DO NOT MICROFILM
COVER

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.

CSRD Rpt. No. 856 ' UILU-ENG-87-8002

r Lo '
DOE/ER/25001~-45
" DE88 003598

' NONPREEMPTIVE RUN-TIME SCHEDULING ISSUES
ON A MULTITASKED, MULTIPROGRAMMED
MULTTPROCESSOR WITH DEPENDENCIES,
BIDIMENSIONAL TASKS, FOLDING
AND DYNAMIC GRAPHS

Allan Ray Miller

- May 1987
C— A R
—_DISCLAIME

fladl TN

e,
This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, ur vtlierwise does not necessarily constitute or imply its cndorscment, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

Center for Supercomputing Research and Development
University of Illinois

305 Talbot — 104 South Wright Street

Urbana, IL 61801-2932

Phone: (217) 333-6223

This work was supported in part by the National Science Foundation under Grants No. US NSF DCR84-
10110 and US NSF DCR84-06916, the U. S. Department of Energy under Grant No. US DOE-DE-FG02-
85ER25001, the IBM Donation, and the Control Data Corporation, and was submitted in partial
fulfillment of the requirements.for the degree of Doctor of Philosophy in the Department of Computer Sci-
ence, Mav 1987, %)

HASTER

DISTRIBUTION OF THIS DCCUMENT IS UNLIMITED

NONPREEMPTIVE RUN-TIME SCHEDULING ISSUES
ON A MULTITASKED, MULTIPROGRAMMED MULTIPROCESSOR WITH
DEPENDENCIES, BIDIMENSIONAL TASKS, FOLDING, AND DYNAMIC GRAPHS

BY
ALLAN RAY MILLER

B.S., University of Central Florida, 1979
M.S., University of Illinois, 1984

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science
in the Graduate College of the
‘University of Illinois at Urbana-Champaign, 1987

Urbana, Illinois

iii

NONPREEMPTIVE RUN-TIME SCHEDULING ISSUES
ON A MULTITASKED, MULTIPROGRAMMED MULTIPROCESSOR WITH
DEPENDENCIES, BIDIMENSIONAL TASKS, FOLDING, AND DYNAMIC GRAPHS

‘Allan Ray Miller, Ph.D.
Department of Computer Science
University of Illinois at Urbana-Champaign, 1987
Duncan H, Lawrie, Advisor
Increases in high speéd hardware have mandated studies in software techniques to
exploit the parallel capabilities. This thesis examines the effects a run—time scheduler
has on a multiprocessor. The model consists ofl directed, acyclic graphs, generated
from serial FORTRAN benchmark prbgrams by the parallel compiler Parafras.e. A
multitasked, mulf;iprogrammed environment is created. Dependencies are generated
by the compiler. Tasks are bidimensional, i.e., they may specify both time and pro-
cessor requests. Processor requests may be folded into execution time by the
scheduler. The graphs may arrive at arbitrary time intervals. The general case is
NP-hard, thus, a variety of heuristics are examined by a simulator. Multiprogram-
ming demonstrates a greater need for a run-time scheduler than does monoprogram-
ming for a variety of reasons, e.g., greater stress on the processors, a larger number
of independent control paths, more variety in the task parameters, etc. The dynamic
critical path series of algorithms perform well. Dynamic critical volume did not add
muph. Unfortunately, dynamic critical path maximizes turnaround time as well as
throughput. Two schedulers are presented which balancé thrquhput and tur-

naround time. The first requires classification of jobs by type; the second requires

selection of a ratio value which is dependent upon system parameters.

Civ

ACKNOWLEDGEMENTS

First I'd like to thank my advisor, Professor Duncan Lawrie, who gave me much
assistance, and gave me the privilege and opportunify of working at CSRD. Also, I'd
like to acknowledge those who have supported me while at this upiversity, i.e., the
Center for Supercomputing Research and Development, the Department of Computer
Science, the National Science Foundation, the United States Department of Energy,
IBM, and Control Data ACorpora.tion. Finally, siﬁce the time of elementary school
flashcards, my parents taught me thé value of education, anci provided me with

essential love and support. I have come this far because of them.

TABLE OF CONTENTS

1. INTRODUGTION ..ououureeeeereesesessssssssssssesssessesssssssessessessssssssssssssssssaessenss 1
1.1. High Speed Hardware and Softwarecccciiiiiiniiiniiiiiinininieennenean. 1
1.2. Related WOTK .ccuceeeiiereenneernctneccrsscsusssenscesscssssesssssssosssssnsssnssasssssossosase 5
1.3. Thesis OVervIEW ..ccccireeiiriiranieieisrsaestnscrnctascsesrnstssseessssesas essestnscrerans 8

2. BASIC CONCEPTS AND MODELS ...coitiiirieritiiirinniicinenntiessseossnens e, 9
2.1. PATafTase .ceceeeereereeiirecesecercocessessssssssscssssssssarsonsassssssasasansnssssssssssasassscess 9
2.2. Compound Functions and Program Graphscccccceeiiiiiiinnnnncnnnnnenneces 14
2.3. The Scheduling Simulationcccccvieeeemeieenreeiniiiiiiiiiiiiinii, 21

3. PROGRAMS AND ALGORITHMS veveseeseesesseenessessesesressessensonsorneses 24
3.1. Data Programs ...c.cccececeeeeemiieeiinniiiereiuiionieenmessestnnssssneasssssssssssssssssssssese 24
3.2. Scheduling AlIZOrithms ...cccccceirrrutiicrmmmiiiiiniinnieeiieneeieneiioniensisiiieme 30

3.2.1. Optimal and Randomcccccccevmvuniirrennnieerennniiiinnncennneneenseeseisenees 30
3.2.2. Greedy, Generous, and FIFOccccoiiiiiiriuiiirnnnicnncinnniereninieaicieanes 32
3.2.3. Dynamic Critical Path ...cccvveiiiiiiimniiiiiniiiiiiiiinrriiienencceneciiieinnienee 35
3.2.4. Dynamic Critical Volumeccccevvevviiiiiiiiiiiiiniiiieenennnne ereresnesnesnenas 43
3.2.5, Throughput Tradeoffsccccccerrmerieriieeiiirnimnniiiiii, 45
3.2.6. Dynamic Critical Ratio ..ccoeviiiiiniiinniinnniiininnniiinnniiinnnnniinnn.. 47

4. SCHEDULING SIMULATIONScittiieirmiiiminiciimiiianiiresiessssserssessessesseses 50
4.1. MONOProgramming ..cccceceeecieccescracsessivsressssersssssssssrsessssssssssssossessesssssece 50
4.2, Multiprogrammingcccevrveeeeecerrnieesesessneeessninnneteecsssiimmeseesssssssssseses 63

4.2.1. Throughput ..eceeeeeeeveeecrieenirenieeeesseesssesssnesssaneses terereereeeesaeessnaeanns 65
4.2.2. Turnaround TIIME ..cccccecerrniiincrrccreiirniireieriieaieiierticisieescersosescesens 79

5. CONCLUSIONS ..evuciirnuecreneecranessrsneceeasosssssassssssssassssssssrsssssssssssssssssssasseses 91

APPENDTIX .ooiietiittuieertieererscessressressessssossssssssssesssssssssssssssesssssesssssarssssarssssssss 97

REFERENCEScttttuiietttrmeiecreensreestsnmsssotssnsiosssstsssssssssrsssesssssssssssssssssssssssanes 102

CHAPTER 1

INTRODUCTION

1,1. High Speed Hardware and Software

In 1944 the MARK 1 computer required 300 milliseconds to complete an addi-
tion operation. By 1970 the ILLIAC IV performed 50 million floating point opera-
tions per second (megaflops). Current supercomputers are capable of performing at
peak speeds approaching one gigaflops.

Qrigiﬁall&, computers were becoming faster mainly due to improvements in dev-
ice technology. Such technology improvement, however, is ultimately limited by the
speed of light. Naturally then, research has turned to parallel hardware and software

in order to continue the growth in computer speed.

Many oi; the early supercomputers, such as the Cray 1, employed vector
hardware in order to achieve their high spee&s. Since scientific caleulations often
contain substantial vector arithmetic, these systems include special vector instrue-
tions. By subdividing operations info sequential and sep‘a.rate suboperations, vector
proceséors can pipcline successive vector elements through the hardware and obtain a
high degree of concurrency.

- While vector processors have been very successful, 'they ndo have certain
hardware and softh;.re lii’nitations. For (;.xample, the speedup pipelined hardware

can offer is limited by the number of stages in the pipe. That is, any «pa'rt'icula.r

operation can only be subdivided so far. Another ipherent problem ‘with pipelined
architectures is the overi;;a'é,d involved with initially configuring the pipes, and then
ﬁlling' them with data before any re;ults emerge. Because of this problem, speedup
grows very slowly, typically requiring vectors of length 100 or greater in order to
achieve peak performance. Finally, these systems require appropriate software in
order to successfully exploit the hardware. Either the programming language must
allow the programmer to express his algorithm in a vector form, or else some sort of
restructuring compiler will be required to generate the vector instructions from a

traditional scalar language.

Much of the current supercomputer research has focused upon multiprocessing
systems. For example, the Cedar supercomputer [KDLS86] [GKLS83] as shown in
Figure 1.1, is under development at the Center for Supercomputing Research and

Development. Also, commercially available systems such as the Cray X-MP are -

already on the market.

Multiprocessors achieve‘tl'xeir speed by doing several (possiblj' different) opera-
tions in pa.ralle_l. Whereas vector processor speedup is constrained by the number of
subdivi:sions in the pipes, parallel processors can (to some extent) double their peak
performance simply by doubling 'the number of processors available for computation.
' Tk:lis does not mean that these two éoncepts are mutually exclusive. }Indeed, most
cﬁrrent paralle“l processing architectures employ various types of pipel;lning
throughdut the systein. But the big advantage of multiprocessors 1s that their archi-

tecture can be scaled up across time for a continued growth in speed.

GM GM o GM GM

Global Network

Global
Control
Unit
r-p--+q-=------ - - ——{~A r-fp-==d====--- ===l .
i ' | :
| | |
: P PL...|P C : : P PL...|P lo) :
: '
o — C | i | = C |
: L Local Network l u : : I Local Network I U :
1 I eew |]
S S |
LM[LM| . .. [LM : HIAY (R AY (IR 5 Y | \
: : | 1
] | 1 |
! Processor Cluster ! ! Processor Cluster !
L T L T T a Lo ST T T Lo]

P: Processor
GM: Global Memory Module
LM: Local Memory Module
CCU: Cluster Contral Tlnit

Figure 1.1. Cedar Architecture.

Multiprocessors also require extensive software support in order to maximize
their performance by completely exploiting the available hardware. Synchronizétion
and data coherency problems must be dealt with. And like vector processors, they

require parallel programming languages or restructuring compilers capable of recég-

nizing parallel constructs.

Generally, three levels of parallelism can be recognized in the software. The
highest level invc;lves separate programs, subroutines, loops, orh control flow paths
within the same prog-ram. The next level down consists of parallelism between indi-
vidual loop-iter#tions, which can be assigned to separate processors. ‘The potential
for speedup at this level is enormous. It is often proportional to the loop limit, or the
produét of nested loop limits. And finally, the lowest level of paralleiism which gén
be exploited by multiple processors is the separate arithmetic expressions in indivi-
dual assignment statements. Such low level parallelism offers the least potential for
high speedqp, ho-\.vevner.

Once the algorithm has been designed, the parallel constructs recognized and the
" code written, the parallel code constructs must be scheduled for execution on the pro-
‘cessors. Such scheduling can be performed at compile time, run time, or a combina-
tion of both [Poly86]. Certainly some of the scheduling must be done at run time, as
- the presence of other jobs in the system compéting for resources may affect the

scheduler’s decision as to which subsection of code is the best candidate for execu-

tion.

There are several factors a ruq—time scheduler must consider when deciding
which section of code should be initiated. For example, the presence of data depen-
dencies may force a partial ordering upon the code. Thé number of processdrs
requested by each unit of code in light of | how many processors are currently avail-

able is obviously an important consideration. Tradeoffs between speed ;(exe‘éution

time) and size (number of processors allocated by e.ach task) must be made. New
programs or sections of .in'ograms may continually be arriving in the system at a
variety of different times. The scheduler may want to maximize hardware utiliza-
tion, throughput, or‘minimize turnaround time for each program. When these and
many other factors must be sifted through for each of the thousands or tens of
thousands of code segments wishing service from the processors, it clearly is a compli-
cated decision which é.wait.s any run-time scheduler. It is this line of research that

this thesis will attempt to investigate.

1.2. Related Work

A lot of similar work has already been performed in the multiserver scheduling “
and operﬁtions' research areas. Virtually all of it, however, has dealt with abstract
analytical models with limited practical significance. This thesis attempts to see how
well a variety of scheduliﬁg techniques perform oﬁ real benchmark prc;grams gen-
erated by a compiler. Not only are real programs the things which ultimately must
be scheduled on functioning multiprocessors, but unlike theoretical models, their

" characteristics cannot be determined a priors.

This work investigates several extensions over previous results. For example
many models restrict themselves to two processor systems [Ston78] [RaSH79|

[Bokh79) [CHLESO] whereas this model may have any number of processors desired.

Data dependencies in the form of a directed acyclic graph exist between tasks

which the scheduler must enforce. Many models ignore any possible data dependen-

cies such as [Stan85] [ChAb82]. Some previous work has examined this problem, e.g.,
.[ChTs81] [Ston77] [StBo'}é] examines a very simple sequential chain model, while the
models of [Kras72] [RaCG72| [Holr83] [Schw61]| do include complete graphs. Those
models, however, make simplifying assumptions in other areas which this thesis does
not »ma,ké. Furthermore, this model assumes that the graphs may be dynamically
updated with new node and dependence arc arrivals as additional program and pro-

gram subsections are added to the system.

Another feature of this model is that each node may request multiple processors
as well as multiple time units needed for completion of the task. Nodes are thus two
dimensional. Several models feature p processor systems [CeKI83] [AbDa86]
[ChKo79] [KrWe85] although each task requests only one of the .processors. In
[BIDWS86] tasks request multiple processors, but have unit times. Some models have

allowed variable time requirements [Kras72| [RaCG72| but then have a unit processor

request,.

Not only have bidimensional nodes been allowed, but processors can fold into
time by running parallel constructs serially. In [XuYe83] [XuYe84] [Mill84] this con-
cept was studied, although again simplifying assumptions in other areas of the

models were made. (Folding is also discussed in [Sahn83| as it relates to pipelined

machines).

Closely related work to that done in this thesis was pér_formed by Hu [Hu61]
[Hu82]. Hu’s model allows data dependencies in the form of a tree. The first phase

of his algorithm determines the distance from the root of the tree‘tcA) each node.

7

Next, the scheduler simply assigns nodes to the processors starting at the highest lev-

els of the tree first and wgrking_ its way down towards the root.

Hu calls this algorithm the crstical path algorithm and it is optimal. Its limita-
tions arise from the fact that nodes are nondimensional (unit time 'a,nd processor
requirements), must be completely known iﬁ ia.dva.nAce, and must be in the form of a
tree. However, two modifications of his algorithm which incorporate several exten-
sions to that model will be px_-esented later in this thesis. Some of the same concepts

were developed independently in [Poly86] for compile time‘scheduling.

Many of the other scheduling models are also optimal [Coff76] [CoGr72] given
their assumptions of at most two processors, unit time or processor requirements, etc.
Such an optimal algorithm is' not likely for the model studied in this thesis. For
example, the simple extension of variable processo-r requirements il:l Hu'’s woyk moves
it from the domain of a very fast optimal algorithm to the.bin packing problem
which is NP—'hard [GaJo79]. But this thesis goes beyond even that, creating a two
dimensional bin packing problem with folding, dependencies, and dynamically

modiﬁed graphs.

It is clear that \unless’ many simplifying assumptions are made, an optimal run-
time scheduler cannot be found. Nevertheless, the problem must be examined, as
multiprocessors do exist which need the services of some scheduling heuristic in real
time. Failure to do so will ‘res.ult in an . inefficient explditation of the parallel
hardwaré by the software .which runs on it. This area will be‘ the f;cus of the follow-

ing work.

1.3. Thesis Overview

This thesis attempts to solve some small portion of the run—time scheduling
'problem on a multiprogrammed, multitasked, multiprocessing computer with data
dependencies, bidimensional nodes, folding, and dynamic graphs. The scheduler will

examine data taken from real benchmark programs.

This chapter has already provided an introduction and a discussion of related
‘work. Chapter two defines the basic model and provides the framework of the dis-
cussion. It, along with the Appendix, describes the software used to investigate the
problem. iChapter three discusses the data and scheduling algorithms used in the
simulations. Cha;pter four presents and analyzes the results of the simulations, and
trys to demonstrate why some schedulers perform better than others. Ce;'ta.in
tradeoffs must be made, and they are discussed in this chapter. Finally, Chapter five
summarizes the results and draws the conclusious. IL also discusses limitations of thio

study, and suggests areas of future research.

CHAPTER 2

BASIC CONCEPTS AND MODELS

2.1. Parafrase

Before parallel code constructs can be scheduled for execution on the processors,
they first must be generated, either by a parallel programming language, 01; by a res-
tructuring compiler. The way this problem has been solved for purposes of this
thesis is with the Parafrase rgstructuring compiler, which has been under develop-
ment at the University of Illinois for the last fifteen years [KKLW80] [KKPL81]

[Wolf82]. The overall structure of Parafrase is shown in Figure 2.1.

Parafrase was chosen because of the large investment in existing sequential
FORTRAN software. Also, FORTRAN (in some form) is the most widely used high
~ level languagé on supercomputers [PeZa86]. Furthermore, it is not clear that pro;
grammers can deal with the complexity of parallel hardware and software on la-verage

as well as a compiler.

Parafrase starts by reading sequential FORTRAN pr‘ograms. It then performs a |
series of standard transform;s.tions, or passes, on the source code. After each pass,
© various data structures and a modified FORTRAN source program with parallel' con-
struct;s. are produced. By modifying which. passes are called, the programmer can
control such attributes as ‘s‘peciﬁc optimizafions for the particular target architecture,

and many other features.

10

Sequential
FORTRAN

Programs

'

Common
Independent
Optimizations

SES '~ SEA ~ MES MEA
Architecture Architecture Architecture Architecture
Spocific Sperifie Specific Specific
Optimizations Optimizations Optimizations Optimizations

Machine
Specific
Optimizations

'

Cude

Generation

Figure 2.1. Overall Structure of Parafrase.

11

Critical to the Parafrase compiler, as well as to any run—time scheduler yvhich
must examine the outp,u{ of "Para.fra,se, is the notion of data dependencies [Kuck;18].
Parafrase is capable of recognizing three different forms of data dependencies.
Assume some program contains two different statements, S; and S i such that S i fol-
lows S; during serial program execution. If a v'ariable :z:. is assigned in statement S,
and subsequently used on the right hand side of statement S 2 then S i is said to be
data flow dependent on S;. If the variable z is used on the right hand side of S; but
is assigned in S’., then S, is data antidependent on S,'- If z is assigned in both S; and
subsequently in S," then S,' is data output &ependent on S;. Finally, Parafrase will

introduce control dependencies induced by the presence of conditional statements.

Parafrase analyzes the FORTRAN source program, and generates a data depen-
dence graph betwéen the statements. It is then capable of performing sophisticated
transfc;rmations on the results wlﬁch break many of the control and data dependen-
cies without 'violating'the semantics of the program. Any dependence arcs v-vhich
remain after all of the transformation and optimizaﬁion ?asses have completed, force
a partial ordgring upon the program execution, which fnust of course be honored by

the run—time scheduler.

At the current time, Parafrase has over 50 different passes which can be called,
performing such transformations as férward statement substitution, loop interchang-
ing, recurrence relation recognition, etc. The specific passes Which are called and the
order in -which they occuf are a function of the particular architectﬁre »which is t'o'be

- targeted.

12

Parafrase recognizes four classes of machines: .Singie Execution Scalar (SES),
Single Execution Array (éEA), Multiple Execution Scalar (MES), and Multiple Exe-
cution Array (MEA). SES machines are simple uniprocessors. SEA machines include |
array and vector processors. MES machines are multiprocessors Where each processor
is cdmposed of a SES machine. And finally, MEA machines are multiprocessors
where each processor is composed of a SEA machine. The model chosen for study in

this thesis would be applicable to either a MES or a MEA machine.

C COUNTS NUMBERS OF PARTITIONS OF AN INTEGER
SUBROUTINE COUNT (C, K, P, N)
INTEGER C, P
DIMENSION C(K), P(N)
DO10I=1,N

PI)=o
10 CONTINUE
DOS0OI=1 K
J = C(I)
JP1=J+1
P(J) =P@J) + 1
DO 20M = JP1, N
MMJ=M-1J
P(M) = P(M) + P(MMJ)

20 CONTINUE

30 CONTINUE
RETLIRN
END

Figure 2.2. Subroutine COUNT.

13

Consider the short subroutine COUNT shown in Figure 2.2. Although it is
much too simple to illustljate most of the features of Parafrase, it will serve, to soine
extent, to demonstrate how data can be generated from real FORTRAN programs

for a run-time scheduling simulation.

Midway through the series of passes selected for use for this thesis, intermediate
results were produced by Parafrase as shown in Figure 2.3. Two short parallel loops
have been generated; they are flagged with an asterisk. Each iteration of the parallel

loops may be scheduled simultaneously for execution on separate processors.. (They

1 SUBROUTINE COUNT (C, K, P, N)

2 INTEGER C(K), I, J, '(*), JP1, K, M, MMJ, N, P(N)
3 4— DO1i=1,N ‘ -
4 . P(i) = 0

5 +— 1 CONTINUE

6 +— DO2i=1K

7 * () = C(i)

8 +— 2 CONTINUE

9 + DO4i=1K

10 | P(I(@)) =1 + P(2())

1S N Rp— DO 3j=1,N - J(i)

12 | P(j + (1)) = PG + J'(3)) + P(j)

13 | +— 3 CONTINUE '

14+ 4 CONTINUE

15 RETURN

18 END

Figure 2.3. Intermediate Results of COUNT.

14

can of course be executed sequentially, should insufﬁpient processors be available at
run time). Parafrase also generated two nested serial loops from COUNT. Tixese
two loops are flagged v;rith vertical bars. ’i‘he problem occurs because the assignment
of the array P in Figure 2.2 is essentially being subscripted by the value of the array’
C. Figuré 2.3 clearly shows the subscripted subscripts hence, these two loops cannot
be sped up. Unlike the parallel lvups, this portion of the program must he nch.eduled‘

sequentially for execution.

The next series of passes performed high level spreading and compound function

generation on COUNT. This will be discussed in the next section.

2.2. Compound Functions and Program Graphs

The unit of work which is to be scheduled on the multiprocessor is referred to as
‘a compound function or task [GLPV83] [KLVYS82| [Husm86]. Although there are
many ways to construct and define a task, for purposes of this i;hesis a task is defined
to be éome portion of a larger program which 'can be scheduled for execution for a
fixed amount of time on a fixed number of process§rs. (The execution time and
number of processors reque;ted are fixed, ot bound, at allocation time. This will be
discussed in more detail below.) Once a task has begun execution, it runs to comple-

tion without interruption. That is, tasks are said to be nonpreemptive for purposes

of this thesis.

" The model chosen for study receives as inpu.t directed acyclic graphs (DAGs)

such as the one shown in Figﬁre 2.4. Each node in the graph represents a task which -

15

A
P =10
T = 10
B c D
P = 40 P = 20 P — 50
T = 20 T = 40 T= 5
E F
P = 50 P = 60
T = 10 T = 20

Figure 2.4. Program Execution Graph.

is to be scheduled for execution on the processors. The nodes ‘contain two numbers:
the maximum number of processors needed by that task, and the execution time that
task requires in order to complete its work. Fot example node B, or Ny, in Figure

2.4 requests 40 processors which it intends to reserve for 20 units of time.

It is important to note that nodes are bidimensional in that their space-time
products on the processors cén have nonunit values in both directions. Furthermore,
a one-way mapping from processors into time is possibie (but not the other way
ardund).. No data dependencies exist betwéen those operations, or else they would

have been assigned to different time slices at an earlier stage (by the compiler).

16

Clearly then, if no dependencies exist between the parallel operations, they can be

run serially as well as in parallel without violating the algorithm’s semantics. Such a

concept is known as folding.

It is very useful‘-to give the run-time scheduler the ability to dynamically fold
the tasks at processor allocation time. For example, if a task requests p processor‘s,'
but only p/2 processors are currently. available (due to other tasks in the systein
competing for resources) the scheduler can fold task execution across p/2 processors
simply by doubling its running time. However, such a scheduler must be very care-
ful. Too little folding results in idle processors while largé tasks are for‘ced to wait
for a sufficient ﬁumber of processors to become available. This can lead to a serious
degradation in performénce as weu as utilization. On the other hand, too much fold-
ing can also lead to loss of speedup as a result of parallel coﬁstructs being forced to
run serially. In [XuYe83| [XuYc84| it was shown that on the average, if at least 25

percent of the processors requested by a task are currently available, then that task

. should be folded and initiated at once.

Control or data dependencies in a graph passed on from the compiler force a
partial ordering upon a scheduler which it must honor. For example, if N 4, must
complete its execution before N, can begin, then it is said that N 4>Ng and a

directed arc is drawn from N, to N, in Figure 2.4.

- In this scheduling model, the program graphs must be acyclic. Innermost serial
loops can easily be transformed into a single task. However, outer level nested serial

loops must be unrolled and the associated nodes and arcs replicated up to ﬁhé loop

17

bounds.

Conditional paths tl;rough the graph are treated in the same fashion as what
Parafrase does. For example, Parafrase attempts to transform backwafds GOTOs
into DO loops, which can then be treated in the normal fashion. Other conditional
paths with control dependencies which cannot be eliminated are expa.nded and
weighted according to the probability of that path being chosen. (The default proba-
bilities are to set all pathe as being equally likely). The weighted nodes and their

associated arce are then entered into the program graph.

The tasks, represented by nodes in the DAG, are deﬁned to be dynamic. That
is, they mtzy arrive at various times throughout the execution of the progrants. This
means that the scheduler only sees a snapshot of the entire graph at any one time.
Since the introduction of new nodes with their dependence arcs into the system may
affect which tasks are the best candidates to dispatch for execution, the run-time

scheduler must resign itself to making decisions based only upon a particular-instance

of the entire DAG.

Now that the particular form of tasks and DAGs used in this thesis has been
defined, it remains to be shown how the actual tasks were generated by Parafrase for |
use in the scheduling simulation model. Specifically, the tasks were derived from a

method called high level spreading described by Veidenbauw in [Veid8s).

‘ Veldenba.um first decomposes the p)ogram into a number of hlgh level objects
(HLOs) He defines elght types of HLOs: 1) a nonnested (innermost) DO loop of any

type of parallelism, together with all of the statements in it; 2) any. Block of

18

Assignment Statements (BAS) not in 1). (ABASis the largest possible block of con-
secutive assignment staté;nénts in the serial program with one entry and one exit
point); 3) a nested DO statement not in 1) but without statements inside; 4) any IF .
statement not in 1); 5) the CONTINUE statement for nested DOs and for IFs (the
terminal line); 8) user procedures or function calls. (Veidenbaum assumes subroutine
expansion was used to eliminate these in innermost loops); T) I/O stalewentls; and

finally 8) program/subroutine/function BEGIN and END statements.

Returning to the previous example of COUNT in Figures 2.2 and 2.3, the high
level spreading passes in Parafrase produced the results seen in Table 2.1. The com-
-~ pound funcf,ion ﬁumbers are denoted, along with any nested or successor compound
functions which may be associated with that compound function. The successor
pointers will be utilized to generate the dependence arcs for the DAG. The ‘first”
and ‘“‘last’’ columns denote the first and last statement numbers in Figure 2.3 which

were used in the generation of that particular compound function. The ‘‘type”

Table 2.1. High Level Spreading of COLINT,

| CF . # | Nested | Successors | First | Last CF Type Processors | Time
1 2 — 1 -1 C_PROG 80 3281
2 0 4 3 5 E DO 40 1
3 0 4 6 8 E_DO 40 1
4 5 7 9 9 C DO 1 3280
5 0 8 10 | 10 BAS 1 2
B 0 - 11 13 EDO 1 80
-7 0 8 14 14 C_DOEND 0 0
8 0 9 15 - 15 C_RETRN 0 0
9 0 - 16 16 C_END 0 0

19

column indicates what form of compound function is listed. C_PROG and C_END
denote the beginning and.end éf a program. C_RETRN denotes a subroutine return
statement. C_DO énd C_DOEND denote an outer nested loop. E_DO denotes an
innermost loop and all statements. within that loop. And finally, BAS denotes a
block of assignment statements. The processor and .tin.le columns represent the
number of processors requested and the times those compound functions require (or

some calculated estimate if compound functions are nested within).

Comparing Figure 2.3 with Table 2.1, it c#n be seen that the two parallel loops
were transformed into E_DO compound function numbers 2 and 3. Since they are a
- simple assignment statement, they only take one unit of time. Parafrase scheduled
these loops on 40 processors. If loops bounds are known at compile time, then
Parafrase will use those values. Otherwise, Pa;afrase uses a default timing value of

40 for all loop indexes in order to make some estimates of the work involved.

The innérmost nestea serial loop was turned into E_DO number 6. Each itera-
tion takes two uﬁits of time (an gddition plus the assignment). Since this only
requires one processor, but must be replicated 40 times, the E_DO is flagged for 80
fime units on a single processor. Tﬂe outermost nested séria.l loop contains a xsimila.r
arithmetic statement, a;long with the inner E_DO. For identical reasons, it also only

requests a single processor. Its time requirements reflect the work nested inside the

loop, replicated serially 40 times.

Graphically, Table 2.1 can be represented by Figure' 2.5. The vertical bracket

represents sequential replication. Clearly, N >N, and Nz>N,. Furthermore,

20

A B
P =40 P =40
T=1 T=1
C
P =
T=2
40 *
D
P=
T = 80

Figure 2.5. Graphical Representation of COUNT.

between each iteration s of the outer serial loop, N, >N, and N, >N, R
.) [3 [p

It should be clear how the DAG used for scheduling could be generated from
Figure 2.5. Each block becomes a task. Dependence arcs become successor pointers.
Outer serial compound functions do not become tasks, but the innermost level of

nested compound functions do become tasks for échedliling. The enclosing com-

poﬁnd functions instead cause a duplication as the serial loops are unrolled.

21

Now as was previously mentioned, COUNT is a very short program. Figure 2.5
makes clear that in this case, a scheduler has very little to decide. (It must still
decide whether or not to fold the two parallel tasks). Larger programs obviously are

much more complex, containing many separate paths from which to chose, but would

be too complex for the illustrative purpose of this section.

2.3. The Scheduling Simulation

Once the DAGs from one or more programs have been generated, they are ready
for scheduling. A run-time scheduling simulator was written’which reads in the
DAGs representing the programs, ana schedules them using a variety of"diﬂ”érent
scheduling algorithms. Since the specific manner in which the simulator operates to
a large extent defines the model for the data produced, its algorithm will be discussed
' beiow. Input parameters to the software as well as the information collected and

returned by the simulation are described in detail in the Appendix.

T'h.e usef must initially specify such things as the scheduling technique which is
to be applled to the DAG, the machine size, folding requirements, etc. Either a sin-
gle scheduling algorithm may be used, or the complete series of algorithms will be
run on the same DAC and machine. In collecting data for this thesi;, most DAGs
were run with all possible scheduling techniques, using 8, 32, 64, 128, and 1024 pro-

cessors, and with folding requirements of 25% and 100%.

The(simulator first begins by reading .in nodes of the graph. FEach node can

specify an arrival time. A ‘‘wake ﬁp call” is entered into a time-sorted event queue

22

with that arrival time. When the system clock reaches that value the node is read in,

dependence links are genefated, and any nodes this new arrival may affect dynami-

cally (described in the next chapter) are visited.

A “starting queue’ is maintained of all nodes which have already arrived in the
system, have not yet begun execution, and do not have any predecessors with depen-
dence links to this node still remaining in the system. All nodes on the starting

queue are candidates for immediate execution.

The simulator sorts the starting queue according to the current scheduling tech-
nique. (Folding is taken into account, but is not actually done at this time). The ‘

highest priority task as determined by the scheduler is placed at the head of the

queue.

Following that, the éimulator assigns tasks to processors, in order, from the
starting queue. As each fa.sk is assigned for execution it is removed from the starting .
queue, any folding is performed, the number of processors currently available is
reduced by the current task’s processor requirements, and a ‘‘wake up call” is
entered into the time-sorted event queue telling the simulator when the task will

complete. This process continues until either the starting queue is empty, or else no

more tasks can fit on the processors.

When no more nodes can be assigned for execution from the starting queue, the
éimulatqr checks the time-sorted event queue for actions which it can take at the
current system time. (If there are none at the current time, then the system clock is

reset to the earliest time the next event is to occur, and flow continues). This would

23

include reading in new nodé arrivals and entering them into the graph (and possibly

the starting queue) or stopping execution of tasks which are due to complete at the

current time.

If a task has cf-)mpleted, the simulator must release the processors the node
reserved, and visit all successors of that nqde with dependence links. If any of that
node’s successors have no other predecessor dependence links, then that successor will

be entered into the starting queue. Finally, the node is removed from the system.

When' all of the events which can occur at the current system time have been
processed, the simulator loops back to check for task initiation again and the entire

process is repeated.

24
CHAPTER 3

PROGRAMS AND ALGORITHMS

3.1. Data Programs

This thesis attempts to determine how well a variety of ‘different écheduling
algorithms perform on real benchmark programs executed on a typicall multiproces-
sor. Unlike abstract theoretical models, the characteristics of functioging programs
taken from the field are not necessarily known in advance, and can only be deter-
mined from a cofnpiler such as Parafrase. An‘d yet this area is of crucial importance
if software designers intend to efficiently exploit the parallel hardware on which they

run.

A representative selection of benchmark programs was collected for detailed
study in this work from well known sources such as Eispack [SBDG76| and Linpack
- [DBMS79]. The FORTRAN programs analyzed by Parafrase for use in the run-time
scheduling simulations are shown in ‘Table 3.1. They represent a mix of different
applications 'likely to be run on a parallel system, and both very sﬁort and very long

programs have been included.

A graphical representation of the DAG for one program in Table 3.1, COUNT,
has already been shown in Figure 2.5. COUNT, however, is a very short and simple
program. More elaborate examples are shown for iilustr_ative purposes in Figures 3.1

and 3.2. The two programs shown are of moderate size (in terms of complexity).

25

Table 3.1. FORTRAN Data Programs.

Program Source Purpose
CGECO Linpack Factor a complex matrix by Gaussian elimination
CHEBY ACM Simultaneous Chebyshev analysis of nf functions
COUNT ACM Counts number of partitions of an integer

Reduce tridiagonal matrix to symmetric tridiagonal

FIGI Eispack with same eigenvalues

FIGI2 Eispack Reduce tridiagonal matrix to symmetric tridiagonal
HTRIBK Eispack Eigenvectors of complex Hermitian matrix
KERNEL Lawrence Newton’s search for inversion

Berkley Lab

Three dimensional Helmohltz solver using FFT

THREEDH | Fishpack (Separable elliptic partial differential equations)

The most extensive programs would obviously take several pages each to diagram.
(Note that program complexity, or the number of nodes and arcs in a DAG, may be

unrelated to that program’s execution time or processor requests).

A few of the symbols in Figures 3.1 and 3.2 need to be discussed. The first sym-
bol is the vertical bracket, which also appéa.red around N, and N, in Figure 2.5. As
was briefly mentioned earlier, this represents an outer nested serial loop. To generate
the DAG for the run-time scheduler, the serial loop must be unrolled by replicating
the nodes and arcs within that loop sequentially. The serial loop count is shown to
the left of the vertical bracket. Also, between the & * and the i+1%* iteration of the
lobp, dependence arcs must be generated petween the terminal nodes of one iteration

of the loop and the starting nodes of the next iteration.

A new symbol introduced in Figures 3.1 and 3.2 is the horizontal bracket, such

as is seen around N, in Figure 3.2. The horizontal bracket represents an outer

26

>
w
ho|l
U]<;
m.
]
Q
I
-

P=1 P =11 P=1 P=1 P=1 P= P=1 P=1 P=1
T=4 T=1 T=1 | 'r=1I =2 T= T=4 T= T=1
J : M
=11 P=1
T= 1 T=2
——1 | e
K N [+) P Q
P=1 P=1 P=4 P=1 P=16
T=1 T= T=1 T=4 T=1
e !)
L R]
P=11 P= 4l P =16
T= 2 Te= 1 T= 1
7 —
T U
P = 41 P =16
T=1 =1
))
X v W
11 *||P=1 P =41 P=16
T = 82 T = T= 2
[
Py
351 *
I Al I Y
P14 R 11 * P=1
(5= o
z g
41 *||P=1 41 * = 1
T = 32 T = 32
ct | ‘ D1
11 *}|P=1 : 11 * ||P=1
- T = 82 T = 82
H _—r—
‘F1 E1
P=1 P=1
T=1 T 1
le
G1
451 * P=1
T = 64

Figure 3.1. Program THREEDH.

2.

-3

A B
P = =0 P=1
T = . T=1 T=2
1)

D E F G
P =83 P = &6 P=3 =3
T= 1 T= 1 T=1 T=1

{ I} ' 1

I H J K L
P=2 P=21 P = 66 P=3 P=3
T = T= 1 T= 1 T=2 T 1

M N
P =21 P =586
T= 2 T= 2
5. - *
g * 3 * '_1_3_|

°) Q ' P—P77

P=27 P=3 'r;s
’l T-=8I | T=1 l | I
3 "® 4 3 R s

] I v | P=3 P=3
P=3 P=3 T=2 T=1
T=1 T=1 t i—

51* 3*F 3 s« 1,7,

W I X l F1 T=2 Al
P=3 Pw=3 P=3 P=3
T=2 T = T=3 T=1

= R = Q] ,

Y B1 C1
P=38 P=3 P=3

| T=7 l T=2 T=1
D1
P=3
T=2
E1 F1
P = P=s8
T=1 T []
G1
P=286
T =

Figure 3.2. Program KERNEL.

28

nested parallel loop. Nodes within parallel brackets are replicated in parallel, i.e., no
dependence arcs between éach copy of the node is generated. But of course any
dependence arcs entering or leaving the horizontal brackets must be passed on to

each copy of the node generated for the DAG. The outer nested parallel loop count

is displayed above the upper horizontal bracket.

Horizontal and vertical brackets should not be confused with parallel and serial
nodes. For example N}, in Figﬁre 3.1 is a serial node since the number _of processors
requested is 1. However, 8 copies of N, must be generated due to the enclosing
parallel loop. Each of the 8 copies may be executed in any order, or at the same
time. Furthern;ore, all 8 copies of N, must ilave completed before N, can be
scheduled for execution. Likewise, Ny in Figure 3.1 is a parallel node, even though it

has no eﬁclosing parallel brackets, since the number of processors requested is 11.

'Only one copy of Ny exists, however.

In a similar fashion Ny in Figure 3.2 is a parallel node while N, is not, even
~ though N, is external to the vertical (serial) bracket while N, is nested within. The

point is that the presence of vertical and horizontal brackets is irrelevant to whether

or not any particular node is serial or paraliel.

Use of these symbols allows very large DAGs to be displayed in the simple
fashion shown in Figures 3.1 .a.nd 32 For example, Figure 3.2 displays only 33
boxes. However, the DAG the run-time schedv;ller will see at execution time contains
3063 nodes and 11,237 arcs! Obviously, scheduling such a program is a fqrmidable

task for any heuristic which must operate in real time.

29
Each new DAG in Table 3.1 has its own interesting features and is.of course
unique. Just to demonstl:ate a few types of environments a run-time scheduler may
encounter, consider Figures 3.1 and 3.2 more closely. In Figure‘3.1, program
THREEDH, all of the parallel and serial replication, i.e., horizontal and vertical
brackets, is around single nodes. Also, a very wide v;a.riety of values within each

node is present in program THREEDH. For example, N, requests 1 processor for

82 units of time, while Ny requests 41 processors for only a single unit of time.

Another interesting feature of program THREEDH is nodes such as N,, and
Ng,- All 351 copies of N 41 request 14 processors, for a total of 4914 processqrs*
A which, iﬁ ﬁheory, could Ee utilized concurrently. On the other hand, all 451 copies of
N, limust be run sequentially, and only need a single processor. THREEDH contains
several relatively short a~nd fat or long and skinny nodes. So what size machine
should THREEDH be run on and how many processors should be allocated f6r its
execution? -Should all 351 copies of N,, be executed simultaneously, or would that
lead to intolerable hardware utilization later on in the program? Obviously, with the
r';(-:h environment programs such as THREEDH offer, a good run—time scheduler must
be capable of adapting to the‘chaﬁging values of the starting nodes as it moves

through the DAGs execuling.

The most distinguishing feature in ¥igure 3.2, program KERNEL, is the large -
outer nested serial loop which encloses most of the program. Unlike THREEDH
where the vertical brackets enclosed single nodes only, KERNEL’s serial loop encases

all-'but three nodes.

30 °
Yet within each iteration of that loop, a run-time scheduler has many factors to
consider and from which to chose. Many different types of parallelism exist within
the nested serial loop. For example, individual nodes themselves, e.g. Np,, exhibit a |
high degree of parallelism. Multiple control paths exist which a run-time scheduler

may- have to select from, e.g. Ny and N,. And finally, outer nested parallel loops

create a variety of nodes and paths the run-time scheduler must traverse, e.g. the

nine enpies nf Ng-:

3.2. Scheduling Algorithms

Twenty five different algorithms were used for simulation studies of a multipro-
cessor run—time scheduler on the benchmark data programs listed in Table 3.1. The
scheduling algorithms used are listed in Table 3.2. They are defined and discussed in

more detail below, along with a rationale for why each of the scheduling techniques

was chosen.

3.2.1. Optirfxa.l and Random

Ideally, the first scheduling algorithm implemented should be the optimal
scheduler, which of course would provide a lower bound on the running time of any
collection of DAGs scheduled for execution. Unfortunately, as was shown in Section

1.2, the problem is NP-hard and fhus there is little hope of solving the problem in

polynomial time.

A brute force attack on the problem also seems out of the question. Only the

very smallest of the data programs shown in Table 3.1 lend themselves to a solution

31

Table-3.2. Run Time Scheduling Algorithms.
Scheduling Technique
1 | Random
2 | First in first out
3 | Largest processor request; ties by largest dynamic critical path
4 | Largest dynamic critical path; ties by largest processor request
5 | Largest dynamic critical path; ties by smallest processor request
6 | Largest dynamic critical path; ties by largest execution time
7 | Largest dynamic critical path; tics by smallest execution time
8 | Largest dynamic critical path; ties by largest product of time & processors
9 | Largest dynamic critical path; ties by smallest product of time & processors
10 | Largest processor request -
11 | Smallest processor request
12 | Largest execution time
13 | Smallest. execution time
14 | Largest product of time and processors
15 | Smallest product of time and processors
16 | Smallest dynamic critical path
17 | Largest dynamic critical path; ties by largest dynamic critical volume
18 | Largest dynamic critical volume; ties by largest dynamic critical path
19 | Largest dynamic critical volume; ties by largest processor request
20 | Largest dynamic critical volume; ties by smallest processor request
21 | Largest dynamic critical volume; ties by largest execution time
22 | Largest dynamic critical volume; ties by smallest execution time
23 | Smallest dynamic critical volume
04 Largest dynamic critical path of the earliest program ,
of the same type of program having the largest overall dynamic critical path
25 | Dynamic critical ratio

of trying all possible combinations. Moderate to large sized programs are simply too
big. For example program CHEBY contains almost four thousand nodes and seventy
five thousand arcs! Furthefmore, each of the individual nodes may be folded at‘pro-
cessor allocation time, depending on what other nodes are currently executing iﬁ the

system. This interaction between the nodes selected for execution which overlap in

32

the sa.me. time slice increases the complexity of the problem dramatically. Also, the
A plrograms are offen run i;n a multiprogramming environment, making the size of the
data much larger still. Additionally, the DAGs may be dynamic, i.e., the run—time
scheduler is not allowed to see the entire graph all at once in those cases, and must
make its decisions based only upon partial knowledge of a time—variable graph. Andl
finally, the problems must be solved repeatedly for various machine sizes, which may

affect the best execution order of the nodes in any particular DAG. For all of these

reasons, an optimal solution simply isn't feasible.

Since an optimal solution to the general problem is not possible, the random
scheduling algorithm has been chosen as the standard by which all other scheduling
techniques will be judged. That is, all nodes on the starting queue will be sorted ran-

domly before one is selected for execution on the processors.

The random scheduler is used as a sort of ‘*worst casc scenario’”’ by which .other
schedulers can be measured for performance. It is not, of course, an upper bound on
~ execution time in a theoretical sense, but as a practical matter any scheduler which
cannot outperform a random scheduler (or even does worse) can be judged as ‘‘bad”.
It is therefore felt that this is an appropriéte ya.rdsﬁck for comparison (in conjunc-

tion with comparisons between the other 24 algorithms, of course).

3.2.2. Greedy, Generous, and FIFO

Several scheduling algorithms look primarily at the ‘number of processors

requested by a task or that task’s execution time. There exists a class of schedulers

33

which has in the past been commonly referred to as ‘‘greedy algorithms’.

Schedulin-g' algorithm numbers 3, 10, 12, and 14 are examples of greedy algo-

- rithms which examine. the largest processor request or the largest execution time.
One of the main rationales for using greedy algorithms is that large tasks should be

allowed to run first. For example, if a starting task has an unusually high prpcessdr

request, it may have trouble obtaining a sufficient number of free processors on

which to run later on during program execution. If, on the otﬁer har;d, enough pro-

cessors are currently free to satisfy the task’s requirements, a greedy algorithm will

initiate the task immediately. In a similar fashion, long running tasks which tie up

the procesllsors for extended periods of time are started at once by greedy algorithms,

while shorter tasks are pigeonholed where appropriate in the gaps between the bigger

tasks.

The opposite of a greedy -algorithm is referred to as a ‘‘generous algorit;hm".
Scheduler numbers 11, 13, and 15 are examples o.f generous algorithms which exam-
ine the smallest processor request or the smallest execution time. The rationale for
generous algorithms is that small short taské can get on and off the hardware faster
than big slow. ones can. Thus, a higher percentage of the total nodes in the DAG
‘may be able to run concurrently or complete in a shorter period of time with a gen-
erous algorithm than with a greedy one. This tends to help the average turnaround

time for each node.

As with all heuristics, cases can be found which cause the algorithms both to

succeed and to fail. For example, consider the four short DAGs shown in Figure 3.3.

34

'
A \ A
P = 60 \ P = 50
T=1 X T=1
:
|
1
B . C ! B C
P = 50 P = 50 \ P = 40 P = 60
T= 1 T=1 : T=1 T= 1
:
|
1
_____________________ B v e e e = o - - - -
1
1
. |
I .
A ! A
P = 50 : P = 50
T= 2 : T=1
:
[
1
B C ! B C
P = 40 P = 60 ' P = 40 P = 60
T=1 T = N T= 2 T= 2
|

Figurc 3.3. Greedy and Generous Cofnparisons.

" Assume a 100 processor machine with no folding.

Iﬁ the upper left hand corner, a greedy processor algorithm succeeds with a total
timg of 2, while a generous prc;cessor. algorithm fails with a total time of 3. On the
other hand, a greedy proceésor algorithm fails with a total .t.ime of 3 in the ubper
right hand cbrner, whilg a gex;erous processor algorithm succeeds with a total .tirﬁe of

2. In a similar fashion, a greedy execution time algorithm succeeds in the lower left

35
hand corner, requiring 3 time units while the generous execution time algorithm
needs 4 time units to cofnplete. The opposite holds true in the lower right hand

corner, requiring 5 and 3 time units for the greedy and generous execution time algo-

rithms, respectively.

In addition to the greedy and generous algorithms just listed which examine pro-
cessor requests or executioﬁ times as their primary selection criteria, many other
algorithms in Table 3.2 use this as a secondary criteria in the event of a tie by their
first choice. Furthermore, even when other scheduling techniques are used (for exam-
ple those discussed in the following two sections) for comparison purposes the pri-
mary e{'aiuation criteria has been negated in a greedy/generous fashion, i.e.,

scheduler numbers 16 and 23.

Scheduling technique number 2 is the standard FIFO, or first in first out algo-
rithm. Its rationale springé from the idea that the tasks which have been waiting in
the s&stem for the longest period of time should be served next. The FIFO algorithm
tends to minimize turnaround time. FIFO is aléb used as a subcomponent of

scheduler number 24.

3.2.3. Dynamic Critical Path
Several of the schedulers shown in Table 3.2 use a form of algorithm known as
the dynamic critical path algorithm. The dynamic critical path algorithm is listed in

Figur'é 3.4. It is discussed in detail below. '

36

subroutine dcpath (node , current_distance)
if node (dcpd) > current_distance
thenreturn
else begin
node (decpd) = current_distance
current_distance = current_distance + node (execution_time)
far all nade (predecessor)) do

call dcpath (predecessor, , current_distance)

return
end
end dcpath

Figure 3.4. Dynamic Critical Path Algorithm.

In order for a scheduler to make use of the dynamic critical path algorithm,
each of the nodes in the DAG must be modified to contain not only the node’s‘ D,
processor request, and execution time, but also a tag known as the dynamic critical
path distance (dcpd in Figure 3.4). The dynamic critical path distance for each node
is the largest sum of thl,e-.q?(ecution times for all npdes along one of that node’s succes-
sor paths. That is, a.ssﬁme N is some node in a program DAG. Let TN,, be the exe-.
cution time for node Ny;. Then let S be the sequence of nodes (N, N,, ... N,) such
that N, >N,, N,_,>N,, and ANt is' a terminal node, i.e., N, has no successors.

Assume there are o such sets of S. Then the dynamic critical path distance for N_ is '

1<i<o

0if N isa terminal node, or max { N TN,- }

Njfs.'

| 37
Thé dynamic critical pa.th algorithm is similar to standard critical path algo-
rithms in that the critical path for a graph is computed for each node. And oBvi-
ously in this apélication, the scheduler selects the starting node with the highest criti-
cal path value as the next one to schedule for execution. One of the modifications
used in this model, however, is that the DAGs may be dynamically modified at run |

time to add new nodes and arcs into the graph. Clearly, this has the potential for

altering the critical path to any of the nodes in the DAG.

Since the DAGs are not static, the dynamic-critical path algorithm shown in
Figure 3.4 dynamically recalculates the critical path distances at run time whenever
the graphA is modified. That is, the dynamic critical path algorithm is called once
each time the operating system links a new node into the pool of available code seg-
ments. This is essential if the scheduler is to be able to correctly determine the criti-

cal path in a DAG constantly under revision.

The dynamic critical path algorithm seems to strike at the heart of the schedul-
ing problem. That is, if sevel;al different options are presented to a scheduler, it
seems clear that a scheduler should begin work immediately on thé path that will
take the longést, and l;ope that it can overlap shorter paths ‘““on the fly” as it goes.
For example, there is no reason to initiate N py in program THREEDH until well into
program execution, even though it is an original starting node and may have heen in
the system a long time. Looking at Figure 3.1, it becomes obvious that other work is
much more important, and N, can easily be run concurreﬁtfy with other nodes any

time a free processor becomes available.

B
Critical path studies are well known in the operations research area. And the
dynamic critical path alg;rithm does in fact correctly calculate the true critical path
for any DAG as that DAG is constructed (or modified). However, unlike the results
presented in work such as [Hu82], there is no guarantee that selecting a node with
the highest dynamic critical path distan;:e value will return optimal results, fér th‘e‘

reasons cited in Section 1.2. Nevertheless, on average it should be expected that the
dynamic critical path algorithm will return ‘‘close’ to optimal results.

Figure 3.5 shows the dynamic critical path algorithm in action. In the upper
segment, a DAG of three nodes already exists in the system. The dynamic critical
path distance vaiue for each of the nodes is marked with the tag of D. Since N ', has

two successors, each having an execution time of 100, N,’s dynamic critical path

value is 100.

In the lower left hand segment, N, has been added, such that NB>ND.. The A
dynamic critical path algorithm must therefore be called. Np’s only predecessor is
-NB. Its old dynamic critical path value was 0, and so it is now reset to 100, Ny's
new distance tp the base of the tree. Likewise, N, is also shifted up by 100, giving it
a new dynamic critical path value of 200. (If N 4 had any predecessors, the process
would continue up the chain). This new value for N, thus represents the largest
sum of the execution times for .a.ll no&es (Ng and Np) along.one of N,’s f;wo sucées-
sor paths (N, >N >N, and N,>N_). Since Nc is not a.loAng‘any of the depend;ance '

paths of N),’s predecessors, it is not visited.

39 °

A
= p
= t
D = 100 '
B C
P= »p P= »p
T = 100 T = 100
______________________________ oo

]
]
]
l A

‘ : = p
: =t
! D = 200
| .
1 B C.
]
I P= p P= p
\ T = 100 T = 100
\ D = 100 } D= 50
: .
]
: D E
1 P= »p P= p
l T = 100 T = 50 |
: D= 0 D= 0

Figure 3.5. Insertion of New Nodes with Tag Modifications.

In the lower right hand segment, N, has been added? such that NC>NE" N,
has been shifted up by 50. Ny and N, have not been visited. Note that the

dynamic critical path algorithun terminated on N e without shifting it up, since its

40
dynamic critical path value was larger than the path represented through ‘NC. (If

N, had any predecessors, the process would therefore not continue up the chain).

Figure 3.6 shows a simple program DAG where the dynamic critical path algo-
rithm returns an _opti'ma.l result of 300 total time units (assuming a machine of 100
processors without folding). Note that unless a2 node from the critical path of
No>Np >Ny is selected at each opportunity, a suboptimal result of 400 is inevitable.
Greedy and generous algorithms such as those discussed in the previous section have
no basis on which to make a decision in this instance, and are likely to return a

result of 400, as would a random scheduler.

C
P = 50
T = 100
D = 200
D .
P= 50
T = 100
D = 100
A B E F
P— 50 P— 50 P= 50 P = 50
T = 100 T = 100 T = 100 T = 100
D= 0 D= o0 D= 0 = 0

Figure 3.6. Program DAG.

41
One of the potentia.1 pitfalls with any run-time schedu_l’er is the problem of over-
head. A good run-time scheduler cannot be too complex, otherwise it runs the risk
of becoming a potential bottleneck in the system. If that were to happen, then even

a random scheduler would be an acceptable solution, rather than slowing down the

system with scheduling overhead.

Fortunately, the dynamic critical path algorithm has three good pdints which
can be made in its favor which help to keep overhead to a minimum. First, the algo-
rithm only visits nodes along the predecessor paths of the new node being entered
into the system. If a node does not have this new node as a(direct or indirect) suc-
cessor, it §vill not be examined. Additionally, the algorithm terminates along a path
as soon as a node is reached who's dynamic critical path distance exceeds the current
critical path distance (current_distance in Figure 3.4). Thus, only a small subset of ,.

the total DAG is likely to be visited on average.

Second, it may be that some particular program is known to be static
throughout its life in the system. In such cases, the critical -path distance tags can be
p;'ecalculated by the compiler, eliminating the need for the costliest portion of this
scheduling teéhnique to be'performe.d at run time. Furthermore, even if a' program
DAG is to be dynamic, the compiler can stili generate the tags for those portions of

the program which are to be entered into the systew al the samme time.

Third, this scheduling technique allows for an interesting division of labor. Tt
may be broken down into two disjoint responsibilities: the dispatcher and the

" scheduler. Both programs may be run in parallel.

42
The scheduler’s responsibility is to run the dynamic critical path algorithm
listed in Figure 3.4 whex;efer a new node is linked into a DAG.. As it backtracks
through the DAG (dependence arcs are implemented by means of a doubly linked
list) updating the dynamic critical path distances, the dispatqher can be busy select-
ing the node with the largest dynamic critical path value from the sf.’arting queue

which will fit (subject to folding considerations) on the currently available processors,

and then allocating those processors for that node.

For several reasons, it does not matter if the scheduler is partially through ;
DAG modifying the tags when the dispatcher examines thé starting queue’s dynamic
critical path valués. First, the scheduler only modifies each node’s critical path tags,
npt any of the dependence arcs or the starting queue itself. Thus, even though the
DAG is being written to at the same time another program is reading it, the
scheduler cannot violate the program’s semantics. (The only danger is involved when
the scheduler tries to write to a tag in the starting q.ueue, from which the dispatcher

.may be busy removing nodes. In that case, the operating system must place a lock

around a single node only for either the scheduler or for the dispatcher.)

Second, t;he worst thing that can happen is that the dispatcher selects the wrong
node for execution. This can occur if a new node’s entry causes a starting node to
receive the largest dynamic critical path value in the DAG, but the scheduler has not
corﬁpleted its work before the dispatcher selects the next node for execution. This, .
however,‘ is a very minor problem. This dispatcher will simply select the cu:;rent

highest tag value, which is probably a good choice anyway, since it is the largest

43
 dynamic critical'path distance in the particular instance of the DAG before the
current node arrived. A‘fter all, whenever the possibility of dynamic graphs are
allowed, any schéduling technique must resolve itself to making decisions based upon
incomplete knowledge, i.e., it only has a local rather tha.n' global view of what’s
“good’’. |

Since the (relatively costly) execution of the scheduler may be overlapped with
that of the dispatcher (and of course with task execution) at least some of the over-
- head in implementing a dynamic critical path algorithm can be eliminated. When
combined with the facts that the scheduler may only need to visit a subset of the
graph, and f.,hat compiler assist is possible in generating the nodes’ tags, it is felt that

the dynamic critical path algorithm is a good candidate for study and possible imple-

mentation on a multiprocessor.

3.2.4. Dynamic Critical Volume

Several of the schedulers shown in Table 3.2 use a form of algorithm known as
the dynamic critical volume algorithm. The dynamic critical volume algorithm is

listed in Figure 3.7. It is dis‘cusséd in detail Below.'

" Upon close inspection of Figure 3.7, it becomes clear that the dynamic critical
volume algorithm is very close to that of the dynamic critical path algorithm listed in
Figure 3.4. In fact, the only difference betweep the two scheduling techniques is the
manner in which the critical path is deﬁned.l The dynamic critical volume algorithm |

defines the dynamic critical volume for each node (devl in Figure 3.7) to be the larg-

44

subroutine dcvolume (node , current_vol)
if node (dcvl) > current_vol ‘
thenreturn
else begin
node (decvl) = current_vol
current_vol = current_vol + node (execution_time) * node (processor_req)
for all node (predecessor) do
eall devolume (predecessor, , current_vol)
return
end
end dcvolume

Figure 3.7. Dynamic Critical Volume Algorithm.

est sum of the product of the execution times with the processor requests for all

nodes along one of that node’s successor péths. That is, if P, 1is the processor
Ng :

1<i<eo

request for node N) then the dynamic critical volume for N is max { y; TN-PN.}'
J J
' N’-CSI'

The rationale for this modification is that the dynamic critical path algorithm
only looks at the sum of the execution times along some path of the DAG. Such a
sum, however, may not represent a true reflection of the work involved in executing
that set of nodes on the procesgors. A moré. accurate measure of the work might be

the space-time products of the nodes within that set.

45 -
Furthermore, in this model a one-way mapping from processors into execution
time is possible, as was discussed in Section 2.2. And if the 25 percent folding rule is
permitted, then the dynamic critical path distance for each node potentially may be

off by a factor of 4 from the real time needed to execute that path. The dynamic

critical volume for each node takes this into account.

Despité the differences in the manner in which the critical path is defined, virtu-
ally all of the characteristics of the dynamic critical path algorithm hold true for the
dynamic critical volume algorithm. Section 3.2.3 covers such characteristics in detail,

and thus they are not repeated here.

3.2.5: Throughput Tradeoffs

Up to this point, all of the scheduling techniques have been directed for the
most part towards maximizing throughput and processor utilization. As any operat-

ing system designer knows, however, throughput is not the only important criteria.

From the users’ point of view, program turnaround time may be as important,
and perhaps even more so, than machine throughput. Most users are willing to trade
some deg;adation in machine performance (as Ioné' as it is not too big) in order to
receive quick respénse time. A good operating systexﬁ tries to balance these two com- -

peting interests.

Scheduling technique number 24 in Table 3.2 tries to make such a balance. This
scheduler picks as the next node to execute the largest dynamic critical path of the

earliest program of the same type of program having the largest overall dynamic crit-

46
ical path. That is, it attempts to combine the dynamic critical path algorithm,

which tends to maximize throughput, with the FIFO algorithm, which tends to

minimize program turnaround time.

Stated another v;ray, the algorithm works as follows. First, the node with the
largest overall critical path value is located. Next, the program type that node_
belongs to is identified. Now, the FIFO portion swings Into action. The scheduler
determines which program of that same type has been in the system for the longest
period of time (this, of course, assumes a multiprogramming environment). Once
that program has been determined, the largest critical path node belonging to that
program bepomes the next candidate for execution. Thus, this scheduler always
selects a (relatively) large critical path, which is good for throughp’ﬁt, but runs older

jobs first, which is good for turnaround time.

D B C D
T= 2 T = T=1 T 2 T= 2 T= "2 T=2
n= 1 n = n=1 n 2 n= 2 n= n=2
D=20 D = D = 60 D=100| | D =150 D = 20 D=5

ce—l 11 a
—]
e I
R
-
e
<%||

Figure 3.8. Multiprogramming DAGs.

47
_For example, consider Figure 3.8, where T represents the program type, and 7
represents the prograin number. Two different types of programs are shown. Also,
two copies of program 7, are present; the first one has already had at least two of its

nodes serviced, i.e., N 4 and Ny (assume it has been in the systém for a longer period

of time).

Scheduler number 24 then proceeds in the féllowing sequence. Since N ', of T, 1,
has the largest overall value for. D, further sea'rch is resﬁricted to. only 7,. Next, 7, 7,
is selected, sin;:e it arrived earlier than 7, 7,. And finally, N within 7, n, is
scheduled for execution, since it has the largest D value in that program type and
number. (The nezt node selected would be N, in 7, 7, for similar reasons. N, in
7, 1, follows the completion of 7, 7, and then Ny in 7, 7, is begun before N, or N,

in 7, 7,.)

3.2.86. Dynamic Critical Ratio

Unfortunately, scheduling techxiique number 24 potentially has a serious draw—
back. That algorithm requires that each node carfy a program number tag, along
with a program type tag. Although the program number tag could automatically be
generated by the ;>perating system as a unique ID, the presence of program tyﬁe tags
requires the users to categorize their programs into a disjoint set of bins. Besides
wasting the. g.dditional space needed to hold the tags, such a requirement may be

unrealistic in a practical environment.

4.8' B
Ideally, a good scheduler should make its decisions based only upon the charac-
tersstics of the DAGs in the system. The dynamic critical ratio algorithm is another

attempt to balance the often competing interests of throughput and turnaround -

time, while at the same time avoiding the drawback of scheduler numbér 24.

" The dynamic critical ratio algorithm is very simple. This scheduler first dete'r-'
mines the node with the largest overall éritieal path. That node is scheduled for exe=
cution unless one of two things happen. Either a node can be found with a critical
path shorter than the largest node by some eritical ratio, or a node can be found
with a critical path shorter than the previous node initiated on the processors by the
critical ratiq. vasuch a short node can be found, then it is given a higher priority

than the largest critical path node.

Thus, a two node ‘“‘working set’ is maintained for the purposes of evaluating
against a critical ratio. This allows the algorithm to adapt, to some extent, to a
changing mix of jobs and average critical path values. Note that no requirement is

needed for the nodes to carry along program number or type tags.

The ratipnale for the dynamic critical ratio algorithm is that for machine
throughput, big programs with large critical paths should receive a high priority.
However, once a job is “‘close” to finishing, then delaying it further will gain nothing
excgpt to drive up the average ﬁurnax;ound time. So in those cases, the jobs with lit-
tle left to do are quickly ﬂushed out of the.system befo.re.‘control returns tc; the

longer programs.

49
.For example, consider the example in Figure 3.8 again. Assume the critical ratio
value is 4. Then in this éxample, since the largest value of D for any of the' starting
nodes is 100, all nodes with critical path values of less than 25 are initiated first, i.e.,
all qopies of N, ND,. and their successors. Following that, N, is initiated (this may
occur sooner, if sufficient processors are available"but N, and Np’s successors are

blocked by dependencies from executing predecessors). The final initiation sequence

then continues in.decreasing values of D, i.e., N, then N B

In some ways, this is analogous to the way many printer queues are set up.
That is, the shorter the job, the more important good turnaround time is likely to be
to the ﬁsér. Thus, very short jobs are placed at the head of the queue, even if they
arrived later, while medium and longer jobs are sel"viced normally. (The analogy is
not’ perfect, of course, e.g., print jobs are continuous, while DAGs are composed of
smaller subgraphs, which both .prevent top level nodes fl;om entering the stérting
queue if dependencies exist from currently execﬁting nodes, and also must release

their processors once the nodes have completed).

50
CHAPTER 4

SCHEDULING SIMULATIONS

4.1. Monoprogramming

This seclivu will iuvestigate the effects run—time schedulers hoave on monopro-
gramming systems, i.e., deciding between the different control paths of é single job at
a time. There are many reasons why a scheduler may only have one job on which to
work, e.g,, some programs may have such a high pfiority that no Interference Is per-
mitted, others mé.y be simply too big to fit on the machine while other jobs are run-
ning, certain applications such as operating systems development- or real time pro-
grams require a dedicated environment, different portlons of a larger mulliprocessor

may be partitioned distinctly between unique jobs, etc.

The object in a monoprogramming system, clearly, is to minimize the total exe-
cution time, at the expense of all other parameters. This job cannot affect the per-
formance of any other jobs, since obviously none are present. Furthermore, given a
fixed number of processors, there is no reason why all of them should not be utilized
by the program if it helps to minimize the execution time. Smaller lotal execulion

times directly translate to increased throughput.

As was stated in Section 3.2.1, the random scheduler willAAbe used to comparé the
relative performances of the other run-time schedulers. The random scheduler is

fast, and represents a practical worst case that any good scheduler must be prepared

to beat.

The following tables show the effects the various schedulers have on the pro-

grams in a monoprogramming system. An 8 processor machine with 25% folding

was used. The SCH éolumns represent the scheduler numbers (refer to Table 3.2 for

the meanings) and the TEX columns represent the total execution times needed to

complete the program DAGs on that machine.

Table 4.1. Program CGECO, 8 Processor Machine, 25% Folding.
SCH { TEX || SCH | TEX || SCH | TEX | SCH | TEX }l SCH | TEX |
1 21252 2 20554 3 23314 4 20114 5 21874
6 20114 7 21874 8 20114 9 21874 10 22274
11 20514 12 22274 13 20514 14 22274 15 20514
16 21194 17 20114 18 20114 19 20114 20 20114
21 20114 22 20114 23 20914 24 21874 25 21874
Table 4.2. Program CHEBY, 8 Processor Machine, 25% Folding.
SCH | TEX | SCH | TEX ([SCH | TEX }| SCH | TEX | SCH | TEX
1 | 26090 7 2 26030 3 25909 4 25910 5 26030
6 25910 7 26030 8 25910 9 26030 10 25909
11 26104 12 25909 13 26124 14 25909 15 26124
16 [26030 17 25910 18 25910 19 25910 20 25910
- 21 25910 22 25910 23 26030 24 26030 25 26030
Table 4.3. Program COUNT, 8 Processor Machine, 25% Folding.
SCH | TEX [SCH | TEX || SCH | TEX || SCH | TEX || SCH | TEX
1 3290 2 3290 -3 3290 4 3290 5 3290
6 3290 7 3290 8 3290 9 3290 10 3290
11 3290 12 3290 13 3290 14 3290 15 3290
16 3290 17 3290 18 3290 19 © 3290 20 3290
21 3290 22 3290 23 3290 24 3290 25 3290

52

Table 4.4. Program FIGI, 8 Processor Machine, 25% Folding.
SCH | TEX [| SCH [TEX || SCH | TEX || SCH | TEX || SCH | TEX |
1 499 2 499 3 499 4 499 5 499
6 499 . 7 499 8 499 9 499 10 499
11 499 12 499 13 499 14 499 15 499
16 499 17 499 18 499 19 499 20 499
21 499 22 499 23 499 24 | 499 25 499
Table 4.5. Program FIGI2, 8 Processor Machine, 25% Folding.
SCH | TEX || SCH | TEX || SCH | TEX || 8CII | TEX || SCH | TEX
1| 4047 2 | 5327 3 | 3807 4 | 5327 5 | 5327
6 5327 7 5327 8 5327 9 5327 10 3807
11 5327 12 3807 13 5327 14 3807 15 5327
16 3845 17 5327 18 3807 19 3807 20 3807
21 3807 22 3807 23 5327 24 5327 25 5327

Table 4.6. Pro

ram HTRIBK, 8 Processor Machine, 25% Folding.

SCH TEX SCH TEX SCH TEX SCH TEX SCH TEX
1 18834 2 18805 3 18610 4 18663 5 18611

6 18663 7 18611 8 18663 9 18611 10 18610
11 18816 12 18610 13 18870 14 18610 | . 15» 18848
16 18815 17 18663 18 18663 19 18663 20 | 18663
21 18663 22 18663 23 18815 24 18663 25 18620

Table 4.7. Program KERNEL, 8 Processor Machine, 26% Folding.

SCH TEX SCH TEX SCH TEX SCH TEX SCH TEX
1 37080 2 39375 3 31470 4 34275 5 36926

6 34275 7 36927 8 34275 0 36926 10 30603
11 38864 12 34326 13 39477 14 34326 15 39476
16 40191 17 34275 18 31470 19 31470 20 31470
21 31470 22 31470 23 40394 24 33255 25 33363

53

Table 4.8. Program THREEDH, 8 Processor Machine, 25% Foldin

SCH | TEX |l SCH |- TEX || SCH | TEX |} SCH | TEX)| SCH | TEX |
1 32673 2 33385 3 32899 4 31683 5 31493

6 31647 7 31680 8 31647 9 31682 10 32897
11 31649 12 31651 13 32917 14 31657 15 32091
16 33146 17 31647 18 31635 19 31635 20 31635
21 31635 22 31635 23 33140 24 31639 25 31659

9
.

Obviously, in most instances, little difference can be detected. Most of the pro-
grams differ by less than 5%. Two of the programs have identical results for all of
the cases. Omnly in two of the programs, FIGI2 and KERNEL, were slightly more

significant deviations noted,

Why is this the case? Why don’t the run-time sehedulers affect the total execu-
tion times of the program DAGs to a larger degree? Program KERNEL in Table 4.9
begins to explain some of the causes of this phenomenon. The EXE column
represents the aQerage number of nodes executing en the processors. The STQ
column represents the average number of nodes in the starting queue unable to run
due to lack of sufficient processors. The BLK column represents the average number
of nodes blocked from execution (and the starting queue) due te predecessors with
dependence links still in the system. (Note thaf a node may be blocked due to prede-
cessors that have not yet begun execution, predecessors which have already started
running but have not yet completed, or a cofnbination of both). The EXT column
represents the average execution time for eaeh node. The CI\/fP column represents
the average completion time for each node (measured from when a node enters the

starting queue). The TTT column represents the average turnaround time for each

54 °

Table 4.9. KERNEL Parameters, 8 Processor Machine, 25% Folding.
SCH | EXE | STQ | BLK | EXT | CMP TTT || PRC
1 2 6 1531 24 95 18626 8
2 2 14 1524 25 203 19790 8
3 1 15 1529 12 162 15866 8
4 2 14 1518 18 178 17164 8
5 2 13 1519 27 190 18503 8
6 2 14 1518 18- 178 | 17164 8
7 2 13 | 1519 || 27 | 100 | 18504 8
8 2 14 1518 18 | 178 17164 8
9 2 13 | 1519 || 27 190 18503 8
10 1 15 1529 11 158 15431 8
11 2 5 1524 26 90 19422 8
12 1 14 1529 17 178 17311 | 8
13 2 4 1518 24 72 19637 7
14 1 14 | 1529 17 178 17311 8
15 2 4 1518 || - 24 72 19636 7
16 2 3 1519 26 62 19989 8
17 2 14 1518 18 178 17164 8
18 1 15 1529 12 162 15866 8
19 1 15 1529 12 162 15866 8
20 1 15 1529 12 | 162 15866 8
21 1 15 1529 12 162 15866 | 8
22 1 15 1529 12 162 15866 8
23 2 3 1519 26 62 20088 8
24 2 14 1518 21 172 18656 8
25 2 14 1513 21 172 16657 8

node V(ta.sk). And finally, the PRC column represents the average number of proces-
sors busy executing nodes. A little more detail is provided on these and other param-

eters in the Appendix.

A quick glance at Table 4.9 reveals that not many tasks are executing at any

one time on the processors. In fact, over all 25 schedulers, an average of only 1.6

55 °
tasks out of a total of 3063 in program KERNEL are busy executing on the proces-

sors.

Potentially, this may be due to one of two reasons. Either a sufficient number
of processors are not available to KERNEL, or too many nodes in KERNEL’s DAG
are blocked because of dependence arcs (i.e., a relatively limited selection of control

paths are available to the schedulers from which to initiate nodes).

Examination of the PRC column reveals that usually, all 8 processors (the max-
imum amount allowed on the machine currently under discussion) are in use. And in
fact, on average 11.8 tasks are waiting on the starting queue, a seven to one ratio
over the numbér. of tasks executing. So this is certainly one candidate, and

insufficient processors cannot be ruled out at this stage.

On the other hand, more interesting statistics can be found in the next fev?
columns yet to be discussed. Table 4.9 shows that over all 25 schedulers, on av;rage
throughout the lifetime of KERNEL, 1523 tasks are blockedAdue to dependence arcs.
This is a 929 to one ratio over the number of tasks executing and a 129 to one ratio
over the number of tasks on the starting queue waiting for addition;al processors.

Clearly, most of the nodes in the DAG are tied up in this state.

The final three columns also support this view. Averaged across time for all of
the schedulers, a task will not Be ﬁniéhed for 17596.6 time units after it enters, 150.7
time units after it becon'1es'a. starting node, 'bﬁt only 19.5'tinA1e units once it bégins- ‘
execution. Once again, it seems as if tasks spend most of their time blqcked by

dependencies. It can be seen that, for all seven data 4(‘:olumns in Table 4.9, the

56

pattern these global averages set also hold true for each of the 25 rows in the table.

Additional evidence is provided by program CGECO in Table 4.10. CGECO
was even less susceptible to differences in the scheduling technique than was KER-
NEL, as can be seen in Tables 4.1 and 4.7. And, the pattern seen in KERNEL

becomes even stronger in CGECO. CGECO has, on average, only 1.2 tasks

Table 4.10. CGECO Parameters, 8 Processor Machine, 25% Folding. |
scH | ExE | sto | BLK | EXT | cMP | TTT | PRC
1 1 0 £87 10 45 79735 | 8
2 1 1 547 17 24 7538 6
3 2 0 570 24 29 8909 6
4 1 1 542 16 26 7314 6
5 1 1 558 18 26 8184 6
6 1 1 542 16 26 7314 6
7 1 1 558 18 26 8184 6
8 1 1 542 16 26 7314 6
9 1 1 558 18 26 8184 6
10 2 0 562 23 28 8395 6
11 1 1 547 17 24 7518 6
12 2 0 562 23 ag 8305 8
13 1 0 547 17 23 7514 6
14 2 0 562 23 28 8395 6
15 1 0 547 17 23 7514 || 6
16 1 0 553 17 21 7852 6
17 1 1 542 16 26 7314 6
18 1 1 542 16 26 7314 6
19 1 1 542 || 16 26 7314 6
20 1 1 542 16 26 7314 6
21 1 1 542 16 26 7314 6
22 1 1 542 16 26 7314 6
23 1 0 550 17 | 21 7711 6
24 1 1 558 18 27 | 8184 6
25 1 1 558 18 27 8184 6

57

executing, 0.6 tasks on .the starting queue, but 550.9 tasks blocked"by dependence
arcs. The average tﬁrnar‘ound time for a task is 7777, the completion time is 25.6,
and the execution time is a close 17.9. Furthermore, CGECO only used on average 6
of the 8 ﬁroc’essors available to it, unlike KERNEL which used all 8. This lends
stronger support to the theory that it is dependence arcs, not ipsuﬁcient processors,

which are the cause of such a limited number of nodes in the program DAGs which

are able to execute at any one time.

To be completely sure, however, the effects of changing processors must be stu-
died.. All program DAGs were tested on 8, 32, 64, 128, and 1024 processors. Pro-
gram CHEBY, it turns out, has the largest average processor request. A condensa-

tion of the results from program CHEBY is shown in Table 4.11.

As can be seen, adding processors causes the total execution time to drop, as
might be predicted. At first, the machines are completely saturated, but event;,ually
not all of their capacity is required. (And eventually, CHEBY moves to an almost
perfect space-time product square of 423 processors for about 491 time units). It is
importént to note, however, that whether the processors are swamped or not, little

difference in total execution time is recorded among the various run-time schedulers.

Not shown in Table 4.1i are the EXE, STQ, BLK; EXT, CMP, or. TTT
columns. However, for all of thesc czises, on all of the various machine sizes, as well
as for all of the other progréms tested, the same pattern sgen‘in Tables 4.9 and.4.10
is present. That is, most nodes (often by 2 or 3 orders of magnitude) spend moét of

their timne blocked due to dependence links.

58

Table 4.11. Program CHEBY on Variable Processors, 25% Folding.
8 Processors 32 Processors || 64 Processors || 128 Processors || 1024 Processors

SCH || TEX | PRC | TEX | PRC || TEX | PRC || TEX | PRC TEX PRC
1 26090 8 10420 32 3582 61 1963 105 491 423
2 26030 8 10414 32 3807 61 1966 105 492 423
.3 25909 8 10414 32 3569 62 1963 105 492 423
4 25910 8 10414 32 3564 62 1963 105 491 423
5 26030 8 104986 32 3564 62 1963 105 491 423
8 25910 8 10496 32 3564 62 1983 105 401 423
7 26030 8 10408 32 3RBR 62 1964 106 491 o 423
8 25910 8 10414 32 3564 62 1963 105 491 423
9 26030 8 10496 32 3566 62 1964 105 491 423
10 25909 8 10414 32 3569 62 1963 105 492 423
11 26104 8 10412 32 3604 81 1963 105 491 423
12 25909 8 10412 32 3564 62 1963 105 491 423
13 26124 8 10414 32 35689 62 1964 105 492 423
14 25909 8 10414 32 3569 62 1963 105 492 423
15 26124 8 10412 | 32 3608 61 1964 105 491 423
16 20030 8 10414 2 3807 61 1966 105 492 ' 423

17 25910 8 10414 32 3504 62 1063 105 491 - 42\3-
18 25910 8 10414 32 3564 62 1963 105 491 423
19 25910 8 10414 32 3564 82 1963 105 - 491 423
20 25910 8 10414 32 3564 62 1963 105 491 423
21 25910 8 10414 32 3564 62 1963 105 491 423
22 25910 8 10414 32 3564 62 1963 105 491 423
23 26030 8 10414 32 3607 61 ‘ 1966 105 492 423
24 26030 8 10496 32 3564 62 1963 105 491 1 423
25 28030 8 10494 32 3564 62 1963 105 491 423

Thus, the question originally posed concerning Table 4.9 can now be answered.’ '
It can consistently be shown that dependence arcs constrain to a greater degree the

number of nodes in a DAG which can execute than the lack of processors available to

59

process the separate control paths in a single job. Apd indeed, these'two conditions
are inversely pro‘port’iona;l’ to each other. For if a single program has a large nuﬁber
of dependence arcs present in it, then it is unlikely to have a large number of
independent control paths present. Sé,'although the individual nodes in a DAG may
be highly parallel (to the extent that some programs can utilize a very large number
of concurrent processors on average), it appears that (relatively) 'limited pa.r:;llelism

exists between the nodes in a single program.

The implications of this discovery are clear. For if the bulk of the nodes in a
DAG are inaccessible due to dependence links, then only a tiny fraction of the nodes
are ava.ila;ble’ to the starting queue. With a smaller pool of nodes from which to
make a decision, the variqus schedulers have a higher probability of selecting the
same node (or all of the nodes, if they will fit) for execution on the processors. This
situation severely restricts the options any ruﬁ-time scheduler has to chose from, and

thereby diminishes the impact a scheduler can have on the total execution time.

The situation actdally grows worse as- processors are added. ansider a
hypothetical machine with an unlimited number of processors available. On such a
hypothetical machine, ail conceivablé schedulers will act 'in an identical fashion, i.e.,
as soon as a task enters the starting queue, it will immediately be dispatched for exe-
cution on the processors. If a difference in actions is ‘not possible between the
schedulers, then a difference in execution time is also not pquible. This is obviqusly

true no matter what scheduler or program DAG is placed in to the system.

60

Naturally, this implies that in an infinite processor situation, all schedulers act
optimally. The execution time for any DAG with any scheduler is then identical to
that DAG’s largest static critical path, since all the schedulers have to do is to work

their way down the critical pathé, without having to worry about competition for

resources.

Furthermore, the closer a real machine approaches an- unlimited processor
environment (from the program’s point of view) the more likely it is tha;t on average,
that program’s requirements can be met, and the less likeiy it is that any run-time
scheduler will make much of a difference. Note that this is much more probable in a
monoprograxpminé system than in a multiprogramming system. After all, single jobs
compose a subset of a multiprogramming environment. Therefore, monoprogram-
ming is much less likely to stress the (realistically limited) processors, and thus be

able to differentiate between schedulers to the same extent.

Returniﬁg to the discussion of dependence arcs, if they create such a big prob-
lem for schedulers, then what would happen if the program’s nodes arrived spread
out across time, instead of all at once, as has been the case up to this point? In such
a situation, some dependence links may be- artificially "‘broken”, i.e., a few nodes
mé.y arrive with dependence information, only to find that thelr predecessors have
long since completed and left the system. In such cases, the dependence linics obvi-
ousiy never get created. Furthermore, a variety of nodes may arrive in close proxim-
ity to eéch other and imfnediately bé placed in the starting queﬁé together, where

under the previous tests, these nodes ordinarily may never have been able to compete

61

against each other.

-

Table 4.12 showé oné'éxa.mple of a dynamically arriving program, in this case
HTRIBK. The 2969 nodes of HTRIBK in this example were spread out to arrive
evenly across a timelinterval of 18834, which was the total execution time for the
random scheduler in Table 4.6. (One constraint was placed on the arrival of the
nodes, however. No node could arrive before all of its predecessors had arrived.) As

can be seen from the table, again little difference is observed between the various

schedulers. The total execution times between program runs were affected, depend-

" ing upon the arrival characteristics and the particular program DAG begin tested,

but no scheduler ever performed consistently and significantly better on dynamic

monoprograms.

Similar results were obtained on single jobs as the folding percentage was
changed. Folding affected the overall execution times dramatically, as was discussed
- in Section 2.2, but it did not have a consistent and significant effect on which

scheduler performed best on a single program.

Table 4.12. Program HTRIBK Arriving Dynamically,
8 Processor Machine, 25% Folding.

scH | TEX [scH | TEX [SCH | TEX | SCH | TEX || SCH | TEX
1 19467 | 2 | 10411 | 3 [19240 | 4 [19265 | 5 | 19248
6 | 19265 | 7 | 19251 | 8 | 19265 || 9 | 19251 | 10 | 19240
11 | 19403 | 12 | 19240 | 13 | 19476 | 14 | 19240 | 15 | 19476
16 | 19414 | 17 | 19265 | 18 | 19259 | 19 | 19259 -] 20 | 19259
21 | 19259 || 22 | 19250 | 23 | 19462 | 24 | 10269 | 25 | 19257

62

The only program for which the run-time scheduler had a very large effect was
FIGI2, where a 23% imp;ovement was noted on an 8 processor machine in Table 4.5.
FIGI2 is somewhat anomalous, due to the presence of a single ‘‘fat” node in the
DAG, which completely hogs the processors on a small multiprocessor if it is allowed
to run first. As it turns eut, it happens to be beneficial to select that path first, and

so schedulers which favor fat nodes (such as greedy processor or the largest critical

volume algorithms) do better in this particular instance.

Thus, several things have now become apparent. Single jobs only have a (rela-
tively) limited number of independent control paths present. This restricts the
numbersof startiﬁg nodes schedulers have to process, increasing the probability that
they will act the same. Furthermore, (and perhaps related to that problem) single
jobs do not always stress the capacity of a multiprocessor. Thus, all starting nodes

are free to be initiated immediately, which makes the decisions of a scheduler

irrelevant.

For these reasons (and a few others to be discussed in the next section), run-
time schedulers in a ﬁlonoprogramming system do not (usually) have as significant an
effect as one might expect in advance. Therefore, it isA probably a wise choice to
select a scheduler which Is as fust as possible, with littlc overhead placed upon the
operating system. Furthermore, as many decisions as possible (such as static critical

path tags, if desired) should be moved to the compiler, rather than be evaluated at

run time.

63

4.2, Multiprogramming

Multiprogramnﬁng offers a completely different environment, and therefore
potentially a different set of 'conclusions,'than can be found in a monoprogramming
system. For one th;mg, the presence of multiple jobs offers a largér number of
independent control paths, and therefore starting nodes, than on a single user sys-
tem. Furthermore, the processors are more likely to be stressed due to the addition
of multiple jobs. A run-time scheduler’s decisions thus become more important than
in the previous section. And, as will be seen shortly, additional characteristics of
multiprogramming systems greatly affect the choice of rﬁn—time schgdulers which

should be implemented.

' Multiprocessors are expensive machines, and for most applications, it is probably
not cost effective to run a single job in a dedic;ted environment. It has been known
for quite some time that in virtually all systems, the benefits of time shariﬁg far out~
weights its détriments. Given that this is true, it is probably a safe assumption to
make that any given multiprocessor is likely to be running some form of time and
processor sharing operating system. And in order to help efficiently exploit the avail-

able parallel hardware, this section attempts to cxamine that problem as it relates to

the run—time scheduler.

On the average, al any one time multiprogramming systenis are likely to be run-
ning a variety of different jobs. It is very comimon to find one or a few very lafge
jobs executing, such as a long simulation, along with a much greater number of

smaller jobs, such as editors, ¢ompilers, or debﬁgging runs of larger programs with

64

limited data. Unless stated otherwise, this model thus becomes the focus of the fol-

lowing two sections.

And as in the previous section, the random scheduler will be used as a perfor-
mance index on howugood or bad any particular scheduler is said to be, along with
comparisons between ths various schedulers. For that purpose, the total execution
time will again be used to measure throughput, holding all other parameters con-
stant. However, unlike the previous section 01'1 monoprogramming, throughput is no
longer the only criteria of interest. Turnaround time also must be taken into con-
sideration, as response time is obviously a very important factor to many users when
their jobs are exesuted in a multiprogramming environment. For that purpose, the

additional data of individual program turnaround times and execution time spans

will be introduced. -

Hapefully, some sort. of balance can be made between these two often competing
interests. Seé:tibn 4.2.1 looks primarily at the throughput issue,' and the first 23
schedulers listed in Table 3.2 are analyzed there. Section 4.2.2 looks primarily'a.t the
tgrnaround time issue, and discusses the final two schedulers separately in that sec-
tion. However, scheduler number 24 is listed in the tables along with the first 23
schedulers in Section 4.2.1, even Lhough it is not anslyzed until the follawing acetion.
Scheduler number 25 returns a range of values, agd thus is not even listed in the

tables until it is discussed.

65

4.2.1. Throughput'

For a variety of reasons, some of which have already been discussed, run—time
. schedulers can make more of a difference in the total execution time, and thus
throughput, of a mulf.iprogramming system than they do in a monoprogramming sys-

tem. Table 4.13 is typical of such results.

This particular example assumed a single copy of the large program THREEDH
was inultipr‘ogramnied with 70 copies of the smaller program COUNT. An 8 procés—
sor machine, with 25% folding, and arrival times of 0 were assumed. (The PTT
columns represent the program turnaround times, and the ETS columns représent
the gxecui;ion time spans. These columns are defined in the Appendix, aﬁd will be .

discussed in greater detail in the next section.)

Several points are immediately apparent. For instance, significant deviations in
the tptal execution times between the schedulers can be noted.‘i Furthermore, as will
be seen in so?ne of the other examples cited, éonsistent patterps begin to develop con-
cerning which schedulers return the best overall throughput performance. Hopefully,
this section will illustraj;e not only which schedulers perform best, but also the rea-

sons behind that increased performance.

Table 4.13 reveals that the raﬁdom scheduler (SCH row no. 1) returns a total
execution time for the DAGs of 60295. It, hOWe\:er, did not do the worst. The worst
scheduler in this instance was the smallest dynamic cri.ticai volu@e scheduler (ﬁo.
23), with a total executién time of 66154. This represents a 9.7% increase in the

total execution time. The other’ schedulers which did worse than random ‘were, in

66

Table 4.13. Programs THREEDH and COUNT,
8 Processor Machine, 25% Folding.
Global Statistics - THREEDH COUNT
SCH || TEX || EXE | STQ | BLK || EXT | CMP | TTT || PRC || PTT ETS PTT ETS
1 || eo295 || s 56 | 1913 || 41 543 | 17757 || 5 || 60295 | 60285 || 26659 | 25594
2. || 85498 || 4 41 | 2025 || 40 440 | 20238 | 4 | 65498 | 65338 || 18335 | 3317
3 |[35202 || 8 75 | 3203 || 40 434 | 17303 || 8 || 34698 | 34698 || 34970 | 34611
" 4 i 35850 7 88 3‘248 ;0 510 17890 || 8 35222 | 35222 || R"523 32340
5 || 35121 8 82 | 3189 || 40 48 l 17184 || 8 || 35121 | 35121 || 34788 | 32420
6 |l 38330 |- 7 88 | 32900 40). 617 | 18358 || & || 36330 | 36330 |l 35985 | 32527
7 || 35898 || 7 87 | 3254 || 40 509 | 17942 || 8 || 35279 | 35279 || 35578 | 32387
8 || 38330 | 7 88 | 3200 | 40 517 | 18358 || 8 |l 36330 | 38330 || 35085 | 32527
9 || 35898 | 7 87 | 3254 | 40 509 | 17944 || 8 |[35281 | 35281 || 35580 | 32387
10 |l 60419 | 4 29 | 1963 || 40 301 | 17999 || 5 || 60419 | 59719 || 18905 | 16560
11 || 64928 | 4 42 | 2040 || 40 443 | 20214 || 4 | 64928 | 64928 || 18349 | 3317
12 || s8787 || 5 33 | 2007 | 40 328 | 17932 || s || 58767 | 58767 || 16970 | 16613
13 || 59609 | 5 39 | 1985 | 40 388 | 17889 || 5 | 59609 | 59609 | 18732 | 3739
14 | 5R508 || 5 29 | 2007 | 40 205 | 17824 | 5 || 58508 | 58508 || 18910 | 18553
15 by273 8 40 1975 40 8yY1 17887 8 59273 | 59971 || 18701 3572
16 |l ee088 |[4 41 | 2013 | 40 443 | 20291 4 | esoes | 85908 || 18335 | 3317
17 | 36330 || 7 88 | 3200 || 40 617 | 18358 || 8 || 38330 | 36330 || 35985 | 32527
18 36329 7 88 328Y 40 519 18350 8 36329 | 36320 || 35075 | 32528
19 |l 38329 || 7 88 | 3289 | 40 519 | 18350 || 8 || 36320 | 36329 || 35975 | 32528
20 36329 7 88 3289 40 519 18350 8 36329 | 36329 || 35975 | 32528
21 36329 7 88 3289 10 519 18350 8 36329 | 36329 || 35975 | 32528
22 36329 7 88 3289 40 519 18350 8 38329 | 36329 || 35975 | 32528
23 || 66154 || 4 38 | 2011 || 40 419 | 20274 || 4 | 66154 | 65994 (| 18335 | 3317
24 [41840 || 8 8 | 3132 |[40 586 | 20031 | 7 |l 30351 | 39351 | 23558 | 3318

decreasing order of time: smallest dynamic critical path (no. 16), FIFO (no. 2), smal-

lest processor request {no. 11), and largest processor request (no. 10).

67

Several of the schedulers were less than 5% faster than the performance of ran-
dom. They were: lafgest execution time (no. 12), smallest execution time (no. 13),

largest product of time and processors (no. 14), and the smallest product of time and

processors (no. 15).

Many of the schedulers showed significant speedups over the random algorithm.
These were the entire collection of the dynamic critical path algorithms (nos. 4-9
and 17), the dyﬁamic critical volume algorithms (nos. 18-22), and the largest proces-
sor request with ties going to the largest dynamic critical path (no. 3). All of these
- schedulers showed a speedup over random of approximately 40%, with the fasi:egt

scheduler returning a total execution time of 35121, or a 41.8% speedup.

Why were such dramatic results recorded? And why did the dynamic critical
path and volume algorithms in particular do so well? The other columns in Table

4.13 begin to answer these questions.

Glancing at the EXT, CM:P, and TTT columns, it is clear that tasks still spend
most of their time blocked by'dependencies from execution. This is to be expected.
After all, multiprogramming systems are made up from a collection of individual sin-
gle jobs, each of which exhibit the same dependence characteristics seen in Section

4.1. Adding more jobs does not break links wsthin a job.

The diﬂ'érence, however, occurs in the STQ, relative to the EXE and BLK
col'umns.. Now, unlike Section 4.1, the introduction of multiple independent jobs
ensures a greater number of nodes in the starting queue. In fact, averaged over all of

the dynamic critical path and volume algorithms, 87.3 nodes were idle waiting for

~ 68

processors to become free. (There were 6700 total nodes in the system). This is a

much higher number than was seen in a single user system. Even algorithms which

performed poorly had a relatively large pool of nodes in the starting queue.

The assertions ;nade in Section 4.1 are thus justified. Multiple jobs with
independent control paths in a multiprogramming system obviously place a great’erA
number of nodes onto the starting queue. More nodes on that queue reduces the pro-
bability that different schedulers will select the same node. Furthermore, the addi-.
tional nodes stress the processors more, making it less likely that the different
schedulers perform close to optimal. Therefore, as pre;iicted, the run-time
scheduler’s decisions become more significant, and therefore more important, with

multiprogramming.

As a final note, it can be seen from the PRC column in 'I"able 4.13 that those
algorithms which performed bestl had the highest processor utilization, a.nci in fact
completely safurated the machine. This is to be expected. Schedulers which did 'nc;t
do well utilized less processors on average, despite the fact that nodes were available

in the starting queue (although on average, the starting queue was shorter for poorly

performing schedulers).

What effect does the job mix, in particular the number of small programs, have
on these results? Tables 4.14 and 4.15 illustrate the changes observed as the degree
of multiprogramming is varied. Table 4.14 contains 50% less, and Table 4.15 50%

more, copies of COUNT than was executed in Table 4.13. All other parameters were

held constant.

69

Table 4.14. Programs THREEDH and COUNT, 50% Less Multlprogrammmg,
8 Processor Machine, 25% Folding.
Global Statistics THREEDH COUNT
SCH || TEX || EXE | STQ | BLK || EXT | CMP | TTT | PRC || PTT ETS PTT ETS
1 |[4e157 | 3 19 913 || 40 | 264 | 11261 || 4 || 46157 | 46147 || 12868 | 12459
2 |l 40972 || 4 31 | 1039 | 40 | 389 | 11478 || 4 | 40972 [40812 || 11305 | 3310
3 |[33549 | 5 26 | 1132 || 40 264 | 10180 || 5 |[33549 | 33549 || 18694 | 18504
4 || 31883 s 40 | 1231 || 40 | 388 | 10550 || 5 || 31683 | 31683 || 19447 | 16477
5 || 31493 | 5 33 | 1167 || 40 308 | 9908 | 5 || 31493 | 31493 || 18652 | 16519
6 || 31847 | 5 40 | 1257 || 40 | 369 | 10758 || 5 || 31847 | 31847 || 19708 | 16600
7 || 31880 || 5 39 | 1233l 40 | 384 | 10581 || 5 | 31880 | 31880 || 19464 | 18508
8 |[31847 || 5 40 | 1257 || 40 | 389 | 10758 | 5 | 31647 | 31647 || 19708 | 16600
9 |[31882 || 5 30 | 1233 | 40 | 384 | 10583 || 5 | 31882 | 31882 || 19466 | 16508
10 |l 46411 || 3 15 920 || 40 | 220 | 11368 | 4 || 46411 | 46061 || 9393 | 9223
11 | 48328 || 3 21 971 || 40 | 305 | 12562 | 3 || 48328 | 48328 || 10036 | 3313
12 | 45013 | 3 19 933 || 40 | 258 | 11210 || 4 | 45013 | 45013 || 9426 | 9244
13 || 46403 | 3 17} 914 || 40 241 | 11311 || 4 | 46403 | 48403 || 9352 | 3754
14 |l 44989 | 3 17 934 || 40 245 | 11218 | 4 | 44980 | 44089 || o455 | o273
15 | 45582 || 3 19 920 || 40 261 |.11209 || 4 || 45582 | 45582 || 9339 | 3475
16 | 40468 | 3 21 960 || 40 | 305 | 12709 | 3 || 49468 | 49308 || 10024 | 3314
17 |[31647 |[5 40 | 1257 || 40 | 369 | 10758 {| 5 | 31847 | 31647 || 19708 | 16600
18 |[31835 | 5 40 {1257 || 40 | 372 | 10751 || 5 | 31835 | 31635 || 19697 | 16800
19 [31835 || 5 40 | 1257 || 40 | 372 | 10751 || 5 | 31835 | 31635 || 19897 | 18600
20 |[31635 || 5 40 | 1257 || 40 | 372 | 10751 || 5 | 31835 | 31635 || 19897 | 18600
21 || 31635 || 5 40 | 1257 || 40 | 372 | 10751 | 5 | 31635 | 31635 || 19697 | 16600
22 {31635 || 5 | 40 | 1257 || 40 | 372 | 10751 || 5 |[31635 | 31635 || 19697 | 16600
23 |[49554 || 3 17 960 | 40 263 | 12680 | 3 || 49554 | 49304 | 10025 | 3314
24 [31839 || 5 43 | 1358 || 40 | 393 | 11615 | 5 | 31639 | 31639 || 14205 | 3318

As can be seen from Tables 4.14 and 4.15, the overall patterns seen in Table

4.13 are still true. Obviously, the overall execution times tend to decrease in Table

70

4.14 and tend to increase in Table 4.15. However, the collection of dynamic critical
path and volume algorith'mé consistently perform very well. Other schedulers show
little or no consistent improvement, and in some cases actually do worse than ran-
dom. The smallest dynamic critical path and volume algorithms do exceptionally

poorly.

There is one difference between Tables 4.14, 4.15, and Table 4.13 that should be
noted, however. Table 4.13 recorded speedups of around 40%. The latter two tables

dropped their speedups to just under 32%.

Why did this happen? The answer should be obvious in the case of Table 4.14.
For as the degree of multiprogramming is decreased, the system begins to look more
and more like a monoprogramming system. The number of nodes on the starting
queue begins to shrink, the processors become less stressed, and the utilization drops.

Thus, speedup is definitely recorded, but it is not quite as dramatic.

T'g.ble 4.15 is less obvious. Why should increasing the number of copies of
" COUNT by 50% decrease the speedup by approximately 8%5? The answer is that as
more copiés of the smaller program are added to the system, the relative contribution
of the larger program to the overall statisticé begins to decrease. Eventually, the per-
formance values are made up almost entirely as if the scheduler saw only a cqllection

of identical short jobs, without ever introducing a larger program on to the proces-

Sors.

This then brings up yet another potential pitfall for run-time schedulers. For .

even -if the processors are stressed such that all nodes can’t run immediately, and if a

71

Table 4.15. Programs THREEDH and COUNT, 50% More Multiprogramming,
8 Processor Machine, 25% Folding.

Global Statistics THREEDH COUNT

SCH || TEX || EXE | STQ | BLK || EXT | CMP | TTT | PRC || PTT ETS PTT ETS

1 74459 5 83 3100 41 686 24803 5 74459 | 74449 (| 34059 | 30771

2 57572 7 105 4466 40 873 27543 7 57572 | 57412 |} 28580 3318

3 49930 8 105 4607 40 586 24621 8 48936 | 48936 || 49397 | 48857

4 50575 8 119 4669 40 669 253486 8 49582 | 49582 || 50084 | 46671

5 49843 8 114 4605 40 835 24618 8 49818 | 49816 || 49312 | 46713
8 51312 7 120 4732 40 881 26054 8 51296 | 51298 || 50773 | 46965
7 50710 8 119 4674 40 670 25439 8 49680 | 49680 || 50166 | 46742

8 51312 7 120 4732 40 681 268054 8 51298 | 51298 || 50773 | 46965

9 50712 8 119 4875 40 870 25441 8 49682 | 49682 (| 50168 | 46742
10 76619 5 42 30968 40 375 25161 5 76619 | 75569 || 24262 | 23742
11 81528 5 68 3244 40 620 28255 5 81528 | 81528 || 268654 3318
12 75368 5 46 3136 40 400 25096 5 75368 | 75368 || 24242 | 23710
13 75532 5 84 3107 40 548 25071 5 75632 | 75532 |} 24089 3774
14 75357 5 45 3138 40 392 25191 5 75357 | 75357 || 242768 | 23744
15 76474 5 83 3073 40 547 25103 5 76474 | 76474 ;| 23863 3434
18 82668 5 87 3205 40 820 28303 S 82668 | 82508 || 26638 3318

17 51312 7 120 4732 40 681 26054 8 51296 | 51296 [50773 | 46965

18 81309 7 120 4731 40 683 26046 8 51293 | 51293 {} 50762 | 46965

19 51309 7 120 4731 40 683 26046 8 51293 | 51293 || 50762 | 46965
20 51309 7 120 4731 40 683 268046 8 51293 | 51293 || 50762 | 48965
21 51309 7 120 | 4731 40 683 26046 8 51293 | 51293 || 50762 | 46985

2 51309 7 120 4731 40 683 26046 8 51293 | 51293 || 50762 | 46965

23 82754 5 65 3202 40 603 28291 5 82754 | 82594 || 26638 3318

24 58240 7 118 4547 40 756 28428 7 55951 | 55951 || 32284 3319

large number of multiple independent control paths are present, then if all of those

paths have identical or even close characteristics, the scheduler has no basis upon

72

which it should make a decision. Every path looks just as good as every other path,
since the characteristics of those paths being evaluated are the same. Thus, keeping
the selection criteria constant, any particular scheduler begins to service the jobs

(more or less) in a round robin fashion.

Fortunately, this situation is much less likely to occur in a multiprogramming
system than in a dedicated environment. Single programs often have iéentical con-
trc;)l paths, generated by the outer nested parallel loops (the horlzonta;l brackets in
Chapter 3). With multiprogramming, a much wider variet}; of relative critical path
distances, processor requests, execution‘times, etc. is likely to be found, giving the

run-time scheduler a basis for decision making.

Furthermore, not only does a multiprogrammed system inherently offer a richer
environment of different jobs than a monoprogrammed one does, but also the proba-
bility of a dynamic system, or nonzero arrival rates, is enhanced. This leads to
potentially e\‘ren greater differences in such parameters as the dynamic eritical path.
This is true even if a common job is run often, since an earlier arrival’ will already
have completed a portion of its DAG before the next job arrives, so that its starting
nodes will carry smaller critical path taés than the cux;rent arrival. (Indeed, it Is

probably much more likely to have a dynamic environment between, not within,

separate DAGs).

Table 4.16 is illustrative of such results in a dynamic ehvironment. Unlike the _
previous example, where all of the jobs arrived simultaneously, this particular exam-

ple is more complex, demonstrating the dynamic modification of Athe' general

73

Table 4.16. Programs COUNT and FIGI,
8 Processor Machine, 25% Folding.
Global Statistics ' COUNT FIGI
SCH TEX STQ | BLK || EXT | CMP TTT || PRC PTT ETS || PTT | ETS
1 || 28189 1 | 262 || 168 215 | 9804 | 5 | 19812 | 3847 | 1073 | 1001
2 |l 19592 5 | 204 || 168 292 | 5470 | 7 | 10752 | 3311 || 1885 | 956
3 | 21274 25 | 233 || 148 | 839 | 7285 | & | 13484 | 4084 |[5196 | 4700
4 || 19558 44 | 201 || 151 | 1257 | e373 || 7 | 10849 | 3310 || 7878 | 7814
5 || 19556 44 | 201 || 151 | 1257 | e373 | 7 | 10849 | 3310 [l 7878 | 7814
8 || 19558 44 | 201 | 151 | 1257 | 6373 | 7 | 10849 | 3310 | 7878 | 7814
7 || 19558 44 | 201 || 151 | 1257 | 6373 | 7 | 10849 | 3310 || 7878 | 7814
8 |l 19558 44 | 201 || 151 | 1257 | 6373 || 7 | 10849 | 3310 |[7878 | 7814
9 || 19558 44 | 201 || 151 | 1257 | €373 | 7 10849 | 3310 || 7878 | 7814
10 || 22448 3 | 228 | 165 266 | 6847 | 8 | 13732 | 3727 || 1489 | 1018
11 || 25371 2 | 231 |[185 245 | 7851 || 5 | 15665 | 3897 || 1300 | 1294
12 || 28709 19 | 270 || 165 885 | 10948 || 5 | 22129 | 5742 || 5438 | 5408
13 || 25311 3| 225 || 187 256 | 7657 || 5 15241 | 3309 || 1361 | 1279
14 | 28709 19 | 270 | 165 | 885 | 10048 | 5 | 22129 | 5742 | 5438 | 5406
15 | 25311 3 | 225 | 167 256 | 76857 || S 15241 | 3309 || 1381 | 1279
16 28796 1 ‘ 270 168 188 10292 5 22216 | 5759 967 933
17 19558 44 201 151 1257 8373 7 -10849 3310 || 7878 | 7814
18 19356 44 201 151 1257 8373 7 10849 | 3310 || 7878 | 7814
19 19558 44 201 151, 1257 68373 7 10849 | 3310 || 7878 | 7814
20 || 19556 44 | 201 || 151 | 1257 | 6373 || 7 |l 10849 | 3310 || 7878 | 7814
21 | 19558 44 | 201 || 151 | 1257 | 6373 || 7 | 10849 | 3310 || 7878 | 7814
22 || 19558 44 | 201 | 151 | 1257 | 8373 | 7 | 10849 | 3310 || 7878 | 7814
23 || 28798 1 | 270 || 1686 188 | 10292 || 5 || 22216 | 5759 || 987 | 933
24 19592 5 204 166 292 ‘ 5470 7 10;152 3311 1685 956

collection of DAGs the run-time scheduler is examining.

74

For this example, an 8 processor machine with '25% folding was selected. T'ive
copies of the program CdUNT were scheduled to be run sequentially, arriving at the
start of the simulation. One hundred and twenty copies of the program FIGI were
dynamically added in groups of four, with arrival times spread out :;cross an interval
of 14976, in an attempt to keep a relatively constant flow of jobs inf,o the system‘
until near the end.

And once again, the pattern is still present. The largest dyuamit‘; critical path
and volume algorithms (nos. 4-9, 17, and 18-22) return consistent and signiflcant
results on dynamic DAQs, with a speedup for this particular example of 30.6%. The
smallest dyn‘amic.critical path and volume algorithms (nos. 16 and 23) again perform
poorly, with an increase over the random scheduler’s total execution time of 2.2%.

All other scheduléfs are scattered somewhere in between these two values.

So, to summarize some of the concepts to this point, a run—time scheduler will
. make a diﬁ’erénce in the throughput of a DAG or DAGs under the following condi-
tions. First, the processors must be stressed. Placing a heavy load upon the proces-
sors forces the scheduler to make a decision as to which group of tasks will not
currently be able to run. If that decision is wise, then géod performance will result.
Otherwise, the scheduler could perform worse even than random. Lighf loading of
the processors reduces that pressure, with the limiting case being that all schedulers

act the same, and approach an optimal throughput..

Second, a relatively large number of starting nodes must be presented to the

 run-time scheduler. Multiple independent control ﬁaths contribute to this factor.

75

The higher the number of nodes, the lower thé probability that any two schedulers

- will select the same ﬁode, and thus yield the same results.

Third, these nodes should present different values to the scheduler (for ﬁhich—
ever characteristic it-is evaluating). Otherwise, the scheduler has no criteria upon
-which to form the basis of its decisions. For example, if all of the starting tasks have
the same dynamic cr;ltical path tag value, then a dynamic critical path scheduler will
select the highest one, until they are all eéua.l, and then begin a round robin dispatch

between all of the various paths.

Note that all three of these points are more likely to occur in a multipro-
grammed operating system than on one which implements only monoprogramming.
There are Vmore demands on the processors, there are less dependence arcs between
programs, and the dynamic arrivals, as Well'as. the different types of jobs, contribute

to a wider variety of nodes in the system.

And under these situations, it appears that the dynamic critical path and
volume algorithms perform very well. Consistent and significant speedups are

recorded over a random selection of tasks from the starting queue.

Graphically, thg situation can be illustrated in Figure 4.1. Figure 4.1 shows a
typical job mix in a multiprogramming system, i.e., one (or a few) very long jobs,

with lots of smaller jobs also competing for resources.

In such situations, competition for resdurcgs often cause nodes to get ‘‘bumped
off’ consideration for the next node to be started. But which one (or ones) should

lose out in Figure 4.1? Clearly, it seems prudent to give precedence t‘o_thé nodes on

76

Figure 4.1. Multiprogramming DAG Collection.

top of the largest dynamic critical path and try to overlap the shorter nodes in
parallel with the execution of the longest job. Any other choice is almost certain to

be detrimental to system throughput.

77

Furthermore, the higher the relative difference in critical path heights, in con-
junction with.a larger nlzmber of small jobs requesting service from the processc;rs,
the more important a s_cheduler’s decisions become to throughput. After all, with a
. low probability of ‘“finding” an extremely high path in a huge sea of short nodes with
schedulers such as random, greedy or generous execution times, etc., a greater poten-
tial exists for poor results. Therefore, in such situations, schedulers such 4as the

dynamic critical path or volume algorithms are worth the investment in overhead

more sophisticated schedulers require on real data programs.

One of the interesting results from the examples run was that the dynamic criti-
cal voluﬁe algorithms (nos. 18-22) did not outperform the dynamic critical path
algorithms (nos. 4-9 and 17) Indeed, differences of only a few percent were usqally
recorded. This is especially surprising when folding was permitted since, as was
pointed out in Section 3.2.4, use of the 25% folding rule means that the dynamic
critical path distance for any arbitrary node may be off by a factor of four from the
real time needed to el;:ecute that path. It was originally thought th;it since the sum
of the space-time products more accurately represents the amount of work needed to
complete some path than does the sum of the execution times, then the former would -
provide a superior selection criteria for the run-time scheduler.. Such does not

appear to be the case.

. The reason this seems to be true is that there is no correlation between which
path a node happens to reside upon, and the probability of that node’s successors

being folded. Stated another way, averaged ovver all nodes, paths with higher

78

dynamic critical tag values (tend to) have more nodeg within those paths. The larger
the number of nodes in a path, the higher the probability that some of those nodes
will be forced to fold processors into time, thus increasing the ‘‘effective’” dynamic
critical path to an even larger value than it was before. Thus, in a sense, the
dynamic critical path value does take into account the problem of folding, even if it
is only a “‘side effect” of the probabilistic distribution of execution times and proces-

sor requests among‘the nodes.

One final comment on this subject should be made. Since the dynamic crit;ical
volume algorithms require a multiplication which is not needed in the dynamic criti-
cal path algqrithrﬁs, the former series will obviously run slower than the latter. A_nd‘
since. the dynamic critical path algorithms seem to work just as well, those algo-

rithms are probably the ones which should be selected, given a choice between the

two sets.

Another .point of interest was that the secondary evaluation criteria in the event
of ties in the critical path and volume algorithms did not have a consistent and
significant effect. Usually, little difference was recorded, and it was not unconunuvu
for the results to match exactly between diﬁ'erent variat;lons of the tie breakers. In

those few instances where small differences did occur, no consistent pattern developed

as to which criteria was best.

Also, examples were run on larger processor iuachines. When the number of
processors was increased without changing the job mix, the obvious results were

observed. That is, there were decreases in the total execution times and a lowering of

79

the relative differences between the schedulers, in a fashion similar to the tranéition
from Table 4.13‘ to Tabl;a 4.14, and for the same reasons previously cited. On fhe
other hand, scaling the numbe; of processofs and the degree of multiprogramming up
'by the same factor yielded‘virtually the same results as on the smaller machine. For
instance the example shown in Table 4.13 was scaled up to a 32 processqr'machine,
with four copies of the large program, and 280 copies of the small prograrﬁ. The
same trends held. Random returned a total execution time of 6139A5. Smallest
dynamic critical path and volume returned 69805 and 69757, respectively, which
were the worst of all of lthe schedulers.. The largest dynamic critical path and volume

algorithms averaged a total execution time of 36270 and 36370, respectively.

And finally, the amount of folding permitted ?eturned the same results as in
Section 4.1, i.e., folding has a dramatic effect on the overall execution times, but
shows no correlation belween selection of a run-time scheduler. Readers are there-
fore referred to the work by Xu and Yew mentioned in previous sections for any

further discussion.

4.2.2. Turnaround Time

To this point, it has been shown that the dynamic critical path and volume
series of algorithms perform very well in a multiprogrammed environment, ‘i.e., a A
substantial increas"g in speedup is recorded over random and most other schedulers.
As'car‘l be noted from the far right columns in all of the examples cited, however, this

speedup is gained at the expense of extreme turnaround times for the shorter pro-

grams.

80

This is a bad situation. For it is probably true that the shorter the program,

the more users are interested in quick response time. The dynamic critical path algo-

rithms certainly fail this test.

Why is this the. case? The problem arises due to the inherent nature of the
dynamic critical péth algorithms in that théy actually avoid terminal nodes. That is,
if a program DAG is almost completed, and the run—time scheduler suddenly discov-
ers a new starting node with a higher dynamic critical path value (due to either a
new arrival or an existing DAG disposing of dependence links as predecessor nodes
terminate) then the DAG with the largest Acritical path value is given preference over

the shorter ones. This is by intent, of course, in order to maximize throughput.

The problem with this scheme, however, is that the closer a job gets to finishing,
the lower the probability.becomes of that same job beiug piven access to the proces:
sors by the scheduler. It is clear thgt a paradox has been created, namely, jobs are
only given thé chance to complete if they are not ¢close to completiug. Tle implica-

tions of this strategy upon program turnaround time are obvious.

The solution to this problem seems to be one of balance. Obviously, techniques
which go to extremes in either direction are not acceptable in a real system, and the
critical path schedulers discussed in the previous section must be modifled somelhow
in a2 manner which will take both parameters into account. That is, give priority to
large critical path values most of the time in order to aid thrbughput, but once a jbb
becomes ‘‘close’ to ﬁnishing, then try and'quickly flush it out of the system in order

to aid turnaround time.

81

This section attempts to analyze that problem. The final two run-time
schedulers listed in Table- 3.2 are examined and compared in the standard fashioﬁ to
random, etc. However, Sincelmany of the ‘‘side issues’’ discussed in Section 4.2.1
(e.g., the degree of multiprogramming, the effects of folding, etc.) yield the same

results as they did in the previous section, those arguments are not repeated here.

The first algorithm to ‘be discussed in this section is'the one in row 24 of Table
3.2, which for lack of a better name will be imown simply as ‘“‘number 24".
Scheduler number 24 first determines which‘ node has the largest overall dynamic
critical path tag value. Next, the; earliest program number of that same type.of pro-
gram is lécated. (Program types are defined in Section 3.2.5, 3.2.6, and the Appen-
dix). Finally, the largest dynamic critical path within that particular program is

selected for execution.

Basically, what number 24 is trying to do is to combine the dynamic critical
path scheme ﬁith FIFO, in an atterﬁpt to make some tradeoffs between throughput
and turnaround time. It moves jobs which have been in the system for a long time
towards completion. Furthermo're, it avoids the cémmon problem the dynamic criti-
cal path series have of processing ail of the high paths'ﬁrst, until everything is of "'
even height, and then providing approximately equal service to all possible paths in a
round robin fashion, i.e., as soon as any path gets lower than any of the other paths
it is ignored. On the other hand, because two of the three stages in number' 24 are
based ui)on the dynamié critical path, it still attempts to servi;:e the DAG with

minimal loss of throughput.

82

And, in fact, number 24 actually works quite yvell. Consider for example the
program set discussed in 'Ta,ble 4.13. (Although all of the copies of COUNT arrived
simultaneously in Table 4.13, number 24 arbitrarily decides that which program is
the “first” is the one with the lowest program number. And in real systems, all pro-
grams generally are assigned a unique program ID, which would be §ufﬁcient for

number 24 to operate in the event of arrival time ties in the real world.)

For that particular collection of DAGs, number 24 returned a total execution
time of 41640, or approximatel.y a 30.9% speedup over random. With the exception
oi' the critical path and volume algorithms, this result is better than any of the other’
schedulers. On the other hand, the critical path schedulers returned speedups in the

range of 40%, which obviously is better than number 24.

But what price did the dynamic critical path schedulers pay for their e).ctra
speedup? Consider scheduler number 5 (largest dynamic crit';ical path with ties bro-
ken by the sﬁlallest processor request), which returneti the best throughput in this
particular example. Scheduler number 5 showed an average execution time span for
program COUNT of 32420. This is 26.7% worse even than random in this example.
Similarly, the average turnaround time for COUNT with scheduler number 5 was
30.1% worse than random. (On the other hand, the execution time span and the tur-

naround time for program THREEDH were about 42% faster than random).

Compare that with the results obtained by scheduler number 24. Scheduler
number 24 had an average execution time span for COUNT of 3318, and an average

turnaround time of 23556. This is 87% and 11.6% faster, respectively, than random,

83

and 89.8% and 32.3% féster, respectively, than sche_duler number 5. (The statistics
for THREEDH were roug—hly the same as that returned by scheduler number 5). .So
at the cost of losing 10.9% (out of 41.8%) of the speedub afforded by scheduler
number 5, scheduler number 24 returns an execution time span for the smaller pro-
gré.m which is an order of magnitude smaller than number 5, and a tl;rnaround time

which is faster by a third,

Similar results were obtained for all other simulations conducted. For example
the dynamic critical path algorithms in Table 4.16 (with nonzero arrival times) took
19556 time units to execute, while scheduler number 24 required 19592. These are
speedups .over random of 30.6% and 30.5%, respectively, which are obviously very
close. But the dynamic cxjitical path algorithms bought that extra 0.1% at a very
heavy price. The average execution time span for FIGI was 933, and the average tur-
naround time was 967. (These values, exgcution time span and turnaround time, are
much closer than before, since all copies of FIGI did not arrive simultaneously at the
start of simulation, unlike the example cited in Table 4.13). This represents an 88%
and an 87.7% speedup, respectively, over the dynamic critical path algorithm. Cer-

tainly this was a worthwhile tradeoff!

And so it seems that scheduler number 24, all things considered, performs quite
well. Unlike the dynamic critical path algorithm, number 24 flushes out jobs that
are about to complete, and avoids the pitfall of ‘ignoring"short DAG segrﬁents.
Throughput does sometimes suffer (as was especially true in the ﬁrst example cited)

but the benefits of quick response time mote than compensate for that loss.

84

The problem with scheduler number 24, qf course, is that it fequires
classification of the progr;ms submitt;ed to the operating system by job type. This is
a serious drawback. Furthermore, all of . the program nodes are required to carry
along that program type tag (or at least a pointer to a tag) which is not very space

efficient. The next scheduler is an attempt to avoid those drawbacks.

The dypamic critical ratio algorithm is an attempt to balance throughput and
turnaround time based only upon the characteristics of the DAG alone. No require-

ments are needed for job identification or typing.

The dynamic critical ratio algorithm simply takes the largest critical path value,
unless some node is shorter than that value (or the value of the last node dispatched),
.in which case the shortest critical path value is used. This algorithm thus attacks
the same problem as number 24, but by a diﬂ‘érent method. That is, large dynamic
critical path values are normally used in an attempt to maximize throughput, but
once a DAG éegment gets ‘‘close” to completing, then it is given Ipriority and pusheci
out of the system. ‘‘Close’” in this instance is defined by the ratio value selected,

which will be referred to simply as “R". (See Sections 3.2.5 and 3.2.6 for further

information).

'What type of results does the dynamlie critical ralio algorithin return? Well, the
aﬁswer to that question depends upon the value of R selected. For example, FAigure
4.2 demonstrates how the total execution time, the prograrﬁ turnaround time, and
the execution time span for the shorter pl;bgram (FIGI, in this case) are affected by

the value of R used for the example first cited in Table 4.16. ,(The_speciﬁc values

85.

29000 - | ~ 1600
28000 - L 1500
27000 - L 1400
26000 - L 1300
_ o PTT
o TEX e ETS
25000 - L 1200
24000 4 L 1100
23000 - | 1000
N\, o . . ::
o | \\\ 1 |] T |] 1 0
0 12000 13000 14000 15000 16000 17000

Ratio
Figure 4.2. Performance Parameters as a Function of R.

used to generate Figure 4.2 for different values of R are reproduced in Table 4.17).

There are two main points of interest in Figure 4.2. First, it is clear that the

total execution time Is inveracly proportional Lo the turnatound time and the

86

execution time span. (Since the turnaround time and execution time span curves fol-

low each other, only one, the turnaround time curve, will usually be referred to in -

the rest of this section).

Obviously, this is to be expected. For as the dynamic critical ratio algorithm
increasingly favors flushing smaller jobs out of the system, it increasingly helps the

average turnaround time, but at the cost of increased overall system time.

The best results would be obtained at some point in the middle of the crossover
between the curves. (In this example, the turnaround time curve started to drop
signiﬁcantly faster than the exécution time curve started to rise on the right portion
of the.curves_). For example, if an R value of 15000 is used in this particular exam-
ple, total execution times of about 20.6% faster than random are recorded. While

that is certainly less than what was recorded by the dynamic¢ ertical path algorithun

Table 4.17. Programs COUNT and FIGI with Variable Ratios,
8 Processor Machine, 25% Folding.

A (_ilobal Statistics THREEDH COUNT

R TEX || EXE | STQ | BLK || EXT | CMP | TTT | PRC PTT | ETS || PTT] -ETS
12500 [} 28190 5 1 264 166 208 9854 5 |i 20030 | 4063 | 1021 945
13000 || 28190 5 1 264 188 208 9854 5 20030 | 4083 || 1021 94_5-
13500 || 25457 5 2 ?47 166 221 8383 5 17113 | 3983 1158 1112
14000 || 25387 5 2 246 164 223 8325 5 16801 | 3718 || 1162 7“;135
14500 || 25387 5 2 246 164 223 8325 5 16801 | 3718 || 1162 | 1135
15000 22473 6 2 238 1686 234 7192 8 14555 | 3642 || 1280 | 1251
15500 22384~ 6 . 4 208 187 279 6258 6 12480 | 3308 || 1553 | 1420
16000 (| 22384 8 4 206 167 279 6256 8 12480 | 3308 || 1553] 1420

87

(or even number 24), thé average program turnaround time and execution time spans
for FIGI were 83.8% a;d 84% fas't‘er than the dynamic critical path algorithm,
respectively. Furthermore, by’ decreasing the value of R even further into the areas
of nonzero slopes, more complete tradeoffs between throughput and tumaround time

can be made, depending upon the particular needs of the users.

The second point of interest in Figure 4.2 is that all of the curves show three
distinct regions of stability. Why did this occur? Figure 4.3 helps to explain this

phenomenon.

Assume that the column heights in Figure 4.3 represent the dynamig critical
path valu;as of some programs. Figure 4.3 then shows a very long program, a short .
program which has been in the system for some time (the dashed box represents the

portion of the DAG which has already been completed) and the arrival of another

short program DAG.

The value of 'R can then fall into three distincﬁ regi(:ms, as shown in the figure.
If R1 is used, then the dynamic critical ratio algorithm acts exa.ctly.like the largest
dynamic critical path algorithm. Large critical path values are selected, short critical
path values are ignored (except wheﬁ the big programs can’t run due to dependence |
links frc;m currently execgting predecessors), throughput is maximized, as is tur-
naround time. This is represcnted by the right portion of the graph in Figure 4.2.

If R3 is used,>then the dynamic critical ratio algorith?n acts exactly like t';he
smallest dynamic critical pat;h algorithm. Small critical path values are selected over

large ones, and throughput and turnaround time are minimized. This is r'epfeéented

88 -

TTT

Figure 4.3. Possible Ranges for R.

by the left portion of the graph in Figure 4.2.

" If R2 is used, then things are much different. Small DAGs close to completing
are given priority, which helps turnaround time. When no small jobs are present (ot
thgy are blocked by dependeﬁcies .from' executing predecessors) then the largest
dynamic critical path values; are used, which hélps throughput; New arrivalé of short -
jobs are given the lowest priority, and must wait to run until dependencies block

everyone else. The exact statistics returned when R is in the R2 region depends upbn

89
the specific value of R, the average height of the program DAGs, and the average

-

arrival rate of the DAGs.

As an example of this, consider Table 4.13 again. There, unlike the eﬁample
just discussed, all of fhe programs arrive.d simultaneously. In such cases, R2 regions
do not exist. The net effect of that situation is that the dynamic critical ratio algd—
rithm Aessentially “breaks’, and the analogous graph of Figure 4.2 would look like a
step function if it was to be plotted. A binary choice is thus the only possible con-
sideration without R2, i.e., the scheduler will act like either the largest or the smal-
lest d&namic critical ‘pa.th algorithm. (Noté that this situation can be simulated by
veryAra.pi;i arrival rates, i.e., if programs arrive faster than the scheduler can process
them down beléw R. If that happens, then the algorithm becomes overloaded, and
enters the R1 region. All of tﬁe problems previously discussed concerning the largest
dynamic critical path algorithm then apply here, i.e., good throughput but bad tur-.

naround time. Table 4.13 is the limiting case of this scenario, of course).

Assuming dynamic DAGs, however, the question then becomes: how should the
value of R be selected? Unfortunately, there is no known. wa;y of automatically
selecting this ‘value. Generally, R should be selected such that it is less than the
average height of the average Small program entering the system (to avoid moving
into region R3) but not so small so that the processors cannot *‘shrink’ the height
down below R before the next ba'tch of jobs arrive (to avoid ;hoving into region ARI). g
Even though it tries to adapt by means of its two node W(;rking set, its sensitivify is

still proportional to the size of that average R2 ““window’”. Obviously, this is a func-

90
tion of the average arrival rate, the average service rate, the average height of jobs,

etc., something that probably cannot be known a priori, without studying the job

mix at a particular installation over a period of time.

Without that kﬁéwledge, however, the dmaﬁic critical ratio algqrithm is rather
sensitive, and not robust. About the most that can be suggested at this point would]
be to have the value of R ‘““tuned” on sité depending upon the needs and demands of
that system. Thus, as is true of all heuristics, it appears as if the perfect run—time

'scheduler which solves all possible problems under all possible circumstances does not

exist.

91
CHAPTER &

CONCLUSIONS

The last several decades have seen an enormous increase in computational capa-
bilities. Originally, this was due to hardware innovations. More recently, the

increase in speed has come about as a result of the use of increased parallelism.

In order to exploit this parallel hardware in general, and multiprocessors in par-
'gicular, appropriate software must bg developed which will take advantage of the
underlying parallelism. For example, either parallel Ianguages must be utilized, or
compilers must be run which automatically detect parallel constructs in the code
Wiﬁch can be executed concurrently on separate .processors. And once fhose con-
structsv have been reéognized, a run-time scheduler is needed to determine which

tasks should run in which order, and on how many processors.

This run_—t.ime scheduler faces many obstacles. For example, data dependencies
specify a partial ordering upon th;a tasks, nodes may be bidimensional with both time
aﬁd processor requests, those nodes may fold processors into time at processor allo;:a- _
tion time, graphs'are being modified at various times in a multiprogrammed, multi-

tasked system, etc.

The general case is NP-hard. Nevertheless, the problem must be solved in the

real world. Thus, an analysis of various heuristics is required.

92

Furthermore, real data taken from a working compiler and benchmark pro-
grams need to be studied. After all, analytical models are of limited practical
significance, as their relationship to the characteristics of real programs, which are

ultimately the things which must be executed, are not known a priori. This thesis

attempts to examine a small portion of that problem.

Unfortunately, real programs contain thousands of nodes and dependence arcs.
Especially in a2 multiprogrammed system, an optimal solution is therefore not feasi-
ble. A random scheduler, however, has been used as a practical (but not theoretical)
worst case bound. Random is fast, and schedulers which do not perform substan-

tially better than it are probably not a good choice.

Monoprogramming systems can utilize the services of a run—time scheduler to a
lesser degree than can a multiprogramming system. There are several reasons for
this, First, data dependeﬁcies are more of ; problem in monoprogramming, ﬁhile
multiprogramming has more independent control paths to help create a larger
‘number of starting nodes. The greater the number of starting nodes, the lower the

probability that two different schedulers will select the same node, and thus yield the

same results.

Second, single user systems stress the processors less. The more often schedulers
can completely satisfy the requests of the starting queue, the less difference two
different schedulers are likely to make. As a limitln'g case, iu an unlimited proccseor -

environment, all schedulers act optimally.

93
Third, monoprogramming systems have less variety in the various paths. By
definition, since individual programs comprise a subset of a multiprogramming sys-
tem, the latter is bound to have a richer collection of parameters associated with its
nodes. Such variety offers a real choice to scheduiers, again making it less likely that

different schedulers will select the same nodes, and therefore more likely that they

will have a larger effect on the system performance parameters.

This is not to say that a run—time scheduler is irrelevant in a single user system.
Indeed, some differences were recorded. What should be clear, though, is that it is
more criticél in a multiprogrammed environment, for the reasons cited above.
Furthern;ore, it is more likely that many of the responsibilities of the scheduler can
-be moved to the compiler in a monoprogrammed system (sucﬁ as calculation of the
critical path tags), which is more static. This would allow a simpler, and thus faster,
run-time scheduler to be implemented when only a single program at a time mﬁs£ be

run.

In a mult_iprdgramﬁing system, the dynamic critical path algorithm seems to be
. the besf choice for maximizing throughput. The dynamic critical path algorithm
may be implemented by means of a; separate scheduler, which calculates the largest
sum of the execution times of a node’s successors, and a dispatcher, which selects the
node with the highést dynamic critical path value froxﬁ the Starting queué and allo-
cates that node (with foldihg) on the processors. (The schéduler may be done at .
compile time wsthin individual programs if it is known in advance that the entire

program will arrive simultaneously).

94 °

This algorithm is a wise choice, because when some of the nodes cannot allocate

processors due to competitidn for resources, it is detrimental to system throughput to
avoid the largest dynamic critical path. Indeed, the smallest dynamic critical path

algorithm usually performed even worse than random.

“The dj'namic critical volume algorithm, which is similar to the above except -its»
tags are the largest sum of the product of the execution times and the processor
requests of a node’s successors, did not perform better than did the dynamic critical
path algorithni. This was not expected when folding was permitted. However, it
seel'ns.as if nodes with higher critical path values have a higher probability of getting
folded, and .thus .also have a higher critical volume value. Thus, it appears as if the
faster dynamic critical path aléorithm is sufficient. Other parameters which had lit-
tle or no consistent and signifi¢cant effect upun the choice of ochedulers include secan-

dary evaluation criteria, the presence or absence of folding, etc.

Turnaround time is also very important té the users, particularly those that own "
small jobs. Unfortunately, the dynamic critical path algorithm ignores small jobs,
ma.ximizing throughput at the total expense of turnaround time. Algorithm number
24, Whichruﬁs the largest dynamic eritical path of the earliest program of the same
type of program having thg largesl uverall dynamlie eritieal path, does very well. It
combines the critical path technique, in an attempt to keep good throughput, with
FIFO, in an attempt to balance good turnaround time. Alt}iough it provides lower
throughput than fhe dynamic critical path algorithm, it is not substantially ldwer,

and it more than makes up for the loss of throughput with dramatic improvements

95 °

in turnaround time.

Unfortunately, scheduler number 24 requires that programs somehow be sorted
as to type. This may be an unrealistic restriction to make. The dynamic critical
ratio algorithm atten;pts to avoid this restriction, while at the same.time compromis-

ing throughput with turnaround time.

The dynamic critical ratio algorithm behaves differeﬁtly, depending ‘upoh‘ ‘the
ratio value and such factors as the.job arrival rate. On one extreme, it acts like the
largest dynamic critical path algorithm with good throughput but bad turnaround
-time, and on the other extreme, like the smallest dynamic critical path algorithm
with bad throughput but good turnaround time. A window exists in ‘the middle .
where throughput and turnaround time may be traded off. Unfortunately, the
dyna,mic ‘critical ratio algorithm is sensitive to its environment, aﬁd no way is

currently known to automatically select the ratio value.

Several extensions can be made to this work. First, nodes were assumed to be

nonpreemptive. This is not realistic, and this area should be investigated.

Second, the overhead inherent in the execution of the run-time scheduler and
processor allocaﬁioﬁ has been ignored. To some extent, this is justified, i.e., tasks‘
were imade as large as possible by virtue of the course grain parallelism in Parafrase,
which leads to a relative redu«".lf.ion §f the contribution .of overhead. Furthermore,
certain @spects of the run—tﬁne scheduler can bé run in parallei with other ac-tivif;y on

the multiprocessor. Nevertheless, this area should be studied further.

96
Third, all DAGs were created equal, i.e., users could not specify their own priori-

ties. In any real system, some priority scheme is essential.

Fourth, even though this work is closer to the ‘‘real world’” than many analyti-
cal analyses, the next step would be to test some variations of a subset of these
schedulers in a real operating system. This would allow for better analysis of job

mix, arrival rates, program characteristics and variety, etc. than was possible in this

thesis.

And finally, parameters important to selection of a good value for R in the
dynamic critical ratio algorithm should be determined. IL is expected that this will
again require analysis of a real operating system, functioning over an extended period

of time, in order to determine the appropriate characteristics under heavy, average,

and light loading conditions.

97 -

APPENDIX

This Appendix describes in detail the input parameters and output results pro-
duced by the scheduling simulator. The simulator was written in pascal. Input
about the program DAGs is read from the file “graph’. Simulation results are depo-

sited into the file ‘‘results’.
The first line of file graph must contain the following information, in order:

e The scheduling algorithm number. The specific scheduling algori@hms and what
they do are described elsewhere in this thesis. If the number corresponding to
an al'gorithm is selected, the DAG is read once and scheduled once us.iﬁg that
scheduling technique alone. If a value of 0 is entered here, the DAG in file
gr;,ph is read and scheduled separately for each of the scheduling algorithms

avallable.

o The total number of processors available. This specifies the machine size. All

processors are assumed to be identical.

o The folding percentage requirements. This number specifies what percentage of
the task’s requested number of processors must currently be available in order

for the task to be started. A value of 100 would turn folding off complctely.

e Trace switch. If a 1 is cntered here, then tasks are ‘‘traced’ through the system,
i.e., information about each task is printed whenever it changes states, along
with the system time in which that change occurs. A value of 0 turns off this

feature. The trace option allows the user to understand why things happen the

'9. 8 .

way that they do when all else fails. It does, however, produce a significant

amount of output and should be used with caution.

For each node in the DAG, the following information must be provided, in

order:

e The node arrival time. This is the time that this node enters the systgm, becom-
ing a potential candidate for scheduling, and contributing to oﬁher uodes’
dynamic critical path values, etc. These values must be monotonically increas-
ing through the file graph. The node arrival time value must be on a separate

line immediately preceding the following five vahies, which must be on the same

line.

e The node number. This is essentially the “name’ of the node. Values start at 1
and must increase by 1 throughout the file. (This provision was included in

order to provide a consistency check on the input).

e The execution time for this task. This value may be changed internally by the

scheduler due to folding considerations.

e The number of processors requested by this node. If this value exceeds the
machine size; forced folding will be performed when the task is gntered into the
system in order to make the node fit. This will occur whether or not the run-

. time scheduler is permitted to fold. No other decision is possible if the DAG is

to be ruh on the machine.

99

e Program type. Each type of program (i.e., different programs with identical

- DAGSs) must be assigned a unique number. This value is used in a multipro-

\
gramming environment.

e Program number. Different programs of the same type must be assigned a
unique number (within that type) in a multiprogramming environment. So, 2
three level hierarchy exists of: program types, program numbers, and node

numbers.

® Predecessbr list. On a single line following thé above data, the node numbers of
the immediate predecessoré of this node are listed. Doubly iinked dependénce
.arcs will be created between all predecessor and successor nodes. If this node -
has a delayed arrival time, it is possible that some of its predécessors may have
alfeady been scheduled, executed, and left the system. Obviously then, those

particular dependence arcs will not be created. This line must terminate with a

0.

The following information is placed in the file results after the simulation is

complete:

e The scheduling technique. Both the required number and a brief textual

description of that algorithm are written.
® The total number of processors available on the machine.

e The folding percentage requirements.

100 °

The value of the trace option (and any of the results that option may have pro-

duced).

/
The total time the simulation required. This is the internal “system time”

needed to execute all of the nodes in the DAG using the specified scheduling
technique. This value may be used as a measure of the throughput of the
scheduling algorithm by comparing it with other values produced by different
scheduling algorithms on the same DAG. |

The total number of nodes in the DAG.

The average number of nodes executing on the processors.

The average number of nodes on the starting queue, i.e., unable to run due to

lack of sufficient processors.

The average number of nodes blocked from execution (and the starting queue)

due to predecessors with dependence links still in the system.

The average turnaround time for each node. This is calculated from when the
nodes first enter the system (their arrival times) until .they have completed exe-

cution, released their processors, and left.

" The average completion time for each node. This is a measure of the time spenl
from when each node enters the starting queue (i.e., it is a candidate for execu-

" tion) until it leaves the system.

The average execution time for each node. This measures the time the nodes

actually tie up the processors executing. (Any folding will obviously affect this

101"

number).

The average number of processors which are busy executing tasks.

The processor work load.. This value is the average of the sum of the number of
processors busy plus the number of processors requested by the nodes on the
starting queue. It attempts to gauge how many processors could be utilized by

the DAG if they were available.

For each program type the following information is reported:
The program type number.

The number of programs of that type.

‘The average turnaround time for the programs of that type (measured from

when each of them first arrive in the system until they leave).

The average execution time span for each of the programs of that type. This is
calculated from when the first node of the program begins execution until the

last node of that program has finished.

[AbDa86)

[BIDW8S]
[Bokh79]
[CeK183)
[ChADbS2]
[ChKo79]
[CHLES0]
[CI}TSSII

[Coff76]

'[CoGr72]

102"

REFERENCES

Santosh Abraham and Edward Davidson. ‘‘Task Assignment Using Net-
work Flow Methods for Minimizing Communication in n-Processor Sys- -
tems’’, CSRD Report No. 598, University of Illinois at Urbana-
Champaign, Center for Supercomputing Research and Development,
Sept. 1986.

Jacek Blazewicz, Mieczyslaw Drabowski and -Jan Weglarz. Scheduling Mul-
tiprocessor 1'asks to Minimize Schedule Length. IEEE Transactions
on Computers, pp. 389-393, May 1986.

Shahid Bokhari. Dual Processor Scheduling with Dynamic Reassignment.

1979.

Ruknet Cezzar and David Klappholz. Process Management Overhead tn a
Speedup-Oriented MIMD System. Proceedings of the 1983 Interna-
~ tional Conference on Parallel Processing, pp. 395-403.

Timothy Chou and Jacob Abraham. Load Balancing in Distributed Sys-

tems. IEEE Transactions on Software Engineering, pp. 401412,
July 1982.

Yuan-Chieh Chow and Walter Kohler. Models for Dynamic Load Balanec-
tng in a Heterogeneous Multiple Processor System. IEEE Transac-
tions on Computers, pp. 354-361, May 1979.

Wesley Chu, Leslie Holloway, Miu-Tsung Lan and Kemal Efe. Task Allo-

catson sn Distributed Data Processing. Computer, pp. 57-69, Nov.
1980.

Francis Chin and Long-Lieh Tsé.i. On J-mazimal and J-minimal Flow-
Shop Schedules. Journal of the Association for Computing
Mauacliinery, pp. 462-474, .Tuly 1981,

Edward Coffman ed. Computer and Job-shop Scheduling Theory.
John Wiley and Sons, New York, 1976.

Edward Coffman and R. Graham. Optinial Scheduling for Two-Processor
Systems. Acta Informatica, Vol. 1, No. 3, pp. 200-213, 1972.

[DBMS79] J. Dongarra, J. Bunch, C. Moler and G. Stewart. Linpack User’s Guide.

Siam Press, Philadelphia, 1979.

103 - .

[EIHu80] Ossama El-Dessouki and Wing Huen. Distributed Enumeration on Net-
work Computers. IEEE Transactions on Computers, pp. 818-825,
Sept. 1980.

[GaJo79) Michael Garey and David Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness. W. H. Freeman & Co.,
San Francisco, 1979.

[GKLSS3] Daniel Gajski, David Kuck, Duncan’' Lawrie and Ahmed Sameh. Cedar - A
Large Scale Multiprocessor. Proceedings of the 1983 International
Conference on Parallel Processing, Aug. 1983.

[GLPV83] Daniel Gajski et al. “Second Preliminary Speciﬁcatibn of Cedar”, Cedar
Document No. 8, University of Illinois at Urbana-Champaign, Center
for Supercomputing Research and Development, Feb. 1983.

[GoSc82] Allan Gottlieb and J. Schwartz. Networks and Algorithms for Very-
Large-Scale Parallel Computation. Computer, pp. 27-36, Jan. 1982.

[GyEd76] V. Gylys and J. Edwards. Optimal Partiti’oning of Workload for Distri-
buted Systems. Digest of Papers, IEEE 1976 COMPCON Fall, pp.
353-357.

[HoIr83] Lawrence Ho and Keki Irani. An Algorithm for Processor Allocation in a
Dutaflow Multiprocessing Environment. Proceedings of the 1983
International Conference on Parallel Processing, pp. 338-340.

[Hu61] T. Hu. Parallel Sequencing and Assembly Line Problems. Operations
" Research, pp. 841-848, Nov.-Dec. 1961.

[Hu82| T. Hu. Combinatorial Algorithms. Addison~Wesley Publishing Co.,
o Reading, Massachusetts, 1982.

[Husm86] Harlan Husmann. “Compiler Memory Management and Compound Func-
tion Definition for Multiprocessors’’, CSRD Report No. 575, University
of Illinois at Urbana—Champaign, Center for Supercomputmg Research
and Development, Aug. 1986.

[KDLS86] David Kuck, Edward Davidson, Duncan Lawrie and Ahmed Sameh. Paral-
' “lel Supercomputing Today and the Cedar Approach. Science, Vol. 231,
pp. 967-974, Feb. 28, 1986. ' :

[KKLW80|David Kuck, Robert Kuhu, Bruce Leasure and Michael Wolfe. The Struc-
ture of an Advanced Vectorizer for Pipelined Processors. Fourth

104 °

International Compufer Software and Applications Confer-
ence, Oct. 1980.

[KKPL81] David Kuck et al. Dependence Graphs and Compiler Optimizations.
' Proceedings of the 8th ACM Symposium on Principles of Pro-
gramming Languages, pp. 207-218, Jan. 1981.

[KLVY82] David Kuck, Kyungsook Lee, Alexander Veidenbaum and Pen-Chung
Yew. ‘‘Notes on Machine Control Structures’, Cedar Document No. 3,
University of Illinois at Urbana—Champaign, Center for Supercomput-
ing Research and Development, April 1982.

[Kras72] Paul Kraska. ‘“Parallelism Exploitation and Scheduling”, Report No. 72-
518, University of Illinois at Urbana-Champaign, Department of Com-
puter Science, June 1972.

[KrWes85] Clyde Kruskal and Alan Weiss. Allocating Independent Subtasks on Paral- -

lel Processors. IEEE Transactions on Software Engineering, pp.
1001-1016, Oct. 1985.

[Kuck78] David Kuck. The Structure of Computers and Computations. John
Wiley and Sons, New York, 1978.

[MaLT82] Perng-Yi Ma, Edward Lee and Masahiro Tsuchiya. A Task Allocation
‘ Model for Distributed Computing Systems. IEEE Transactions on
Computers, pp. 41-47, Jan, 1982. '

[Mill84] Allan Ray Miller. “Control Unit Performance Issues in a Multipro-
grammed, Multiprocessing Computer’’, Report No. 84-1178, University

of Illinois at Urbana~Champaign, Department of Computer Science,
July 1984. ‘

[PeZa86] Ronald Perrott and Adib Zarea-Aliabadi. Supercomputer Langnages.
ACM Computing Surveys, pp. 5-22, March 1986.

[Poly86] Constantine Polychronopoulos. *On Program Restructuring, Scheduling,
and Communication for Parallel Processor Systems’”’, CSRD Report No.
595, University of Illinois at Urbana—Champaign, Center for Supercom-
puting Research and Development, Aug. 1986.

' [RaCG72] C. Ramamoorthy, K. Chandy and Mario Gonzalez. Optimal Scheduling |

Strategies in a Multiprocessor System. IEEE Transactions on Com-
puters, pp. 137-146, Feb. 1972. '

[RaSH79)]

[Sahn83]
[SBDG76)

[Schw61]
[Stan85]

[StBo78

[Ston77]
[Ston78|

[Veid85]

[Wolfs2]

[XuYe83]

[XuYes84]

105 °

Gururaj Rao, Harold Stone and T. Hu. Assignment of Tasks in a Distrs-
buted Processor System with Limited Memory. IEEE Transactions on
Computers, pp. 291-299, April 1979.

Sartaj Sahni. “‘Scheduling Supercomputers’, Report No. 83-3, University
of Minnesota, Computer Science Department, Feb. 1983.

B. Smith et al. Matrix Eigensystem Routines — Eispack Guide.
Springer—Verlag, Heidelberg, West Germany, 1976.

Eugene Schwartz. An Automatic Sequencing Procedure With Application
to Parallel Programming. Journal of the Assocation for Comput-
ing Machinery, pp. 5§13-537, Oct. 1961.

John Stankovic. An Application of Bayesian Decision Theory to Decen-
tralized Control of Job Scheduling. IEEE Transactions on Comput-
ers, pp. 117-130, Feb. 1985.

'Harold Stone and Shahid Bokhari. Control of Distributed Processes. Com-

puter, pp. 97-106, July 1978. B
Harold Stone. Multiprocessor Scheduling with the Aid of Network Flow

Algorithms. IEEE Transactions on Software Engineering, pp.
85-93, Jan. 1977.

Harold Stone. Critical Load Factors in Two-Processor Distributed'Sys-
tems. IEEE Transactions on Software Engineering, pp. 254-258,
May 1978, ‘

Alexander Veidenbaum. ‘Compiler Optimizations and Architectnre
Design Issues for Multiprocessors’’, CSRD Report No. 520, University of
Illinois at Urbana-Champaign, Center for Supercomputing Research
and Development, May 1985.

Michael Wolfe. ‘‘Optimizing Supercompilers for Supercomputers’’, Report
"No. 82-1105, University of Illinois at Urbana~Champaign, Department
of Cowmputer Science, Oct. 1982.

Qing-Xian Xu and Pen-Chung Yew. ““Queuing Analysis for a Multiproces-
sor System with Multiprogramming”, Cedar Document No. 15; Univer-
sity of Illinois at Urbana-Champaign, Center for Supercomputing
Research and Development, March 1983, Rev. June 1984.

Qing-Xian Xu and Pen-Chung Yew. ‘‘Simulations and Aualysls for a

106 °

Multiprocessor System with Multiprogramming’’, Cedar Document No.
30, University of Illinois at Urbana-Champaign, Center for Supercom-
puting Research and Development, Feb. 1984.

107 -

VITA

Allan Ray Miller was bors I

B He graduated magnaA cum laude from the University of Central Florida
(UCF) with a B.S. degree in Compt'1ter Science in March 1979; He attended UCF for
one extra quarter as a graduate student while waiting for the staft of the next semes-
ter at the University of Illinois at Urbana-Champaign. While_ attending UCF, he
worked at the Experimental Computer Simulation La.boratorf at the Nairal Training

" Equipment Center (subcontracted th;‘ough UCF). Ray Miller then attended the
Univérsity'of Illinois, receiving his M.S. degree in Computer Science in August 1984.
(“Control Unit Performance Issues in a Multiprogrammed, Mulfiprocessing Com-
puter’’, Report No. 84-1178, University of Illinois, Department of Computer Science,
July 1984). Straight A's were received in all Computer Science coursés while workihg
towards the B.S. and M.S. degrees. He completed this Ph.D. thesis in Computer Sci-
ence in May 1987. While at the University of Illinois, he was employed as a research
assisfa.nt by the Department of Computer Science from August 1979 through
December 1984. From January 1985 through graduation he was employed as a .
research assistant -by the Center for Supercomputing Research and Development. He

_is a member of the following honor societies: Sigma Xi, Omicron Delta Kappa, and
Tau Beta Pi. He is also 2 member of the Assqciation for Computing Ma.chi'nery. and
ACM .SIGCAPH (special intereét group in' computers and the physically ha,ndi{

capped).

BIBLIOGRAPHIC DATA |1 Report No. ' 2 3. Recipient's Accession No.

SHEET o . CSRD-656 ,

4. Title and Subtitle | o ' R 5. Report Date
NONPREEMPTIVE RUN-TIME SCHEDULING ISSUES ON A MULTITASKED, May 1987
MULTIPROGRAMMED MULTIPROCESSOR WITH DEPENDENCIES, 6.

BIDIMENSIONAL TASKS, FOLDING, AND DYNAMIC GRAPHS

7. Author(s) 8. Performing Organization Rept.
) P!

Allan Ray Miller

oO.

CSRD-656

. Performing Organization Name and Address R 10. Project/Task/Work Unit No.
University of Illinois at Urbana-Champaign

Center for Supercomputing Research and Development ﬁGH §g§§§ gg??bigﬁgx

Urbana, Illinois 61801 2932

Control Data Corp

12,

4-10110

E_
at?on,

Sponsoring Organization Name and Address = . : 1 13. Type of Report & Period
National Science Foundation, Washington, D.C, Covered

U.S. Department of Energy, Washington, D.C. Doctoral Dissertation
IBM Corporation, Armonk, N.Y. 14.

Control Data Corporation,

15.

Supplemcntary Notes

16.

Abstracts :

Increases in hlgh speed ‘hardware have mandated studies in software techniques
to exploit the parallel capabilities. This thesis examines the effects a run-time
scheduler has on a multiprocessor. The model consists of directed, acyclic graphs,
generated from serial FORTRAN benchmark programs by the parallel compiler

- Parafrase. A multitasked, multiprogrammed ~environment is created. Dependencies

are generated by the compiler. Tasks are bidimensional, i.e., they may specify
both time and processor requests. Processor requests may be folded into execution
time by the scheduler. The graphs may arrive at arbitrary time intervals. The
general case is NP-hard, thus, a variety of heuristics are examined by a simulator.
Multiprogramming demonstrates a greater need for a run-time scheduler than does

‘monoprogramming for a variety of reasons, e.g., greater stress on the processors,

a larger number of independent control paths, more variety in the task parameters,

17,

etc. The dynamic Pr1firal_ga£h_sernes of algorithms perform well Dynamic criticd
7a. De

Key Words and Docunixcnt Analysis. 17a. scriptors volume did not add much. Unfortunately,
elgorithms dynamic critical path maximizes

_ operating?systems : turnaround time as well as throughput.
scheduling : Two schedulers are presented which balan
performance-evaluation throughput and turnaround time. The
software- L o : . first requires classification of jobs

by type; the second requires selection
of a ratio value which is dependent
upon system parameters.

17b. Identifiers/Open-Ended Terms

17¢. COSATI Field/Group

ce

18. Availability Statement 19.. Security Class (This 2): No. of Pages
. Report) 107
Rclease unlimited 4 UNCLASSIFIED. }
. Security Class (This 22. Price
Page .
. UNCLASSIFIED

FORM NT!S-38 (10 70)) ’) USCOMM-DC 40329-P71

