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Increases in high speed hardware have mandated studies in software techniques to 

exploit the parallel capabilities. This thesis examines the effects a run-time scheduler 

has on a multiprocessor. The model consists of directed, acyclic graphs, generated 

from serial FORTRAN benchmark programs by the parallel compiler Parafrase. A 

multitasked, multiprogrammed environment is created. Dependencies are generated, 

by the compiler. Tasks are bidimensional, i.e., they may specify both time and pro- 

cessor requests. Processor requests may be folded into execution time by the 

scheduler. The graphs may arrive at arbitrary time intervals'. The general case is 

NP-hard, thus,, a variety of heuristics are examined by a simulator. Multiprogram- 

~ l l i~ lg  der~ionstrates a greater need for a run-time scheduler than does monoprogram- 

ming for a variety of reasons, e.g., greater stress on the processors, a larger number 

of independent control paths, more variety in the task parameters, etc. The dynamic 

critical path series of algorithms perform well. Dynamic critical volume did ,not add 

much. Unfortunately, dynamic critical path maximizes turnaround time as well as 

throughput. Two scheduler5 are presented which balance throughput and tur- 

naround time. The first requires classification of jobs by type; the second requires 

selection of a ratio value which is dependent upon system parameters. . . . '  ' 
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CHAPTER 1 

INTRODUCTION 

1.1. High Speed Hardware and Software 

In 1944 the 'MARK 1 computer required 300 milliseconds to complete an addi- 

tion operation. By 1970 the ILLIAC IV performed 50 million floating point opera- 

tions per second (megaflops). Current supercomputers are capable of performing at 

peak speeds approaching one gigaflops. 

Originally, computers were becoming faster.mainly due to improvements in dev- 

,ice technology. Such technology. improvement, however, is ultimately limited by the 

speed of light. Naturally then, research has turned to parallel hardware and software - 

in order to continue the growth in computer speed, 

Many of the early supercomputers, such as the Cray 1, employed vector 

hardware in order too achieve their high speeds. Since scienl;iflc calculations often 

contain substantial vector arithmetic, these systems include special vector instruc- 

tions. By subdividing operations into sequential and separate suboperations, vector 

processors can pipcline successive vector elements through the hardware and obtain a 

high degree of concurrency. 

While vector processors have been very successful, they do have certain 

hardware and software limitations. For example, the speedup pipelined hardware 

can offer is limited by the number of stages in the pipe. That is, any .paiticular 



operation can only be subdivided so far. Another inherent problem with pipelined 
.-- , 

architectures is the overhead involved with initially configuring the pipes, and then 

filling them with data before any results emerge. Because of this problem, speedup 

grows very slowly, typically requiring vectors of length 100 or greater in order to 

achieve peak performance. Finally, these systems require appropriate software in 

order to successfully exploit .the hardware. Either the programming language must 

allow the programmer to express his algorithm in a vector form, or else some sort of 

restructuring compiler will be required to generate the vector instructions from a 

traditional scalar language. 

Much of the current supercomputer research has focused upon multiprocessing 

systems. For example, the Cedar supercomputer [KDLS86] [GKLS83] as shown in 

Figure 1.1, is under development a t  the Center for Supercomputing Research and 

Development. Also, commercially available system such as the Cray X-MF are 

already on the market. 

Multiprocessors achieve. their speed by doing several (possibly different) opera- 

tions in parallel. Whereas vector processor speedup is constrained by the number of 

subdivisions in the pipes, parallel processors can (to some extent) double their peak 

performance simply by doubling the number of processors available for computation. 

This does not mean that these two concepts are mutually exclusive. Indeed, most 

current parallel processing architectures employ various types of pipelining 

throughout the system. But the big advantage of multiprocessors is that their archi- . 

tecture can be scaled up across time for a continued growth in speed. 
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Figure 1.1. Cedar Architecture. 

~ulti~rocessors also require extensive software support in order to maximize 

their performance by completely exploitirlg the available hardware. ~~nchronizat i~n 

and data coherency problems must be dealt with. And like vector processors, they 

require parallel programming languages or restructuring compilers capable of recog- 



nizing parallel constructs. 
'- 

Generally, three levels of parallelism can be recognized in the software. The 

highest level involves separate programs, subroutines, loops, or control flow paths 

within the same program. The next level down consists of parallelism between indi- 

vidual lo~piterations, which can be assigned to separate processors.   he potential 

for speedup at this level is enormous. It is often proportional to the loop limit,' or the 

product of nested loop limits. And finally, the lowest level of parallelism which can 

be exploited by multiple processors is the separate arithmetic expressions in indivi- 

dual assignment statements. Such low level parallelism offers the least potential for 

high speedup, however. 

Once the algorithm has been designed, the parallel constructs recognized and the 

code written, the parallel code constructs must be scheduled for execution on the pro- 

cessors. Such scheduling can be performed at  compile time, run time, or a combina- 

tion of both [Poly86]. Certainly some of the scheduling must be done at run time, as 

the presence of other jobs in the system competing for resources may affect the 

scheduler's decision as to which subsection of code is the best candidate for execu- 

ti nn . 

There are several factors a run-time scheduler must consider when deciding 

which section of code should be initiated. For example, the presence of data depen- 

dencies may force a partial ordering upon the code. The nu~rller of processors 

requested by each unit of code in light of how many processors are currently avail- 

able .is obviously an important consideration. Tradeoffs between speed :(execution 



time) and size (number of processors allocated by each task) must be made. New 

programs or sections of programs may continually be arriving in the system at  a 

variety of different times. The scheduler may want to maximize hardware utiliza- 

tion, throughput, or minimize turnaround time for each program. When these and 

many other factors must be sifted through for each of the thousands or tens of 

thousands of code segments wishing service from the processors, it clearly is a compli- 

cated decision which awaits any run-time scheduler. It is this line of research that 

this thesis will attempt to investigate. 

1.2. Related Work 

A lot of similar work has already been performed in the multiserver scheduling 

and operations research areas. Virtually all of it, however, has dealt with abstract 

analytical models with limited practical significance. This thesis attempts to see how 

well a variety of scheduling techniques perform on real benchmark programs gen- 

erated'by a compiler. Not only are real programs the things which ultimately must 

be scheduled on functioning multiprocessors, but anlike theoretical models, their 

characteristics cannot be determined a prior;. 

This work investigates several extensions over previous results. For example 

many models restrict themselves to two processor systems [Ston781 [RaSH79] 

[Bokh79] [CHLESO] whereas this model may have any number of processors desired. 

Data dependencies in the form of a'directed acyclic graph exist between tasks 

which the scheduler must enforce. Many models ignore any possible data dependen- 



cies such as [Stan851 [CMb82]. Some previous work has examined this problem, e.g., 
" _  . 

[ChTs81] [Ston771 [StBo78] examines a very simple sequential chain model, while the 

models of [&as721 [RaCG72] [HoIr83] [SchwGl] do include complete graphs. Those 

models, however, make simplifying assumptions in other areas which this thesis does 

not .make. Furthermore, this model assumes that the graphs may b e  dynamically 

updated with new node and dependence arc arrivals as additional program and pro- 

gram subsections are added to the system. 

Another feature of this model is that each node may request multiple processors 

as well as multiple time units needed for completion of the task. Nodes are thus two 

dimensional. Several models feature p processor systems [CeKl83] [AbDa86] 

[ChKo79] [&We851 although each task requests only one of the processors. Ln 

[BlDW86] tasks request multiple processors, but have unit times. Some models have 

allowed variable time requirements [Kras72] [RaCG72] but then have a unit processor 

request. 

Not only have bidimensional nodes been allowed, but processors can fold into 

time by running parallel constructs serially. In [XuYe83] [XuYe84] [Mi11841 this con- 

cept was studied, although again simplifying assumptions in other areas of the 

models were made. (Folding is also discussed in [Sahn83] as it relates to pipelined 

machines). 
. . 

Closely related work to that done in this thesis was performed by Hu [Hu61] 

[Hu82]. Hu's model allows data dependencies in the form of a tree. The first phase 

of his algorithm determines the distance from the root of the tree to each. node. 



Next, the scheduler simply assigns nodes to the processors starting at the highest lev- 
. - 

els of the tree first and working its way down towards the root. 

Hu calls this algorithm the critical path algorithm and it is optimal. Its limita- 

tions arise from the fact that nodes are nondimensional (unit time and pi-ocessor 

requirements), must be completely known in advance, and must be in the form of a 

tree. However, two modifications of his algorithm which incorporate several exten- 

sions to that model will be presented later in this thesis. Some of the same concepts 

were developed independently in [Poly86] for compile time scheduling. 

Many of the other scheduling models are also optimal. [CoE76] [CoGr72] given 

their assumptions of a t  most two processors, unit time or processor requirements, etc. 

Such an optimal algorithm is' not likely for the model studied in this thesis. For 

example, the simple extension of variable processor requirements in Hu's work moves 

it from the domain of a very fast optimal algorithm to the. bin packing problem 

which .is NP-hard [GaJo79]. But this thesis goes beyond even that, creating a two 

dimensional bin packing problem with folding, dependencies, ' and dynamically 

modified graphs. 

It is clear that unless many simplifying assumptions are made, an optimal run- 

time scheduler cannot be found. Nevertheless, the problem must be examined, as 

 multiprocessor^ do exist which need thc se~vices s f  some scheduling heuristic in real 

time. Failure to do so will result in a n .  ineficient explditation of the parallel 

hardware by the software which runs on it. This area will be the focus of the follow- 

ing work. 



1.3. Thesis Overview 

This thesis attempts to solve some small portion of the run-time scheduling 

problem on a multiprogrammed, multitasked, multiprocessing computer with data 

dependencies, bidimensional nodes, folding, and dynamic graphs. The scheduler will 

examine data taken from real benchmark programs. 

This chapter has already provided an introduction and a discussion of related 

-work. Chapter two defines the basic model and provides the framework of the dis- 

cussion. It, along with the Appendix, describes the software used to investigate the 

problem. Chapter three discusses the data and scheduling algorithms used in the 

simulations. Chapter four presents and analyzes the results of the simulations, and 

trys to demonstrate why some schedulers perform better than others. Certain 

tradeoffs must be made, and they are discussed in this chapter. Finally, Chapter five 

summarizes the results and draws the co~lcluslo~ls. I1 also discusses limitation0 of thin 

study, .and suggests areas of future research. 
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CHAPTER 2 

BASIC CONCEPTS AND MODELS 

2.1. Parafrase 

Before parallel code constructs can be scheduled for execution on the processors, 

they first must be generated, either by a parallel programming language, or by a res- 

tructuring compiler. The way this problem has been solved for purposes of this 

thesis is with the Parafrase restructuring compiler, which has been under develop- 

ment at the University of .Illinois for the last fifteen years [KEUW80] [KKPL81] 

[Wolf82]. The overall structure of Parafrase is shown in Figure 2.1. 

Parafrase was chosen because of the large investment in existing sequential 

FORTRAN software. Also, FORTRAN (in some form) is the most widely used high 

level language on supercomputers [PeZa86]. Furthermore, it is not clear that pro- 

grammers can deal with the complexity of parallel hardware and softwa.re on average 

as well as a compiler. 

Parafrase starts by reading sequential FORTRAN programs. It then performs a 

series of standard transformations, or passes, on the source code. After each pass, 

various data structures and a modified FORTRAN source program with parallel con- 

structs are produced. By modifying which. passes are called, the programmer can 

control such attributes as specific optimizations for the particular targ,et architecture, 

and man? other features. 



Sequential 
FORTRAN 
Programs 

Cnmmon 
Independent 

Optimizations 

1 Fl 
Optimizations 

Architecture 

Optimizations 

Architecture 

Optimizations 

Architecture 
Specific 

Optimizations 

I I 
I I 
I I 
I I 
I I 
I I 
I 1 
I I 
I I 
I I 
L - - - - - - - - - - - - - - - - - - - - - - -  - - - - - - - - , - - - - - - - - - - - - - - A  

Machine 
Specilic 

Optimizations 

, "...." 

Ou1le 
Generation 

Figure 2.1. Overall Structure of Parafrase. 



Critical to the Parafrase compiler, as well as to any run-time scheduler which 

must examine the output o f ~ a r a f r ~ e ,  is the notion of data dependencies (Kuck781. 

Parafrase is capable of recognizing three different forms of data dependencies. 

Assume some program contains two different statements, Si and S, such that S, fol- 

lows Si during serial program execution. If a variable z is assigned in statement Si, 

and subsequently used on the right hand side of statement S,, then S, is said to be 

data flow dependent on Si. I f  the variable z is used on the right hand side of Si but 

is assigned in S,, then Si is data antidependent on S,. If z is assigned in both Si and 

subsequently in S,, then S. is data output dependent on Si. Finally, Parafrase will 
1 

introduce control dependencies induced b y  the presence of conditional statements. 

Parafrase analyzes the FORTRAN source program, and generates a data depen- 

dence graph between the statements. It is then capable of performing sophisticated 

transformations on the results which break many of the control and data dependen- 

cies without violating the semantics of the program. Any dependence arcs which 

remain after all of the transformation and optimization passes have completed, force 

a partial ordering upon the program execution, which must of course be honored by 

the run-time scheduler. 

At the current time, Parafrase has over 50 different passes which can be called, 

performing such transformations as forward statement substitution, loop interchang- 

ing, recurrence relation recognition, etc. The specific passes which are called and the 
.. . 

order in which they occur are a function of the particular architecture which is to be ' 

targeted. 



Parafrase recognizes four classes of machines: single Execution Scalar (SES), 
. - 

Single Execution Array (SEA), Multiple Execution Scalar (MES), and Multiple Exe- 

cution Array (MEA). SES machines are simple uniprocessors. SEA machines include 

array and vector processors. MES machines are multiprocessors where each processor' 

is composed of a SES machine. And finally, MEA machines are multiprocessors 

where each processor is composed of a SEA machine. The model chosen for study in 

this thesis would be applicable to either a MES or a MEA machine. 

C COUNTS NUMBERS OF PARTITIONS OF AN INTEGER 
SUBROUTINE COUNT (C, K, P, N) 
INTEGER C, P 
DIMENSION C(K), P(N) 
DO 10 I = 1, N 

P(1) = 0 
10 CONTINUE 

DO SO I = 1, K 
J = C ( I )  
J P l = J + 1  
P(J) = P(J) + 1 
DO 20 M = JP1, N 

M M J = M - J  
P(M) = P(M) + P(MMJ) 

20 CONTINUE 
30 CONTINUE 

RETT.mN 
END 

Figure 2.2. Subroutine COUNT. 



Consider the short subroutine COUNT shown in Figure 2,2. Although it is 

much too simple to illustrate most of the features of Parafrase, i t  will serve, to some 

extent, to demonstrate how data can be generated from real FORTRAN programs 

for a run-the scheduling simulation. 

Midway through the series of passes selected for use for this thesis, intermediate 

' results were produced by Parafrase as shown in Figure 2.3. Two short parallel loops 

have been generated; they are flagged with an asterisk.. Each iteration of the parallel 

loops may be scheduled simultaneously for execution on separate processors. . (They 

SUBROUTINE COUNT (C, K, P, N) 
INTEGER C(K), I, J, J'(*), P I ,  K, M, MMJ, N, P(N) 
D O l i = l , N  

P(i) = 0 

1 CONTINUE 
D O 2 i = l , K  

J'(i) = C(i) 
2 CONTINUE 

D O 4 i = l , K  
P(J'(i)) = 1 + P(J'(i)) 
DO 3 j = 1, N -  J'(i) 

P(j + J'(i)) = P(j + J1(i)) + P(j) 
3 CONTINUE 
4 C O N T I W  

RETURN 
END 

Figure 2.3. Intermediate Results of COUNT. 
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can of course be executed sequentially, should insufficient processors be available at 
.- 

run time). Parafrase also generated two nested serial loops from COUNT. These 

two loops are flagged with vertical bars. The problem occurs because the assignment 

of the array P in Figure 2.2 is essentially being subscripted by the value of the array 

C. Figure 2.3 clearly shows the subscripted subscripts hence, these two loops cannot 

be sped up. Unlike the parallel luuPs, this portion of the program rnlist he ~ch.aduled 

oequentiaJly for execution. 

The next series of passes performed high level spreading and compound function 

generation on COUNT. This will be discussed in the next section. 

2.2. Compound Functions and Program Graphs 

The unit of work which is to ,be scheduled on the multiprocessor is referred to a s  

a compound function or task [GLPV83] [KLVY82] [Husm86]. Although there are 

many ways' to con~ttruct and define a task, for purposes of this thesis a task is defined 

to be some portion of a larger program which can be scheduled for execution for a 

fixed amount of time on a fixed number of processors. (The execution time and 

number of processors requested are fixed, or bound, xt allocation time. This will bc 

discussed in more detail below.) Once a task has begun execution, it runs to comple- 

tion without interruption. That is, tasks are said to be nonpreemptive for purposes 

of this thesis. 

The model chosen for study receives, as input directed acyclic graphs (DAGs) 

such as the one shown in Figure 2.4. Each node in the graph represents a task which 



Figure 2.4. Program Execution Graph. 

is to be scheduled for execution on the processors. The nodes contain two numbers: 

the maximum number of processors needed by that task, and the execution time that 

task requires in order l o  complete its work. For example node B, or NB, in Figure 

2.4 requests 40 processors which it intends to reserve for 20 units of time. 

It is important to note that nodes are bidimensional in that their space-time 

products on the processors can have nonunit values in both directions. Furthermore, 

a one-way mapping from processors into time is possible (but not the other' way 

around).. No data dependencies exist between those operations, or.else they would 
. . 

have been assigned to different time slices at an earlier. stage (by the compiler). 



Clearly then, if no dependencies exist between the parallel operations, they can be 

run serially as well as in p$rallel without violating the algorithm's semantics. Such a 

concept is known as folding. 

It is very useful to give the run-time scheduler the ability to dynamically fold 

the. tasks a t  processor allocation time. For example, if a task requests p processors, 

but oniy p/2 processors are currently available (due to other tasks in the system 

competing for resources) the scheduler can fold task execution across p/2 processors 

simply by doubling its running time. However, such a scheduler must be very care- 

ful. 'TOO little folding results in idle processors while large tasks are forced to wait 

for a sufficient number of processors to become available. This can lead to a serious 

degradation in performance as well as utilization. On the other hand, too much fold- 

ing can also lead to loss of speedup as a result of ~aral lel  constructs being forced to 

run serially. In WuYe831 IXuYc841 it was shown tha t  on the average, if at  least 25 

percent of the processors requested by a task are currently available, then that task 

should be folded and initiated at once. 

Control or data dependencies in a graph passed on from the compiler force a 

partial ordering upon a scheduler. which it must honor. For example, if NA must 

complete its execution before Nc can begin, then it is said that NA>Nc and a 

directed arc is drawn from NA to Nc in Figure 2.4. 

In this scheduling model, the program graphs 'must be acyclic. Innermost serial 

loops can easily be transformed into a single task. However, outer level nested serial 
' 

loops. must be unrolled and the associated nodes and arcs replicated up to the loop 



bounds. 

Conditional paths through the graph are treated in the same fashion as what 

Parafrase does. For example, Parafrase attempts to transform backwards GOTOs 

into DO loops, which can then be treated in the normal fashion. Other conditional 

paths with control dependencies which cannot be eliminated are expanded and 

weighted according to the probability of that path being chosen. (The default proba- 

bilities are to set all paths as being equally likely). The weighted nodes and their 

associated arcs are then entered into the program graph. 

The tasks, represented by nodes in the DAG, are defined to be dynamic. That 

is, they may arrive at various times throughout the execution of the programs. This 

means that the scheduler only sees a snapshot of the entire graph at any one time. 

Since the introduction of new nodes with their dependence arcs into the system may 

affect which tasks are the best candidates to dispatch for execution, the run-time 

scheduler must resign itself to making decisions based only upon a particular instance 

of the entire DAG. 

Now that the particular form of tasks and DAGs used in this thesis has been 

defined, it remains to be shown how the actual tasks were generated by Parafrase for 

use in the scheduling simulation model. Specifically, the tasks were derived from a 

method called high lcvcl spreading described by Veideiibsur~l iu [Veid85]. 

Veidenbaum first decomposes the program into a number of high level objects 

(HLOs). He defines eight types of HLOs: 1) a nonnested (innermost) DO loop of any 

type .of parallelism, together with all of the statements in it; 2 ) .  any .Block of 



Assignment Statements (BAS) not in 1). (A BAS is the largest possible block of con- 

- -  . 

secutive assignment statements in the serial program with one entry and one exit 

point); 3) a nested DO statement not in 1) but without statements inside; 4) any IF 

statement not in 1); 5) the CONTINUE statement for nested DOs and for IFs (the 

terminal line); 6) user procedures or function calls. (Veidenbaum assumes subroutine 

expansion was used to eliminate these in lnnerrnost loops); 7 )  I/O ~ L a l e u ~ e u ' l ~ ;  and 

finally 8) program/subroutine/function BEGIN and END statements. 

Returning to the previous example of COUNT in Figures 2.2 and 2.3, the high 

level spreading passes in Parafrase produced the results seen in Table 2.1. The com- 

pound function numbers are denoted, along with any nested or successor compound 

functions which may be associated with that compound function. The successor 

pointers will be utilized to generate the dependence arcs for the DAG. The "first" 

and "last" columns denote the first and last statement numbers in Figure 2.3 which 

were used in' the generation of that particular compound function. The "type" 
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column indicates what form of compound function is listed. CJ'ROG and CJ3ND 
- 

denote the beginning and end of a program. CRETRN denotes a subroutine return 

statement. C D O  and CDOEND denote an outer nested loop. E D 0  denotes an 

innermost loop and all statements. within that loop. And finally, BAS denotes a 

block of assignment statements. The processor and time columns represent the 

number of processors requested and the times those compound functions require (or 

some calculated estimate if compound functions are nested within). 

Comparing Figure 2.3 with Table 2.1, it can be seen that the two parallel loops 

were transformed into E D 0  compound function numbers 2 and 3. Since they are a 

simple assignment statement, they only take one unit of time. Parafrase scheduled 

these loops on 40 processors. If loops bounds are known at compile time, then 

Parafrase will use those values. Otherwise, Parafrase uses a default timing value of 

40 for all loop indexes in order to make some estimates of the work involved. 

The innermost nested serial loop was turned into E D 0  number 6. Each itera- 

tion takes two units of time (an addition plus the assignment). Since this only 

requires one processor, but must be replicated 40 times, the E D 0  is flagged for 80 

time units on a single processor. The outermost nested serial loop contains a similar 

arithmetic statement, along with the inner EDO.  For identical reasons, it also only 

requests a single processor. Its time reqqirements reflect the work nested inside the 

loop, replicated serially 40 times. 

Graphically, Table 2.1 can be represented by Figure 2.5. The vertical bracket 

represents sequential replication. Clearly, NA >Nc and NB > N c  Furthermore, 



Figure 2.5. Graphical Representation of COUN'I'. 

between each iteration i of the outer serial loop, Nci>NDi and NDi>Nci+; 

It should be clear how the DAG used for scheduling could be generated from 

Figure 2.5. Each block becomes a task. Dependence arcs become successor pointers. 

Outer serial compound functions do not become tasks, but the innermost level of 

nested compound, functions do become tasks for scheduling. The enclosing com- 

pound functions instead cause a duplication as the serial loops are unrolled. 



Now as was previously mentioned, COUNT is a.very short program. Figure 2.5 

, makes clear that in this case, a scheduler has very little to decide. (It must still 

decide whether or not to fold the two parallel tasks). Larger programs obviously are 

much more complex, containing many separate paths from which to chose, but would 

be too complex for the illustrative purpose of this section. 

2.3. The Scheduling Simulation 

Once the DAGs from one or more programs have been generated, they are ready 

for scheduling. A run-time scheduling simulator was written which reads in the 

DAGs representing the programs, and schedules them using a variety of different 

scheduling algorithms. Since the specific manner in which the simulator operates to 

a large extent defines the model for the data produced, its algorithm will be discussed 

' below. Input parameters to the software as well as the information collected and 

returned by the simulation are described in detail in the Appendix. 

The user must initially specify such things .as the scheduling technique which is 

to be applled to the DAG, the machine size, folding requirements, etc. Either a sin- 

gle scheduling algorithm may be used, or the complete series of algorithms will be 

run on the same DAG and machine. In collecting data for this thesis, most DAGs 

were run with all possible scheduling techniques, using 8, 32, 64, 128, and 1024 pro- 

cessors, and with folding requirements of 25% and 100%. ' 

. . 

The sirnulator first begins by reading in nodes of the graph.. Each node can 

specify an arrival time. A "wake up call" is entered into a time-sorted event queue 
. . 



with that arrival time. When the system clock reaches that value the node is read in, 

dependence links are generated, and any nodes this new arrival may affect dynami- 

cally (described in the next chapter) are visited. 

A "starting queue" is maintained of all nodes which have already arrived in the 

system, have not yet begun execution, and do not 'have any predecessors with depen- 

dence links to this node still remaining in the system. All nodes on the starting 

queue are candidates for immediate execution. 

The simulator sorts the starting queue according to the current scheduling tech- 

nique. (Folding is taken into account, but is not actually done at  this time). The ' 

highest priority task as determined by the scheduler is placed at the head of the 

queue. 

Following that, the simulator assigns tasks to processors, in order, from the 

starting queue. As each task is assigned for execution it is removed from the starting 

queue, any folding is performed, the number of processors currently available is 

reduced by the current task's processor requirements, and a "wake up call" is 

entered into the time-sorted event queue telling the simulator when the task will 

complete. This process continues until either the starting queue is empty, or else no 

more tasks can fit on the processors. 

When no more nodes can be assigned for execution from the starting queue, the 
. . 

simulator checks the time-sorted event queue for actions which it can take at the 

current system time. (If there are none at the current time, then the system clock is 

reset to the earliest time the next event is to occur, and flow continues). This 'would 



include reading in new node arrivals and entering them into the graph (and possibly 

the starting queue) or stopping execution of tasks which are due to complete at the 

current time. 

If a task has completed, the simulator must relezise the process6rs the node 

reserved, and visit dl1 successors of that node with dependence links. If any of .that 

node's successors have no other predecessor dependence links, then that successor will 

be entered into the starting queue. Finally, the node is removed from the system. 

When all of the events which can occur at the current system time have been 

processed, the simulator loops back to check for task initiation again and the entire 

process is repeated. 



CHAPTER 3 

PROGRAMS AND ALGORITHMS 

3.1.. Data Programs 

This thesis attempts to determine how well a variety of 'different scheduling 

algorithms perform on real benchmark programs executed on a typical multiproces- 

sor. Unlike abstract .theoretical models, the characteristics of functioning programs 

taken from the field are not necessarily known in advance, and can only be deter- 

mined from a compiler such as Parafrase. And yet this area is of crucial importance 

if software designers intend to efficiently exploit the parallel hardware on which they 

run. 

A representative selection of benchmark programs was collected for detailed 

study in this work from well known sources such as Eispack [SBDG76] and Linpack 

[DBMS79]. The FORTRAN programs analyzed by Parafrase for use in the run-time 

scheduling simulations are shown in Table 3.1. They represent a mix of different 

applications likely to be run on a parallel system, and both very short and very long 

programs have been included. 

A graphical representation' of the DAG for one program in Table 3.1, COUNT, 

has already been shown in Figure 2.5. COUNT, however, is a very short and simple 

program. More elaborate examples are shown for illustrative purposes in ~ i ~ u r e s  3.1 

and 3.2. The two programs shown are of moderate size (in terms of complexity). 



The most. extensive programs would obviously take several pages each to diagram. 

Table 3.1. FORTRAN Data Programs. 

(Note that program complexity, or the number of nodes and arcs in a DAG, may be 

unrelated to that program's execution time or processor requests). 

Purpose 
Factor a complex matrix by Gaussian elimination 
Simultaneous Chebyshev analysis of nf functions 
Counts number of partitions of an integer 
Reduce tridiagonal matrix to symmetric tridiagonal 
with same eigenvalues 
Reduce tridiagonal matrix to symmetric tridiagonal 
Eigenvectors of complex Hermitian matrix 

Newton's search for inversion 

Three dimensional Helmohltz solver using FFT 
(Separable elliptic partial differential equations) 

Program 
CGECO 
CHEBY 
COUNT 

FIG1 

FIG12 
HTRIBK 

KERNEL 

THREEDH 

A few of the symbols in Figures 3.1 and 3.2 need to be discussed.  he firstsym- 

Source 
Linpack 
ACM 
ACM 

Eispack 

Eispack 
Eispack 
Lawrence 
Berkley Lab 

Fishpack 

bol is the vertical bracket, which also appeared around Nc and ND in Figure 2.5. As 

was briefly mentioned earlier, this represents an outer nested serial loop. To generate 

the UAG for the run-time scheduler, the serial loop must be unrolled by replicating 

the nodes and arcs within that loop sequentially. The serial loop count is shown to 

the left of the vertical bracket. Also, between the i th  and the i+l th  iteration of the 

loop, dependence arcs must be generated between the terminal nodes of one iteration 

of the loop and the starting nodes of the next iteration. 

A new symbol introduced in Figures 3.1 and 3.2 is the horizontal bracket, such 

as is seen around N,, in Figure 3.2. The horizontal bracket represents an outer 
. . 



Figure 3.1. Program THREEDH. 
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Figure 3.2. Program KERNEL. 



nested paralle1,loop. Nodes within parallel brackets are replicated in parallel, i.e., no 
.-- _ 

dependence arcs between each copy of the node is generated. But .  of course any 

dependence arcs entering or leaving the horizontal brackets must be passed on to 

each copy of the node generated for the DAG. The outer nested parallel loop count 

is displayed above the upper horizontal bracket. 

Horizontal and vertical brackets should not be confused with parallel and' serial 

nodes. For example ND in Figure 3.1 is a serial node since the number of processors 

requested is 1. However, 8 copies of ND must be generated due to the enclosing 

parallel loop. Each of the 8 copies may be executed in any order, or at  the same 

time. Furthermore, all 8 copies of ND must have completed before NEl can be 

scheduled for execution. Likewise, NB in Figure 3.1 is a parallel node, even though it 

has no enclosing parallel brackets, since the number of processors requested is 11. 

Only one copy of NB exists, however. 

In a similar fashion NK in Figure 3.2 is a parallel node while Nc is not, even 

though Nc is external to the vertical (serial) bracket while % is nested within. The 

p.oint is that the presence of vertical and horizontal brackets is irrelevant to whether 

or not any particular node is serial or parallel. 

Use of these symbols allows very large DAGs to be displayed in the simple 

fashion shown in Figures 3.1 and 3.2. For example, Figure 3.2 displays only 33 

boxes. However, the DAG the run-time scheduler will see at .execution time contains 

3063 nodes and 11,237 arcs! Obviously, scheduling such a program is a formidable 

task for any heuristic which must operate in real time. 



Each new DAG in Table 3.1 has its own interesting features and is of course 

unique. Just to demonstrate a ,few types of environments a run-time scheduler may 

encounter, consider Figures 3.1 and 3.2 more closely. In Figure 3.1, program 

THREEDH, all of the parallel and serial replication, i.e., horizontal and vertical 

brackets, is around single nodes. Also, a very wide variety of values within each 

node is present in program THREEDH. For example, ND1 requests 1 processor for 

82 units of time, while NR requests 41 processors for only a single unit of time. 

Another interesting feature of program THREEDH is nodes such as NAl and 

NGl. All 351 copies o f  NAl request 14 processors, for a total of 4914 processors- 

which, in theory, could be utilized concurrently. On the other hand, all 451 copies of 

NG1 must be run sequentially, and only need a single processor. THREEDH contains 

several relatively short and fat or long and skinny nodes. So what size machine 

should THREEDH be run on and how many processors should be allocated for its 

execution? Should all 351 copies of NAl be executed simultaneously, or would that 

lead to intolerable hardware utilization later on in the program? Obviously, with the 

rich environment programs such as THREEDH offer, a good run-time scheduler must 

be capable of adapting to the .changing values of the starting nodes as it moves 

through the DAGs execuLi11g. 

The most distinguishing feature in Figure 3.2, program KERNEL, is the large 

outer nested serial loop which encloses most' of the program. Unlike THREEDH 

where the vertical brackets enclosed single nodes only, KERNEL'S serial loop encases 

all but three nodes. 



Yet within each iteration of that loop, a run-time scheduler has many factors to 
- 

consider and from which to chose. Many different types of parallelism exist within 

the nested serial loop. For example, individual nodes themselves, e.g. ND, exhibit a 

high degree of parallelism. Multiple control paths exist which a run-time scheduler 

may. have to select from, e.g. NE and NG. And finally, outer nested parallel loops 

create a variety of nodes and paths the run-time scheduler must traverse, e.g. the 

nine r.npi~,cl nf No. 

3.2. Scheduling Algorithms 

Twenty five .different algorithms were used for simulation studies of a multipro- 

cessor run-time scheduler on the benchmark data programs listed in Table 3.1. The 

scheduling algorithms used are listed in Table '3.2. They are defined and discussed in 

more detail below, along with a rationale for why each of the scheduling techniques 

wan ohoson. 

8.2.1. optimal and Random 

Ideally, the first scheduling algorithm implemented should be the optimal 

scheduler, which of course would provide a lower bound on the running time of any 

collection of DAGs scheduled for execution. Unfortunately, as was shown in Section 

1.2, the problem is NP-hard and thus there is little hope of solving the problem in 

polynomial time. 

A brute force attack on the problem also seems out of the question. Only the 

very smallest of the data programs shown in Table 3.1 lend themselves to a solution 



Largest dynamic critical path of the earliest program 

of trying all possible combinations. Moderate to large sized programs are simply too 

big. For example program CHEBY contains almost four thousand nodes and seventy 

five thousand arcs! Furthermore, each of the individual nodes may be folded at pro- 

cessor allocation time, depending on what other nodes are currently executing in the 

system. This interaction between the nodes selected for execution which overlap in 
. . 



the same time slice increases the complexity of the problem dramatically. Also, the 

programs are often run in a multiprogramming environment, making the size of the 

data much larger still. Additionally, the DAGs may be dynamic, i.e., the run-time 

scheduler is not allowed to see the entire graph all a t  once in those cases, and must 

make its decisions based only upon partial knowledge of a time-variable graph. And 

finally, the problems must be solved repeatedly for various machine sizes, which may 

affect the best execution order of the nodes in any particular DAG. For all of these 

reasons, an optimal solution simply isn't feasible. 

Since an optimal solution to the general problem is not possible, the random 

scheduling algorithm has been chosen as the standard by which all other scheduling 

techniques will be judged. That is, all nodes on the starting queue will be sorted ran- 

domly before one is selected for execution on the processors. 

The random scheduler is used as a sort of "worst casc scenario" by which other 

schedulers can be measured for performance. It is not, of course, an upper bound on 

execution time in a theoretical sense, but as a practical matter any scheduler which 

cannot outperform a random scheduler (or even does worse) can be judged as "bad". 

It is therefore felt that this is an appropriate yardstick for comparison (in conjunc- 

tion with comparisons between the other 24 algorithms, of course). 

3.2.2. Greedy, Generous, and FIFO 

Several scheduling algorithms look primarily at the number of processors 

requested by a task or that task's execution time. There exists a class of schedulers 



$3 ', 

. .. 

which has in the past been commonly referred to as "greedy algorithms". 

Scheduling algorithm numbers 3, 10, 12, a n d  14 are examples of greedy algo- 

rithms which examine the largest processor request or the largest execution time. 

One of the main rationales for using greedy algorithms is that large tasks should be 

allowed to run first. For example, if a starting task has an unusually high processor 

request, it may have .trouble obtaining a sufficient number of free processors on 

which to run later on during program execution. If, on the other hand, enough pro- 

cessors are currently free to satisfy the task's requirements, a greedy algorithm will 

initiate the task immediately. In a similar fashion, long running tasks which tie up 

the processors for extended periods of time are started a t  once by greedy algorithms, 

while shorter tasks are pigeonholed where appropriate in the gaps between the bigger 

tasks. 

The opposite of a greedy .algorithm is referred to as a "generous algorithm". 

Scheduler numbers 11, 13, and 15 are examples of generous algorithms which exam- 

ine the smallest processor request or the smallest execution time. The rationale for 

generous algorithms is that small short tasks can get on and off the hardware faster 

than big slow ones can. Thus, a higher percentage of the. total nodes in the DAG 

may be able to run concurrently or complete in a shorter period of time with a gen- 

erous algorithm than with a greedy one. This tends to help the average turnarol~nd 

time for each node. 

As with all heuristics, cases can be found which cause the algorithms both to 

succeed and to fail. For example, consider the four short UAGs shown in Figure 3.3. 



Figurc 3.3. C reedy and Generous Comparisons. 

Assume a 100 processor machine with no folding. 

In the upper left hand corner, a greedy processor algorithm succeeds with a total 

time of 2, while a generous processor algorithm fails with a total time of 3. On the 

other hand, a greedy processor algorithm fails with a total .time of 3 in the upper 

right hand corner, while a generous processor algorithm succeeds with a total .time of . 

2. In a similar fashion, a greedy execution time algorithm succeeds in the lower left 



hand corner, requiring 3 time units while the generous execution time algorithm 

needs 4 time units to complete. The opposite holds true in the lower right hand 

corner, requiring 5 and 3 time units for the greedy and generous execution time algo- 

rithms, respectively. . 

In addition to the greedy and generous algorithms just listed which examine pro- 

cessor requests or execution times as their primary selection criteria, many other 

algorithms in Table 3.2 use this as a secondary criteria in the event of a tie by their 

first choice. Furthermore, even when other scheduling techniques are used (for exam-, 

ple those discussed in the following two sections) for comparison purposes the pri- 

mary evaluation criteria has been negated in a greedy/generous fashion, i.e., 

scheduler numbers 16 and 23. 

Scheduling technique number 2 is the standard FIFO, or first in first out algo- 

rithm. Its rationale springs from the idea that the tasks which have been waiting in 

the system for the longest period of time should be served next. The FIFO algorithm 

tends to minimize turnaround time. FIFO is also used as a subcomponent of 

scheduler number 24. 

3.2.3. Dynamic'Critical Path 

Several of the schedulers shown in Table 3.2 use a form of algorithm known as 

the dynamic critical path algorithm. The dynamic critical path algorithm is listed in 

~ i ~ u r e  3.4. It is discussed in detail below. 
. 



subroutine dcpath (node , currentdistance) 
if node (dcpd) 2 currentdistance 

then return 
else begin 

node (dcpd) = currentdistance 
currentdistance = currentdistance + node (executionAime) 
fnr all nnrle (preder.e.,s.snrJ do 

call dcpath (predecessori , current-distance) 
return 
end 

end dcpath 

Figure 3.4. Dynamic Critical Path Algorithm. 

In order for a scheduler to make use of the dynamic critical path algorithm, 

each of the nodes in the DAG must be modified to contain not only the node's ID, 

processor request, and execution time, but also a tag known as the dynamic critical 

path distance (dcpd in Figure 3.4). The dynamic critical path distance for each node 

is the largest sum of the-execution times for all nodes along one of that node's succes- 
'. 

sor paths. That is, assume Na is some node in a program DAG. Let T be the exe- 
Ns 

cution time for node Ng. Then let S be the sequence of nodes (Nl, N2, ... N,) such 

that Na>Nl, Nk-,>Nk, and N, is a terminal node, i.e., N, has no successors. 

Assume there are 0 such sets of S. Then the dynamic critical path distance for N, is 

0 if N, is a terminal node, or max 



The dynamic critical path algorithm is similar to standard critical path algo- 

rithms in that the critical path for a graph is computed for each node. And obvi- 

ously in this application, the scheduler selects the starting node with the highest criti- 

cal path value as the next one to schedule for execution. One of the modifications 

used in this model, however, is that the DAGs may be dynamically modified at run 

time to add new nodes and arcs into the graph. Clearly, this has the potential for 

altering the critical path to any of the nodes in the DAG. 

Since the DAGs are not static, the dynamic critical path algorithm shown in 

~ i ~ u r e  3.4 dynamically recalculates the critical path distances at run time whenever 

the graph is modified. That is, the dynamic critical path algorithm is called once 

each time the operating system links a new node into the pool of available code seg- 

ments. This is essential if the scheduler is to be able to correctly determine the criti- 

cal path in a DAG constantly under revision. 

The dynamic critical path algorithm seems to strike at the heart of the schedul- 

ing problem. That is, if several different options are presented to a scheduler, it 

seems clear that ,a  scheduler should begin work immediately on the path that will 

take the longest, and hope that it can overlap shorter paths "on the fly" as it goes. 

For example, there is no reason' to initiate NF1 in program THREEDH until well into 

program execution, even though it is an original starting node a n  may have heen in 

the system a long time. Looking at Figure 3.1; it becomes obvious that other work is 

much more important, and NF1 can easily be run concurrently with other nodes'any 

time a free processor become8 availnblc. 



Critical path studies are well known in the operations research area. And the 
.- 

dynamic critical path algorithm does in fact correctly calculate the true critical path 

for any DAG as that DAG is constructed (or modified). However, unlike the results 

presented in work sueh as [Hu82], there is no guarantee that selecting a node with 

the .highest dynamic critical path distance value will return optimal results, for the 

reasons cited in Section 1.2. Nevertheless, on average it should be expected that the 

dynamic critical path algorithm will return "close" to optimal results. 

Figure 3.5 shows the dynamic critical path algorithm in action. In the upper 

segment, a DAG of three nodes already exists in the system. The dynamic critical 

path distance value for each of the nodes is marked with the tag of D. Since NA has 

two successors, each having an execution time of 100, NA's dynamic critical path 

value is 100. 

In the lower left hand segment, ND has been added, such that NB>ND. The 

dynamic critical path algorithm must therefore be called. ND's only predecessor is 

NB. Its old dynamic critical path value was 0, and so it is now reset to 100, NB9s 

new distance to the base of the tree. Likewise, NA is also shifted up by 100, giving it 

a new dynamic critical path value of 200. (If NA had any predecessors, the process 

would continue up the chain). This new value for NA thus represents the largest 

sum of the execution times for all nodes (NB and ND) along one of NA 'S two succes- 

sor paths (NA>NB>ND and NA>Nc). Since Nc is not along any of the dependence 

paths of ND's predecessors, it is not visited. 



Figure 3.6. Insertion of New Nodes with Tag Modifications. 

.In the lower right hand segment, Nx has been added, such that Nc>NE. Nc 

has been shifted up by 50. NB and. ND have not been visited. Note that the 

dynamic critical path algvrilhlll terminated on NAP without shifting it up, since its 



dynamic critical path value was larger than the path represented through ' N ~  (If 
. - 

NA had any predecessors, the process would therefore not continue up the chain). 

Figure 3.6 shows a simple program DAG where the dynamic critical path algo- 

rithm returns an optimal result of 300 total time units (assuming a machine of 100 

processors without folding). Note that unless a node from the critical path of 

NC>ND>NE is selected at  each opportualty, a suboptlr~lal resuPl UP 400 is i~1evil;alsle. 

Greedy and generous algorithms such as those discussed in the previous section have 

no basis on which to make a decision in this instance, and are likely to return a 

result of 400, as would a random scheduler. 

Figure 3.6. Program DAG. . 
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One of the potential pitfalls with any run-time scheduler is the problem of over- 

head. A good run-time scheduler cannot be too complex, otherwise it runs the risk 

of becoming a potential bottleneck in the system. If that were to happen, then even 

a random scheduler would be an acceptable solution, rather than slowing down the 

system with scheduling overhead. 

Fortunately, the dynamic critical path algorithm has three good points which 

can be made in its favor which help to keep overhead to a minimum. First, the algo- 

rithm only visits nodes along the predecessor paths of the new node being entered 

into the system. If a node does not have this new node as a (direct or indirect) suc- 

cessor, it will not be examined. Additionally, the algorithm terminates along a path 

as soon as a node is reached who's dynamic critical path distance exceeds the current 

critical path distance (currentAistance in Figure 3.4). Thus, only a small subset of 

the total DAG is likely to be visited on average. 

Second, it may be that some particular program is known to be static 

throughout its life in the system. In such cases; the critical path distance tags can be 

precalculated by the compiler, eliminating the need for the costliest portion of this 

scheduling technique to be performed at run time. Furthermore, even if a program 

DAG is to be dynamic, the compiler can still generate the tags for those portions of 

the program which are to be entered into the syslelll a l  Ihe saIIle time. 

Third, this scheduling technique allows for an interesting division of labor. Tt 

may be broken down into two disjoint responsibilities: the dispatcher and the 

scheduler. Both programs may be run in parallel. 



The scheduler's responsibility is to run the dynamic critical path algorithm 
- 

listed in Figure 3.4 whenever a new node is linked into a DAG.. As it backtracks 

through the DAG (dependence arcs are implemented by means of a doubly linked 

list) updating the dynamic critical path distances, the dispatcher can be busy select- 

ing the node with the largest dynamic critical path value from the starting queue 

which will fit (subject to folding considerations) on the currently available processors, 

and then allocating those processors for that node. . 

For several reasons, it does not matter if the scheduler is partially through a 

DAG modifying the tags when the dispatcher examines the starting queue's dynamic 
' 

critical path values. First, the scheduler only modifies each node's critical path tags, 

not any of the dependence arcs or the starting queue itself. Thus, even though the 

DAG is being written to a t  the same time another program is reading it, the 

scheduler cannot violate the program's semantics. (The only danger is involved when 

the scheduler tries to write to a tag in the starting queue, from which the dispatcher 

may be busy removing nodes. In that case, the operating system must place a lock 

around a single node only for either the scheduler or for the dispatcher.) 

Second, the worst thing that can happen is that the dispatcher selects the wrong 

node for execution. This can occur if a new node's entry causes a sharhing node to 

receive the largest dynamic critical path value in the DAG, but the scheduler has not 

completed its work before the dispatcher selects the next node for execution. This, 

however, is a very minor problem. This dispatcher will simply select the current 

highest tag value, which is probably a good choice anyway, since it is the largest 



dynamic critical path distance in the particular instance of the DAG before the 

current node arrived. After all, whenever the possibility of dynamic graphs are 

allowed, any scheduling technique must resolve itself to making decisions based upon 

incomplete knowledge, i.e., it only has a local rather than global view of what's 

Since the (relatively costly) execution of the scheduler may be overlapped with 

that of the dispatcher (and of course with task execution) at least some of the over- 

head in implementing a dynamic critical path algorithm can be eliminated. When 

combined with the facts that the scheduler may only need to visit a subset of the 

graph, and that compiler assist is po'ssible in generating the nodes' tags, it is felt that 

the dynamic critical path algorithm is a good candidate for study and possible imple- 

mentation on a multiprocessor. 

8.2.4. Dynamic Critical Volume 

Several of the schedulers shown in Table 3.2 use a form of algorithm known as 

the dynamic critical volume algorithm. The dynamic critical volume algorithm is 

listed in Figure 3.7. It is'discussed in detail below. 

' Upon close inspection of Figure 3.7, it becomes clear that the dynamic critical 

volume algorithm is very close to that of the dynamic critical path algorithm listed in 

Figure 3.4. In fact, the only difference between the two scheduling techniques is the 

manner in which the critical path is defined. The dynamic. critical volume algorithm 

defines the dynamic critical volume for each node (dcvl in Figure 3.7) to be the larg- 



subroutine dcvolume (node , current-vol) 
if node (dcvl) >_ current-vol 

.thenreturn . 

else begin 
node (dcvl) = current-vol 
current-vol = current-vol + node (execution~ime) * node (proceusor~eq) 
for all node (predecessor3 do 

call dcvnlume (predecessor; , current-vol) . . 

return 
end 

end dcvolume 

Figure 3.7. Dynamic Critical Volume Algorithm. 

est sum of the product of the execution times with the processor requests for all 

nodes along one of that node's successor paths. That is, if PNb is the processor 

request for node Ng, then the dynamic critical volume for N, is max 

The rationale for this modification is that the dynamic critical path algorithm 

only looks at the sum of the execution times along some path of the DAG. Such a 

sum, however, may not represent a true reflection of the work involved in executing 

that set of nodes on the processors. A more. accurate measure of'the work might be 

the space-time products of the nodes within that set. 



Furthermore, iq this model a one-way mapping from processors into execution 

time is possible, as was discussed in Section 2.2. And if the 25 percent folding rule is 

permitted, then the dynamic critical path distance for each node potentially may be 

off by a factor of 4 from the real time needed to execute that path. The dynamic 

critical volume for each node takes this into account. 

Despite the differences in the manner in which the critical path is defined, virtu- 

ally all of the characteristics of the dynamic critical path algorithm hold true for the 

dynamic critical volume algorithm. Section 3.2.3 covers such characteristics in detail, 

and thus they are not repeated here. 

3.2.6. Throughput Tradeoffs 

Up to this point, all of the scheduling techniques have been directed for the 

most part towards maximizing throughput and processor utilization. As any opera& 

ing system designer knows, however, throughput is not the only important criteria. 

From the users' point of view,, program turnaround time may be as important, 

and perhaps even more so, than machine throughput. Most users are willing to trade 

some degradation in machine performance (as long as it is not too big) in order to 

receive quick response time. A good operating system tries to balance these two com- 

peting interests. 

Scheduling technique number 24 in ?'able 3.2 tries to make such a balance. This 

scheduler picks as the next node to execute the largest dynamic critical path of the 

earliest program of the same type of program having the largest overall dynamic crit- 



ical path. That is, it attempts to combine the dynamic critical path algorithm, 

which tends to maximize throughput, with the FIFO algorithm, which tends to 

minimize program turnaround time. 

Stated another way, the algorithm works as follows. First, the node with the 

largest overall critical path value is located. Next, the program type that node 

belongs to is identified. Now, the FIFO port1011 swings lnto acliion. Tht: scheduler 

determines which program of that same type has been in the system for the longest 

period of time (this, of course, assumes a multiprogramming environment), Once 

that program has been determined, the largest critical path node belonging to that 

program becomes the next candidate for execution. Thus, this scheduler always ' 

selects a (relatively) large critical path, which is good for throughput, but runs older 

jobs first, which is good for turnaround time. 

Figure 3.8. Multiprogramming DAGs. 



For example, consider Figure 3.8, where T represents the program type, and q 
.- 

represents the program number. Two different types of programs are shown. Also, 

two copies of program, r2  are present; the first one has already had at least two of its 

nodes serviced, i.e., NA and NB (assume it has been in the system for a longer period 

of time). 

Scheduler number 24 then proceeds in the following sequence. Since NA of r2  q2 

has the largest overall value for- Dl further search is restricted to only r2.  Next, r2  ql 

is selected, since it arrived earlier than r2  q2. And finally, Nc within r2  ql is 

scheduled for execution, since it has the largest D value in that program type and 

number. (The next node selected would be ND in r2  ql for similar reasons. NA in 

r2 q2 follows the completion of r 2  ql ,  and then Nx in r1 ql is begun before Nc or ND 

3.2.8. Dynamic Critical Ratio 

Unfortunately, scheduling technique number 24 potentially has a serious draw- 

back. That algorithm requires that each node carry a program number tag, along 

with a program type tag. Although the program number tag could automatically be 

generated by the operating system as a unique ID, the presence of program type tags 

requires the users to categorize their programs into a disjoint set of bins. Besides 

wasting the additional space needed to hold the tags, such a requirement may be 

unrealistic in a practical environment. 



Ideally, a good scheduler should make its decisions based only upon the charac- 

teristics of the DAGs in the system. The dynamic critical ratio algorithm is another 

attempt to balance the often competing interests of throughput and turnaround 

time, while at  the same time avoiding the drawback of scheduler number 24. 

' The dynamic critical ratio algorithm is very simple. This scheduler first deter- 

mines the node with the largest overall critical path. Thai; node is schellulstl I'm. exe- 

cution unless one of two things happen. Either a node can be found with a critical 

path shorter than the largest node by some critical ratio, or a node can be found 

with a critica! path shorter than the previous node initiated on the processors by the 
' 

critical ratio. If such a short node can be found, then it is given a higher priority 

than the largest critical path node. 

Thus, a two node "working set" is maintained for the purposes of evaluating 

against a critical ratio. This allows the algorithm to adapt, to some extent, to a 

changing mix of jobs and average critical path values. Note that no requirement is 

needed for the nodes to carry along program number or type tags. 

The rationale for the dynamic critical ratio algorithm is that for machine 

throughput, big programs with large critical paths should receive a high priority. 

However, once a job is "close" to finishing, then delaying it further will gain nothing 

except to drive up the average turnaround time. So in those cases, the jobs with lit- 

tle left to do are quickly flushed out of the system before control returns to the 

longer programs. 



. For example, consider the example in Figure 3.8 again. Assume the critical ratio 

value is 4. Then in this example, since the largest value of D for any of the starting 

nodes is 100, all nodes with critical path values of less than 25 are initiated first, i.e., 

all copies of Nc, ND, and their successors. Following that, NA is initiated (this may 

occur sooner, if sufficient processors are available but Nc and ND's successors are 

blocked by dependencies from executing predecessors). The final initiation sequence 

then continues indecreasing values of D, i.e., Nx thin NB. 

In some ways, this is analogous to the way many printer queues are set up. 

That is, the shorter the job, the more important good turnaround time is likely to' be 

to the user. Thus, very short jobs are placed at the head of the queue, even if they 

arrived later, while medium and longer jobs are serviced normally. (The analogy is 

not'perfect, of course, e.g., print jobs are continuous, while DAGs are composed of 

smaller subgraphs, which both .prevent top level nodes from entering the starting 

queue if dependencies exist from currently executing nodes, and also must release 

their processors once the nodes have completed). 
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CHAPTER 4 

SCHEDULING SIMULATIONS 

.4.1.. Monoprogramming ! 

Thls secbiuu will iuvest;lgatt the effecis run-time ochcduloro have on monopro- 

gramming systems, i.e., deciding between the different control paths of a single job at 

a time. There are many reasons why a scheduler may only have one job on which to 

work, e.g,, some programs may have such a high priority that no Interference 1s per- 

mitted, others may be simply too big to fit on the machine while other jobs are run- 

ning, certain applications such as operating systems development. or real time pro- 

grams require a dedicated environment, different portlons of a larger ~~~ull iyruce~sur 

may be partitioned distinctly between unique jobs, etc. 

The object in a monoprogramming system, clearly, is to minimize the total exe- 

cution time, at the expense of all other parameters. This job cannot affect the per- 

formance of any other jobs, since obviously none are present. ~urthermore, given a 

fixed number of processors, there is no reason why all of them should not be utilized 

by the program if it helps to minimize the executlon tlme. S111aller lobal execullo~l 

times directly translate to increased throughput. 

As was stated in ~ect ioh  3.2.1, the random scheduler will be used to compare the 

relative performances of the other run-time schedulers. The random scheduler is 

fast, and represents a practical worst case that any good scheduler must be prepared 



to beat. 

The following tables show the effects the various schedulers have on the pro- 

grams in a monoprogramming system. An 8 processor machine with 25% folding 

was used. The SCH columns represent the scheduler numbers (refer to Table 3.2 for 

the meanings) and the TEX columns represent the total execution times needed to 

complete the program DAGs on that machine. 





Obviously, in most instances, little difference can be detected. Most. of the pro- 

grams differ by less than 5%. Two of the programs have identical results for all of 

the cases. Only in two of the programs, FIG12 and KERNEL, were slightly more 

significant deviations noted. 

Why is this the case? Why don't the run-time schedulers affect the total execu- 

tion times of the program DAGs to a larger degree? Program KERNEL in Table 4.9 

begins to explain some of the causes of this phenomenon. The EXE column 

represents the average number of nodes executing on the processors. The .ST& 

column represents the average number of nodes in the starting queue unable to run 

due to lack of sufficient processors. The BLK column represents the average number 

of nodes blocked from execution (and the starting queue) due to predecessors with 

dependence links still in the system. (Note that a node may be blocked due to prede- 

cessors that have not yet begun execution, predecessors which have already started 

running but have not yet completed, or a combination of both). The EXT column 

represents the average execution time for each node. The CMP column represents 

the average completion time for each node (measured from when a node enters the 

starting queue). The TTT column represents the average turnaround time for each 



node (task). And finally, the PRC column represents the average number of proces- 

sors busy executing nodes. A little more detail is provided on these and other param- 

eters in the Appendix. 

A quick glance a t  Table 4.9 reveals that not many tasks are executing at.any 

one time on the processors. In fact, over all, 25 schedulers, an average of only 1.6 



tasks out of a total of 3063 in program .KERNEL'are busy executing on the proces- 
- 

sors. 

Potentially, this may be due to one of two reasons. Either a sufficient number 

of processors are not available to KERNEL, or too many nodes in KERNEL'S DAG 

are blocked because of dependence arcs (i.e., a relatively limited selection of control 

paths are available to the schedulers from which to initiate nodes). 

Examination of the PRC column reveals that usually, all 8 processors (the max- 

imum amount allowed on the machine currently under discussion) are in use. And in 

fact, on average 11.8 tasks are waiting on the starting queue, a seven to one ratio 

over the number of tasks executing. So this is certainly one candidate, and 

insufficient processors cannot be ruled out at this stage: 

On the other hand, more interesting statistics can be found in the next few 

columns yet to be discussed. Table 4.9 shows that over all 25 schedulers, on average 

throughout the lifetime of KERNEL, 1523 tasks are blocked due to dependence arcs. 

This is a 929 to one ratio over the number of tasks executing and a 129 to one ratio 

over the number of tasks on the starting queue waiting for additional processors. 

' Clearly, most of the nodes in the BAG are tied up in this state. 

The final three columns also support this view. Averaged across time for all of 

the schedulers, a task will not be finished for 17596.6 time units after it enters, 150.7 

time units after it becomes a starting node, 'but only 19.5, time units once it begins 

execution. Once again, it seems as if tasks spend most of their time .blocked by 

dependencies. ' It can be seen that, for all seven data columns in Table 4.9, the 



pattern these global averages set also hold true for each of the 25 rows in the table. 
- 

Additional evidence is provided by program CGECO in Table 4.10. CGECO 

was even less susceptible to differences in the scheduling technique than was KER- 

NEL, as can be seen in Tables 4.1 and 4.7. And, the pattern seen in KERNEL 

becomes even stronger in CGECO. CGECO has, on average, only 1.2 tasks 



executing, 0.6 tasks on the starting queue, but 550.9 tasks blocked by dependence 

arcs. The average turnaround time for a task is 7777, the completion time is 25.6, 

and the execution time is a close 17.9. Furthermore, CGECO only used on average 6 

of the 8 processors available to it, unlike KERNEL which used all 8. This lends 

stronger support to the theory that it is dependence arcs, not insufficient processors, 

which are the cause of such a limited number of nodes in the program DAGs which 

are able to execute at any one time. 

To be completely sure, however, the effects of changing processors must be stu- 

died. All program DAGs were tested on 8, 32, 64, 128, and 1024 processors. Pro- 

gram CHEBY, it turns out, has the largest average processor request. A condensa- 

tion of the results from program CHEBY is shown in Table 4;11. 

As can be seen, adding processors causes the total execution time to drop, as 

might be predicted. At first, the machines are completely saturated, but eventually 

not all of their capacity is required. (And eventually, CHEBY moves to an almost 

perfect space-time product square of 423 processors for about 491 time units). It is 

important to note, however, that whether the processors are swamped or not, little 

difference 'in total execution time is recorded among the various run-time schedulers. 

Not shown in Table 4.11 are the EXE, STQ, BLK, EXT, CMP, or .  TTT 

columns. However, for all of thesc cases, on all of the various machine sizes, as well 

as for all of the other programs tested, the same pattern seen in Tables 4.9 and 4.10 

is present. That is, .most nodes (often by 2 or 3 orders of magnitude) spend most of 

their tiwe blocked due to depcndenee links. 



Thus, the question originally posed concerning ' ~ a b l c  4.9 can now be answered.' 

It can consistently be shown that dependence arcs constrain to a greater degree the 

number of nodes in a DAG which can execute than the lack of processors available to , 



process the separate control paths in a single job. And indeed, these two conditions 

are inversely proportional to each other. For if a single program has a large number 

of dependence arcs present in it, then it is unlikely to have a large number of 

independent control paths present. So, although the individual nodes in a DAG may 

be highly parallel (to the extent that some programs can utilize a very,large number 

of concurrent processors on average), it appears that (relatively) limited parallelism 

exists between the nodes in a single program. 

The implications of this discovery are clear. For if the bulk of the nodes'in a . 

DAG are inaccessible due to dependence links, then only a tiny fraction of the nodes 

are available to the starting queue. With a smaller pool of .nodes from which to 

make a decision, the various schedulers have a higher probability of selecting the 

same node (or all of the nodes, if they will fit) for execution on the processors. This 

situation severely restricts the options any run-time scheduler has to chose from, and 

thereby diminishes the impact a scheduler can have on the total execution time. 

The situation actually grows worse a s .  processors are added. Consider a 

hypothetical machine with an unlimited number of processors available. On such a 

hypothetical machine, all conceivable schedulers will act in an identical fashion, i.e., 

as soon as a task'enters the starting queue, it will immediately be dispatched for exe- 

cution on the processors. If a difference in actions is not possible hetmeen the 

schedulers, then a difference in execution time is also not possible. This is obviously 

true no matter what scheduler or program DAG is placed in to the system. 



Naturally, this implies that in an infinite processor situation, all schedulers act 
'- - 

optimally. The execution time for any DAG with any scheduler is then identical to 

.that DAG's largest static critical path, since all the schedulers have to do is to work 

their way down the critical without having to worry about competition for 

resources. 

Furthermore, the closer a real machine approaches an .  unlimited processor 

environment (from the program's point of view) the more likely it is that on average, 

that program's requirements can be met, and the less likely it is that any run-time 

scheduler will make much of a difference. Note that this is much more probable in a 

monoprogramming system than in a multiprogramming system. After all, single jobs 

compose a subset of a multiprogramming environment. Therefore, monoprogram- 

ming is much less likely to stress the (realistically limited) processors, and thus be 

able to differentiate between schedulers to the same extent. 

Returning to the discussion of dependence arcs, if they create such a big prob- 

lem for schedulers, then what would happen if the program's nodes arrived spread 

out across time, instead of all at once, as has been the case up to this point? In such 

a situation, some dependence links may be artificially "broken", i.e., a few nodes 

may arrive with dependence information, only to find that thelr predecessors have 

long since completed and left the system. In such cases, the dependence links obvi- 

ously never get . . created. Furthermore, a variety of nodes may arrive in close proxim- 

ity to each other and immediately be in the starting queue together, where 

under the previous tests, these nodes ordinarily may never have been able to compete 
. , 



against each other. 
.-- . . 

Table 4.12 shows one example of a dynamically arriving program, in this case 

HTRIBK. The 2969 nodes of, HTRIBK in this example were spread out to arrive 

evenly across a time interval of 18834, which was the total execution time for the 

random scheduler in Table 4.6. (One constraint was placed on the arrival of the 

nodes, however. No node could arrive before all of its predecessors had arrived.) As 

can be seen from the table, again little difference is observed between the various 

schedulers. The total execution times between program runs were affected, depend- 

ing upon the arrival characteristics and the particular program'DAG begin tested, 

but no scheduler ever performed consistently and significantly better on dynamic 

monoprograms. 

Similar results were obtained on single jobs as the folding percentage was 

changed. Folding affected the overall execution times dramatically, as was discussed 

in Section 2.2, but it did not have a consistent and significant effect on which 

scheduler performed best on a single program. 



The only program for which the run-time scheduler had a very large effect, was 
'- 

FIGI2, where a 23% improvement was noted on an 8 processor machine in Table 4.5. 

FIG12 is somewhat anomalous, due to the presence of a single "fat" node in the 

DAG, which completely hogs the processors on a small multiprocessor if it is allowed 

to run first. As it turns out, it happens to be beneficial to select that path first, and 

so schedmlers which favor fat nodes (such as greedy processor or the largest critical 

volume algorithms) do better in this particular instance. 

Thus, several things have now become apparent. Single jobs only have a (rela- 

tively) limited number of independent control paths present. This restricts the 

number ,of starting nodes schedulers have to process, increasing the probability that 
a 

they will act the same. Furthermore, (and perhaps related to that problem) single 

jobs do not always stress the capacity of a multiprocessor. Thus, all starting nodes 

are free to be initiated immediately, which makes the decisions of a scheduler 

irrelevant. 

For these reasons (and a few others to be discussed in the next section), run- 

time schedulers in a monoprogramming system do not (usually) have as significant an 

effect as one might expect in advance. Therefore, it is probably a wise choice to 

select a scheduler whlch is as lusl as possible, with littlc overhead placed upon the 

operating system. Furthermore, as many decisions as possible (such as static critical 

path tags, if desired) should be moved to the compiler, rather than be evaluatedat 

run time. 



4.2. Multiprogramming 
, - 

Multiprogramming offers a completely different environment, and therefore 

potentially a different set of conclusions, 'than can be found in a monoprogramming 

system. For one thing, the presence of multiple jobs offers a larger number of 

independent control paths, and therefore starting nodes, than on a single user sys- 

tem. Furthermore, the processors are more likely to be stressed due to the addition 

of multiple jobs. A run-time scheduler's decisions thus become more important than 

in the previous section. And, as will be seen shortly, additional characteristics of 

multiprogramming systems greatly affect the choice of run-time schedulers which 

should be implemented. 

Multiprocessors are expensive machines, and for most applications, it is probably 

not cost effective to run a single job in a dedicated environment. It has been known 

for quite some time that in virtually all systems, the benefits of time sharing far out' 

weights its detriments. Given that this is true, it is probably a safe assumption to 

make that any given multiprocessor is likely to be running some form of time and 

processor sharing operating system. And in order to help efficiently exploit the avail- 

able parallel hardware, this section attempts to cxamine that problem as it relates to 

the run-time scheduler. 

On the average, at a.ny one time multiprogramming systcins are likely to be run- 

ning a variety of different jobs. It is very common to find one or a few very large 

jobs executing, such as a long simulation, along with a much greater number of 

emnller jobs, such as editors, Compilers, or debugging runs of larger programs with 



limited data. Unless stated otherwise, this model thus becomes the focus of the fol- 

lowing two sections. 

And as in the previous section, the random scheduler will be used as a perfor- 

mance index on how good or bad any particular scheduler is said to be, along with 

comparisons between the various schedulers. For that purpose, the total execution 

time will again be used to measure throughput, holding all other parameters con- 

stant. However, unlike the previous section on monoprogramming, throughput is no 

longer the only criteria of interest. Turnaround time also must be taken into con- 

sideration, as response time is obviously a very important factor to many users when 

their jobs are executed in a multiprogramming environment. For that purpose, the 

additional data of individual program turnaround times and execution time spans 

will be introduced. 

Hopefully, some sort of balance can be made between these two often competing 

interests. seetion 4.2.1 looks primarily at  the throughput issue, and the first 23 

schedulers listed in Table 3.2 are analyzed there. Section 4.2.2 'looks primarily at the 

turnaround time issue, and discusses the final two schedulers separately in that sec- 

tion. However, scheduler number 24 is listed in the tables along with the first 23 

schedulers in Section 4.2.1, eveu lhoilgh it is not nnaly~ed uatil the following section, 

Scheduler number 25 returns a range of values, and thus is not even listed in the 

tables until it ,is discussed. 
. . 



4.2.1. Throughput' 
.- 

For a variety of reasons, some of which have already been discussed, run-time 

schedulers can make more of a difference in the total execution time, and thus 

throughput, of a multiprogramming system than they do in a monoprogramming sys- 

tem. Table 4.13 is typical of such results. a 

This particular example assumed a single copy of the large program THREEDH 

was multiprogrammed with 70 copies of the smaller program COUNT. An 8 proces- 

sor machine, Gith 25% folding, and arrival times of 0 were assumed. (The PTT 

columns represent the program turnaround times, and the ETS columns represent 

the execution time spans. These columns are defined in the Appendix, and will be 

discussed in greater detail in the next section.) 

Several points are immediately apparent. For instance, significant deviations in 

the total execution times between the sched~~lers can be noted; Furthermore, as will 

be seen in some of the other examples cited, consistent patterns begin to develop con- 

cerning which schedulers return the best overall throughput performance. Hopefully, 

this section will illustrate not only which schedulers perform best, but also the rea- 

sons behind that increased performance. 

Table 4.13 reveals that the random scheduler (SCH row no. 1) returns a total 

- 
execution time for thc DAGs of 00295. It, however, did not do the worst. The worst 

scheduler in this instance was the smallest .dynamic critical volume scheduler (no. 

23), with a total execution time of 66154. This represents a 9.7% increase in the 

total. execution time. The other schedulers which did worse than random .$&re, in 



decreasing order of time: smallest dynamic critical path (no. 16), FIFO (no. 2), smal- 

lest processor request (no. ll), and largest processor request (no. 10). 



Several of the schedulers were less than 5% faster than the performance of ran- 
- 

dom. They were: largest execution time (no. 12), smallest execution time (no. 13), 

largest product of time and processors (no. 14), and the smallest product of time and 

processors (no. 15). 

Many of the schedulers showed significant speedups over the random algorithm. 

These were the entire collection of the dynamic critical path algorithms (nos. 4-9 

and 17), the dynamic critical volume algorithms (nos. 18-22), and the largest proces- 

sor request with ties going to the largest dynamic critical path (no. 3). All of these 

schedulers showed a specdup over random of approximately 40%, with the fastest 

scheduler returning a total execution time of 35121, or a 41.8% speedup. 

Why were such dramatic results recorded? And why did the dynamic critical 

path and volume algorithms in particular do so well? The other columns in Table 

4.13 begin to answer these questions. 

Glancing at the EXT, CMP, and TTT columns, it is, clear that tasks still spend 

most of their time blocked by dependencies from execution. This is to be expected. 

After all, multiprogramming systems are made up from a collection of individual sin- 

gle jobs, each of which exhibit the same dependence characteristics seen in Section 

4.1.. Adding more jobs does not break links within a job. 

The difference, however, occurs in the STQ, relative to the EXE and .BLK 

columns. Now, unlike Section 4.1, the introduction of multiple ,,independent jobs 

ensures a greater number of nodes in the starting queue. In fact, averaged over all.of 

the dynamic &tical path and volume algorithms, 87.3 nodes were idle waiting for 



processors to become free. (There were 6700 total nodes in the system). This is a 

much higher number than was seen in a single user system. Even algorithms which 

performed poorly had a relatively large pool of nodes in the starting queue. 

The assertions made in Section 4.1 are thus justified. Multiple jobs ,with 

independent control paths in a multiprogramming system obviously place a greater 

number of nodes onto the starting queue. More nodes an that queue reduces .the pru- 

bability that different schedulers will select the same node. Furthermore, the addi- 

tional nodes stress the processors more, making it less likely that the different 

schedulers perform close to optimal. Therefore, a s  predicted, the run-time 

scheduler's decisions become more significant, and therefore more important, with 

multiprogramming. 

As a final note, it can be seen from the PRC column in Table 4.13 that those 

algorithms which performed best had the. highest processor u-tilization, and in fact 

completely saturated the machine. This is to be expected. Schedulers which did not 

do well utilized ,less processors on average, despite the fact that nodes were available 

in the starting queue (although on average, the starting queue was shorter for poorly 

performing schedulers). 

What effect does the job mix, in particular the number of small programs, have 

on these results? Tables 4.14 and 4.15 illustiate the.changes observed as the degree 

of multiprogramming is varied. Table 4.14 contains 50% less, and Table 4.15 50% 

more, copies of COUNT than was executed in Table 4.13. All other parameters were 

held constant. 



As can be seen from Tables 4.14 and 4.15, the overall patterns seen in Table 

4.13 .are still true. Obviously, the overall execution times tend to decrease in Table 



4.14 and tend to increase in Table 4.15. However, the collection of dynamic critical 
- 

path and volume algorithms consistently perform very well. Other schedulers show 

little or no consistent improvement, and in some cases actually do worse than ran- 

dom. The smallest dynamic critical path and volume algorithms do exceptionally 

poorly. 

There is one difference between Tables 4.14, 4.19, and Table 4.13 that should be : 

noted, however. Table 4.13 recorded speedups of around 40%. The latter two tables 

dropped their speedups to just under 32%. 

Why did this happen? The answer should be obvious in the case of Table 4.14. 

For as the degree of multiprogramming is decreased, the system begins to look more 

and more like a monoprogramming system. The number of nodes on the starting 

queue begins to shrink, the processors become less stressed, and the utilization drops. 

Thus, speedup is definitely recorded, but it is not quite a dram.atic. 

Table 4.15 is less obvious. Why should increasing the number of copies of 

COUNT by 50% decrease the speedup by approximately 8%? The answer is that as 

more copies of the smaller program are added to the system, the relative contribution 

of the larger program to the overall statistics begins to decrease. Eventually, the per- 

formance values are made up almost entirely as if the scheduler saw only a collection 

of identical short jobs, without ever introducing a larger .program on to the proces- 

sors. 

This then brings up yet another potential pitfall for run-time schedulers. For 

even .if the processors are stressed such that all nodes can't run immediately,. and if a 



large number of multiple independent control paths. are present, then if all of those 
' 

paths have identical or even close characteristics, the scheduler has no basis upon 



which it should make a decision. Every path looks just as good as every other path, 
. - 

since the characteristics of those paths being evaluated are the same. Thus, keeping 

the selection criteria constant, any particular scheduler begins to service the jobs 

(more or less) in a round robin fashion. 

Fortunately, this situation is much less likely to occur in a multiprogramming 

systoem than in a dedicated environment. Single programs often have identical con- 

trol paths, generated by the outer nested parallel loops (the Borlzontsl brackets in 

Chapter 3). With multiprogramming, a much wider variety of relative critical path 

distances, processor requests, execution times, etc. is likely to be found, giving the 

run-time scheduler a basis for decision making. 

Furthermore, not only does a multiprogrammed system inherently offer a richer 

environment of different jobs than a monoprogrammed one does, but also the proba- 

bility of a dynamic system, or nonzero arrival rates, is enhanced. This leads to 

potentially even greater differences in such parameters as the dynamic critical path. 

This is true even if a common job is run often, since an earlier arrival will already 

have completed a portion of its DAG before the next job arrives, so that its starting 

nodes will carry smaller critical path tags than the current arrival. (Indeed, it is 

probably much more likely to have a dynamic environment between, not within, 

separate DAGs). 

Table 4.16 is illustrative of such results in a dynamic environment. Unlike the 

previous example, where all of the jobs arrived simultaneously, this particular exam- 

ple is more complex, demonstrating the dynamic modification of the general . . ' 



collection of DAGs the run-time scheduler is examining. 



For this example, an 8 processor machine with 25% folding was selected. Five 
- 

copies of the program COUNT were scheduled to be run sequentially, arriving at the 

start of the simulation. One hundred and twenty copies of the program FIG1 were 

dynamically added in' groups of four, with arrival times spread out across an interval 

of 14976, in an attempt to keep a relatively constant flow of jobs into the system 

until near the end. 

And once again, the pattern is still present. The largest dynanric critical path 

and volume algorithms (nos. 4-9, 17, and 18-22) return consistent and tlfgniflcaut 

results on dynamic DAGs, with a speedup for this particular example of 30.6%. The 

smallest dynamic critical path and volume algorithms (nos. 16 and 23) again perform 

poorly, with .an increase over the random scheduler's total execution time of 2.2%. 

All sther schedulers are scattered somewherk in between these two values. 

So, to summarize some of the concepts to this point, a run-time scheduler will 

make a difference in the throughput of a DAG or DAGs under the following condi- 

tions. First, the processors must be stressed. Placing a heavy load upon the proces- 

sors forces the scheduler to make a decision as to which group of tasks will not 

currently be able to run. If that decision is wisc, then good performance will result. 

. Ot,herwise, the scheduler could perform worse even than random. Light loading of 

the processors reduces that pressure, with the limiting case being that all schedulers 

act the same, and approach an optimal throughput.. 

Second, a relatively large number of starting nodes must be presented to the 

run-time scheduler. Multiple independent control paths contribute t o  this factor. 
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The higher the number of nodes, the lower the probability that any two schedulers 

will select; the same node, and thus yield the same results. 

Third, these nodes should present different values to the scheduler (for which- 

ever characteristic it is evaluating). Otherwise, the scheduler has no criteria upon 

which to form the basis of its decisions. For example, if all of the starting tasks have 

the same dynamic critical path tag value, then a dynamic critical path scheduler will 

select the highest one, until they are all equal, and then begin a round robin dispatch 

between all of the various paths. 

Note that all three of these points are more likely to occur in a multipro- 

grammed operating system than on one which implements only monoprogramming. 

There are more demands on the processors, there are less dependence arcs between 

programs, and the dynamic arrivals, as well as the different types of jobs, contribute 

to a wider variety of nodes in the system. 

And under these situations, it appears that the dynamic critical path and 

volume algorithms perform very well. Consistent and significant speedups are 

recorded over a random selection of tasks from the starting queue. 

Graphically, the situation can be illustrated in Figure 4.1. Figure 4.1 shows a 

typical job mix in a multiprogramming system, i.e., one (or a few) very long jobs, 

with lots of smaller jobs aloo competing for resources. 

In such situations, competition for resources often cause nodes to get "bumped 

off" consideration for the next node to be started. But which one (or ones) should 

lose out in Figure 4.1? Clearly, it seems prudent to give precedence to the nodes on 



Figure 4.1. Multiprogramming DAG Collection. 

top' of the largest dynamic critical path and try to overlap the shorter nodes in 

parallel with the execution of the longest job. Any other choice is almost certain to 

be detrimental to system throughput. 



Furthermore, the higher the relative difference in critical path heights, in con- 
'- 

junction with. a larger number of small jobs requesting service, from the processors, 

the more important a scheduler's decisions become to throughput. After all, with a 

. low probability of "finding" an extremely high path in a huge sea of short nodes with 

schedulers such as random, greedy or generous execution times, etc., a greater poten- 

tial exists for poor results. Therefore, in such situations, schedulers such as the 

dynamic critical path or volume algorithms are worth the investment in overhead 

more sophisticated schedulers require on real data programs. 

One of the interesting results from the examples run was that the dynamic criti- 

cal volume algorithms (nos. 18-22) did not outperform the dynamic critical path 

algorithms (nos. 4-9 and 17). Indeed, differences of only a few percent were usually 

recorded. This is especially surprising when folding was permitted since, as was 

pointed out in Section 3.2.4, use of the 25% folding rule means that the dynamic 

critical path distance for ahy arbitrary node may be off by a factor of four from the 

real time needed to execute that path. It was originally thought that since the sum 

of the space-time products more accurately represents the amount of work needed to 

complete some path than does the sum of the execution times, then the former would 

provide a superior selection criteria for the run-time scheduler. Such does not 

appear to be the case. 

, '  The reason this seems to be true is that there is no correlation between which 

path a node happens to reside upon, and the probability of that node's successors . 

being folded, Stated anothcr way, averaged over all nodes, paths 'with higher . : 
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dynamic critical tag values (tend to) have more nodes within those paths. The larger 

the number of nodes in a path, the higher the probability that some of those nodes 

will be forced to fold processors into time, thus increasing the "effective" dynamic 

critical path to an even larger value than it .  was before. Thus, in a sense, the 

dynamic critical path value does take into account the problem of folding, even if it 

is only a "side effect" of the probabilistic distribution of execution times and proces- 

sor requests among the nodes. 

One final comment on this subject should be made. Since the dynamic critical 

volume algorithms require a multiplication which is not needed in the dynamic criti- 

cal path algorithms, the former series will obviously run slower than the latter. And 

since. the dynamic critical path algorithms seem to work just as well, those algo- 

rithms are probably the ones which should be selected, given a choice between the 

two sets. 

Another point of interest. was that the secondary evaluation criteria in the event 

of ties in the critical path and volume algorithms did not have a consistent and 

significant effect. Usually, little difference was recorded, and it was not u n c o ~ ~ l u u ~  

for the results to match exactly between different variations of the tie breakers. In 

those few instances where small differences did occur, no consistcnt pattern developed 

as to which criteria was best. 

Also, examples were run oii larger processor ~~lacliiiies. When the numbcr 'of 

processors was increased without changing the job mix, the obvious results were 

observed. That is, there were decreases in the total execution times and a lowering of . . 



the relative. differences between the schedulers, in a fashion similar to the transition 

from Table 4.13 to Table 4.14, and for the same reasons previously cited. .On the 

other hand,.sialing the number of processors and the degree of multiprogramming up 

by the same factor yielded virtually the same results as on the smaller machine. For 

instance the example shown in Table 4.13 was scaled up to a 32 processor machine, 

with four copies of the large program, and 280 copies of the small program. The 

same trends held. Random returned a total execution time of 61395. Smallest 

dynamic critical path and volume returned 69805 and 69797, respectively, which 

were the worst of all of the schedulers.. The largest dynamic critical path and volume 

algorithms averaged a total execution time of 36270 and 36370, respectively. 

And finally, the amount of folding permitted returned the same results as in 

Section 4.1, i.e., folding has a dramatic effect on the overall execution times, but 

shows no eorrelatioll belween selection of a run-time scheduler. Readers are there- 

fore referred t o  the work by X u  and Yew mentioned in previous sections for any 

further discussion. 

4.2.2. Turnaround Time 

To this point, it has been shown that the dynamic critical path and volume 

series of algorithms perform very well in a multiprogrammed environment, 'i.e., a 

substantial increaie in speedup is recorded over random and most other schedulers. 

As ca4 be nobed from the far right columns ,in all of the examples cited, however, this 

speedup is gained at the expense of extreme turnaround times for the shorter pro- 

grams. 



This is a bad situation. For it is probably true that the shorter the program, 

the more users are interested in quick response time. The dynamic critical path algo- 

rithms certainly fail this test. 

Why is this the case?  he problem arises due to the inherent nature of the 

dynamic critical path algorithms in that they actually avoid terminal nodes. That is, 

if a program DAG is almost completed, and the run-time scheduler suddenly discov- 

ers a new starting node with a higher dynamic critical path value (due to either a 

new arrival or an existing DAG disposing of dependence links as predecessor nodes 

terminate) then the DAG with the largest critical path value is given preference over 

the shorter ones. This is by intent, of course, in order to maximize throughput. 

The problem with this scheme, however, is that the closer a job gets to finishing, 

the lower the probability'becomes of that game Job beillg given access to thc procco 

sors by the scheduler. It is clear that a paradox has been created, namely, jobs are 

only given the chance to complete if they are not close to complellug. The imylica- 

tions of this strategy upon program turnaround time are obvious. 

The. solution to this problem seems to be one of balance. Obviously, techniques 

which go to extremes in either direction are not acceptable in a real system, and the 

critical path schedulers discussed in the previous section miist be modifled ~ouehuiv 

in a manner which will take both parameters into account. That is, give priority to 

large critical. path values most of the time in order to aid throughput, but once a job 

becomes "close" to finishing, then try and quickly flush it out of the system in order 

to aid turnaround time. 



This section attempts to analyze that problem. The final two run-time 

scheduleis listed in Table 3.2 are examined and compared in the standard fashion to 

random, etc. However, since many of the "side issues" discussed in Secti0.n 4.2.1 

(e.g., the degree of multiprogramming, the effects of folding, etc.) yield the same 

results as they did in the previous section, those arguments are not repeated here. 

The first algorithm to be discussed in this section is the one in row 24 of Table 

3.2, which for lack of a better name will be known simply as '%umber 24". 

Scheduler number 24 first determines which node has the largest overall dynamic 

critical path tag value. Next, the earliest program number of that same type of pro- 

gram is located. (Program types are defined in Section 3.2.5, 3.2.6, and the Appen- 

dix). Finally, the largest dynamic critical path within that particular program is 

selected for execution. 

Basically, what number 24 is trying to do is to combine the dynamic critical 

path scheme with FIFO, in an attempt to make some tradeoffs between throughput 

and turnaround time. It moves jobs which have been in the system for a long time 

towards completion. Furthermore, it avoids the common problem the dynamic criti- 

cal path series have of processing all of the high paths first, until everything is of 

even height, and then providing approximately equal service to al'l possible paths in a 

round robin fashion, i.e., as soon as any path gets lower than any of the other paths 

it is ignored. On the other hand, because two of the three stages in number 24 are 

based upon the dynamic' critical path, it still attempts to service the DAG with 

, minimal loss of thiuughpul. 



And, in fact, number 24 actually works quite well. Consider for example the 
* 

program set discussed in Table 4.13. (Although all of the copies of COUNT arrived 

simultaneously in Table 4.13, number 24 arbitrarily decides that which program is 

the "first" is the one with the lowest program number. And in real systems, all pro- 

grams generally are assigned a unique program ID, which would be sufficient for 

n.u,mher 24 to operate in the event of arrival time ties in the real world.) 

For that particular collection of DAGs, number 24 returned a total execution 

time of 41640, or approximately a 30.9% speedup over random. With the exception 

of the critical path and volume algorithms, this result is better than any of the other 

schedulers. On the other hand, the critical path schedulers returned speedups in the 

range of 40%, which obviously is better than number 24. . . 

But what price did the dynamic critical path schedulers pay 'for their extra 

speedup? Consider scheduler number 5 (largest dynamic criti~al path with ties bro- 

ken by the smallest processor request), which returned the best throughput in this 

particular example. Scheduler number 5 showed an average execution time span for 

program COUNT of 32420. This is 26.7% worse even than random in this example. 

Similarly,. the average turnaround time for COUNT with scheduler number 5 was 

30.1% worse than random. (On the other hand, the execution time span and the tur- 

naround time for program THREEDH were about 42% faster than random). 

Compare that with the results obtained by scheduler number 24. Schedder 

number 24 had an average execution time span for COUNT of 3318, and an average 

turnaround timeof 23556. This is 87% and 11.6% faster, respectively, than random, 



and 89.8% and 32.3% faster, respectively, than scheduler number 5. (The statistics 

for TEIR.EEDH were.roughly the same as that returned by scheduler number 5). So 

a t  the cost of losing 10.9% (out of 41.8%) of the speedup afforded by scheduler 

number 5, scheduler number 24 returns an execution time span for the smaller pro- 

gram which is an order of magnitude smaller than number 5, and a turnaround time 

which is faster by a third, 

Similar results were obtained for all other simulations conducted. For example 

the dynamic critical path algorithms in Table 4.16 (with nonzero arrival times) took 

19556 time units to execute, while scheduler number 24 required 19592. These are 

speedups over random of 30.6% and 30.5%, respectively, which are obviously very 

close. But the dynamic critical path algorithms bought that extra 0.1% at a very 

heavy price. The average execution time span for FIGI was 933, and the average tur- 

nardund time was 967. (These values, execution time span and turnaround time, are 

much closer than before, since all copies of FIGI did not arrive simultaneously at the 

start of simulation, unlike the example cited in Table 4.13). This represents an 88% 

and an 87.7% speedup, respectively, over the dynamic critical path algorithm. Cer- 

tainly this was a worthwhile' tradeoff! 

And so it seems that scheduler number 24, all things considered, performs quite 

, . well. Unlike the dynamic critical path algorithm, number 24 flushes out jobs that 

are about to complete, and' avoids the pitfall of ignoring ,short DAG segments. 

Throughput does sometimes suffer (as was especially true in the first example cited) 

but thc bcnefits of quick response time mare than cnwpensatc for that loss. 



The problem with scheduler number 24, of course, is that it requires 

classification of the programs submitted to the operating system by job type. This is 

a serious drawback. Furthermore, all of the program nodes are required to carry 

along that program t h e  tag (or at least a pointer to a tag) which is not very space 

efficient. The next scheduler is an attempt to avoid those drawbacks. 

The dmamic critical ratio algorithm is an attempt to balance throughput and 

turnaround time based only upon the characteristics of the DAG alone. No require- 

ments are needed for job identification or typing. 

The dynamic critical ratio algorithm simply takes the largest critical path value, 

unless some node is shorter than that value (or the value of the last node dispatched), 

in which case the shortest critical path value is used. This algorithm thus attacks 

the same problem as number 24, but by a different method. That is, large dynamic 

critical path values are normally used in an attempt to maximize throughput, but 

once a DAG segment gets "close" to completing, then it is given priority and pushed 

out of the system. "Close" in this instance is defined by the ratio value selected, 

which will be referred to simply as "R". (See Sections 3.2.5 and 3.2.6 for further 

information). 

What type of results does; the dynamic critical ralio a1goril;Liii return? Wtll, the 

answer to that question depends upon the value of R selected. For example, Figure 

4.2 demonstrates how the total execution time, the. program turnaround time, and 

the execution time span for the shorter program (FIGI, in this case) are affected by 

the value of R used for the example first cited in Table 4.16. .(The specific values 
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Figure 4.2. Performance Parameters as a Function of R. 

used to generate Figure 4.2 for different values of R are reproduced in Table 4.17). ' 

There are two main points of interest in Figure 4.2. First, it is clear that the 

total exec~atiou time is invcrocly prapartiurral lo the turnaround time and the 



execution time span. (Since the turnaround time and execution time span curves fol- 
- 

low each other, only one, the turnaround time curve, will usually be referred to in 

the rest of this section). 

Obviously, this is to be expected. For as the dynamic critical ratio algorithm 

increasingly favors flushing smaller jobs out of the system, it increasingly helps the 

average turnaround time, but at  the cost of increased overall system time. 

The best results would be obtained a t  some point ,in the middle of the crossover 

between the curves. (In this example, the turnaround time curve started to drop 

significantly faster than the execution 'time curve started to rise on the right portion 

of the curves). For example, if an R value of 15000 is used in this particular exam- 

ple, total execution times of about 20.6% faster than random are recorded. While 

that is certainly less than what was recorded by the dynamic crltlcal path algorilluu 



(or even number 24), the average program turnaround time and execution time spans 
'- 

for FIG1 were 83.8% and 84% faster than the dynamic critical 'path algorithm, 

respectively. Furthermore, by decreasing the value of R even further into the areas 

of nonzero slopes, mdre complete tradeoffs between throughput and turnaround time 

can be made, depending upon the particular needs of the users. 

The second point. of 'interest in Figure 4.2 is that all of the curves show three 

distinct regions of stability. Why 'did this occur? Figure 4.3 helps to explain this 

phenomenon. 

Assume that the column heights in Figure 4.3 represent the dynamic critical 

path values of some programs. Figure 4.3 then shows a very long program, a short 

program which has been iq the system for some time (the dashed box represents the 

portion of the DAG which has already been completed) and the arrival of another 
. . 

short program DAG. 

The value of R can then fall into three distinct regions, as shown in the figure. 

If R1 is used, then the dynamic critical ratio algorithm acts exactly like the largest 

dynamic critical path algorithm. Large critical path values are selected, short critical 

path values are ignored (except when the big programs can't run due to dependence 

links from currently executing predecessors), throughput is maximized, as is tur- 

naround time. This is represented by the right portion UP the graph in Figure 4.2. 

If R3 is used, then the dyna~nic critical ratio algorithm acts exactly like the 

smallest dynamic critical path algorithm. Small critical path values are selected over 

large. ones, and throughput and turnaround time are minimized. This is r'epresented 

, . 



Figure 4.3. Possible Ranges' for R. 

by the left portion of the graph in Figure 4.2. 

]If R2 is used, then things are much different. Small DAGs close to completing 

are given priority, which helps turnaround time. When no small jobs are present (or 

they are blocked by dependencies from executing predecessors) then the largest 

dynamic critical path values are used, which helps throughput. New arrivals of short 

jobs are given the lowest priority, and must wait to run until dependencies block 

everyone else. The exact statistics returned when R is in the R2 region depends upon 
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the specific value of R, the average height of the program DAGs, and the average 
.'- 

arrival rate of the DAGs. 

As an example of this, consider Table 4.13 again. There, unlike the example 

just discussed, all of the programs arrived simultaneously. In such cases, R2 regions 

. do not exist. The net effect of that situation is that thedynamic critical ratio algo- 

rithm essentially "breaks", and the analogous graph of Figure 4.2 would look like a 

step function if it was to be plotted. A binary choice is thus the only possible con- 

sideration without R2, i.e., the scheduler will act like either the largest or the smal- 

lest dynamic critical path algorithm. (Note that this situation can besimulated by 

very rapid arrival rates, i.e., if programs arrive faster than the scheduler can process 

them down below R. If that happens, then the algorithm becomes .overloaded, and 

enters the R1 region. All of the problems previously discussed concerning the largest 

dynamic critical path algorithm then apply here, i.e., good throughput but bad. tur- 

naround, time. Table 4.13 is the limiting case of this scenario, of course). 

Assuming dynamic DAGs, however, the question then becomes: how should the 

value of R be selected? Unfortunately, there is no known way of automatically 

selecting this value. Generally, R should be selected such that it is less than the 

average height of the average small program entering the system (to avoid moving 

into region R3) but not so small so that the processors cannot "shrink" the height 

down below R before the next batch of jobs arrive (to avoid moving into reiionR1). 

Even though it tries to adapt by means of its two node working set, its sensitivity is 

still yrogortlonal tn the size of that averagc R3 "window". Obviously, this is a func- 



tion of the average arrival rate, the average service rate, the average height of jobs, 
. - 

etc., something that probably cannot be known a priori, without studying the job 

mix at  a particular installation over a period of time. 

Without that knowledge, however, the dynamic critical ratio algorithm is rather 

sensitive, and not robust. About the most that can be suggested at this point would . . 

be to have the value of R "tuned" on site depending upon the needs and demands of 

that system. Thus, as is true of all heuristics, it appears as if the perfect run-time 

'scheduler which solves all possible problems under all possible circumstances does not 

exist . 
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CHAPTER 6 

CONCLUSIONS 

The last several decades have seen an enormous increase in computational capa- 

bilities. Originally, this was due to hardware innovations. More recently, the 

increase in speed has come about as a result of the use of increased parallelism. 

In order to exploit this parallel hardware in general, and multiprocessors in par- 

ticular, appropriate software must be developed which will take advantage of the 

underlying parallelism. For example, either parallel languages must be utilized, or 

compilers must be run which automatically detect parallel constructs in the code 

which can be executed concurrently on separate processors. And once those con- 

structs have been recognized, a run-time scheduler is needed to determine which 

tasks should run in which order, and on how many processors. 

This run-time scheduler faces many obstacles. For example, data dependencies 

specify a partial ordering upon the tasks, nodes may be bidimensional with both time 

and processorrequests, those nodes may fold processors into time at processor alloca- , 

tion time, graphs are being modified at various times in a multiprogrammed, multi- 

tasked system, etc. 

The general case is NP-hard. Nevertheless, the problem must be solved in the 

real world. 'Thus, an analysis of various heuristics is required. 



Furthermore, real data taken from a working compiler and benchmark pro- 
- .  

grams need to be studied. After all, analytical models are of limited practical 

significance, as their relationship to the characteristics of real programs, which are 

ultimately the things.which must be executed, are not known a priori. This thesis 

attempts to examine a small portion of that problem. 

Unfortunately, real programs contain thousands of nodes and dependence arcs. 

Especially in a multiprogrammed system, an optimal solution is therefore not feasi- ' 

ble. A random scheduler, however, has been used as a practical (but not theoretical) 

worst case bound. Random is fast, and schedulers which do not perform substan- 

tially better than it are probably not a good choice. 

Monoprogramming systems can utilize the services of a run-time scheduler to a 

lesser degree than can a multiprogramming system. There are several reasons for 

this, First, data dependencies are more of a problem in monoprogramming, while 

multiprogramming has more independent control paths to help create a larger 

number of starting nodes. The greater the number of starting nodes, the lower the 

probability that two different schedulers will select the same node, and thus yield the 

same results. 

Second, single user systems stress the processors less. The mow oftcn uchedulers 

can completely satisfy the requests of the starting queue, the less difference two 

different schedulers are likely to make. As a limiting ease, ia an unlimited proecooor 

environment, all schedulers act optimally. 



Third, monoprogramming systems have less variety in the various' paths. By 

definition, since individual programs comprise a subset of a multiprogramming sys- 

tem, the latter is bound to have a richer collection of parameters associated with its 

nodes. Such variety dffers a real choice to schedulers, again making it less likely that 

different schedulers will select the same nodes, and therefore more. likely that they 

will have a larger effect on the system performance parameters. 

This is not to say that a run-time scheduler is irrelevant in a single user system. 

Indeed, some'differences were recorded. What should be clear, though, is that it is 

more critical in a multiprogrammed environment, for the reasons cited above. 

Furthermore, it is more likely that many of the responsibilities of the scheduler can 

be moved to the compiler in a monoprogrammed system (such as calculation of the 

critical path tags), which is more static. This would allow a simpler, and thus fister, 

run-time scheduler to be implemented when only a single program at  a time must be 

run. 

In a multiprogramming system, the dynamic critical path algorithm seems to be 

the best choice for maximizing throughput. The dynamic critical path algorithm 

may be implemented by means of a separate scheduler, which calculates the largest 

sum of the execution times of a node's successors, and a dispatcher, wh-ich selects thc 

node with the highest dynamic critical paLh value from the starting queue and allo- 

cates that node (with folding) on the processors. (The scheduler may be' done at. 

compile time within individual programs if it is known in advance that the entire 

program will arrive slmultnneously). 



This algorithm is a wise choice, because when some of the nodes cannot allocate 
.. - 

processors due to competition for resources, it is detrimental to system throughput to 

avoid the largest dynamic critical path. Indeed, the smallest dynamic critical path 

algorithm usually performed even worse than random. 

The dynamic critical volume algorithm, which is similar to the above except its 

tags are the largest sum of the product of the execution times and the processor 

requests of a node's successors, did not perform better than did the dynamic critical 

path algorithm. This w& not expected when folding was permitted. However, it 

see& as if nodes with higher critical path values have a higher probability of getting 

folded, and thus also have a higher critical volume value. Thus, it appears as if the 

faster dynamic critical path algorithm is sufficient. Other parameters which had lit- 

tle or no consistent and significant effecl upufi the choice of ochcdulers include w m n -  

dary evaluation criteria, the presence or absence of folding, etc. 

' . Turnaround time is also very important to the users, particularly those that own 

small jobs. Unfortunately, the dynamic critical path algorithm ignores small jobs, 

maximizing throughput at the total expense of turnaround time. Algorithm number 

24, which.runs the largest dynamic critical path of the earliest program of the same 

type of program having the largesl overall dynamlc crit;icd path, dots very wr.11, It 

combines the critical path technique, in an attempt to keep good throughput, with 

FIFO, in anattempt to balance good turnaround timc. Although it provides lower 

throughput than the dynamic critical path algorithm, it is not substantially lower, 

and it more than makes up for the loss of throughput with dramatic improvements 



in turnaround time. .. . 

Unfortunately, scheduler number 24 requires that programs somehow be sorted 

as to type. This may be an ,unrealistic restriction to make. The dynamic critical 

ratio algorithm attempts to avoid this restriction, while a t  the same.time compiomis- 

ing throughput with turnaround time. 

The dynamic critical ratio algorithm behaves differently, depending upon 'the 

ratio value and such factors as the job arrival rate. On one extreme, it acts like the 

largest dynamic critical path algorithm with good throughput but bad turnaround 

time, and on the other extreme, like' the smallest dynamic critical path algorithm 

with bad throughput but good turnaround time. A window exists in the middle 

where throughput and turnaround time may be traded, o f f f  Unfortunktely, the 

dynamic critical ratio algorithm is sensitive to its environment, and no way is 

currently known to automatically select the ratio value. 

Several extensions can be made to this work. First, nodes were assumed to be 

nonpreemptive. This is not realistic, and this area should be investigated. 

Second, the overhead inherent in the execution of the run-time scheduler and 

processor allocation has been ignored. To some extent, this is justified, i.e., tasks 

were inade as large as possible by virtue of the course grain parallelism in Parafrase, 

which leads to a relative redi1cl;ion of the contribution of overhead. Furthermore, 

certain aspects of the run-time scheduler can be run in parallel with other activity on 

the multiprocessor. Nevertheless, this area should be studied further. 



Third, all DAGs were created equal,.i.e., users could not specify their own priori- 
'- 

ties. In any real system, some priority scheme is essential. 

Fourth, even though this work is, closer to the "real world" than many analyti- 

cal analyses, the next step would be to test some variations of a subset of these 

schedulers in a real operating system. This would allow for better analysis of job 

mix, arrival rates, program characteristics and variety, etc. than was possible in this 

thesis. 

And flnally, parameters important to selection of a good value for R in the 

dynamic critical ratio algorithm should be determined. I1 is expected bhnt thio will . 

again require analysis of a real operating system, functioning over an extended period 

of time, in order to determine the appropriate characteristics under heavy, average, 

and light loading conditions. 



APPENDIX 

This Appendix describes in detail the input parameters and output results pro- 

duced by the scheduling simulator. The simulator was written in pascal. Input 

about the program DAGs is read from the file "graph". Simulation results are depo- 

sited into the file "results". 

The first line of file -graph must contain the following information, in order: 

The scheduling algorithm number. The specific scheduling algorithms and what 

they do are described elsewhere in this thesis. If the number corresponding to 

an algorithm is selected, the DAG is read once and scheduled once using that 

scheduling technique alone. If a value of 0 is entered here, the DAG in file 

graph is read and scheduled separately for each of the scheduling algorithms 

available. 

The total number of processors available. This specifies the machine size. All 

processors are assumed to be identical. 

0. The folding percentage requirements. This number specifies what percentage of 

the task's requested number of processors must currently be available in order 

for the task to be started. A value of 100 would turn folding off complctely. 

Trace switch. If a 1 io entered here, h e n  tasks are "traced" through the system, 

i.e., information about each task is printed whenever it changes states, along 

with the system time in which that .change occurs. A value of 0 turns off this 

feature. The trace option allows the user to understand why things happen the 



way that they do when all else fails. It does, however, produce a significant 
'- 

amount of output and should be used with caution. 

For each node in the DAG, the following information must be provided, in 

order: 

The node arrival time. This is the time that this node enters the system, becom- 

ing a potential candidate for scheduling, and contributing to other nodes' 

dyna.mic critical path values, etc. 'These values must be monotonically increas- 

ing through the file graph. The node arrival time value must be on a separate 

line immediately preceding the following five values, which must be on the same 

line. 

The node, number. This is essentially the "name" of the node. Values start at  1 

and must increase by 1 throughout the file. (This provision was included in 

order to provide a consistency check on the input). 

a The execution time for this task. This value may be changed internally by the 

1 
scheduler due to folding considerations. 

i The number of processors requested by this node. If this value exceeds the 

machine size, forced folding will be performed when the task is entered into the 

system in order to make the node fit. This will occur whether or not the run- 

time scheduler is permitted to fold. No other decision is possible if the DAG is 

to be run on the machine. 



Program type. Each type of program (i.e., different programs with identical 
.- 

DAGs) must be assigned a 'unique number. This value is used in a multipro- 
\ 

gramming environment. 

Program number. Different programs of the same type must be assigned a 

unique number (within that type) in a multiprogramming environment. So, a 

three level hierarchy exists of: program types, program numbers, and node 

numbers. 

e Predecessor list. On a single line following the above data, the node numbers of . 

the immediate predecessors of this node are listed. Doubly linked dependence 

arcs will be created between,all predecessor and successor nodes. If this node 

has a delayed arrival time, it is possible that some of its predecessors may have 

already been scheduled, executed, and left the system. Obviously then, those 

particular dependence arcs will not be created. This ,line must terminate with a 

The following information is placed in the file results after t.he simulation io 

complete: 

The scheduling technique. Both the required number and a brief textual 

description of that algorithm are written. 

The total number of processors available on the machine. 

The folding percentage requirements. 



ioo I 

a The value of the trace option (and any of the results that option may have pro- 

duced). 
/ 

a The total time the simulation required. This is the internal "system time" 

needed to execute all of the nodes in the DAG using the specified scheduling 

technique. This value may be used as a ,measure of the throughput of the 

scheduling algorithm by comparing i t  with othcr values produced by different 

scheduling algorithms on the same DAG. 

a The total number of nodes in the DAG. 

a The average number of nodes executing on the processors. 

a The average number of nodes on'the starting queue, i.e., unable t'o run due to 

lack of sufficient processors. 

a The average number of nodes blocked from execution (and the starting queue) 

due to predecessors with dependence lirlks still in the systcm. 

a The average turnaround time for each node. This is calculated from when the 

nodes first enter the system (their arrival times) until they have completed exe- 

cution, released their processors, and left. 

r The average completion time for each node. This is a measure of the time spenL 

from when each node enters the.starting queue (i.e., it is a candidate for execu- 

tion) until it leaves the system. 

a The average execution time for each node. This measures the time the nodes 

actually tie up .the processors executing. (Any folding will obviously affect this 



number). 

a The average number of processors which are busy executing tasks. 

a The processor work load.. This value is the average of the sum of the number of 

processors busy plus the number of processors requested by the nodes on the 

starting queue. It attempts to gauge how many processors could be utilized by 

the DAG if they were available. 

For each program type the following information is reported: 

a The program type number. 

a The number of programs of that type. 

a The average turnaround time for the programs of that type (measured from 

when each of them first arrive in the system until they leave). 

a The average execution time span for each of the programs of that type. This is 

calculated from when the first node of the program begins execution until the 

last node of that program has finished. 
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16. Abstracts 
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