

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.

CSRD Rpt. No. 656
',

\ NONPREEMPTIVE RUN-TIME SCHEDULING ISSUES
O N A MULTITASKED, MULTIPROGRAMMED
MIJT,TTPROCESSOR WITH DEPENDENCIES,

BIDIMENSIONAL TASKS, FOLDING
AND DYNAMIC GRAPHS

Allan Ray Miller

May 1987 -
*- *% . - q F A I M E R

)-.r.,

This report was prepared as an account of work sponsored'by an agency of the United Sl.nlas
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufactumr, ur u~lrccwisc docs not n w s a r i l y constitute or imply its cndorscmcnt, rccom-
mendation, or favoring by the United States Government or any agency thereof. 'l'he views
and opinions of authors expressed herein do not necessarily state or reflect those of the
united States Government or any agency thereof.

1 -1

Center for Supercomputing Research and Development -

University of Illinois
305 Talbot - 104 South Wright Street
Urbana, IL 61801-2932
Phone: (217) 333-6223

This work was supported in part by the National Science Foundation under Grants No. US NSF DCR84-
10110 and US NSF DCR84-06916, the U. S. Department of Energy under Grant No. US DOE-DE-FGO2-
85ER25001, the IBM Donation, and the Control Data Corporation, and was submitted in partial
fulfillment of the requirements.for the degree of Doctor of Philosophy in the Department of Computer Sci-
ence, May 1987.

NONPREEMPTNE RUN-TIME SCHEDULING ISSUES
ON A MULTITASKED, MULTIPROGRAMMED MULTIPROCESSOR WITH

DEPENDENCIES, BIDIMENSIONAL TASKS, FOLDING, AND DYNAMIC GRAPHS

BY

ALLAN RAY MILLER

B.S., University of Central Florida, 1979
M.S., University of Illinois, 1984

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois a t Urbana-Champaign, 1987

Urbane, Illinois

NONPREEMPTNE RUN-TIME SCHEDULING ISSUES
ON A MULTITASKED, MIXTIPROGRAMMED MULTIPROCESSOR WITH

DEPENDENCIES, BIDIMENSIONAL TASKS, FOLDING, AND DYNAMIC GRAPHS

'Allan Ray Miller, Ph.D.
Department of Computer Science

University of Illinois at Urbana-Champaign, 1987
Duncan Ht Lawrie, Advisor

Increases in high speed hardware have mandated studies in software techniques to

exploit the parallel capabilities. This thesis examines the effects a run-time scheduler

has on a multiprocessor. The model consists of directed, acyclic graphs, generated

from serial FORTRAN benchmark programs by the parallel compiler Parafrase. A

multitasked, multiprogrammed environment is created. Dependencies are generated,

by the compiler. Tasks are bidimensional, i.e., they may specify both time and pro-

cessor requests. Processor requests may be folded into execution time by the

scheduler. The graphs may arrive at arbitrary time intervals'. The general case is

NP-hard, thus,, a variety of heuristics are examined by a simulator. Multiprogram-

~ l l i~ lg der~ionstrates a greater need for a run-time scheduler than does monoprogram-

ming for a variety of reasons, e.g., greater stress on the processors, a larger number

of independent control paths, more variety in the task parameters, etc. The dynamic

critical path series of algorithms perform well. Dynamic critical volume did ,not add

much. Unfortunately, dynamic critical path maximizes turnaround time as well as

throughput. Two scheduler5 are presented which balance throughput and tur-

naround time. The first requires classification of jobs by type; the second requires

selection of a ratio value which is dependent upon system parameters. . . . ' '

iv

ACKNOWLEDGEMENTS

First I'd like to thank my advisor, Professor Duncan Lawrie, who gave me much

assistance, and gave me the privilege and opportunity of working at CSRD. Also, I'd

like to acknowledge those who have supported me while at this university, i.e., the

Center for Supercomputing Research and Development, the Department of Computer

Science, the National Science Foundation, the United States Department of Energy,

IBM, and Control Data 'corporation. Finally, since the time of elementary school

flashcards, my parents taught me the value of education, and provided me with

essential love and support. I have come this far because of them.

v

TABLE OF CONTENTS

1 . INTRODUCTION .. 1

1.1. High Speed Hardware and Software .. 1
1.2. Related Work .. 5
1.3. Thesis Overview ... 8

2 . BASIC CONCEPTS AM> MODELS ... O

2.1. Parafrase ... 9
2.2. Compound Functions and Program Graphs 14
2.3. The Scheduling Simulation .. 21

3 . PROGRAMS AND ALGORITHMS ... 24

.. 3.1. Data Programs 24
... 3.2. Scheduling Algorithms 30

3.2.1. Optimal and Random .. 30
3.2.2. Greedy, Generous. and FIFO ... 32
3.2.3. Dynamic Critical Path ... 35
3.2.4. Dynamic Critical Volume .. 43

... 3.2.5. Throughput Tradeoffs 45
3.2.6. Dynamic Critical Ratio .. 47

4 . SCHEDULING SIMULATIONS ... 50

4.1. Monoprogramming .. 50
4.2. Multiprogramming ... 63
4.2.1. Throughput ... 65

.. 4.2.2. Turnaround Time 79

5 . CONCLUSIONS ... 91

.. REFERENCES 102

VITA- ... 107

CHAPTER 1

INTRODUCTION

1.1. High Speed Hardware and Software

In 1944 the 'MARK 1 computer required 300 milliseconds to complete an addi-

tion operation. By 1970 the ILLIAC IV performed 50 million floating point opera-

tions per second (megaflops). Current supercomputers are capable of performing at

peak speeds approaching one gigaflops.

Originally, computers were becoming faster.mainly due to improvements in dev-

,ice technology. Such technology. improvement, however, is ultimately limited by the

speed of light. Naturally then, research has turned to parallel hardware and software -

in order to continue the growth in computer speed,

Many of the early supercomputers, such as the Cray 1, employed vector

hardware in order too achieve their high speeds. Since scienl;iflc calculations often

contain substantial vector arithmetic, these systems include special vector instruc-

tions. By subdividing operations into sequential and separate suboperations, vector

processors can pipcline successive vector elements through the hardware and obtain a

high degree of concurrency.

While vector processors have been very successful, they do have certain

hardware and software limitations. For example, the speedup pipelined hardware

can offer is limited by the number of stages in the pipe. That is, any .paiticular

operation can only be subdivided so far. Another inherent problem with pipelined
.-- ,

architectures is the overhead involved with initially configuring the pipes, and then

filling them with data before any results emerge. Because of this problem, speedup

grows very slowly, typically requiring vectors of length 100 or greater in order to

achieve peak performance. Finally, these systems require appropriate software in

order to successfully exploit .the hardware. Either the programming language must

allow the programmer to express his algorithm in a vector form, or else some sort of

restructuring compiler will be required to generate the vector instructions from a

traditional scalar language.

Much of the current supercomputer research has focused upon multiprocessing

systems. For example, the Cedar supercomputer [KDLS86] [GKLS83] as shown in

Figure 1.1, is under development a t the Center for Supercomputing Research and

Development. Also, commercially available system such as the Cray X-MF are

already on the market.

Multiprocessors achieve. their speed by doing several (possibly different) opera-

tions in parallel. Whereas vector processor speedup is constrained by the number of

subdivisions in the pipes, parallel processors can (to some extent) double their peak

performance simply by doubling the number of processors available for computation.

This does not mean that these two concepts are mutually exclusive. Indeed, most

current parallel processing architectures employ various types of pipelining

throughout the system. But the big advantage of multiprocessors is that their archi- .

tecture can be scaled up across time for a continued growth in speed.

GM GM GM GM . . .

Global Network

Global
Control

Unit

I
1 I Local Network I U I 1 I Local Network I U I I

I I ... I I
I I
I I

I I I L M ~ ILMI . . . I I
I

I I ' I I

1 Processor Cluster ' 1
L - - - - - - - - - - , , , - - - - A

I Processor Cluster I
L - - - - - - - - - - - - - - - - - J

P: Processor
GM: Global Memory Module
LM: Local Memory Module
CCU: Cli~stcr Cnntrnl T.Tnit

Figure 1.1. Cedar Architecture.

~ulti~rocessors also require extensive software support in order to maximize

their performance by completely exploitirlg the available hardware. ~~nchronizat i~n

and data coherency problems must be dealt with. And like vector processors, they

require parallel programming languages or restructuring compilers capable of recog-

nizing parallel constructs.
'-

Generally, three levels of parallelism can be recognized in the software. The

highest level involves separate programs, subroutines, loops, or control flow paths

within the same program. The next level down consists of parallelism between indi-

vidual lo~piterations, which can be assigned to separate processors. he potential

for speedup at this level is enormous. It is often proportional to the loop limit,' or the

product of nested loop limits. And finally, the lowest level of parallelism which can

be exploited by multiple processors is the separate arithmetic expressions in indivi-

dual assignment statements. Such low level parallelism offers the least potential for

high speedup, however.

Once the algorithm has been designed, the parallel constructs recognized and the

code written, the parallel code constructs must be scheduled for execution on the pro-

cessors. Such scheduling can be performed at compile time, run time, or a combina-

tion of both [Poly86]. Certainly some of the scheduling must be done at run time, as

the presence of other jobs in the system competing for resources may affect the

scheduler's decision as to which subsection of code is the best candidate for execu-

ti nn .

There are several factors a run-time scheduler must consider when deciding

which section of code should be initiated. For example, the presence of data depen-

dencies may force a partial ordering upon the code. The nu~rller of processors

requested by each unit of code in light of how many processors are currently avail-

able .is obviously an important consideration. Tradeoffs between speed :(execution

time) and size (number of processors allocated by each task) must be made. New

programs or sections of programs may continually be arriving in the system at a

variety of different times. The scheduler may want to maximize hardware utiliza-

tion, throughput, or minimize turnaround time for each program. When these and

many other factors must be sifted through for each of the thousands or tens of

thousands of code segments wishing service from the processors, it clearly is a compli-

cated decision which awaits any run-time scheduler. It is this line of research that

this thesis will attempt to investigate.

1.2. Related Work

A lot of similar work has already been performed in the multiserver scheduling

and operations research areas. Virtually all of it, however, has dealt with abstract

analytical models with limited practical significance. This thesis attempts to see how

well a variety of scheduling techniques perform on real benchmark programs gen-

erated'by a compiler. Not only are real programs the things which ultimately must

be scheduled on functioning multiprocessors, but anlike theoretical models, their

characteristics cannot be determined a prior;.

This work investigates several extensions over previous results. For example

many models restrict themselves to two processor systems [Ston781 [RaSH79]

[Bokh79] [CHLESO] whereas this model may have any number of processors desired.

Data dependencies in the form of a'directed acyclic graph exist between tasks

which the scheduler must enforce. Many models ignore any possible data dependen-

cies such as [Stan851 [CMb82]. Some previous work has examined this problem, e.g.,
" _ .

[ChTs81] [Ston771 [StBo78] examines a very simple sequential chain model, while the

models of [&as721 [RaCG72] [HoIr83] [SchwGl] do include complete graphs. Those

models, however, make simplifying assumptions in other areas which this thesis does

not .make. Furthermore, this model assumes that the graphs may b e dynamically

updated with new node and dependence arc arrivals as additional program and pro-

gram subsections are added to the system.

Another feature of this model is that each node may request multiple processors

as well as multiple time units needed for completion of the task. Nodes are thus two

dimensional. Several models feature p processor systems [CeKl83] [AbDa86]

[ChKo79] [&We851 although each task requests only one of the processors. Ln

[BlDW86] tasks request multiple processors, but have unit times. Some models have

allowed variable time requirements [Kras72] [RaCG72] but then have a unit processor

request.

Not only have bidimensional nodes been allowed, but processors can fold into

time by running parallel constructs serially. In [XuYe83] [XuYe84] [Mi11841 this con-

cept was studied, although again simplifying assumptions in other areas of the

models were made. (Folding is also discussed in [Sahn83] as it relates to pipelined

machines).
. .

Closely related work to that done in this thesis was performed by Hu [Hu61]

[Hu82]. Hu's model allows data dependencies in the form of a tree. The first phase

of his algorithm determines the distance from the root of the tree to each. node.

Next, the scheduler simply assigns nodes to the processors starting at the highest lev-
. -

els of the tree first and working its way down towards the root.

Hu calls this algorithm the critical path algorithm and it is optimal. Its limita-

tions arise from the fact that nodes are nondimensional (unit time and pi-ocessor

requirements), must be completely known in advance, and must be in the form of a

tree. However, two modifications of his algorithm which incorporate several exten-

sions to that model will be presented later in this thesis. Some of the same concepts

were developed independently in [Poly86] for compile time scheduling.

Many of the other scheduling models are also optimal. [CoE76] [CoGr72] given

their assumptions of a t most two processors, unit time or processor requirements, etc.

Such an optimal algorithm is' not likely for the model studied in this thesis. For

example, the simple extension of variable processor requirements in Hu's work moves

it from the domain of a very fast optimal algorithm to the. bin packing problem

which .is NP-hard [GaJo79]. But this thesis goes beyond even that, creating a two

dimensional bin packing problem with folding, dependencies, ' and dynamically

modified graphs.

It is clear that unless many simplifying assumptions are made, an optimal run-

time scheduler cannot be found. Nevertheless, the problem must be examined, as

 multiprocessor^ do exist which need thc se~vices s f some scheduling heuristic in real

time. Failure to do so will result in a n . ineficient explditation of the parallel

hardware by the software which runs on it. This area will be the focus of the follow-

ing work.

1.3. Thesis Overview

This thesis attempts to solve some small portion of the run-time scheduling

problem on a multiprogrammed, multitasked, multiprocessing computer with data

dependencies, bidimensional nodes, folding, and dynamic graphs. The scheduler will

examine data taken from real benchmark programs.

This chapter has already provided an introduction and a discussion of related

-work. Chapter two defines the basic model and provides the framework of the dis-

cussion. It, along with the Appendix, describes the software used to investigate the

problem. Chapter three discusses the data and scheduling algorithms used in the

simulations. Chapter four presents and analyzes the results of the simulations, and

trys to demonstrate why some schedulers perform better than others. Certain

tradeoffs must be made, and they are discussed in this chapter. Finally, Chapter five

summarizes the results and draws the co~lcluslo~ls. I1 also discusses limitation0 of thin

study, .and suggests areas of future research.

9

CHAPTER 2

BASIC CONCEPTS AND MODELS

2.1. Parafrase

Before parallel code constructs can be scheduled for execution on the processors,

they first must be generated, either by a parallel programming language, or by a res-

tructuring compiler. The way this problem has been solved for purposes of this

thesis is with the Parafrase restructuring compiler, which has been under develop-

ment at the University of .Illinois for the last fifteen years [KEUW80] [KKPL81]

[Wolf82]. The overall structure of Parafrase is shown in Figure 2.1.

Parafrase was chosen because of the large investment in existing sequential

FORTRAN software. Also, FORTRAN (in some form) is the most widely used high

level language on supercomputers [PeZa86]. Furthermore, it is not clear that pro-

grammers can deal with the complexity of parallel hardware and softwa.re on average

as well as a compiler.

Parafrase starts by reading sequential FORTRAN programs. It then performs a

series of standard transformations, or passes, on the source code. After each pass,

various data structures and a modified FORTRAN source program with parallel con-

structs are produced. By modifying which. passes are called, the programmer can

control such attributes as specific optimizations for the particular targ,et architecture,

and man? other features.

Sequential
FORTRAN
Programs

Cnmmon
Independent

Optimizations

1 Fl
Optimizations

Architecture

Optimizations

Architecture

Optimizations

Architecture
Specific

Optimizations

I I
I I
I I
I I
I I
I I
I 1
I I
I I
I I
L - - - - - - - - - , - - - - - - - - - - - - - - A

Machine
Specilic

Optimizations

, "...."

Ou1le
Generation

Figure 2.1. Overall Structure of Parafrase.

Critical to the Parafrase compiler, as well as to any run-time scheduler which

must examine the output o f ~ a r a f r ~ e , is the notion of data dependencies (Kuck781.

Parafrase is capable of recognizing three different forms of data dependencies.

Assume some program contains two different statements, Si and S, such that S, fol-

lows Si during serial program execution. If a variable z is assigned in statement Si,

and subsequently used on the right hand side of statement S,, then S, is said to be

data flow dependent on Si. I f the variable z is used on the right hand side of Si but

is assigned in S,, then Si is data antidependent on S,. If z is assigned in both Si and

subsequently in S,, then S. is data output dependent on Si. Finally, Parafrase will
1

introduce control dependencies induced b y the presence of conditional statements.

Parafrase analyzes the FORTRAN source program, and generates a data depen-

dence graph between the statements. It is then capable of performing sophisticated

transformations on the results which break many of the control and data dependen-

cies without violating the semantics of the program. Any dependence arcs which

remain after all of the transformation and optimization passes have completed, force

a partial ordering upon the program execution, which must of course be honored by

the run-time scheduler.

At the current time, Parafrase has over 50 different passes which can be called,

performing such transformations as forward statement substitution, loop interchang-

ing, recurrence relation recognition, etc. The specific passes which are called and the
.. .

order in which they occur are a function of the particular architecture which is to be '

targeted.

Parafrase recognizes four classes of machines: single Execution Scalar (SES),
. -

Single Execution Array (SEA), Multiple Execution Scalar (MES), and Multiple Exe-

cution Array (MEA). SES machines are simple uniprocessors. SEA machines include

array and vector processors. MES machines are multiprocessors where each processor'

is composed of a SES machine. And finally, MEA machines are multiprocessors

where each processor is composed of a SEA machine. The model chosen for study in

this thesis would be applicable to either a MES or a MEA machine.

C COUNTS NUMBERS OF PARTITIONS OF AN INTEGER
SUBROUTINE COUNT (C, K, P, N)
INTEGER C, P
DIMENSION C(K), P(N)
DO 10 I = 1, N

P(1) = 0
10 CONTINUE

DO SO I = 1, K
J = C (I)
J P l = J + 1
P(J) = P(J) + 1
DO 20 M = JP1, N

M M J = M - J
P(M) = P(M) + P(MMJ)

20 CONTINUE
30 CONTINUE

RETT.mN
END

Figure 2.2. Subroutine COUNT.

Consider the short subroutine COUNT shown in Figure 2,2. Although it is

much too simple to illustrate most of the features of Parafrase, i t will serve, to some

extent, to demonstrate how data can be generated from real FORTRAN programs

for a run-the scheduling simulation.

Midway through the series of passes selected for use for this thesis, intermediate

' results were produced by Parafrase as shown in Figure 2.3. Two short parallel loops

have been generated; they are flagged with an asterisk.. Each iteration of the parallel

loops may be scheduled simultaneously for execution on separate processors. . (They

SUBROUTINE COUNT (C, K, P, N)
INTEGER C(K), I, J, J'(*), P I , K, M, MMJ, N, P(N)
D O l i = l , N

P(i) = 0

1 CONTINUE
D O 2 i = l , K

J'(i) = C(i)
2 CONTINUE

D O 4 i = l , K
P(J'(i)) = 1 + P(J'(i))
DO 3 j = 1, N - J'(i)

P(j + J'(i)) = P(j + J1(i)) + P(j)
3 CONTINUE
4 C O N T I W

RETURN
END

Figure 2.3. Intermediate Results of COUNT.

14

can of course be executed sequentially, should insufficient processors be available at
.-

run time). Parafrase also generated two nested serial loops from COUNT. These

two loops are flagged with vertical bars. The problem occurs because the assignment

of the array P in Figure 2.2 is essentially being subscripted by the value of the array

C. Figure 2.3 clearly shows the subscripted subscripts hence, these two loops cannot

be sped up. Unlike the parallel luuPs, this portion of the program rnlist he ~ch.aduled

oequentiaJly for execution.

The next series of passes performed high level spreading and compound function

generation on COUNT. This will be discussed in the next section.

2.2. Compound Functions and Program Graphs

The unit of work which is to ,be scheduled on the multiprocessor is referred to a s

a compound function or task [GLPV83] [KLVY82] [Husm86]. Although there are

many ways' to con~ttruct and define a task, for purposes of this thesis a task is defined

to be some portion of a larger program which can be scheduled for execution for a

fixed amount of time on a fixed number of processors. (The execution time and

number of processors requested are fixed, or bound, xt allocation time. This will bc

discussed in more detail below.) Once a task has begun execution, it runs to comple-

tion without interruption. That is, tasks are said to be nonpreemptive for purposes

of this thesis.

The model chosen for study receives, as input directed acyclic graphs (DAGs)

such as the one shown in Figure 2.4. Each node in the graph represents a task which

Figure 2.4. Program Execution Graph.

is to be scheduled for execution on the processors. The nodes contain two numbers:

the maximum number of processors needed by that task, and the execution time that

task requires in order l o complete its work. For example node B, or NB, in Figure

2.4 requests 40 processors which it intends to reserve for 20 units of time.

It is important to note that nodes are bidimensional in that their space-time

products on the processors can have nonunit values in both directions. Furthermore,

a one-way mapping from processors into time is possible (but not the other' way

around).. No data dependencies exist between those operations, or.else they would
. .

have been assigned to different time slices at an earlier. stage (by the compiler).

Clearly then, if no dependencies exist between the parallel operations, they can be

run serially as well as in p$rallel without violating the algorithm's semantics. Such a

concept is known as folding.

It is very useful to give the run-time scheduler the ability to dynamically fold

the. tasks a t processor allocation time. For example, if a task requests p processors,

but oniy p/2 processors are currently available (due to other tasks in the system

competing for resources) the scheduler can fold task execution across p/2 processors

simply by doubling its running time. However, such a scheduler must be very care-

ful. 'TOO little folding results in idle processors while large tasks are forced to wait

for a sufficient number of processors to become available. This can lead to a serious

degradation in performance as well as utilization. On the other hand, too much fold-

ing can also lead to loss of speedup as a result of ~aral lel constructs being forced to

run serially. In WuYe831 IXuYc841 it was shown tha t on the average, if at least 25

percent of the processors requested by a task are currently available, then that task

should be folded and initiated at once.

Control or data dependencies in a graph passed on from the compiler force a

partial ordering upon a scheduler. which it must honor. For example, if NA must

complete its execution before Nc can begin, then it is said that NA>Nc and a

directed arc is drawn from NA to Nc in Figure 2.4.

In this scheduling model, the program graphs 'must be acyclic. Innermost serial

loops can easily be transformed into a single task. However, outer level nested serial
'

loops. must be unrolled and the associated nodes and arcs replicated up to the loop

bounds.

Conditional paths through the graph are treated in the same fashion as what

Parafrase does. For example, Parafrase attempts to transform backwards GOTOs

into DO loops, which can then be treated in the normal fashion. Other conditional

paths with control dependencies which cannot be eliminated are expanded and

weighted according to the probability of that path being chosen. (The default proba-

bilities are to set all paths as being equally likely). The weighted nodes and their

associated arcs are then entered into the program graph.

The tasks, represented by nodes in the DAG, are defined to be dynamic. That

is, they may arrive at various times throughout the execution of the programs. This

means that the scheduler only sees a snapshot of the entire graph at any one time.

Since the introduction of new nodes with their dependence arcs into the system may

affect which tasks are the best candidates to dispatch for execution, the run-time

scheduler must resign itself to making decisions based only upon a particular instance

of the entire DAG.

Now that the particular form of tasks and DAGs used in this thesis has been

defined, it remains to be shown how the actual tasks were generated by Parafrase for

use in the scheduling simulation model. Specifically, the tasks were derived from a

method called high lcvcl spreading described by Veideiibsur~l iu [Veid85].

Veidenbaum first decomposes the program into a number of high level objects

(HLOs). He defines eight types of HLOs: 1) a nonnested (innermost) DO loop of any

type .of parallelism, together with all of the statements in it; 2) . any .Block of

Assignment Statements (BAS) not in 1). (A BAS is the largest possible block of con-

- - .

secutive assignment statements in the serial program with one entry and one exit

point); 3) a nested DO statement not in 1) but without statements inside; 4) any IF

statement not in 1); 5) the CONTINUE statement for nested DOs and for IFs (the

terminal line); 6) user procedures or function calls. (Veidenbaum assumes subroutine

expansion was used to eliminate these in lnnerrnost loops); 7) I/O ~ L a l e u ~ e u ' l ~ ; and

finally 8) program/subroutine/function BEGIN and END statements.

Returning to the previous example of COUNT in Figures 2.2 and 2.3, the high

level spreading passes in Parafrase produced the results seen in Table 2.1. The com-

pound function numbers are denoted, along with any nested or successor compound

functions which may be associated with that compound function. The successor

pointers will be utilized to generate the dependence arcs for the DAG. The "first"

and "last" columns denote the first and last statement numbers in Figure 2.3 which

were used in' the generation of that particular compound function. The "type"

5

. 6

7
8 '

9

0
0

. 0
0

' 0

6
-
8
9
-

10

11

14
' 15
16

10

13

14
.15

16

BAS

E D 0
CDOEND
CJtETRN

CBND

1

1
0

' 0

o

2

. 80

0

0

o
L

column indicates what form of compound function is listed. CJ'ROG and CJ3ND
-

denote the beginning and end of a program. CRETRN denotes a subroutine return

statement. C D O and CDOEND denote an outer nested loop. E D 0 denotes an

innermost loop and all statements. within that loop. And finally, BAS denotes a

block of assignment statements. The processor and time columns represent the

number of processors requested and the times those compound functions require (or

some calculated estimate if compound functions are nested within).

Comparing Figure 2.3 with Table 2.1, it can be seen that the two parallel loops

were transformed into E D 0 compound function numbers 2 and 3. Since they are a

simple assignment statement, they only take one unit of time. Parafrase scheduled

these loops on 40 processors. If loops bounds are known at compile time, then

Parafrase will use those values. Otherwise, Parafrase uses a default timing value of

40 for all loop indexes in order to make some estimates of the work involved.

The innermost nested serial loop was turned into E D 0 number 6. Each itera-

tion takes two units of time (an addition plus the assignment). Since this only

requires one processor, but must be replicated 40 times, the E D 0 is flagged for 80

time units on a single processor. The outermost nested serial loop contains a similar

arithmetic statement, along with the inner EDO. For identical reasons, it also only

requests a single processor. Its time reqqirements reflect the work nested inside the

loop, replicated serially 40 times.

Graphically, Table 2.1 can be represented by Figure 2.5. The vertical bracket

represents sequential replication. Clearly, NA >Nc and NB > N c Furthermore,

Figure 2.5. Graphical Representation of COUN'I'.

between each iteration i of the outer serial loop, Nci>NDi and NDi>Nci+;

It should be clear how the DAG used for scheduling could be generated from

Figure 2.5. Each block becomes a task. Dependence arcs become successor pointers.

Outer serial compound functions do not become tasks, but the innermost level of

nested compound, functions do become tasks for scheduling. The enclosing com-

pound functions instead cause a duplication as the serial loops are unrolled.

Now as was previously mentioned, COUNT is a.very short program. Figure 2.5

, makes clear that in this case, a scheduler has very little to decide. (It must still

decide whether or not to fold the two parallel tasks). Larger programs obviously are

much more complex, containing many separate paths from which to chose, but would

be too complex for the illustrative purpose of this section.

2.3. The Scheduling Simulation

Once the DAGs from one or more programs have been generated, they are ready

for scheduling. A run-time scheduling simulator was written which reads in the

DAGs representing the programs, and schedules them using a variety of different

scheduling algorithms. Since the specific manner in which the simulator operates to

a large extent defines the model for the data produced, its algorithm will be discussed

' below. Input parameters to the software as well as the information collected and

returned by the simulation are described in detail in the Appendix.

The user must initially specify such things .as the scheduling technique which is

to be applled to the DAG, the machine size, folding requirements, etc. Either a sin-

gle scheduling algorithm may be used, or the complete series of algorithms will be

run on the same DAG and machine. In collecting data for this thesis, most DAGs

were run with all possible scheduling techniques, using 8, 32, 64, 128, and 1024 pro-

cessors, and with folding requirements of 25% and 100%. '

. .

The sirnulator first begins by reading in nodes of the graph.. Each node can

specify an arrival time. A "wake up call" is entered into a time-sorted event queue
. .

with that arrival time. When the system clock reaches that value the node is read in,

dependence links are generated, and any nodes this new arrival may affect dynami-

cally (described in the next chapter) are visited.

A "starting queue" is maintained of all nodes which have already arrived in the

system, have not yet begun execution, and do not 'have any predecessors with depen-

dence links to this node still remaining in the system. All nodes on the starting

queue are candidates for immediate execution.

The simulator sorts the starting queue according to the current scheduling tech-

nique. (Folding is taken into account, but is not actually done at this time). The '

highest priority task as determined by the scheduler is placed at the head of the

queue.

Following that, the simulator assigns tasks to processors, in order, from the

starting queue. As each task is assigned for execution it is removed from the starting

queue, any folding is performed, the number of processors currently available is

reduced by the current task's processor requirements, and a "wake up call" is

entered into the time-sorted event queue telling the simulator when the task will

complete. This process continues until either the starting queue is empty, or else no

more tasks can fit on the processors.

When no more nodes can be assigned for execution from the starting queue, the
. .

simulator checks the time-sorted event queue for actions which it can take at the

current system time. (If there are none at the current time, then the system clock is

reset to the earliest time the next event is to occur, and flow continues). This 'would

include reading in new node arrivals and entering them into the graph (and possibly

the starting queue) or stopping execution of tasks which are due to complete at the

current time.

If a task has completed, the simulator must relezise the process6rs the node

reserved, and visit dl1 successors of that node with dependence links. If any of .that

node's successors have no other predecessor dependence links, then that successor will

be entered into the starting queue. Finally, the node is removed from the system.

When all of the events which can occur at the current system time have been

processed, the simulator loops back to check for task initiation again and the entire

process is repeated.

CHAPTER 3

PROGRAMS AND ALGORITHMS

3.1.. Data Programs

This thesis attempts to determine how well a variety of 'different scheduling

algorithms perform on real benchmark programs executed on a typical multiproces-

sor. Unlike abstract .theoretical models, the characteristics of functioning programs

taken from the field are not necessarily known in advance, and can only be deter-

mined from a compiler such as Parafrase. And yet this area is of crucial importance

if software designers intend to efficiently exploit the parallel hardware on which they

run.

A representative selection of benchmark programs was collected for detailed

study in this work from well known sources such as Eispack [SBDG76] and Linpack

[DBMS79]. The FORTRAN programs analyzed by Parafrase for use in the run-time

scheduling simulations are shown in Table 3.1. They represent a mix of different

applications likely to be run on a parallel system, and both very short and very long

programs have been included.

A graphical representation' of the DAG for one program in Table 3.1, COUNT,

has already been shown in Figure 2.5. COUNT, however, is a very short and simple

program. More elaborate examples are shown for illustrative purposes in ~ i ~ u r e s 3.1

and 3.2. The two programs shown are of moderate size (in terms of complexity).

The most. extensive programs would obviously take several pages each to diagram.

Table 3.1. FORTRAN Data Programs.

(Note that program complexity, or the number of nodes and arcs in a DAG, may be

unrelated to that program's execution time or processor requests).

Purpose
Factor a complex matrix by Gaussian elimination
Simultaneous Chebyshev analysis of nf functions
Counts number of partitions of an integer
Reduce tridiagonal matrix to symmetric tridiagonal
with same eigenvalues
Reduce tridiagonal matrix to symmetric tridiagonal
Eigenvectors of complex Hermitian matrix

Newton's search for inversion

Three dimensional Helmohltz solver using FFT
(Separable elliptic partial differential equations)

Program
CGECO
CHEBY
COUNT

FIG1

FIG12
HTRIBK

KERNEL

THREEDH

A few of the symbols in Figures 3.1 and 3.2 need to be discussed. he firstsym-

Source
Linpack
ACM
ACM

Eispack

Eispack
Eispack
Lawrence
Berkley Lab

Fishpack

bol is the vertical bracket, which also appeared around Nc and ND in Figure 2.5. As

was briefly mentioned earlier, this represents an outer nested serial loop. To generate

the UAG for the run-time scheduler, the serial loop must be unrolled by replicating

the nodes and arcs within that loop sequentially. The serial loop count is shown to

the left of the vertical bracket. Also, between the i th and the i+l th iteration of the

loop, dependence arcs must be generated between the terminal nodes of one iteration

of the loop and the starting nodes of the next iteration.

A new symbol introduced in Figures 3.1 and 3.2 is the horizontal bracket, such

as is seen around N,, in Figure 3.2. The horizontal bracket represents an outer
. .

Figure 3.1. Program THREEDH.

T = 4

C F 7
P = l P = l P = l P = 1
T = l T = 2 T = 1 T = 4

B
P = 1 1
T = 1

C
J

P = 11
T = 1

'i
K

P = 11
T I 1

L R
P 3 11 P = 41
T = a T = 1 -

'B'
P = l
T = l

4
S

P = 16
T = 1

"--

I
P = l
T = l

M
P = l
T = 2

1 * 'i

T U ,,
P = 41 P = 16
T = 1 T = 1

v C 4
v W

P = 41 P = 16
T = 2 T = 2

- A 1
351 *;

T = 32

T = 32 T = 32

T = 82
11 *

T = 82
I

F1 El
P = l P = l
T = l T - 1

I

P
P = l

T = 4 T = 4

Q
P = 1 6
T = 1

>

Figure 3.2. Program KERNEL.

nested paralle1,loop. Nodes within parallel brackets are replicated in parallel, i.e., no
.-- _

dependence arcs between each copy of the node is generated. But . of course any

dependence arcs entering or leaving the horizontal brackets must be passed on to

each copy of the node generated for the DAG. The outer nested parallel loop count

is displayed above the upper horizontal bracket.

Horizontal and vertical brackets should not be confused with parallel and' serial

nodes. For example ND in Figure 3.1 is a serial node since the number of processors

requested is 1. However, 8 copies of ND must be generated due to the enclosing

parallel loop. Each of the 8 copies may be executed in any order, or at the same

time. Furthermore, all 8 copies of ND must have completed before NEl can be

scheduled for execution. Likewise, NB in Figure 3.1 is a parallel node, even though it

has no enclosing parallel brackets, since the number of processors requested is 11.

Only one copy of NB exists, however.

In a similar fashion NK in Figure 3.2 is a parallel node while Nc is not, even

though Nc is external to the vertical (serial) bracket while % is nested within. The

p.oint is that the presence of vertical and horizontal brackets is irrelevant to whether

or not any particular node is serial or parallel.

Use of these symbols allows very large DAGs to be displayed in the simple

fashion shown in Figures 3.1 and 3.2. For example, Figure 3.2 displays only 33

boxes. However, the DAG the run-time scheduler will see at .execution time contains

3063 nodes and 11,237 arcs! Obviously, scheduling such a program is a formidable

task for any heuristic which must operate in real time.

Each new DAG in Table 3.1 has its own interesting features and is of course

unique. Just to demonstrate a ,few types of environments a run-time scheduler may

encounter, consider Figures 3.1 and 3.2 more closely. In Figure 3.1, program

THREEDH, all of the parallel and serial replication, i.e., horizontal and vertical

brackets, is around single nodes. Also, a very wide variety of values within each

node is present in program THREEDH. For example, ND1 requests 1 processor for

82 units of time, while NR requests 41 processors for only a single unit of time.

Another interesting feature of program THREEDH is nodes such as NAl and

NGl. All 351 copies o f NAl request 14 processors, for a total of 4914 processors-

which, in theory, could be utilized concurrently. On the other hand, all 451 copies of

NG1 must be run sequentially, and only need a single processor. THREEDH contains

several relatively short and fat or long and skinny nodes. So what size machine

should THREEDH be run on and how many processors should be allocated for its

execution? Should all 351 copies of NAl be executed simultaneously, or would that

lead to intolerable hardware utilization later on in the program? Obviously, with the

rich environment programs such as THREEDH offer, a good run-time scheduler must

be capable of adapting to the .changing values of the starting nodes as it moves

through the DAGs execuLi11g.

The most distinguishing feature in Figure 3.2, program KERNEL, is the large

outer nested serial loop which encloses most' of the program. Unlike THREEDH

where the vertical brackets enclosed single nodes only, KERNEL'S serial loop encases

all but three nodes.

Yet within each iteration of that loop, a run-time scheduler has many factors to
-

consider and from which to chose. Many different types of parallelism exist within

the nested serial loop. For example, individual nodes themselves, e.g. ND, exhibit a

high degree of parallelism. Multiple control paths exist which a run-time scheduler

may. have to select from, e.g. NE and NG. And finally, outer nested parallel loops

create a variety of nodes and paths the run-time scheduler must traverse, e.g. the

nine r.npi~,cl nf No.

3.2. Scheduling Algorithms

Twenty five .different algorithms were used for simulation studies of a multipro-

cessor run-time scheduler on the benchmark data programs listed in Table 3.1. The

scheduling algorithms used are listed in Table '3.2. They are defined and discussed in

more detail below, along with a rationale for why each of the scheduling techniques

wan ohoson.

8.2.1. optimal and Random

Ideally, the first scheduling algorithm implemented should be the optimal

scheduler, which of course would provide a lower bound on the running time of any

collection of DAGs scheduled for execution. Unfortunately, as was shown in Section

1.2, the problem is NP-hard and thus there is little hope of solving the problem in

polynomial time.

A brute force attack on the problem also seems out of the question. Only the

very smallest of the data programs shown in Table 3.1 lend themselves to a solution

Largest dynamic critical path of the earliest program

of trying all possible combinations. Moderate to large sized programs are simply too

big. For example program CHEBY contains almost four thousand nodes and seventy

five thousand arcs! Furthermore, each of the individual nodes may be folded at pro-

cessor allocation time, depending on what other nodes are currently executing in the

system. This interaction between the nodes selected for execution which overlap in
. .

the same time slice increases the complexity of the problem dramatically. Also, the

programs are often run in a multiprogramming environment, making the size of the

data much larger still. Additionally, the DAGs may be dynamic, i.e., the run-time

scheduler is not allowed to see the entire graph all a t once in those cases, and must

make its decisions based only upon partial knowledge of a time-variable graph. And

finally, the problems must be solved repeatedly for various machine sizes, which may

affect the best execution order of the nodes in any particular DAG. For all of these

reasons, an optimal solution simply isn't feasible.

Since an optimal solution to the general problem is not possible, the random

scheduling algorithm has been chosen as the standard by which all other scheduling

techniques will be judged. That is, all nodes on the starting queue will be sorted ran-

domly before one is selected for execution on the processors.

The random scheduler is used as a sort of "worst casc scenario" by which other

schedulers can be measured for performance. It is not, of course, an upper bound on

execution time in a theoretical sense, but as a practical matter any scheduler which

cannot outperform a random scheduler (or even does worse) can be judged as "bad".

It is therefore felt that this is an appropriate yardstick for comparison (in conjunc-

tion with comparisons between the other 24 algorithms, of course).

3.2.2. Greedy, Generous, and FIFO

Several scheduling algorithms look primarily at the number of processors

requested by a task or that task's execution time. There exists a class of schedulers

$3 ',

. ..

which has in the past been commonly referred to as "greedy algorithms".

Scheduling algorithm numbers 3, 10, 12, a n d 14 are examples of greedy algo-

rithms which examine the largest processor request or the largest execution time.

One of the main rationales for using greedy algorithms is that large tasks should be

allowed to run first. For example, if a starting task has an unusually high processor

request, it may have .trouble obtaining a sufficient number of free processors on

which to run later on during program execution. If, on the other hand, enough pro-

cessors are currently free to satisfy the task's requirements, a greedy algorithm will

initiate the task immediately. In a similar fashion, long running tasks which tie up

the processors for extended periods of time are started a t once by greedy algorithms,

while shorter tasks are pigeonholed where appropriate in the gaps between the bigger

tasks.

The opposite of a greedy .algorithm is referred to as a "generous algorithm".

Scheduler numbers 11, 13, and 15 are examples of generous algorithms which exam-

ine the smallest processor request or the smallest execution time. The rationale for

generous algorithms is that small short tasks can get on and off the hardware faster

than big slow ones can. Thus, a higher percentage of the. total nodes in the DAG

may be able to run concurrently or complete in a shorter period of time with a gen-

erous algorithm than with a greedy one. This tends to help the average turnarol~nd

time for each node.

As with all heuristics, cases can be found which cause the algorithms both to

succeed and to fail. For example, consider the four short UAGs shown in Figure 3.3.

Figurc 3.3. C reedy and Generous Comparisons.

Assume a 100 processor machine with no folding.

In the upper left hand corner, a greedy processor algorithm succeeds with a total

time of 2, while a generous processor algorithm fails with a total time of 3. On the

other hand, a greedy processor algorithm fails with a total .time of 3 in the upper

right hand corner, while a generous processor algorithm succeeds with a total .time of .

2. In a similar fashion, a greedy execution time algorithm succeeds in the lower left

hand corner, requiring 3 time units while the generous execution time algorithm

needs 4 time units to complete. The opposite holds true in the lower right hand

corner, requiring 5 and 3 time units for the greedy and generous execution time algo-

rithms, respectively. .

In addition to the greedy and generous algorithms just listed which examine pro-

cessor requests or execution times as their primary selection criteria, many other

algorithms in Table 3.2 use this as a secondary criteria in the event of a tie by their

first choice. Furthermore, even when other scheduling techniques are used (for exam-,

ple those discussed in the following two sections) for comparison purposes the pri-

mary evaluation criteria has been negated in a greedy/generous fashion, i.e.,

scheduler numbers 16 and 23.

Scheduling technique number 2 is the standard FIFO, or first in first out algo-

rithm. Its rationale springs from the idea that the tasks which have been waiting in

the system for the longest period of time should be served next. The FIFO algorithm

tends to minimize turnaround time. FIFO is also used as a subcomponent of

scheduler number 24.

3.2.3. Dynamic'Critical Path

Several of the schedulers shown in Table 3.2 use a form of algorithm known as

the dynamic critical path algorithm. The dynamic critical path algorithm is listed in

~ i ~ u r e 3.4. It is discussed in detail below.
.

subroutine dcpath (node , currentdistance)
if node (dcpd) 2 currentdistance

then return
else begin

node (dcpd) = currentdistance
currentdistance = currentdistance + node (executionAime)
fnr all nnrle (preder.e.,s.snrJ do

call dcpath (predecessori , current-distance)
return
end

end dcpath

Figure 3.4. Dynamic Critical Path Algorithm.

In order for a scheduler to make use of the dynamic critical path algorithm,

each of the nodes in the DAG must be modified to contain not only the node's ID,

processor request, and execution time, but also a tag known as the dynamic critical

path distance (dcpd in Figure 3.4). The dynamic critical path distance for each node

is the largest sum of the-execution times for all nodes along one of that node's succes-
'.

sor paths. That is, assume Na is some node in a program DAG. Let T be the exe-
Ns

cution time for node Ng. Then let S be the sequence of nodes (Nl, N2, ... N,) such

that Na>Nl, Nk-,>Nk, and N, is a terminal node, i.e., N, has no successors.

Assume there are 0 such sets of S. Then the dynamic critical path distance for N, is

0 if N, is a terminal node, or max

The dynamic critical path algorithm is similar to standard critical path algo-

rithms in that the critical path for a graph is computed for each node. And obvi-

ously in this application, the scheduler selects the starting node with the highest criti-

cal path value as the next one to schedule for execution. One of the modifications

used in this model, however, is that the DAGs may be dynamically modified at run

time to add new nodes and arcs into the graph. Clearly, this has the potential for

altering the critical path to any of the nodes in the DAG.

Since the DAGs are not static, the dynamic critical path algorithm shown in

~ i ~ u r e 3.4 dynamically recalculates the critical path distances at run time whenever

the graph is modified. That is, the dynamic critical path algorithm is called once

each time the operating system links a new node into the pool of available code seg-

ments. This is essential if the scheduler is to be able to correctly determine the criti-

cal path in a DAG constantly under revision.

The dynamic critical path algorithm seems to strike at the heart of the schedul-

ing problem. That is, if several different options are presented to a scheduler, it

seems clear that ,a scheduler should begin work immediately on the path that will

take the longest, and hope that it can overlap shorter paths "on the fly" as it goes.

For example, there is no reason' to initiate NF1 in program THREEDH until well into

program execution, even though it is an original starting node a n may have heen in

the system a long time. Looking at Figure 3.1; it becomes obvious that other work is

much more important, and NF1 can easily be run concurrently with other nodes'any

time a free processor become8 availnblc.

Critical path studies are well known in the operations research area. And the
.-

dynamic critical path algorithm does in fact correctly calculate the true critical path

for any DAG as that DAG is constructed (or modified). However, unlike the results

presented in work sueh as [Hu82], there is no guarantee that selecting a node with

the .highest dynamic critical path distance value will return optimal results, for the

reasons cited in Section 1.2. Nevertheless, on average it should be expected that the

dynamic critical path algorithm will return "close" to optimal results.

Figure 3.5 shows the dynamic critical path algorithm in action. In the upper

segment, a DAG of three nodes already exists in the system. The dynamic critical

path distance value for each of the nodes is marked with the tag of D. Since NA has

two successors, each having an execution time of 100, NA's dynamic critical path

value is 100.

In the lower left hand segment, ND has been added, such that NB>ND. The

dynamic critical path algorithm must therefore be called. ND's only predecessor is

NB. Its old dynamic critical path value was 0, and so it is now reset to 100, NB9s

new distance to the base of the tree. Likewise, NA is also shifted up by 100, giving it

a new dynamic critical path value of 200. (If NA had any predecessors, the process

would continue up the chain). This new value for NA thus represents the largest

sum of the execution times for all nodes (NB and ND) along one of NA 'S two succes-

sor paths (NA>NB>ND and NA>Nc). Since Nc is not along any of the dependence

paths of ND's predecessors, it is not visited.

Figure 3.6. Insertion of New Nodes with Tag Modifications.

.In the lower right hand segment, Nx has been added, such that Nc>NE. Nc

has been shifted up by 50. NB and. ND have not been visited. Note that the

dynamic critical path algvrilhlll terminated on NAP without shifting it up, since its

dynamic critical path value was larger than the path represented through ' N ~ (If
. -

NA had any predecessors, the process would therefore not continue up the chain).

Figure 3.6 shows a simple program DAG where the dynamic critical path algo-

rithm returns an optimal result of 300 total time units (assuming a machine of 100

processors without folding). Note that unless a node from the critical path of

NC>ND>NE is selected at each opportualty, a suboptlr~lal resuPl UP 400 is i~1evil;alsle.

Greedy and generous algorithms such as those discussed in the previous section have

no basis on which to make a decision in this instance, and are likely to return a

result of 400, as would a random scheduler.

Figure 3.6. Program DAG. .

41 '.

One of the potential pitfalls with any run-time scheduler is the problem of over-

head. A good run-time scheduler cannot be too complex, otherwise it runs the risk

of becoming a potential bottleneck in the system. If that were to happen, then even

a random scheduler would be an acceptable solution, rather than slowing down the

system with scheduling overhead.

Fortunately, the dynamic critical path algorithm has three good points which

can be made in its favor which help to keep overhead to a minimum. First, the algo-

rithm only visits nodes along the predecessor paths of the new node being entered

into the system. If a node does not have this new node as a (direct or indirect) suc-

cessor, it will not be examined. Additionally, the algorithm terminates along a path

as soon as a node is reached who's dynamic critical path distance exceeds the current

critical path distance (currentAistance in Figure 3.4). Thus, only a small subset of

the total DAG is likely to be visited on average.

Second, it may be that some particular program is known to be static

throughout its life in the system. In such cases; the critical path distance tags can be

precalculated by the compiler, eliminating the need for the costliest portion of this

scheduling technique to be performed at run time. Furthermore, even if a program

DAG is to be dynamic, the compiler can still generate the tags for those portions of

the program which are to be entered into the syslelll a l Ihe saIIle time.

Third, this scheduling technique allows for an interesting division of labor. Tt

may be broken down into two disjoint responsibilities: the dispatcher and the

scheduler. Both programs may be run in parallel.

The scheduler's responsibility is to run the dynamic critical path algorithm
-

listed in Figure 3.4 whenever a new node is linked into a DAG.. As it backtracks

through the DAG (dependence arcs are implemented by means of a doubly linked

list) updating the dynamic critical path distances, the dispatcher can be busy select-

ing the node with the largest dynamic critical path value from the starting queue

which will fit (subject to folding considerations) on the currently available processors,

and then allocating those processors for that node. .

For several reasons, it does not matter if the scheduler is partially through a

DAG modifying the tags when the dispatcher examines the starting queue's dynamic
'

critical path values. First, the scheduler only modifies each node's critical path tags,

not any of the dependence arcs or the starting queue itself. Thus, even though the

DAG is being written to a t the same time another program is reading it, the

scheduler cannot violate the program's semantics. (The only danger is involved when

the scheduler tries to write to a tag in the starting queue, from which the dispatcher

may be busy removing nodes. In that case, the operating system must place a lock

around a single node only for either the scheduler or for the dispatcher.)

Second, the worst thing that can happen is that the dispatcher selects the wrong

node for execution. This can occur if a new node's entry causes a sharhing node to

receive the largest dynamic critical path value in the DAG, but the scheduler has not

completed its work before the dispatcher selects the next node for execution. This,

however, is a very minor problem. This dispatcher will simply select the current

highest tag value, which is probably a good choice anyway, since it is the largest

dynamic critical path distance in the particular instance of the DAG before the

current node arrived. After all, whenever the possibility of dynamic graphs are

allowed, any scheduling technique must resolve itself to making decisions based upon

incomplete knowledge, i.e., it only has a local rather than global view of what's

Since the (relatively costly) execution of the scheduler may be overlapped with

that of the dispatcher (and of course with task execution) at least some of the over-

head in implementing a dynamic critical path algorithm can be eliminated. When

combined with the facts that the scheduler may only need to visit a subset of the

graph, and that compiler assist is po'ssible in generating the nodes' tags, it is felt that

the dynamic critical path algorithm is a good candidate for study and possible imple-

mentation on a multiprocessor.

8.2.4. Dynamic Critical Volume

Several of the schedulers shown in Table 3.2 use a form of algorithm known as

the dynamic critical volume algorithm. The dynamic critical volume algorithm is

listed in Figure 3.7. It is'discussed in detail below.

' Upon close inspection of Figure 3.7, it becomes clear that the dynamic critical

volume algorithm is very close to that of the dynamic critical path algorithm listed in

Figure 3.4. In fact, the only difference between the two scheduling techniques is the

manner in which the critical path is defined. The dynamic. critical volume algorithm

defines the dynamic critical volume for each node (dcvl in Figure 3.7) to be the larg-

subroutine dcvolume (node , current-vol)
if node (dcvl) >_ current-vol

.thenreturn .

else begin
node (dcvl) = current-vol
current-vol = current-vol + node (execution~ime) * node (proceusor~eq)
for all node (predecessor3 do

call dcvnlume (predecessor; , current-vol) . .

return
end

end dcvolume

Figure 3.7. Dynamic Critical Volume Algorithm.

est sum of the product of the execution times with the processor requests for all

nodes along one of that node's successor paths. That is, if PNb is the processor

request for node Ng, then the dynamic critical volume for N, is max

The rationale for this modification is that the dynamic critical path algorithm

only looks at the sum of the execution times along some path of the DAG. Such a

sum, however, may not represent a true reflection of the work involved in executing

that set of nodes on the processors. A more. accurate measure of'the work might be

the space-time products of the nodes within that set.

Furthermore, iq this model a one-way mapping from processors into execution

time is possible, as was discussed in Section 2.2. And if the 25 percent folding rule is

permitted, then the dynamic critical path distance for each node potentially may be

off by a factor of 4 from the real time needed to execute that path. The dynamic

critical volume for each node takes this into account.

Despite the differences in the manner in which the critical path is defined, virtu-

ally all of the characteristics of the dynamic critical path algorithm hold true for the

dynamic critical volume algorithm. Section 3.2.3 covers such characteristics in detail,

and thus they are not repeated here.

3.2.6. Throughput Tradeoffs

Up to this point, all of the scheduling techniques have been directed for the

most part towards maximizing throughput and processor utilization. As any opera&

ing system designer knows, however, throughput is not the only important criteria.

From the users' point of view,, program turnaround time may be as important,

and perhaps even more so, than machine throughput. Most users are willing to trade

some degradation in machine performance (as long as it is not too big) in order to

receive quick response time. A good operating system tries to balance these two com-

peting interests.

Scheduling technique number 24 in ?'able 3.2 tries to make such a balance. This

scheduler picks as the next node to execute the largest dynamic critical path of the

earliest program of the same type of program having the largest overall dynamic crit-

ical path. That is, it attempts to combine the dynamic critical path algorithm,

which tends to maximize throughput, with the FIFO algorithm, which tends to

minimize program turnaround time.

Stated another way, the algorithm works as follows. First, the node with the

largest overall critical path value is located. Next, the program type that node

belongs to is identified. Now, the FIFO port1011 swings lnto acliion. Tht: scheduler

determines which program of that same type has been in the system for the longest

period of time (this, of course, assumes a multiprogramming environment), Once

that program has been determined, the largest critical path node belonging to that

program becomes the next candidate for execution. Thus, this scheduler always '

selects a (relatively) large critical path, which is good for throughput, but runs older

jobs first, which is good for turnaround time.

Figure 3.8. Multiprogramming DAGs.

For example, consider Figure 3.8, where T represents the program type, and q
.-

represents the program number. Two different types of programs are shown. Also,

two copies of program, r2 are present; the first one has already had at least two of its

nodes serviced, i.e., NA and NB (assume it has been in the system for a longer period

of time).

Scheduler number 24 then proceeds in the following sequence. Since NA of r2 q2

has the largest overall value for- Dl further search is restricted to only r2. Next, r2 ql

is selected, since it arrived earlier than r2 q2. And finally, Nc within r2 ql is

scheduled for execution, since it has the largest D value in that program type and

number. (The next node selected would be ND in r2 ql for similar reasons. NA in

r2 q2 follows the completion of r 2 ql , and then Nx in r1 ql is begun before Nc or ND

3.2.8. Dynamic Critical Ratio

Unfortunately, scheduling technique number 24 potentially has a serious draw-

back. That algorithm requires that each node carry a program number tag, along

with a program type tag. Although the program number tag could automatically be

generated by the operating system as a unique ID, the presence of program type tags

requires the users to categorize their programs into a disjoint set of bins. Besides

wasting the additional space needed to hold the tags, such a requirement may be

unrealistic in a practical environment.

Ideally, a good scheduler should make its decisions based only upon the charac-

teristics of the DAGs in the system. The dynamic critical ratio algorithm is another

attempt to balance the often competing interests of throughput and turnaround

time, while at the same time avoiding the drawback of scheduler number 24.

' The dynamic critical ratio algorithm is very simple. This scheduler first deter-

mines the node with the largest overall critical path. Thai; node is schellulstl I'm. exe-

cution unless one of two things happen. Either a node can be found with a critical

path shorter than the largest node by some critical ratio, or a node can be found

with a critica! path shorter than the previous node initiated on the processors by the
'

critical ratio. If such a short node can be found, then it is given a higher priority

than the largest critical path node.

Thus, a two node "working set" is maintained for the purposes of evaluating

against a critical ratio. This allows the algorithm to adapt, to some extent, to a

changing mix of jobs and average critical path values. Note that no requirement is

needed for the nodes to carry along program number or type tags.

The rationale for the dynamic critical ratio algorithm is that for machine

throughput, big programs with large critical paths should receive a high priority.

However, once a job is "close" to finishing, then delaying it further will gain nothing

except to drive up the average turnaround time. So in those cases, the jobs with lit-

tle left to do are quickly flushed out of the system before control returns to the

longer programs.

. For example, consider the example in Figure 3.8 again. Assume the critical ratio

value is 4. Then in this example, since the largest value of D for any of the starting

nodes is 100, all nodes with critical path values of less than 25 are initiated first, i.e.,

all copies of Nc, ND, and their successors. Following that, NA is initiated (this may

occur sooner, if sufficient processors are available but Nc and ND's successors are

blocked by dependencies from executing predecessors). The final initiation sequence

then continues indecreasing values of D, i.e., Nx thin NB.

In some ways, this is analogous to the way many printer queues are set up.

That is, the shorter the job, the more important good turnaround time is likely to' be

to the user. Thus, very short jobs are placed at the head of the queue, even if they

arrived later, while medium and longer jobs are serviced normally. (The analogy is

not'perfect, of course, e.g., print jobs are continuous, while DAGs are composed of

smaller subgraphs, which both .prevent top level nodes from entering the starting

queue if dependencies exist from currently executing nodes, and also must release

their processors once the nodes have completed).

50 '.

CHAPTER 4

SCHEDULING SIMULATIONS

.4.1.. Monoprogramming !

Thls secbiuu will iuvest;lgatt the effecis run-time ochcduloro have on monopro-

gramming systems, i.e., deciding between the different control paths of a single job at

a time. There are many reasons why a scheduler may only have one job on which to

work, e.g,, some programs may have such a high priority that no Interference 1s per-

mitted, others may be simply too big to fit on the machine while other jobs are run-

ning, certain applications such as operating systems development. or real time pro-

grams require a dedicated environment, different portlons of a larger ~~~ull iyruce~sur

may be partitioned distinctly between unique jobs, etc.

The object in a monoprogramming system, clearly, is to minimize the total exe-

cution time, at the expense of all other parameters. This job cannot affect the per-

formance of any other jobs, since obviously none are present. ~urthermore, given a

fixed number of processors, there is no reason why all of them should not be utilized

by the program if it helps to minimize the executlon tlme. S111aller lobal execullo~l

times directly translate to increased throughput.

As was stated in ~ect ioh 3.2.1, the random scheduler will be used to compare the

relative performances of the other run-time schedulers. The random scheduler is

fast, and represents a practical worst case that any good scheduler must be prepared

to beat.

The following tables show the effects the various schedulers have on the pro-

grams in a monoprogramming system. An 8 processor machine with 25% folding

was used. The SCH columns represent the scheduler numbers (refer to Table 3.2 for

the meanings) and the TEX columns represent the total execution times needed to

complete the program DAGs on that machine.

Obviously, in most instances, little difference can be detected. Most. of the pro-

grams differ by less than 5%. Two of the programs have identical results for all of

the cases. Only in two of the programs, FIG12 and KERNEL, were slightly more

significant deviations noted.

Why is this the case? Why don't the run-time schedulers affect the total execu-

tion times of the program DAGs to a larger degree? Program KERNEL in Table 4.9

begins to explain some of the causes of this phenomenon. The EXE column

represents the average number of nodes executing on the processors. The .ST&

column represents the average number of nodes in the starting queue unable to run

due to lack of sufficient processors. The BLK column represents the average number

of nodes blocked from execution (and the starting queue) due to predecessors with

dependence links still in the system. (Note that a node may be blocked due to prede-

cessors that have not yet begun execution, predecessors which have already started

running but have not yet completed, or a combination of both). The EXT column

represents the average execution time for each node. The CMP column represents

the average completion time for each node (measured from when a node enters the

starting queue). The TTT column represents the average turnaround time for each

node (task). And finally, the PRC column represents the average number of proces-

sors busy executing nodes. A little more detail is provided on these and other param-

eters in the Appendix.

A quick glance a t Table 4.9 reveals that not many tasks are executing at.any

one time on the processors. In fact, over all, 25 schedulers, an average of only 1.6

tasks out of a total of 3063 in program .KERNEL'are busy executing on the proces-
-

sors.

Potentially, this may be due to one of two reasons. Either a sufficient number

of processors are not available to KERNEL, or too many nodes in KERNEL'S DAG

are blocked because of dependence arcs (i.e., a relatively limited selection of control

paths are available to the schedulers from which to initiate nodes).

Examination of the PRC column reveals that usually, all 8 processors (the max-

imum amount allowed on the machine currently under discussion) are in use. And in

fact, on average 11.8 tasks are waiting on the starting queue, a seven to one ratio

over the number of tasks executing. So this is certainly one candidate, and

insufficient processors cannot be ruled out at this stage:

On the other hand, more interesting statistics can be found in the next few

columns yet to be discussed. Table 4.9 shows that over all 25 schedulers, on average

throughout the lifetime of KERNEL, 1523 tasks are blocked due to dependence arcs.

This is a 929 to one ratio over the number of tasks executing and a 129 to one ratio

over the number of tasks on the starting queue waiting for additional processors.

' Clearly, most of the nodes in the BAG are tied up in this state.

The final three columns also support this view. Averaged across time for all of

the schedulers, a task will not be finished for 17596.6 time units after it enters, 150.7

time units after it becomes a starting node, 'but only 19.5, time units once it begins

execution. Once again, it seems as if tasks spend most of their time .blocked by

dependencies. ' It can be seen that, for all seven data columns in Table 4.9, the

pattern these global averages set also hold true for each of the 25 rows in the table.
-

Additional evidence is provided by program CGECO in Table 4.10. CGECO

was even less susceptible to differences in the scheduling technique than was KER-

NEL, as can be seen in Tables 4.1 and 4.7. And, the pattern seen in KERNEL

becomes even stronger in CGECO. CGECO has, on average, only 1.2 tasks

executing, 0.6 tasks on the starting queue, but 550.9 tasks blocked by dependence

arcs. The average turnaround time for a task is 7777, the completion time is 25.6,

and the execution time is a close 17.9. Furthermore, CGECO only used on average 6

of the 8 processors available to it, unlike KERNEL which used all 8. This lends

stronger support to the theory that it is dependence arcs, not insufficient processors,

which are the cause of such a limited number of nodes in the program DAGs which

are able to execute at any one time.

To be completely sure, however, the effects of changing processors must be stu-

died. All program DAGs were tested on 8, 32, 64, 128, and 1024 processors. Pro-

gram CHEBY, it turns out, has the largest average processor request. A condensa-

tion of the results from program CHEBY is shown in Table 4;11.

As can be seen, adding processors causes the total execution time to drop, as

might be predicted. At first, the machines are completely saturated, but eventually

not all of their capacity is required. (And eventually, CHEBY moves to an almost

perfect space-time product square of 423 processors for about 491 time units). It is

important to note, however, that whether the processors are swamped or not, little

difference 'in total execution time is recorded among the various run-time schedulers.

Not shown in Table 4.11 are the EXE, STQ, BLK, EXT, CMP, or . TTT

columns. However, for all of thesc cases, on all of the various machine sizes, as well

as for all of the other programs tested, the same pattern seen in Tables 4.9 and 4.10

is present. That is, .most nodes (often by 2 or 3 orders of magnitude) spend most of

their tiwe blocked due to depcndenee links.

Thus, the question originally posed concerning ' ~ a b l c 4.9 can now be answered.'

It can consistently be shown that dependence arcs constrain to a greater degree the

number of nodes in a DAG which can execute than the lack of processors available to ,

process the separate control paths in a single job. And indeed, these two conditions

are inversely proportional to each other. For if a single program has a large number

of dependence arcs present in it, then it is unlikely to have a large number of

independent control paths present. So, although the individual nodes in a DAG may

be highly parallel (to the extent that some programs can utilize a very,large number

of concurrent processors on average), it appears that (relatively) limited parallelism

exists between the nodes in a single program.

The implications of this discovery are clear. For if the bulk of the nodes'in a .

DAG are inaccessible due to dependence links, then only a tiny fraction of the nodes

are available to the starting queue. With a smaller pool of .nodes from which to

make a decision, the various schedulers have a higher probability of selecting the

same node (or all of the nodes, if they will fit) for execution on the processors. This

situation severely restricts the options any run-time scheduler has to chose from, and

thereby diminishes the impact a scheduler can have on the total execution time.

The situation actually grows worse a s . processors are added. Consider a

hypothetical machine with an unlimited number of processors available. On such a

hypothetical machine, all conceivable schedulers will act in an identical fashion, i.e.,

as soon as a task'enters the starting queue, it will immediately be dispatched for exe-

cution on the processors. If a difference in actions is not possible hetmeen the

schedulers, then a difference in execution time is also not possible. This is obviously

true no matter what scheduler or program DAG is placed in to the system.

Naturally, this implies that in an infinite processor situation, all schedulers act
'- -

optimally. The execution time for any DAG with any scheduler is then identical to

.that DAG's largest static critical path, since all the schedulers have to do is to work

their way down the critical without having to worry about competition for

resources.

Furthermore, the closer a real machine approaches an . unlimited processor

environment (from the program's point of view) the more likely it is that on average,

that program's requirements can be met, and the less likely it is that any run-time

scheduler will make much of a difference. Note that this is much more probable in a

monoprogramming system than in a multiprogramming system. After all, single jobs

compose a subset of a multiprogramming environment. Therefore, monoprogram-

ming is much less likely to stress the (realistically limited) processors, and thus be

able to differentiate between schedulers to the same extent.

Returning to the discussion of dependence arcs, if they create such a big prob-

lem for schedulers, then what would happen if the program's nodes arrived spread

out across time, instead of all at once, as has been the case up to this point? In such

a situation, some dependence links may be artificially "broken", i.e., a few nodes

may arrive with dependence information, only to find that thelr predecessors have

long since completed and left the system. In such cases, the dependence links obvi-

ously never get . . created. Furthermore, a variety of nodes may arrive in close proxim-

ity to each other and immediately be in the starting queue together, where

under the previous tests, these nodes ordinarily may never have been able to compete
. ,

against each other.
.-- . .

Table 4.12 shows one example of a dynamically arriving program, in this case

HTRIBK. The 2969 nodes of, HTRIBK in this example were spread out to arrive

evenly across a time interval of 18834, which was the total execution time for the

random scheduler in Table 4.6. (One constraint was placed on the arrival of the

nodes, however. No node could arrive before all of its predecessors had arrived.) As

can be seen from the table, again little difference is observed between the various

schedulers. The total execution times between program runs were affected, depend-

ing upon the arrival characteristics and the particular program'DAG begin tested,

but no scheduler ever performed consistently and significantly better on dynamic

monoprograms.

Similar results were obtained on single jobs as the folding percentage was

changed. Folding affected the overall execution times dramatically, as was discussed

in Section 2.2, but it did not have a consistent and significant effect on which

scheduler performed best on a single program.

The only program for which the run-time scheduler had a very large effect, was
'-

FIGI2, where a 23% improvement was noted on an 8 processor machine in Table 4.5.

FIG12 is somewhat anomalous, due to the presence of a single "fat" node in the

DAG, which completely hogs the processors on a small multiprocessor if it is allowed

to run first. As it turns out, it happens to be beneficial to select that path first, and

so schedmlers which favor fat nodes (such as greedy processor or the largest critical

volume algorithms) do better in this particular instance.

Thus, several things have now become apparent. Single jobs only have a (rela-

tively) limited number of independent control paths present. This restricts the

number ,of starting nodes schedulers have to process, increasing the probability that
a

they will act the same. Furthermore, (and perhaps related to that problem) single

jobs do not always stress the capacity of a multiprocessor. Thus, all starting nodes

are free to be initiated immediately, which makes the decisions of a scheduler

irrelevant.

For these reasons (and a few others to be discussed in the next section), run-

time schedulers in a monoprogramming system do not (usually) have as significant an

effect as one might expect in advance. Therefore, it is probably a wise choice to

select a scheduler whlch is as lusl as possible, with littlc overhead placed upon the

operating system. Furthermore, as many decisions as possible (such as static critical

path tags, if desired) should be moved to the compiler, rather than be evaluatedat

run time.

4.2. Multiprogramming
, -

Multiprogramming offers a completely different environment, and therefore

potentially a different set of conclusions, 'than can be found in a monoprogramming

system. For one thing, the presence of multiple jobs offers a larger number of

independent control paths, and therefore starting nodes, than on a single user sys-

tem. Furthermore, the processors are more likely to be stressed due to the addition

of multiple jobs. A run-time scheduler's decisions thus become more important than

in the previous section. And, as will be seen shortly, additional characteristics of

multiprogramming systems greatly affect the choice of run-time schedulers which

should be implemented.

Multiprocessors are expensive machines, and for most applications, it is probably

not cost effective to run a single job in a dedicated environment. It has been known

for quite some time that in virtually all systems, the benefits of time sharing far out'

weights its detriments. Given that this is true, it is probably a safe assumption to

make that any given multiprocessor is likely to be running some form of time and

processor sharing operating system. And in order to help efficiently exploit the avail-

able parallel hardware, this section attempts to cxamine that problem as it relates to

the run-time scheduler.

On the average, at a.ny one time multiprogramming systcins are likely to be run-

ning a variety of different jobs. It is very common to find one or a few very large

jobs executing, such as a long simulation, along with a much greater number of

emnller jobs, such as editors, Compilers, or debugging runs of larger programs with

limited data. Unless stated otherwise, this model thus becomes the focus of the fol-

lowing two sections.

And as in the previous section, the random scheduler will be used as a perfor-

mance index on how good or bad any particular scheduler is said to be, along with

comparisons between the various schedulers. For that purpose, the total execution

time will again be used to measure throughput, holding all other parameters con-

stant. However, unlike the previous section on monoprogramming, throughput is no

longer the only criteria of interest. Turnaround time also must be taken into con-

sideration, as response time is obviously a very important factor to many users when

their jobs are executed in a multiprogramming environment. For that purpose, the

additional data of individual program turnaround times and execution time spans

will be introduced.

Hopefully, some sort of balance can be made between these two often competing

interests. seetion 4.2.1 looks primarily at the throughput issue, and the first 23

schedulers listed in Table 3.2 are analyzed there. Section 4.2.2 'looks primarily at the

turnaround time issue, and discusses the final two schedulers separately in that sec-

tion. However, scheduler number 24 is listed in the tables along with the first 23

schedulers in Section 4.2.1, eveu lhoilgh it is not nnaly~ed uatil the following section,

Scheduler number 25 returns a range of values, and thus is not even listed in the

tables until it ,is discussed.
. .

4.2.1. Throughput'
.-

For a variety of reasons, some of which have already been discussed, run-time

schedulers can make more of a difference in the total execution time, and thus

throughput, of a multiprogramming system than they do in a monoprogramming sys-

tem. Table 4.13 is typical of such results. a

This particular example assumed a single copy of the large program THREEDH

was multiprogrammed with 70 copies of the smaller program COUNT. An 8 proces-

sor machine, Gith 25% folding, and arrival times of 0 were assumed. (The PTT

columns represent the program turnaround times, and the ETS columns represent

the execution time spans. These columns are defined in the Appendix, and will be

discussed in greater detail in the next section.)

Several points are immediately apparent. For instance, significant deviations in

the total execution times between the sched~~lers can be noted; Furthermore, as will

be seen in some of the other examples cited, consistent patterns begin to develop con-

cerning which schedulers return the best overall throughput performance. Hopefully,

this section will illustrate not only which schedulers perform best, but also the rea-

sons behind that increased performance.

Table 4.13 reveals that the random scheduler (SCH row no. 1) returns a total

-
execution time for thc DAGs of 00295. It, however, did not do the worst. The worst

scheduler in this instance was the smallest .dynamic critical volume scheduler (no.

23), with a total execution time of 66154. This represents a 9.7% increase in the

total. execution time. The other schedulers which did worse than random .$&re, in

decreasing order of time: smallest dynamic critical path (no. 16), FIFO (no. 2), smal-

lest processor request (no. ll), and largest processor request (no. 10).

Several of the schedulers were less than 5% faster than the performance of ran-
-

dom. They were: largest execution time (no. 12), smallest execution time (no. 13),

largest product of time and processors (no. 14), and the smallest product of time and

processors (no. 15).

Many of the schedulers showed significant speedups over the random algorithm.

These were the entire collection of the dynamic critical path algorithms (nos. 4-9

and 17), the dynamic critical volume algorithms (nos. 18-22), and the largest proces-

sor request with ties going to the largest dynamic critical path (no. 3). All of these

schedulers showed a specdup over random of approximately 40%, with the fastest

scheduler returning a total execution time of 35121, or a 41.8% speedup.

Why were such dramatic results recorded? And why did the dynamic critical

path and volume algorithms in particular do so well? The other columns in Table

4.13 begin to answer these questions.

Glancing at the EXT, CMP, and TTT columns, it is, clear that tasks still spend

most of their time blocked by dependencies from execution. This is to be expected.

After all, multiprogramming systems are made up from a collection of individual sin-

gle jobs, each of which exhibit the same dependence characteristics seen in Section

4.1.. Adding more jobs does not break links within a job.

The difference, however, occurs in the STQ, relative to the EXE and .BLK

columns. Now, unlike Section 4.1, the introduction of multiple ,,independent jobs

ensures a greater number of nodes in the starting queue. In fact, averaged over all.of

the dynamic &tical path and volume algorithms, 87.3 nodes were idle waiting for

processors to become free. (There were 6700 total nodes in the system). This is a

much higher number than was seen in a single user system. Even algorithms which

performed poorly had a relatively large pool of nodes in the starting queue.

The assertions made in Section 4.1 are thus justified. Multiple jobs ,with

independent control paths in a multiprogramming system obviously place a greater

number of nodes onto the starting queue. More nodes an that queue reduces .the pru-

bability that different schedulers will select the same node. Furthermore, the addi-

tional nodes stress the processors more, making it less likely that the different

schedulers perform close to optimal. Therefore, a s predicted, the run-time

scheduler's decisions become more significant, and therefore more important, with

multiprogramming.

As a final note, it can be seen from the PRC column in Table 4.13 that those

algorithms which performed best had the. highest processor u-tilization, and in fact

completely saturated the machine. This is to be expected. Schedulers which did not

do well utilized ,less processors on average, despite the fact that nodes were available

in the starting queue (although on average, the starting queue was shorter for poorly

performing schedulers).

What effect does the job mix, in particular the number of small programs, have

on these results? Tables 4.14 and 4.15 illustiate the.changes observed as the degree

of multiprogramming is varied. Table 4.14 contains 50% less, and Table 4.15 50%

more, copies of COUNT than was executed in Table 4.13. All other parameters were

held constant.

As can be seen from Tables 4.14 and 4.15, the overall patterns seen in Table

4.13 .are still true. Obviously, the overall execution times tend to decrease in Table

4.14 and tend to increase in Table 4.15. However, the collection of dynamic critical
-

path and volume algorithms consistently perform very well. Other schedulers show

little or no consistent improvement, and in some cases actually do worse than ran-

dom. The smallest dynamic critical path and volume algorithms do exceptionally

poorly.

There is one difference between Tables 4.14, 4.19, and Table 4.13 that should be :

noted, however. Table 4.13 recorded speedups of around 40%. The latter two tables

dropped their speedups to just under 32%.

Why did this happen? The answer should be obvious in the case of Table 4.14.

For as the degree of multiprogramming is decreased, the system begins to look more

and more like a monoprogramming system. The number of nodes on the starting

queue begins to shrink, the processors become less stressed, and the utilization drops.

Thus, speedup is definitely recorded, but it is not quite a dram.atic.

Table 4.15 is less obvious. Why should increasing the number of copies of

COUNT by 50% decrease the speedup by approximately 8%? The answer is that as

more copies of the smaller program are added to the system, the relative contribution

of the larger program to the overall statistics begins to decrease. Eventually, the per-

formance values are made up almost entirely as if the scheduler saw only a collection

of identical short jobs, without ever introducing a larger .program on to the proces-

sors.

This then brings up yet another potential pitfall for run-time schedulers. For

even .if the processors are stressed such that all nodes can't run immediately,. and if a

large number of multiple independent control paths. are present, then if all of those
'

paths have identical or even close characteristics, the scheduler has no basis upon

which it should make a decision. Every path looks just as good as every other path,
. -

since the characteristics of those paths being evaluated are the same. Thus, keeping

the selection criteria constant, any particular scheduler begins to service the jobs

(more or less) in a round robin fashion.

Fortunately, this situation is much less likely to occur in a multiprogramming

systoem than in a dedicated environment. Single programs often have identical con-

trol paths, generated by the outer nested parallel loops (the Borlzontsl brackets in

Chapter 3). With multiprogramming, a much wider variety of relative critical path

distances, processor requests, execution times, etc. is likely to be found, giving the

run-time scheduler a basis for decision making.

Furthermore, not only does a multiprogrammed system inherently offer a richer

environment of different jobs than a monoprogrammed one does, but also the proba-

bility of a dynamic system, or nonzero arrival rates, is enhanced. This leads to

potentially even greater differences in such parameters as the dynamic critical path.

This is true even if a common job is run often, since an earlier arrival will already

have completed a portion of its DAG before the next job arrives, so that its starting

nodes will carry smaller critical path tags than the current arrival. (Indeed, it is

probably much more likely to have a dynamic environment between, not within,

separate DAGs).

Table 4.16 is illustrative of such results in a dynamic environment. Unlike the

previous example, where all of the jobs arrived simultaneously, this particular exam-

ple is more complex, demonstrating the dynamic modification of the general . . '

collection of DAGs the run-time scheduler is examining.

For this example, an 8 processor machine with 25% folding was selected. Five
-

copies of the program COUNT were scheduled to be run sequentially, arriving at the

start of the simulation. One hundred and twenty copies of the program FIG1 were

dynamically added in' groups of four, with arrival times spread out across an interval

of 14976, in an attempt to keep a relatively constant flow of jobs into the system

until near the end.

And once again, the pattern is still present. The largest dynanric critical path

and volume algorithms (nos. 4-9, 17, and 18-22) return consistent and tlfgniflcaut

results on dynamic DAGs, with a speedup for this particular example of 30.6%. The

smallest dynamic critical path and volume algorithms (nos. 16 and 23) again perform

poorly, with .an increase over the random scheduler's total execution time of 2.2%.

All sther schedulers are scattered somewherk in between these two values.

So, to summarize some of the concepts to this point, a run-time scheduler will

make a difference in the throughput of a DAG or DAGs under the following condi-

tions. First, the processors must be stressed. Placing a heavy load upon the proces-

sors forces the scheduler to make a decision as to which group of tasks will not

currently be able to run. If that decision is wisc, then good performance will result.

. Ot,herwise, the scheduler could perform worse even than random. Light loading of

the processors reduces that pressure, with the limiting case being that all schedulers

act the same, and approach an optimal throughput..

Second, a relatively large number of starting nodes must be presented to the

run-time scheduler. Multiple independent control paths contribute t o this factor.

75

The higher the number of nodes, the lower the probability that any two schedulers

will select; the same node, and thus yield the same results.

Third, these nodes should present different values to the scheduler (for which-

ever characteristic it is evaluating). Otherwise, the scheduler has no criteria upon

which to form the basis of its decisions. For example, if all of the starting tasks have

the same dynamic critical path tag value, then a dynamic critical path scheduler will

select the highest one, until they are all equal, and then begin a round robin dispatch

between all of the various paths.

Note that all three of these points are more likely to occur in a multipro-

grammed operating system than on one which implements only monoprogramming.

There are more demands on the processors, there are less dependence arcs between

programs, and the dynamic arrivals, as well as the different types of jobs, contribute

to a wider variety of nodes in the system.

And under these situations, it appears that the dynamic critical path and

volume algorithms perform very well. Consistent and significant speedups are

recorded over a random selection of tasks from the starting queue.

Graphically, the situation can be illustrated in Figure 4.1. Figure 4.1 shows a

typical job mix in a multiprogramming system, i.e., one (or a few) very long jobs,

with lots of smaller jobs aloo competing for resources.

In such situations, competition for resources often cause nodes to get "bumped

off" consideration for the next node to be started. But which one (or ones) should

lose out in Figure 4.1? Clearly, it seems prudent to give precedence to the nodes on

Figure 4.1. Multiprogramming DAG Collection.

top' of the largest dynamic critical path and try to overlap the shorter nodes in

parallel with the execution of the longest job. Any other choice is almost certain to

be detrimental to system throughput.

Furthermore, the higher the relative difference in critical path heights, in con-
'-

junction with. a larger number of small jobs requesting service, from the processors,

the more important a scheduler's decisions become to throughput. After all, with a

. low probability of "finding" an extremely high path in a huge sea of short nodes with

schedulers such as random, greedy or generous execution times, etc., a greater poten-

tial exists for poor results. Therefore, in such situations, schedulers such as the

dynamic critical path or volume algorithms are worth the investment in overhead

more sophisticated schedulers require on real data programs.

One of the interesting results from the examples run was that the dynamic criti-

cal volume algorithms (nos. 18-22) did not outperform the dynamic critical path

algorithms (nos. 4-9 and 17). Indeed, differences of only a few percent were usually

recorded. This is especially surprising when folding was permitted since, as was

pointed out in Section 3.2.4, use of the 25% folding rule means that the dynamic

critical path distance for ahy arbitrary node may be off by a factor of four from the

real time needed to execute that path. It was originally thought that since the sum

of the space-time products more accurately represents the amount of work needed to

complete some path than does the sum of the execution times, then the former would

provide a superior selection criteria for the run-time scheduler. Such does not

appear to be the case.

, ' The reason this seems to be true is that there is no correlation between which

path a node happens to reside upon, and the probability of that node's successors .

being folded, Stated anothcr way, averaged over all nodes, paths 'with higher . :

78

dynamic critical tag values (tend to) have more nodes within those paths. The larger

the number of nodes in a path, the higher the probability that some of those nodes

will be forced to fold processors into time, thus increasing the "effective" dynamic

critical path to an even larger value than it . was before. Thus, in a sense, the

dynamic critical path value does take into account the problem of folding, even if it

is only a "side effect" of the probabilistic distribution of execution times and proces-

sor requests among the nodes.

One final comment on this subject should be made. Since the dynamic critical

volume algorithms require a multiplication which is not needed in the dynamic criti-

cal path algorithms, the former series will obviously run slower than the latter. And

since. the dynamic critical path algorithms seem to work just as well, those algo-

rithms are probably the ones which should be selected, given a choice between the

two sets.

Another point of interest. was that the secondary evaluation criteria in the event

of ties in the critical path and volume algorithms did not have a consistent and

significant effect. Usually, little difference was recorded, and it was not u n c o ~ ~ l u u ~

for the results to match exactly between different variations of the tie breakers. In

those few instances where small differences did occur, no consistcnt pattern developed

as to which criteria was best.

Also, examples were run oii larger processor ~~lacliiiies. When the numbcr 'of

processors was increased without changing the job mix, the obvious results were

observed. That is, there were decreases in the total execution times and a lowering of . .

the relative. differences between the schedulers, in a fashion similar to the transition

from Table 4.13 to Table 4.14, and for the same reasons previously cited. .On the

other hand,.sialing the number of processors and the degree of multiprogramming up

by the same factor yielded virtually the same results as on the smaller machine. For

instance the example shown in Table 4.13 was scaled up to a 32 processor machine,

with four copies of the large program, and 280 copies of the small program. The

same trends held. Random returned a total execution time of 61395. Smallest

dynamic critical path and volume returned 69805 and 69797, respectively, which

were the worst of all of the schedulers.. The largest dynamic critical path and volume

algorithms averaged a total execution time of 36270 and 36370, respectively.

And finally, the amount of folding permitted returned the same results as in

Section 4.1, i.e., folding has a dramatic effect on the overall execution times, but

shows no eorrelatioll belween selection of a run-time scheduler. Readers are there-

fore referred t o the work by X u and Yew mentioned in previous sections for any

further discussion.

4.2.2. Turnaround Time

To this point, it has been shown that the dynamic critical path and volume

series of algorithms perform very well in a multiprogrammed environment, 'i.e., a

substantial increaie in speedup is recorded over random and most other schedulers.

As ca4 be nobed from the far right columns ,in all of the examples cited, however, this

speedup is gained at the expense of extreme turnaround times for the shorter pro-

grams.

This is a bad situation. For it is probably true that the shorter the program,

the more users are interested in quick response time. The dynamic critical path algo-

rithms certainly fail this test.

Why is this the case? he problem arises due to the inherent nature of the

dynamic critical path algorithms in that they actually avoid terminal nodes. That is,

if a program DAG is almost completed, and the run-time scheduler suddenly discov-

ers a new starting node with a higher dynamic critical path value (due to either a

new arrival or an existing DAG disposing of dependence links as predecessor nodes

terminate) then the DAG with the largest critical path value is given preference over

the shorter ones. This is by intent, of course, in order to maximize throughput.

The problem with this scheme, however, is that the closer a job gets to finishing,

the lower the probability'becomes of that game Job beillg given access to thc procco

sors by the scheduler. It is clear that a paradox has been created, namely, jobs are

only given the chance to complete if they are not close to complellug. The imylica-

tions of this strategy upon program turnaround time are obvious.

The. solution to this problem seems to be one of balance. Obviously, techniques

which go to extremes in either direction are not acceptable in a real system, and the

critical path schedulers discussed in the previous section miist be modifled ~ouehuiv

in a manner which will take both parameters into account. That is, give priority to

large critical. path values most of the time in order to aid throughput, but once a job

becomes "close" to finishing, then try and quickly flush it out of the system in order

to aid turnaround time.

This section attempts to analyze that problem. The final two run-time

scheduleis listed in Table 3.2 are examined and compared in the standard fashion to

random, etc. However, since many of the "side issues" discussed in Secti0.n 4.2.1

(e.g., the degree of multiprogramming, the effects of folding, etc.) yield the same

results as they did in the previous section, those arguments are not repeated here.

The first algorithm to be discussed in this section is the one in row 24 of Table

3.2, which for lack of a better name will be known simply as '%umber 24".

Scheduler number 24 first determines which node has the largest overall dynamic

critical path tag value. Next, the earliest program number of that same type of pro-

gram is located. (Program types are defined in Section 3.2.5, 3.2.6, and the Appen-

dix). Finally, the largest dynamic critical path within that particular program is

selected for execution.

Basically, what number 24 is trying to do is to combine the dynamic critical

path scheme with FIFO, in an attempt to make some tradeoffs between throughput

and turnaround time. It moves jobs which have been in the system for a long time

towards completion. Furthermore, it avoids the common problem the dynamic criti-

cal path series have of processing all of the high paths first, until everything is of

even height, and then providing approximately equal service to al'l possible paths in a

round robin fashion, i.e., as soon as any path gets lower than any of the other paths

it is ignored. On the other hand, because two of the three stages in number 24 are

based upon the dynamic' critical path, it still attempts to service the DAG with

, minimal loss of thiuughpul.

And, in fact, number 24 actually works quite well. Consider for example the
*

program set discussed in Table 4.13. (Although all of the copies of COUNT arrived

simultaneously in Table 4.13, number 24 arbitrarily decides that which program is

the "first" is the one with the lowest program number. And in real systems, all pro-

grams generally are assigned a unique program ID, which would be sufficient for

n.u,mher 24 to operate in the event of arrival time ties in the real world.)

For that particular collection of DAGs, number 24 returned a total execution

time of 41640, or approximately a 30.9% speedup over random. With the exception

of the critical path and volume algorithms, this result is better than any of the other

schedulers. On the other hand, the critical path schedulers returned speedups in the

range of 40%, which obviously is better than number 24. . .

But what price did the dynamic critical path schedulers pay 'for their extra

speedup? Consider scheduler number 5 (largest dynamic criti~al path with ties bro-

ken by the smallest processor request), which returned the best throughput in this

particular example. Scheduler number 5 showed an average execution time span for

program COUNT of 32420. This is 26.7% worse even than random in this example.

Similarly,. the average turnaround time for COUNT with scheduler number 5 was

30.1% worse than random. (On the other hand, the execution time span and the tur-

naround time for program THREEDH were about 42% faster than random).

Compare that with the results obtained by scheduler number 24. Schedder

number 24 had an average execution time span for COUNT of 3318, and an average

turnaround timeof 23556. This is 87% and 11.6% faster, respectively, than random,

and 89.8% and 32.3% faster, respectively, than scheduler number 5. (The statistics

for TEIR.EEDH were.roughly the same as that returned by scheduler number 5). So

a t the cost of losing 10.9% (out of 41.8%) of the speedup afforded by scheduler

number 5, scheduler number 24 returns an execution time span for the smaller pro-

gram which is an order of magnitude smaller than number 5, and a turnaround time

which is faster by a third,

Similar results were obtained for all other simulations conducted. For example

the dynamic critical path algorithms in Table 4.16 (with nonzero arrival times) took

19556 time units to execute, while scheduler number 24 required 19592. These are

speedups over random of 30.6% and 30.5%, respectively, which are obviously very

close. But the dynamic critical path algorithms bought that extra 0.1% at a very

heavy price. The average execution time span for FIGI was 933, and the average tur-

nardund time was 967. (These values, execution time span and turnaround time, are

much closer than before, since all copies of FIGI did not arrive simultaneously at the

start of simulation, unlike the example cited in Table 4.13). This represents an 88%

and an 87.7% speedup, respectively, over the dynamic critical path algorithm. Cer-

tainly this was a worthwhile' tradeoff!

And so it seems that scheduler number 24, all things considered, performs quite

, . well. Unlike the dynamic critical path algorithm, number 24 flushes out jobs that

are about to complete, and' avoids the pitfall of ignoring ,short DAG segments.

Throughput does sometimes suffer (as was especially true in the first example cited)

but thc bcnefits of quick response time mare than cnwpensatc for that loss.

The problem with scheduler number 24, of course, is that it requires

classification of the programs submitted to the operating system by job type. This is

a serious drawback. Furthermore, all of the program nodes are required to carry

along that program t h e tag (or at least a pointer to a tag) which is not very space

efficient. The next scheduler is an attempt to avoid those drawbacks.

The dmamic critical ratio algorithm is an attempt to balance throughput and

turnaround time based only upon the characteristics of the DAG alone. No require-

ments are needed for job identification or typing.

The dynamic critical ratio algorithm simply takes the largest critical path value,

unless some node is shorter than that value (or the value of the last node dispatched),

in which case the shortest critical path value is used. This algorithm thus attacks

the same problem as number 24, but by a different method. That is, large dynamic

critical path values are normally used in an attempt to maximize throughput, but

once a DAG segment gets "close" to completing, then it is given priority and pushed

out of the system. "Close" in this instance is defined by the ratio value selected,

which will be referred to simply as "R". (See Sections 3.2.5 and 3.2.6 for further

information).

What type of results does; the dynamic critical ralio a1goril;Liii return? Wtll, the

answer to that question depends upon the value of R selected. For example, Figure

4.2 demonstrates how the total execution time, the. program turnaround time, and

the execution time span for the shorter program (FIGI, in this case) are affected by

the value of R used for the example first cited in Table 4.16. .(The specific values

0 12000 13000 14000 15000 16000 17000

Ratio
Figure 4.2. Performance Parameters as a Function of R.

used to generate Figure 4.2 for different values of R are reproduced in Table 4.17). '

There are two main points of interest in Figure 4.2. First, it is clear that the

total exec~atiou time is invcrocly prapartiurral lo the turnaround time and the

execution time span. (Since the turnaround time and execution time span curves fol-
-

low each other, only one, the turnaround time curve, will usually be referred to in

the rest of this section).

Obviously, this is to be expected. For as the dynamic critical ratio algorithm

increasingly favors flushing smaller jobs out of the system, it increasingly helps the

average turnaround time, but at the cost of increased overall system time.

The best results would be obtained a t some point ,in the middle of the crossover

between the curves. (In this example, the turnaround time curve started to drop

significantly faster than the execution 'time curve started to rise on the right portion

of the curves). For example, if an R value of 15000 is used in this particular exam-

ple, total execution times of about 20.6% faster than random are recorded. While

that is certainly less than what was recorded by the dynamic crltlcal path algorilluu

(or even number 24), the average program turnaround time and execution time spans
'-

for FIG1 were 83.8% and 84% faster than the dynamic critical 'path algorithm,

respectively. Furthermore, by decreasing the value of R even further into the areas

of nonzero slopes, mdre complete tradeoffs between throughput and turnaround time

can be made, depending upon the particular needs of the users.

The second point. of 'interest in Figure 4.2 is that all of the curves show three

distinct regions of stability. Why 'did this occur? Figure 4.3 helps to explain this

phenomenon.

Assume that the column heights in Figure 4.3 represent the dynamic critical

path values of some programs. Figure 4.3 then shows a very long program, a short

program which has been iq the system for some time (the dashed box represents the

portion of the DAG which has already been completed) and the arrival of another
. .

short program DAG.

The value of R can then fall into three distinct regions, as shown in the figure.

If R1 is used, then the dynamic critical ratio algorithm acts exactly like the largest

dynamic critical path algorithm. Large critical path values are selected, short critical

path values are ignored (except when the big programs can't run due to dependence

links from currently executing predecessors), throughput is maximized, as is tur-

naround time. This is represented by the right portion UP the graph in Figure 4.2.

If R3 is used, then the dyna~nic critical ratio algorithm acts exactly like the

smallest dynamic critical path algorithm. Small critical path values are selected over

large. ones, and throughput and turnaround time are minimized. This is r'epresented

, .

Figure 4.3. Possible Ranges' for R.

by the left portion of the graph in Figure 4.2.

]If R2 is used, then things are much different. Small DAGs close to completing

are given priority, which helps turnaround time. When no small jobs are present (or

they are blocked by dependencies from executing predecessors) then the largest

dynamic critical path values are used, which helps throughput. New arrivals of short

jobs are given the lowest priority, and must wait to run until dependencies block

everyone else. The exact statistics returned when R is in the R2 region depends upon

. -

the specific value of R, the average height of the program DAGs, and the average
.'-

arrival rate of the DAGs.

As an example of this, consider Table 4.13 again. There, unlike the example

just discussed, all of the programs arrived simultaneously. In such cases, R2 regions

. do not exist. The net effect of that situation is that thedynamic critical ratio algo-

rithm essentially "breaks", and the analogous graph of Figure 4.2 would look like a

step function if it was to be plotted. A binary choice is thus the only possible con-

sideration without R2, i.e., the scheduler will act like either the largest or the smal-

lest dynamic critical path algorithm. (Note that this situation can besimulated by

very rapid arrival rates, i.e., if programs arrive faster than the scheduler can process

them down below R. If that happens, then the algorithm becomes .overloaded, and

enters the R1 region. All of the problems previously discussed concerning the largest

dynamic critical path algorithm then apply here, i.e., good throughput but bad. tur-

naround, time. Table 4.13 is the limiting case of this scenario, of course).

Assuming dynamic DAGs, however, the question then becomes: how should the

value of R be selected? Unfortunately, there is no known way of automatically

selecting this value. Generally, R should be selected such that it is less than the

average height of the average small program entering the system (to avoid moving

into region R3) but not so small so that the processors cannot "shrink" the height

down below R before the next batch of jobs arrive (to avoid moving into reiionR1).

Even though it tries to adapt by means of its two node working set, its sensitivity is

still yrogortlonal tn the size of that averagc R3 "window". Obviously, this is a func-

tion of the average arrival rate, the average service rate, the average height of jobs,
. -

etc., something that probably cannot be known a priori, without studying the job

mix at a particular installation over a period of time.

Without that knowledge, however, the dynamic critical ratio algorithm is rather

sensitive, and not robust. About the most that can be suggested at this point would . .

be to have the value of R "tuned" on site depending upon the needs and demands of

that system. Thus, as is true of all heuristics, it appears as if the perfect run-time

'scheduler which solves all possible problems under all possible circumstances does not

exist .

s'l i

CHAPTER 6

CONCLUSIONS

The last several decades have seen an enormous increase in computational capa-

bilities. Originally, this was due to hardware innovations. More recently, the

increase in speed has come about as a result of the use of increased parallelism.

In order to exploit this parallel hardware in general, and multiprocessors in par-

ticular, appropriate software must be developed which will take advantage of the

underlying parallelism. For example, either parallel languages must be utilized, or

compilers must be run which automatically detect parallel constructs in the code

which can be executed concurrently on separate processors. And once those con-

structs have been recognized, a run-time scheduler is needed to determine which

tasks should run in which order, and on how many processors.

This run-time scheduler faces many obstacles. For example, data dependencies

specify a partial ordering upon the tasks, nodes may be bidimensional with both time

and processorrequests, those nodes may fold processors into time at processor alloca- ,

tion time, graphs are being modified at various times in a multiprogrammed, multi-

tasked system, etc.

The general case is NP-hard. Nevertheless, the problem must be solved in the

real world. 'Thus, an analysis of various heuristics is required.

Furthermore, real data taken from a working compiler and benchmark pro-
- .

grams need to be studied. After all, analytical models are of limited practical

significance, as their relationship to the characteristics of real programs, which are

ultimately the things.which must be executed, are not known a priori. This thesis

attempts to examine a small portion of that problem.

Unfortunately, real programs contain thousands of nodes and dependence arcs.

Especially in a multiprogrammed system, an optimal solution is therefore not feasi- '

ble. A random scheduler, however, has been used as a practical (but not theoretical)

worst case bound. Random is fast, and schedulers which do not perform substan-

tially better than it are probably not a good choice.

Monoprogramming systems can utilize the services of a run-time scheduler to a

lesser degree than can a multiprogramming system. There are several reasons for

this, First, data dependencies are more of a problem in monoprogramming, while

multiprogramming has more independent control paths to help create a larger

number of starting nodes. The greater the number of starting nodes, the lower the

probability that two different schedulers will select the same node, and thus yield the

same results.

Second, single user systems stress the processors less. The mow oftcn uchedulers

can completely satisfy the requests of the starting queue, the less difference two

different schedulers are likely to make. As a limiting ease, ia an unlimited proecooor

environment, all schedulers act optimally.

Third, monoprogramming systems have less variety in the various' paths. By

definition, since individual programs comprise a subset of a multiprogramming sys-

tem, the latter is bound to have a richer collection of parameters associated with its

nodes. Such variety dffers a real choice to schedulers, again making it less likely that

different schedulers will select the same nodes, and therefore more. likely that they

will have a larger effect on the system performance parameters.

This is not to say that a run-time scheduler is irrelevant in a single user system.

Indeed, some'differences were recorded. What should be clear, though, is that it is

more critical in a multiprogrammed environment, for the reasons cited above.

Furthermore, it is more likely that many of the responsibilities of the scheduler can

be moved to the compiler in a monoprogrammed system (such as calculation of the

critical path tags), which is more static. This would allow a simpler, and thus fister,

run-time scheduler to be implemented when only a single program at a time must be

run.

In a multiprogramming system, the dynamic critical path algorithm seems to be

the best choice for maximizing throughput. The dynamic critical path algorithm

may be implemented by means of a separate scheduler, which calculates the largest

sum of the execution times of a node's successors, and a dispatcher, wh-ich selects thc

node with the highest dynamic critical paLh value from the starting queue and allo-

cates that node (with folding) on the processors. (The scheduler may be' done at.

compile time within individual programs if it is known in advance that the entire

program will arrive slmultnneously).

This algorithm is a wise choice, because when some of the nodes cannot allocate
.. -

processors due to competition for resources, it is detrimental to system throughput to

avoid the largest dynamic critical path. Indeed, the smallest dynamic critical path

algorithm usually performed even worse than random.

The dynamic critical volume algorithm, which is similar to the above except its

tags are the largest sum of the product of the execution times and the processor

requests of a node's successors, did not perform better than did the dynamic critical

path algorithm. This w& not expected when folding was permitted. However, it

see& as if nodes with higher critical path values have a higher probability of getting

folded, and thus also have a higher critical volume value. Thus, it appears as if the

faster dynamic critical path algorithm is sufficient. Other parameters which had lit-

tle or no consistent and significant effecl upufi the choice of ochcdulers include w m n -

dary evaluation criteria, the presence or absence of folding, etc.

' . Turnaround time is also very important to the users, particularly those that own

small jobs. Unfortunately, the dynamic critical path algorithm ignores small jobs,

maximizing throughput at the total expense of turnaround time. Algorithm number

24, which.runs the largest dynamic critical path of the earliest program of the same

type of program having the largesl overall dynamlc crit;icd path, dots very wr.11, It

combines the critical path technique, in an attempt to keep good throughput, with

FIFO, in anattempt to balance good turnaround timc. Although it provides lower

throughput than the dynamic critical path algorithm, it is not substantially lower,

and it more than makes up for the loss of throughput with dramatic improvements

in turnaround time. .. .

Unfortunately, scheduler number 24 requires that programs somehow be sorted

as to type. This may be an ,unrealistic restriction to make. The dynamic critical

ratio algorithm attempts to avoid this restriction, while a t the same.time compiomis-

ing throughput with turnaround time.

The dynamic critical ratio algorithm behaves differently, depending upon 'the

ratio value and such factors as the job arrival rate. On one extreme, it acts like the

largest dynamic critical path algorithm with good throughput but bad turnaround

time, and on the other extreme, like' the smallest dynamic critical path algorithm

with bad throughput but good turnaround time. A window exists in the middle

where throughput and turnaround time may be traded, o f f f Unfortunktely, the

dynamic critical ratio algorithm is sensitive to its environment, and no way is

currently known to automatically select the ratio value.

Several extensions can be made to this work. First, nodes were assumed to be

nonpreemptive. This is not realistic, and this area should be investigated.

Second, the overhead inherent in the execution of the run-time scheduler and

processor allocation has been ignored. To some extent, this is justified, i.e., tasks

were inade as large as possible by virtue of the course grain parallelism in Parafrase,

which leads to a relative redi1cl;ion of the contribution of overhead. Furthermore,

certain aspects of the run-time scheduler can be run in parallel with other activity on

the multiprocessor. Nevertheless, this area should be studied further.

Third, all DAGs were created equal,.i.e., users could not specify their own priori-
'-

ties. In any real system, some priority scheme is essential.

Fourth, even though this work is, closer to the "real world" than many analyti-

cal analyses, the next step would be to test some variations of a subset of these

schedulers in a real operating system. This would allow for better analysis of job

mix, arrival rates, program characteristics and variety, etc. than was possible in this

thesis.

And flnally, parameters important to selection of a good value for R in the

dynamic critical ratio algorithm should be determined. I1 is expected bhnt thio will .

again require analysis of a real operating system, functioning over an extended period

of time, in order to determine the appropriate characteristics under heavy, average,

and light loading conditions.

APPENDIX

This Appendix describes in detail the input parameters and output results pro-

duced by the scheduling simulator. The simulator was written in pascal. Input

about the program DAGs is read from the file "graph". Simulation results are depo-

sited into the file "results".

The first line of file -graph must contain the following information, in order:

The scheduling algorithm number. The specific scheduling algorithms and what

they do are described elsewhere in this thesis. If the number corresponding to

an algorithm is selected, the DAG is read once and scheduled once using that

scheduling technique alone. If a value of 0 is entered here, the DAG in file

graph is read and scheduled separately for each of the scheduling algorithms

available.

The total number of processors available. This specifies the machine size. All

processors are assumed to be identical.

0. The folding percentage requirements. This number specifies what percentage of

the task's requested number of processors must currently be available in order

for the task to be started. A value of 100 would turn folding off complctely.

Trace switch. If a 1 io entered here, h e n tasks are "traced" through the system,

i.e., information about each task is printed whenever it changes states, along

with the system time in which that .change occurs. A value of 0 turns off this

feature. The trace option allows the user to understand why things happen the

way that they do when all else fails. It does, however, produce a significant
'-

amount of output and should be used with caution.

For each node in the DAG, the following information must be provided, in

order:

The node arrival time. This is the time that this node enters the system, becom-

ing a potential candidate for scheduling, and contributing to other nodes'

dyna.mic critical path values, etc. 'These values must be monotonically increas-

ing through the file graph. The node arrival time value must be on a separate

line immediately preceding the following five values, which must be on the same

line.

The node, number. This is essentially the "name" of the node. Values start at 1

and must increase by 1 throughout the file. (This provision was included in

order to provide a consistency check on the input).

a The execution time for this task. This value may be changed internally by the

1
scheduler due to folding considerations.

i The number of processors requested by this node. If this value exceeds the

machine size, forced folding will be performed when the task is entered into the

system in order to make the node fit. This will occur whether or not the run-

time scheduler is permitted to fold. No other decision is possible if the DAG is

to be run on the machine.

Program type. Each type of program (i.e., different programs with identical
.-

DAGs) must be assigned a 'unique number. This value is used in a multipro-
\

gramming environment.

Program number. Different programs of the same type must be assigned a

unique number (within that type) in a multiprogramming environment. So, a

three level hierarchy exists of: program types, program numbers, and node

numbers.

e Predecessor list. On a single line following the above data, the node numbers of .

the immediate predecessors of this node are listed. Doubly linked dependence

arcs will be created between,all predecessor and successor nodes. If this node

has a delayed arrival time, it is possible that some of its predecessors may have

already been scheduled, executed, and left the system. Obviously then, those

particular dependence arcs will not be created. This ,line must terminate with a

The following information is placed in the file results after t.he simulation io

complete:

The scheduling technique. Both the required number and a brief textual

description of that algorithm are written.

The total number of processors available on the machine.

The folding percentage requirements.

ioo I

a The value of the trace option (and any of the results that option may have pro-

duced).
/

a The total time the simulation required. This is the internal "system time"

needed to execute all of the nodes in the DAG using the specified scheduling

technique. This value may be used as a ,measure of the throughput of the

scheduling algorithm by comparing i t with othcr values produced by different

scheduling algorithms on the same DAG.

a The total number of nodes in the DAG.

a The average number of nodes executing on the processors.

a The average number of nodes on'the starting queue, i.e., unable t'o run due to

lack of sufficient processors.

a The average number of nodes blocked from execution (and the starting queue)

due to predecessors with dependence lirlks still in the systcm.

a The average turnaround time for each node. This is calculated from when the

nodes first enter the system (their arrival times) until they have completed exe-

cution, released their processors, and left.

r The average completion time for each node. This is a measure of the time spenL

from when each node enters the.starting queue (i.e., it is a candidate for execu-

tion) until it leaves the system.

a The average execution time for each node. This measures the time the nodes

actually tie up .the processors executing. (Any folding will obviously affect this

number).

a The average number of processors which are busy executing tasks.

a The processor work load.. This value is the average of the sum of the number of

processors busy plus the number of processors requested by the nodes on the

starting queue. It attempts to gauge how many processors could be utilized by

the DAG if they were available.

For each program type the following information is reported:

a The program type number.

a The number of programs of that type.

a The average turnaround time for the programs of that type (measured from

when each of them first arrive in the system until they leave).

a The average execution time span for each of the programs of that type. This is

calculated from when the first node of the program begins execution until the

last node of that program has finished.

REFERENCES

[AbDa86] Santosh Abraham and Edward Davidson. "Task Assignment Using Net-
work Flow Methods for Minimizing Communication in n-Processor Sys-
tems", CSRD Report No. 598, University of Illinois a t Urbana-
Champaign, Center for Supercomputing Research and Development,
Sept. 1986.

[BlDW86] Jacek Blazewicz, Mieczyslaw Drabowski and .Jan Weglarz. Scheduling Mul-
tiprocessor Tasks to Minimize Schedule Length. IEEE Traneast ions
on C o m p u t e ~ s , pp. 389-393, May 1986.

[Bokh79] Shahid Bokhari. Dual Processor Scheduling with Dynamic Reassignment.
IEEE 'l 'ransactisne on Suf'Lwar= Engineering, pp. 341-348, Jirly
1979.

[CeK183] Ruknet Cezzar and David Klappholz. Process Management Overhead in a
Speedup-Oriented MIMD System. Proceedings of t h e 1983 Interna-
t ional Conference on Parallel Processing, pp. 395-403.

[ChAb82] Timothy Chou and Jacob Abraham. Load Balancing in Distributed Sys-
tems. IEEE Transacflons on Software Engineering, pp. 401-412,
July 1982.

[ChKo79] Yuan-Cbieh Chow and Walter Kohler. Models for Dynamic Load Balanc-
ing in a Heterogeneous Multiple Processor System. IEEE Transac-
t ions on Computers , pp. 354-361, May 1979.

[CHLE8O] Wesley Chu, Leslie Holloway, Miu-Tsung Lan and Kemal Efe. Task Allo-
cation in Distributed Data Processing. Computer , pp. 57-69, Nov. ,
1980.

[ChTs81] Francis Chin and Long-Lieh Tsai. On J-maximal and J-minimal Flow-
Shop Schedules. Journa l of t h e Association for Computing
Maul~iaery , pp. 463-476, .Ti~ly 1981.

[Coff76] Edward Coffman ed; Computer a n d Job-shop Scheduling Theory.
John Wiley and Sons, New York, 1976.

ICoGr72) Edward Coffman and R. Graham. Oplimal Scheduling for Two-Processor
Systems. Acta Inforrnatica, Vol. 1, No. 3, pp. 200-213, 1972.

[DBMS791 J. Dongarra, J. Bunch, C. Moler and G. Stewart. Linpack User's Guide.
Siam Press, Philadelphia, 1979.

[ElHu80] Ossama El-Dessouki and. Wing Huen. Distributed Enumeration on Net-
work Computers. EEE Transactions on Computers, pp. 818-825,
Sept. 1980.

[GaJo79] Michael Garey and David Johnson. Computers a n d Intractability: A
Guide t o t h e Theory of NP-Completeness. W. H. Freeman & Co.,
San Francisco, 1979.

[GKLS83] Daniel Gajski, David Kuck, ~ u n c a n ' ~ a w r i e and Ahmed Sameh. Cedar - A
Large Scale Multiprocessor. Proceedings of t h e 1983 International
Conference on Parallel Processing, Aug. 1983.

[GLPV83] Daniel Gajski et al. "Second Preliminary Specification of Cedar", Cedar
Document No. 8, University of Illinois at Urbana-Champaign, Center
for Supercomputing Research and Development, Feb. 1983.

[GoSc82] Allan Gottlieb and J. Schwartz. Networks and Algorithms for Very-
Large-Scale Parallel Computation. Computer , pp. 27-36, Jan. 1982.

[GyEd76] V. Gylys and J. Edwards. .Optimal Partitioning of Workload for Distri-
buted Systems. Digest of Papers, IEEE 1976 COMPCON Fall, pp.
353-357.

[HoIr83] Lawrence Ho and Keki Irani. An Algorithm for Processor Allocation in a
Dutaflow Multiprocessing Environment. Proceedings of t h e 1983
International Conference on Parallel Processing, pp. 338-340.

[Hu61] T. Hu. Parallel Sequencing and Assembly Line Problems. Operations
Research, pp. 841-848, Nov.-Dec. 1961.

(Hu82j T. Hu. Combinatorlal Algorithms. Addison-Wesley Publishing Co.,
Reading, Massachusetts, 1982.

[Husm86] Harlan Husmann. "Compiler Memory Management and Compound Func-
tion Definition for Multiprocessors", CSRD Report No. 575, University
of Illinois at Urbana-Champaign, Center for Supercomputing Research
and Development, Aug. ,1986.

[KDLS86] David Kuck, Edward Davidson, Duncan Lawrie and Ahmed Sameh. Raral-
lel Supercomputing Today and the Cedar Approach. Science, Vol. 231,

.. .
pp. 967-974, Feb. 28, 1986.

[KKLW80] David Kuck, Robert K.11h.n, Bruce Lessure and Michael Wolfe. The Struc-
lure of an Advanced Vkctorizer for Pipelined Processors. Four th ,

Internat ional compu te r Software a n d Applications Confer-
ence, Oct. 1980.

[KKF'L81] David Kuck et al. ~ e ~ e n d e n c e Graphs and Compiler Optimizations.
Proceedings of t h e 8 t h ACM Symposium on Principles of Pro-

'

gramming Languages, pp. 207-218, Jan. 1981.

[KLVY82] David Kuck, Kyungsook Lee, Alexander Veidenbaum and Pen-Chung
Yew. "Notes on Machine Control Structures", Cedar Document No. 3,
University of Illinois a t Urbana-Champaign, Center for Supercomput-
ing Reaearch and Development, April 1982.

[Kras72] Paul Kraska. "Parallelism Exploitation and Scheduling", Report No. 72-
518, Univet~it~y of Illinois at Urbana-Champaign, Department of Com-
puter Science, June 1972.

[KrWeSS] Clyde Kruskal and Alan Weiss. Allocating Independent Subtasks on Paral-
lel Processors. IEEE Transact ions on Software Engineering, pp.
1001-1016, Oct. 1985.

[Kuck78] David Kuck. T h e St ructure of Computers a n d Computations. John
Wiley and Sons, New York, 1978.

[MaLT82] Perng-Yi Ma, Edward Lee and Masahiro Tsuchiya. A Task Allocation
Model for Distributed Computing Systems. IEEE Transact ions on
Computers , ppl 41-47, Jan. 1982.

[Mi11841 Allan Ray Miller. "Control Unit Performance Issues in a Multipro-
grammed, Multiprocessing Computer", Report No. 84-1178, University
of Illinois at Urbsn%Champaign, Department of Computer Science,
July 1984.

[PeZa86] Ronald Perrott and Adib Zarea-AliaLadi. Supcraompuder Langtrnge.~.
A C M Comput ing Surveys, pp. 5-22, March 1986.

[Poly86] Constantine PolychronopouIos. "On Progra~ll Restructu~lng, Schodtiling,
and Communication for Parallel Processor Systems", CSRD Report No.
595, University of Illinois a t Urbana-Champaign, Center for Supercom-
puting Research and Development, Aug. 1986. .

[RaCG72] C. Ramamoorthy, K. Chandy and Mario Gonzaiez. Optimal Scheduling
Strategies in a Multiproceisor Sgstem. IEEE Trangactions on corn-
puters , pp. 137-146, Feb. 1972.

[RaSH79] Gururaj Rao, Harold Stone and T. Hu. Assignment of Tasks in a Distri-
buted Processor System with Limited Memory. IEEE Transact ions .on
Computers, pp. 291-299, April 1979.

[~ahn83] Sartaj Sahni. "Scheduling Supercomputers", Report No. 83-3, University
of Minnesota, Computer Science Department, Feb. 1983.

[SBDG76] B. Smith et al. Matrix Eigensystem Routines - Eispack Guide.
Springer-Verlag, Heidelberg, West Germany, 1976.

[SchwGl] Eugene Schwartz. An Automatic Sequencing Procedure With Application
to ParaNel Programming. Journa l of t h e Assocation for Comput-
ing Machinery, pp. 513-537, Oct. 1961.

[Stan851 John Stankovic. An Application of Bayesian Decision Theory to Decen-
tralized Control of Job Scheduling. IEEE Transact ions on Comput-
ers, pp. 117-130, Feb. 1985.

' %

[StBo78] Harold Stone and Shahid Bokhari. Control of Distributed Processes. Com-
puter, pp. 97-106, July 1978. -.-- . .

. .

[Ston771 Harold Stone. Multiprocessor Scheduling with the Aid of Network Flow
Algorithms. IEEE Transact ions on Software Engineering, pp. i...

85-93, Jan. 1977. ,

[Ston781 Harold Stone. Critical Load Factors in Two-Processor ~ i s t r i b u t e d S p -
terns. IEEE Transact ions on Software Engineering, pp. 254-258,
May 1978.

weid851 Alexander Veidenbaum. "Compiler Optimizations and Architect,iirc
Deeign Issues for Multiprocessors", CSRD Report No. 520, University of
Illinois at Urbana-Champaign, Center for Supercomputing Research
and Development, May 1985.

[Wolf821 Michael Wolfe. L'Optimizing Supercompilers for Supercomputers", Report
'No. 82-1105, University of Illinois at Urbana-Champaign, Dcpartmcnt
of Colllyuter Science, Oct. 1982.

[XuYe83] Qing-Xian Xu and Pen-Chung Yew. "Queuing Analysis for a Multiproces-
. sor System with Multiprogramming", Cedar Document No. 15, Univer-

sity of Illinois a t Urbana-Champaign, center for Supercomputing
Research and Development, March 1983, Rev. June 1984.

puYe84] Qing-Xian 35.1 and Pea-Chung Yew. "Simulations and ha lys i s for a

Multiprocessor System with Multiprogramming", Cedar Document No.
30, University of Illinois at Urbana-Champaign, Center 'for Supercom-
puting ~eseareh and Development, Feb. 1984.

107

V IT A

Allan Ray Miller was born

He graduated magna cum laude from tbe University of Central Florida

(UCF) with a B.S. degree in Computer Science in March 1979. He attended UCF for

one extra quarter as a graduate student while waiting for the start of the next semesi-

ter a t the University of Illinois at Urbana-Champaign. While attending UCF, he

worked at the Experimental Computer Simulation Laboratory at the Naval Training

Equipment Center (subcontracted through UCF). Ray Miller then attended the

University of Illinois, receiving his M.S. degree in Computer Science in August 1984.

(‘‘Control Unit Performance Issues in a Multiprogrammed, Multiprocessing Com­

puter” , Report No. 84-1178, University of Illinois, Department of Computer Science,

July 1984). Straight A’s were received in all Computer Science courses while working

towards the B.S. and M.S. degrees. He completed this Ph.D. thesis in Computer Sci­

ence in May 1987. While at the University of Illinois, he was employed as a research

assistant by the Department of Computer Science from August 1979 through

December 1984. From January 19815 through graduation he was employed as a

research assistant by the Center for Supercomputing Research and Development. He

is a member of the following honor societies: Sigma Xi, Omicron Delta Kappa, and

Tau Beta Pi. He is also a member of the Association for Computing Machinery and

ACM SIGCAPH (special interest group in computers and the physically handi­

capped).

16. Abstracts
Increases in high speed hardware have mandated studies in software techniques

to exploit the parallel capabilities. This thesis examines the effects a run-time
scheduler has on a multiprocessor. The model consists of directed, acyclic graphs
generated from serial FORTRAM benchmark programs by the parallel compiler
Parafrase. A multitasked, multiprogrammed environment is created. Dependencies
are generated by the compiler. Tasks are bidimensional, i.e., they may specify
both time and processor requests. Processor requests may be folded into execution
time by the scheduler. The graphs may arrive at arbitrary time intervals. The
general case is NP-hard, thus, a variety of heuristics are examined by a simulator
Multiprogramming demonstrates a greater need for a run-time scheduler than does
monoprogramming for a variety of reasons, e.g., greater stress on the processors,
a larger number of independent control paths, more variety in the task parameters,
etr. Th

17. Key Words nn=nc Analysis . 17..
ir rritirql = 1 1 nv- i~ ~ ~ i t b

a

volume did not add much. Unfortunately
algorithms dynamic critical path maximizes
operating-systems turnaround time as well as throughput.
scheduling Two schedulers are pr~scnted which Lala
performance-evaluation throughput and turnaround time. The
software first requires classification of jobs

by type; the second requires selection
of a ratio value which is dependent
upon system parameters.

3. Recipient's Accession No.

5. Report Date

c B l ~ ~ l ~ ~ ~ ~ ~ ~ l ~ DATA
SHEET

NONPREEMPTIVE RUN-TIME SCHEDULING ISSUES ON A MULTITASKED,
MULTIPROGRAMMED MULTIPROCESSOR WITH DEPENDENCIES,
BIDIMENSIONAL TASKS, FOLDING, AND DYNAMIC GRAPHS

7. Author(-)
Allan Ray Miller

9. Performrng Organrzatron Name and Address

University of Illinois at Urbana-Champaign
Center for Supercomputing ~esearch and Development
Urbana, Illinois 61801-2932

12. Sponsorrng Organrzatron Name and Address
National Science Foundation, Washington, D.C.
U.S. Department of Energy, Washington, D.C.
IBM Corporation, Armonk, N.Y.
Control Data Corporation,

I 17b. ldentif iers/Open-Ended Terms

1. Report No- 2
CSRD-656

May 1987
6.

8. Performing Orgaoizatron Rept.

CSRD-656
10. Prolect/Task/Work Unrt No.

~ ~ F ~ Y ~ ~ ~ E @ ~ H ~ I ~ $ ~ ~ Control Data Corp.

13. Type of Report & Perrod
Covered

Doctoral Dissertation
14.

17c. COSATI Field/Group

. . :4. Title and Subtitle . .

15. Supplerncntar y Notes

-1Oll:o
E DE-
atlon,

e

21- No . of Pages
107

22. Price

18. Availability Statement

Kclease urllimlted '

.-

FOFIM,NTl'b?O ('10 901 U S C O M M - D C 40328-P7

19.. Security C l a s s (This
Re.port)

UN
20. c u r s

P a ~ C L A S ~ ~ ~ i ~ D

