

0.5 

Lognormal 
0.001 
0.5 

Lognormal 
63 
0.25 

Upper 
aquifer 

Distribution 
Median 
Uncertainty 

Lognormal 
1.5 x 10* 

0.05 

Normal 
2.09 x 1 0 s 

4.10 x 10 ' 

Lognormal Lognormal Lognormal 

9.16 x i t f 4 0.012 63 

0.44 0.5 0.25 
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Head Drop of the Flow Paths 

NUTRAN determined the hydraulic pressure heads of each of the five nodes 
by a recursive process. The head of node 5 was arbitrarily set to 0 and the 
head drop between nodes 4 and 5 was randomly generated. The head of node 4 
was then set equal to this head drop, and the process was repeated, with the 
head of each node set equal to the head of the succeeding node plus the head 
drop between the two nodes. 

For the flow paths between the repository and the lower aquifer and 
between the lower and upt-er aquifers, the head drops at the location on which 
Hock Site A was based were actually measured and the NUTRAN results could be 
compared with those measurements. However, only gradients were measured for 
the two paths within the aquifers. For these two paths, therefore, NUTRAN 
generated the head drop as the product of the flow path length and gradient. 
These procedures are summarized in Table 2. 

Waste-Dissolution Properties 

The repository-resaturation time and waste-dissolution time control the 
time and rate of waste release to the geosphere. NUTRAN generated release 
time and rate randomly, using the parameters summarized in Table 3. 
Resaturation time is composed of a constant plus a random variable. The 
constant (32 years) is the sum of the average age of the waste in the 
repository and the time y required for the repository to refill with water. 
The random variable is the time required for the ground water to dissolve the 
canister, thereby making the waste available for dissolution. This variable 
was assumed to have a lognormal distribution with a median of 60 years. The 
dissolution time for the waste was assumed to be directly correlated with the 
dissolution time of the canister; that is, if the chemical composition of the 
ground water is such that the canister corrodes in a short period of time, the 
waste is also likely to dissolve in a correspondingly short time span. The 
dissolution time of the waste was assumed to have a lognormal distribution 
with a median of 2000 years and was calculated by scali i r the randomly 
generated canister dissolution time. 
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TABLE 2. Assumed statistics for head drop inputs. 

Pathway 
Method of 
calculation Parameter 

Head 
drop Gradient Length 

Repository 
to lower 
aquifer 

Generate 
head drop 

Distribution 
Median 
Uncertainty 

Lognormal 
42.90 

0.10 

Lognormal 
59.50 
0.14 

Lower Generate gradient Distribution Lognormal Normal 
aquifer (head drop = Median 0.0015 4,830 

gradient x length) Uncertainty 0.2200 500 

Lower to Generate Distribution Normal Lognormal 
upper head drop Median 16.0 119.00 
aquifer Uncertainty 1.6 0.14 

Upper Generate gradient Distribution Lognormal Lognormal 
aquifer (head drop = Median 0.015 1.5 x 10 4 

gradient x length) Uncertainty 0.058 0.05 

TABLE 3. Assumed s t a t i s t i c s for variables cont ro l l ing time and amount of 
waste r e l e a s e . 

Variable Method of calculation Parameter 

Resaturation 
time (RT) 

Dissolution 
time (DT) 

RT = 32 + y 

DT = 2000 x (y/60) 1.3 

Distribution of y Lognormal 
Median 60.0 
Uncertainty 0.23 

Distribution Lognormal 
Median 2000 
Uncertainty 0.30 
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Retardation Factors 

The retardation factors for the nuclides in the waste were established by 
129 99 dividing tha isotopes into three groups ( I and Tc in group I, the other 

fission products in group II, and actinides in group III) and assigning a 
common retardation factor to all nuclides in the same group. The minimum, 
preferred, and maximum retardation factors for each group were estimated by 
LLL for water containing 1000 and 10,000 parts per million (ppm) of dissolved 
solids (Table 4). Golder provided estimates of the dissolved solids (in ppm) 
in the water in each flow path of the repository model (Table 5). 

To produce probability density functions for the retardation factors 
requires an understanding of the terms "preferred", "maximum", and "minimum". 
"Preferred" is synonymous with "median". "Maximum" denotes a value of the 
quantity that is rarely exceeded. It is assumed that the "maximum" value lies 
two standard deviations above the mean; that is, 97.73% of all observations 

TABLE 4. Retardation factors for selected particulate concentrations. 

Concentration Nuclide Group I Nuclide Group II 
Mini- Pre- Maxi­

Nuclide Groui 
Mini- Pre-

> III 
of dissolved Mini- Pre- Maxi­

Nuclide Group II 
Mini- Pre- Maxi­

Nuclide Groui 
Mini- Pre- Maxi­

solids, ppm mum ferred mum mum ferred mum mum ferred mum 
1,000 1 1 1 1 100 1000 1 100 10000 
10,000 1 1 1 1 5 10 1 10 100 

TABLE 5. Concentration of dissolved solids by pathway. 

Pathway 
Concentration of 

dissolved solids, ppm 

Repository to lower aquifer 
Lower aquifer 
Lower to upper aquifer 
Upper aquifer 

1,000 
7,000 
10,000 
1,500 
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will be below the maximum. "Minimum" refers to an absolute minimum since its 
value is always given as 1 (the smallest possible retardation). The minimum 
value is interpreted to lie two standard deviations below the median; that is, 
the distribution function will be constrained so that 2.27% of the 
observations are exactly 1. 

Table 6 summarizes the probability distributions used for the retardation 
factors of each nuclide group in each flow path. The distribution of each 
retardation factor is either deterministic, in which case only the constant 
value is given; lognormal, in which case the median value and the uncertainty 
(the standard deviation of the logarithm) are given; or "log-linear," in which 
case the preferred and maximum values are given. 

A repository has been modeled that corresponds to one of the random 
descriptions (except for retardation factors), and isotopes of only one of the 
nuclide groups have been placed in this repository. The retardation factors 
for that group in each flow path are independent of the repository and hence 

TABLE 6. Probability distribution of retardation factors. 

Nucl ide Nucl ide Nuc l ide 

Group I Group I I Group I I I 

R e p o s i t o r y D i s t r i b u t i o n D e t e r m i n i s t i c L o g - l i n e a r Lognormal 

t o lower Median ( p r e f e r r e d ) 1.0 (100.0) 100.0 

a q u i f e r U n c e r t a i n t y (maximum) — (1 ,000.0) 1.0 

Lower D i s t r i b u t i o n D e t e r m i n i s t i c L o g - l i n e a r Lognormal 

a q u i f e r Median ( p r e f e r r e d ) 1.0 (7.83) 15 .85 

U n c e r t a i n t y (maximum) — (19.31) 0.60 

Lower t o D i s t r i b u t i o n D e t e r m i n i s t i c L o g - l i n e a r Lognormal 

upper Median ( p r e f e r r e d ) 1.0 (5.0) 10 .0 

a q u i f e r U n c e r t a i n t y (maximum) — (10.0) 0 . 5 

Upper D i s t r i b u t i o n D e t e r m i n i s t i c L o g - l i n e a r Lognormal 

aquifer Median ( p r e f e r r e d ) 1.0 (65.0) 78.48 

U n c e r t a i n t y (maximum) — (501.2) 0 .95 
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can be randomly generated according to the cumulative distribution functions 
in the flow paths. Such an experiment will accurately produce radioactivity 
release rates for that nuclide group. This experiment may also be repeated 
with each of the other two nuclide groups and will accurately produce results 
for each group separately. However, if all three groups are buried in a 
single repository, there should be some correlation between their respective 
retardation factors. No such correlation was included in producing the 
retardation factor for this study, since the precise nature of the dependence 
among the retardations is not completely understood. 

MACRO1 ANALYSIS 

In MACRO1 we systematically sample each value of each variable 
independently in each phase of the calculation. We further treat each of the 
four flow paths as independent entities. The resultant FPD histograms and 
statistics are then generated using every combination of mathematically 
possible (in view of the truncated input FPDs) repository and waste behavior 
pattern. Figures 2, 3, and 4 are MACR01 histograms and probability plots for 
each of the three nuclide groups. Figure 5 gives histograms and plots for all 
three nuclide groups combined. 

This methodology may lead to erroneous results because we have not 
properly considered the physics of the system in defining our models. For 
example, within any single flow path we have not taken into account the fact 
that permeability and porosity measurements generally show a correlation. 
Then, since 

if we choose independently the largest possible value of k and the smallest 
value of TI, we can get water velocities that are orders of magnitude larger 
than those observed in nature. Even if the resultant probability on this high 
velocity is small and may not seriously affect our final statistics, we cannot 
ignore the fact that we have violated our physical model. 

Treating each of the flow paths as independent entities, then "summing 
them up" with no regard for physical constraints can further introduce chances 
for erroneous results. For example, if we statistically choose the 
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permeabilities of the aquifers to be smaller than the permeability of the 
aquitard, our flow path model may be totally incorrect. 

As another example, if we choose the gradient of the upper aquifer (nodes 
4-5) to be small and the remaining head differences and gradients to be large, 
an extrapolated head in the upper aquifer to a point directly over the 
repository might be lower than the head at the repository. This situation, 
though physically possible, does not satisfy our assumed flow-path model. 

The point is, to produce results that are truly defensible, we must 
consider all of the model and physical constraints of the system as a whole. 
Implementation of constraints is a subject for further developmental work. 
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MACROl AND MONTE CARLO ANALYSIS COMPARED 
Table 7 compares the "median" repository calculations of MACROl and 

NUTRAN. In this case, the calculation is purely deterministic and each 
variable is chosen to have its median value. 

In general there is good agreement except for the time of peak flow. 
Here the MACROl model uses a square wave release function approximation 
whereas the NUTRAN model actually computes a convolution on the integral. The 
discrepancies are trivial, however, because the hazard curves are all nearly 

g flat at the time of interest. 
Table 8 compares the statistical results of the MACROl calculations with 

those from NUTRAN. In comparing MACROl and NUTRAN results, we must remember 
that the MACROl output is discretized; that is, neighborhoods are represented 
by single values. With 5 points per decade, the neighborhoods are represented 
by 

1. x 1 0 n 

1.58489 x 10" 

2.51189 x 1 0 n 

3.98107 x 10" 

6.30957 x 1 0 n 

1. x 1 0 n + 1 

where n = 0, ±1, ±2, ... . 

TABLE 7. Results of median repository run. 

Nucl ide Nuclide Nuclide 

Group I Group II Group III 

Peak flow r a t e , kCi/yr NUTRAN 0.24 0.13 0.32 

MACROl 0 .22 0.13 0.35 

Time o t peak flow r a t e , yr NUTRAN 61Q 4,400 5,400 

MACROl 200 3,400 4,500 

In tegra ted f low, MCi NUTRAN 0 .45 20.26 0.64 

MACROl 0 .45 0.26 0.65 
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TABLE 8. Statistical comparisons of Mock Site A analysis. 

S t a t i s t i c s 
I n t e r ­

Standard q u a r t i l e 

Var iab le Mean d e v i a t i o n Median spread 

Peak f low r a t e , kCi/yr 

Nuc l ide Group I NUTRAN 0 . 3 6 0.28 0.27 0.13 

MACR01 0 . 2 2 0 . 2 0 .16 0 .13 

Nuc l ide Group II NUTRAN 1.0 6 .3 0.088 0.052 

MACR01 1.2 19 0 . 1 0 .12 

Nuc l ide Group I I I NUTRAN 0 . 3 5 0.72 0 .1 0.15 

MACR01 0 . 9 1 1.9 0 .4 0.35 

Time of peak flow r a t e , yr 

Nuc l ide Group I NUTRAN 1,200 1,000 870 600 
MACR01 394 509 251 151 

Nucl ide Group II NUTRAN 16,000 27,000 6,300 6,600 

MACR01 19,000 81,000 4 ,000 8,400 

Nucl ide Group I I I NUTRAN 48,000 190,000 9,300 12,000 

MACR01 99,500 699,000 10,000 22,600 

In tegra ted flow, MCI 

Nuc l ide Group I NUTRAN 0.44 0.0013 0.44 0.00071 

MACR01 0.4 0 .023 0.4 ~ 
Nucl ide Group II NUTRAN 0.36 0.79 0.^0 0.0088 

MACR01 0.92 1.6 0.25 ~ 
Nucl ide Group I I I NUTRAN 0.57 0 .53 0.45 0.28 

MACR01 0 .61 0.6B 0.63 0.38 

Thus, for example, the interquartile spreads of integrated flow for 
groups I and II are not well defined because both the 25th and 75th 
percentiles fall in the same neighborhood. 

Considering the discretizations, the comparisons with the Monte Carlo 
simulations are reasonably good. Thus, we could conclude that the 50 Monte 
Carlo samples give reasonable statistics, in terms of the 5-per-decade 
MACROl. On the other hand, they both may be equally inaccurate. 
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CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE STUDY 

We wrote MACROl to test a methodology for analyzing proposed nuclear-
waste management systems. The code is designed to accept uncertainties in the 
input parameters and propagate them over the sequence of models to produce 
probability distributions for the outputs. The discretized probability 
arithmetic in MACROl produces results commensurate in accuracy with a Monte 
Carlo analysis. 

MACROl's mathematical accuracy can be improved by decreasing the step 
sizes in the discretized input spaces and output spaces and by reducing the 
truncation factors. Each of these improvements requires increased amounts of 
computer time. 

The present MACROl code may be applicable to certain analysis problems; 
however, the physics models are highly simplified and may not produce 
sufficiently accurate results. 

The major fault with the present methodology (and therefore with the code 
itself) is the lack of physical constraints and correlations that are 
necessary to produce credible results when the physics of the system model is 
considered as a whole. This is the primary area for future developmental work. 

In its present form MACROl should not be considered as a tool for either 
licensing or site-suitability analysis. In fact, each analysis performed 
should be carefully considered at each step. Further, at each step, the user 
should determine what decision questions are being considered and how MACROl 
results will influence those decisions. 
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APPENDIX A. HELP PACKAGE FOR MACROl 

MflCRDlfl .-' £ 3 
MACRO 1 l/ERSION LOBBED 01. -'21 • SO 17S0?!££ 
ALL l/ARIABLES MUST H A " E POSITIVE MfiLUES 
USE S TD Run COMMENTS TD COMMAND STRINGS 
COMMANDS APE Op THE PDPM 
TYPE MODEL ClNPUTl ' . . . ' INPUT105 OUTPUT1» . . . 'OUTPUT103 
TYPE COMMAND DP END OR HELP 
HELP 
O P E R A T I O N S f=H»Ei 

T Y P E MODEL 
INPUT 

LOGNOPM 
LOGLIN 
CERTAIN 
COMPUTE 
l/ECTOP 
NORMAL 
UNIPDPM 
TRIANGLE 
REPDDUMP 

OUTPUT 
WHITE 
PLDTI,-' 
PLOTLI/ 
PLOTCON 

PPOPAGATE 
PLUS 
MINUS 
TIMES 
D11.-'IDE 
SEPT 
EXP 
HYDRDH 
HYDROS 
TRANSPORT 
DISSOL 
PDDSE 
TDOSE 
PCURIE 
TCURIE 
JfiDD 
JSUE 
JMUL 
JDH-' 
JADDA1 
JADDA2 
HASTEDT 
CHYDRO 
HYTRANSH 
HYTRANSG 
PORNPERM 
E ^L^K+X) 
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LIT T 1_ I T Y 
EXTPRCT 
L I STI,-' 
TRUNCATE 
DUMP 
PESTRPT 
MAX 
MIN 
DISCAPD 
LISTCSET 
XCDMSETD 
XCQI-ISETS 
ACOMSET 
SENS 

FPU'S TRUNCATED RT PMRX*TRUNCATION FflCTQP 
rCTfllLS FDP MODELS ON NEXT CALL TD HELP 
COMMANDS RPE DF THE FORM 
TYPE MODEL ClNPUTl !•...!• INPUTl OS DUTPUTl J . . . « DIJTPUTl 03 
TYPF CDMMRND DP END DP HELP 
EHL.K--
HELP 
HELP PflCkflGE) LF DP END TO EXIT 
TYPE DP RLL 
RLL 

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 
************************************************** 
INPUT - TTY INPUT OF l/RPIRBLE NAMES AND VALUES 
NAMES RPE RPBITPRFY* UP TO 10 CHARACTERS 
MODELS ARE LOGNOPM LDSLIN CERTAIN COMPUTE 
NORMAL? I/ECTDR* UNIFORM? TPIRNGLE 

••••••••••••••••••••••••••••••••••••••••••••••••••• 
INPUT MDDEL LOGNOPM 
INPUTl=TTY 
n U T P U T I = A F B I T R R P Y I ' R P I R B L E NAMES I . L E . 1 0 
I'APT ABLE D I S C P E T I Z E D I NUMBEPXDECADE=N MEANS 
l.'= 1 0 . • • I •••>; > I = I M I N s I MAX 
T R U N C A T E D AT NS STD DEL'S ABOUT MEAN 
IF RCCUMULANT TD I I . LT. TRUNCATION 1,'RLUEJ 

THEN P '•' I ':> = 0 » I.LE.II) 
PR IF RCCUMULRNT TO J J . G T . Q - T P U N C l.«L> ! 

THEN P >'.j':> = 0 ) J . ©E . J J 

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 
INPUT MDDEL LOGLIN 
INPUTl=TTY 
OUTPUT I = A P E I T P AR Y I,-'AP I f l S L E NAME J I . L E . 1 0 
1,'ARIABLE D T S C P E T I Z E D j NUMI:EP''DECADE=N MEANS 
1,-'= 1 0 . • • I ••'N < I = I M I N J I MRX 
R E Q U I R E S MEDIAN AND MRX I MUM 1,'ALUES 
IMIN= 0 J IMAX=(NP/IEC)*MRXIMUM+1 
IF RCCUMULRNT TD I I.LT.TRUNCATION VALUE! 

THEN P <I> = 0 » I.LE. I I J 
DP IF RCCUMULANT TD JJ.GT.<1-TRUNC W L ) i 

THEN P (. J> = 0 « J.GE.JJ 
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• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 
TNPUT MnDEL PEflLBUMP 
FFRD 1,'flPIflFLES FPOM E X I S T I N G BUMP 

I N P U T 1=DUMF' P I L E NfiME 
DUTPUT >'• I') =DUMP I W P I A B L E NAME) l . L E . I . L E . 1 0 

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • * • • • • • • • • • • • • • • • 
• • • • • + • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • . • • • • • • • • • • • • • • 
PUTPUT - WRITES I ' f i P I f l E L E S TO TTY OP. H S P _ O U T F U T 

DP PLOTS TD T H I S iFlt-jri F R 8 0 F I L E 
MODELS ARE 

WRITE TD TTY DR HSR 
PLOT!,-' PLOT P P H S f i E I L I T V l-'S VARIABLE 
PLDTLV PLOT P P D B f l B I L I T Y 1,'S LD5 DF VARIABLE 
PLDTCDN PLOTS P P U B f i B I L I T Y CDNTPURS 
FOP I N P U T I J O I N T W I T H I N P U T 1 + 1 

TMPI. ITI=l , ' f lRIf iFLE NAME TC DUTPUTl I . L E . 1 0 
OUTPUT 1=TTY OF.' HSP FOR WRITE 
OUTPUT <•'l> ' 1 = 1 ' 1 0 TEXT LABEL FOR PLOT 

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • « » « > • • • • * • » • • • • • • • • • • • • • • • • 
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 
PROF-AGATE - DDES LOOPS Ol-'EP UNCERTAIN I N P U T S 

USES D E T E R M I N I S T I C MPiTH • 'PHYSICS 
M U L T I P L I E S P R O B A B I L I T I E S AND SUMS 
TO D I S C F E T T Z E D OUTPUT 

• • • • • • • • • • • • • • * • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 
P P r P P G A T F MOJ5EL PLUS 
TNFUT l PLUS I N F U T £ = 0 U T P U T 1 

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 
PPDPAGflTE MODEL M I N U S 
I N P U T I M I N U S I N P U T £ = O U T P U T 1 

* • * • • * • • • • • • • • • • • • * • • • • • • • « • • • • • » * » • • • • • • • • • • • • * • • • 
PPDPPI5BTE MODEL TIMES 
TNPUTI TIMES INPUT£=OUTPUT1 

•*•••••••••••••••••••••••••••••••••••••••••••••••••••• 
PPDPpSflTE MODEL DIVIDE 

INPUTI DIVIDE INFUT£=OUTPUT1 

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 
PPDPA(?ATF MODEL SERT 
SFPT(INFUT1>=DUTPUT1 
••••••*•••••••••••••••••••••••••»•••••••••••••••••• 
PROPAGATE MODEL EXP 

•• i N P U T 1 > • • i N P U T £ = O U T P U T 1 

» • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • * • • • • • • • • • » • • 
PROPAGATE MODEL HYTiRDH 
1 -D HYDROLOGY CALCULATION 
HVDPOH - I N P U T l = H F A D D IFFERENCE 

I N P U T £ = L E N I - T H 
I N P U T 3 = H Y D R AUL I C CONDUCT 11,-' I T Y 
OUTPUT1=DAPCY SPEED 

COMPUTES TG=BH/L THEN E = T G * K 
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• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 
PROPAGATE MDBEL HYDROS 
1 —Ti HYWDLDGV Cf lLCULf iT IDH 
HYDRDG - I N P U T l = i 3 P A D I E N T < D H / L ) 

T N P U T £ ' = H Y D P AUL I C CONDUCT I'••' I TY 
OUTPUT1=BfiPCV SPE6S 

COMPUTES F = G * K 

• * • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 
PPOPPSflTE MODEL TRANSPORT 
1-D TPflNSPDRT FOP T I M E AND PULSE WI I iTH 
INPUT1=LENGTH 
TNFUT£=BARCV SPEED 
T N P U T 3 = E F F E C T 1l-'E POPDS I TY 
T N P U T 4 = L D N G I TUB I MfiL D I SFEPS 11/ I TY 
OUTPUT1=TIME 
DUTPUT£=PULSE WIDTH 
FBCTBPED-COMPUTES L,-'=E.-*P THEN 
T=L/I.-' AMI' S=5EPT <£•!_•»> ••'I,-' 
PPDB <TJS> JOINTLY DISTRIBUTED 

•••••••••••••••••••••••••••••••••••••••••••••••••••• 
FPOFAGATE MODEL DISSBL 
PECHflPSE AND CANISTER BISSOLUTIDM MODEL 

I N F U T 1 = R I . . ' E P A G E AGE OF WflSTE<fl) 
i N F U T £ = P E F I L L T I M E <B> 
I N P U T 3 = C A N I S T E P DISSOLUTION TIME(c> 
OUTPUT 1 =T I ME <T> 

COMPUTES T = A + E + C 

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • « • • • • • • • • • • • • • • • • • • 
PROFAGATE MODEL FDOSE 
TiOSE USES TflSC - BIODOSE T A B L E S 

IN DISC LIEPflPY DOS-PPS 
FOR TASC REFERENCE RIl-'ER SYSTEM 

TNPUTl=l FOR GROUP I ONLY 
=£ FOR GPDUP I I ONLY 
=3 FOP GROUP III ONLY 
=ALL FOP SUM OF THREE G R O U P S 

INPUTc'=THREE D I G I T NUMBER HHERE 
FIRST DISIT=0-HLW FROM U - R E C Y C L E ! PPJ-STDBflSE 

=1-SPENT FUEL 
=3-HLW FROM U-RECYCLESPU-THROWAWAY 

SECOND DIGIT=0-|=il,'E IND FROM SURFACE H £ 0 
=1-MRX IND FROM S U P F R C E H £ 0 
=£-POP FROM S U R F A C E H £ 0 
=3-RI-'E IND FROM WELL HEO 
=4~MAX IND FROM WELL H'£0 
=5-POP FROM WELL-I H£0 • 
=6-POP FROM WELL-II HS0 

THIPD D I G I T = 0 - W H O L E BODY EBUIVflLEWT 
=1-WHOLE BODY , 
=£'-GI -LLI 
=3-THYROID 
=4-BONE 
=5-LII,-'ER 
=6~LUNG 
=7-KIDNEY 
=S-SKIN 
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INPUT-: - RFPU'RL T I M E FDR NUCLIDE G R O U P I 
TNPUT4 - PULSE WIDTH FOP GROUP I (TC) I> 
TNP1.IT5 - RRPII.'RL T I M E FDP NUCLIIiE G P O U P II 
TNPUT6 - PULSE WIDTH FOP GROUP II (FISS) 
TNPUT? - RRFIl'RL T I M E FOP NUCLIDE G R O U P III 
INPUTS - PULSE WIDTH FDR GROUP III (ftCTS> 
ISMDPE INPUTS THRU INPUTS FIND 
U S E INPUTS FlND INPUT4 FOR TIME»SIGMR 
DF ANY GPOUP IF INPUTl IS NOT 'flLL'' 
TNPUT5<aR 90 =CF>N D I S S TIME IF N O N - Z E R O 
INPUTS <'OPlO>=WfiSTE D I S S TIME IF N O N - Z E R O 
M U S T HRl-'E BOTH CDT FlND WDT OR NEITHER 
O U T P U T l=PEFlK DDSE (PEP MWE-VP OF W H S T E 

TF ONLY DNE O U T P U T DEFINED 
IF TWO OUTPUTS DEFINED" THEN 

JOINT WITH 
Ol ITPUT?= TIME OF PEAK IN YEfiPS 

• •••••••••••••••••••••••••••••••••••••••••••••••••••• 
PPOPRGRTE MODEL TDOSE 
DOSF USFS TFlSC - B I O D O S E TRBLES 

IN DISC LIBRFiPY DOS-PPS 
FOP TRSC R E F E R E N C E PIl-'EP SYSTEM 

INPUT1=1 FOR GPOUP I ONLY 
=£ FOP GPOUP I I ONLY 
=3 FOP GPOUP III ONLY 
=fll- L FOP SUM OF THREE GROUPS 

TNPUT£'=THPEF DIGIT NUMBER WHERE 
FIRST D I G I T= 0-HL W FROM IJ-RECYCLE !> P U - S T O P R G E 

= 1 - S P E N T FUEL 
=3-HLW FROM U-RECYCLE*PU-THPOWRWRY 

SECOND riIGIT=l"l-F|l.'E IND FROM SURFRCE H £ 0 
=L~MRX IND FROM SURFRCE H £ 0 
=£-POP FROM SURFRCE He! 0 
=3-RI-'E IND FROM WELL H £ 0 
=4-MRX IND FPDM WELL H £ 0 
=5-FOP FPDM WELL-I H £ 0 
=6-PDP FPDM WELL-1 I HE 0 

THTRD DIGIT=0-WHOLE BODY EFUII,'RLENT 
= 1 - W H O L E BODY 
= c'-GI -LLI 
= 3 - T H Y P D I D 
= 4 - B D H E 
=5-LI1..-'ER 
=6-LUNG 
=7-KIDNEY 
=8-SKIN 

INPUTS - PPPTl-'RL T I M F FOP NUCLIDE G R O U P I 
TNPUT4 - PULSE WIDTH FOP GROUP I ( T C I > 
TNPUT5 - RPPH,'RL T I M E FDP NUCLIDE G P O U P II 
TNPUT6 - PULSE WIDTH FOP GPOUP II O l F S ) 
INPUT? - RRPII.-'RL T I M E FOP NUCLIDE G R O U P III 
INPUTS - PULSE WIDTH FOR GROUP III (flCT?) 
TGNOPF INPUTS THRU INPUT® RND 
U S E INPUTS RND INPUT4 FOR TIME5SIGMR 
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OF BNV GROUP IF INFUTL IS HOT 'ALL" 
INFUTS-'OR *':• =CAN T<TSS TIME IF NDN-ZEPO 
IHPUT6 FOPLCO-WASTE D I S S TIME IF NON-ZERO 
M U S T HAVE FDTH CDT AND WBT OP NEITHER 
OUTPUTl=TOTAL DOSE'>EP MHE~YP OF HfiSTE) 

••••••••••••••••••••••••••••••*••••••••••••-»•••••• 
PROPAGATE MODEL PGUP IE 
CURIFS USES ORTGEN OUTPUT TfiFLES 

IN DISC LIERARY CUPIE-1 
INPUTl=l FOP GROUP I ONLY 

= £' FOP GROUP I I ONLY 
=3 FOP GROUP III ONLY 
=ALL FOP SUM OF THREE GROUPS 

INPUTc'=l FOP HLN-RPS CURIES 
=£ FOP SPENT FUEL - RRS CURIES 

INPUTS - APPIVAL TIME FOP NUCLIDE GROUP I 
INPUT4 - PULSE WIDTH FOP GROUP I (TCll) 
INPUTS - APPIVAL TIME FOP NUCLIDE GROUP II 
TNPUT6 - PULSE WIIiTH FOP GROUP II (FISS) 
INPUT? - ARRIVAL TIME FOR NUCLIDE GROUP III 
INPUTS - PULSE WIDTH FOP GROUP III (flCTS) 
IGNORF INPUTS THRU INPUT® AND 
USE INPUTS AND INFUT4 FOP TIME)SIGMA 
OF ANY GPOUP IF INPUTl IS NOT 'ALL'' 
INPUTS'-OP 90 =CAN DISS TIME IF NON-ZERO 
INPUTfe ('OPl C0=WASTE DISS TIME IF NON-ZERO 
MUST HAVE BOTH CDT AND WET OR NEITHER 
OUTPUT1=FEAK CUPIES-'YP (PEP MWE-YR OF WASTE) 

IF ONLY ONE OUTPUT DEF TNED 
IF TWO OUTPUTS DEFINED* THEN 

JOINT WITH 
DUTPIJTc- TIME DF PEAK IN YEARS 

••••••••••••••••••••••••••••••••••*••••••••••••••••••• 
PROPAGATE MODEL T C U R I E 
C U P T E S USES DPIGEN O U T P U T TABLES 

IN DISC LIBRARY CUPIE—1 
INPUT1=1 FOR GROUP I ONLY 

=£ FOR GPOUP I I ONLY 
=3 FDR GPOUP III ONLY 
=ALL FOR SUM O F THREE GROUPS 

INPUT£=1 FOP HLW-RRS CURIES 
=£ FDR SPENT F U E L - PRS CURIES 

INPUTS - ARRIVAL TIME FOR NUCLIDE GROUP I 
INPUT4 - PULSE WIDTH FOR GPOUP I <TCJI> 
INPUTS - APPIVAL TIME FOR NUCLIDE GROUP II 
INPUT6 - PULSE WIDTH FDR GROUP II (FISS) 
INPUT? - ARRIVAL TIME FDR NUCLIDE GROUP III 
INPUT© - PULSE WIDTH FOR GROUP III <FLCTS) 
IGNORE INPUTS THRU INPUTS AND 
U S E INPUT3 AND INPUT4 FOR TIME"SIGMA 
OF ANY GROUP IF INPUT 1 IS NOT 'ALL'' 
INPUTS<OP S0=CAN D I S S TIME IF NON-ZERO 
INPUT6<OR10)=WASTE D I S S TIME IF NON-ZERO 
M U S T HAVE EDTH CDT A N D WDT OR NEITHER 
O U T P U T 1 = T D T A L C U P I E S O E P MWE-YR OF WASTE> 
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PPDFA'SATE MOIiEL JAUD 
ARITHMETIC DN JOINTLY PISTRIBOTE1 VflPIflSLES 
(IF NO JOINT INPUTS! USE SIMPLE ARITHMETIC 
I . E . < PLUS » MI NHS » T IMES J D 11,' I »E> 
JATiri=+ • JSUB=- > JMUL=* » J! 11.-'=/ 

rDMSINRTIDNS PFPENB ON NR DF INPUTS 
INPUTl JOINT WITH INPUT2 ANS 
INPUTS JOINT WITH INPUT4 

MEOWS 
nUTPUTl=INPUTl OPERATION INPUTS 

JOINT WITH 
nUTFUT?=INPUT? OPERATION INPUT4 
IMPUTl JOINT WITH INPUTS 
INPUTS 'NOT JOINT':' 

MEANS 
nUTPUTl=INPUTl OPERATION INPUTS 

JOINT WITH 
nUTPUT?=INPUT? OPFRATIDN INPUTS 
INPUTl < NOT JOINT) 
INPUTS JOINT WITH INPUTS 

MEANS 
nUTPUTl=INPUTl OPERATION INPUTS 

JOINT WITH 
OUTPUTS=INPUT1 OPEPATION INPUTS 
INPUT 1 ''JOINT DP N O T ) 
INPUT? (HOT OP JOINT) 

MEANS 
OUTPUT5=INFUTl OPERATION INPUTS 

JOINT WITH 
nUTPUT?=JDINT OF INPUTl(OR£> 

•••••••••••••••••••••••••••••••••••••••••••••••»••• 
PROPASATE MODEL JflliDAl 
ARITHMETIC ON JOINTLY' D ISTRIBUTED VARIABLES 
('IF NO JOINT INPUTS? U S E SIMPLE ARITHMETIC 
T . E . < PLUS) MI NUS < T I M E S J B IV I DE> 
OPEPATIDN DF ADDITION BECDMES 
OUTPUT 1 =SG!PT < SUM OF SEJUARES > 
DUTPUT£=SUM 
INPUTL JOINT WITH INPUT? AND 
INPUT:? JOINT WITH INPUT4 

MFANS 
OUTPUT1=7NPUTL DPEPATIDN INPUTS 

JOINT WITH 
OUTPUTS-INPUT? OPERATION I N P U T 4 

•••••••••••••••••••••••••••••••••••••••••••••••••• . 
PROPAGATE MDEEL J P B I J A S / 
ARITHMETIC DN JOINTLY PISTPIBUTED VARIABLES / 
(IF NO JOINT INPUTS* U S E SIMPLE ARITHMETIC 
I.E.? PLUS! MINUS! TIMES? BII/IBE> ' 
OPERATION DF ADDITION BECOMES / 
OUTPUT1=SUM ' 
DUTFUT?=SFPT ( SUM O F SQUARES > 
INPUTL JOINT WITH INPUT? AND 
INPUTS JOINT WITH INFUT4 

MEANS 
O U T P U T l = I N P U T l D P E P A T I D N INPUTS 
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JOINT WITH 
nUTPUT£= IMPUTE' O F E P R T t O N INPUT4 

•••••••••••••••••••••••••••••••••••••••••••••••••• 
PPOPRGRTE MODEL WRSTEBT 
WRSTE DISSOLUTION MODEL 
INFUT1=CRNISTER DISSOLUTION TIME<C;> 
TNPUT£=COPPELRTION EXPONENT <!E> 
TNPUT3=MERN WASTE DISSOLUTION TIME<S) 
OUTPUT1=WRSTE DISSOLUTION TIME 
COMPUTES D* (C/MEE I RN I'-'!) ') +*E 

SEE TRSC 'MO:. fE CRPLD-MOCK SITE ft'' 

•••••••••••••••••••••••••••••••••••••••••••••••••• 
PPOPRGRTE MDDEL CHYORO 
CONSEPL-'RTION HYDROLOGY MODEL 
INPUTL=HERD DIFFERENCE 
I N P U T £ = P E P M I R F I L I T Y 
I N P U T 3 = P I P E LENGTH 
T N F U T 4 = F I P E RPER 
OUTPUTL=TOTBL DRPCY FLOW PEP U N I T T I M E 
COMPUTES E=H*K*R.- 'L 
H!>K MRY BE J O I N T 
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • * • * * • # • • • • • • 
P P O P R G R T E MODEL H Y T P R N S H 
t-D HYDROLOGY RND TRANSPORT MODEL 
C O M P U T E S MERN RPPIl-'RL TIME RND PULSE W I D T H 
INFUTl=HERD DIFFERENCE 
I N P U T £ = L E N G T H 
I N P U T 3 = H Y D P R U L IC C O N D U C T I If ITY 
I N P U T 4 = E F F E C T II'E P O R O S I TY 
I N P U T 5 = L 0 N G I TUB INRL DISPERS11-' I TY 
OU T P U T 1=MERN RRRH-'RL TIME 

JOINT WITH 
nUTPUT'£=PULSE WIDTH 
CRL UCL RTIOH FRCTOPED 
C O M P U T E S X=P/'K 

Y=H.-'X 
T=Y*L*»£ 
S=SERT >:.2+I>':> • Y * L * * ('3.-'£'.) 

PlK MRY BE JOINT 

•••••••••••••••••••••••••••••••••••••••••••••••••• 
F R O P R G R T E MODEL HYTRRNSG 
1-D HYDROLOGY RND TR R N S P D R T MODEL 
C O M P U T E S MERN RRRIl-'RL TIME RND PULSE W I D T H 
INPUT1=GPRDIENT 
INPUT£=LENGTH 
I N P U T ^ H Y B R R U L IC C O N D U C T I >,' I TY 
I N P U T 4 = E F F E C T 11,'E P D R O S I T Y 
I N P U T 5 = L 0 N G I TUB I NRL B ISFERS11/1 TY 
OUTPUT 1=MERN RPPIL-'RL TIME 

JOINT WITH 
OUTPUT£=PULSE WIDTH 
CRLUCLRTION FRCTOPED 
COMPUTES X=P.^K 

Y=<3.'X 
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T = Y * L 
S = S F P T (£'*ri> *v*\-** <I •••£'.> 

P>K MAY BF J O I N T 

FROPRGRTE MODEL POP'-PERM 
P D R D ? I T Y - P E P M E W I L I T Y CDRRELRTION MODEL 
REFERENCE - I J C R L - 1 3 ? 5 5 _ £ 

I N F U T 1 = 1 C I N T E P S T I T I R L > OP F (FPf iCTUPE) 
T N F U T £ = P E P M E R B I L I T Y > K 
I NPUT3= '' SLOPE •'' < P 
I N F U T 4 = ' I N T E R C F P T ' 5 B 

C O M P U T E S OUTPUT 1=PERMER£-1 L ITY 
JOINT UITH 

OUTPUTc'=POPOS I T Y ' F J 
FY FJ=ft«l.[]i3(K/S) IF l! 

P J = R • <K•••"B• • £':> * * ( \ .-'3) I F F 
k'R<B MRY BE FPD'S 

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 
P R O F R G R T E MODEL E C L ^ K + X ) 
BFP-SFil T UTILITY MODEL 

INPUT1=POPOSITY J p 
INPUT£=PERMIRBILITY J 
I NPUT3=LENGTHJ L 
I NPUT4=SUM >:'L/y} - OTHER PRTHS J 

COMPUTES OUTPUT1=P* <L .''K+X> 
P< K MRY BE JOINT 
•••••••••••••••••••••••••••••••••••••••••••••••••• 

••••••••••••••••••••••••*••••••••••••••••••••••••• 
UTILITY MODFL FXTRRCT 
UTILITY EXTPRCT - SUM SINGLE FPD FROM JOINT FPD 

MTILI TY MODEL L I ST!,' 
UTILITY LISTI' - LISTS RLL. NAMES! LENGTHS? ETC 

LIT I L T TY MDDEL TPUNCRTE 
UTILITY TPUNCRTE - TRUNCRTE EXISTING FPD 
TNPUTCI> TO DLITPUT(T)< I.LE.10 
IF I IS JOINT) THEN MUST BE WITH I+l 
••••••••••••••••••••••••••••••••••••••••••••••••••• 
UTILITY MODEL DUMP 
UTILITY DUMPrFILE3 - CPERTES-'WPITES DUMP 
•••••••••••••••••••••••••••••••••••••*•*•••••••••• 
UTILITY MODEL RESTRPT 
UTILITY P E S T R P T T F I L E D - RERDS RESTRRT DUMP 

•••••••••••••••••••••••••••••••••••••••••••••••••• 
UTILITY MODEL MRX 
UTILITY MRXClN1 J . . . ) INN? IOUT] - GETS MRXIMUM 
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UTILITY MODEL MIN 
I.IT I L I TV M IN C I N 1 f . . . 9 I r-JfJ ? I OUT] - SETS M IN I MUM 

UTILITY MODEL B I S C B P D 
UTILITY DISCARDTlNlJ ...» INN] - PEMDVES 1,'AP IAELES 

• • • • • • • • • • • • • • • • • • » • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 
I.IT I L I TV MODEL L I S T C S E T 
UTILITY LI STCSET - L I S T S COMMAND SET 

NUMBERED INPUT1 T H P D U G H INPUT? 
DP 

INPUTl=ALL 

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 
U T I L I T Y MODEL X C O M S E T D 
U T I L I T Y XCOMSETD - E X E C U T E S COMMANDS 

NUMBERED INPUT 1 T H R O U G H INPUTS 
FOR OUTPUT1 TIMES THROUGH THE SET 
DISCARDS PREVIOUSLY GENEPATED O U T P U T S 

• • • • • • • • • - » • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 
UTILITY MODEL X C O M S E T S 
UTILITY XCOMSETS - E X E C U T E S COMMANDS 

NUMBERED INPUTl THROUGH INPUTS 
FOR OUTPUT1 TIMES THROUGH THE SET 
AND SAVES THE O U T P U T BY ADDING 1 TO 
THE NAMES ON EACH PASS THPOUGH 

UTILITV MODEL ACOMSET 
U T I L I T Y ACOMSET - A L T E R S COMMAND SET 

CD!OUTPUT1» . . . » OUTPUTN] 5 N.LE. 1 0 
DELETES COMMANDS NUMBERED IN O U T P U T S 

T R A ? OUTPUT1 J OUTPUTS] 
ADDS OUTPUTS COMMANDS AFTER O U T P U T ! 

U T I L I T Y MODEL SENS 
AUTOMATED SENSITIVITY ANALYSIS 
A S S U M E S PPEVIOUS DEFINITION OF COMMAND SET 
A L L O W S LOOPS OVER ALL INPUT VARIABLES 
WITHIN THE COMMAND SET THAT APE 
NOT O U T P U T S OF PRECEEDING COMMANDS 
IN T H E SENSITIVITY LOOP SET 
ASKS FOR MEDIAN VALUESJMINSMAX AND 
NUMBER OF STEPS OVEP SENSITIVE VARIABLES 
FPD COMPUTED AS INITIALLY INPUT WITH NEW MEDIAN 
ACTUALLY EXECUTES X C O M S E T D 
A S S U M E S COMMAND SET INCLUDES OUTPUT 

INPUTl=NR OF FIRST COMMAND IN LOOP 
I N P U T S = N P OF LAST COMMAND IN LOOP 

COMMANDS ARE OF THE FORM 
TYPE MODEL CINPUT1 J ... J INPUT10!OUTPUT h . . , ) O U T P U T 1 0 ] 
TYPE COMMAND OR END OR HELP 
END 
H A P D C O P Y OF HSP F I L F ? <YES OR NO> 
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NCI 
YDIJ Ml >=T ?RI 'F VDUP PB?Tf lPT BUMPS 

1=1 MB 
nMTPUT YDUP FP0O PLOT F I L E S 

* L 1_ BC1NE 
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APPENDIX B. MODELS FOR MACROl 

G. D. P o l l a c k 

INTRODUCTION 

MACROl was specifically designed to analyze the postemplacement phase of 
a nuclear-waste repository site. It explicitly includes the corrosion of the 
canister, the dissolution of the waste form, the regional hydrology and 
transport of the radionuclides, and the dose or curie commitment to an 
individual or population group (assuming a water use system). Each of the 
models represents only an approximate description of these phenomena, but each 
incorporates the most important features in a conservative manner. 

The order in which the models are described reflects the temporal 
sequence in which they would occur in nature and, consequently, the order in 
which they are calculated in the code. 

CANISTER CORROSION 

The corrosion time of the canister will depend on the metallic form of 
the canister, the type and amount of ionic species in the water, the amount of 
oxidizing agent (such as ferric ion or dissolved oxygen) in the vicinity of 
the waste package, the temperature as a function of time, and, possibly, the 
flow rate of water past the canister. We have attempted to incorporate most 
of these factors into an ab initio model, but the model has not been 
validated against any experimental data and uses parameters whose experimental 
values are only poorly known. Therefore, we used best engineering judgment to 
obtain a median corrosion time (currently set at 60 years) and an associated 
variance. We added deterministic values for the age of the waste and the 
resaturation and repressurization time of the repository. When empirical data 
on corrosion rates, currently being sought at various institutions, become 
available, they should prove useful in developing phenomenological models for 
corrosion. Such models could be easily incorporated into MACROl, to augment 
the current model, DISSOL. 
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WASTE-FORM DISSOLUTION 

The dissolution of the waste form (current ly spent-fuel assemblies) is a 
function of the same parameters that affect corrosion, as well as the radia l 
d i s t r i bu t ion of the f i ss ion products within a fuel rod. Because f i ss ion 
products migrate in a fuel rod (for instance, iodine and technetium waste 
products move toward the surface in amounts determined by reactor temperature 
and residence time), we cannot assume that the predominant and r e l a t i ve ly 
insoluble uranium in the rods wil l determine the ra te of d issolut ion. Instead, 
we might expect d i f f e r e n t i a l dissolut ion ra tes for dif ferent species . MACR01 
allows such d i f f e ren t i a l r a t e s if desired, but assumes that the r a t e s are 
constant in time. The d isso lu t ion time is assumed to be correla ted to the 
corrosion time since they are both functions of the same set of f ac to r s . The 
current model (WASTEDT) uses a determinist ic co r r e l a t i on , but t h i s approach is 
not d ic ta ted by the s t ruc tu re of MACR01 and may be eas i ly changed. 

REGIONAL HYDRO7/0GY 

MACRQl's regional hydrology model can t r e a t only very simple flow 
pa t t e rns and pathways. I t assumes that one-dimensional flow paths w i l l 
reasonably mimic the r ea l hydrology even though the flow rate of water on a 
regional scale wi l l in general be three-dimensional. We use th i s approach 
because the repository emplacement media current ly being considered are a l l of 
very low permeability and porosi ty and are often layered, with very high 
hor i zon ta l - to -ve r t i ca l anisotropy. These c h a r a c t e r i s t i c s imply tha t the water 
flow w i l l probably be through flaws of various types (either natural or 
induced by mining) or along bedding planes. 

Our assumption is of l e a s t va l id i ty in the immediate v ic in i ty of the 
repos i to ry , and more care must be taken to obtain meaningful r e su l t s for near 
f ie ld flow. However, by taking the flow into or out of a repository as 
approximately one-dimensional, we can use a " r e s i s t o r " network tha t contains 
both s e r i e s and p a r a l l e l path connections. Each segment of the flow path i s 
characterized by permeabil i ty, porosi ty, c ross -sec t iona l area, and hydraulic 
g rad ien t . For horizontal flow in aquifers or bedding planes, the hydra i l i c 
gradient i s dictated by the angle of slope, but, in general, i t wil l be a 
function of the geometrical s t ruc ture of the network, the physical parameters 
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and gradients of the other path segments in the network, and the overall 
boundary conditions. 

In most cases, it would be necessary to solve for some of the hydraulic 
gradients in a flow path by requiring conservation of water at each path 
connection point (node) and zero total head drop for any closed set of paths, 
while adding one or two boundary conditions on regional recharge rate or 
aquifer head. This approach would lead to a set of simultaneous linear 
equations which are straightforward to solve. MACR02 will use this general 
procedure to obtain gradients, but MACR01 does not. Instead, it makes the 
simplifying assumption that the only significant pathways of flow out of a 
repository will be all in series, with no branching of flow and no parallel 
connections. This assumption eliminates the need for solving simultaneous 
equations. However, MACR01 does not assume conservation of flow at nodes and 
thus treats each path segment as independent of the other segments. All these 
simplifications are equivalent mathematically to allowing the gradient for a 
given path to be a free parameter, independent of any other segment's 
parameters, and with its own probability distribution. 

In practice, the gradient in some pathways is considered to be the 
uncertain parameter, while in others both the head and the path length are 
unknown but have independent probability distributions. These two cases are 
handled by two distinct routines, HYDROG and HYDROH, respectively. The output 
of these routines are water velocity distributions computed according to 
D'Arcy's Law: 

k. 
V i " 97 9 i 

1 

k.AH. 
vi " 67 L~ l l 

where 
K = hydraulic conductivity 
8 = effective porosity 
g = hydraulic gradient 
AH = head drop along a path 
L = length of path 
i = the various paths. 
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REGIONAL TRANSPORT 

When a pulse of solute travels through a porous medium, the differential 
flow velocities (both magnitude and direction) associated with the various 
microscopic channels cause the pulse to be spread out, both in the direction 
of flow (longitudinal dispersion) and perpendicular to the flow (lateral 
dispersion)• The amount of dispersion is assumed proportional to the average 
velocity of the water. Because of the one-dimensional nature of its hydrology 
model, MACR01 must necessarily ignore lateral dispersion as a distinct 
phenomenon. 

To model the effects of longitudinal dispersion, we make the fundamental 
assumption that the main features of the transport are adequately described by 
two quantities: the average time taken to traverse the sequence of path 
segments (note that the average time is not necessarily the transit time for 
the peak) and the variance of the pulse at its exit point into a large body of 
water. We use Laplace transform techniques to show rigorously that for a 
series of one-dimensional flow paths the following relationships hold: 

fcT = fc0 + 

2 2 
T 0 

where 
L. 

t. is the average transit time for the ith segment: t. = — 
i 

t T is the average total transit time 

tg is the average dissolution time 
2a.L. 

a. is the variance induced by transit through the ith pipe a. = — - z — , a ^ 
v. 
l 

being the dispersivity of the ith path 
2 0 is the variance of the dissolution process 

2 a is total variance. 
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A trivial generalization to a network of parallel and series paths exists 
and will be incorporated in MACRO2. The v.'s that appear in these 
formulas may be scaled from those produced in the hydrology computation by a 
factor of 1/R. ., where R.. is the retardation of nuclide type j in path 
segment i. This retardation is due to a variety of ion-rock complexes and 
other factors. These retardation factors may have their own probability 
distributions that are dependent on groundwater chemistry and rock type, as 
well as nuclide type. 

The output for the regional transport model in the code is then the 
probability distributions for the variables 

I, 
l 1 

and 

L?. 
i i 

Hydrology and transport must be computed simultaneously when both the 
heads and lengths are uncertain variables, since L. appears in both 
computations. MACROl actually combines hydrology and transport into one 
model, computed by HYTRANSG or HYTRANSH. Regional transport alone is 
calculated by TRANSPORT. 

CURIE AND DOSE COMMITMENTS 

To compute peak concentrations or fluxes of nuclides and associated 
doses, MACROl must translate the variance and transit times from the regional 
transport computation into statements about pulse heights. The fundamental 
assumption used is that, if the width of an input pulse into a series of flow 
paths is much less than the average transit time widths of any of the pipes, 
the spatial profile of the pulse at any given time will be approximately 
Gaussian. As it travels through the sequence of paths, the pulse will widen, 
but it is assumed to remain Gaussian. This approach implies that the peak 
value at any time is inversely proportional to the width. This Gaussian 
assumption is the rationale for computing only moments for the transport 
computation. 
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We consider the Gaussian approximation valid only when the input pulse 
width is small compared to the other time scales of the transport. In 
practice, the dissolution of the waste form will not necessarily be this 
rapid, so we have distinguished three cases for computational purposes. The 
first treats the case for which the dissolution time is sufficiently rapid 
that the pulse can be treated as spatially Gaussian. In this case, MACR01 
uses an analytic form for the flux that is a parametric function of t and o : 

T T 

j »t) = - J = . e x p - ^ 1 ) 2 

0 B > & 2 P

2 n 

where 
n = t / t T 

p = V t T • 

This is the standard normalized solution to the transport equation 
(solved for flux rather than concentration) for a semi-infinite pipe with a 
6-function input pulse. Similar expressions hold for concentration. 

MACR01 computes doses from this flux by taking into account that the 
potential hazard curves for the various nuclide groups (that is, the quantity, 
in curies, of a nuclide present as a function of time and waste form) will 
generally vary slowly compared to J 0(t). The standard definition of peak 
individual dose. 

D . = max J(t)H(t) , peak 

where H(t) is the potential hazard function, then becomes 

D(1),_ = J.(t )H(t ) , peak 0 p v p ' 

wnere t is the time at which Jfl(t) is a maximum. Similarly, the integrated 
population dose. 

D pop 
'0 

00 

= / dt J(t)H(t) , 
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becomes 
oo 

0™ = H(t ) I dt J (t) = H(t ) pop p I 0 p 

In the second case, the dissolution time of the waste Is assumed to be of 
the same order of magnitude as the transit time widths (or path pulse width 
enlargements). Here, MACR01 divides the input pulse (which currently is 
assumed to be a step function) into small step functions, each much narrower 
than the path transit times. Each of these short pulses is then propagated 
through the pipes so that the output of any individual pulse is given by 
J 0(t-), where t. is the time when the ith short pulse arrives at the 
exit node. The total pulse is thus the sum of all these short pulses. MACR01 
then computes its maximum value and uses the formulas from the first case to 
compute doses. 

In the third case, the dissolution time of the waste form is assumed much 
greater than the total transit time widths, so the final output is still a 
step function. In this case, the time dependence of the individual or 
population dose is given by the time dependence of the potential hazard curves, 

D ( 3 ). = max H(t) for <£t. < t < t + 2,t. peak L 1 — — 0 1 

and 
-t +Et 

(3) / ° X 

DK ' = I dt' H(t') 
pop Jy¥ 

'St. 
l 

In practice, MACR01 uses a set discretization for both running time and 
for dividing up the input pulse for the second case. It then generates tables 
for peak curies, individual doses, and integrated population doses and thus 
can search tables during execution rather than computing. 
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