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The burning of liquid propellants is a fundamental combustion problem that is applicable to various types of
propulsion and energetic systems. The deflagration process is often rather complex, with vaporization and pyrolysis
occurring at the liquid/gas interface and distributed combustion occurring either in the gas phase! or in a spray.
Nonetheless, there are realistic limiting cases in which combustion may be approximated by an overall reaction at the
liquid/gas interface. In one such limit, the gas flame occurs under near-breakaway conditions, exerting little thermal or
hydrodynamic influence on the burning propellant. In another such limit, distributed combustion occurs in an intrusive
regime, the reaction zone lying closer to the liquid/gas interface than the length scale of any disturbance of interest.
Finally, the liquid propellant may simply undergo exothermic decomposition at the surface without any significant
distributed combustion, such as appears to occur in some types of hydroxylammonium nitrate (HAN)-based liquid
propellants at low pressures.® Such limiting models have recently been formulated,%® thereby significantly generalizing
earlier classical models®7” that were originally introduced to study the hydrodynamic stability of a reactive liquid/gas
interface. In all of these investigations, gravity appears explicitly and plays a significant role, along with surface tension,
viscosity, and, in the more recent models, certain reaction-rate parameters associated with the pressure and temperature
sensitivities of the reaction itself. In particular, these parameters determine the stability of the deflagration with respect
to not only classical hydrodynamic disturbances, but also with respect to reactive/diffusive influences as well. Indeed,
the inverse Froude number, representing the ratio of buoyant to inertial forces, appears explicitly in all of these models,
and consequently, in the dispersion relation that determines the neutral stability boundaries beyond which steady, planar
burning is unstable to nonsteady, and/or nonplanar (cellular) modes of burning.®9. These instabilities thus lead to a
number of interesting phenomena, such as the sloshing type of waves that have been observed in mixtures of HAN
and triethanolammonium nitrate (TEAN) with water.® Although the Froude number was treated as an O(1) quantity
in these studies, the limit of small inverse Froude number corresponding to the microgravity regime is increasingly of
interest and can be treated explicitly, leading to various limiting forms of the models, the neutral stability boundaries,
and, ultimately, the evolution equations that govern the nonlinear dynamics of the propagating reaction front. In the
present work, we formally exploit this limiting parameter regime to compare some of the features of hydrodynamic
instability of liquid-propellant combustion at reduced gravity with the same phenomenon at normal gravity.

Introduction

Mathematical Formulation

The starting point for the present work is our recent model*® that generalizes classical models®” of a reactive
liquid/gas interface by replacing the simple assumption of a fixed normal propagation speed with a reaction/pyrolysis
rate that is a function of the local pressure and temperature. This introduces important new sensitivity parameters
that couple the local burning rate with the pressure and temperature fields. Thus, it is assumed, as in the classical
models, that there is no distributed reaction in either the liquid or gas phases, but that there exists either a pyrolysis
reaction or an exothermic decomposition at the liquid/gas interface that depends on local conditions there. In its most
general form, the model includes full heat and momentum transport, allowing for viscous effects in both the liquid and
gas phases, as well as effects due to gravity and surface tension. For additional simplicity, however, it is assumed that
within the liquid and gas phases separately, the density, heat capacity, kinematic viscosity and thermal diffusivity are
constants, with appropriate jumps in these quantities across the phase boundary.

The nondimensional location of this interface as a function of space and time is denoted by z3 = ®,(z1, z2,¢),
where the adopted coordinate system is fixed with respect to the stationary liquid at z3 = —oo (Figure 1). Then, in
the moving coordinate system z = z3, ¥y = zy, z = z3 — ®s{(z1,22,t), in terms of which the liquid/gas interface always
lies at z = 0, the complete formulation of the problem is given as follows. Conservation of mass, energy and momentum
within each phase imply

V.v=0, z#0, é9—a‘I’sf’-@Jrv.vez{1}v2@-, 250, (1,2)
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where v, © and p denote velocity, temperature and pressure, respectively, Pr; , denote the liquid and gas-phase Prandtl
numbers, p, A and c (used below) are the gas-to-liquid density, thermal diffusivity and heat-capacity ratios, and Fr is

the Froude number.

The above equatlons are subject to the boundary conditions v =0, © = 0 at 2z = —00, © =1 at z = +o0,
©l,~0- = ©|,=0+, and appropriate jump and continuity conditions at the liquid/gas interface. The latter consist of
continuity of the transverse velocity components (no-slip) and conservation of (normal) mass flux,

. - 6<I>
fig X ve=fg x vy, N(vo—pvyi)=(1-p) S(<I>) , ' (4,5)

the mass burning rate (pyrolysis) law,
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and conservation of the normal and transverse components of momentum and heat fluxes,
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where &= ¢/(1 — 0y}, e is the rate-of-strain tensor, - is the surface tension, o, is the unburned-to-burned temperature
ratio, NV is the nondimensional activation energy, A is the temperature- and pressure-dependent reaction-rate coefficient,
S(®;) = [1+(0%:/0x)? + (8%5/8y)?)~*/2, and the unit normal fi; = (—8®,/0z, —8%,/8y,1)S(®,). Here, the gradient
operator V and the Laplacian V? are given in the moving coordinate system by
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However, the vector v still denotes the veloéity with respect to the (z;, z2,z3) coordinate system.

The Basic Solution and Classmal Stability Results

A nontrivial basic solutlon to the above problem, corresponding to the specxal case of a steady, planar deflagration,
is given by ®% = —t and

_ 0 o_J0, z2<0 o,y J €5 2<0 0 - 2+P_1—1, z<0
=(0.0,77), v*{p“l-—l, z>0, 0%(=) = 1 z>0, p(z) = pFr z, z>0. (10)

The linear stability analysis of this solution now proceeds in a standard fashion. However, owing to the signiﬁcant
number of parameters, a complete analysis of the resulting dispersion relation is quite complex. Realistic limits that
may be exploited to facilitate the analysis include p < 1, Prg/Pr; < 1, and in the microgravity regime, Fr=! < 1.

In the study due to Landau,® the effects of gravity (assumed to act normal to the undisturbed planar interface in the
direction of the unburned liquid) and surface tension were shown to be stabilizing, leading to a criterion for the absolute
stability for steady, planar deflagration of the form (in our nondimensional notation) 4yFr=1p2/(1—p) > 1. In the study
due to Levich,” surface tension was neglected, but the effects due to the viscosity of the liquid were included, leading
to the absolute stability criterion Fr~1Pri(3p)*2 > 1. Thus, these two studies, under the assumption of a constant




normal burning rate, demonstrated that sufficiently large values of either viscosity or surface tension, when coupled with
the effects due to gravity, may render steady, planar deflagration stable to hydrodynamic disturbances. In the present
work, we shall focus, using our extended model described above, primarily on hydrodynamic (Landau) instability. Thus,
in the linear stability analysis, we retain only the pressure sensitivity A, = 0A/9p|e=1,=0 in the pyrolysis law (4),
neglecting the temperature sensitivity £ = N(1 — 0.) + Ae, where Ag = 04/90|e=1,p=0. The latter assumption thus
filters out reactive/diffusive instabilities associated with the thermal coupling of the temperature field,*° but facilitates
the analysis of instability due to hydrodynamic effects alone. We note that the mass burning rate of many propellants
has been shown empirically to correlate well with pressure.

Formal Analysis of the Zero-Viscosity Limit

In the limit of zero viscosities (Pr; = Pry = 0), our extended model differs from the classical one due to Landau® only
. in the local pressure sensitivity of the normal burning rate. In that limit, the neutral stability boundaries with respect
to infinitesimal hydrodynamic disturbances proportional to e** where k and x are the transverse wavenumber
. and coordinate vectors, respectively, are exhibited in Figure 2. Steady, planar burning is always unstable for positive
values of Ap, but in the region A, < 0, there exist both cellular (w = 0) and pulsating (w # 0) stability boundaries
Ap(k; p, 7, Fr=1) given by®
~1 2
A =p p(l—p)_Fr +p;rk —(1-p)k <0 (11)
P23 — p)Fr=1 + p2yk? + (1 — p)(2 ~ p)k

and A, = —p/(1 — p), respectively, where k = |k|. Steady, planar combustion is thus stable in the region A, < 0 that
lies between these two curves. The pulsating stability boundary is a straight line in the (A,, k) plane, whereas the
cellular stability boundary is a curve which lies at or above the straight line A, = —p/(2 — p). The shape of the latter
boundary depends on whether or not the parameters Fr~! and/or + are zero. In the limit that vFr~! approaches the
value (1 — p)/4p? from below, the cellular stability boundary recedes from the region 4, < 0. For vFr~! > (1 - p)/4p?,
the stable region is the strip —p/(1 — p) < Ap < 0. Thus, when A, = 0, the classical Landau result for cellular
instability is recovered. However, even a small positive value of A, renders steady, planar burning intrinsically unstable
for all disturbance wavenumbers, regardless of the stabilizing effects of gravity and surface tension. This result may
be anticipated from quasi-steady physical considerations. That is, a burning velocity that increases with increasing
pressure is a hydrodynamically unstable situation, since an increase in the burning velocity results in an increase in the
pressure jump across the liquid/gas interface, and vice-versa. However, a sufficiently large negative value of A, results
in a pulsating hydrodynamic instability, the existence of which was a new prediction for liquid-propellant combustion.
Zero and negative values of A, over certain pressure ranges are characteristic of the so-called “plateau” and “mesa”
types of solid propellants,® as well as for the HAN-based liquid propellants mentioned above.>

Of particular interest in the present work is the hydrodynamic stability of liquid-propellant combustion in the limit
of small gravitational effects (i.e., microgravity). In this limit, the shape of the upper hydrodynamic stability boundary
in Figure 2, corresponding to the classical Landau instability, clearly approximates the Fr~! = 0 curve except for small
wavenumbers, where, unless the inverse Froude number is identically zero, the neutral stability boundary must turn
and intersect the horizontal axis. Consequently, the neutral stability boundary has a minimum for some small value
of the transverse wavenumber k of the disturbance, implying loss of stability of the basic solution to long wavelength
perturbations as the pressure sensitivity A, defined above decreases in magnitude. This, in turn, suggests a small
wavenumber nonlinear stability analysis in the unstable regime, which generally leads to simplified nonlinear evolution
equations of the Kuramoto-Sivashinsky type for the finite amplitude perturbations.!%14

To establish the nature of hydrodynamic instability in the microgravity regime in a formal sense, we may realistically
consider the parameter regime p < 1, F° =1 <« 1, with Fr~1 ~ p. For example, typical values are p ~ 1073 ~1074, liquid
thermal diffusivity A, ~ 0.1 m?/sec, and the steady, planar burning rate U ~ 1 — 10 cm/sec depending on pressure.®
Hence, from the definition Fr—! = gA\;/U®, we conclude that Fr~! ~ p implies that the dimensional gravitational
acceleration § < 1075 m/sec?, which marks the onset of the microgravity regime. Thus, introducing the bookkeeping
parameter € < 1, we define scaled parameters g*, p* and Aj according to p = p*¢, F r~! = g*e¢ and A, = Aze. In that
regime, it is readily seen from Eq. (11) that there are three distinct wavenumber scales: an inner scale &; = k/e?, the
outer scale k, and a far outer scale ky = ke. In the thin inner and thick far outer regions, we thus obtain

o e Pp*g = ki) T DT
ApNAp NT and ApNAp N~2—p (p 7kf~1), (12)

respectively. Each of these expansions may be matched to the O(1) outer expansion AL~ A;(o) ~ —p*/2, and thus a




composite expansion A;(c)(k) may be constructed as

* *(T * * s *(1 : * 1 * 1 * g
A x4 A9 4 A - Jim_ A - kl,@o A —5h"+ 5ep 2k + 62%-5"', (13}

where the definitions of k; and k; have been used to express the final result in terms of k& (Figure 3). Thus, the
hydrodynamic stability boundary in the microgravity regime considered here lies in the region Aj <0, intersecting the

Ay =0 axis at k ~ 1/(p"ye) > 1 and at k ~ p*g*e? < 1, with a single local minimum at k ~ \/eg*/y ~ 1/v/YFr ~
O(v€). Thus, instability first occurs for long wave disturbances at the critical value Ay~ =p*/2+ 02T 2 (i,

at A, ~ —p/2+ p2\/~/Fr).
Hydrodynamic Stability of the Full Model

Guided by these results for the inviscid case, the linear stability analysis may be extended to include the effects of
viscosity as follows. Retaining the above scalings, we note that pAPrg, = uPr;, where p = ug/p is the gas-to-liquid
viscosity ratio. Thus, it is reasonable to treat Pr; = P as an O(1) parameter, and to consider the limit u = p*e < 1.
Introducing these scalings directly into the linear stability problem obtained from the linearization of the model about
the basic solution (8), solutions may be sought in the form of appropriate expansions in powers of ¢.® Proceeding in
this fashion, we find that the hydrodynamic stability boundary in the small and intermediate wavenumber regimes is, to
leading order, identical to that given above for the inviscid case, while this boundary in the large wavenumber regime,
reflecting the influence of viscous effects, is given by

20" P [1 4 k(p*y + 2p* P 4 2p* P)]

AD w7y R= [1 + 4;1.*2P2k2] vz (14)
? 4p*P(1+ p*Pkg) — (1 = R)(p*y +2p* P)” d
A composite expansion is thus constructed as in Eq. (13), giving the result
2 .
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The corresponding result for normal gravity is obtained by replacing the scaled gravity eg* with the O(1) parameter
Fr~!, and both the normal and reduced gravity boundaries are graphically exhibited in Figure 4 for various zero and
representative nonzero values of u*, P, Fr—! and ~. It is readily seen that the essential qualitative difference between
the normal and reduced-gravity curves is the location of the critical wavenumber for instability. Specifically, it is readily
shown from Eq. (15) that the minimum in the neutral stability boundaries occurs for O(1) values of k under normal
gravity, and at k ~ O(¢%/?) in the reduced-gravity limit, as in the inviscid case described above. Indeed, it may be shown
that Eq. (15) collapses to Eq. (13) in the limit of zero viscosity (P — 0), but it is now seen that viscous effects in both
the liquid (P) and gas (u* P) are comparable to surface-tension effects () in damping large wavenumber disturbances.
The equal importance of gas-phase viscosity relative to that of the liquid phase may be shown to arise from the fact
that gas-phase disturbances are larger in magnitude than those in the liquid, such that a weak damping of a larger
magnitude disturbance is of equal importance as an O(1) damping of a smaller magnitude disturbance.!® The result
(15) thus synthesizes and significantly extends the classical Landau/Levich results,%7 not only in allowing for a dynamic
dependence of the burning rate on local conditions in the vicinity of the liquid/gas interface, but also in its formal
_ treatment of those processes (surface tension, liquid and gas-phase viscosity) that affect damping of large-wavenumber
disturbances. )

Other cellular and pulsating stability boundaries are obtained® for nonzero values of the temperature sensitivity
parameter =, and are thus of a reactive/diffusive nature since they arise from a coupling of the burning rate to the local
temperature field. These have been analyzed in the realistic limit p < 1 for the inviscid case,? and the generalization of
these results to the fully viscous problem in both the normal and reduced-gravity regimes is currently under investigation.
One important result obtained from the inviscid analysis is that the effect of nonzero thermal sensitivity = turns out to
have little bearing on the hydrodynamic cellular stability boundaries shown in Figures 2 - 4, while O(1) values of this
parameter remove the hydrodynamic pulsating boundary to large negative values of A,. Thus, it is the upper stability
boundary in Figure 2, corresponding to the onset of steady cells on the propellant surface, that is the hydrodynamic
instability of interest. An analysis of nonlinear stability in the neighborhood of this boundary®® not only confirms the
existence of steady cellular structures above this boundary, but also demonstrates how the interaction of certain types




of cellular modes can result in secondary and tertiary transitions to time-periodic motions!*~13

that may correspond to
the sloshing type of behavior observed in HAN/TEAN/water mixtures. )

Conclusion

The present work has described a formal treatment of hydrodynamic instability in liquid-propellant combustion in
both the normal and reduced-gravity parameter regimes. Exploiting the smallness of the gas-to-liquid density ratio,
an asymptotic treatment of a generalized Landau/Levich - type model that allowed for a dynamic dependence of the
burning rate on local perturbations was described. It was shown that there were three distinct wavenumber regimes
to be considered, with different physical process assuming dominance in each. In particular, it was shown that the
gravitational acceleration {dssumed to be normal to the undisturbed liquid/gas interface in the direction of the liquid)
is responsible for stabilizing long-wave disturbances, whereas surface tension and viscosity are effective in stabilizing
short-wave perturbations. As a consequence, reduced gravity results in a shift in the minimum of the neutral stability
boundary towards smaller wavenumbers, such that the onset of hydrodynamic instability, predicted to occur for suf-
ficiently small negative values of the pressure-sensitivity coefficient A,, becomes a long-wave instability in that limit.
An additional result is that gas-phase viscosity plays an equally large role as liquid viscosity in the large wavenumber
regime. This important effect, absent from previous treatments, stems from the fact that gas-phase disturbances are
larger in magnitude than those in the liquid phase. Consequently, although the gas-to-liquid viscosity ratio is small, a
weak damping of a larger magnitude disturbance is of equal importance to an O(1) damping of a smaller magnitude
disturbance. In addition, the inclusion of both viscous and surface-tension effects in a single analysis, which are of
comparable importance for short-wave perturbations, represents an important synthesis of the classical Landau/Levich
theories.

Acknowledgment

This work was supported by the NASA Microgravity Science Research Program under contract C-32031-E.
References

1. Ya. B. Zel’dovich, G. I. Barenblatt, V. B. Librovich and G. M. Makhviladze, The Mathematical Theory of Com-
bustion and Ezplosions, Consultants Bureau, New York, 1985.
2. F. A. Williams, Combustion Theory, Benjamin/Cummings, Menlo Park, 1985.
3. S. R. Vosen, The Burning Rate of Hydrozylammonium Nitrate Based Liguid Propellants, Twenty-Second Symposium
(International) on Combustion (1989), 1817-1825.
4, R. C. Armstrong and S. B. Margolis, Hydrodynamic and Reactive/Diffusive Instabilities in a Dynamic Model of
Liquid Propellant Combustion, Twenty-Second Symposium (International) on Combustion (1989), 1807-1815.
5. R. C. Armstrong and S. B. Margolis, Hydrodynamic and Reactive/Diffusive Instabilities in a Dynamic Model of
Liquid Propellant Combustion—II. Inwviscid Fluid Motions, Combust. Flame 77 (1989), 123-138.
6. L. D. Landau, On the Theory of Slow Combustion, Acta Physicochimica URSS 19 (1944), 77-85; Zh. Eksp. i Teor.
Fiz. 14, 240.
7. V. G. Levich,On the Stability of the Flame Front When a Liquid is Burning Slowly, Dokl. Akad. Nauk SSSR 109
(1956), pp. 975-978.
8. S. B. Margolis, G. I. Sivashinsky, and J. K. Bechtold, Secondary [nﬁmte Period Bifurcation of Spinning Combustion
Waves Near a Hydrodynamic Cellular Stability Boundary, Physica D 43 (1990}, 181-198.
9. J. K. Bechtold and S. B. Margolis, Nonlinear Hydrodynamic Stability and Spinning Deflagration of Liquid Propel-
lants, SIAM J. Appl. Math. 51 (1991), 1356-1379.
10. Y. M. Timnat, Advanced Chemical Rocket Propulsion, Academic Press, London, 1987.
11. T. Erneux and E. L. Reiss, Splitting of Steady Multiple Figenvalues may Lead to Periodic Cascading Bifurcation,
SIAM J. Appl. Math. 43 (1983), 613-624.
12. J. D. Buckmaster, Polyhedral Flames—an Ezercise in Bimodal Bifurcation Analysis, SIAM J. Appl. Math. 44
(1984), 40-55.
13. S. B. Margolis and G. . Sivashinsky, On Spinning Propagation of Cellular Flames, Combust. Sci. Tech. 69 (1990),
99-131.
14. S. B. Margolis and G. I. Sivashinsky, Flame Propagation in Vertical Channels: Bifurcation to Bimodal Cellular
Flames, SIAM J. Appl. Math. 44 (1984), 344-368.
15. S. B. Margolis, Hydrodynamic Instability in an Extended Landau/Levich Model of Liquid-Propellant Combustion at
Normal and Reduced Gravity, submitted for publication (1997).




S. NEUTRAL STABILITY BOUNDARIES (= = 0)

unstéble

(orr=1,0) {Q-p)o7)'.0)

T T =

2 /k'4

gasfliquid interface:

Xg= Qs&nxzﬂ) o
g..
1 \ T Prl=d y=0
<
. e
N
S~
<=0
,/ e _F#0,7=0
............. PrimyeQ .@=0_
o [(0.~a2-p)")
S
(-]
I
¥,
stable
X, %s
=1
24
]

w0

(0.-p01-2)")

unstable (pulsating)

Figure 1. Model geoﬁetm. Figure 2. Inviscid hydrodynamic neutral stability
- boundaries, based on Eq. (11).

HYDRODYNAMIC STABILITY BOUNDARIES (p << 1)

i p Inviscid Case (P = 0) Sn HYDRODYNAMIC STABILITY BOUNDARIES (o << 1)
» 4 : Viscous Case (P > Q)
(cp'Fr1,0) unstable k (eo"n)'0)
T N ) T 1] T [ - 1

" .
t 2 3 4 5 6 7 10 u unstable

(eo"Fr1.0) k (ee").0)

T T

0.0

T
1 2 3

unstable {cellular)

\.\w
N\
N\

@ M e AT RO, u=0
T (o-p/2) Frizy=0 w=0
‘%_
stable
@
31
(0.-p7) w®0
- unstable (pulsating) © ~ stable
Ol - ’
Figure 3. Asymptotic representation of the cellular Figure 4. Asymptotic representation of the cellular
hydrodynamic stability boundary for the hydrodynamic stabiity boundary for the

inviscid case, based on Eq. (13). viscous case, based on Eq. (15).




