

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.

CSRD Rpt. No. 597

THE STRUCTURED MEMORY ACCESS ARCHITECTUREI
AN IMPLEMENTATION AND PERFORMANCEEVALUATION ,

* - . -
Joseph Cyr

August 1986
. . -. - - . - - - -

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, llur any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
hility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government nr nny agency thereof.

center for Supercomputing Research and '~eve1o~rnen t
University of Illinois
305 ~ a l b o t - 104 South Wright Street
Urbana, IL 61801-2932
Phone: (217) 333-6223

This work was supported in part by the National Science Foundatiori under Grant No. US NSF DCR84
10110,'the U. S. Department.of Energy under Grant No. US DOEDEFG02-85ER25001, and the IBM
Donation, and. was submitted in partial fulfillment of the requirements for the degree of Master of Sci-
ence in the Department of.Electrica1 Engineering, August, 1986.

D~STR~BIJTION Of THIS DOGUMEWT IS WLIMiTkD

. .
THE STRUCTURED MEMORY ACCESS ARCHITECT.URE:

AN IMPLEMENTATION AND PERFORMANCE EVALUATION

JOSEPH B. CYR . .

B.A., Aurora University, 1984

TKESIS
. .

Submitted in pai-tial fulfillment of the requirements . ' , .

for. the degree of Master of Science in Electrical Engineering
t

in the Graduate College of the
University of 1lli.nois at Urbana-Champaign; '1986

Urbana, Illinois

ABSTRACT .

The structured Memory Access (SMA) architecture implementation presented. in this thesis is for-
mulated with the inteation of alleviating two well-known inefficiencies that exist in current scalar com- .

puter architectures: .address generation overhead and memory bandwidth utilization. 'Furthermore, the
SMA .architecture introduces an additional level of parallelism which is not present in current pipelined
supercomputers, namely, overlapped execution of the access proccss and ezecute process on two distinct
special-purpose, asynchronously-coupled processors. The Memory Access Processor (MAP') executes the
access process which is that portion of the instruction.stream that is involved in instruction and operand
fctching .and storing. The Compvtation Processor (CP) performs the "useful" computations on the
operands fetched by the MAP, 'i.e., executes those instructions that perform computations and tests on
program data. Each processor executes a separate instruction stream to perform its specific task which,
together, are functionally equivalent a conventional program.

By using simulation-results, the'MAP is shown to expedite processor-memory traffic by efficiently
computing 'instruction and opcraid addresses using special-purpose pipelined function units (i.e., the
Address Generation Unit and the Instruction Fetch Unit), and a t the same time, reduces the demand on.
me'mory bandwidth by requiring less interaction with memory to support the access process. Our simula-
tion results show that, for typical numerical programs, the MAP is capable of achieving slip, i.e., running
sufficiently ahead of the C?, so that operand fetch requests for da t a items required by the C P are issued
early enough and rapidly enough for the C P rarely t o experience any memory access wait time. In this
manner the SMA tolerates long memory access time, albeit high bandwidth, paths to memory. without
sacrificing performance. . .

Comparison with the Cray-1' in nonvector mode shows that the SMA architecture's features provide
improved performance in ocalar processing over existivg high performance scalar machines. Since the C P
is rarely required t o wait for operands to arrive from memory, i ts instruction issue rate is improved and,
hence, function unit utilization is increased. The "dual" instruction stream feature, .inherent in decou-
pled access-ezecute architectures, enables each SMA processor's program to be significantly smaller than
the conventional single instruction stream program and also frequently allows two instructions to be
issued in a single cycle. Speedups, including reductions in memory wait time, often exceed two.

iii

I would like'express my gratitude to Professor ~ d w a r d S. Davidson for providing me

with the"opportunity tocome to the University of Illinois and work a t .the Center for Super-

computing Research and Development. His advice and assistance, both academic and admin-

istrative, are greatly appreciated; his 'insight and guidance, throughout the course of this

research, was invaluable.

TABLE OF CONTENTS

. .

CHAPTER . . PAGE
. .

... 1 . INTRODUCTION : 1

2 . SMA SYSTEM ORGANIZATION ...
.. . 2.1 .. System Overview

.. 2.2. Mcmory Access Processor
2.2.1 Address Generation Unit ...

. 2.2.2 Instruction Prefetching ..
2.2.3 Operand and Instruction Buffer

. .

... 2.3. Computation Processor
. 2.4. SMA Software ;

3 . SMA SIMULATION AND PERFORMANCE EVALUATION 45
. 3.1. The SMA Simulator .. 46

3.2. SMA Performance .. 50
54 3.3. Effects of Queue Length and Memory Access Time ;

3.4. Cray-1/SMA Performance Comparison ... 58

4 . CONCLUSIONS:................ i . 65

................... ... REFERENCES :. 69

LIST OF FIGURES

Figure 1. The SMA Organization-A high-level model ..'.............. ;
Fi.gure 2. SMA Architecture Functional Block'Diagram 1..
Figure 3. Address Generation Unit - An Initial Implementation

Figure 4. Address Generation Unit with Intermediate Base Addresses
...

Figure 5. Address Generation Unit with No Multiplier
Figure 6. Address Generation Unit - The Final Design ; ...,..........
Figure 7. Instruction Fetch Unit ..
Figure 8. Operand and Instruction Buffer ..
Figure 9. Computation Processor Data Flow ; ;.

. . Figure 10(a). Matrix Multiplication Algorithm
Figure 10(b). Matrix Multiplication. VAX. and SMA . assembly

language
Figure l l(a) . ~ x e c u t i o n Time vs. Queue Length for Matrix Multipli-
" cation ; ...

Figure l l (b) . Execution Time vs. Queue Length for Lawrence Liver-
more loop 12

LIST OF TABLES

........... Table 1 . SMA Function Unit Utilization and Throughput 1 .'.:
Table 2 . SMA Function Unit Blockage and Causes

.................................... Table 3 . SMA/Cray-1 Performance Comparison

CHAPTER 1.

Much attention is being given to the development of computer architectures that exe-

cute vectbr and/or parallel programs efficiently.. The performance of these, supercomputers,

however, is constrained by the well-known "Amdahl Effect." Code segments which are

inherently scalar tend to dominate the performance of many parallel programs on these
. .

machines.. Hence, i t is an increasingly important objective in computer. design t o develop

architectures which exhibit high performance for scalar tasks.

Current scalar architectures (e.g., VAX 11/780) do not take full advantage of the regu-

lar memory accessing patterns of most programs. The computation of operand addresses for

array references, for example, typically constitutes a large portion of the CPU activity of

many programs. Several memory references and arithmetic operations may be necessary sim-

ply to determine a single' operand address. For da ta items contained in multidimensional

structures, this overhead may constitute a substantial portion of the total execution 'time.

More sophisticated scalar machines'(e.g., IBM 360/91, CDC 6600,. and many more recent

high performance processors) address this problem by dividing program execution into I-unit
. .

'. and E u n i t operations, and pipelining the flow through these units. Varying degrees of access

and execution overlap are obtained depending on the density of dependencies in the instruc-

tion stream. ~ h & h the mechanics involved in computing operand addresses is not minim- .

iied by this approach, 'memory accesswait time, as seen by the E u n i t , is reduced. I t is clear

from these machines that substantial improvement in scalar processing performance can be

achieved if the CPU overhead due to instruction knd operand addiess generation can be

minimized so that the fraction of time tha t the C,PU is able t o spend on computa-

tions can be increased. Moreover, if the amount of memory referencing required to support

the I-unit were minimized, further performance improvement would result.

Pipelining h k been successfully used t o exploit parallelism within scalar instruction

streams. However, many vector supercomputers are admittedly inefficient when processing

scalar tasks; they are effective only when used to process vectordzable tasks. In this thesis we

examine and develop an architectural technique, decoupled access-execute, used in the Struc-

tured Memory Access (Sh4.A) and several other architectures t o introduce a further special-

ized level of parallelism. By splitting a conventional scalar instruction stream into two, the

machine can execute the resulting streams somewhat independently on two asynchronously

interacting processors. Figure 1 represents a high-level model of this type of architecture. In

esscncc, a conventional program is div.ided into an access process and an ezeczite process

[Hamm77]. Each instruction is. split into two distinct subtasks which are executed in paral-

lei; jointly, they perform the original function. In addition, cach processor is specialized with

.hardware features for efficiently performing its assigned tasks. Specifically, the Computation

Figure 1. The SMA Organization - A high-level model.

Address Bus

Processor Processor
(cp) Flag Bits ,

and Control
(MAP)

- J

- ~

Melriory
System

Processor (Cp) contains multiple pipelined function units, and the Memory Access Processor

(MAP) contains an Address Generation 'Unit and an Instruction Fetch Unit which are
. .

designed t o .compute operand and instruction addresses efficiently while minimizing the total
. .

amount of memory traffic. The processors' perform communication and synchronization

through hardware queues that enable asynchr'onous execution of the access. and execute . .

processes; T h e key to the high performance of this architecture is the ability of the access.

to slip with respect. to the computation processor, and run several i,nstructions,,

ahead, thereby supplying a continuous stream of operands to the computation processor

which can then run udinterrupted. Studies have shown tha t speedups 'of gre.ater than two ,
. .

are possible for some of the Lawrence Livermore'loop benchmarks with. such a decoupled

adcess-execute organization [HsPG84], [Sohi83], [Smit84].

In Chapter 2 we discuss specific organization and implementation issues of the SMA

architecture. The Memory ~ c e e s s Processor is treated in detail since i t embodies the more

novel aspects of the SMA architecture. We do not consider the particular design details of

the Computation Proc'essor since the design of powerful arithmetic and- logic units is well

known. I t .id sufficient, for our purposes, t o assume that the C P has the i t t i ibutes of.some

existing high performance machine; hence, a Cray-like scalar C P organization is discussed

briefly. In Chapter 3 the results of detailed simulation experiments are discussed, and a per- '

. : formance evaluation, using t h e Cray-i as a standard of comparison, is presented. overall

conclusions .are presented in 'Chapter 4.
. .

CHAPTER 2.

SMA SYSTEM ORGANIZATION

T h e SMA architecture is based on the fact that programs can be split into an access

process and an execute process. Each process is executed on its own processor, each of which

contains specialized hardware features designed to obtain high performance by exploiting the

intrinsic characteristics of its associated process. A system block diagram of the SMA archi-

tecture is shown in Figure 2. The erno or^ Access Processor (MAP) executes the access pro-

cess which is that portion of the instruction stream that is involved in instruction and

operand fetching and storing. The Computation ~rocessor (CP) performs the "usefulJJ com-

putations on the operands fetched by the MAP, i.e., executes those instructions that perform

computations and tests on program data. This architecture is an adaptation of the organiza-

tion originally proposed by Pleszkun and Davidson [Ples82], [PlDa83], [PSKD86]. The basic

concept of SMA originated from the idea that improved performance could be obtained by

reducing the overhead of the access process and maximizing the overlap between memory . ,

access and computation. These objectives were addressed by investigating methods of rednc-

ing the amount of memory referencing required t o support the access process and executing

. the two processes in parailel on distinct processors. Kahhaleh and Sohi each undertook per-

formance modeling experiments, which helped to identify system bottlenecks, and suggested

enhancements to the SMA architecture [Kahh83], [SoDa84], [Sohi83]. The SMA architecture .

shown in Figure 2 also includes some features of the Decoupled Access/Execute architecture

(DAE) proposed by Smith [Smit82], [Smit84]. The decoupled access-execute architecture has,

also been under investigation for VLSI implementation [GHLP85].

~ o k ~ u t a t i o n Processor Memory Access Processor

. ' Figure 2. SMA Architecture Functional Block Diagram..

. .

1n' this chapter we focus on the M A P organization and iniplkrnentation issues. After a

high-level overview of the operation of the SMA architecture, we discuss, in detail, some of

the functional requirements and design tradeoffs, and the final iecommended M A P organiza-

tion. T h c C P organization is modclcd closcly after tho Cray-1 scalar architecture, and there-

fore, is discussed only briefly. This chapter concludes with programming example which

highlights the salient features of the SMA architecture's operation and software require-

ments.

2.1. System Overview

Program execution is initiated by the operating system by setting up the MAP Instruc-

tion Fetch Unit (IFU) with information necessary to load the OIB with the starting instruc-

tion blocks of a program. Appropriate instruction blocks are sent t o the MAP and the CP.

Under the control of the MAP program, the Address Generation Unit (AGU) computes the

addresses of operands tha t will be used in the CP. An operand fetch is initiated when the

AGU places an address in the Read Address Queue (RAQ). The Memory Controller responds

t o the fetch request by receiving the address from the RAQ, fetching the selected word from

memory, and forwardin'g the word to the CP's Input Data Queue (IDQ). The CP accepts

operands from the IDQ, computes new values as dictated by the executing C P program and

places output values in the Store Data Queue (SUQ). 'l'he AGU also generates memory

addresses for the output values computed by the CP, and places them, in the.Store Address . .

Queue (SAQ). A write to memory occurs when the corresponding SAQ and SDQ entries are

bobh available a t the heads of these queues. Memory requests are queued in the RAQ and

.SAQ in the ,order in which their addresses are generated by the MAP program. The RAQ

has priority over the SAQ, and new read addresses are checked against pending writes in the

SAQ. Thus, the correct sequence of memory references is maintained. In this manner, over-

lap between the access and computation phases of a program is achieved; instruction and

operand addresses are computed in the MAP concurrently with the processing of the C P pro-

gram. A more thorough description of the execution of an SMA program is given in

. Section 2.4. . .

T h e execution paradigm outlined above is similar t o t ha t of the pipelined I -uni t /Euni t

organization of the IBM 360191 which uses distinct function units f o r . the instruction-

handling, and ixecutidn tasks. T h e SMA architecture, however, differs from the Model 91 in

tha t each SMA processor executes a distinct instruction stream, which allows the processors

t o operate much more autonomously. Several performance enhancements are realized by this
%

approach. First, i t is known tha t the scalar performance of most machines is constrained by

the maximum instruction decode and' issue rate of one per cycle [Flyn72]. T h e effect of the

so-called Flynn bottleneck is diminished ,in the SMA architecture by supplying two.physica1 ' '

instruction streams; one t o each processor. With this feature the SMA is able t o double its , .

maximum instruction issue rate. second, since the sources of C P operands are contained

only in the CP Register ~ i l e o r the head o f t h e IDQ, and the only destinations are the Regis-.

ter File o r the tail of the SDQ, the architecture of the C P is particularly amenable t o a RISC

implementation [PaSe81], [PaDi80]. T h e format of C P instructions contain only opcodes and

register tags; no addressing modes are required for memory referencing since this is taken

care of by the' MAP. Benefits of a RISC implementation are a compact instr'uc'tion set archi-

tecture and more economical hardware and firmware implementation due t o fewer and

simpler instructions. Third, though the usual d a t a dependency and hazard, problems exist in

. .
the C P instruction stream, the SMA architecture is able t o speed up memory accessing by ,

forwardilig some previously computed operand results back. t o the C P quickly by implement-
. .

ing store-fetch forwarding in the MAP. By examining the contents of the SAQ for each read .

request, some memory. referencing can be eliminated. An associative search of the SAQ

determines whether the AGU has generated a read address t ha t matches a previously gen-

erated store address t ha t is still enqueued. When th.is condition is detected, the associative,

search logic signals the Memory Controller to abort the memory read request and forward

the corresponding da ta item from the SDQ back to the CP's IDQ. If an RAQ-SAQ match is

found, b u t the corresponding SDQ entry 'is einpty, the Memory Controller waits .for the data

item t o arrive. and; in the meantime, is free t o service the instruction fetch queue. Data for-

warding can be resolved in the MAP, and no special tagging is required. This technique is

. similar to the forwarding tha t occurs with the "multi-access feature" of the IBM 360191

[Ande67].

As a result of the d a t a buffering that takes place in the hardware queues, the processors

are capable of running asynchronously. The MAP can execute several instnlctions aahea.rl nf

the C P limited only by 1) one of i ts queues becoming full, 2) the occurrence of a da ta depen-

dent branch which requires information from the CP, via the Branch Queue (BRQ), in order

t o determine the flow of control, or 3) Llie situation where the access process contains more

instructions and, consequently, runs slower than the computation process. Note tha t the

first possibility does not present any performance degradation since i t does not cause the C P

to ' wait. A significant advantage of the SMA architecture is that , in the absence of da ta

dependent branches which need to be resolved in the CP, the MAP instruction stream experi-

ences few da ta dependencies (see Section 3.2). This is a result of the fact tha t most of the

information necessary t o support the access process is contained within tables in the AGU.

.After the AGU tables are initialized no further infnrrnw.t8ion is required from the main

memory, and few instructions depend on previously issued instructions tha t require more

than one cycle t o execute. These phenomena, in the absence of the limitations sited, will

enable the MAP t o slip ahead and prefetch operands for the CP.

Branch control must be coordinated between the t w o processors such tha t each per-

forms similar branches within its own instruction stream. Data dependent branches may be

resolved in either the C P or the MAP. Conditional branches based on the value of program
. .

d a t a contained in 'a memory location, or in a general purpose register, are resolved.in the C P

and .communicated t o the MAP by transmitting a bit to the MAP'S BRQ. Conditional

branches based on loop indices, or da ta structure dimensions, are resolved in the MAP and

communicated t o . the C P similarly. For example, a common high-level programming con-

struct is tha t of a Fortran DO loop. that repeats until a loop index reaches its final value.

For each iteration, the MAP tests a n index rbgister to determine whether the loop has been

completed and sends an appropriate bit to the CP's.BRQ to indicate the outcome of the test.

The 'CP first executes its instructions corresponding t o the DO loop; then executes a bjq

(Branch From Queue) instruction. The bfq instruction causes the control. unit either to

branch back t o the beginning of the loop and reexecute the loop instructions, or to continue

with the next sequential instruction, depending on the bit value a t the head of the BRQ.

Thus, for cach iteration of the loop, the C P determines whether . to exit the'loop based on
. .

queued branch test 'outcome information supplied by the MAP. The opposite case of a

branch resolved in the C P is handled similarly; however, in this case the W executes the

bjq instruction a t the end of each loop iteration. For performance reasons i t is desirable to

permit the MAP t o maintain slip by producing code wherein the maximum number of condi-

tional branches is resolved solely . . in the MAP. A branch instruction that is resolved in the

C P requires the MAP to stop .and wait for the C P to "catch up" and transmit the outcome

of the branch test. The MAP must suspend operand fetching during this interval; hence, the

steady stream of operands to the C P is interrupted. After the branch is resolved in the CP,

the C P will experience a memory wail tirrie, slightly longer than the memory cyclc timc,

waiting for the stream of input operands to resume. During this process, all slip is lost while

the C P catches up, but once the branch is resolved, the MAP attempts t o restore slip again.

In contrast, the outcome of a branch test tha t is resolved in the MAP is generally determined

before the CP reaches the bjq instruction. The MAP can proceed with instruction and

operand fetching without delay, and the C P can resolve i ts bjq instruction in a single cycle.

The MAP effectively performs branch lookahead for the UP and thereby maintains its slip in

this case.

T h e peak performance of the SMA architecture is achieved when the C P is constantly

supplied with operands (i.e., the IDQ is never empty). When this is the case, the C P never

experiences any delays waiting for the memory to respond to operand fetch requests, the

major cause of C P wait in conventional machines. We do not expect the SMA architecture

to achicvc this idcal operating flow continuously, due to branching and various overhead fac-

tors such as setting up the AGU and IFU; however, .we do expect fairly long bursts of execu-

tion a t peak rate. This expectation is justified by simulations tha t show speedups in excess

of two for some programs, due t o a combination of effe.ctive parallelism (less than two) and . .

reduction of memory access wait time in the CP.

2.2. Memory Access Processor

'l'he Memory Access Processor (MAP) is a special purpose processor designed to reduce

the dem,and on the memory syste'm bandwidth and. t o expedite instruction and operand fetch-

ing by employing efficient hardware mechanisms for generating addresses. The main perfor-

mance objective in the design of the MAP is t o issue operand fetch requests a t a rate

sufficient t o keep the Computation Processor (CP) continually active. This goal implies

fetching operands from memory a t a rate equal t o that which the C P consumes operands

'from the IDQ. If this objective can be achieved, the C P will run a t the rate a t which it can

perform register transfers, and memory access will appear ' to be transparent. Ultimately, it

would .be desirable to stream operands t o the C P a t a rate that allows the C P t o perform
'

computations approaching the speed of a vector machine with a single memory port. For

this t o be.possible, i t is necessary for the MAP to issue fetch requests a t a rate approaching .

one per 'cycle, and for the C P to contain pipelined function units and a sufficient number of
'

internal registers.

The MAP contains three main function units: The Address Generation Unit (AGU)

computes operand addresses, the Instruction Fetch Unit (IFU) computes instruction

addresses, and the Operand and Instruction Buffer (OIB) stores the MAP program instruction

blocks and immediate operands. Special purpose registers in the AGU are used to hold loop

count variables, base addresses of scalar da ta are&, and da ta structure parameters. These

AGU operands are fetched with special load instructions. On arrival a t . the OIB, these

operands bypa& the buffer and are stored directly into the AGU registers. Arithmetic

hardware in the AGU generates operand addresses from the information stored in .its regis-

ters, and most addresses are computed without the need for additional in'formation from .

main memory, once the AGU information is initialized. The IFU executes prejetch instruc-

tions which cause instruction fetch requests to be issded for instruction blocks that will be.'

needed,by the MAP and the CP. The OIB receives the MAP instruction blocks fetched by

the IFU. Instruction blocks containing loops are trapped in the OIB which enables the MAP .

to. reexecute loops in a manner similar t o the loop mode 'execution of the IBM 360191 .

[Ande67]. The OIB achieves a high hit ratio due to the deterministic' prefetching of instruc-

tions. Hardware queues buffer the memory requests produced by the AGU and IFU, and.

smooth the interface between the processors and the memory subsystem.
I

In the next three sections we discuss the functional implementation of the three main

units tha t make up the MAP and address some of the overriding issues affecting the instruc-

tion set design and system software requirements.

2.2.1. Address Generation Unit

T h e Address Generation Unit (AGU) is an arithmetic function unit used to compute the

addresses of scalars, vectors, and multidimensional da ta structures. Operand addresses gen-

erated by the AGU are placed in the RAQ o i SAQ depending on whether tlre address per-

tains to a read request or a write request, respectively. Our goal in the design of the AGU is

t o issue one read or write request per memory cycle, thus, making most efficient use of the

memory bandwidth and maximizing the rate of operand transfer t o the CP. This require-

ment virtually dictates a pipelined implementation since address generation typically requires

tha t several arithmetic operations be performed for each memory reference. Also required is

a fairly large register set tha t holds vector parameters, indices, and base addresses. I t is
'

essential to maintain this information in fast registers in the AGU in order ' to reduce the

amount of memory referencing required to obtain information needed t o generate operand

addresses [Ples82]. In addition t o these special hardware requirements, i t is necessary t o

define several special .instructions for controlling the access process. These are discussed after - .

the functional behavior of the AGU hardware is presented.

In general, computation of the address of an arbitrary element in an n-dimensional data

structure requires n -1 multiplications and n additions. Since da ta structures are usually

accessed in a nonrandom fashion, we can streamline the address computation process by stor-

. .

ing some intermediate information'(e.g., .base addresses of da ta structure subdimensions and

, , . . last address computed). There are.many hardware configurations for performing the

necessary arithmetic. The main tradeoff to be considered is hardware complexity versus
. .

software complexity. ~ b r e powerful hardware capability generally reduces the burden placed

on the software, whereas an economical hardware. implementation tends to put more

demandson the compiler. Furthermore, greater ,computational flexibility and ease of

grammi& can be obtained i t the cost o i greater register requirements and a more complex

instruction set architecture. In what. follows, we examine several possible AGU implementa-

tions and the tradeoffs that .we considered before reaching our final design 'decisions.

In the SMA architecture, values in memory are considered to be one of three types: 1)

instructions, 2) scalars, or 3) vectors and multidimensional d a t a structures. Instruction

address generation is considered in the discussion. of the Instruction Ft tch Unit in the next

subsection. The AGU computes addresses for the l i t te r two.

T o generate addresses of scalars efficiently, the AGU contains a small set.of Scalar Base
. .

Registers (SBR) which can be dynamically loaded by software. ' Scalar d a t a items are

grouped into blocks by a compiler, and the base.addresses of scalar da ta areas are loaded

into SBR entries. References t o scalars are performed by specifying an SBR and a displace-
*

ment in conjunction with the jetch (or store) instruction. In essence, g o u p s of scalars are

treated like one-dimensional arrays. Displacements are relatively small integers requiring

just a 'few bits for encoding; thus, any scalar reference can be specified in a single word .

instruction where the displacement is immediate data, and the base is indicated via an SBR

tag. The AGU can compute the effective address of a scalar and issue a fetch request, simply

by adding the displacement contained in the instruction to the contents of the specified SBR

. a n d placing the result in the RAQ. In this case, the only computation that is required is a

single addition. T h e SBRs are also used to contain argument and stack pointers for subrou-

tine and interrupt processing.

~ e n e r a t i h n of addresses for the elements of a vector or multidimensional da ta structure

requires knowledge of the base address of the structure, the stride of each dimension, and the

values of indices used t o select a specific element. he AGU contains three sets of registers

t o hold this information. The Structure Definition-Table (SDT) contains the characteristic

.parameters for one or more da ta structures, i.e., the base address and the dimension strides.

The Access Pattern Table (APT) contains information that associates index registers with

the particular dimensions of da ta structures defined in the SDT. Each A P T entry also con-

tains an offset value which is used t o modify index values prior t o address computation. This

caffset feature is frequently useful in numerical applications where index values, used to select

particular array elements, are commonly modified by some small integer (e.g., A(i,j+l)).

Index'Registers (IR) contain the current value, final value, and step size of index values used,

for example, in DO loop constructs of Fortran . programs.. .

As a preliminary design for the AGU organization, we considered the hardware required

for a pipelined implementation of the straightforward multidimensional array address compu-

tation algorithm (i.e., n additions and k -1 multiplications for each element of an

n-dimensional structure). A finction unit that implements this algorithm is shown in Fig-

ure 3. This AGU implementation contains much flexibility in addressing arbitrary elements

of n-dimensional d a t a structures and, a t the same time, requires minimal effort from the '

IR. APT SDT SBR
t
Scalar Base

Figure-3. Address Generation Unit - An Initial Implementation.

compiler to generate code. Note that no effort was made to take advantage of the generally

nonrandom nature of memory referencing present in most programs. As a consequence, the

resulting hardware and control sequencing are relatively elaborate.

T o fetch a d a t a structure element requires specification of an SDT entry that contains

the base. address of the structure, in conjunction with the fetch instruction. T o compute .

the effective address of an element of ai n-dimensional da ta structure, the index values for

each dimension (modified by A P T offsets, if necessary) are multiplied by the corresponding

strides and successively added to the base address of the da ta structure. T h a t is,

n

EA = B1 + CSil'(Ii - + Oi), where B, is the absolute base address of the da ta structure, and
i =l

Ii, Oi, and Si are the index, offset, and stride, respectively, of the ith dimension. The base

addresses and strides are stored in the SDT, offset values are stored in the A P T Offset field,

and the index values are stored in the 1K Current Value field (see Figure 3) . Each SDT regis-

ter contains two pointers: one points to the appropriate APT register, which ,is used t o

enable the correct Offset and IR Current Value, the other points to the successor SDT entry,

which indicates the registers to be used in the next phase of the computation. The control

unit cycles through SDT entries until a null SDT pointer is encountered, and the summation

is accomplished by the feedback loop a t the s e c ~ e d adder; Every data s t r ~ c t ~ i i r e address is

essentially computed "from scratch." No intermediate addressing information is retained,

and no assumptions are made about the next address computation. Note that multiple da ta

structure definitions in the SDT with similar traversal characteristics may share common

A P T and IR registers.

- As a simple example of how address generation takes place in this unit, consider the

computation of the address for an array' element A(2,5), where A is a 32 X 3 2 matrix. This

d a t a structure is two-dimensional; therefore, three SDT entries are used: one contains the

base address of the array A, and the other two contain the strides of the two dimensions.

During the first cycle, the index register containing the Current Value 2 is gated into the first

adder along with the corresponding A P T Offset, which is 0 in this case. he IR and .APT

registers containing these values are enabled by the A P T pointer'.in the SDT entry which

contains the .B&e Address of A (refer to Figure 3). The 'base address of A is sent t o the

second adder . ~ u r i n ~ t h e second cycle, the SDT entry containing the stride of the first .

dimension, which has the value 32, is gated to the multiplier along with the result of the first .

adder, which is simply 2. At the same time, this SDT entry enables the index register con-

. taining the Current Value 5,. via its corresponding A P T register, which, .again, contains an

Offset of O. O n the third cycle, the SDT entry containing the stride of the second dimension,

which is just 1, is sent t o the multiplier along with the result of the first adder which is 5,
.

. .

and the result of the previous multiply, 64, is forwarded to the second adder to 6e added to

the base address of the structure. On the final cycle, the result of the second multiply, 5, is

forwarded t o the second adder to be summed with the result of the previous addition a t that
I

adder, which was the base address of A plus 64. The result of this final addition is the base

address 0f.A plus 69, which is the address of A(2,5). This result is then placed in ' the RAQ.

(Note that this algorithm assumes that the array subscripting ranges from 0 to 31.)

~ l t h o u ~ h . this may not seem like a particularly expedient approach; there are some

redeeming advantages. Because of the independence of each address computation, completely

random references can be generated, i.e., index values can be modified arbitrarily between

memory references with no additional overhead. This random access support is a very usehl

feature for some .applications, and one that current vector processors do not have. .The

requirements placed on the compiler are simply to compute the stride of each d a t a structure

dimension from the high-level. language declarations, determine the correct pointers for each

SDT entry, and generate instructions t o load these values into the SDT prior to use. Simi-

larly, the A P T and IR entries are taken directly from the source statements of the high-level

programming language. Disadvantages of this implementation are that a good deal of multi-

plexing is required a t the adder inputs, and the algorithm to control the -sequencing of the

computation is fairly complex. Furthermore, inclusion of multiplication hardware is undesir-

able in terms of cost and speed, and the summation process that takes place in the feedback

loop requires several cycles (one for each dimension) causing the algorithm t o be slower than

we require.

2.2.1.2. An AGU Implementation with Intermediate Addresses

T o streamline the address computation algorithm, we can do two things: eliminate the

multiple cycle summation, and eliminate the need to perform multiplications. The former

can be achieved by retaining information from previous computations. For example, access-

ing a; ':two-dimensional array car1 be treated like a vector if an intermediate address,

representing the base of the second dimension, is retained for use in subsequent address cal-

culations. With respect t o a convcntional innermost loop, all accesses to ae array lie within

a single dimension, and are some offset distance (derived from the inner loop index, J) from

this intermediate base address. T h e base address of the second dimension (B2) is a function

of the absolute base address of the data structure (B,), the stride of the first dimension (S,),

the index governing the first dimension (1 , and the offset of the index value (0 ,)) i .e . , ,

.B2 = B,, + S1,(I + 0,) . Each time 1 is incremented in the outer loop, B, must be recom-

'
puted. The effective address of. an array element can now be computed in a single pass

through the pipeline; EA = B2 +S2'1(J + 02) . Generalization of this technique to higher-

dimensional da ta structures is obvious.

. '
Figure 4. AddressGeneration Unit with Intermediate Base Addresses.

. .

Figure 4 shows modifications to the AGU organization t o support the address computa-

tion algorithm just described. In this organization, the SDT associates a base address and a

stride for every dimension of each da ta structure. Each address computation involves only

the highest dimension SDT entry; therefore, i t is no longer necessary for the SDT registers to

maintain links t o subsequent entries. Furthermore, the binding of A P T and SDT entries can

be established a t compile time as a part of the normal register allocation' activity, so explicit .

pointers t o A P T registers are also unnecessary; however, instructions that cause addresses to

be computed must now specify an APT register in addition t o an SDT register. Finally, the

output of the second adder is now available & an input to the SDT in order t o update subdi-

mension base addresses. T h e computation of an operand address is initiated by the fetch (or

.qtnra) in~t~rnct inn with the 86)T and APT registers oorroeponding to thc highest dirncnsian

specified. The compiler is expectcd to insert instructions to recompute subdir~iension base

addresses as required.

2.2.1.3. An AGU Implementation with No Multiplier

The necessity of performing multiplications can be eliminated in several ways. If the

Base Address field of an S D T entry for the highest dimension is used to store the address of

the last d a t a item accessed, rather than the base address of tha t dimension, then subsequent

addresses in the inner loop can be computed by adding the stride of the highest dimension to ' ..

this value. Such an AGU is shown in Figure 5. Each.new address that is generat'ed is also

stored back into the SDT entry representing the highest dimension base address. Here again,

whenever an index governing a lower dimension is modified, the base addresses of all higher

dimensions must be recomputed., This algorithm is very efficient in terms of hardware and

control for very regular accessing patterns; however, it lacks flexibility in accessing when less

regular patterns are required. One particular drawback is tha t the address calculation is

independent of the index values. A program cannot modify index values without immedi-

ately'updating the appropriate SDT registers, regardless of whether an operand address is to

d*~ @I,,
Value Size Value .

SBR -
Scalar Base 7

. I Memory I

Figure 5. Address Generation Unit with N o Multiplier.

be generated. For example, consider a DO loop where the instructions of the loop are con-
. .

tained within a conditional IF statement. Fo r this common situation, operand fetches are

required only. for iterations when the IF condition is true. In this implementation, however,
. .

the S D T values must always r'eflect the current s ta te of the corresponding index registers

nand, therefore, must be modified in every loop iteration since ' they cannot be computed,

whereas in the previous AGU design, the computation of subdimension base addresses can be

performed just on iterations where actual operand fetches are .required. T h e use of index

oifsets is also complicated. A larger conlputational overhead can be incurred using this

approach.. For some programs the access process may contain enough unnecessary address.

computation tha t the MAP becomes the system performance bottleneck. Furthermore, this

technique tends to reduce the addressing capability of the machine to that of a vector proces-

sor, which can efficiently access only a sequence of data items that are separated by a con-

s t an t stride.

2,2,1,4/ The E'inal AU U implementation

A second technique for eliminating multiplications is to normalize the index register

values and A P T offsets t o integral multiples of the stride of the dimension for which the

index value is used. For example, in the two-dimensional case, the Current Value, 11, varies .

from 0 to (N1 - l)S1 in increments of S1, where N1 is the upper bound (Final Value) of the

outer'loop, and I2 varies from 0 to (N 2 - 1)S2 in increments of S2, where N2 is the upper

bound of the inner loop. T h e Step Size of each IR .is set equal to the dimension stride, and

the A P T Offsets corresponding to I, are also normalized t o multiples of S,,. Now the corn-

putation of B2 is reduced t o B2 = Il + O1 +B1, and the effective address of an array ele-

ment is EA = I2 + O 2 + B2. Multiplication of the sum of the current index ,value and the

offset by the dimension stride, as is performed in the first two AGU implementations, is no

longer necessary since this is implicitly done each time an index value is incremented. Simi-.

'larly, i t is no longer necessary to store the stride of each dimension in the SDT since these

values are now contained in the IR Step Size field.. This feature reduces the size requirement

of the S D T by 'approximately 50 percent. Furthermore, the loop index values can be

modified arbitrarily between address computations. . '

These normalizations can easily be accomplished by the compiler; however, they tend to

l imi t the amount of IR a n d A P T sharing t h a t can occur between d a t a structures,. and conse-

quently more index register space is required. For 'example, if two arrays are accessed in a

i nested loop, one in row-major order, the other in column-major order, a particular index !

variable will index the first dimension in one array, and the second dimension in the second

array. Since the two dimensions have 'different strides and final values, the same IR cannot .

he used ' t o compute addresses for both arrays. Th i s problem can be solved by maintaining

separate index registers for each array, with each being incremented by i ts corresponding

stride. Th i s "dual" index'can be set up and maintained by the compiler, and need not be .

reflected in the high-level programming language. Either of these index.registers may be
.

selected for the loop exit test. . T h i s situation is actually quite common in conventional corn-

. . puters, and is handled by using more than one index register (if available) and several incre-

*
ment instructions per loop iteration.

. . A block diagram of this final AGU design is shown in Figure 6. T h e AGU contains the :?.

usual four register sets 'and two adders in cascade.. This implementation does not fully real-

ize the design 0bjectiv.e of generating one operand address per cycle due to the pipeline being

used to. perform functions other than address generation, but , as shown in Chapter 3, the .
.

overall performance is generally good. In addition t o computing operand addresses, the AGU.
'

pipeline also computes the addresses of operands required t o initialize the AGU tables, corn-.

putes the addresses of d a t a structure subdimensions, increments (decrements) the index regis-

ters, and tests the IR Current 'Values against the Final Values in order t o set branch signals. .

T h e cascaded architecture is very useful in implementing a pipelined increment and branch

instruction used for program control. After the first adder performs the increment opkration,
'

the result is simultaneously stored back in the IR .cur rent Value 'field and routed t o the

I I
Address Generation Unit

I Memory I
Figure 6. Address Gel~eration Unit - The Final Design.

second adder along with the Final Value where the branch test is performed. The multifunc-

tionality of the pipeline limits the address generation rate to be somewhat less than one per

clock, but i t also significantly reduces the complexity of the hardware.

. .

T o compute addresses of elements of an n-dipe'nsional d a t a structure, n S'DT entries

are used. o n e entry contains the absolute base address of the d a t a structure, and the

remaining n-1 entries . . contain the addresses of subdimensions within the d a t a 'structure.

Each' subdimension base address is associated with a particular index register and is modified

by multiples of the stride of the corresponding dimension as the program progresses. T h a t

is, each time an index register for a given dimension is 'incremented, the higher-dimensional ,

base addresses are recomputed by additional instructions. T h e hierarchical relationships of

the S D T registers corresponding t o each dimension of a d a t a s tructure are determined a t
. .

compile time as registers are allocated. Overhead is reduced by assigning the most fre- .

cpently changed index t o the highest dimension. T h e compiler also normalizes the Final

Values, Step Sizes, and Offsets t o integral multiples of the strides of d a t a s tructure dimen-

sions for which they are used. All of these registers'are loaded under software control.

2.2.1.6. ~ d d r e s s Generation >

. .

As a simple example of address generation i n the MAP, consider the fetching of theele-

ments of every third row of an N X N matrix in row' major order.' T h e high-level MAP ,

software t o accomplish this task might be the following:
. .

F O R I = l t o N B Y 3 D O
F O R J = 0 t o N-1 D O

FETCH A(1, J+1) . .

END
END

. .

e Note t h a t the s tructure of the inner loop (i.e., using J+l for 0 5 J 5 N-1) is unnecessarily

complicated; however, i t is useful for illuctrativc p u r p o ~ o .

T h e A matrix is two dimensional; therefore, two SDT entries are initialized. The first

S D T register is loaded with the base address of the first dimension (B,), which is the absolute

base address of the d a t a structure. The second SDT entry contains the' base address of the

second dimension, .B2, which is defined to be B1 +I + 01 , where 0, is 0, and I is initially 0,

and ranges from 0 to (N-l)S1 in increments d S1 as the program runs. The base address of

the second dimension, then, varies as a function of I (B1 and O1 are constants); each time

index I is altered, B2 must be recomputed. The SDT cntry corresponding t o B1 (say, s d t l)

is associated with an APT entry (aptl) , which contains an Offset equal Lo 0, and a pointer to

the index register containing I. Initially, this index register has a Current Value of 0, a

Final Value of (N - l)S,, and a Step Size of 3*S1. The second SDT entry (sdt2) points t o an

A P T entry (apt2), with Offset, 02, equal to l*S2, and a pointer t o the index register contain-

ing J. T h e J index register has a Current Value of 0, a Final Value of (N - 1)S2, and a Step

Size of S2. The normalized Offsets, Final Values, and Step Sizes of indices are determined a t

compile time from the loop bounds and d a t a structure declarations.

In this example we have assumed tha t S1 = N, and S2 = 1; however, this need not be

the case. In general, each d a t a structure element can be of any length, and the loop bounds

are not necessarily required to coincide with the d a t a structure dimensions. Arbitrary iubar-

rays can be accessed, with any ordering of the dimensions, by adjusting the initial and final

values of index registers and assigning them t o the dimensions of the sti-ucture appropriately. .

Th'e execution of a fetch instruction for array element A(I,J+l) is initiated by an

assembly language instruction such as:

fetch sdt2, apt2

T h e specified A P T register (apt2) enables the index register corresponding t o J. The Current

Value of J and the offset' contained in- apt2 are gated into the first adder:. The result is

gated t o the second adder along with BS, the base address of the second-dimension., contained

in sdt2. The result of the second adder, the address of A(I,J+l), is demultiplexed t o the

RAQ which completes the address generation process for one da ta element.

T o implement the complete code segment, we also need to initialize and in'crement the'

ippropriate index registers, recompute B; as I changes, and conditionally branch t o 'the

beginning of each loop. Thefollowing code i s representative of the corresponding MAP. pro- ..

gram.

. .
1. setup x l , (shrl)
2. outJoop: setup x2, 3(sbrl) . .

3. comp 'sdt2, sd t l , apt1
4. . inJoop: fetch sdt2, apt2
5. inc . x2, inJoop
6. inc ' x l , outJoop

The two setup instructions load the index registers.xl, and x2, with initial information from

memory corresponding to the I and J indices, respectively. The location of this information

in memory is determined by adding a displacement t o a previously,.loaded SBR. The comp

instruction c6mputes B2 (stored in sdt2) from B l . (s d t l) and I (pointed t b by apt l) . . The

inner loop is comprised of instructions 4 and 5. After initiating the operand fetch, the index .

register corresponding t o J (x2) is incremented by i ts s t ep Size and compared to its Final.
3 .

Value. As long as the Final Value is not reached, a branch t o the label inJoop is taken;.
.:

otherwise, the program proceeds sequentially. The second dnc instruction is reached when the
.

inner loop exits. I t increments I and closes the outer loop. Note that the index register con-

taining J is reinitialized and B2 is recomputed whenever the outer loop is executed. Addi-
. .

tional instructions (not shown) are required to initialize the SDT and A P T registers. These

instructions are functionally similar to the index register setup instruction, and must be

28'

executed at' some time prior t o executing the above code segment.

2.2.2. Instruction Prefetching

The instruction streams executed by each processor are segmented into a sequence of

instruction blocks [Ples82]. Briefly, a basic instruction block is a maximal-length ordered set

of instructions such tha t all entry points into the set are to the first instruction, all exit

points from the set are from the last instruction, and all instructions within the block are

ttxeculerl saque~lLially. We have expal~rlerl UII Lllis rlefilliliou Ly elin~inaliug lhtr requir t r~~~eul

tha t the instructions in a block be strictly sequential; complez instruction blocks may contain

branch instructions as long as the targets of the branches are also within. the same block.

With this generalization, complex instruction blocks may contain nested loops, two or more
,

adjacent loops, reconvergent branch trees, or combinations of these constructs and sequential

code. Any instruction block tha t does contain a loop, however; must be terminated by a con-

ditional branch or other specialized instruction that initiates an instruction block purge

operation in the instruction buffer. Instruction block handling is discussed in the next sec-
. .

tion. The upper bound on the number of instructions in a block is determined.by the size.of . ,

the instruction buffer that.receives the block.

Conceptually then, a program can be considered to be a logical sequence of instruction

blocks. Program control flow can be modeled by a directed graph, usually containing cycles,

where each vertex represents an instruction block.. In general, control flow from one instruc-

tion block t o the ,next can be.generalized to three cases. A block can be terminated by 1) . .

any nonbranch instruction, or 2) an unconditional branch instruction, where, in both cases, v

there is only a single successor block, or 3) a conditional' branch, in which case two possible

successor blocks exist. Given tha t , from the program graph, the control flow of any program

is relatively predictable, i t would seem advantageous t o exploit this inherent program struc-

ture. In the SMA architecture we implement a rnechanismto initiate prefetching of instruc-

tions into a high-speed buffer (OIB). This is accomplished by including a prejetch instruction

as par t of the basic instruction set of the machine. Each M A P instruction block contains a t

least one prejetch instruction which initiates the fetching of its successor .instruction blocks.

~ a c h ' MAP instruction block also contains the necessary prejetch instructions required t o
'

fetch the corresponding C P instruction blocks. W e rely on the compiler t o delineate instruc-

tion blocks and t o insert prejetch idstructions into the MAP insti-uction .stream such tha t the

correct instruction blocks are fetched prior t o being demanded .for execution by the proces-
f

sors. Th i s method of buffering instructions is very efficient since the. prefetching is not

hueristic, and only those instructions tha t are in the immediate flow of program control are

I fetched.

T h e control unit identifies prejetch instructions and issues them t o the Instruction Fetch

Unit (IFU). Figure 7 illustrates the d a t a flow of the. IFU. T h e prefetch instruction specifies

the s tar t ing a d d r c n (Block Addr) and the length (Block Len) of instruction bloeks. T h e

star t ing address can be specified as. immediate d a t a in the second word of a tweword

instruction, o r as an offset, to' be 'summed with t h e contents of an SBR, in a singleiword

. .
. . ' instruction. T h e IFU generates sequential addresses corresponding t o the words of the,

instruction block and p laces ' the addresses in the Instruction Fetch Queue (IFQ). The
'

. .

Memory Controller services the requests in the I F Q and routes the fetched instruction words

to. the OIB o r the C P Instruction Buffer. ,

Block Addr.

, 1 .
f. lock Len.

I
v

-4 EOB :
- - 8 >

I AR
*

I

full F--1
Figure 7. Instruction Fetch Unit (IFU).

done

wait

Initially, the instruction block address is loaded into the lnstruclion Address Register

(IAR), and the sum of the block address and the block length is loaded into the.End-Of-Block

Register (EOB). O n successive clock.cycles the contents of the IAR are transferred to the . .

Instruction Fetch Queue (IFQ), and the result of the adder (lAK + 1) is gated back into the

.IAR. A comparison of the contents of the IAR and EOB indicates the completion of the

address sequence by asserting the signal done. This signal indicates t o the control unit that

another prejetch instruction can be issued. The IFU is required t o stop generating addresses

temporarily whenever the IFQ becomes full. The wait signal indicates this condition.

Analysis of program graphs for a wide range of application programs has shown that,

on the average, the size of basic instruction blocks is on the order of. five or less [Kuck78].

This fact suggests t ha t we can compute the EOB and increment the IAR with a simple .4 bit

adder and carry propagation logic. This approach would result in. an economical hardware

implementation, but the maximum,block length would be limited t o sixteen. Another possi-

bility would be t o integrate the IFU with the AGU by sharing one of the AGU's existing 32

bit adders. T h e AGU would be inhibited .whenever the IFU .is active (done =. 0) and not

stopped (wait = 0). Our simulation results, show t h a t the performance degradation resulting .

from the AGU being. interrupted t o allow the IFU t o fetch inst'ructions is.negligible (<l%)

when the instruction buffer (OIB) is large enough t o contain all the instructions of inner loops

for programs dominated 'by .inner loop execution. Use of the full-precision AGU for IFU addi-

tions allows the instruction blocks t o be larger, which is particularly desirable for t he larger

complex instruction blocks permitted here, without significant additional hardware cost.

2.2.3. Operand and Instruction Buffer

T h e Operand and Instruction Buffer (OIB) is a high-speed circular buffer used t o store

iastrucl;ions and in-line operands prefetched by the IFU. T h e size of the OIB must be large

enbugh t o con.tain the instructions of reasonably large loops. For loops of'si'ze less than n

(the s ize of the buffer), the OIB is able t o , t r a p the corresponding instructions, and the MAP

can reexecute the loop repeatedly without refetching the instruction block. The'.OIB achieves

' a large hit rat io through the deterministic prefetching of instructions discussed in t h e la'st

section. Since the size of instruction blocks is controlled by the compiler a moderate buffer .

size is feasible, and the OIB inay be more economical than typical instruction cache' imple-

mentations. T h e OIB is shown in Figure 8.

brancl!

Control Unit from Memory

Block i-1 w u u -c7
Instruction Reg.

Figure 8 . . Operand and Instruction Buffer (OIB).

T h e P C contains the OIB address of the next instruction t o be executed, and the HEAD

register contains the OIB address of the first instruction of a loop mode block, while that ' .

block is in execution. For nonloop mode blocks, the P C and the HEAD always contain the

same address, and both are incremented together as instructions are fetched. In either case, , '

the HEAD points t o the oldest valid instruction in the OIB. The LOAD register .points to

the OIB location. where the next instruction received from the Memory Controller will be

loaded, and the PREFETCH register points t o the OIB location that is the target of the next

instruction t o be fetched by the IFU. The OIB supports one read operation and one write

operati& per cycle; therefore, instructions fetched by the IFU can be loaded into the OIB a t

the same time as instructions are fetched for execution by the AGU. The IFU loads the

instructions of the block(s) that will follow the currently executing block; therefore, the

LOAD and PREFETCH pointers generally remain ahead of the PC. Due to the prefetching

mechanism, the next instruction t o be executed by the AGU is usually contained in the OIB

or, in the worst case, is in the process of being fetched.. . .

Three s t a tus bi ts are associated with each location in the OIB:, T h e valid bit indicates

whether- the ,OIB location contains a valid instruction (cf. Full/Empty bit); t h e ' loop bit

indicates whether the OIB location contains an instruction tha t is par t of a block tha t con-

tains a loop, and the last bit marks the OIB locations which contain the last instruction of

a block. T h e OIB se ts the valid bit corresponding t o the location of each new instruction as

i t is received from memory and any OIB location tha t has its valid bit set cannot be loaded

with a new instruction: To ensure tha t valid instructions are not overwritten, the .valid bit

of 'the OIB location addressed by the PREFETCH register is checked prior t o each instruc-

tion fetch request issued by the IFU. T h e IFU waits if the valid bit is set. Instructions are

purged from the OIB, and the corresponding OIB locations become available t o receive new

instructions from mernory,' when their .valid bits are reset. For blocks containing sequential

instructions, valid bit resets occur one instruction at a time as each instruction is executed,

and for loop mode instruction blocks, an entire block is'invalidated (purged) in one operation

by resetting the valid bits of all the OIB locations tha t contain the block and' then setting the

HEAD register equal t o the PC. When the instructions of sloop mode block have been exe-

cuted .the required number of times and are no longer needed, the HEAD and the PC are

used t o generate a mask vector which is ANDed with the vector of current v a l i d , bits. T h e

.result resets.the old valid bits to reflect the fact the locations occupied .
.

by the blo.ck are now

invalid and can be overwritten. This block purge.operation is initiated by instructions tha t

terminate loop mode instruction blocks and other special .instructions used specifically for

instruction handling. For example, an unsuccessful conditional branch tha t is the .last

instruction of a loop mode block (marked by the last and loop bits being set) causes control.

t o exit the loop, purge the loop instruction block, and proceed t o the firstinstruction of the

next block. T h e use.of both a HEAD register and valid bits may.appear t o be redundant;

however, the valid bits are required for 'the purpose of determining whether an instruction

which is the .target of a forward branch (e.g,, unconditional jump or subroutine call) is

resident in the OIB. When jumping forward i t is difficult t o determine whether the PC has

jumped past the LOAD register and points t o an OIB location that has not yet been loaded

with the desired instruction. The valid bits are also convenient for permitting a quick vali- . .

dit,y t,est ~ ised, fnr exa.mple, in sta.lling the TFIJ prefetxh nperatinn. The HEAT) register is

used simply t o determine the starting location of block purge operations. .

T h e setting of the loop and last bits for each instruction is determined by control logic

in the IFU. Loop mode blocks are determined by the compiler and indicated to the IFU by a

flag in the prejetch instruction, and the last instruction of a block is known to the IFU when
e r

the final address of an instruction sequence is generated. This information is relayed t o the

Memory Controller which sets the appropriate bits for each instruction before they are sent

t o the OIB. When the loop bit of an instruction is 0, indicating that i t is contained in a non-

loop mode block, the valid bit of that location is immediately reset, and the HEAD and the

PC are both incremented, when the instruction is fetched by the PC for execution. When

the loop bit of an instruction is set, indicating that i t is contained in a loop mode block, only

.the P C is incremented, unless a block purge operation is initiated. T o illustrate the use of

the s ta tus bits and the overall control of the OIB, we examine the three following cases.

These examples are representative of most situations encountered in the control of the OIB.

Consider an instruction block that contains strictly sequential instructions to be exe-

cuted once. As the address of each instruction of the block is generated by the IFU, the valid

bit of the target OIB loc$tion, i.e., the location addressed by the PREFETCH register, is

checked. If the valid bit i s s e t , this OIB location already contains 'an instruction tha t is still

required by the 'w. Thus, the IFU must wait for the AGU t o execute the instruction and

reset the valid bit: If the valid bit is reset, the IFU generates the instruction address and ini-

tiates the memory request by placing the address in t h e ' 1 ~ ~ . T h e valid bit of the OIB loca-

tion is set when the instruction is loaded from memory. T h e loop bit of each instruction of

the block is reset . indicating'that no instruction in the block will be executed more than once.

When each instruction of the block is fetched for execution, the valid bit of the OIB loca-

tion addressed by the P C is checked t o determine if the instruction i spresent . If t h e , valid

bit is not set, the execution unit waits for the IFU. to fetch the instruction .and set the valid

bit; if the valid bit is set, the instruction is loaded into the instruction register 'in the control

unit, and the valid bit is reset. When an instruction is successfully fetched. by the P C , the

PC and the HEAD are incremented. (Only one increment is performed and the result is

stored in both registers.) In effect, by resetting the valid bit, the OIB location just' fetched is

vacated, and the IFU isfree t o load a new instruction in tha t location.

Now consider an instruction block containing a loop. As the IFU fetches and .loads the

instruction block, both the valid bit and the loop bit of each instruction are set. In this case, .

however, the OIB locations where the instruction block resides cannot be marked invalid

after they are executed since at least some of the instructions may be reexecuted. T h e .cdn-.

trol unit, therefore, does not reset the valid bit of instructions tha t have their loop bit set.

T h e 'HEAD register maintains the OIB address of the first location of a loop mode block

while i t is being executed. As long as the valid bits remain set, the IFU cannot overwrite

the current block. As stated in the previous section, loop mode instruction blocks must have

a conditional branch (or a special "purge" instruction) as the final instruction. Conditional

branch instructions tha t are successful and are the last instruction of a loop mode block

cause control to transfer back to a location within the block. Since.the placement of instruc-

tion blocks in the OIB may be different from their relative location in the object module as

stored in memory, .all branches must be relative to the P C and not larger than the size of the

OIB. T h e branch target displacement can always be determined by the compiler since, from

the program graph and instruction prefetching, the compiler determines what instruction

blocks will reside in the OIB a t any given time, as well as their relative locations in the OIB.

Conditional branch instructions that are unsuccessful and are the last instruction of a loop '

mode block cause control to proceed sequentially into the next block and cause the current

block to be purged. Purging the instruction block is accomplished by reseting the valid bit

of each OIB location between the HEAD and the PC, including the location addressed by the

HEAD, then storing the contents of the P C in the HEAD.

In the two cases discussed above, there was only one possible successor instruction block

and this block was located in the OIB immediately following the current block. Therefore,

transferring control from the current block to the successor block simply involved incremenb

ing the P C and, perhaps, purging the last instruction block. Loops too large to be contained

in the OIB must be handled as two or more serial (nonloop mode) blocks. Some instruction

in each block initiates a prefetch for the next block, and the loop bit of each instruction of

the next block is reset by the IFU. The final block of the loop must prefetch both the first

block in the loop, for the case when the loop terminating conditional branch is successful,

and the next sequential block after the loop, when the terminating conditional branch is

unsuccessful. A prefetch instruction is inserted in the final block such tha t the first block of

the loop will always be prefetched and will be located in the OIB immediately following the

last block of the loop. This is accomplished by placing the prejetch instruction for the first

block of the loop before the conditional branch tha t terminates the loop: T h e prejetch

instruction for the block tha t will be executed when the branch is unsuccessful is placed .after

the conditional branch; therefore, i t is executed only when the loop hzis been exhausted.

When the loop is exhausted, the first block of the loop has already been prefetched, and con:

sequently must be jumped over and purged. Therefore, the final block of the loop must con-

tain two instructions following the loop terminating conditional branch: a prefetch for the

next sequential block after t he loop and an unconditional branch t o jump over the first block

of the loop. Any nonloop mode forward branch will cause a purge operation which removes

the skipped code from the OIB. (Note tha t backward branches within the OIB are supported

only when the branch and i ts target are within the same loop mode instruction block.) Thus,
. .

the first block, which is not needed in this case, will be invalidated. Note t h a t a successful

branch, which is conceptually a branch back t o the beginning of the loop, , is 'physically a

branch forward in the OIB. T h e actual branch distances and directions can be determined

a t compile. time once the program graph is constructed, and the size of loop mode and non-

loop mode blocks are determined. Also, in this case where the instruction bloek has two pos-

sible successor blocks, the final (current) block and the first block of the loop, and a t least

one instruction of the next block after the loop should all fit in the OIB simultaneously. This

is required s o tha t , for either branch outcome, the OIB location tha t is the target of the
. .

branch is outside of the current block; otherwise, the control unit might jump ' to an OIB

location tha t is still marked valid, but is not the correct next instruction.

Making the OIB reasonably large (e.g., 1I< instructions) and limiting the maximum size

of. an instruction block. t o be less than half the size of the OIB (e.g., 256 instructions) is a

simple conservative guideline tha t eliminates any possibility of deadlock caused by instruc-

tion handling. Using t h i s guideline i t is always possible either t o execute an existing.

instruction or to load a new instruction. In general, the compiler must limit the size of

instruction blocks such tha t either the AGU or the IFU.will be able.to operate. The IFU will

become blocked by . the OIB only if the OIB is full, in which case the AGU must be able to

execute, and eventually purge, instructions. If the AGU is blocked waiting for instructions to

arrive, then there must be available space in the OIB so the IFU can operate. A larger buffer

also makes the compilation problem simpler since desirable instruction blocks typically will

not have td be artificially trimmed t o fit in the buffer.

2.3. Computation Processor

T h e Memory Access Processor, discussed in the previous section,, is designed to stream

operands to the computation section of the SMA architecture, i.e., the Cornp~~ta t~ ion Proces-

sor (CP), a t the maximum possible ritte. T o accrue the lull benefit of this high memory data

transfer rate, the CP must be capable of processing input operands a t a rate comparable to

tha t a t which the MAP is able t o deliver them. These rcquirements imply the need for mul-
. .

tiple pipelined arithmetic and logic function units. In order t o best evaluate the effectiveness
. .

of the MAP, we have chosen to model the C P of the SMA architecture after the scalar com- ..

putation section of.one of the fastest existing scalar processors, the Cray-1.

Figure 9 diagrams the scalar function units of the Cray-1 in the context of the SMA

architeoturo, mom cpecifically, with the data flow of the CP. In the Cray-1 architecture,.

each arithmetic and logic operation is implemented as an independent pipelined function

unit. Separate pipelines exist for both floating-point and integer operations. All function

units can operate simultaneously, and each can accept a new pair of operands every clock

cycle. Similarly, in each cycle the control unit can issue one instruction to any function unit,

Figure 9. Computation Processor D a t a Flow.

Register
File

except when d a t a dependencies force. a st,all. T h e sources, of operands are the register file

. .

and/or the IDQ (whose head is addressed as a ~seudo-register), and the result destination is

either the register file o r the SDQ (whose tail is addressed as a pseudo-register). For each.

IDQ . . -

4

. .

instruction issued, the control unit places a reservation on the destination register. When
. .

. . the instruction is completed and the result is stored, the registe'r is freed for use as a source

for subsequent instructions. An instruction whose source o r destination register is already ,

reserved is delayed from issuing until the register is freed by the completion of a previously '

SDQ

I ~ e c i ~ . App.
I Multiply

Units .

. .

issued instruction.

- -

-

Add

*Floating-pt.
I Functional

Units
>

I Shift

-
. .

-

'1 Logical -
>

Add

. Integer
Functional

2.4. SMA Software

Shown in Figure 10(b) .is an SMA assembly language program (MAP and C P code) used

t o perform matrix multiplication as described by the C language algorithm in Figure 10(a).

T h e SMA program is used as input to the SMA simulator (discussed in Chapter 3)) and accu-

rately reflects the instruction set of a realistic SMA implementation. Contrasted with the

SMA code .is the corresponding VAX' code produced by an optimizing C compiler provided

with the Unix' operating system. What is interesting in this comparison is that the inner

loop of the VAX assembly code consists of 20 instructions, whereas the inner loop of the

SMA program consists of 9 instructions (5 in the MAP and 4 in the CP). . This disparity is

due t o the da ta structure address calculation overhead which is relegated t o software in the

VAX. Note that most of the overhead in the SMA implementation (i.e., initializing the AGU

mmult(A,B,C)
int, A[N][N], .R[N][N], C[N][N];
I
1

register i, j, k;
for (i=l; i<=N; if+) {

,for (j=l; j<=N; j++) {
Q[i][j] - 0;

, for (k=l; k<=N; k++) {
c[il[jl = c[il[jI + A[il[kl * B[kI[jl;

1

Figure 10(a). Matrix Multiplication Algorithm.

'VAX is a trademark of Digital Equiptment Corporation.

Wnix is a trademark of Bell Laboratories.

Figure 10(b). Matrix Multiplication. VAX and SMA assembly language.
(Brackets demarcate the inner loops.)

Comments

Prefetch MAP inst.
Prefetch all CP code.
Load Scalarbase reg.
sdtO +base of A.
sdt2 +base of B.
sdt4 t b a s e of C.
apt0 4- ptr t o xO.
apt1 t p t r to xl .
apt2 t p t r t o x2.
apt3 t p t r to x3.
Index for i.
Prefetch second block.
Index for j.
sd t l t 2 D base of A.
sdt5 t 2 D base of C.

' Index for k.
Other index for k.
sdt3 t 2 D base of B.
Fetch A(i,k).
Fetch B(k,j).
Inc k.
Inc other k & branch.
Store C(i,j).
Inc j.
Inc i.

rO t o .
r l t IDQ.
r l t r l x IDQ.
r0 t r 0 + r l .
Branch to loop.
SUQ +rO.
Branch to blkl.
Branch to blkl.

SMA Code .

MAP CODE
pref Init,lO,O

Init: pref blk1,8,1
load sbr0, scalar area '
load . sdt0, (sbrO)
load sdt2, l(sbr0)
load sdt4, 2(sbrO)
load apt0, 3(sbr0)
load ap t l , 5(sbr0)
load apt2, 7(sbr0)
load apt3, 9(sbrO)
setup xO, ll(sbr0)
pref L3,14,1

L3: setup x l , 14(sbrO)
comp sd t l , sdt0, apt0
comp sdt5, sdt4, apt0

L2: setup x2, 17(sbrO)
setup x3, 20(sbrO)

(Ll: comp sdt3, sdt2, apt3
I fetch sdt l , apt2

.{ fetch sdt3, apt1
I inc x2
\ inc x3, L1

store sdt5, apt1
ir~c . . x l , L2
inc - xO, L3
End: ret

. . CP CODE
blkl: clr rO
(loop: mov r l , IDQ
{ mu1 r l , IDQ
I add rO, r l
\ bfq loop

mov SDQ, rO
bfq blkl ' '

bfq blkl

Inst.

1
2

3 ,

4.
5.
6.
7. '

8.
9.
10.

'11.
12.
13.
14.
15. '

16.
17.
18.
19.
20.
21.
22.
'23.
24.
25.
26.
27.
.28.
29.
30.
31.
32.
33.
34.
35.
36.

VAX Code

movl , $l , r l l
L3: movl . . $l,rlO
L2: mu113 IBQOO,rll,rO

addl2 12(ap),rO
ash1 $2,rlO,rl
add12 r1,rO

. clrl. (rO) . .

movl $ 1 ~ 9
(Ll: mu113 IBQ00,rlllr0
I addl2 4(ap),r0
I ash1 ' $2,r9,r0
1 addl2 r1,rO'
1 mu113 IBQOO1r9,rl$
1 addl2 8(ap),rl
I ash1 $2,r10,r2
I addl2 r2,rl
I mu113 (rl),(rO),rO
{ mu113 IBQOO,rlllrl
1 addl2 12(ap),rl
1 ash1 . $2,rlO,r2
1 add12 r2,rl
1 add12 (rl),rO
1 ' mu113 &OO,rll,rl
1 addl2 12(ap),rl
1 , ash1 . $2,r101r2
.I . addl2 r2,rl
1 . movl rO,(rl)
\ acbl $l00,$l1r9,L1

acbl $100,$1,1~10,L2
acbl $100,$l,rll1L3
ret

. .

tables) is outside of the loop bodies and is therefore incurred only once.

T h e following describes the details. of the SMA program. The operating system causes

the first instruction of the MAP program to be fetched and executed. The first instruction is

a pref instruction which initiates the fetching of the first instruction block of the W p r e

gram. Th i s instruction block is located a t symbolic address Init, contains 10 instructions,

and is not a loop mode block (designated by the 0 flag in the instruction). T h e first instruc-

tion in the first block of the MAP program initiates the fetching of the first instruction block

of the CP program. All eight instructions of the CP program are contained within a single

block start ing a t symbolic address blkl. The block contains three nested loops and, there-
'

fore, is designated a loop mode block.

T h e second instruction in the MAP program loads the first scalar base register (sbrO)

with the base address of a d a t a area in memory which contains the structure definition and

access pattern information. This information is gederated a t compile time but is not shown

here for simplicity. 'l'he subsequent load instructions set up the specific SDT and A P T regis-

ters. This information is stored in a set of locations wliich is some small offset from the con-

tents of sbr0. There are three two-dimensional matrices being accessed; therefore, six SDT

registers a;e used. SdtO, sdt2, and sdt4 are loaded with the absolute base addresses of arrays

. A, B, and C, respectively. These three SDT entries are used to compu'te the base addresses

' of the second dimensions of each structure later in the program. Three comp instructions.

are used for this purpose, and they essentially initialize the three additional SDT registers

(sdtl , sdt3, and sdt5) to the base addresses of the second dimension of each array. These . . .

latter S D T registers are the ones specified in the actual jetch and store requests. Note that

the comp instructions must be located inside the loops since the second-dimension base

addresses are periodically recomputed. Next, four A P T register$ are initialized; all contain

offsets of zero and a pointer .to a given index' register. . .

 h he second pref instruction s t a r t s the IFU prefetching the second MAP instruction

block which contains t h e three nested loops star t ing a t symbolic address L3. T h e four setup

instructions are equivalent t o initializing a loop count variable before beginning a loop. The

setup instructions load the index registers with the.Current Value, Final Value, and Step Size

(stride) for the loop indices i, ' j and k. T h e index ~eg i s t e r for i is set up only once, and those

for j and k are set up repeatedly since they correspond to nested loops. There are actLally .

two k index registers (x2 and x3) since, in the source program, k indexes both the second
. .

dimension of the A matrix and the first dimension of the B matr ix with different strides (see

: Figure 10(a)). Similarly, four APT registers are used instead of three. In. computing.

. . addresses for the elements of matrix A, ap t2 is used, and for matrix B, ap t3 is used. T h e

index registers containing. i and j can .be shared between matrices A and C , and B and C,

respectively, since they each index along dimensions with the same length and stride for the

two matrices they access. Index register sharing is accomplished by specifying similar A P T

registers in fetch, store, o r comp instructions (cf. instructions 13 and 14, for example)..

A t this point the MAP enters the innermost for loop designated by label L1. T h c comp

instruction computes the second dimension base address of the B matrix. This base address
. .

must be recomputed' for every inner loop iteration because i t is . a function of the k index.

This is k result of the fact t ha t the algorithm accesses the 'columns of B', so the base address

of dimension two of array B changes for every iteration. (A clever programmer could devise
'

a way t o avoid this recomputation in the inner loop; however, we wish to keep this example

relatively straightforward.) T h e following two instructions fetch the required operands. by

computing the addresses of Ai,k and Bk, j . After the two addresses are computed and placed

in the RAQ, the k indexes are incrementid and x3 is tested against its Final Value.

T h e result of the test causes the control unit to branch t o the symbolic address ~1 if

the test is successful, and t o the next sequential instruction if not. The test also involves

sending a branch signal t o the CP's BRQ so that . the C P can determine, by execution of the

bfq instruction, whether t o reexecute i ts inner loop .or to continue sequcntially. When k

reaches i t s Final Value, control proceeds to the next sequential instruction, and the address

of Cij is computed (store instruction) and placed in the SAQ. The actual memory write will

be initiated when the corresponding inner product is computed in the CP-.accumulated in rO

and placed in the SDQ.

The C P code is rather straightforward. The first instruction simply initializes a register

which is used as: the accumulator for partial products. The next four instructions form the

inner loop which computes inner products. The values in the IDQ are, alternately, the values

of a row of the A matrix and the values of a column of the B matrix. Each pair of input

values are multiplied, and the product is summed with' the contents.of rO. When k reaches .

i t s Final Value in the AGU, the C P is instructed t o exit the inner loop and continue with the

next sequential instruction. The next sequential instruction moves the inner product, accu-

mulated in rO, to the SDQ so i t can be stored in memory. The C P then executes a condi-

tional branch to determine whether to reenter the loop to compute another inner product.

 he C P continues in this manner until the last inner product h a . been computed and placed .

in the SDQ, i.e., until the j loop and the a' loop have both been exhausted in the MAP pro-

gram and the last two bfq instructions in the C P code determine that no more input

operands will arrive.

CHAPTER 3.

SMA SIMULATION AND'PERFORMANCE EVALUATION

'In order t o perform a precise evaluation of the SMA architecture described in the previ-

ous chapter, we have developed a discrete-event register transfer level simulator for the
'

machine. By accurately simulating the. execution of programs on the SMA architecture, we

have been able t o observe the performance of the system and, in particular, the AGU. Recall
. .

t ha t our primary objective in the design of the SMA is t o issue instruction and operand .fetch

requests t o memory a t a rate capable of supplying input t o high performance pipelined func-

tional units with a minimum of memory wait time. Through simulation .we are interested in

obtaining the percent utilization, percent nonutilization (i.e., blocked and/or idle), and

throughput of the main system components (i.e., .AGU, C P function units, and memory).

Simulation results show tha t the performance of the M A P hardware presented in Chapter 2

is more than sufficient for s t ieaming operands t o the C P a t rates which achieve high utiliza-

tion of the CP's function units. Also of interest are the effects t ha t memory access time and

-queue length have on the total execution time since these parameters are easily modified
. . .

without affecting the organization of the machine. Finally,' the tot'al execution time, as meas-

ured by' the number, of cycles required t o execute benchmark programs, . is used t o compaie .

the performance of the SMA architecture with tha t of the Cray-1 scalar unit.
. .

T h e following section presents an overview of the SMA simulator. Sections 3.2 and 3.3

piesent simulation results Concerning the utilization and throughput of each of the SMA sub-

systems, and the effects of memory access time and queue length on SMA performance,

respectively. In the final section we present a performance comparison of the SMA

architecture and the Cray-1 which, architecturally, represents the current state-of-the-art in

scalar processing. For all the simulation' results presented here, the.CP of the SMA architec-

ture was parameterized t o perform instruction issue and computation a t the rate characteris-

tic of the Cray-1 scalar unit [Cray77]. Performance statistics and comparison information

were derived from simulation of the first twelve Lawrence Livermore loops.

3.1. The SMA Simulator

Input to the S b U simulator is a program ~ imi ln r to that ohown inlFigurc 1,0(b). The

simulator essentially interprets and executes a defined assembly language. The simulator

reads a file containing an SMA program and loads. the instructions into its memory. From

this point, the simulator fetches instruction blocks and executes instructions in a manner

characteristic of a n actual SMA implementation. All compi.ltations and register transfers

required by an actual implementation are carried out by the simulator in the proper sequence

with the specified timing.

The timing delays of various components of tlre system are parameterized (e.g.,

floating-point and integer arithmetic operations, memory access time, AGO propagation

time, etc.). It is assumed that the delay of each stage of the AGU pipeline is equivalent t o

. .
the time required to perform one integer addition. The AGU pipeline propagation time is

controlled by the integer addition parameter, and is twice the delay of the integer a,rit,hmctic

unit in the CP. For the simulation results presented in this chapter the integer addition

parameter was set' to one and,' therefore, the number of cycles required by the AGU to pro-

duce a single operand address was two. No additional delay for multiplexing or bussing was

accounted for. The AGU is fully pipelined and, therefore, is capable of producing addresses

on consecutive .cycles. Fo r example, two jetch. instructions can be issued 'on consecutive

cycles, and the resulting addresses they compute are produced on consecutive cycles, after an
. .

AGU propagation time of two. Some M A P instructions cause more than one address t o be

produced b y the AGU (e.g., load Index ~ e ~ i s t e r) so a M A P instruction cannot always be

issued t o the 'AGU every cycle, even when. there are no d a t a dependencies o r prefetch opera-

tions.

As in the Cray-1, the C P of the SMA architecture contains multiple arithmetic, and :

logic function units. In the simulations we ran, only floating-point instructions were executed. ,

in the C P ; therefore, i t was'sufficient t o simulate just the floating-point.function units of the
. .

Cray-1, namely, a floating-point addlsubtract unit, a floating-point multiplication unit, and

a reciprocal approximation unit (see Figure 9). Only the first two of these units were utilized

in our simulations. T h e addition unit and the multiplication unit are fully pipelined, and

each can accept one new operation per clock cycle. T h e add unit delivers results in six

cycles, and the multiply unit delivers results in seven cycles. In the Cray-I,, the number of

cycles is equal t o the number-of stages in each of . the 'pipelines. T h e two pipelines operate

independently.' When an instruction is issued, its destination register is marked. reserved

until the instruction is completed and the result is stored in the register. An instruction is

de1aye.d from. issuing until none of its source registers are reserved .by previously issued

inSt,ructions and, if the IDQ is a source, i t must be nonempty. C P instructions are always

issued in order, as in the Cray-1.: . .

. '
For simplicity in the simulation, the memory unit is modeled as possessing infinite

interleaving; every memory word is contained in its own bank and, therefore, all memory

references are conflict free. This aspect of the SMA simulator does not model a feasible

machine; however, an adequate degree of interleaving should make conflict degradation

minimal for the SMA a t a modest cost. The memory unit services one request per cycle, and

the result is delivered t o the destination after a delay defined by the memory access time

parameter (11. cycles for the Cray-1). Note that the memory system can accept requests on

consecutive memory cycles even though prior requests have not been completed, resulting in

a memory tha t behaves like a perfectly pipelined 11 stage function unit.

T h e service priority of the memory address queues are as follows:

1) IFQ (Instruction fetch),

2) RAQ (Operand fetch),

3) SAQISDQ pair (Operand store).

Pipelined computers are susceptible to hazards and the SMA architecture is no excep-

tion. A read-after-write (RAW) hazard occurs in the SMA when the AGU issues a read

request for a da ta item whose address appears in the SAQ, waiting t o be written. As dis-

cussed in Section 2.1, the SMA simulator assumes tha t operands contained. in the SDQ can

be forwarded to the C P before they are written t o memory. This forwarding operation

minimizes the effect of RAW hazards which significantly improves the performance of the

SMA for benchmark programs tha t contain certain linear recurrences and da ta dependencies.

Note tha t write-after-read hazards do not present any problem due to the fact tha t read

requests have higher priority tha t write requests. Also, write-after-write hazards do not '

occur due to the queuing and servicing of write requests in order.

The lengths of all hardware queues and instruction buffers are variable. Hence, we are

able t o monitor the performance of the system as a function of some of the machine parame-

ters.

T h e simul.ator reports.a number of performance statistics for each run:

1) Tota l number of clock cycles required t o execute the program.

2) Throughput of the MAP, CP , and memor;.

, . 3)..Percerit utilization of the MAP, C P , and meinory.

4) Percent of clock cycles t h a t the MAP, 'CP, and memory is blocked:

5) Reasons for function unit blockage (and percent blocked per reason).

6) Mean queue lengths.

Function unit throughput is defined as the. percentage of all clock cycles in which an

instruction (or operation in the case of the memory unit) is successfully issued. This figure is
. .

also equivalent t o the rate a t which instructions are completed. ' In the case of the AGU, the

output of the pipeline is actually greater than the pipeline throughput because some instruc-

tions (e .~ . , . load, setup, etc.) cause more than one address t o be computed. Function unit
i

utilization is recorded as the percentage of total clock cycles t ha t a unit is active (i.e., a t

least one computation in progress for pipelined units), o r is inactive due t o .being blocked,
. .

bu t has work pending. In general, a function unit becomes blocked as a result of a depen-

dency in the instruction stream, when one of th6.queues o r buffers t ha t supply . . input t o the

unit is empty, o r when one of the queues tha t accepts output , from ' the unit becomes full.

T h e AGU becomes blocked when an OIB mis s occurs, when an instruction requires input

from a table (or the BRQ, in case of the bfq instruction) t ha t has not yet been populated'
. .

(i.e., a 'da ta 'dependency is present), o r when an address queue- t ha t is the destination of an

instruction is full. In any of these cases, the AGU must be idle for one o r more cycles. For

p the memory, blockage can occur whe; the IDQ is full, o r when either the C P instruction

buffer or the 01R is full. The memory unit is not considered t o be blocked. on cycles when

the address queues (i.e., RAQ, SAQ, and IFQ) are all empty. The C P becomes blocked when

a n instruction buffer miss occurs, when d a t a dependencies in the instruction stream exist,

when a full SDQ is an instruction's destination, or when an empty IDQ is an instruction's

source. In fact, this last statistic-the percent of cycles that the C P is blocked due t o the

IDQ being empty-is perhaps the single most important performance metric since i t indicates

whether the MAP is accomplishing the task for which it was designed: namely, t o prefetch

operands such tha t the memory access wait time experienced by the CB's function units is

minimal.

\

3.2. SMA Performance

In this section we examine the utilization and throughput of the various SMA subsys-

tems. We are primarily interested in dctcrmining whether the address generation hardware

of the AGU is sufficiently powerful to supply a CP, which has the computational capability

of the Cray-1 scalar unit, with operands a t a rate which provides superior utilization and

throughput by minimizing memory access wait time. The most relevant function units in

regard t o the overall performance of the machine are the AGU, the C P function units, and

the memory. For the simulation results presented in this section, the instruction buffers were

of length length 128, each of the AGU tables had 16 entries, and aii queues were of length 4. .

.Code segments corresponding to the inner loops of all the benchmark programs were con-

tained entirely in the OIB (the largest containing 106 words), and a t most 10 of the 16 AGU

table entries were .used during.the simulations. As a result, the effect of instruction fetching

and AGU table loading was an insignificant percentage of the overall execution time (<I%); .
hence, we d o not provide an analysis of the performance of the IFU or OIB.

Shown in Table 1 are the function unit utilization and throughput statistics derived

from the SMA simulator for the first twelve Lawrence Livermore loop$. A good description

of t h e nature o f these loops is found in [HsPG84]. ~ h e s e statistics in.dicate a fairly good bal- ,

ance of activity among' the units. T h e utilization figures for each unit are all very high. This

is a .result of the fact t ha t a function unit tha t is blocked bu t does have instructions waiting

t o issue, or has a t least one active computation ,in its pipeline, is considered t o be utilized.

T h e pe;centage of executiod tinie t ha t each unit is blocked from issuing instructions seems to

be a b i t alarming; however, an average instruction issue rate of 0.425 ilistructions per cycle

in the CP is actually quite acceptable after the frequency of d a t a dependencies in the C P

instruction stream is taken into account. Furthermore, the CP has a. somewhat higher

instruction throughput rate than the AGU since the inner loops of t h e ' C P programs contain

Table i. SMA Function Unit Utilization and Throughput.

Memory
Util.

0.994
0.993
0.997
0.984
0.999
0.998
1.000
0.997
8.999
1.000
1.000
1.000

0.997

CP
Blocked
0.708
0.594
0.599
0.620
0.593
0.682
0.677
0.699
0.531
0.423
0.555
0.499

0.598

CP
Util.

0.965
0.971
0.996
0.899
0.964
0.928
0.984
0.994
0.984
0.984
0.888
0.889

0.934

CP
T'put
0.258
0.379
0.300
0.281
0.373
0.320
0.407
0.386
0.615
0.794
0.451
0.539

0.425

Memory
Blocked

0.891
0.750
0.330
0.617
0.494
0.348
0.848
0.798
0.842
0.000
0.189
0.000

0.507

AGIJ
T'piit

0.161
0.284
0.299
0.349
0.404
0.331
0.170
0.178
0.189
0.374
0.446
0.302

0.291

Memory
T'put

0.132
0.265
0.201
0.293
0.377
0.267
0.154
0.174
0.173'
0.359
0.337
0.204

0.245

AGU
Blocked

0.826
0.703
0.694
0.535
0.589
0.652
0.830
0.809
0.808
0.623
0.553
0.697

0.693

Loop

1
2
3
4
3
6
7
8
9
10
11
12

Avg.

AGU
Util.

0.926
0.991
0.301
0.878
0.997
0.688
0.996
0.988
0.997
0.998
0.765
0.686

0.851

roughly 30 percent more instructions, on. the average, than the corresponding MAP programs

for the benchmarks tha t we ran. Note that the AGU throughput represents instructions

issued per clock, rather than addresses generated per clock. Thus, multiple address instruc-

.tions as well as certain no-address instructions (e.g., setup) are each counted once when the

AGU throughput is calculated. Also, 'the "Blocked" statistics are not directly available as

such within the simulator and in some cases the estimate of Blocked time is slightly high.

This fact accounts for the apparent anomaly where occasionally the suln of Blocked and

Throughput slightly exceeds 1.00.

T h e percentage of execution time that each unit is blocked, and the reasons why, pro-

vide better understanding of the behavior of the overall system throughput and its limita-

tions. Thus a closer look a t blockage is in order. Table 2 presents a breakdown of the func-

tion unit blockage rates and their respective causes f& the AGU and the CP. These figures

were derived from simulation of the twelve Lawrence Livermore loops, with the queue lengths

. ,
all set t o four. In these simulations, almost all memory unit blockage was caused by the IDQ

'becoming full. While the IDQ is full, the C P is supplied, with operands and memory blockage

is not a serious concern. Therefore, no further details are given for the memory unit.

T h e AGU can become blocked due t o either a d a t a dependency in the MAP instruction

stream, or the RAQ or SAQ becoming full. (The AGU can also become blocked by an OIB

miss during an instruction fetch; however, this was never the case during these simulations

due t o the dominance of loop mode execution.) The MAP address queues fill up as a result of

the memory unit not being able t o service read requests due to the IDQ being full (refer to ..

Figure 2). The IDQ, in fact, is full 51 percent of the time, on the average, as indicated by

"Memory Blocked" in Table 2. When the IDQ is full, the memory unit becomes blocked

Table 2: SMA Function Unit Blockage and Causes.

which, in turn, causes the address queues t o back up, and' hence the AGU becomes blocked.

Note, however, t ha t a full queue can be read from and written to on a given cycle, and there-

fore even under 'the full'queue condition there may not ,be s blocked, unit. T h c ratc a t which

IDQ
Empty
0.004
0.005
0.003

. 0.066
0.004
0.005 ,

0.000
0.001
0.001
0.034
0.003
0.000

0.011 .

each address 'queue becomes full varies considerably among the loops, wh i ih ind ic? t e s t ha t

SAQ
Full

0.760
0.000
0.000
0.449
0.463
0.150

. 0.000
0.288
0.000
0.623
0.317
0.382

0.286

RAQ
Full

0.001
0.701
0.694
0.018
0.125
0.195
0.826
0.521
0.808.
0.000
0.000
0.000

0.324

Loop

1.
2
3
4.
5'
6
7
8
9
10

.11
12

Avg.

'these numbers are very application, dependent. Table 2 shows tha t d a t a dependencies

SDQ
Full

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

' 0.000
' . 0.000
0.000

0.000

account for only a small po r t ionof AGU blockage relative t o the amount of time tha t

address queues are full, except for loops 6, 11 and 12. W e expected this t o be the case since

Memory
' Blocked

0.891
0.750
0.330
0.617
0.494
0.348
0.848
0.798
0.842

' 0.000
0.169
0.000

0.507

CP
Blocked

0:708
0.594
0.599
0.620
0.593
0.682
0.677
0.699
0.531
0.423
0.555
0.499

0.598

AGU
. locked
0.826
0.703
0.694
0.535
0.589
0.652
0.830
0.809
0.808
0.623
0.553
0.697

0.693

the AGU, because of i ts unique design, requires 'little interaction with memory t o compute

Data
Depend.

0.704
0.589
0.596
0.554
0.589
0.667
0.677
0.698
0.530'
0.389
0.552
0.499

0.587

Data
Depend.

0.065
0.003
0.000
0.082
0.003 .

0.310
0.004
O!OOO
.O.OOO
0.000
0.236
0.315

0.085

operand addresses, and MAT'instruct ions are relatively independent of each other, thereby

reducing the number of.dependencies.

T h e vas t majority of CP blockage, on the other hand, is caused by d a t a dependencies.

In fact, 98 percent of the t ime t h a t the C P is blocked from issuing instructions is caused by

d a t a dependencies; only two percent of the time tha t the C P is blocked is due t o the IDQ

being empty. . Note t h a t the dependency problem is inherent in the application code and

causes blockage in any machine organization with heavily pipelined function units. W e made

no effort to improve this aspect of the machine's performance. W e can conclude from

Table B ' t h a t instruction execution in the C P is rarely impeded by memory access wait time,

and therefore, the CP is performing a t near i t s maximum rate, namely, the ideal peak rate

minus the d a t a dependency degradation. This analysis of the results of Table 1 and Table 2

clearly indicate t h a t the M A P is performing sufficiently well, and is perhaps even over-

designed for cases where one of the address queues is full the majority of the time.

3.3. Effects of Queue Length and Memory Access Time

T h e effects t h a t queue length and memory access wait t ime have on the overall cxecu-'

tion time of the SMA architecture are worth investigating since they can each be changed
. .

without modifying the basic organization of the machine. Intuitively, increasing the size of .

the address and d a t a queues will help t o smooth ou t perturbations in the flow of d a t a items

through the machine, and thus may help t o increase the overall utilization and throughput of

each subsystem. In the SMA architecture, queues basically allow the MAP and the memory

t o continue fetching operands before previously fetched operands have been consumed by the

C P . If the machine operates in this s ta te long enough, the IDQ may fill up, causing the MAP

t o become blocked. As we showed in the last section, this situation does occur and, in fact,

poses no immediate performance problem since the C P is still able . t o run unimpaired for.

some time. Even during subsequent intervals where the C P is able t o process operands faster

than they c a n be delivered, the C P will nc t become blocked if the IDQ already contains .

several operands, and the MAP can resupply i t before the C P empties the last operand. A

limit therefore exists beyond which increased queue length will not.provid'e any additional

speedup. From a practical standpoint, the queues should be as small as possible without

adversely affecting the execution time.

,Memory access time also has an effect on the total number of cycles required t o execute.

programs. Th i s effect is particularly evident in applications where the MAP has difficulty . '

staying ahead of the . C P , i.e., where slip cannot be maintained. For example, slip is fre-

quently lost in programs containing d a t a dependent branches which are resolved in the CP,

, 8

o r programs in which the MAP must execute more instructions than the CP . In these situa- .

tions, incrementally larger memory access time will have an increasingly pronounced effect on

execution time. However, in programs where the M A P is able t o maintain slip, we will show

tha t the memory access time has a less significant effect on the to ta l execution time. In gen-

eral, subject t o loss of slip, increasing the memory access. t ime is beneficial since i t allows

reducing the system cost either by using a slower memory o r by keeping the same memory

and designing 'faster o r more heavily pipelined function units, in whichxase performance can

be increased by speeding up the system .clock ra te . ,

T o observe ,the effects t ha t queue length. and memory access time have on execution

time, we ran the several benchmarks and recorded the total execution time for queue lengths'

ranging from 1 t o 8, and memory access times ranging from 2 to 1.2. Figure 11 shows graphs

of the total execution time versus queue length for a range of memory access times for a

matrix multiplication algorithm and for Lawrence 'Livermore'loop 12. All the simulations

displayed similar characteristics.

1 I I I I I 1 . 1

1 2 3 4 5 6 7 8
Queue Length

Figure l l (a) . Execution Time vs. Queue Length for Matrix Multiplication.

These graphs show a striking performance improvement as the queue length is increased

from one t o two, particularly when the memory is slow. Very little speedup is achieved by
'

increasing the queue lengths beyond two, or three when the memory access time is large.

Queue lengths of one are quite detrimental when the memory is slow. Thus the SMA, giv'en

a modest amount of queuing, 'can tolerate a relatively slow memory with negligible perfor- .

mance degradation. I t is important to point out,'however, tha t in the simulations we ran

(Livermore loops, Gaussian elimination, and matrix multiplication) all branch decisions were

resolved in the .MAP. For this type of -the SMA architecture tends t o perform well

because the MAP never loses slip, and therefore always remains ahead of the CP. . Conceptu-

ally, the C P has to wait for the first stream of operands t o arrive, and thereafter never

endures the complete. niemory delay; a nonturbulent flow of input operands is always avail-

able to the CP. Table 2 substantiates this scenario by indicating that the C P experiences an

empty IDQ only 1 percent of the time, on the average, for a memory access time of 11. This

implies tha t a large memory'latency is virtually transparent for these types of programs, and

Cycles
(x 107

. . Queue' Length

Figure l l (b) . Execution Time vs. Queue Length for Lawrence Livermore Loop 12.

a faster memory would d o little to improve performance.

We would expect the SMA to exhibit much different behavior for programs containing

d a t a dependent branches in the inner loops, however, because the MAP would lose its slip

advantage and, in every loop iteration, the C P would experience the complete memory access

time. T h e C P would then experience more blockage .due t o an empty IDQ, and this effect

would be successively worse as memory access time is increased. Several other situations

could also slow thc! MAP down. For ejtample, in programs containing large loops or a sub-

stantial dynamic frequency of nonlooping code, instruction fetching could interfere

significantly with the MAP'S The stream of operands t o the C P would be

intermittent resulting in more potential for C P blockage. Furthermore, in some applications,

the M A P program may contain more instructions than the corresponding C P program which

could also cause the C P t o be blocked a greater portion of the time. In each of these cases,

we would expect the asymptote'for total execution time to be successively higher as memory

access time is increased.

3.4. Cray-1/SMA Performance Comparison

We have examined the characteristic behavior of the Sh4A architecture and shown

through simulation results that i t is able to perform as expected on suitable benchmark p re . .

grams. I t is, however, also useful to compare the performance of the Sh4A architecture with

other existing high performance computers for these benchmarks. The Cray-1 was chosen for

comparison purposes because information on its architecture and operation is readily avail- .

able, and i t represents the foundation of the Cray-2 architecture which is.perhaps the fastest

existing scalar processor.

For this comparison, b e are interested in obtaining the total number of cycles required

by 'each machine to execute the benchmark programs. T h e execiition times for the SMA

architecture .we;e taken from the simulator. As above, the SMA machine being simulated

was parameterized t o perform instruction issue and execution a t the same rate as the Cray-1,

instruction buffers were of length 128, AGU tables contained 16 entries, and al1,queues were

of length 4. F o r our purposes, the conditions for instruction issuing on the Cray-1 .can be

summar'ized as follows:

1) T h e target function uliit (i.e., the floating-point addition unit o r the
floating-point multiplication unit) must be free.

. . .

2) T h e source registers must be free (i.e., not reserved as the destination of
' a prior instruction). . . .

3) T h e destination register must be free.

Instruction timings for , the Cray-1 tha t are relevant t o our simulations are the following:

, Floating-point addition takes 6 c10ck'~eriods.

Floatirig-point multiplication takes 7 clock periods.

Branch resolution takes 2, 5 o r 14 clock periods.
. .

'Memory access takes 11 clock periods.

T h e function units are fully pipelined; thekefore, instructions can' be 'issued t o the same unit

on consecutive clock cycles, provided no d a t a dependencies exist. ~ a c h instruction places

reservation on i t s destination register only, and this register is .reserved until the result is'

stored, .i.e., is reserved for the duration of the execution time of t h e instruction.

T h e execution times for the Cray-1 were derived analytically. T h e Lawrence Livermore

loop kernelswere each compiled us ingthe Cray-XMP Fortran compiler version 1.13 with the

automatic vectorizer turned off. From the Cray assembly language listings and knowledge of

the Cray-1 instruction issue and execution timings, we were able to derive accurate timing

estimates for each of the loops. From our analysis of the Cray timings, i t was evident that

the Cray Fortran compiler did an excellent job of interleaving computations and memory

access instructions~such tha t memory access wait time was minimized. The code, however,

did contain an abundance of register transfer instructions, used mainly for address computa-

tion and loop control, that could have been avoided.

T h e SMA programs for the kernels were arranged to perform computations and memory

accesses in the same order as the compiled Cray code. We took this approach to insure that

the SMA had no special advantage, and so that the test would represent a comparison of the

two machinesJ actual performance on this code, rather than the efficiency of a particular

compiler o r hand optimization. No special optimizations were added to the SMA code, but

the code was designed t o take advantage of the inherent features of the machine. For exam-

ple, the source programs were divided into two instruction streams, and each one of the SMA

processorsJ programs was significantly smaller than the Gray's single program. Also, the

AGU tables were used t o take advantage of register sharing and t o minimize reloading. In

addition, the architecture of the SMA allows i t to perform some basic operations faster than

the Cray. For example, branch instructions in the CP can complete in one clock cycle

assuming tha t the corresponding branch flag is present in the BKd) a t the time the branch

.instruction is executed. In effect, the SMA architecture is able to "turnJJ a loop in a single

cycle when the MAP is ahead, whereas, in the Cray-1 evaluation five clock cycles are always

required t o resolve. a successful. branch.

, Table 3 shows the analytically computed times for the Cray-1, and the simulated times

for the SMA architecture for, the Livermore suite. Some of the loops were run for the 1

number of iterations specified in the Fortran, code, and some loops where run for an arbitrary

number of iterations (typically 1000 for singly nested loops, and 100 for. doubly nested loops).

The total execution time in seconds can be calculated b y multiplying the number of clock
. .

cycles by 12.5 nanoseconds, the period of one machine cycle on the Cray-1. The floating-

point execution rate, measured in millions of floating-point operations per second (MFLOPS),

is then determined from knowledge of the total number of floating-point operations executed

in the loop, and the .total number of seconds required to run the loop: The speedups shown

are simply the ratio of SMA MFLOPS to Cray-1 MFLOPS in that row of the table. The
. .

Avg. MFLOPS is the arithmetic 'mean of the MFLOPS- figures for t h e 12 loops; i.e., i t

represents the .MYLOPS that would be seen if eac,h loop was run for the same amount of
. .

time. Note tha t in such an "average" job load, the SMA and the Cray-1 would have

Table 3. .SMA/Cray-1 Performance Comparison.

Loop
MFLOPS

12.8 .

17.05
15.87
8.90

14.79
8.79

20.08
20.42
21.65
11.44
9.01,
8.14

14.08
12.50

1
.2
3
4
5 .
6

7.
8
9 .

10
11
12

Avg.
H. mean

Speedup
1.44
1.40.
1.89
1 78
1.88
2.52
1.31
1.1.7

1 1.33
1.29
2.53

1 ' 2.58

Cray-1

Cycles 1 MFLOPS
SMA
Cycles

I8000
11800
19000

1568
20252
45800

836100
164640
837800
814500'
224400'
253600

8.8Y
12.20
8.40'
5.00

- . 7.87
3.49

15.31
17.49
16.23

. 8.84
3.57
3.15
9.20
6.59

12463
8448

10062
881

10772
18206

637318
141003
628282
629155
88784
98291

different job loads; i.e., each machine would execute a different number of floating-point

operations. Therefore, this L'Avg." weighting leads to a meaningless speedup. The H. mean

(harmonic mean) MFLOPS for the 12' loops was computed by equalizing the number of

floating-point. operations performed by each loop. This calculation accurately represents a

job load where each loop is run for the same fixed number, e.g. 1 million, of floating-point

operations on each machine. The number of seconds required to execute each loop is com-

puted from the MFLOPS figure for each loop. The H. mean MFLOPS is'then computed

from the sum of the seconds for each loop and the total number of floating-point operations

chosen.

Table 3 shows a wide range of speedups for the various loops. The speedup computed

from the harmonic mean of the MFLOPS is considerably greater than the speedup computed

from the average MFLOPS. This is a result of the fact that , for loops where the MFLOPS

tends t o be lower, the Cray-1 performs proportionally worse than the SMA, and these loops

tend t o have a larger influence on the harmonic mean (cf. loops 6, 11 and 12). In general, the

performance of the Cray-1 fluctuates more than the performance of the SMA. The range of

performance across all loops is approximately 5.5 to 1 for the Cray-1, whereas, for the SMA

the range is only 2.7 to 1. Thus the SMA provides more balanced performance for the entire

j i b load.

I t is interesting t o consfdcr the characteristics of loopr that krtvc n. large rspecdup on thc

SMA, and conversely, those tha t do not. As mentioned above, the Cray Fortran compiler

does a very good job of generating code that tends to hide the long memory access time of

the Cray-1. This is accomplished by issuing fetch instructions far in advance of the instruc-

tions tha t will actually operate on those operands. Since the Cray-1 employs a single

instruction stream, i t must issue instructions tha t perform address calculations and various

other overhead operations from the same instruction issue unit using a single stream. Wher-

. .
ever possible, these types of instructions are inserted in between memory access instructions

and computation instructions, o r between two computation instructions, t ha t may have

dependencies. Hence, many of the overhead instructions in the Cray program are issued on

cycles t ha t would otherwise be unused, and much of the memory access wait t ime is hidden

by other . necessary operations in the meantime. Unfortunately, the Cray com-

piler can only perform these optimizations when the loop in question contains a sufficient

number of instructions of the proper types t o work with. As loops get smaller, the number

of .possibilities for code rearrangement also becomes.less. For small loops i t becomes impossi-
. ?. . . :.

ble t'o mask the memory access wait time, so i t is here tha t we expect the SMA t o perform
:,., ;, ,

particularly well relative t o the Cray-1.

In Table 3, loop 8 shows the smallest speedup.' Loop 8 also happens t o contain the larg- , . ' ? J c

est number of instructions of any in the suite (106 instructions in the inner loop). The * .,..

Cray-1 requires 156 cycles .to execute the inner loop. T h e instruction issue logic is idle for 4

cycles while the branch outcome is being resolved, 40 cycles are due t o da t a dependencies,

and only 6 cycles are idle due t o memory access wait time. An instruction is issued on each

of the- remaining 106 cycles. Idle cycles due t o memory access wait time amount t o only 4 '.

percent of the total execution time. In the SMA architecture, the inner loop of the CP pro-,'

gram contains 59 instructions, and the inner loop of the M4P program contains 34 instruc-

tions. T h e CP can execute a single pass of i ts inner loop in 117 cycles, assuming the IDQ is

always nonempty. The. C P runs slower than the MAP, which requires only 34 cycles per loop

iteration (i.e., no d a t a dependencies are present) and, therefore, the C P performance bounds

the total execution time of the SMA for this loop. Da ta dependencies in the C P block

instruction issuing on 58 of the 117 cycles. The higher percentage of da ta dependency cycles

for the CP, compared with the Cray-1, is a result of the reduced number of overhead instruc-

tions in the C P program. The number of cycles that the C P is blocked due to memory wait

time cannot be determined from a static analysis of the code; however, simulation results

reveal that , on the average, this number is less than one cycle per loop iteration. For this

loop, the difference in memory access wait ,time between the Cray-1 and the SMA is on the

order of 4 percent; therefore, the slightly better SMA performance is mainljr a result of

reduced overhead, rather than decreased memory access wait time. The Cray-1 thus per-

forms well on this loop which accounts for the small SMA speedup.

O n the opposite end of the spectrum, loop 12 shows the 1argest.speeclup. The Cray-1

requires 12 instructions and 25 cycles to execute its inner loop, whereas the C P requires only

5 instructions and 10 cycles. T h c Cray-1 and the CP both have the same 5 idle cycles due to

da ta dependencies. For this loop, 4 cycles are idle. due to memory access wait time on the

Cray-1, which represents 16 percent of the total. In the SMA, however, the C P instruction

issue unit is held up because of memory access wait time an average of less than one percent

of the total execution time per loop iteration. The difference in the percent of memory access

wait time per loop iteration in the Cray-1 over the SMA is thus 4 times greater for loop 12

than i t is for loop 8. Furthermore, the Cray-1 requires 5 cycles to perform branch resolution;

whereas, the CP requires only 1. The additional 4 branch cycles on the Cray-1 account for

16 percent of its loop execution. time. For larger loops, however, these branch cycles will

represent a much less significant percentage of the Cray-1's total execution time. Thus,

address generation and other overhead coupled with the increased percentage of memory

access wait time cause the Cray-1 t o run considerably slower than the SMA architecture for

this loop.

CHAPTER 4.

CONCLUSIONS

T h e Structured Memory Access architecture.imp1ementation presented in this thesis was

formulated with the intention of alleviating two well-known inefficiencies t ha t exist in

current scalar cdmputer ar'chitectures: address generation overhead and memory bandwidth

utilization. Furthermore, the SMA 'architecture introduces an additional level of parallelism

which is not present in current vector supercomputers, namely, overlapped execution of the

access process and execute process on two distinct special-purpose, asynchronously-coupled

processors. By 'using simulation results derived from representative benchmarks typical of

intended S W workloads, the!Memory Access Processor was shown t o expedite processor-

memory traffic by efficiently computing instruction and operand addresses using

special-purpose pipelined function units (i.e., the AGU and IFU), and a t the same time,

reducing the demand on memory bandwidth by requiring less interaction with memory to

support the .access process. Our simulation results showed tha t , for typical.numerica1 pro-

grams, the h4AP was capable of running slightiy ahead of' the CP, and consequently. was able
. . .

t o issue operand fetch requests a t a rate t ha t rarely caused the C P t o experience any memory

access wait time. Memory access wait time accounted for only 1 percent of the total execu-

tion time, on the average, for , the benchmark programs tha t were simulated.

I t was further discovered tha t , for programs in which branch decisions are resolved

solely in the MAP (i.e.; a broad class of numerical programs), a large mcmory cycle time had

a relatively minor efl'ect on total execution time for processor qucue lengths of three or more.

This phenomenon is a result of the fact t ha t once the s tream of input operands to the C P is

star ted, i t is not interrupted (assuming no bank conflicts), and the long memory access wait

t ime is seen only once by the C P . Thereafter, the MAP remains sufficiently ahead, and i t

appears t o the C P as if most of i t s input operands were contained in registers (i.e., the head

of the IDQ is rarely empty when accessed by the CP). Note tha t this is only t rue for pro-

grams where loop bounds are based on an index value o r some other d a t a item tha t is

resident in the MAP. In these situations, the MAP is essentially able t o perform perfect

branch 'lookahead for the CP.

Comparison with the Cray-1 in nonvector mode showed tha t the SMA architecture's

features do, indeed, provide improved performance in scalar processing over existing high
. .

performance scalar machines. Since the CP is rarely required t o wait for operands t o arrive

from memory, the instruction issue rate is improved and, hence, function unit utilization is

increased. . T h e dual instruction stream feature enables each SMA processor's' program t o be

significantly smaller than the conventional single. instruction stream program and also fre-

quently allows two instructions t o he issued in a single cycle. Furthermore, the overhead

associated with branch resolution is reduced in the SLMA when these decisions are performed

in the MAP, thus relieving the computation section of this chore. This overhead is particu- .
'

-.

larly significant on the Cray-1 for small loops where branch resolution becomes a l a r g e r per-

centage of the total execution time. These factors account for the speedup shown by the . .

SMA architecture over the Cray-1.

In all the simulations t h a t w e ran (the first twelve Lawrence Livermore loops, Gaussian

elimination, and matrix multiplication) all branch resolution was performed by the U P .

Programs with this characteristic are best suited for fast execution on the SMA machine.

Fur ther analysis of the S1.M architecture should also include simulation of programs tha t

would be expected to run 'less efficiently o n this machine, for example, a prdgram containing

d a t a dependent branches t o be resolved in 'the CP , or a da t a dependent branch t o be resolved

in the MAP, but which requires information from the C P to determine the outcome. In
. .

either of these casesi we expect the speedup over the Cray-1 in scalar mode to be small; how-
'

ever, we expect any program to execute a t least as fast as the Cray-1 in scalar mode.

Results presented in Table 2 indicate that , for many programs, the Address Generation

Unit hardware offers higher performance than is necessary. This is particularly true in simu-.

lations where the C P program contains a large number of d a t a dependencies. When this is

the case, 'the M A P has less difficulty staying ahead of the C P because the CP1s instruction

issue rate tends to be slightly lower, and consequently, the rate a t which the C P consumes

' input operands is lower. T h e MAP is blocked over 50 percent' of the 'time by full address

queues in eight of the twelve Lawrence Livermore loop simulations. This fact suggests t ha t a

less complex hardware configuration for the AGU may be possible which for many programs

would not compromise the overall performance of the machine. Another possible means of

making more efficient u s e o f the AGU may be to. time-multiplex the MAP between two or

more CPs, each running separate code or, perhaps, parallel segments of. the same program.

Another obvious area for furthkf in'vestigation is t ha t of exa&ining the feasibility of

performing vector operations on the SMA architecture. I t would be straightforward to

implement vector instructions on the SMA machine described herein. \\'hat remains t o be

determined i s whether the machine would be capable of executing. vector operations a t a rate

comparable to, o r substantially faster than , existing' vector machines. \Ve believe tha t with

enhancements t o achieve comparable chaining, parallel execution, and peak memory

bandwidth, the SMA architecture could provide performance comparable t o state-of-the-art

vector supe rcomput~r s on yectorizable code, and higher performanck on scalar code.

REFERENCES . .

. .
[Ande67]

Anderson, D. W., Sparacio, F. J., Tomasulo, R. M., "The IBM System/36O'Model
91: Machine' Philosophy and Instruction-Handling," IBM Journal of Research and
Development, Vol. 11, No. 1, January, 1967, pp. 8-24.

[Cray77]
' Cray Research. ' CRA.Y-1. Computer System, CAL Assembler Version 1 Reference

Manual, Cray Research, Inc., Chippewa Falls, Wisconsin, 1977.

[Flyn72]
Flynn, hl. J., "Som.e Computer Organizations and Their Effectiveness," IEEE
Transactions on Computers, Vol. (3-21, No. 9, September, 1972, pp. 648-9130.

'

' [GHLP85]
Goodman, J. R., Hsieh, J . T., Liou; I<., Pleszkun, A. R., ~chechte'r, P. B., Young,
H. C., "PIPE: A VLSI Decoupled Architecture," 12th Annual International Sympo-
sium on Computer Architecture, June, 1985, pp. 20-27.

[Hamm77]
Hammerstrom,' D. W., Davidson, E. S., "Information Content of CPU Memory Re-
ferencing Behavior," ~ o h r t h Annual Symposium -on Computer Architecture, arch,

' 1977, pp. 184-102.

[HsPG84] . .

Hsieh, J:, Pleszkun, A. R., Goodm'an, J . R.,. "Performance Evaluation .of the .PIPE
Computer Architecture," Coinputer Sciences Technical Report No. 566, University

. .of Wisconsin, madi is on, IVisconsin, Nov'ember, 1984.

[Kahh83]
Icahhaleh, B. Z., "Performance Modeling and Enhancement of the Structured . .

. Memory Access Ar'chitecture," CSG Report No. 23, Coordinated Science Laborato-
ry, University of Illinois, .Urbana, Illinois, December, 1983.

. .

[ICuck78]
Icuck, D., Tile Structure of Computers and Comptitations, Vol. 1, John \Vilcy and
Sons, New ~ o r k , 1078. . '

[PaDi80]
Patterson, D. A., Ditzel, D. R., "The Case for the Reduced Instruction Set Comput-
er,,.' Computer Architecture News, Vol. 8, No. 6, October, 1980, pp. 25-33.

[PaSe81]
Patterson, D. A., Sequin, C. H., "RISC I: A Reduced Instruction Set VLSI Comput-
er," Eighth Annual Symposium on Computer Architecture, 1981, pp. 443-457.

[Ples82]
Pleszkun, A. R., "A Structured Memory Access Architecture," CSG Report NO. 10,
Coordinated Science Laboratory, University of Illinois, Urbana, Illinois, August,
1982.

[PSKD86]
Pleszkun, A. R., Sohi, G. S., Icahhaleh, B. Z., Davidson, E. S., "Features of the
Structured Memory Access (SMA) Architecture," Proc. IEEE Compcon, March,
1986, pp. 259-265.

[P 1D a831
Pleszkun, A. R., Davidson, E. S., "A Structured Memory Access Architecture,"
International Conjerence on Parallel Processing, August, 1983, pp. 461-471.

[6oDa84]
Sohi, G. S., Davidson, E. S., "Performance of .the Structured Memory Access (SMA)
Architecture," Proc. 1984 International Conjerence on Parallel Processing, August,
1.984, pp. 506-513.

[Sohi831
Sohi, G. S., "Memory Access Prediction, Execution Overlap and Branch Lookahead
in the SMA Arichitecture," CSG. Report No, 17, Coordinated Science Laboratory,
University of Illinois, Urbana, Illinois, July, 1983.

(Srnit821
Smith, J. E., "Decoupled Access/Execute Computer Architecture's," Ninth Annual
Symposium on Computer Architecture, April, 1982, pp. 112-1 19.

[Smit84]
Smith, J. E., "Decoupled Access/Execute Computer Architectures," ACM Transac-
tions on Computer Systems, Vol. 2, No. 4, November, 1984, pp. 289-308.

BIBLIOGRAPHIC DATA 2 3. Recipient's Accession No.
SHEET CSRD-59 7

1

I
15. Supplementary Notes

4. Title and Subtitle . .
.

The Strudkursd ~&mory ~cc@ss ~rdhitectdre: An ' ',

Implementation and performance evalutation

7. Author(s)

Joseph Cvr
9. Performing Organization Name and Address

University of Illinois at ~rbana-champaign
center for Supercomputing .Research and Development
Urbana, IL 61801-2932

12. Sponsoring Organization Name and Address

National Science Foundation, Washington, D.C.; and
u .'s . '. ~e~artment of Energy, Washington, D . C .

. .

... . .

16. Abstracts

5. Report Date

August 1986 -

6.

8. Performing Organization Rept.
No. CSRD-597

10. Project/Task/Work Unit No.

1 1. Contract /Grant NO.

US NSF-DCR84-10110;
DOE-DE-FG02-85ER25001

13. Type of Report & Period
Covered

Master's Thesis

14.

The Structured Memory Access (SMS) ,architecture implementation presented in
-this thesis is formulated with the intention of alleviating two well-known
inefficiencies that exist in current scalar computer architectures: address generati
overhead and memory bandwidth utilization. Furthermore, the SMA architecture
introduces'an additional level of parallelism which is not present in current . .

pipelined supercomputers, namely, overlapped execution of the access process and
execute process on two distinct special-purpose, asynchronously-coupled processors.
Each processor executes a separate instruction stream to perform its specific task
which, together, are functionally equivalent a conventional program. Our simulation
results show that, for' typical numerical programs, the access processor (MAP) is .

capable of achieving slip, i.e. running suficiently ahead of the execute processor
(CP so that operand fetch re uests for data items required by the CP are issued
earlv enough and raoidlv enouh for the CP rarely to experience any memory access

17: Key Words and Document Analysis . 170. Descriptors

Architecture
Performance-evaluation .

Decoupled access-execute
Memory accessing
Pipelining

wait time. In this manner the SMA 'tdlerates
long memory access
paths to memory without
Speedups relative
often exceed two, due
reductions in memory wait tiem.

I 17b. Identif iers/Open-Ended Terms

21- No. of Pages
7 0

22. Price

18. Availability Statement

Unlimited Distribution

FnRM N T I S , ~ ~ (ln .?n) USCOMM-DC 40329-P7 1

19. Security C l a s s (This
Rrpnrr)

IED
(This

Page
UNCLASSIFIED

