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MACROl: A CODE TO TEST A METHODOLOGY FOR ANALYZING
NUCLEAR-WASTE MANAGEMENT SYSTEMS

ABSTRACT

The MACROl computer code has been written to test a methodology for
analyzing nuclear-waste management systems. The code is primarily a manager
of probabilistic data and deterministic mathematical models. The user
determines the desired aggregation of the available models into a composite
model of a physical system. MACROL then propagates the finite probability
distributions of the inputs to the model to finite probability distributions
over the outputs. MACROLl has been applied to a sample analysis of a
nuclear-waste repository, and its results compared satisfactorily with
previously obtained Monte Carlo statistics. A more refined and extensive

version of the code, MACRO2, is currently being prepared.

INTRODUCTION

Lawrence Livermore Laboratory is engaged in a study of the performance of
deep geologic repositories for high-level nuclear wastes. The purpose of the
study is to aid the U.S. Nuclear Regulatory Commission in making decisions
about waste-repository regulations and licensing applications.

The following paragraphs, from a report prepared in 1973,1 describe the
ramifications involved in such a study.

"Evaluating the hazards associated with the disposal of

high~level radioactive wastes in deep geologic strata demands that

we acknowledge the uncertainties implicit in our predictions.

These uncertainties by no means invalidate the findings of waste

disposal studies, but only by properly accounting for the

uncertainties can we assure that conclusions and forecasts will

stand up to criticism. And only if the uncertainties are dealt

with quantitatively is it likely that some disposal sites can he

confidently evaluated as safe and that the sites with the greatest



margins of safety can be identified. In addition, by identifying
the sources of the uncertainties we can separate disposal sites
that are merely unacceptable today (but that might become
acceptable as technology improves and uncertainties diminish) from
those that are clearly inappropriate for waste disposal.
Identifying those same sources of uncertainty also provides
direction for future research., Prediction uncertainties in this
scheme arise from three sources, which can be described as follows:

"e Descriptive uncertainties. These include uncertainties in
all the parameters used to describe the disposal site, for example,
the dimensions of aquifers, the porosity of surrounding rock, the
thickness of rock layers, and the temperature.

"® Dynamic uncertainties, These are the uncertainties in the
mathematical model used to predict the future dispersion of the
waste, They include, for example, uncertainties in the dynamical
laws that govern the interactions between the waste and the
geologic environments.

"g® Random-event uncertainties. Events such as meteor strikes
and earthquakes cannot be predicted, but they can be dealt with
statistically. They form a third group of uncertainties.

"If we were to take these sources of uncertainty to be
independent, the total uncertainty in the predicted hazard from the

buried waste could be written as

7.2, .2
UTOT \U O'Rr

p " om

where Opr Oyr and Op are the uncertainties in the hazard due respectively
to descriptive, dynamic, and random-event uncertainties. The total
uncertainty is a reflection of the state of current technology-~which
determines how accurately we can describe the site and how accurately

we can model future behavior--and is a measure of how confidently
decisions and predictions can be made. Thus one of the obvious aims

of residual uncertainty analysis is suggesting ways to reduce the

size of Opop bY pPointing to the sources of uncertainty most
likely to yield to further work."



We wrote the MACRO1l computer code to test the implementation of the
probabilistic arithmetic methodologv proposed by Kaplan.2 Because it is a
tast code, MACROl's primary purpose is to aid in the design and development of
MACRO2, a more extensive and refined code for analyzing uncertainty in
nuclear-waste disposal systems.

MACROL is primarily aimed at the propagation of descriptive uncertainties
through dynamic models. 1t does not provide for the rigorous correlations and
constraints necessary to describe accurately the physics of the system, Input
variables and portions of the system are treated as if they were statistically
independent.

This assumption of independence has the effect of overstating the degree
of uncertainty concerning system parameters and system performance. For
example, measurements of pzrmeability and porosity for a particular formation
indicate a relatively strong correlation.3 Ignoring this correlation
results in computation of unrealistically large spreads in water velocities.

The simple physics models available in MACRO1 are nuclide transport
models and one-dimensional hydrology models.4'5 Since physical constraints,
correlations between variables, and laws of conservation are not rigorously

satisfied, any probabilistic results must be interpreted with great care.



MATHEMATICAL METHODOLOGY

PROBLEM DESCRIPTION AND SOLUTION

MACROl solves a class of problems that determine the probability
distribution on a set of output variables, given the probability distribution
on a set of input variables and a deterministic function from the input

variables to the output variables.

This transformation problem is Texpressed as

p(¥) = f P S(E(X) - V)dx (1)
5
I
where
Y is a vector of output variables, Y = (yl, Yoreens yn)

%

is a vector of input variables, X = (xl, xz,..., xm)

SI is the m-dimensional input sample space = {;I; is an input}

So is the n-dimensional output sample space = {?]? = f(;), ;ESI‘

f is the deterministic function from SI to So

p(;) is the probability density function over SI

p(;) is the probability density function over SO

S(£(X) - ¥) is the Dirac delta function.

The MACRO1 computer code approximates the probability density functions
over SI and So by partitioning SI and So into a union of disjoint subsets
I. and Oj

1

I

8,2 U Ii,Iir\Ij=ﬂ1f1;£J (2)
i=1
J

SO:.L_Jo'oinoj=”1f1#J 3)
J_

and
p&eli) = f: p(x) dx, i = 1,2,0.., 1 {4)

i
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p(veo,) = [a P(Y) dy, 5= 1,200y T & (5)
J

MACRO1l then approximates the integrals of Egs. (1) and (5), given the
discretization of Egs. {2) and {3), the input distribution, Eq. (4), and the
deterministic model £, This approximation uses the probabilistic arithmetic

described by Kaplan.2
FINITE PROBABILITY DISTRIBUTIONS

Since we are interested in computer calculations, we define finite
probability distributicns as sets of doublets,

<§i. P> &= 1,2e0uy I| (6)

where

x; is a representative value denoting neighborhood (some Ij of Eq. 2)

Pi is the probability that x is in the neighborhood of Eq. (4).

For example, in MACRO1l, if x is a scalar variable, we may define
/M
’

x, = 10"

i i=0,x1,22,... ,

where M is some fixed number per decade (say M =~ 5). We then define the
neighborhoods as the half-open intervals

2M 2M

( 2i-1 21+1]
N ) = (X g pr ¥iagy01 = MO 0 10

(7

and let Pi be the probability that variable xeN(xi).

Now, if we truncate and normalize, we say that

-

[<xil Pi>i‘=.j;l i+1"'ll T-lrI; 2 P, =1\ (8)

i=i

is a finite probability distribution (FPD) and may be thought of as a discrete
approximation to the continuous probability density function, p(x), of the
variable x.



The generalization to vector-valued x is straightforward. We need only
decide on neighborhood and truncations to reduce the continuous density
function to a discrete approximation. For, example, in MACROl, we consider

that, if x = (x,y), then

< 2i-1 2i+1] ( 25-1 2j+1]
- 2M 2N
N(xiyj) = \x X 2 o\y ' Y N ’ (9)

wt. re, as before, M and N describe the number per decade. The joint FPD then
is described by the set

=i j=j
<X;¥3 pij>|i=1,i+1,...,T;j=1,1+1,...,§ p P } (10)
f=i i=j

and Pij is the probability that x and y are in the half-open rectangular
neighborhood N(xiyj).

PROBABILISTIC ARITHMETIC

Suppose X and y are independent, uncertain variables aud suppose our

states of knowledge with respect to x and y are expressed by the FPDs

H]
]

{<xi'Pi> |i=i,i+1,... ,'i'-l,Tl

(11)

v
[

{<Y Q. >|]-J_1J_+1'---'J' 'JI

Let @ stand for a deterministic combining of the inputs x and y to an
output variable z:

z=x8y,

where © may be a simple arithmetic operator such as +, x, -, +, or where @
may, in fact, be a physics model. Then, following Raplan's methodology, we use
nested DO loops to compute the output FPD, first by

{ [ i=i,i+1,... ,T—l,'i',]
<z. ’ <x. D y.,P Q.> - (12)
i3 3T 4,94, 000,550




and then by applying a condensation to a previously discretized output
space to obtain

l<zk,sk>|k=5,5+1,...,F—l,?; z sk=1’ . (13)
k
where
Sk = P95
‘1,leijs N(zk)’
and
k = minimum {klsk # oI
k = maximum lk|Sk 7 0’ .

The extension to more than two independent input variables is the obvious
one. However, if possible, we "factor" models using the condensation at
intermediate steps (see the section on Factorization of Models).

If the inputs are mutually dependent, that is, are represented by a joint
FPD, the procedure is essentially the same as above. We merely use
Rij = Pij = the probability that x and y are in the neighborhood
represented by N(xiyj) in the first step.

Some MACRO1 model3 allow for joint inputs of the form z = f(x,y).
However, if, for example, y is jointly distributed with w and our model is to
compute z = f(x,y), we require P(y) be extracted from the joint FPD to some

new variable (say, a), and then we perform the function z = f£(x,a).

MULTIPLE QUTPUT FUNCTIONS

Suppose we have a mathematical function from some input space to a

two~dimensional output space:
(a,b) = £(x,y,2).

The MACRO1l methodoloay is then extended to produce an output joint FPD of the

form of Eq, (10). NRCROl does not make the general extension to more than two
dimens’ 3.



TRUNCATION OF FPDs

A large number of probability density functions, p(x), have nonzero
values for the full range - < x < ® , a range that is impractical for
discrete computer usage. Hence, when we input an FPD, we allow for truncation
of the tails. Further, FPDs that result from a model calculation may be
truncated. MACROL offers the user several choices:

1. For input of normal or lognormal distributions, the user may specify
some number N of standard deviations. The resultant FPD is truncated such

that, if y is the mean and ¥ the standard deviation, then

if x < y - No, p(x)

1]
o

or

0.

if x > u + Ho, p(x)

2. FPDs may be nonsymmetrically truncated at the tails on the basis of
the values of the accumulated probability, that is,

Pi 0 for all i such that EE Pi < (input value 1)
i<i
and

o
1]

i = 0 for all i such that ji (1~Pi) < (input value 2).

i>i

3. MACROl includes a maximum value truncation. In this case,
let B be the maximum probability in a generated FPD and let £ be an input

factor for which 0 < £ < 1. Then, for all i, where i < i < I, if Pi < fﬁ, Pi

is set to zero.

In all the above truncations, the resultant FPD is normalized so that
S -1

i
i

Generally we use truncations not only on the tails' of distributions, but
also on relatively low values of probability. Thus, low values are not
necessarily properly taken into account. For lognormal distributions in
pérticular, truncation of the tails may result in highly incorrect values of

the mean. The median is not significantly affected.



ACCURACY OF THE MATHEMATICAL METHODOLOGY

In MACROl we have not attempted to irnclude the "mean preserving"

discretizations as discussed in Refs, 2 and 6. 1In fact, in using MACROL as a

test code, we have assumed that all variables are positive definite and that
all variables can be reasonably discretized by Egs., (7) and (9).

The default value for M, the number per decade, is 5. However, the user
may choose different positive integer values for M, both for input variable
discretization and for “prediscretization" of output variables,

As with any discrete approximation to continuous (or even discontinuous)
mathematics, the accuracy is highly dependent on the step-size chosen for the

discretization. We consider two examples, both provided by W. J. O'Connell,

Lawrence Livermore Laboratory.

Strobe Effect

Consider an FPD for x as follows. The bins for x are centered on the

values shown.

pix): 1/5 1/5 1/5 1/5 1/5

X.

0.0 0.2 0.4 0.6 0.8

Now consider z = a"x, where a = 1.2 only. (a may be a constant, or
a = 1.2 may be a value in a discretization of the & range.,) The bin z = 0.6
is missed in the condensation operation. This pattern would be repeated

regularly at z = 1.8, 3.0, 4.2..., because of the regular discretization of x.



plax): 1/5 1/5 1/5 1/5 1/5

wl | ]

0.00 0.24 0.48 0.72 0.96

Condense {re-bin)

plz): 1/5 1/5 1/5 0 1/ 1/5

. ]

0.0 0.2 0.4 0.6 0.8 1.0

As the next exampie, consider z = a*x, where a = 0.8 only. For the

same p(x) and discretizations as above, the result for z is:

plz): 18 1/5 2/5 1/5

z:

0.0 0.2 0.4 0.6

Fuzziness Propagation

In the representation of p (z) shown below, we define the uncertainty
in Pz(z) at z as the uncertainty in its value at z (the vertical arrow), and
the fuzziness as the uncertainty in z as to which z bin an element of the

total probability properly belongs. The total sum of pz(z) over z is fixed
at 1.0,

10



P, (2)

If we discretize x at Ax = 0.2, the FPD's ability to represent the
probability distribution of x is limited to intervals of Ax = 0.2.

Normally, when we add n variables, each having an uncertainty A, the
result has an uncertainty AVn. If we add the n variables pairwise with a
condensation operation after each step, however, the error in the result will

be larger. -

If we have x and y with discretizations at Ax and Ay, z = x®y will have
an error 8z = xz'Ay2 + yz'sz + sz‘Ayz. If this is followed by a condensation
operation, the fuzziness 8z is compounded by the discretization Az and by the

summing over bins in (x,y) that have different values for §z.

Improvements in Accuracy

It is possible to increase accuracy, at the cost of an increase in
computer time. More finely discretized input parameters usually remove or
reduce the strobe effect as well as the fuzziness. Smaller values for
truncation factors and larger values for the number of standard-deviation
truncations on input will reduce the truncation inaccuracies.

We have not presently developed algorithmic quantifiers for how much
discretization and/or truncation is acceptable. Users of MACROL must consider
each case, consider results in terms of "over several bins," and make

decisions accordingly.

11



STRUCTURE OF MACROl

The MACRO1l computer code is a user-oriented manager of models and data.
The data consist of both certain and uncertain variables (that is, FPDs); in
the latter case, probabilities are propagated throughout the system as the
models are executed. For readability, MACROl is coded in LRLTRAN in the form
of subroutines. The MACROl code is highly interactive and contains an

extensive HELP package, reproduced in Appendix A.

MACRO LANGUAGE

The MACRO language is a versatile one that allows the user--who will be
an analyst--to choose, interactively, the models for his analysis and their

order of execution. The commands are of the general form
TYPE MODEL [inputl,...,inputl0; outputl,...outputl0].

where Input and output are either variable names or specifications of
input-output devices.

The user names the variables, chcosing names of up to 10 alphanumeric
characters (for example, HEAD, LENGTH1l, T1+T2). Since variable names
primarily refer to the pointers to an FPD, its storage location, and its type,
the FORTRAN conventions of decimal and integer naming have no meaning. Thus,
K2 can refer to a floating-point variable.

The designated MODEL must be the name of a subroutine in MACROl. These
subroutines are the mathematics and physics models discussed in more detail in
the next major section. They are listed in the HELP package (Appendix A).

MACRO recognizes four TYPEs of command:

1. INPUT - A series of models to input variable names and generate FPDs.

2. OUTPUT - A series of write and plot routines to display data
numerically or graphically.

3. PROPAGATE -~ Executes the mathematics and physics models and
propagates FPDs associated with uncertain inputs through these models to form
output FPEDs.

4. UTILITY - Executes a series of "housekeeping” routines; includes a
set of commands that set up lcoping over a contiguous subset of commands for a
prescribed number of times. The command set to be looped over may be altered
by deletirg or adding commands.

12



DATA MANAGEMENT

The amount of data to be generated during any analysis is never known in
advance. The number of input and output variable names and their associated
FPDs are specified by the user, To maintain the necessary flexibility and to
conserve computer memory space, MACROl uses a data-naming and management
methodology that is largely a set of pointers and attributes coupled with a
dynamic linear memory allocation for FPD data.

MACRO1 memory consists of an expandable array, named DAT, in large-core

memory. It contains the FPD probability values and

NNAM - pointer to next available pointer and attribute set.

NDA ~ pointer to next available location in DAT array. For each
variable, N=1,2,..., NNAM-1.

NAME(N) - ASCII variable name.

NPD(N) - number of points per decade, M, where X = 1oi/M.

IMIN(N) lower and upper index for an FPD,

IMAX(N)} - {<xi,Pi>: i = IMIN(N),...,IMAX(N)].

NDA(N) - pointer to the start of Pi in the DAT array.

JPD (N) - if part of a joint FPD, points to the name of the other variable.
NVC (N) - number of vector components if this is a vector variable.

NT1 (N) - indicates origin of this variable, input, computed, etc.

NTS (N) - if input, member of standard deviations about the mean at which to

truncate the FPD.

VM(N) - median value of the FPD.
SIG(N) - standard deviation of the FPD.
PSTL(N) - total amount of probability truncated because of NTS x SIG about

the median.
PTFL(N} -~ total amount of probability truncated because of either accumulated

truncation of tails om P, < . = 0.
or fr P1 f-Pmax means set P1 0

All FPDs are initially generated, condensed, and truncated in a temporary
work space. The final values are normalized and then stored in the DAT array
with appropriate values set for the pointers.

The UTILITY DISCARD routine allows any variable to be discarded when it

is no longer needed. Pointers are reset and the DAT array is reduced in size.

13



INTERFACING WITH MODELS

In general, the interface to any particular mathematics or physics model
requires

1. A check t0o see that the proper number of input variables has been
specified and that =ach of these inputs has been previously defined.

2. A check to see that the proper number of output variables has been
specified and that output names have not been previously used,

3. Proper sets of DO loops to compute the probability distributions.

4. Calls to the deterministic mathematics and physics subroutines.

5. Discretization of the ocutput variables to complete the condensation
operation.

6. Truncations (if desired) and storage of the resultant FPDs.

14



MODELS IN MACRO1l

A model in MACROl is a set of computer algorithms that take given input
parameters and by some combination produce output parameters, The models
themselves are deterministic; however, uncertain inputs produce uncertain
ontputs. In general, we have models that are purely mathematical and models
that are mathematical algorithms to compute physical processes.

The mathematics models are straightforward and virtually self=-
explanatory. The physics models are those required for the analysis of Mock
Site A, a hypothetical waste-repository site that has also been modeled by
other means. Appendix B discusses the validity and rationale of the physics

models, and Refs, 3, 4, 5 and 7 augment the discussion.

FACTORIZATION OF MODELS

The computing speed of MACROl is greatly enhanced by using the
condensation operation described in Eq. (13) at intermediate steps of
"factored" models. The concept of factorization can be most readily described
by a simple example.

Suppose our model is
W = XyZ

and that each of x, y, and z are FPDs with 102 entries of nonzero probability.

The straightforward three-deep DO loops of the methodology would then require

10% multiplications.

However, suppose that we "factor" the model to

u = xy

Then w = uz is mathematically equivalent to w = xyz by the associative law.
In this case, u = Xy requires 104 multiplications, and if u "condenses" to
any number of neighborhoods less than 104 - 102, we gain computationally.

If, for example, u condenses to 102 neighborhoods, w = uz requires 104

15



multiplications., In that case, w = uz = (xy)z requires a total of 2 x 104,
still considerably less thian 106.

Note that, if inputs are mutually dependent or if multiple outputs are
generated, extreme care must be taken in the factorization. It may not be
possible to factor some models readily or accurately. For example, suppose we

wish to solve a one-dimensional hydrology and transport model. We are given

AH
L

head diffe:ience

n

length of flow path

hydraulic conductivity

n = effective porosity

and the equations

kAH

=94 = -
where v n and q L °

If we assume that AH, L, K, and n are all independent, we might compute, in a

"factored" mode,

q = -GK
v =a/m
t = L/v,

which erroneously neglects the fact that the L in the last factor is identical

with (and therefore dependent on) the L in the first factor.

16



i

If we now ignore the physics involved (that is, gradient, D'Arcy speed,
velocity, time) and write

x = K/n

y = ~-0Hx
2

t = L7/y,

the deterministic result is the same and we use the probability over L only
once,

Suppose k and n are closely correlated (a "data" fact more than a
"physics" fact, as described in Ref. 3), the computation of x in the above
sequence can be readily accommodated and this factorization is acceptable.
1f, however, AH, K, and n were somehow correlated (a joint FPD), the above
model would have to be factored differently or the basic methodology altered.

The primary point is that factorization can gain compiiting speed, but the
user must factor consistent with the mathematics of the methodology rather
than with physical const:aints.

17



-SAMPLE MACROl ANALYSIS OF A REPOSITORY

Mock Site A is a hypothetical site for a waste repository. It is based
on actual geologic data and has been studied intensively8 for the purpose of
developing a methodology for evaluating nuclear waste repositories.

We used MACRO1l to analyze Mock Site A and compared our results with

previously obtained Monte Carlo results.7 The next section, which was

virtually copied from Ref. 7, describes the Monte Carlo reSults.

MONTE CARIO ANALYSIS

Golder Associates deviged the basic flow-path model of the preferred
hydrology at Mock Site A.

paths, is shown in Fig. 1.

marlstone.

This model, containing five nodes and four flow
The repository is located at node 1 in a layer of
Ground water leaving the repository flows downward to a lower
aquifer (node 2), which at that point is at a lower hydraulic head than the
upper aquifer. At the hinge line, the aquifer heads become equal. To the
right of the hinge line, the lower aquifer is at a higher hydraulic head than
the upper aquifer.

Thus, at node 3 the ground water flows upward to the upper

Repository layer

Saline zone Discharge

Hinge line

FIG. 1. Flow-path model for Monte Carlo calculation.

The drawing is not to
scale; the vertical scale has been exaggerated.

18



aquifer (node 4). The ground water then flows in the aquifer to a discharge
at node 5. Note that the lower aquifer ends at a large saline zone.

This five-node model was analyzed by the Monte Carlo code NUTRAN, which
simulates the flow of waste from the repository to the biosphere. Four types
of inputs were used in NUTRAN: the properties of the flow paths, the head

drops of the flow paths, the waste-dissolution properties, and the retardation
factors.

Intrinsic Properties of Flow Paths

Table 1 presents the length, cross-sectional area, permeability,
porosity, and dispersion of each flow path. All of these variables were
assumed to be independent. All variables weic bounded below by 0, and
porosity was also bounded above by 1. The value used for the permeability of
the pathway from the depository to the local aquifer was 10 times larger than

actually found. This discrepancy causes only a very small change in results.

TABLE 1. Assumed statistics for pathway inputs.

Pathway inputs

Cross
Length, section, Permeability, Dispersion,
Pathway Parameter m m2 cn/s Porosity m

Repository Distribution Lognormal Deterministic Lognormal Lognormal Lognormal

to lower  Median 59.50 2.82 x 10° 8.56 x 107 0.001 63
aquifer Unecertainty 0.14 0.65 0.5 0.25
Lower Distribution Normal Normal Lognormal Lognormal Lognormal
aquifer Median 4,835 1.25 x 107 2.39 x 1073 g.015 63
Uncertainty 500 2,09 x 10‘i c.18 0.5 0.25
Lower to Distribution Lognormal Deterministic Lognormal Lognormal  Lognormal
upper Median 119 3.34 x 108 3.87 x 1077 0.001 63
aquifer Uncertainty 0.14 0.5 0.5 0.25
Upper Distribution Lognormal Normal Lognormal Lognormal  Lognormal
aquifer Median 1.5 % 10A 2.09 x 10: 9.16 * 1(]--4 0.012 63
Uncertainty 0.05  4.10 x 10% 0.44 0.5 0.25

19




Head Drop of the Flow Paths

NUTRAN determined the hydraulic pressure heads of each of the five nodes
by a recursive process. The head of node 5 was arbitrarily set to 0 and the
head drop between nodes 4 and 5 was randomly generated. The head of node 4
was then set equal to this head drop, and the process was repeated, with the
head of each node set equal to the head of the succeeding node plus the head
drop between the two nodes.

For the flow paths between the repository and the lower aquifer and
between the lower and upper aquifers, the head drops at the location on which
Mock Site A was based were actually measured and the NUTRAN results could be
compared with those measurements. However, only gradients were measured for
the two paths within the aquifers, For these two paths, therefore, NUTRAN
generated the head drop as the product of the flow path length and gradient.

These procedures are summarized in Table 2.

Waste-Dissolution Properties

The repository-resaturation time and waste-dissolution time control the
time and rate of waste release to the geosphere. NUTRAN generated release
time and rate randomly, using the parameters summarized in Table 3.
Resaturation time is composed of a constant plus a random variable. The
constant (32 years) is the sum of the average age of the waste in the
repository and the time y required for the repository to refill with water.
The random variable is the time required for the ground water to dissolve the
canister, thereby making the waste available for dissolution. This variable
was assumed to have a lognormal distribution with a median of 60 years. The
dissolution time for the waste was assumed to be directly correlated with the
dissolution time of the canister; that is, if the chemical composition of the
ground water is such that the canister corrodes in a short period of time, the
waste is also likely to dissolve in a correspondingly short time span. The
dissolution time of the waste was assumed to have a lognormal distribution
with a median of 2000 years and was calculated by scali:.: the randomly
generated canister dissolution time,

20




TABLE 2.

Assumed statistics for head drop inputs.

Method of Head

Pathway calculation Parameter drop Gradient Length
Repository Generate Distribution Lognormal Lognormal
to lower head drop Median 42.90 59.50
aquifer Uncertainty 0.10 0.14
Lower Generate gradient Distribution Lognormal Normal
aquifer (head drop = Median 0.0015 4,830

gradient x length) Uncertainty 0.2200 500
Lower to Generate Distribution Normal Lognormal
upper head drop Median 16.0 119.00
aguifer Uncertainty 1.6 0.14
Upper Generate gradient Distribution Lognormal Lognormal
aquifer (head drop = Median 0.015 1.5 x 104

gradient x length) Uncertainty 0.058 0.05
TABLE 3. Assumed statistics for variables contiolling time and amount of
waste release.

Variable Method of calculation Parameter
Resaturation RT = 32 + y Distribution of y Lognormal
time (RT) Median 60.0

Uncertainty 0.23
Dissolution DT = 2000 x (y/60)1'3 pistribution Lognormal
time (DT) Median 2000

Uncertainty 0.30
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Retardation Factors

The retardation factors for the nuclides in the waste were established by

dividing the isotopes into three croups (1291 and 99

Tc in group I, the other
fission products in group II, and actinides in group III) and assigning a
common retardation factor to all nuclides in the same group. The minimum,
preferred, and maximum retardation factors for each group were estimated by
LLL for water containing 1000 and 10,000 parts per million (ppm) of dissolved
solids (Table 4). Golder provided estimates of the dissolved solids (in ppm)
in the water in each flow path of the repository model (Table 5).

To produce probability density functions for the retardation factors
requires an understanding of the terms "preferred", "maximum", and "minimum".
"Preferred" is synonymous with "median". "Maximum®" denotes a value of the
quantity that is rarely exceeded. It is assumed that the "maximum” value lies

two standard deviations above the mean; that is, 97.73% of all observations

TABLE 4. Retardation factors for selected particulate concentrations.

Concentration Nuclide Group I Nuclide Group II Nuclide Group III
of dissolved Mini- Pre- Maxi~ Mini- Pre- Maxi- Mini- Pre- Maxi-
solids, ppm mum ferred mum mum ferred mum mum ferred mum
1,000 1 1 1 1 100 1000 1 100 10000
10,000 1 1 1 1 5 10 1 10 100

TABLE 5. Concentration of dissolved solids by pathway.

Concentration of

Pathway dissolved solids, ppm
Repository to lower aquifer 1,000
Lower aguifer 7,000
Lower to upper aquifer 10,000
Upper acuifer 1,500
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will be below the maximum. "Minimum"™ refers to an absolute minimum since its
value is always given as 1 (the smallest pbssible retardation). The minimum
value is interpretéd to lie two standard deviations below the median; that is,
the distribution function will be constrained so that 2.27% of the
observations are exactly 1.

Table 6 summarizes the probability distributions used for the retardation
factors of each nuclide group in each flow path. The distribution of each
retardation factor is either deterministic, in which case only the constant
value is given; lognormal, in which case the median value and the uncertainty
(the standard deviation of the logarithm) are given; or "log~linear,"” in which
case the preferred and maximum values are given.

A repository has been modeled that corresponds to one of the random
descriptions (except for retardation factors), and isotopes of only one of the
nuclide groups have been placed in this repository. The retardation factors

for that group in each flow path are independent of the repository and hence

TABLE 6. Probability distribution of retardation factors.

Nuclide Nuclide Nuclide
Group I Group II Group III
Repository Distribution Deterministic Log-linear Lognormal
to lower Median (preferred) 1.0 (100.0) 100.0
aquifer Uncertainty (maximum) -— (1,000.0) 1.0
Lower Distribution Deterministic Log-linear Lognormal
aquifer Median (preferred) 1.0 (7.83) 15.85
Uncertainty (maximum) - (19.31) 0.60
Lower to Distribution Deterministic Log-linear Lognormal
upper Median (preferred) 1.0 (5.0) 10.0
aquifer Uncertainty (maximum) - (10.0) 0.5
Upper pistribution Deterministic Log-linear Lognormal
aquifer Median (preferred) 1.0 (65.0) 78.48
Uncertainty (maximum) - (501.2) 0.95
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can be randomly generated according to the cumulative distribution functions
in the flow paths. Such an experiment will accurately produce radioactivity
release rates for that nuclide group. This experiment may also be repeated
with each of the other two nuclide groups and will accurately produce results
for each group separately. However, if all three groups are buried in a
single repository, there should be some correlation between their respective
retardation factors. No such correlation was included in producing the
retardation factor for this study, since the precise nature of the dependence

among the retardations is not completely understood.

MACRO1 ANALYSIS

In MACROl we systematically sample each value of each variable
independently in each phase of the calculation. We further treat each of the
four flow paths as independent entities. The resultant FPD histograms and
statistics are then generated using every combination of mathematically
possible (in view of the truncated input FPDs) repository and waste behavior
pattern. Figures 2, 3, and 4 are MACROl histograms and probability plots for
each of the three nuclide groups. Figure 5 gives histograms and plots for all
three nuclide groups combined.

This methodology may lead to erroneous results because we have not
properly considered the physics of the system in defining our models. For
example, within any single flow path we have not taken into account the fact
that permeability and porosity measurements generally show a correlation.

Then, since

if we choose independently the largest possible value of k and the smallest
value of T, we can get water velocities that are orders of magnitude larger
than those observed in nature. Even if the resultant probability on this high
velocity is small and may not seriously affect our final statistics, we cannot
ignore the fact that we have violated our physical model.

Treating each of the flow paths as independent entities, then "summing
them up” with no regard for physical constraints can further introduce chances

for erroneous results. For example, if we statistically choose the
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permeabilities of the aquifers to be smaller than the permeability of the
aquitard, our flow path model may be totally incorrect.

As another example, if we choose the gradient of the upper aquifer (nodes
4-5) to be small and the remaining head differences and gradients to be large,
an extrapolated head in the upper aquifer to a point directly over the
repository might be lower than the head at the repository. This situation,
though physically possible, does not satisfy our assumed flow-path model.

The point is, to produce results that are truly defensible, we must
consider all of the model and physical constraints of the system as a whole.

Implementation of constraints is a subject for further developmental work.
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MACRO1 AND MONTE CARLO ANALYSIS COMPARED

Table 7 compares the "median" repository calculations of MACROl and
NUTRAN. In this case, the calculation is purely deterministic and each
variable is chosen to have its median value.

In general there is good agreement except for the time of peak flow.
Here the MACROL model uses a square wave release function approximation
whereas the NUTRAN model actually computes a convolution on the integral. The
discrepancies are trivial, however, because the hazard curves are all nearly

flat at the time of interest.9

Table 8 compares the statistical results of the MACROLl calculations with
those from NUTRAN. In comparing MACROlL and NUTRAN results, vwe must remember
that the MACROl output is discretized; that is, neighborhoods are represented
by single values. With 5 points per decade, the neighborhoods are represented
by

1. x 10"
1.58489 x 10"
2.51189 x 10"
3.98107 x 10"
6.30957 x 10"
1. x 10"

where n = 0, *1, *2, ... .

TABLE 7. Results of median repository run.

Nuclide Nuclide Nuclide

Group I Group II Group III
Peak flow rate, kCi/yr NUTRAN 0.24 0.13 0.32
MACRO1 0.22 0.13 0.35

Time ot peak flow rate, yr N 610 4,400 5,400
MACRO1 200 3,400 4,500
Integrated flow, MCi NUTRAN 0.45 20.26 0.64
MACRO1 0.45 0.26 0.65
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TABLE 8. Statistical comparisons of Mock Site A analysis.

Statistics
Inter-
Standard quartile
variable Mean deviation Median spread
Peak flow rate, kCi/yr
Nuclide Group I NUTRAN 0.36 0.28 0.27 0.13
MACRO1 0.22 0.2 0.16 0.13
Nuclide Group II NUTRAN 1.0 6.3 0.088 0.052
MACRO1 1.2 19 0.1 0.12
Nuclide Group III NUTRAN 0.35 0.72 0.1 0.15
MACRO1 .91 1.9 0.4 0.35
Time of peak flow rate, yr
Nuclide Group I NUTRAN 1,200 1,000 870 600
MACRO1 394 509 251 151
Nuclide Group II NUTRAN 16,000 27,000 6,300 6,600
MACRO1 19,000 81,000 4,000 8,400
Nuclide Group III NUTRAN 48,000 190,000 9,300 12,000
MACROL 99,500 699,000 10,000 22,600
Integrated flow, MCi
Nuclide Group I NUTRAN 0.44 0.0013 0.44 0.00071
MACRO1 0.4 0.023 0.4 -
Nuclide Group II NUTRAN 0.36 0.79 0.24¢ 0.0088
MACRO1 0,92 1.6 0.25 ——
Nuclide Group III NUTRAN 0.57 0.53 0.45 0.28
MACRO1 0.61 0.68 0.63 0.38

Thus, for example, the interquartile spreads of integrated flow for
groups I and II are not well defined because both the 25th and 75th
percentiles fall in the same neighborhood.

Considering the discretizations, the comparisons with the Monte Carlo
simulations are reasonably good. Thus, we could conclude that the 50 Monte
Carlo samples give reasonable statistics, in terms of the 5-per-decade

MACROl. On the other hand, they both may be equally inaccucate.
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CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE STUDY

We wrote MACROl to test a methodology for analyzing proposed nuclear-
waste management systems. The code is designed to accept uncertainties in the
input parameters and propagate them over the sequence of models to produce
probability distributions for the outputs. The discretized probability
arithmetic in MACROl produces results commensurate in accuracy with a Monte
Carlo analysis.

MACROl's mathematical accuracy can be improved by decreasing the step
sizes in the discretized input spaces and output spaces and by reducing the
truncation factors. Each of these improvements requires increased amounts of
computer time,

The present MACROl code may be applicable to certain analysis problems;
however, the physics models are highly simplified and may not produce
sufficiently accurate results.

The major fault with the present methodology (and therefore with the code
itself) is the lack of physical constraints and correlations that are
necessary to produce credible results when the physics of the system model is
considered as a whole. This is the primary area for future developmental work.

In its present form MACROL should not be considered as a tool for either
licensing or site-suitability analysis. 1In fact, each analysis performed
should be carefully considered at each step. Further, at each step, the user
should determine what decision questions are being considered and how MACRO1

results will influence those decisions.
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APPENDIX B. MODELS FOR MACRO1

G. D. Pollack

INTRODUCT ION

MACRO1l was specifically designed to analyze the postemplacement phase of
a nuclear-waste repository site. It explicitly includes the corrosion of the
canister, the dissolution of the waste form, the regional hydrology and
transport of the radionuclides, and the dose or curie commitment to an
individual or population group (assuming a water use system}). Each of the
models represents only an approximate description of these phenomena, but each
incorporates the most important features in a conservative manner.

The order in which the models are described reflects the temporal
sequence in which they would occur in nature and, consequently, the order in

which they are calculated in the code.

CANISTER CORROSION

The corrosion time of the canister will depend on the metallic form of
the canister, the type and amount of ionic species in the water, the amount of
oxidizing agent {such as ferric ion or dissolved oxygen) in the vicinity of
the waste package, the temperature as a function of time, and, possibly, the
flow rate of water past the canister, We have attempted to incorporate most
of these factors into an ab initio model, but the model has not been
validated against any experimental data and uses parameters whose experimental
values are only poorly known. Therefore, we used best engineering judgment to
obtain a median corrosion time (currently set at 60 years) and an associated
variance. We added deterministic values for the age of the waste and the
resaturation and repressurization time of the repository. When empirical data
on corrosion rates, currently being sought at various institutions, become
available, they should prove useful in developing phenomenological models for
corrosion., Such models could be easily incorporated into MACROl, to augment
the current model, DISSOL.
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WASTE~-FORM DISSOLUTION

The dissolution of the waste form (currently spent-fuel assemblies) is a
function of the same parameters that affect corrosion, as well as the radial
distribution of the fission products within a fuel rod. Because fission
products migrate in a fuel rod (for instance, iodine and techretium waste
products move toward the surface in amounts determined by reactor temperature
and residence time), we cannot assume that the predominant and relatively
insoluble uranium in the rods will determine the rate of dissolution. Instead,
we might expect differential dissolution rates for different species. MACROl
allows such differential rates if desired, but assumes that the rates are
constant in time. The dissolution time is assumed to be correlated to the
corrosion time since they are both functions of the same set of factors. The
cucrent model (WASTEDT) uses a deterministic correlation, but this approach is

not dictated by the structure of MACROL and may be easily changed.

REGIONAL HYDROTOGY

MACROl's regional hydrology model can treat only very simple flow
patterns and pathways. It assumes that one-dimensional flow'paths will
reasonably mimic the real hydrology even though the flow rate of water on a
regional scale will in general be three-dimensional. We use this approach
because the repository emplacement media currently being considered are all of
very low permeability and porosity and are often layered, with very high
horizontal-to-vertical anisotropy. These characteristics imply that the water
flow will probably be through flaws of various types {either natural or
induced by mining) or along bedding planes.

Our assumption is of least validity in the immediate vicinity of the
repository, and more care must be taken to obtain meaningful results for near
field flow. However, by taking the flow into or out of a repository as
approximately one-dimensional, we can use a "resistor" network that contains
both series and parallel path connections. Each segment of the flow path is
characterized by permeability, porosity, cross-sectional area, and hydraulic
gradient. For horizontal flow in aquifers or bedding planes, the hydraailic
gradient is dictated by the angle of slope, but, in general, it will be a
function of the geometrical structure of the network, the physical parameters
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and gradients of the other path segments in the network, and the overall
boundary conditions.

In most cases, it would be necessary to solve for some of the hydraulic
gradients in a flow path by requiring conservation of water at each path
connection point (node) and zero total head drop for any closed set of paths,
while adding one or two boundary conditions on regional recharge rate or
aquifer head. This approach would lead to a set of simultaneous linear
equations which are straightforward to solve. MACRO2Z will use this general
procedure to obtain gradients, but MACROl does not. Instead, it makes the
simplifying assumption that the only significant pathways of flow out of a
repository will be all in series, with no branching of flow and no parallel
connections. This assumption eliminates the need for solving simultaneous
equations. However, MACROl does not assume conservation of flow at nodes and
thus treats each path segment as independent of the other segments. All these
simplifications are equivalent mathematically to allowing the gradient for a
given path to be a free parameter, independent of any other segment's
parameters, and with its own probability distribution.

In practice, the gradient in some pathways is considered to be the
uncertain parameter, while in others both the head and the path length are
unknown but have independent probability distributions. These two cases are
handled by two distinct routines, HYDROG and HYDROH, respectively. The output

of these routines are water velocity distributions computed according to

D'Arcy's Law:
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REGIONAL TRANSPORT

When a pulse of solute travels through a porous medium, the differential
flow velocities (both magnitude and direction) associated with the various
microscopic channels cause the pulse to be spread out, both in the direction
of flow (longitudinal dispersion) and perpendicular to the flow (lateral
dispersion). The amount of dispersion is assumed proportional to the average
velocity of the water. Because of the one~dimensional nature of its hydrology
model, MACROl must necessarily ignore lateral dispersion as a distinct
phencmenon.

To model the effects of longitudinal dispersion, we make the fundamental
assumption that the main features of the transport are adequately described by
two quantities: the average time taken to traverse the sequence of path
segments (note that the average time is not necessarily the transit time for
the peak) and the variance of the pulse at its exit point into a large body of
water. We use Laplace transform techniques to show rigorously that for a

series of one-dimensional flow paths the following relationships hold:

tT=to+ Zti
i

2 2 z 2
UT O'°+ iUi

I

=]

t, is the average transit time for the ith segment: ti = ;i
i

tp is the average total transit time

tg is the average dissolution time

20,L,
0? is the variance induced by transit through the jith pipe Gi = ; 2, o
Vi
being the dispersivity of the ith path
Ug is the variance of the dissolution process
oi is total variance.
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A trivial generalization to a network of parallel and series paths exists
and will be incorporated in MACRO2. The vi's that appear in these
formulas may be scaled from those produced 1n the hydroloyy computation by a
factor of l/Rij’ where Rij is the retardation of nuclide type j in path
segment i. This retardation is due to a variety of ion-rock complexes and
other factors. These retardation factors may have their own probability
distributions that are dependent on groundwater chemistry and rock type, as

well as nuclide type.

The output for the regional transport model in the code is then the

probability distributions for the variables

Zt

ii

242
1 1

Hydrology and transport must be computed simultaneously when both the

and

heads and lengths are uncertain variables, since Li appears in both
computations. MACROl actually combines hydrology and transport into one
model, computed by HYTRANSG or HYTRANSH. Regional transport alone is
calculated by TRANSPORT.

CURIE AND DOSE COMMITMENTS

To compute peak concentrations or fluxes of nuclides and associated
doses, MACRO1l must translate the variance and transit times from the regional
transport computation into statements about pulse heights. The fundamental
assumption used is that, if the width of an input pulse into a series of flow
paths is much less than the average transit time widths of any of the pipes,
the spatial profile of the pulse at any given time will be approximately
Gaussian. As it travels through the sequence of paths, the pulse will widen,
but it is assumed to remain Gaussian. This approach implies that the peak
value at any time is inversely proportional to the width. This Gaussian
assumption is the rationale for computing only moments for the transport
computation.
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We consider the Gaussian approximation valid only when the input pulse
width is small compared to the other time scales of the transport. 1In
practice, the dissolution of the waste form will not necessarily be this
rapid, so we have distinguished three cases for computational purposes. The
first treats the case for which the dissolution time is sufficiently rapid
that the pulse can be treated as spatially Gaussian. In this case, MACROl

uses an analytic form for the flux that is a parametric function of tT and Ot

2
-1 ~=m-1
Ity = . exp 3

BV21n 28n

where

=t
n /tT

B = GT/tT .

This is the standard normalized solution to the transport egquation
(solved for flux rather than concentration) for a semi-infinite pipe with a
§-function input pulse. Similar expressions hold for concentration.

MACRO1 computes doses from this flux by taking into account that the
potential hazard curves for the various nuclide groups (that is, the quantity,
in curies, of a nuclide present as a function of time and waste form) will
generally vary slowly compared to Jo(t). The standard definition of peak
individual dose,

Dpeak = mzx J{t)H(t) .,

where H(t) is the potential hazard function, then becomes

(1)

Dpeak

= Jolt)u(e)

where tp is the time at which Jo(t) is a maximum. Similarly, the integrated

population dose,

00

D =
pop [ dat J(t)H(t) ,
0
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becomes

00

(L)
D = H(t dt J_(t) = H(t .
bop ( p) .4: ot ( p)

In the second case, the dissolution time of the waste is assumed to be of
the same order of magnitude as the transit time widths {(or path pulse width
enlargements). Here, MACROl divides the input pulse (which currently is
assumed to be a step function) into small step functions, each much narrower
than the path transit times. Each of these short pulses is then propagated
through the pipes so that the output of any individual pulse is given by
Jo(ti), where ti is the time when the ith short pulse arrives at the
exit node. The total pulse is thus the sum of all these short pulses. MACROl
then computes its maximum value and uses the formulas from the first case to
compute doses.,

In the third case, the dissolution time of the waste form is assumed much
greater than the total transit time widths, so the final output is still a
step function. 1In this case, the time dependence of the individual or

population dose is given by the time dependence of the potential hazard curves,

D(a) = max [H(t) for zti <£t< t:0 + zti]

peak N

and

t +Lt,
3) 0 i
D = at' H(t') .
L

In practice, MACROl uses a set discretization for both running time and
for dividing up the input pulse for the second case. It then generates tables
for peak curies, individual doses, and integrated population doses and thus

can search tables during execution rather than computing.
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