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ABSTRACT . 

The structured Memory Access (SMA) architecture implementation presented. in this thesis is for- 
mulated with the inteation of alleviating two well-known inefficiencies that  exist in current scalar com- . 

puter architectures: .address generation overhead and memory bandwidth utilization. 'Furthermore, the 
SMA .architecture introduces an additional level of parallelism which is not present in current pipelined 
supercomputers, namely, overlapped execution of the access proccss and ezecute process on two distinct 
special-purpose, asynchronously-coupled processors. The Memory Access Processor (MAP') executes the 
access process which is that  portion of the instruction.stream that  is involved in instruction and operand 
fctching .and storing. The Compvtation Processor (CP) performs the "useful" computations on the 
operands fetched by the MAP, 'i.e., executes those instructions that  perform computations and tests on 
program data. Each processor executes a separate instruction stream to perform its specific task which, 
together, are functionally equivalent a conventional program. 

By using simulation-results, the'MAP is shown to expedite processor-memory traffic by efficiently 
computing 'instruction and opcraid addresses using special-purpose pipelined function units (i.e., the 
Address Generation Unit and the Instruction Fetch Unit), and a t  the same time, reduces the demand on. 
me'mory bandwidth by requiring less interaction with memory to support the access process. Our simula- 
tion results show that, for typical numerical programs, the MAP is capable of achieving slip, i.e., running 
sufficiently ahead of the C?, so that  operand fetch requests for da t a  items required by the C P  are issued 
early enough and rapidly enough for the C P  rarely t o  experience any memory access wait time. In this 
manner the SMA tolerates long memory access time, albeit high bandwidth, paths to memory. without 
sacrificing performance. . . 

Comparison with the Cray-1' in nonvector mode shows that  the SMA architecture's features provide 
improved performance in ocalar processing over existivg high performance scalar machines. Since the C P  
is rarely required t o  wait for operands to arrive from memory, i ts instruction issue rate is improved and, 
hence, function unit utilization is increased. The "dual" instruction stream feature, .inherent in decou- 
pled access-ezecute architectures, enables each SMA processor's program to be significantly smaller than 
the conventional single instruction stream program and also frequently allows two instructions to be 
issued in a single cycle. Speedups, including reductions in memory wait time, often exceed two. 
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CHAPTER 1. 

Much attention is being given to  the development of computer architectures that  exe- 

cute vectbr and/or parallel programs efficiently.. The performance of these, supercomputers, 

however, is constrained by the well-known "Amdahl Effect." Code segments which are 

inherently scalar tend to  dominate the performance of many parallel programs on these 
. . 

machines.. Hence, i t  is an increasingly important objective in computer. design t o  develop 

architectures which exhibit high performance for scalar tasks. 

Current scalar architectures (e.g., VAX 11/780) do  not take full advantage of the regu- 

lar memory accessing patterns of most programs. The computation of operand addresses for 

array references, for example, typically constitutes a large portion of the CPU activity of 

many programs. Several memory references and arithmetic operations may be necessary sim- 

ply to  determine a single' operand address. For da ta  items contained in multidimensional 

structures, this overhead may constitute a substantial portion of the total execution 'time. 

More sophisticated scalar machines'(e.g., IBM 360/91, CDC 6600,. and many more recent 

high performance processors) address this problem by dividing program execution into I-unit 
. . 

'. and E u n i t  operations, and pipelining the flow through these units. Varying degrees of access 

and execution overlap are obtained depending on the density of dependencies in the instruc- 

tion stream. ~ h & h  the mechanics involved in computing operand addresses is not minim- . 

iied by this approach, 'memory accesswait time, as seen by the E u n i t ,  is reduced. I t  is clear 

from these machines that  substantial improvement in scalar processing performance can be 

achieved if the CPU overhead due to instruction knd operand addiess generation can be 



minimized so that  the fraction of time tha t  the C,PU is able t o  spend on computa- 

tions can be increased. Moreover, if the amount of memory referencing required to  support 

the I-unit were minimized, further performance improvement would result. 

Pipelining h k  been successfully used t o  exploit parallelism within scalar instruction 

streams. However, many vector supercomputers are admittedly inefficient when processing 

scalar tasks; they are effective only when used to  process vectordzable tasks. In this thesis we 

examine and develop an architectural technique, decoupled access-execute, used in the Struc- 

tured Memory Access (Sh4.A) and several other architectures t o  introduce a further special- 

ized level of parallelism. By splitting a conventional scalar instruction stream into two, the 

machine can execute the resulting streams somewhat independently on two asynchronously 

interacting processors. Figure 1 represents a high-level model of this type of architecture. In 

esscncc, a conventional program is div.ided into an access process and an ezeczite process 

[Hamm77]. Each instruction is. split into two distinct subtasks which are executed in paral- 

lei; jointly, they perform the original function. In addition, cach processor is specialized with 

.hardware features for efficiently performing its assigned tasks. Specifically, the Computation 

Figure 1. The SMA Organization - A high-level model. 
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Processor (Cp) contains multiple pipelined function units, and the Memory Access Processor 

(MAP) contains an Address Generation 'Unit and an Instruction Fetch Unit which are 
. . 

designed t o  .compute operand and instruction addresses efficiently while minimizing the total 
. . 

amount of memory traffic. The processors' perform communication and synchronization 

through hardware queues that  enable asynchr'onous execution of the access. and execute . . 

processes; T h e  key to  the high performance of this architecture is the ability of the access. 

to slip with respect. to  the computation processor, and run several i,nstructions,, 

ahead, thereby supplying a continuous stream of operands to  the computation processor 

which can then run udinterrupted. Studies have shown tha t  speedups 'of gre.ater than two , 
. . 

are possible for some of the Lawrence Livermore'loop benchmarks with. such a decoupled 

adcess-execute organization [HsPG84], [Sohi83], [Smit84]. 

In Chapter 2 we discuss specific organization and implementation issues of the SMA 

architecture. The Memory ~ c e e s s  Processor is treated in detail since i t  embodies the more 

novel aspects of the SMA architecture. We do not consider the particular design details of 

the Computation Proc'essor since the design of powerful arithmetic and-  logic units is well 

known. I t  .id sufficient, for our purposes, t o  assume that  the C P  has the i t t i ibutes  of.some 

existing high performance machine; hence, a Cray-like scalar C P  organization is discussed 

briefly. In Chapter 3 the results of detailed simulation experiments are discussed, and a per- ' 

. : formance evaluation, using t h e  Cray-i as a standard of comparison, is presented. overall  

conclusions .are presented in 'Chapter 4. 
. . 



CHAPTER 2. 

SMA SYSTEM ORGANIZATION 

T h e  SMA architecture is based on the fact that  programs can be split into an access 

process and an execute process. Each process is executed on its own processor, each of which 

contains specialized hardware features designed to  obtain high performance by exploiting the 

intrinsic characteristics of its associated process. A system block diagram of the SMA archi- 

tecture is shown in Figure 2. The  erno or^ Access Processor (MAP) executes the access pro- 

cess which is that  portion of the instruction stream that  is involved in instruction and 

operand fetching and storing. The Computation ~rocessor  (CP) performs the "usefulJJ com- 

putations on the operands fetched by the MAP, i.e., executes those instructions that  perform 

computations and tests on program data. This architecture is an adaptation of the organiza- 

tion originally proposed by Pleszkun and Davidson [Ples82], [PlDa83], [PSKD86]. The basic 

concept of SMA originated from the idea that  improved performance could be obtained by 

reducing the overhead of the access process and maximizing the overlap between memory . , 

access and computation. These objectives were addressed by investigating methods of rednc- 

ing the amount of memory referencing required t o  support the access process and executing 

. the two processes in parailel on distinct processors. Kahhaleh and Sohi each undertook per- 

formance modeling experiments, which helped to  identify system bottlenecks, and suggested 

enhancements to  the SMA architecture [Kahh83], [SoDa84], [Sohi83]. The SMA architecture . 

shown in Figure 2 also includes some features of the Decoupled Access/Execute architecture 

(DAE) proposed by Smith [Smit82], [Smit84]. The decoupled access-execute architecture has, 

also been under investigation for VLSI implementation [GHLP85]. 



~ o k ~ u t a t i o n  Processor Memory Access Processor 

. ' Figure 2. SMA Architecture Functional Block Diagram.. 

. . 

1n' this chapter we focus on the M A P  organization and iniplkrnentation issues. After a 

high-level overview of the operation of the SMA architecture, we discuss, in detail, some of 

the functional requirements and design tradeoffs, and the final iecommended M A P  organiza- 

tion. T h c  C P  organization is modclcd closcly after tho Cray-1 scalar architecture, and there- 



fore, is discussed only briefly. This  chapter concludes with programming example which 

highlights the salient features of the SMA architecture's operation and software require- 

ments. 

2.1. System Overview 

Program execution is initiated by the operating system by setting up the MAP Instruc- 

tion Fetch Unit (IFU) with information necessary to  load the OIB with the starting instruc- 

tion blocks of a program. Appropriate instruction blocks are sent t o  the MAP and the CP. 

Under the control of the MAP program, the Address Generation Unit (AGU) computes the 

addresses of operands tha t  will be used in the CP. An operand fetch is initiated when the 

AGU places an address in the Read Address Queue (RAQ). The Memory Controller responds 

t o  the fetch request by receiving the address from the RAQ, fetching the selected word from 

memory, and forwardin'g the word to  the CP's Input Data Queue (IDQ). The CP accepts 

operands from the IDQ, computes new values as dictated by the executing C P  program and 

places output values in the Store Data Queue (SUQ). 'l'he AGU also generates memory 

addresses for the output values computed by the CP, and places them, in the.Store Address . . 

Queue (SAQ). A write to  memory occurs when the corresponding SAQ and SDQ entries are 

bobh available a t  the heads of these queues. Memory requests are queued in the RAQ and 

.SAQ in the ,order in which their addresses are generated by the MAP program. The RAQ 

has priority over the SAQ, and new read addresses are checked against pending writes in the 

SAQ. Thus,  the correct sequence of memory references is maintained. In this manner, over- 

lap between the access and computation phases of a program is achieved; instruction and 

operand addresses are computed in the MAP concurrently with the processing of the C P  pro- 

gram. A more thorough description of the execution of an SMA program is given in 



. Section 2.4. . . 

T h e  execution paradigm outlined above is similar t o  t ha t  of the pipelined I -uni t /Euni t  

organization of the IBM 360191 which uses distinct function units f o r .  the  instruction- 

handling, and ixecutidn tasks. T h e  SMA architecture, however, differs from the Model 91  in 

tha t  each SMA processor executes a distinct instruction stream, which allows the processors 

t o  operate much more autonomously. Several performance enhancements are realized by this 
% 

approach. First,  i t  is known tha t  the scalar performance of most machines is constrained by 

the maximum instruction decode and' issue rate  of one per cycle [Flyn72]. T h e  effect of the 

so-called Flynn bottleneck is diminished ,in the SMA architecture by supplying two.physica1 ' ' 

instruction streams; one t o  each processor. With  this feature the SMA is able t o  double its , . 

maximum instruction issue rate. second, since the sources of C P  operands are contained 

only in the  CP Register ~ i l e  o r  the head o f t h e  IDQ, and the only destinations are the Regis-. 

ter File o r  the tail of the SDQ, the architecture of the C P  is particularly amenable t o  a RISC 

implementation [PaSe81], [PaDi80]. T h e  format of C P  instructions contain only opcodes and 

register tags; no addressing modes are required for memory referencing since this is taken 

care of by the' MAP. Benefits of a RISC implementation are a compact instr'uc'tion set  archi- 

tecture and more economical hardware and firmware implementation due t o  fewer and 

simpler instructions. Third,  though the usual d a t a  dependency and hazard, problems exist in 

. . 
the C P  instruction stream, the SMA architecture is able t o  speed up memory accessing by ,  

forwardilig some previously computed operand results back. t o  the C P  quickly by implement- 
. . 

ing store-fetch forwarding in the MAP. By examining the contents of the SAQ for each read . 

request, some memory.  referencing can be eliminated. An associative search of the SAQ 

determines whether the AGU has generated a read address t ha t  matches a previously gen- 

erated store address t ha t  is still enqueued. When th.is condition is detected, the associative, 



search logic signals the Memory Controller to  abort the memory read request and forward 

the corresponding da ta  item from the SDQ back to the CP's IDQ. If an RAQ-SAQ match is 

found, b u t  the corresponding SDQ entry 'is einpty, the Memory Controller waits .for the data  

item t o  arrive. and; in the meantime, is free t o  service the instruction fetch queue. Data for- 

warding can be resolved in the MAP, and no special tagging is required. This technique is 

. similar to the forwarding tha t  occurs with the "multi-access feature" of the IBM 360191 

[Ande67]. 

As a result of the d a t a  buffering that  takes place in the hardware queues, the processors 

are capable of running asynchronously. The MAP can execute several instnlctions aahea.rl nf 

the C P  limited only by 1) one of i ts  queues becoming full, 2) the occurrence of a da ta  depen- 

dent branch which requires information from the CP,  via the Branch Queue (BRQ), in order 

t o  determine the flow of control, or 3) Llie situation where the access process contains more 

instructions and, consequently, runs slower than the computation process. Note tha t  the 

first possibility does not present any performance degradation since i t  does not cause the C P  

to '  wait. A significant advantage of the SMA architecture is that ,  in the absence of da ta  

dependent branches which need to be resolved in the CP, the MAP instruction stream experi- 

ences few da ta  dependencies (see Section 3.2). This is a result of the fact tha t  most of the 

information necessary t o  support the access process is contained within tables in the AGU. 

.After the AGU tables are initialized no further infnrrnw.t8ion is required from the main 

memory, and few instructions depend on previously issued instructions tha t  require more 

than one cycle t o  execute. These phenomena, in the absence of the limitations sited, will 

enable the MAP t o  slip ahead and prefetch operands for the CP.  



Branch control must be coordinated between the t w o  processors such tha t  each per- 

forms similar branches within its own instruction stream. Data  dependent branches may be 

resolved in either the C P  or the MAP. Conditional branches based on the value of program 
. . 

d a t a  contained in 'a memory location, or in a general purpose register, are resolved.in the C P  

and .communicated t o  the MAP by transmitting a bit to  the MAP'S BRQ. Conditional 

branches based on loop indices, or da ta  structure dimensions, are resolved in the MAP and 

communicated t o .  the C P  similarly. For example, a common high-level programming con- 

struct is tha t  of a Fortran DO loop. that  repeats until a loop index reaches its final value. 

For each iteration, the MAP tests a n  index rbgister to  determine whether the loop has been 

completed and sends an appropriate bit to  the CP's.BRQ to  indicate the outcome of the test. 

The  'CP first executes its instructions corresponding t o  the DO loop; then executes a bjq 

(Branch From Queue) instruction. The bfq instruction causes the control. unit either to 

branch back t o  the beginning of the loop and reexecute the loop instructions, or to  continue 

with the next sequential instruction, depending on the bit value a t  the head of the BRQ. 

Thus, for cach iteration of the loop, the C P  determines whether . to  exit the'loop based on 
. . 

queued branch test 'outcome information supplied by the MAP. The opposite case of a 

branch resolved in the C P  is handled similarly; however, in this case the W executes the 

bjq instruction a t  the end of each loop iteration. For performance reasons i t  is  desirable to  

permit the MAP t o  maintain slip by producing code wherein the maximum number of condi- 

tional branches is resolved solely . . in the MAP. A branch instruction that  is resolved in the 

C P  requires the MAP to  stop .and wait for the C P  to  "catch up" and transmit the outcome 

of the branch test. The  MAP must suspend operand fetching during this interval; hence, the 

steady stream of operands to  the C P  is interrupted. After the branch is resolved in the CP,  

the C P  will experience a memory wail tirrie, slightly longer than the memory cyclc timc, 



waiting for the stream of input operands to  resume. During this process, all slip is lost while 

the C P  catches up, but  once the branch is resolved, the MAP attempts t o  restore slip again. 

In contrast, the outcome of a branch test tha t  is resolved in the MAP is generally determined 

before the CP reaches the bjq  instruction. The MAP can proceed with instruction and 

operand fetching without delay, and the C P  can resolve i ts  bjq instruction in a single cycle. 

The  MAP effectively performs branch lookahead for the UP and thereby maintains its slip in 

this case. 

T h e  peak performance of the SMA architecture is achieved when the C P  is constantly 

supplied with operands (i.e., the IDQ is never empty). When this is the case, the C P  never 

experiences any delays waiting for the memory to respond to  operand fetch requests, the 

major cause of C P  wait in conventional machines. We do  not expect the SMA architecture 

to achicvc this idcal operating flow continuously, due to  branching and various overhead fac- 

tors such as  setting up the AGU and IFU; however, .we do expect fairly long bursts of execu- 

tion a t  peak rate. This expectation is justified by simulations tha t  show speedups in excess 

of two for some programs, due t o  a combination of effe.ctive parallelism (less than two) and . . 

reduction of memory access wait time in the CP.  

2.2. Memory Access Processor 

'l'he Memory Access Processor (MAP) is a special purpose processor designed to  reduce 

the dem,and on the memory syste'm bandwidth and. t o  expedite instruction and operand fetch- 

ing by employing efficient hardware mechanisms for generating addresses. The main perfor- 

mance objective in the design of the MAP is t o  issue operand fetch requests a t  a rate 

sufficient t o  keep the Computation Processor (CP) continually active. This goal implies 



fetching operands from memory a t  a rate equal t o  that  which the C P  consumes operands 

'from the IDQ. If this objective can be achieved, the C P  will run a t  the rate a t  which it can 

perform register transfers, and memory access will appear ' to  be transparent. Ultimately, it 

would .be desirable to  stream operands t o  the C P  a t  a rate that  allows the C P  t o  perform 
' 

computations approaching the speed of a vector machine with a single memory port. For 

this t o  be.possible, i t  is necessary for the MAP to  issue fetch requests a t  a rate approaching . 

one per 'cycle, and for the C P  to  contain pipelined function units and a sufficient number of 
' 

internal registers. 

The  MAP contains three main function units: The Address Generation Unit (AGU) 

computes operand addresses, the Instruction Fetch Unit (IFU) computes instruction 

addresses, and the Operand and Instruction Buffer (OIB) stores the MAP program instruction 

blocks and immediate operands. Special purpose registers in the AGU are used to  hold loop 

count variables, base addresses of scalar da ta  are&, and da ta  structure parameters. These 

AGU operands are fetched with special load instructions. On arrival a t .  the OIB, these 

operands bypa& the buffer and are stored directly into the AGU registers. Arithmetic 

hardware in the AGU generates operand addresses from the information stored in .its regis- 

ters, and most addresses are computed without the need for additional in'formation from . 

main memory, once the AGU information is initialized. The IFU executes prejetch instruc- 

tions which cause instruction fetch requests to  be issded for instruction blocks that  will be.' 

needed,by the MAP and the CP.  The OIB receives the MAP instruction blocks fetched by 

the IFU. Instruction blocks containing loops are trapped in the OIB which enables the MAP . 

to. reexecute loops in a manner similar t o  the loop mode 'execution of the IBM 360191 . 

[Ande67]. The OIB achieves a high hit ratio due to  the deterministic' prefetching of instruc- 

tions. Hardware queues buffer the memory requests produced by the AGU and IFU, and. 



smooth the interface between the processors and the memory subsystem. 
I 

In the next three sections we discuss the functional implementation of the three main 

units tha t  make up the MAP and address some of the overriding issues affecting the instruc- 

tion set  design and system software requirements. 

2.2.1. Address Generation Unit 

T h e  Address Generation Unit (AGU) is an  arithmetic function unit used to  compute the 

addresses of scalars, vectors, and multidimensional da ta  structures. Operand addresses gen- 

erated by the AGU are placed in the RAQ o i  SAQ depending on whether tlre address per- 

tains to a read request or a write request, respectively. Our goal in the design of the AGU is 

t o  issue one read or  write request per memory cycle, thus, making most efficient use of the 

memory bandwidth and maximizing the rate of operand transfer t o  the CP. This require- 

ment virtually dictates a pipelined implementation since address generation typically requires 

tha t  several arithmetic operations be performed for each memory reference. Also required is 

a fairly large register set tha t  holds vector parameters, indices, and base addresses. I t  is 
' 

essential to maintain this information in fast registers in the AGU in order ' to reduce the 

amount of memory referencing required to obtain information needed t o  generate operand 

addresses [Ples82]. In addition t o  these special hardware requirements, i t  is necessary t o  

define several special .instructions for controlling the access process. These are discussed after - .  

the functional behavior of the AGU hardware is presented. 

In general, computation of the address of an arbitrary element in an n-dimensional data  

structure requires n -1 multiplications and n additions. Since da ta  structures are usually 

accessed in a nonrandom fashion, we can streamline the address computation process by stor- 



. . 

ing some intermediate information'(e.g., .base addresses of da ta  structure subdimensions and 

, , . . last address computed). There are.many hardware configurations for performing the 

necessary arithmetic. The main tradeoff to  be considered is hardware complexity versus 
. . 

software complexity. ~ b r e  powerful hardware capability generally reduces the burden placed 

on the software, whereas an  economical hardware. implementation tends to  put more 

demandson  the compiler. Furthermore, greater ,computational flexibility and ease of 

grammi& can be obtained i t  the cost o i  greater register requirements and a more complex 

instruction set architecture. In what. follows, we examine several possible AGU implementa- 

tions and the tradeoffs that  .we considered before reaching our final design 'decisions. 

In the SMA architecture, values in memory are considered to  be one of three types: 1) 

instructions, 2) scalars, or 3) vectors and multidimensional d a t a  structures. Instruction 

address generation is considered in the discussion. of the Instruction Ft tch  Unit in the next 

subsection. The AGU computes addresses for the l i t te r  two. 

T o  generate addresses of scalars efficiently, the AGU contains a small set.of Scalar Base 
. . 

Registers (SBR) which can be dynamically loaded by software. ' Scalar d a t a  items are 

grouped into blocks by a compiler, and the base.addresses of scalar da ta  areas are loaded 

into SBR entries. References t o  scalars are performed by specifying an SBR and a displace- 
* 

ment in conjunction with the jetch (or store) instruction. In essence, g o u p s  of scalars are 

treated like one-dimensional arrays. Displacements are relatively small integers requiring 

just a 'few bits for encoding; thus, any scalar reference can be specified in a single word . 

instruction where the displacement is immediate data,  and the base is indicated via an SBR 

tag. The AGU can compute the effective address of a scalar and issue a fetch request, simply 

by adding the displacement contained in the instruction to  the contents of the specified SBR 



. a n d  placing the result in the RAQ. In this case, the only computation that  is required is a 

single addition. T h e  SBRs are also used to  contain argument and stack pointers for subrou- 

tine and interrupt processing. 

~ e n e r a t i h n  of addresses for the elements of a vector or multidimensional da ta  structure 

requires knowledge of the base address of the structure, the stride of each dimension, and the 

values of indices used t o  select a specific element.   he AGU contains three sets of registers 

t o  hold this information. The  Structure Definition-Table (SDT) contains the characteristic 

.parameters for one or  more da ta  structures, i.e., the base address and the dimension strides. 

The  Access Pattern Table (APT) contains information that  associates index registers with 

the particular dimensions of da ta  structures defined in the SDT. Each A P T  entry also con- 

tains an offset value which is used t o  modify index values prior t o  address computation. This 

caffset feature is frequently useful in numerical applications where index values, used to select 

particular array elements, are commonly modified by some small integer (e.g., A(i,j+l) ). 

Index'Registers (IR) contain the current value, final value, and step size of index values used, 

for example, in DO loop constructs of Fortran . programs.. . 

As a preliminary design for the AGU organization, we considered the hardware required 

for a pipelined implementation of the straightforward multidimensional array address compu- 

tation algorithm (i.e., n additions and k -1 multiplications for each element of an 

n-dimensional structure). A finction unit that  implements this algorithm is shown in Fig- 

ure 3. This AGU implementation contains much flexibility in addressing arbitrary elements 

of n-dimensional d a t a  structures and, a t  the same time, requires minimal effort from the ' 
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Figure-3. Address Generation Unit - An Initial Implementation. 

compiler to  generate code. Note that  no effort was made to  take advantage of the generally 

nonrandom nature of memory referencing present in most programs. As a consequence, the 

resulting hardware and control sequencing are relatively elaborate. 



T o  fetch a d a t a  structure element requires specification of an SDT entry that  contains 

the base. address of the structure, in conjunction with the fetch instruction. T o  compute . 

the effective address of an  element of ai n-dimensional da ta  structure, the  index values for 

each dimension (modified by A P T  offsets, if necessary) are multiplied by the corresponding 

strides and successively added to  the base address of the da ta  structure. T h a t  is, 

n 

EA = B1 + CSil'(Ii - + Oi), where B, is the absolute base address of the da ta  structure, and 
i =l 

Ii, Oi, and Si are the index, offset, and stride, respectively, of the ith dimension. The base 

addresses and strides are stored in the SDT, offset values are stored in the A P T  Offset field, 

and the index values are stored in the 1K Current Value field (see Figure 3) .  Each SDT regis- 

ter contains two pointers: one points to  the appropriate APT register, which ,is used t o  

enable the correct Offset and IR Current Value, the other points to  the successor SDT entry, 

which indicates the registers to  be used in the next phase of the computation. The control 

unit cycles through SDT entries until a null SDT pointer is encountered, and the summation 

is accomplished by the feedback loop a t  the s e c ~ e d  adder; Every data s t r ~ c t ~ i i r e  address is 

essentially computed "from scratch." No intermediate addressing information is retained, 

and no assumptions are made about the next address computation. Note that  multiple da ta  

structure definitions in the SDT with similar traversal characteristics may share common 

A P T  and IR registers. 

- As a simple example of how address generation takes place in this unit, consider the 

computation of the address for an array' element A(2,5), where A is a 32 X 3 2  matrix. This 

d a t a  structure is two-dimensional; therefore, three SDT entries are used: one contains the 

base address of the array A, and the other two contain the strides of the two dimensions. 

During the first cycle, the index register containing the Current Value 2 is gated into the first 



adder along with the corresponding A P T  Offset, which is 0 in this case.   he IR and .APT 

registers containing these values are enabled by the A P T  pointer'.in the SDT entry which 

contains the .B&e Address of A (refer to  Figure 3). The 'base  address of A is sent t o  the 

second adder . ~ u r i n ~ t h e  second cycle, the SDT entry containing the stride of the first . 

dimension, which has the value 32, is gated to  the multiplier along with the result of the first . 

adder, which is simply 2. At  the same time, this SDT entry enables the index register con- 

. taining the Current Value 5,. via its corresponding A P T  register, which, .again, contains an 

Offset of O. O n  the third cycle, the SDT entry containing the stride of the second dimension, 

which is just 1, is sent t o  the multiplier along with the result of the first adder which is 5, 
. 

. . 

and the result of the previous multiply, 64, is forwarded to  the second adder to  6e added to 

the base address of the structure. On  the final cycle, the result of the second multiply, 5, is 

forwarded t o  the second adder to be summed with the result of the previous addition a t  that  
I 

adder, which was the base address of A plus 64. The result of this final addition is the base 

address 0f.A plus 69, which is the address of A(2,5). This result is then placed in ' the RAQ. 

(Note that  this algorithm assumes that  the array subscripting ranges from 0 to 31.) 

~ l t h o u ~ h .  this may not seem like a particularly expedient approach; there are some 

redeeming advantages. Because of the independence of each address computation, completely 

random references can be generated, i.e., index values can be modified arbitrarily between 

memory references with no additional overhead. This random access support is a very usehl  

feature for some .applications, and one that  current vector processors do not have. .The 

requirements placed on the compiler are simply to  compute the stride of each d a t a  structure 

dimension from the high-level. language declarations, determine the correct pointers for each 

SDT entry, and generate instructions t o  load these values into the SDT prior to  use. Simi- 

larly, the A P T  and IR entries are taken directly from the source statements of the high-level 



programming language. Disadvantages of this implementation are that  a good deal of multi- 

plexing is required a t  the adder inputs, and the algorithm to  control the -sequencing of the 

computation is fairly complex. Furthermore, inclusion of multiplication hardware is undesir- 

able in terms of cost and speed, and the summation process that  takes place in the feedback 

loop requires several cycles (one for each dimension) causing the algorithm t o  be slower than 

we require. 

2.2.1.2. An AGU Implementation with Intermediate Addresses 

T o  streamline the address computation algorithm, we can do two things: eliminate the 

multiple cycle summation, and eliminate the need to  perform multiplications. The  former 

can be achieved by retaining information from previous computations. For example, access- 

ing a; ':two-dimensional array car1 be treated like a vector if an intermediate address, 

representing the base of the second dimension, is retained for use in subsequent address cal- 

culations. With respect t o  a convcntional innermost loop, all accesses to  ae array lie within 

a single dimension, and are some offset distance (derived from the inner loop index, J) from 

this intermediate base address. T h e  base address of the second dimension (B2) is a function 

of the absolute base address of the data  structure (B,), the stride of the first dimension (S,), 

the index governing the first dimension ( 1 ,  and the offset of the index value (0 , ) )  i .e . ,  , 

.B2 = B,, + S1,(I + 0,) .  Each time 1 is incremented in the outer loop, B, must be recom- 

' 
puted. The  effective address of. an array element can now be computed in a single pass 

through the pipeline; EA = B2 +S2'1(J + 02) .  Generalization of this technique to  higher- 

dimensional da ta  structures is obvious. 



. ' 
Figure 4. AddressGeneration Unit with Intermediate Base Addresses. 

. . 

Figure 4 shows modifications to  the AGU organization t o  support the address computa- 

tion algorithm just described. In this organization, the SDT associates a base address and a 

stride for every dimension of each da ta  structure. Each address computation involves only 



the highest dimension SDT entry; therefore, i t  is no longer necessary for the SDT registers to  

maintain links t o  subsequent entries. Furthermore, the binding of A P T  and SDT entries can 

be established a t  compile time as a part of the normal register allocation' activity, so explicit . 

pointers t o  A P T  registers are also unnecessary; however, instructions that  cause addresses to  

be computed must now specify an  APT register in addition t o  an SDT register. Finally, the 

output of the second adder is now available & an input to  the SDT in order t o  update subdi- 

mension base addresses. T h e  computation of an operand address is initiated by the fetch (or 

.qtnra) in~t~rnct inn  with the 86)T and APT registers oorroeponding to  thc highest dirncnsian 

specified. The  compiler is expectcd to insert instructions to  recompute subdir~iension base 

addresses as required. 

2.2.1.3. An AGU Implementation with No Multiplier 

The  necessity of performing multiplications can be eliminated in several ways. If the 

Base Address field of an  S D T  entry for the highest dimension is used to  store the address of 

the last d a t a  item accessed, rather than the base address of tha t  dimension, then subsequent 

addresses in the inner loop can be computed by adding the stride of the highest dimension to ' .. 

this value. Such an AGU is shown in Figure 5. Each.new address that  is generat'ed is also 

stored back into the SDT entry representing the highest dimension base address. Here again, 

whenever an  index governing a lower dimension is modified, the base addresses of all higher 

dimensions must be recomputed., This algorithm is very efficient in terms of hardware and 

control for very regular accessing patterns; however, it lacks flexibility in accessing when less 

regular patterns are required. One particular drawback is tha t  the address calculation is 

independent of the index values. A program cannot modify index values without immedi- 

ately'updating the appropriate SDT registers, regardless of whether an operand address is to 
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Figure 5. Address Generation Unit with N o  Multiplier. 

be generated. For  example, consider a DO loop where the instructions of the loop are con- 
. . 

tained within a conditional IF statement. Fo r  this common situation, operand fetches are 

required only. for iterations when the IF condition is true. In this implementation, however, 
. . 

the S D T  values must  always r'eflect the current s ta te  of the corresponding index registers 

nand, therefore, must  be modified in every loop iteration since ' they cannot be computed, 

whereas in the previous AGU design, the computation of subdimension base addresses can be 

performed just on iterations where actual operand fetches are .required. T h e  use of index 

oifsets is also complicated. A larger conlputational overhead can be incurred using this 



approach.. For some programs the access process may contain enough unnecessary address. 

computation tha t  the MAP becomes the system performance bottleneck. Furthermore, this 

technique tends to reduce the addressing capability of the machine to that  of a vector proces- 

sor, which can efficiently access only a sequence of data  items that  are separated by a con- 

s t an t  stride. 

2,2,1,4/ The E'inal AU U implementation 

A second technique for eliminating multiplications is to  normalize the index register 

values and A P T  offsets t o  integral multiples of the stride of the dimension for which the 

index value is used. For example, in the two-dimensional case, the Current Value, 11, varies . 

from 0 to (N1 - l )S1 in increments of S1, where N1 is the upper bound (Final Value) of the 

outer'loop, and I2 varies from 0 to  ( N 2  - 1)S2 in increments of S2,  where N2 is the upper 

bound of the inner loop. T h e  Step Size of each IR .is set equal to  the dimension stride, and 

the A P T  Offsets corresponding to I, are also normalized t o  multiples of S,,. Now the corn- 

putation of B2 is reduced t o  B2 = Il + O1 +B1, and the effective address of an array ele- 

ment is EA = I2 + O 2  + B2. Multiplication of the sum of the current index ,value and the 

offset by the dimension stride, as is performed in the first two AGU implementations, is no 

longer necessary since this is implicitly done each time an index value is incremented. Simi-. 

'larly, i t  is no longer necessary to store the stride of each dimension in the SDT since these 

values are now contained in the IR Step Size field.. This feature reduces the size requirement 

of the S D T  by 'approximately 50 percent. Furthermore, the loop index values can be 

modified arbitrarily between address computations. . '  



These normalizations can easily be accomplished by the compiler; however, they tend to  

l imi t  the amount  of IR a n d  A P T  sharing t h a t  can occur between d a t a  structures,. and conse- 

quently more index register space is required. For 'example, if two arrays are accessed in a 

i nested loop, one in row-major order, the other in column-major order, a particular index ! 

variable will index the first dimension in one array, and the second dimension in the second 

array. Since the two dimensions have 'different strides and final values, the same IR cannot . 

he used ' t o  compute addresses for both arrays. Th i s  problem can be solved by maintaining 

separate index registers for each array, with each being incremented by i ts  corresponding 

stride. Th i s  "dual" index'can be set  up and maintained by the compiler, and need not be . 

reflected in the high-level programming language. Either of these index.registers may be 
. 

selected for the loop exit test. . T h i s  situation is actually quite common in conventional corn- 

. . puters, and is handled by using more than one index register (if available) and several incre- 

* 
ment instructions per loop iteration. 

. . A block diagram of this final AGU design is shown in Figure 6. T h e  AGU contains the :?. 

usual four register sets  'and two adders in cascade.. This  implementation does not fully real- 

ize the design 0bjectiv.e of generating one operand address per cycle due to the pipeline being . . .. 

used to. perform functions other  than address generation, but ,  as shown in Chapter  3, the . 
. 

overall performance is generally good. In addition t o  computing operand addresses, the AGU. 
' 

pipeline also computes the addresses of operands required t o  initialize the AGU tables, corn-. 

putes the addresses of d a t a  structure subdimensions, increments (decrements) the index regis- 

ters, and tests  the IR Current 'Values against the Final Values in order t o  set  branch signals. . 

T h e  cascaded architecture is very useful in implementing a pipelined increment and branch 

instruction used for program control. After the first adder performs the increment opkration, 
' 

the result is simultaneously stored back in the IR .cur rent  Value 'field and routed t o  the 
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Figure 6. Address Gel~eration Unit - The Final Design. 

second adder along with the Final Value where the branch test is performed. The multifunc- 

tionality of the pipeline limits the address generation rate to  be somewhat less than one per 



clock, but  i t  also significantly reduces the complexity of the hardware. 

. . 

T o  compute addresses of elements of an n-dipe'nsional d a t a  structure, n S'DT entries 

are used. o n e  entry contains the absolute base address of the d a t a  structure, and the 

remaining n-1 entries . . contain the addresses of subdimensions within the d a t a  'structure. 

Each' subdimension base address is associated with a particular index register and is modified 

by multiples of the  stride of the corresponding dimension as  the program progresses. T h a t  

is, each time an index register for a given dimension is 'incremented, the higher-dimensional , 

base addresses are recomputed by additional instructions. T h e  hierarchical relationships of 

the S D T  registers corresponding t o  each dimension of a d a t a  s tructure are determined a t  
. . 

compile time as registers are allocated. Overhead is reduced by assigning the most fre- . 

cpently changed index t o  the highest dimension. T h e  compiler also normalizes the Final 

Values, Step Sizes, and Offsets t o  integral multiples of the strides of d a t a  s tructure dimen- 

sions for which they are used. All of these registers'are loaded under software control. 

2.2.1.6. ~ d d r e s s  Generation > 

. . 

As a simple example of address generation i n  the MAP, consider the fetching of theele-  

ments of every third row of an N X N matrix in row' major order.' T h e  high-level MAP , 

software t o  accomplish this task might be the following: 
. . 

F O R I = l  t o N B Y 3 D O  
F O R  J = 0 t o  N-1 D O  

FETCH A(1, J+1) . . 

END 
END 

. . 

e Note t h a t  the  s tructure of the inner loop (i.e., using J+l for 0 5 J 5 N-1) is unnecessarily 

complicated; however, i t  is useful for illuctrativc p u r p o ~ o .  



T h e  A matrix is two dimensional; therefore, two SDT entries are initialized. The first 

S D T  register is loaded with the base address of the first dimension (B,), which is the absolute 

base address of the d a t a  structure. The second SDT entry contains the' base address of the 

second dimension, .B2, which is defined to be B1 +I + 01 ,  where 0, is 0, and I is initially 0, 

and ranges from 0 to (N-l)S1 in increments d S1 as the program runs. The base address of 

the second dimension, then, varies as a function of I (B1 and O1 are constants); each time 

index I is altered, B2 must be recomputed. The SDT cntry corresponding t o  B1 (say, s d t l )  

is associated with an  APT entry (aptl) ,  which contains an Offset equal Lo 0, and a pointer to 

the index register containing I. Initially, this index register has a Current Value of 0, a 

Final Value of ( N  - l)S,, and a Step Size of 3*S1. The second SDT entry (sdt2) points t o  an 

A P T  entry (apt2), with Offset, 02, equal to l*S2, and a pointer t o  the index register contain- 

ing J. T h e  J index register has a Current Value of 0, a Final Value of (N - 1)S2, and a Step 

Size of S2. The normalized Offsets, Final Values, and Step Sizes of indices are determined a t  

compile time from the loop bounds and d a t a  structure declarations. 

In this example we have assumed tha t  S1 = N, and S2 = 1; however, this need not be 

the case. In general, each d a t a  structure element can be of any length, and the loop bounds 

are not necessarily required to coincide with the d a t a  structure dimensions. Arbitrary iubar-  

rays can be accessed, with any ordering of the dimensions, by adjusting the initial and final 

values of index registers and assigning them t o  the dimensions of the sti-ucture appropriately. . 

Th'e execution of a fetch instruction for array element A(I,J+l) is initiated by an 

assembly language instruction such as: 

fetch sdt2, apt2 

T h e  specified A P T  register (apt2) enables the index register corresponding t o  J. The  Current 



Value of J and the offset' contained in- apt2 are gated into the first adder:. The result is 

gated t o  the second adder along with BS, the base address of the second-dimension., contained 

in sdt2. The  result of the second adder, the address of A(I,J+l), is demultiplexed t o  the 

RAQ which completes the address generation process for one da ta  element. . . . . 

T o  implement the complete code segment, we also need to  initialize and in'crement the' 

ippropriate index registers, recompute B; as I changes, and conditionally branch t o  'the 

beginning of each loop. Thefollowing code i s  representative of the corresponding MAP. pro- .. 

gram. 

. . 
1. setup x l ,  (shrl) 
2. outJoop: setup x2, 3(sbrl) . . 

3. comp 'sdt2, sd t l ,  apt1 
4. . inJoop: fetch sdt2, apt2 
5. inc . x2, inJoop 
6. inc ' x l ,  outJoop 

The two setup instructions load the index registers.xl, and x2, with initial information from 

memory corresponding to  the I and J indices, respectively. The location of this information 

in memory is determined by adding a displacement t o a  previously,.loaded SBR. The  comp 

instruction c6mputes B2 (stored in sdt2) from B l . ( s d t l )  and I (pointed t b  by apt l ) .  . The 

inner loop is comprised of instructions 4 and 5. After initiating the operand fetch, the index . 

register corresponding t o  J (x2) is incremented by i ts  s t ep  Size and compared to  its Final. 
3 .  

Value. As long as the Final Value is not reached, a branch t o  the label inJoop is taken;. 
.: 

otherwise, the program proceeds sequentially. The second dnc instruction is reached when the 
. . . .  . . 

inner loop exits. I t  increments I and closes the outer loop.  Note that  the index register con- 

taining J is reinitialized and B2 is recomputed whenever the outer loop is executed. Addi- 
. . 

# 

tional instructions (not shown) are required to  initialize the SDT and A P T  registers. These 

instructions are functionally similar to  the index register setup instruction, and must be 
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executed at' some time prior t o  executing the above code segment. 

2.2.2. Instruction Prefetching 

The  instruction streams executed by each processor are segmented into a sequence of 

instruction blocks [Ples82]. Briefly, a basic instruction block is a maximal-length ordered set 

of instructions such tha t  all entry points into the set are to  the first instruction, all exit 

points from the set are from the last instruction, and all instructions within the block are 

ttxeculerl saque~lLially. We have expal~rlerl UII Lllis rlefilliliou Ly elin~inaliug lhtr requir t r~~~eul  

tha t  the instructions in a block be strictly sequential; complez instruction blocks may contain 

branch instructions as long as the targets of the branches are also within. the same block. 

With this generalization, complex instruction blocks may contain nested loops, two or more 
, 

adjacent loops, reconvergent branch trees, or combinations of these constructs and sequential 

code. Any instruction block tha t  does contain a loop, however; must be terminated by a con- 

ditional branch or  other specialized instruction that  initiates an instruction block purge 

operation in the instruction buffer. Instruction block handling is discussed in the next sec- 
. . 

tion. The  upper bound on the number of instructions in a block is determined.by the size.of . , 

the instruction buffer that.receives the block. 

Conceptually then, a program can be considered to  be a logical sequence of instruction 

blocks. Program control flow can be modeled by a directed graph, usually containing cycles, 

where each vertex represents an instruction block.. In general, control flow from one instruc- 

tion block t o  the ,next can be.generalized to  three cases. A block can be terminated by 1) . . 

any nonbranch instruction, or  2) an unconditional branch instruction, where, in both cases, v 

there is only a single successor block, or 3) a conditional' branch, in which case two possible 



successor blocks exist. Given tha t ,  from the program graph, the control flow of any program 

is relatively predictable, i t  would seem advantageous t o  exploit this inherent program struc- 

ture. In the SMA architecture we implement a rnechanismto initiate prefetching of instruc- 

tions into a high-speed buffer (OIB). This  is accomplished by including a prejetch instruction 

as par t  of the basic instruction set  of the machine. Each M A P  instruction block contains a t  

least one prejetch instruction which initiates the fetching of its successor .instruction blocks. 

~ a c h '  MAP instruction block also contains the necessary prejetch instructions required t o  
' 

fetch the  corresponding C P  instruction blocks. W e  rely on the compiler t o  delineate instruc- 

tion blocks and t o  insert prejetch idstructions into the MAP insti-uction .stream such tha t  the 

correct instruction blocks are fetched prior t o  being demanded .for execution by the proces- 
f 

sors. Th i s  method of buffering instructions is very efficient since the. prefetching is not 

hueristic, and only those instructions tha t  are in the immediate flow of program control are 

I fetched. 

T h e  control unit identifies prejetch instructions and issues them t o  the Instruction Fetch 

Unit (IFU). Figure 7 illustrates the d a t a  flow of the. IFU. T h e  prefetch instruction specifies 

the s tar t ing a d d r c n  (Block Addr) and the length (Block Len) of instruction bloeks. T h e  

star t ing address can be specified as. immediate d a t a  in the second word of a tweword  

instruction, o r  as an  offset, to' be 'summed with t h e  contents of an SBR, in a singleiword 

. . 
. . ' instruction. T h e  IFU generates sequential addresses corresponding t o  the words of the,  

instruction block and p laces ' the  addresses in the Instruction Fetch Queue (IFQ). The  
' 

. . 

Memory Controller services the requests in the I F Q  and routes the fetched instruction words 

to. the OIB o r  the C P  Instruction Buffer. , 
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Initially, the instruction block address is loaded into the lnstruclion Address Register 

(IAR), and the sum of the block address and the block length is loaded into the.End-Of-Block 

Register (EOB). O n  successive clock.cycles the contents of the IAR are transferred to  the . . 

Instruction Fetch Queue (IFQ), and the result of the adder (lAK + 1) is gated back into the 

.IAR. A comparison of the contents of the IAR and EOB indicates the completion of the 

address sequence by asserting the signal done. This signal indicates t o  the control unit that  

another prejetch instruction can be issued. The  IFU is required t o  stop generating addresses 

temporarily whenever the IFQ becomes full. The wait signal indicates this condition. 

Analysis of program graphs for a wide range of application programs has shown that, 

on the average, the size of basic instruction blocks is on the order of.  five or less [Kuck78]. 



This  fact suggests t ha t  we can compute the EOB and increment the IAR with a simple .4 bit 

adder and carry propagation logic. This  approach would result in. an economical hardware 

implementation, but  the maximum,block length would be limited t o  sixteen. Another possi- 

bility would be t o  integrate the IFU with the AGU by sharing one of the AGU's existing 32 

bit adders. T h e  AGU would be inhibited .whenever the IFU .is active (done =. 0) and not 

stopped (wait = 0). Our  simulation results, show t h a t  the performance degradation resulting . 

from the AGU being. interrupted t o  allow the IFU t o  fetch inst'ructions is.negligible (<l%) 

when the instruction buffer (OIB) is large enough t o  contain all the instructions of inner loops 

for programs dominated 'by .inner loop execution. Use of the full-precision AGU for IFU addi- 

tions allows the  instruction blocks t o  be larger, which is particularly desirable for t he  larger 

complex instruction blocks permitted here, without significant additional hardware cost. 

2.2.3. Operand and Instruction Buffer 

T h e  Operand and Instruction Buffer (OIB) is a high-speed circular buffer used t o  store 

iastrucl;ions and in-line operands prefetched by the IFU. T h e  size of the OIB must  be large 

enbugh t o  con.tain the instructions of reasonably large loops. For  loops of'si'ze less than  n 

(the s ize of the buffer), the OIB is able t o , t r a p  the corresponding instructions, and the MAP 

can reexecute the  loop repeatedly without refetching the instruction block. The'.OIB achieves 

' a large hit rat io through the deterministic prefetching of instructions discussed in t h e  la'st 

section. Since the size of instruction blocks is controlled by the compiler a moderate buffer . 

size is feasible, and the OIB inay be more economical than typical instruction cache' imple- 

mentations. T h e  OIB is shown in Figure 8. 



brancl! 

Control Unit from Memory 

Block i-1 w u u -c7 
Instruction Reg. 

Figure 8 . .  Operand and Instruction Buffer (OIB). 

T h e  P C  contains the OIB address of the next instruction t o  be executed, and the HEAD 

register contains the OIB address of the first instruction of a loop mode block, while that  ' . 

block is in execution. For nonloop mode blocks, the P C  and the HEAD always contain the 

same address, and both are incremented together as instructions are fetched. In either case, , ' 

the HEAD points t o  the oldest valid instruction in the OIB. The LOAD register .points to  

the OIB location. where the next instruction received from the Memory Controller will be 

loaded, and the PREFETCH register points t o  the OIB location that  is the target of the next 

instruction t o  be fetched by the IFU. The OIB supports one read operation and one write 

operati& per cycle; therefore, instructions fetched by the IFU can be loaded into the OIB a t  

the same time as  instructions are fetched for execution by the AGU. The IFU loads the 

instructions of the block(s) that  will follow the currently executing block; therefore, the 

LOAD and PREFETCH pointers generally remain ahead of the PC. Due to  the prefetching 



mechanism, the next instruction t o  be executed by the AGU is usually contained in the OIB 

or, in the worst case, is in the  process of being fetched.. . . 

Three s t a tus  bi ts  are associated with each location in the OIB:, T h e  valid bit indicates 

whether-  the ,OIB location contains a valid instruction (cf. Full/Empty bit); t h e '  loop bit 

indicates whether the  OIB location contains an instruction tha t  is par t  of a block tha t  con- 

tains a loop, and the last bit  marks the OIB locations which contain the last instruction of 

a block. T h e  OIB se ts  the valid bit  corresponding t o  the location of each new instruction as 

i t  is received from memory and any OIB location tha t  has its valid bit set  cannot be loaded 

with a new instruction: To ensure tha t  valid instructions are not  overwritten, the .valid bit 

of 'the OIB location addressed by the PREFETCH register is checked prior t o  each instruc- 

tion fetch request issued by the IFU. T h e  IFU waits if the valid bit is set. Instructions are 

purged from the  OIB, and the  corresponding OIB locations become available t o  receive new 

instructions from mernory,' when their .valid bits are reset. For  blocks containing sequential 

instructions, valid bit resets occur one instruction at a time as each instruction is executed, 

and for loop mode instruction blocks, an entire block is'invalidated (purged) in one operation 

by resetting the valid bits of all the OIB locations tha t  contain the block and'  then setting the 

HEAD register equal t o  the PC.  When the instructions of sloop mode block have been exe- 

cuted .the required number of times and are no longer needed, the HEAD and the PC are 

used t o  generate a mask vector which is ANDed with the vector of current v a l i d ,  bits. T h e  

.result resets.the old valid bits to  reflect the fact the locations occupied . 
. 

by the blo.ck are now 

invalid and can be overwritten. This  block purge.operation is initiated by instructions tha t  

terminate loop mode instruction blocks and other special .instructions used specifically for 

instruction handling. For example, an unsuccessful conditional branch tha t  is the .last 

instruction of a loop mode block (marked by the last and loop bits being set)  causes control. 



t o  exit the loop, purge the loop instruction block, and proceed t o  the firstinstruction of the 

next block. T h e  use.of both a HEAD register and valid bits may.appear t o  be redundant; 

however, the valid bits are required for 'the purpose of determining whether an instruction 

which is the .target of a forward branch (e.g,, unconditional jump or subroutine call) is 

resident in the OIB. When jumping forward i t  is difficult t o  determine whether the PC has 

jumped past the LOAD register and points t o  an OIB location that  has not yet been loaded 

with the  desired instruction. The  valid bits are also convenient for permitting a quick vali- . . 

dit,y t,est ~ ised,  fnr exa.mple, in sta.lling the TFIJ prefetxh nperatinn. The HEAT) register is 

used simply t o  determine the starting location of block purge operations. . 

T h e  setting of the loop and last bits for each instruction is determined by control logic 

in the IFU. Loop mode blocks are determined by the compiler and indicated to  the IFU by a 

flag in the prejetch instruction, and the last instruction of a block is known to  the IFU when 
e r 

the final address of an instruction sequence is generated. This information is relayed t o  the 

Memory Controller which sets the appropriate bits for each instruction before they are sent 

t o  the OIB. When the loop bit of an instruction is 0, indicating that  i t  is contained in a non- 

loop mode block, the valid bit of that  location is immediately reset, and the HEAD and the 

PC are both incremented, when the instruction is fetched by the PC for execution. When 

the loop bit of an instruction is set, indicating that  i t  is contained in a loop mode block, only 

.the P C  is incremented, unless a block purge operation is initiated. T o  illustrate the use of 

the s ta tus  bits and the overall control of the OIB, we examine the three following cases. 

These examples are representative of most situations encountered in the control of the OIB. 

Consider an instruction block that  contains strictly sequential instructions to  be exe- 

cuted once. As the address of each instruction of the block is generated by the IFU, the valid 



bit of the target OIB loc$tion, i.e., the location addressed by the PREFETCH register, is 

checked. If the  valid bit i s s e t ,  this OIB location already contains 'an instruction tha t  is still 

required by the  'w. Thus,  the IFU must  wait for the AGU t o  execute the instruction and 

reset the valid bit: If the valid bit is reset, the IFU generates the instruction address and ini- 

tiates the memory request by placing the address in t h e ' 1 ~ ~ .  T h e  valid bit of the OIB loca- 

tion is set  when the instruction is loaded from memory. T h e  loop bit  of each instruction of 

the block is reset . indicating'that no instruction in the block will be executed more than  once. 

When each instruction of the block is fetched for execution, the valid bit of the OIB loca- 

tion addressed by the P C  is checked t o  determine if the instruction i spresent .  If t h e ,  valid 

bit is not  set,  the  execution unit waits for the IFU. to  fetch the instruction .and set  the valid 

bit; if the valid bit  is set,  the instruction is loaded into the instruction register 'in the control 

unit, and the valid bit is reset. When an instruction is successfully fetched. by the P C ,  the 

PC and the HEAD are incremented. (Only one increment is performed and the result is 

stored in both registers.) In effect, by resetting the valid bit, the OIB location just' fetched is 

vacated, and the IFU isfree t o  load a new instruction in tha t  location. 

Now consider an  instruction block containing a loop. As the IFU fetches and .loads the 

instruction block, both the valid bit and the loop bit of each instruction are set. In this case, . 

however, the OIB locations where the instruction block resides cannot be marked invalid 

after they are executed since at least some of the instructions may be reexecuted. T h e  .cdn-. 

trol unit, therefore, does not  reset the valid bit of instructions tha t  have their loop bit  set. 

T h e  'HEAD register maintains the OIB address of the first location of a loop mode block 

while i t  is being executed. As long as the valid bits remain set,  the IFU cannot overwrite 

the current block. As stated in the previous section, loop mode instruction blocks must  have 

a conditional branch (or a special "purge" instruction) as the final instruction. Conditional 



branch instructions tha t  are successful and are the last instruction of a loop mode block 

cause control to  transfer back to a location within the block. Since.the placement of instruc- 

tion blocks in the OIB may be different from their relative location in the object module as 

stored in memory, .all branches must be relative to  the P C  and not larger than the size of the 

OIB. T h e  branch target displacement can always be determined by the compiler since, from 

the program graph and instruction prefetching, the compiler determines what instruction 

blocks will reside in the OIB a t  any given time, as well as their relative locations in the OIB. 

Conditional branch instructions that  are unsuccessful and are the last instruction of a loop ' 

mode block cause control to proceed sequentially into the next block and cause the current 

block to be purged. Purging the instruction block is accomplished by reseting the valid bit 

of each OIB location between the HEAD and the PC,  including the location addressed by the 

HEAD, then storing the contents of the P C  in the HEAD. 

In the two cases discussed above, there was only one possible successor instruction block 

and this block was located in the OIB immediately following the current block. Therefore, 

transferring control from the current block to  the successor block simply involved incremenb 

ing the P C  and, perhaps, purging the last instruction block. Loops too large to  be contained 

in the OIB must be handled as two or more serial (nonloop mode) blocks. Some instruction 

in each block initiates a prefetch for the next block, and the loop bit of each instruction of 

the next block is reset by the IFU. The final block of the loop must prefetch both the first 

block in the loop, for the case when the loop terminating conditional branch is successful, 

and the next sequential block after the loop, when the terminating conditional branch is 

unsuccessful. A prefetch instruction is inserted in the final block such tha t  the first block of 

the loop will always be prefetched and will be located in the OIB immediately following the 

last block of the loop. This is accomplished by placing the prejetch instruction for the first 



block of the loop before the conditional branch tha t  terminates the loop: T h e  prejetch 

instruction for the  block tha t  will be executed when the branch is unsuccessful is placed .after 

the conditional branch; therefore, i t  is executed only when the loop hzis been exhausted. 

When the loop is exhausted, the first block of the loop has already been prefetched, and con: 

sequently must  be jumped over and purged. Therefore, the final block of the loop must  con- 

tain two instructions following the loop terminating conditional branch: a prefetch for the 

next sequential block after t he  loop and an unconditional branch t o  jump over the first block 

of the loop. Any nonloop mode forward branch will cause a purge operation which removes 

the skipped code from the OIB. (Note tha t  backward branches within the OIB are supported 

only when the branch and i ts  target are within the same loop mode instruction block.) Thus,  
. . 

the first block, which is not needed in this case, will be invalidated. Note t h a t  a successful 

branch, which is conceptually a branch back t o  the beginning of the loop, , is 'physically a 

branch forward in the OIB. T h e  actual branch distances and directions can be determined 

a t  compile. time once the program graph is constructed, and the size of loop mode and non- 

loop mode blocks are determined. Also, in this case where the instruction bloek has two pos- 

sible successor blocks, the final (current) block and the first block of the loop, and a t  least 

one instruction of the next block after the loop should all fit in the OIB simultaneously. This  

is required s o  tha t ,  for either branch outcome, the OIB location tha t  is the target of the 
. . 

branch is outside of the current block; otherwise, the control unit might jump ' to  an OIB 

location tha t  is still marked valid, but  is not the correct next instruction. 

Making the OIB reasonably large (e.g., 1I< instructions) and limiting the maximum size 

of. an instruction block. t o  be less than half the size of the OIB (e.g., 256 instructions) is a 

simple conservative guideline tha t  eliminates any possibility of deadlock caused by instruc- 

tion handling. Using t h i s  guideline i t  is always possible either t o  execute an  existing. 



instruction or  to  load a new instruction. In general, the compiler must limit the size of 

instruction blocks such tha t  either the AGU or  the IFU.will be able.to operate. The  IFU will 

become blocked by . the  OIB only if the OIB is full, in which case the AGU must be able to  

execute, and eventually purge, instructions. If the AGU is blocked waiting for instructions to  

arrive, then there must  be available space in the OIB so the IFU can operate. A larger buffer 

also makes the compilation problem simpler since desirable instruction blocks typically will 

not have td be artificially trimmed t o  fit in the buffer. 

2.3. Computation Processor 

T h e  Memory Access Processor, discussed in the previous section,, is designed to stream 

operands to the computation section of the SMA architecture, i.e., the Cornp~~ta t~ ion  Proces- 

sor (CP), a t  the maximum possible ritte. T o  accrue the lull benefit of this high memory data  

transfer rate, the CP must be capable of processing input operands a t  a rate comparable to  

tha t  a t  which the MAP is able t o  deliver them. These rcquirements imply the need for mul- 
. . 

tiple pipelined arithmetic and logic function units. In order t o  best evaluate the effectiveness 
. . 

of the MAP, we have chosen to  model the C P  of the SMA architecture after the scalar com- .. 

putation section of.one of the fastest existing scalar processors, the Cray-1. 

Figure 9 diagrams the scalar function units of the Cray-1 in the context of the SMA 

architeoturo, mom cpecifically, with the data  flow of the CP. In the Cray-1 architecture,. 

each arithmetic and logic operation is implemented as an independent pipelined function 

unit. Separate pipelines exist for both floating-point and integer operations. All function 

units can operate simultaneously, and each can accept a new pair of operands every clock 

cycle. Similarly, in each cycle the control unit can issue one instruction to  any function unit, 



Figure 9. Computation Processor D a t a  Flow. 
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2.4. SMA Software 

Shown in Figure 10(b) .is an SMA assembly language program (MAP and C P  code) used 

t o  perform matrix multiplication as described by the C language algorithm in Figure 10(a). 

T h e  SMA program is used as input to the SMA simulator (discussed in Chapter 3)) and accu- 

rately reflects the instruction set of a realistic SMA implementation. Contrasted with the 

SMA code .is the corresponding VAX' code produced by an optimizing C compiler provided 

with the Unix' operating system. What is interesting in this comparison is that  the inner 

loop of the VAX assembly code consists of 20 instructions, whereas the inner loop of the 

SMA program consists of 9 instructions (5 in the MAP and 4 in the CP). . This disparity is 

due t o  the da ta  structure address calculation overhead which is relegated t o  software in the 

VAX. Note that  most of the overhead in the SMA implementation (i.e., initializing the AGU 

mmult(A,B,C) 
int, A[N][N], .R[N][N], C[N][N]; 
I 
1 

register i, j, k; 
for ( i=l;  i<=N; if+) { 

,for (j=l; j<=N; j++) { 
Q[i][j] - 0; 

, for (k=l; k<=N; k++) { 
c[il[jl = c[il[jI + A[il[kl * B[kI[jl; 

1 

Figure 10(a). Matrix Multiplication Algorithm. 

'VAX is a trademark of Digital Equiptment Corporation. 

Wnix is a trademark of Bell Laboratories. 



Figure 10(b). Matrix Multiplication. VAX and SMA assembly language. 
(Brackets demarcate the inner loops.) 

Comments 

Prefetch MAP inst. 
Prefetch all CP  code. 
Load Scalarbase reg. 
sdtO +base of A. 
sdt2 +base of B. 
sdt4 t b a s e  of C. 
apt0 4- ptr t o  xO. 
apt1 t p t r  to  xl .  
apt2 t p t r  t o  x2. 
apt3 t p t r  to  x3. 
Index for i. 
Prefetch second block. 
Index for j. 
sd t l  t 2 D  base of A. 
sdt5 t 2 D  base of C. 

' Index for k. 
Other index for k. 
sdt3 t 2 D  base of B. 
Fetch A(i,k). 
Fetch B(k,j). 
Inc k. 
Inc other k & branch. 
Store C(i,j). 
Inc j. 
Inc i. 

rO t o .  
r l  t IDQ. 
r l  t r l  x IDQ. 
r0 t r 0  + r l .  
Branch to loop. 
SUQ +rO. 
Branch to blkl. 
Branch to blkl.  

SMA Code . 

MAP CODE 
pref Init,lO,O 

Init: pref blk1,8,1 
load sbr0, scalar area ' 
load . sdt0, (sbrO) 
load sdt2, l(sbr0) 
load sdt4, 2(sbrO) 
load apt0, 3(sbr0) 
load ap t l ,  5(sbr0) 
load apt2, 7(sbr0) 
load apt3, 9(sbrO) 
setup xO, ll(sbr0) 
pref L3,14,1 

L3: setup x l ,  14(sbrO) 
comp sd t l ,  sdt0, apt0 
comp sdt5, sdt4, apt0 

L2: setup x2, 17(sbrO) 
setup x3, 20(sbrO) 

(Ll: comp sdt3, sdt2, apt3 
I fetch sdt l ,  apt2 

.{ fetch sdt3, apt1 
I inc x2 
\ inc x3, L1 

store sdt5, apt1 
ir~c . . x l ,  L2 
inc - xO, L3 
End: ret 

. . CP CODE 
blkl:  clr rO 
(loop: mov r l ,  IDQ 
{ mu1 r l ,  IDQ 
I add rO, r l  
\ bfq loop 

mov SDQ, rO 
bfq blkl ' ' 

bfq blkl 

Inst. 

1 
2 

3 , 

4. 
5. 
6. 
7. ' 

8. 
9. 
10. 

'11. 
12. 
13. 
14. 
15. ' 

16. 
17. 
18. 
19. 
20. 
21. 
22. 
'23. 
24. 
25. 
26. 
27. 
.28. 
29. 
30. 
31. 
32. 
33. 
34. 
35. 
36. 

VAX Code 

movl , $l , r l l  
L3: movl . . $l,rlO 
L2: mu113 IBQOO,rll,rO 

addl2 12(ap),rO 
ash1 $2,rlO,rl 
add12 r1,rO 

. clrl. (rO) . . 

movl $ 1 ~ 9  
(Ll: mu113 IBQ00,rlllr0 
I addl2 4(ap),r0 
I ash1 ' $2,r9,r0 
1 addl2 r1,rO' 
1 mu113 IBQOO1r9,rl$ 
1 addl2 8(ap),rl 
I ash1 $2,r10,r2 
I addl2 r2,rl 
I mu113 (rl),(rO),rO 
{ mu113 IBQOO,rlllrl 
1 addl2 12(ap),rl 
1 ash1 . $2,rlO,r2 
1 add12 r2,rl 
1 add12 (rl),rO 
1 ' mu113 &OO,rll,rl 
1 addl2 12(ap),rl 
1 , ash1 . $2,r101r2 
.I . addl2 r2,rl  
1 . movl rO,(rl) 
\ acbl $l00,$l1r9,L1 

acbl $100,$1,1~10,L2 
acbl $100,$l,rll1L3 
ret 

. . 



tables) is outside of the loop bodies and is therefore incurred only once. 

T h e  following describes the details. of the SMA program. The operating system causes 

the first instruction of the MAP program to  be fetched and executed. The first instruction is 

a pref instruction which initiates the fetching of the first instruction block of the W p r e  

gram. Th i s  instruction block is located a t  symbolic address Init, contains 10  instructions, 

and is not  a loop mode block (designated by the 0 flag in the instruction). T h e  first instruc- 

tion in the first block of the MAP program initiates the fetching of the first instruction block 

of the CP program. All eight instructions of the CP program are contained within a single 

block start ing a t  symbolic address blkl. The block contains three nested loops and, there- 
' 

fore, is designated a loop mode block. 

T h e  second instruction in the MAP program loads the first scalar base register (sbrO) 

with the  base address of a d a t a  area in memory which contains the structure definition and 

access pattern information. This information is gederated a t  compile time but is not shown 

here for simplicity. 'l'he subsequent load instructions set up the specific SDT and A P T  regis- 

ters. This  information is stored in a set of locations wliich is some small offset from the con- 

tents of sbr0. There are three two-dimensional matrices being accessed; therefore, six SDT 

registers a;e used. SdtO, sdt2, and sdt4 are loaded with the absolute base addresses of arrays 

. A, B, and C, respectively. These three SDT entries are used to  compu'te the base addresses 

' of the second dimensions of each structure later in the program. Three comp instructions. 

are used for this purpose, and they essentially initialize the three additional SDT registers 

(sdtl ,  sdt3, and sdt5) to  the base addresses of the second dimension of each array. These . . . 

latter S D T  registers are the ones specified in the actual jetch and store requests. Note that  

the comp instructions must be located inside the loops since the second-dimension base 



addresses are periodically recomputed. Next, four A P T  register$ are initialized; all contain 

offsets of zero and a pointer .to a given index' register. . . 

 h he second pref instruction s t a r t s  the IFU prefetching the second MAP instruction 

block which contains t h e  three nested loops star t ing a t  symbolic address L3. T h e  four setup 

instructions are equivalent t o  initializing a loop count variable before beginning a loop. The  

setup instructions load the index registers with the.Current  Value, Final Value, and Step Size 

(stride) for the loop indices i, ' j  and k. T h e  index ~eg i s t e r  for i is set  up  only once, and those 

for j and k are set  up repeatedly since they correspond to  nested loops. There are actLally . 

two k index registers (x2 and x3) since, in the source program, k indexes both the second 
. . 

dimension of the A matrix and the first dimension of the B matr ix with different strides (see 

: Figure 10(a)). Similarly, four APT registers are used instead of three. In. computing. 

. . addresses for the elements of matrix A, ap t2  is used, and for matrix B, ap t3  is used. T h e  

index registers containing. i and j can .be shared between matrices A and C ,  and B and C,  

respectively, since they each index along dimensions with the same length and stride for the 

two matrices they access. Index register sharing is accomplished by specifying similar A P T  

registers in fetch, store, o r  comp instructions (cf. instructions 13 and 14, for  example).. 

A t  this point the MAP enters the innermost for loop designated by label L1. T h c  comp 

instruction computes the second dimension base address of the B matrix. This  base address 
. . 

must be recomputed' for every inner loop iteration because i t  is . a  function of the k index. 

This  is k result of the fact t ha t  the algorithm accesses the 'columns of B', so  the base address 

of dimension two of array B changes for every iteration. (A clever programmer could devise 
' 

a way t o  avoid this recomputation in the inner loop; however, we wish to  keep this example 

relatively straightforward.) T h e  following two instructions fetch the required operands. by 



computing the addresses of Ai,k and Bk, j .  After the two addresses are computed and placed 

in the RAQ, the k indexes are incrementid and x3 is tested against its Final Value. 

T h e  result of the test causes the control unit to  branch t o  the symbolic address ~1 if 

the test is successful, and t o  the next sequential instruction if not. The test also involves 

sending a branch signal t o  the CP's BRQ so that .  the C P  can determine, by execution of the 

bfq instruction, whether t o  reexecute i ts  inner loop .or to  continue sequcntially. When k 

reaches i t s  Final Value, control proceeds to  the next sequential instruction, and the address 

of Cij is computed (store instruction) and placed in the SAQ. The actual memory write will 

be initiated when the corresponding inner product is computed in the CP-.accumulated in rO 

and placed in the SDQ. 

The  C P  code is rather straightforward. The first instruction simply initializes a register 

which is used as: the accumulator for partial products. The next four instructions form the 

inner loop which computes inner products. The values in the IDQ are, alternately, the values 

of a row of the A matrix and the values of a column of the B matrix. Each pair of input 

values are multiplied, and the product is summed with' the contents.of rO. When k reaches . 

i t s  Final Value in the AGU, the C P  is instructed t o  exit the inner loop and continue with the 

next sequential instruction. The next sequential instruction moves the inner product, accu- 

mulated in rO, to the SDQ so i t  can be stored in memory. The  C P  then executes a condi- 

tional branch to determine whether to reenter the loop to  compute another inner product. 

  he C P  continues in this manner until the last inner product h a .  been computed and placed . 

in the SDQ, i.e., until the j loop and the a' loop have both been exhausted in the MAP pro- 

gram and the last two bfq instructions in the C P  code determine that  no more input 

operands will arrive. 



CHAPTER 3. 

SMA SIMULATION AND'PERFORMANCE EVALUATION 

'In order t o  perform a precise evaluation of the SMA architecture described in the previ- 

ous chapter, we have developed a discrete-event register transfer level simulator for the 
' 

machine. By accurately simulating the. execution of programs on the SMA architecture, we 

have been able t o  observe the performance of the system and, in particular, the AGU. Recall 
. . 

t ha t  our  primary objective in the design of the SMA is t o  issue instruction and operand .fetch 

requests t o  memory a t  a rate  capable of supplying input t o  high performance pipelined func- 

tional units with a minimum of memory wait time. Through simulation .we are interested in 

obtaining the percent utilization, percent nonutilization (i.e., blocked and/or idle), and 

throughput of the main system components (i.e., .AGU, C P  function units, and memory). 

Simulation results show tha t  the performance of the M A P  hardware presented in Chapter  2 

is more than sufficient for s t ieaming operands t o  the C P  a t  rates  which achieve high utiliza- 

tion of the CP's  function units. Also of interest are the effects t ha t  memory access time and 

-queue length have on the total  execution time since these parameters are easily modified 
. .  . 

without affecting the organization of the machine. Finally,' the tot'al execution time, as meas- 

ured by'  the number, of cycles required t o  execute benchmark programs, . is used t o  compaie . 

the performance of the SMA architecture with tha t  of the Cray-1 scalar unit. 
. . 

T h e  following section presents an overview of the SMA simulator. Sections 3.2 and 3.3 

piesent simulation results Concerning the utilization and throughput of each of the SMA sub- 

systems, and the effects of memory access time and queue length on SMA performance, 

respectively. In the final section we present a performance comparison of the SMA 



architecture and the Cray-1 which, architecturally, represents the current state-of-the-art in 

scalar processing. For all the simulation' results presented here, the.CP of the SMA architec- 

ture was parameterized t o  perform instruction issue and computation a t  the rate characteris- 

tic of the Cray-1 scalar unit [Cray77]. Performance statistics and comparison information 

were derived from simulation of the first twelve Lawrence Livermore loops. 

3.1. The SMA Simulator 

Input to the S b U  simulator is a program ~ imi ln r  to  that  ohown inlFigurc 1,0(b). The 

simulator essentially interprets and executes a defined assembly language. The simulator 

reads a file containing an SMA program and loads. the instructions into its memory. From 

this point, the simulator fetches instruction blocks and executes instructions in a manner 

characteristic of a n  actual SMA implementation. All compi.ltations and register transfers 

required by an actual implementation are carried out  by the simulator in the proper sequence 

with the specified timing. 

The  timing delays of various components of tlre system are parameterized (e.g., 

floating-point and integer arithmetic operations, memory access time, AGO propagation 

time, etc.). It is assumed that  the delay of each stage of the AGU pipeline is equivalent t o  

. . 
the time required to perform one integer addition. The AGU pipeline propagation time is 

controlled by the integer addition parameter, and is twice the delay of the integer a,rit,hmctic 

unit in the CP. For  the simulation results presented in this chapter the integer addition 

parameter was set' to one and,' therefore, the number of cycles required by the AGU to  pro- 

duce a single operand address was two. No additional delay for multiplexing or  bussing was 

accounted for. The  AGU is fully pipelined and, therefore, is capable of producing addresses 



on consecutive .cycles. Fo r  example, two jetch. instructions can be issued 'on consecutive 

cycles, and the  resulting addresses they compute are produced on consecutive cycles, after an 
. . 

AGU propagation time of two. Some M A P  instructions cause more than one address t o  be 

produced b y  the  AGU (e.g., load Index ~ e ~ i s t e r )  so  a M A P  instruction cannot always be 

issued t o  the 'AGU every cycle, even when. there are no  d a t a  dependencies o r  prefetch opera- 

tions. 

As in the Cray-1, the C P  of the SMA architecture contains multiple arithmetic, and : 

logic function units. In the simulations we ran, only floating-point instructions were executed. , 

in the C P ;  therefore, i t  was'sufficient t o  simulate just the floating-point.function units of the 
. . 

Cray-1, namely, a floating-point addlsubtract  unit, a floating-point multiplication unit, and 

a reciprocal approximation unit (see Figure 9). Only the first two of these units were utilized 

in our simulations. T h e  addition unit and the multiplication unit are fully pipelined, and 

each can accept one  new operation per clock cycle. T h e  add unit delivers results in six 

cycles, and the multiply unit delivers results in seven cycles. In the Cray-I,, the number of 

cycles is equal t o  the number-of  stages in each of . the 'pipelines. T h e  two pipelines operate 

independently.' When an instruction is issued, its destination register is marked.  reserved 

until the instruction is completed and the result is stored in the register. An instruction is 

de1aye.d from. issuing until none of its source registers are reserved .by previously issued 

inSt,ructions and,  if the  IDQ is a source, i t  must  be nonempty. C P  instructions are always 

issued in order, as in the Cray-1.: . . 

. '  
For  simplicity in the simulation, the memory unit is modeled as possessing infinite 

interleaving; every memory word is contained in its own bank and, therefore, all memory 

references are conflict free. This  aspect of the SMA simulator does not model a feasible 



machine; however, an adequate degree of interleaving should make conflict degradation 

minimal for the SMA a t  a modest cost. The memory unit services one request per cycle, and 

the result is delivered t o  the destination after a delay defined by the memory access time 

parameter (11. cycles for the Cray-1). Note that  the memory system can accept requests on 

consecutive memory cycles even though prior requests have not been completed, resulting in 

a memory tha t  behaves like a perfectly pipelined 11 stage function unit. 

T h e  service priority of the memory address queues are as follows: 

1) IFQ (Instruction fetch), 

2) RAQ (Operand fetch), 

3) SAQISDQ pair (Operand store). 

Pipelined computers are susceptible to hazards and the SMA architecture is no excep- 

tion. A read-after-write (RAW) hazard occurs in the SMA when the AGU issues a read 

request for a da ta  item whose address appears in the SAQ, waiting t o  be written. As dis- 

cussed in Section 2.1, the SMA simulator assumes tha t  operands contained. in the SDQ can 

be forwarded to  the C P  before they are written t o  memory. This forwarding operation 

minimizes the effect of RAW hazards which significantly improves the performance of the 

SMA for benchmark programs tha t  contain certain linear recurrences and da ta  dependencies. 

Note tha t  write-after-read hazards do not present any problem due to  the fact tha t  read 

requests have higher priority tha t  write requests. Also, write-after-write hazards do not '  

occur due to the queuing and servicing of write requests in order. 

The  lengths of all hardware queues and instruction buffers are variable. Hence, we are 

able t o  monitor the performance of the system as a function of some of the machine parame- 

ters. 



T h e  simul.ator reports.a number of performance statistics for each run: 

1) Tota l  number of clock cycles required t o  execute the program. 

2) Throughput  of the MAP, CP ,  and memor;. 

, . 3)..Percerit utilization of the MAP, C P ,  and meinory. 

4) Percent of clock cycles t h a t  the MAP, 'CP, and memory is blocked: 

5) Reasons for function unit blockage (and percent blocked per reason). 

6) Mean queue lengths. 

Function unit throughput is defined as the. percentage of all clock cycles in which an 

instruction (or operation in the case of the memory unit) is successfully issued. This  figure is 
. . 

also equivalent t o  the rate  a t  which instructions are completed. ' In the  case of the AGU, the 

output  of the pipeline is actually greater than the  pipeline throughput because some instruc- 

tions ( e .~ . , .  load, setup, etc.) cause more than one address t o  be computed. Function unit 
i 

utilization is recorded as the percentage of total  clock cycles t ha t  a unit is active (i.e., a t  

least one computation in progress for pipelined units), o r  is inactive due t o  .being blocked, 
. . 

bu t  has work pending. In general, a function unit becomes blocked as a result of a depen- 

dency in the instruction stream, when one of th6.queues o r  buffers t ha t  supply . . input t o  the 

unit is empty, o r  when one of the queues tha t  accepts output ,  from ' the  unit becomes full. 

T h e  AGU becomes blocked when an OIB mis s  occurs, when an instruction requires input 

from a table (or the BRQ, in case of the bfq instruction) t ha t  has not yet  been populated' 
. . 

(i.e., a 'da ta 'dependency is present), o r  when an  address queue- t ha t  is the destination of an 

instruction is full. In any of these cases, the AGU must  be idle for one o r  more cycles. For 

p the memory, blockage can occur whe; the IDQ is full, o r  when either the C P  instruction 

buffer or  the 01R is full. The memory unit is not considered t o  be blocked. on cycles when 



the address queues (i.e., RAQ, SAQ, and IFQ) are all empty. The C P  becomes blocked when 

a n  instruction buffer miss occurs, when d a t a  dependencies in the instruction stream exist, 

when a full SDQ is an instruction's destination, or when an empty IDQ is an  instruction's 

source. In fact, this last statistic-the percent of cycles that  the C P  is blocked due t o  the 

IDQ being empty-is perhaps the single most important performance metric since i t  indicates 

whether the MAP is accomplishing the task for which it was designed: namely, t o  prefetch 

operands such tha t  the memory access wait time experienced by the CB's function units is 

minimal. 

\ 

3.2. SMA Performance 

In this  section we examine the utilization and throughput of the various SMA subsys- 

tems. We are primarily interested in dctcrmining whether the address generation hardware 

of the AGU is sufficiently powerful to supply a CP,  which has the computational capability 

of the Cray-1 scalar unit, with operands a t  a rate which provides superior utilization and 

throughput by minimizing memory access wait time. The most relevant function units in 

regard t o  the overall performance of the machine are the AGU, the C P  function units, and 

the memory. For the simulation results presented in this section, the instruction buffers were 

of length length 128, each of the AGU tables had 16 entries, and aii queues were of length 4. . 

.Code segments corresponding to  the inner loops of all the benchmark programs were con- 

tained entirely in the OIB (the largest containing 106 words), and a t  most 10 of the 16 AGU 

table entries were .used during.the simulations. As a result, the effect of instruction fetching 

and AGU table loading was an insignificant percentage of the overall execution time (<I%); . 
hence, we d o  not provide an analysis of the performance of the IFU or OIB. 



Shown in Table 1 are the function unit utilization and throughput statistics derived 

from the  SMA simulator for the first twelve Lawrence Livermore loop$. A good description 

of t h e  nature o f  these loops is found in [HsPG84]. ~ h e s e  statistics in.dicate a fairly good bal- , 

ance of activity among' the units. T h e  utilization figures for each unit are all very high. This  

is a .result of the  fact t ha t  a function unit tha t  is blocked bu t  does have instructions waiting 

t o  issue, or  has  a t  least one active computation ,in its pipeline, is considered t o  be utilized. 

T h e  pe;centage of executiod tinie t ha t  each unit is blocked from issuing instructions seems to  

be a b i t  alarming; however, an average instruction issue rate  of 0.425 ilistructions per cycle 

in the CP is actually quite acceptable after the frequency of d a t a  dependencies in the C P  

instruction stream is taken into account. Furthermore, the CP has a. somewhat higher 

instruction throughput rate  than the AGU since the inner loops of t h e ' C P  programs contain 

Table i. SMA Function Unit Utilization and Throughput. 

Memory 
Util. 

0.994 
0.993 
0.997 
0.984 
0.999 
0.998 
1.000 
0.997 
8.999 
1.000 
1.000 
1.000 

0.997 

CP 
Blocked 
0.708 
0.594 
0.599 
0.620 
0.593 
0.682 
0.677 
0.699 
0.531 
0.423 
0.555 
0.499 

0.598 

CP 
Util. 

0.965 
0.971 
0.996 
0.899 
0.964 
0.928 
0.984 
0.994 
0.984 
0.984 
0.888 
0.889 

0.934 

CP 
T'put 
0.258 
0.379 
0.300 
0.281 
0.373 
0.320 
0.407 
0.386 
0.615 
0.794 
0.451 
0.539 

0.425 

Memory 
Blocked 

0.891 
0.750 
0.330 
0.617 
0.494 
0.348 
0.848 
0.798 
0.842 
0.000 
0.189 
0.000 

0.507 

AGIJ 
T'piit 

0.161 
0.284 
0.299 
0.349 
0.404 
0.331 
0.170 
0.178 
0.189 
0.374 
0.446 
0.302 

0.291 

Memory 
T'put 

0.132 
0.265 
0.201 
0.293 
0.377 
0.267 
0.154 
0.174 
0.173' 
0.359 
0.337 
0.204 

0.245 

AGU 
Blocked 

0.826 
0.703 
0.694 
0.535 
0.589 
0.652 
0.830 
0.809 
0.808 
0.623 
0.553 
0.697 

0.693 

Loop 

1 
2 
3 
4 
3 
6 
7 
8 
9 
10 
11 
12 

Avg. 

AGU 
Util. 

0.926 
0.991 
0.301 
0.878 
0.997 
0.688 
0.996 
0.988 
0.997 
0.998 
0.765 
0.686 

0.851 



roughly 30 percent more instructions, on. the average, than the corresponding MAP programs 

for the benchmarks tha t  we ran. Note that  the AGU throughput represents instructions 

issued per clock, rather than addresses generated per clock. Thus, multiple address instruc- 

.tions as well as certain no-address instructions (e.g., setup) are each counted once when the 

AGU throughput is calculated. Also, 'the "Blocked" statistics are not directly available as 

such within the simulator and in some cases the estimate of Blocked time is slightly high. 

This  fact accounts for the apparent anomaly where occasionally the suln of Blocked and 

Throughput slightly exceeds 1.00. 

T h e  percentage of execution time that  each unit is blocked, and the reasons why, pro- 

vide better understanding of the behavior of the overall system throughput and its limita- 

tions. Thus  a closer look a t  blockage is in order. Table 2 presents a breakdown of the func- 

tion unit blockage rates and their respective causes f& the AGU and the CP. These figures 

were derived from simulation of the twelve Lawrence Livermore loops, with the queue lengths 

. , 
all set t o  four. In these simulations, almost all memory unit blockage was caused by the IDQ 

'becoming full. While the IDQ is full, the C P  is supplied, with operands and memory blockage 

is not a serious concern. Therefore, no further details are given for the memory unit. 

T h e  AGU can become blocked due t o  either a d a t a  dependency in the MAP instruction 

stream, or the RAQ or SAQ becoming full. (The AGU can also become blocked by an OIB 

miss during an instruction fetch; however, this was never the case during these simulations 

due t o  the dominance of loop mode execution.) The MAP address queues fill up  as a result of 

the memory unit not being able t o  service read requests due to  the IDQ being full (refer to  .. 

Figure 2). The  IDQ, in fact, is full 51 percent of the time, on the average, as indicated by 

"Memory Blocked" in Table 2. When the IDQ is full, the memory unit becomes blocked 



Table 2: SMA Function Unit Blockage and Causes. 

which, in turn,  causes the address queues t o  back up, and' hence the AGU becomes blocked. 

Note, however, t ha t  a full queue can be read from and written to  on a given cycle, and there- 

fore even under 'the full'queue condition there may not ,be s blocked, unit. T h c  ratc  a t  which 

IDQ 
Empty 
0.004 
0.005 
0.003 

. 0.066 
0.004 
0.005 , 

0.000 
0.001 
0.001 
0.034 
0.003 
0.000 

0.011 . 

each address 'queue becomes full varies considerably among the loops, wh i ih ind ic? t e s  t ha t  

SAQ 
Full 

0.760 
0.000 
0.000 
0.449 
0.463 
0.150 

. 0.000 
0.288 
0.000 
0.623 
0.317 
0.382 

0.286 

RAQ 
Full 

0.001 
0.701 
0.694 
0.018 
0.125 
0.195 
0.826 
0.521 
0.808. 
0.000 
0.000 
0.000 

0.324 

Loop 

1. 
2 
3 
4. 
5' 
6 
7 
8 
9 
10 

.11 
12 

Avg. 

'these numbers are very application, dependent. Table 2 shows tha t  d a t a  dependencies 

SDQ 
Full 

0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 

' 0.000 
' .  0.000 
0.000 

0.000 

account for only a small po r t ionof  AGU blockage relative t o  the amount of time tha t  

address queues are full, except for loops 6, 11 and 12. W e  expected this t o  be the case since 

Memory 
' Blocked 

0.891 
0.750 
0.330 
0.617 
0.494 
0.348 
0.848 
0.798 
0.842 

' 0.000 
0.169 
0.000 

0.507 

CP 
Blocked 

0:708 
0.594 
0.599 
0.620 
0.593 
0.682 
0.677 
0.699 
0.531 
0.423 
0.555 
0.499 

0.598 

AGU 
.   locked 
0.826 
0.703 
0.694 
0.535 
0.589 
0.652 
0.830 
0.809 
0.808 
0.623 
0.553 
0.697 

0.693 

the AGU, because of i ts  unique design, requires 'little interaction with memory t o  compute 

Data 
Depend. 

0.704 
0.589 
0.596 
0.554 
0.589 
0.667 
0.677 
0.698 
0.530' 
0.389 
0.552 
0.499 

0.587 

Data 
Depend. 

0.065 
0.003 
0.000 
0.082 
0.003 . 

0.310 
0.004 
O!OOO 
.O.OOO 
0.000 
0.236 
0.315 

0.085 

operand addresses, and MAT'instruct ions are relatively independent of each other, thereby 

reducing the number of.dependencies. 



T h e  vas t  majority of CP blockage, on the other hand, is caused by d a t a  dependencies. 

In fact,  98 percent of the t ime t h a t  the C P  is blocked from issuing instructions is caused by 

d a t a  dependencies; only two  percent of the time tha t  the C P  is blocked is due t o  the IDQ 

being empty. .  Note t h a t  the dependency problem is inherent in the application code and 

causes blockage in any  machine organization with heavily pipelined function units. W e  made 

no  effort to improve this  aspect of the machine's performance. W e  can conclude from 

Table  B ' t h a t  instruction execution in the C P  is rarely impeded by memory access wait time, 

and therefore, the CP is performing a t  near i t s  maximum rate, namely, the ideal peak rate 

minus the d a t a  dependency degradation. This  analysis of the results of Table  1 and Table 2 

clearly indicate t h a t  the M A P  is performing sufficiently well, and is perhaps even over- 

designed for cases where one of the address queues is full the majority of the time. 

3.3. Effects of Queue Length and Memory Access Time 

T h e  effects t h a t  queue length and memory access wait t ime have on the overall cxecu-' 

tion time of the SMA architecture are worth investigating since they can each be changed 
. . 

without  modifying the basic organization of the machine. Intuitively, increasing the size of . 

the address and d a t a  queues will help t o  smooth ou t  perturbations in the flow of d a t a  items 

through the  machine, and thus  may help t o  increase the overall utilization and throughput of 

each subsystem. In the SMA architecture, queues basically allow the MAP and the memory 

t o  continue fetching operands before previously fetched operands have been consumed by the 

C P .  If the  machine operates in this  s ta te  long enough, the IDQ may fill up, causing the MAP 

t o  become blocked. As we showed in the last section, this situation does occur and, in fact, 

poses no immediate performance problem since the C P  is still able . t o  run unimpaired for. 

some time. Even during subsequent intervals where the C P  is able t o  process operands faster 



than they c a n  be delivered, the C P  will nc t  become blocked if the IDQ already contains . 

several operands, and the MAP can resupply i t  before the C P  empties the last operand. A 

limit therefore exists beyond which increased queue length will not.provid'e any additional 

speedup. From a practical standpoint,  the queues should be as small as possible without 

adversely affecting the execution time. 

,Memory access time also has an effect on the total number of cycles required t o  execute. 

programs. Th i s  effect is particularly evident in applications where the MAP has difficulty . '  

staying ahead of the . C P ,  i.e., where slip cannot be maintained. For  example, slip is fre- 

quently lost in programs containing d a t a  dependent branches which are resolved in the CP,  

, 8 

o r  programs in which the MAP must execute more instructions than the CP .  In these situa- . 

tions, incrementally larger memory access time will have an  increasingly pronounced effect on 

execution time. However, in programs where the M A P  is able t o  maintain slip, we will show 

tha t  the memory access time has a less significant effect on the to ta l  execution time. In gen- 

eral, subject t o  loss of slip, increasing the memory access. t ime is beneficial since i t  allows 

reducing the system cost either by using a slower memory o r  by keeping the same memory 

and designing 'faster o r  more heavily pipelined function units, in whichxase performance can 

be increased by speeding up the system .clock ra te . ,  

T o  observe ,the effects t ha t  queue length. and memory access time have on execution 

time, we ran the several benchmarks and recorded the total  execution time for queue lengths' 

ranging from 1 t o  8, and memory access times ranging from 2 to 1.2. Figure 11 shows graphs 

of the total  execution time versus queue length for a range of memory access times for a 

matrix multiplication algorithm and for Lawrence 'Livermore'loop 12. All the simulations 

displayed similar characteristics. 
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Figure l l (a) .  Execution Time vs. Queue Length for Matrix Multiplication. 

These graphs show a striking performance improvement as the queue length is increased 

from one t o  two, particularly when the memory is slow. Very little speedup is achieved by 
' 

increasing the queue lengths beyond two, or three when the memory access time is large. 

Queue lengths of one are quite detrimental when the memory is slow. Thus  the SMA, giv'en 

a modest amount of queuing, 'can tolerate a relatively slow memory with negligible perfor- . 

mance degradation. I t  is important to point out,'however, tha t  in the simulations we ran 

(Livermore loops, Gaussian elimination, and matrix multiplication) all branch decisions were 



resolved in the .MAP. For this  type of -the SMA architecture tends t o  perform well 

because the MAP never loses slip, and therefore always remains ahead of the CP.  . Conceptu- 

ally, the C P  has to  wait for the first stream of operands t o  arrive, and thereafter never 

endures the complete. niemory delay; a nonturbulent flow of input operands is always avail- 

able to  the CP. Table 2 substantiates this scenario by indicating that  the C P  experiences an 

empty IDQ only 1 percent of the time, on the average, for a memory access time of 11. This 

implies tha t  a large memory'latency is virtually transparent for these types of programs, and 

Cycles 
(x 107 

. . Queue' Length 

Figure l l (b) .  Execution Time vs. Queue Length for Lawrence Livermore Loop 12. 



a faster memory would d o  little to improve performance. 

We would expect the SMA to exhibit much different behavior for programs containing 

d a t a  dependent branches in the inner loops, however, because the MAP would lose its slip 

advantage and, in every loop iteration, the C P  would experience the complete memory access 

time. T h e  C P  would then experience more blockage .due t o  an empty IDQ, and this effect 

would be successively worse as memory access time is increased. Several other situations 

could also slow thc! MAP down. For ejtample, in programs containing large loops or a sub- 

stantial dynamic frequency of nonlooping code, instruction fetching could interfere 

significantly with the MAP'S The stream of operands t o  the C P  would be 

intermittent resulting in more potential for C P  blockage. Furthermore, in some applications, 

the M A P  program may contain more instructions than the corresponding C P  program which 

could also cause the C P  t o  be blocked a greater portion of the time. In each of these cases, 

we would expect the asymptote'for total execution time to  be successively higher as memory 

access time is increased. 

3.4. Cray-1/SMA Performance Comparison 

We have examined the characteristic behavior of the Sh4A architecture and shown 

through simulation results that  i t  is able to  perform as expected on suitable benchmark p re .  . 

grams. I t  is, however, also useful to compare the performance of the Sh4A architecture with 

other existing high performance computers for these benchmarks. The  Cray-1 was chosen for 

comparison purposes because information on its architecture and operation is readily avail- . 

able, and i t  represents the foundation of the Cray-2 architecture which is.perhaps the fastest 

existing scalar processor. 



For this comparison, b e  are interested in obtaining the total  number of cycles required 

by 'each  machine to  execute the benchmark programs. T h e  execiition times for the SMA 

architecture .we;e taken from the simulator. As above, the SMA machine being simulated 

was parameterized t o  perform instruction issue and execution a t  the same rate  as the Cray-1, 

instruction buffers were of length 128, AGU tables contained 16 entries, and al1,queues were 

of length 4. F o r  our purposes, the conditions for instruction issuing on the Cray-1 .can be 

summar'ized as follows: 

1) T h e  target function uliit (i.e., the floating-point addition unit o r  the 
floating-point multiplication unit) must  be free. 

. .  . 

2) T h e  source registers must  be free (i.e., not reserved as the destination of 
' a prior instruction). . .  . 

3) T h e  destination register must  be free. 

Instruction timings for , the Cray-1 tha t  are relevant t o  our simulations are the following: 

, Floating-point addition takes 6 c10ck'~eriods. 

Floatirig-point multiplication takes 7 clock periods. 

Branch resolution takes 2, 5 o r  14 clock periods. 
. . 

'Memory access takes 11 clock periods. 

T h e  function units  are fully pipelined; thekefore, instructions can' be 'issued t o  the same unit 

on consecutive clock cycles, provided no d a t a  dependencies exist. ~ a c h  instruction places 

reservation on i t s  destination register only, and this register is .reserved until the result is' 

stored, .i.e., is reserved for the duration of the execution time of t h e  instruction. 

T h e  execution times for the Cray-1 were derived analytically. T h e  Lawrence Livermore 

loop kernelswere each compiled us ingthe  Cray-XMP Fortran compiler version 1.13 with the 

automatic  vectorizer turned off. From the Cray assembly language listings and knowledge of 



the Cray-1 instruction issue and execution timings, we were able to  derive accurate timing 

estimates for each of the loops. From our analysis of the Cray timings, i t  was evident that  

the  Cray Fortran compiler did an excellent job of interleaving computations and memory 

access instructions~such tha t  memory access wait time was minimized. The code, however, 

did contain an abundance of register transfer instructions, used mainly for address computa- 

tion and loop control, that  could have been avoided. 

T h e  SMA programs for the kernels were arranged to  perform computations and memory 

accesses in the same order as the compiled Cray code. We took this approach to  insure that  

the SMA had no special advantage, and so that  the test would represent a comparison of the 

two machinesJ actual performance on this code, rather than the efficiency of a particular 

compiler o r  hand optimization. No special optimizations were added to  the SMA code, but 

the code was designed t o  take advantage of the inherent features of the machine. For exam- 

ple, the source programs were divided into two instruction streams, and each one of the SMA 

processorsJ programs was significantly smaller than the Gray's single program. Also, the 

AGU tables were used t o  take advantage of register sharing and t o  minimize reloading. In 

addition, the architecture of the SMA allows i t  to  perform some basic operations faster than 

the Cray. For example, branch instructions in the CP can complete in one clock cycle 

assuming tha t  the corresponding branch flag is present in the BKd) a t  the time the branch 

.instruction is executed. In effect, the SMA architecture is able to  "turnJJ a loop in a single 

cycle when the MAP is ahead, whereas, in the Cray-1 evaluation five clock cycles are always 

required t o  resolve. a successful. branch. 

, Table 3 shows the analytically computed times for the Cray-1, and the simulated times 

for the SMA architecture for,  the Livermore suite. Some of the loops were run for the 1 



number of iterations specified in the Fortran, code, and some loops where run for an arbitrary 

number of iterations (typically 1000 for singly nested loops, and 100 for. doubly nested loops). 

The total execution time in seconds can be calculated b y  multiplying the number of clock 
. . 

cycles by 12.5 nanoseconds, the period of one machine cycle on the Cray-1. The  floating- 

point execution rate, measured in millions of floating-point operations per second (MFLOPS), 

is then determined from knowledge of the total number of floating-point operations executed 

in the loop, and the .total number of seconds required to  run the loop: The speedups shown 

are simply the ratio of SMA MFLOPS to Cray-1 MFLOPS in that  row of the table. The 
. . 

Avg. MFLOPS is the arithmetic 'mean of the MFLOPS- figures for t h e  12 loops; i.e., i t  

represents the .MYLOPS that  would be seen if eac,h loop was run for the same amount of 
. . 

time. Note tha t  in such an "average" job load, the SMA and the Cray-1 would have 

Table 3. .SMA/Cray-1 Performance Comparison. 

Loop 
MFLOPS 

12.8 . 

17.05 
15.87 
8.90 

14.79 
8.79 

20.08 
20.42 
21.65 
11.44 
9.01, 
8.14 

14.08 
12.50 

1 
.2 
3 
4 
5 .  
6 

7. 
8 
9 . 

10 
11 
12 

Avg. 
H. mean 

Speedup 
1.44 
1.40. 
1.89 
1 78 
1.88 
2.52 
1.31 
1.1.7 

1 1.33 
1.29 
2.53 

1 ' 2.58 

Cray-1 

Cycles 1 MFLOPS 
SMA 
Cycles 

I8000 
11800 
19000 

1568 
20252 
45800 

836100 
164640 
837800 
814500' 
224400' 
253600 

8.8Y 
12.20 
8.40' 
5.00 

- .  7.87 
3.49 

15.31 
17.49 
16.23 

. 8.84 
3.57 
3.15 
9.20 
6.59 

12463 
8448 

10062 
881 

10772 
18206 

637318 
141003 
628282 
629155 
88784 
98291 



different job loads; i.e., each machine would execute a different number of floating-point 

operations. Therefore, this L'Avg." weighting leads to  a meaningless speedup. The H. mean 

(harmonic mean) MFLOPS for the 12' loops was computed by equalizing the number of 

floating-point. operations performed by each loop. This calculation accurately represents a 

job load where each loop is run for the same fixed number, e.g. 1 million, of floating-point 

operations on each machine. The  number of seconds required to  execute each loop is com- 

puted from the MFLOPS figure for each loop. The H. mean MFLOPS is'then computed 

from the sum of the seconds for each loop and the total number of floating-point operations 

chosen. 

Table 3 shows a wide range of speedups for the various loops. The speedup computed 

from the harmonic mean of the MFLOPS is considerably greater than the speedup computed 

from the average MFLOPS. This is a result of the fact that ,  for loops where the MFLOPS 

tends t o  be lower, the Cray-1 performs proportionally worse than the SMA, and these loops 

tend t o  have a larger influence on the harmonic mean (cf. loops 6, 11 and 12). In general, the 

performance of the Cray-1 fluctuates more than the performance of the SMA. The range of 

performance across all loops is approximately 5.5 to  1 for the Cray-1, whereas, for the SMA 

the range is only 2.7 to  1. Thus  the SMA provides more balanced performance for the entire 

j i b  load. 

I t  is interesting t o  consfdcr the characteristics of loopr that  krtvc n. large rspecdup on thc 

SMA, and conversely, those tha t  do not. As mentioned above, the Cray Fortran compiler 

does a very good job of generating code that  tends to  hide the long memory access time of 

the Cray-1. This is accomplished by issuing fetch instructions far in advance of the instruc- 

tions tha t  will actually operate on those operands. Since the Cray-1 employs a single 



instruction stream, i t  must  issue instructions tha t  perform address calculations and various 

other overhead operations from the same instruction issue unit using a single stream. Wher- 

. . 
ever possible, these types of instructions are inserted in between memory access instructions 

and computation instructions, o r  between two computation instructions, t ha t  may have 

dependencies. Hence, many of the overhead instructions in the Cray program are issued on 

cycles t ha t  would otherwise be unused, and much of the memory access wait t ime is hidden 

by other .  necessary operations in the meantime. Unfortunately, the Cray com- 

piler can only perform these optimizations when the loop in question contains a sufficient 

number of instructions of the  proper types t o  work with. As loops get smaller, the number 

of .possibilities for code rearrangement also becomes.less. For small loops i t  becomes impossi- 
. ?. . . :. 

ble t'o mask the memory access wait time, so  i t  is here tha t  we expect the SMA t o  perform 
:,., ;, , 

particularly well relative t o  the Cray-1. 

In Table  3, loop 8 shows the smallest speedup.' Loop 8 also happens t o  contain the larg- , .  ' ? J  c 

est number of instructions of any in the suite (106 instructions in the inner loop). The  .. . . . ..* .,.. 

Cray-1 requires 156 cycles .to execute the inner loop. T h e  instruction issue logic is idle for 4 

cycles while the branch outcome is being resolved, 40 cycles are due t o  da t a  dependencies, 

and only 6 cycles are idle due  t o  memory access wait time. An instruction is issued on each 

of the- remaining 106 cycles. Idle cycles due t o  memory access wait time amount t o  only 4 '. 

percent of the total  execution time. In the SMA architecture, the inner loop of the CP pro-,' 

gram contains 59 instructions, and the inner loop of the M4P program contains 34 instruc- 

tions. T h e  CP can execute a single pass of i ts  inner loop in 117 cycles, assuming the IDQ is 

always nonempty. The. C P  runs slower than the MAP, which requires only 34 cycles per loop 

iteration (i.e., no  d a t a  dependencies are present) and, therefore, the C P  performance bounds 

the total execution time of the SMA for this loop. Da ta  dependencies in the C P  block 



instruction issuing on 58 of the 117 cycles. The higher percentage of da ta  dependency cycles 

for the CP,  compared with the Cray-1, is a result of the reduced number of overhead instruc- 

tions in the C P  program. The  number of cycles that  the C P  is blocked due to  memory wait 

time cannot be determined from a static analysis of the code; however, simulation results 

reveal that ,  on the average, this number is less than one cycle per loop iteration. For this 

loop, the difference in memory access wait ,time between the Cray-1 and the SMA is on the 

order of 4 percent; therefore, the slightly better SMA performance is mainljr a result of 

reduced overhead, rather than decreased memory access wait time. The Cray-1 thus per- 

forms well on this loop which accounts for the small SMA speedup. 

O n  the opposite end of the spectrum, loop 12 shows the 1argest.speeclup. The  Cray-1 

requires 12 instructions and 25 cycles to  execute its inner loop, whereas the C P  requires only 

5 instructions and 10 cycles. T h c  Cray-1 and the CP both have the same 5 idle cycles due to  

da ta  dependencies. For this loop, 4 cycles are idle. due to  memory access wait time on the 

Cray-1, which represents 16 percent of the total. In the SMA, however, the C P  instruction 

issue unit is held up because of memory access wait time an average of less than one percent 

of the total execution time per loop iteration. The  difference in the percent of memory access 

wait time per loop iteration in the Cray-1 over the SMA is thus 4 times greater for loop 12 

than i t  is for loop 8. Furthermore, the Cray-1 requires 5 cycles to  perform branch resolution; 

whereas, the CP requires only 1. The additional 4 branch cycles on the Cray-1 account for 

16 percent of its loop execution. time. For larger loops, however, these branch cycles will 

represent a much less significant percentage of the Cray-1's total execution time. Thus, 

address generation and other overhead coupled with the increased percentage of memory 

access wait time cause the Cray-1 t o  run considerably slower than the SMA architecture for 

this loop. 



CHAPTER 4. 

CONCLUSIONS 

T h e  Structured Memory Access architecture.imp1ementation presented in this thesis was 

formulated with the intention of alleviating two well-known inefficiencies t ha t  exist in 

current scalar cdmputer ar'chitectures: address generation overhead and memory bandwidth 

utilization. Furthermore, the SMA 'architecture introduces an additional level of parallelism 

which is not present in current vector supercomputers, namely, overlapped execution of the 

access process and execute process on two distinct special-purpose, asynchronously-coupled 

processors. By 'using simulation results derived from representative benchmarks typical of 

intended S W  workloads, the!Memory Access Processor was shown t o  expedite processor- 

memory traffic by efficiently computing instruction and operand addresses using 

special-purpose pipelined function units (i.e., the AGU and IFU), and a t  the same time, 

reducing the demand on memory bandwidth by requiring less interaction with memory to  

support  the .access process. Our  simulation results showed tha t ,  for typical.numerica1 pro- 

grams, the h4AP was capable of running slightiy ahead of' the CP, and consequently. was able 
. .  . 

t o  issue operand fetch requests a t  a rate t ha t  rarely caused the C P  t o  experience any memory 

access wait time. Memory access wait time accounted for only 1 percent of the total execu- 

tion time, on the average, for , the benchmark programs tha t  were simulated. 

I t  was further  discovered tha t ,  for programs in which branch decisions are resolved 

solely in the MAP (i.e.; a broad class of numerical programs), a large mcmory cycle time had 

a relatively minor efl'ect on total execution time for processor qucue lengths of three or  more. 

This  phenomenon is a result of the fact t ha t  once the s tream of input operands to  the C P  is 



star ted,  i t  is not interrupted (assuming no  bank conflicts), and  the long memory access wait 

t ime is seen only once by the C P .  Thereafter, the MAP remains sufficiently ahead, and i t  

appears  t o  the  C P  as if most  of i t s  input operands were contained in registers (i.e., the head 

of the IDQ is rarely empty when accessed by the CP). Note tha t  this is only t rue for pro- 

grams where loop bounds are based on an index value o r  some other d a t a  item tha t  is 

resident in the MAP. In these situations, the MAP is essentially able t o  perform perfect 

branch 'lookahead for the CP. 

Comparison with the  Cray-1 in nonvector mode showed tha t  the SMA architecture's 

features do,  indeed, provide improved performance in scalar processing over existing high 
. . 

performance scalar machines. Since the CP is rarely required t o  wait for operands t o  arrive 

from memory, the instruction issue rate is improved and,  hence, function unit utilization is 

increased. . T h e  dual instruction stream feature enables each SMA processor's' program t o  be 

significantly smaller than the  conventional single. instruction stream program and also fre- 

quently allows two instructions t o  he issued in a single cycle. Furthermore, the overhead 

associated with branch resolution is reduced in the SLMA when these decisions are performed 

in the MAP,  thus relieving the computation section of this chore. This  overhead is particu- . 
' 

-. 

larly significant on the Cray-1 for small loops where branch resolution becomes a l a r g e r  per- 

centage of the total  execution time. These factors account for the speedup shown by the . . 

SMA architecture over the Cray-1. 

In all the simulations t h a t w e  ran (the first twelve Lawrence Livermore loops, Gaussian 

elimination, and matrix multiplication) all branch resolution was performed by the U P .  

Programs with this characteristic are best suited for fast execution on the SMA machine. 

Fur ther  analysis  of the S1.M architecture should also include simulation of programs tha t  



would be expected to  run 'less efficiently o n  this machine, for example, a prdgram containing 

d a t a  dependent branches t o  be resolved in 'the CP ,  or  a da t a  dependent branch t o  be resolved 

in the  MAP,  but  which requires information from the C P  to  determine the outcome. In 
. . 

either of these casesi we expect the speedup over the Cray-1 in scalar mode to  be small; how- 
' 

ever, we expect any  program to  execute a t  least as fast as the Cray-1 in scalar mode. 

Results presented in Table 2 indicate that ,  for many programs, the Address Generation 

Unit hardware offers higher performance than is necessary. This  is particularly true in simu-. 

lations where the C P  program contains a large number of d a t a  dependencies. When this is 

the case, 'the M A P  has less difficulty staying ahead of the C P  because the CP1s instruction 

issue rate tends to  be slightly lower, and consequently, the rate a t  which the C P  consumes 

' input  operands is lower. T h e  MAP is blocked over 50 percent' of the 'time by full address 

queues in eight of the twelve Lawrence Livermore loop simulations. This  fact suggests t ha t  a 

less complex hardware configuration for the AGU may be possible which for many programs 

would not compromise the overall performance of the machine. Another possible means of 

making more efficient u s e o f  the AGU may be to. time-multiplex the MAP between two or  

more CPs, each running separate code or, perhaps, parallel segments of. the same program. 

Another obvious area for furthkf in'vestigation is t ha t  of exa&ining the feasibility of 

performing vector operations on the SMA architecture. I t  would be straightforward to  

implement vector instructions on the SMA machine described herein. \\'hat remains t o  be 

determined i s  whether the machine would be capable of executing. vector operations a t  a rate 

comparable to,  o r  substantially faster than ,  existing' vector machines. \Ve believe tha t  with 

enhancements t o  achieve comparable chaining, parallel execution, and peak memory 



bandwidth, the SMA architecture could provide performance comparable t o  state-of-the-art 

vector supe rcomput~r s  on yectorizable code, and higher performanck on scalar code. 
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