

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.

CSRD Rpt. No. 597 ’ UILU-ENG-86-8008

DOE/ER/25001~-g6
DE88 003527 |

" THE STRUCTURED MEMORY ACCESS ARCHITECTURE:
AN IMPLEMENTATION AND PERFORMANCE-EVALUATION .

L R
-

Joseph Cyr

Aﬁgust 1986

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government ar any agency thereof.

'

Center for Supercomputing Research and 'D‘evelopment
University of Illinois .

305 Talbot - 104 South Wright Street

Urbana, IL 61801-2932

Phone: (217) 333-6223.

‘This work was supported in part by the National Science Foundation under Grant No. US NSF DCR84-
10110, the U. S. Department of Energy under Grant No. US DOE-DE-FG02-85ER25001, and the IBM
Donation, and- was submitted in partial fulfillment of the requirements for the degree of Master of Sci-
ence in the Department of Electrical Engineering, August, 1986. . r

T 15 UNLIMITED \

DISTRIBUTION OF THIS DOCUMEN

LA

THE STRUCTURED MEMORY ACCESS ARCHITECTURE:
AN IMPLEMENTATION AND PERFORMANCE EVALUATION

BY
JOSEPH B. CYR

B.A., Aurora University, 1984

THESIS

Submitted in partial fulfillment of the requirements . -
" for the degree of Master of Science in Electrical Engineering
in the Graduate College of the '
University of Illinois at Urbana-Champaign, 1986

Urbana, Illinois

_ ABSTRACT .

"The Structured Memory Access (SMA) architecture implementation presented in this thesis is for-
mulated with the intention of alleviating two well-known inefficiencies that exist in current scalar com- -
puter architectures: address generation overhead and memory bandwidth utilization. 'Furthermore, the
SMA ‘architecture introduces an additional level of parallelism which is not present in current pipelined
supercomputers, namely, overlapped execution of the access process and ezecute process on two distinct
special-purpose, asynchronously-coupled processors. The Memory Access Processor (MAP) executes the
access process which is that portion of the instruction stream that is involved in instruction and operand
fetching and storing. The Computation Processor (CP) performs the ‘“useful” computations on the
operands fetched by the MAP, i.e., executes those instructions that perform computations and tests on
program data. Each processor executes a separate instruction stream to perform its specific task whxch
together, are functionally equivalent a conventional program.

By usmg simulation results, the MAP is shown to expedite processor-memory traffic by ef’ﬁcxent.ly
computing instruction and operand addresses using special-purpose pipelined function units (i.e., the
Address Generation Unit and the Instruction Fetch Unit), and at the same time, reduces the demand on.
memory bandwidth by requiring less interaction with memory to support the accéss process. Our simula-
tion results show that, for typical numerical programs, the MAP is capable of achieving slip, i.e., running
sufficiently ahead of the CP, so that operand fetch requests for data items required by the CP are issued
early enough and rapidly enough for the CP rarely to experience any memory access wait time. In this
manner the SMA tolerates long memory access time, albeit high bandwxdth paths to memory. without
sacrificing performance.

Comparison with the Cray-1 in nonvector mode shows that the SMA architecture’s features provide
improved performance in scalar processing over existing high performance scalar machines. Since the CP
is rarely required to wait for operands to arrive from memory, its instruction issue rate is improved and,
hence, function unit utilization is increased. The ‘“dual” instruction stream feature, inherent in decou-
pled access-ezecute architectures, enables each SMA processor’s program to be significantly smaller than
the conventional single instruction stream program and also frequently allows two instructions to be
issued in a single cycle. Speedups, including reductions in memory wait time, often exceed two.

iii

4Ackhowledgements

I would like'express my gratitude to Professor Edward S. Davidson for providing me
with the"oppo;'tunity to come to the University of Illinois and work at the Center for Super-
computing‘ Research and Development. His advice and assistance, both academic and admin-
istrative, are greqtly a,pprecAia.te‘d; his 'insight and guidance, throughout the course of this

research, was invaluable.

CHAPTER . -

1. INTRODUCTION

2. SMA SYSTEM ORGANIZATION
~2.1. System Overview
2.2. Memory Access Processor
2.2.1 Address Generation Unit

2.2.2 Instr

2.2.3 Operand and Instruction Buffer
2.3. Computation Processor
 2.4. SMA Software

3. SMA SIMULATION AND PERFORMANCE EVALUATION
- 3.1. The SMA Simulator
3.2. SMA Performance
3.3. Effects of Queue Length and Memory Access Time
3.4. Cray-1/SMA Performance Comparison

4. CONCLUSIONS

REFERENCES -

iv

TABLE OF CONTENTS

...

uction Prefetching ...

...

...

..

..

D R R R T R R R R R R R R AR R

10
12
28
31
38
40

45
46
50
54
58

65

69

LIST OF FIGURES

F igure 1. The SMA Organization—A high-level model e

Figure 2. SMA. Architecture Functional Block Diagramcccccecereenees. .
“Figure 3. Address Generation Unit — An Initial Implementation :

Figure 4. Address Generation Unit with Intermediate Base Addresses -

..

~ Figure 5. Address Generation Unit with No Multipliercccceeeennnnenne.
Figure 6. Address Generation Unit — The Final Design tevenseesesens
Figure 7. Instruction Fetch Unit ...cccooiveeiiiiiiirieiiiiiiiniiciiccninnccrecnnnnnes
Figure 8. Operand and Instruction Buffercoeeeunenniee. ST
Figure 9. Computation Processor Data FIOW ..c..ccecvvevveieriiesiverneseenenns .
Figure 10(a). Matrix Multiplication Algorithmccceceverreennes vieeeveerasen

Figure 10(b). Matrix Multiplication. VAX and SMA -assembly
JANZUALZE wevereenieeereneirierieieereeerreneerereeesrnnnnnes [

Figure 11(a). Execution Time vs. Queue Length for Matrix Multipli-
" cation ; '

Figure 11(b). Execution Time vs. Queue Length for Lawrence Liver-
1170 (30 Lot} 30 1 PPNt

15

‘19

21

.94

30
32
39
40

41
56

57

vi
LIST OF TABLES
 Table 1. SMA Function Unit Utilization and Throughput ereresbes st

Table 2. SMA Function Unit Blockage and Causes
"Table 3. SMA/Cray-1 Performance Comparisonc..cceesvuvecrueressneeennns

CHAPTER 1.

INTRODUCTION.

3

" Much attention is being giveﬁ to the development of computer architectu_;es that exe-
* cute vector and/or pargllel programs efficiently. The performance of these sl.lperc;)mputgrs,
ho“;eve'r, is constrained by the well-known “Amdahl Effect.” Code segments whicvlv; are
inherently scalz;.r tend to dominate the performance of many parallel programs on these
machines. Hence, it is an incréasingly important objective in complitér‘ design to de\;elop

architectures which exhibit high performance fo,r.sca.lar tasks.

Current scalar architectures (e.g., VAX 11/780) do not take full ;,dvantage of the regu-
lar memory accessing patterns pf most programs. The computation of operaLnd addresses for
array references, for 'exa.mple,"typically constitutes a large i)ortion of the CPU .activity of
many programs. Several memory references ;nd arithmetic operations may be necessary sim-
ply to determiﬁe a single operand address. For data items congained in multidimensional
structures, t‘h'is' overhead may constitute a substantial portion of the totél éx‘ecution'time.
More sophisticated scalar machines(e.g.; IBM 360/91, CDC 6600, and many more recent
“high performance processors) address this problem b); divviding program execution into I-unit |
and E-unit operations, and pipelining the flow through these units. Variling degrees of acc§s§
and execution overlap are obtained depending on the density of dépendencies in the instruc-
tion' stream. Thbugh the mechanics involved in computing operand addresses is not minim-
ized by this approach, memory access wait time, as seen by the E—unit, is redu.ced. It is clear
from these machines that substantial improvement in scalar process‘ing perforrﬁa.nce can be

achieved if the CPU overhead due to instruction and operand address generation can be

minimized so that the fraction of time that the CPU is able to spend on productive computa-
tions can be increased. Moreover, if the amount of memory referencing required to supp.ort

the I-unit were minimized, further performance improvement would result.

Pipelining has bgen successfully used to exploit parallelism within scalar instruction
streams. Hdwever, many vector supercomputers are admittedly inefficient when processing
scalar tasks; they are effective only when used to process vectorizable tasks. In thislthe§is we
examiﬂe and ‘develop an architectural technique, decoupled access-execute, used in the Struc-
tured Memory Access (SMA) and several other architectures to introduce a further special-
ized level of parallelism. By splitting a conventional scalar inst;ru.ctibn stream intol two, the
machine can execute the resulting streams somewhat independently on two asynchronously
interacting ﬁrocessors. Figure 1 represents a; high-level médel of this type of architecture. In
essence, a conventional program is divided into an access process and an execute process
[Hamm77].‘ Each instruction is split into two distinct subtasks which are executed in paral-
lel; jointly, they perform the original function. In additién, cach processor is specialized with

hardware features for efficiently performing its assigned tasks. Specifically, the Computation

. Operands & Inst. B
Computation Mcmory Acccss Memory

Processor Processor System
(CP) - Flag Bits (MAP)

and ant.rol

Figure 1. The SMA Organization — A high-level model.

Processor (CP) contains multiple pipelined function units, and the Memory Access Proceséor
| (MAP) contains an Address Ge‘nerat‘i‘on ‘Uni.t and an I‘nstructi'on Fétch Unit which are
designed.tb .corhpute operand>and instrt;ction a.ddlj‘es_ses efﬁcienﬂy while’ minimizing the total
"am'ount of _meméary- traffic. The processors perform communic;tion a.m'i' ‘synchroniza.tion
througl'l ha.rdwa.ré que;ues that enable asynchrbﬁous execution of tixe .access.a.n'd_ execute
processes: The key to the hiéh performance of this architecture is the ability of i;he access.
proéessbr to slip with respect to the computatjon processor, and run several ipstructions” |
ahead, thereby supplying a continuous stream of operands to the corﬁputation pro.cess_oy‘
~ which can then run ﬁninterrupted. Studies have shown that speedup’s ‘olf greater than two
are possible _for some of the Lawrence Livermore loop benchmarks with such a decoupled

access-execute organization [HsPG84], [Sohi83], [Smit84].

" In Qha.pter 2 we discuss speciAﬁ'c‘org.anization and implementation isslues. of the SMA
architecture. A The Memory Acéess Processor is tréated in detail since it embodies the more
povel aspects of the SMA architecture. We do not consider the particular design details of
the Computatién Pro_c'essor since the desig.n of powerful arithmétic'and-logic units is well
known. It is -sﬁfﬁciént, for our purposes, to assume that the CP haS the attributes of ‘séme
existing high performance machine; hence, a Cray-like scalar CP Qrganizatiqn ié discussed
briefly. In Chapter 3 the results of detailed simulation ekperiments are discussed, and a per-
: formance ev;luation, using the Cray-1 as a standard of comparison, is presente;d. Overall

conclusions are presented in Chapter 4.

CHAPTER 2.

SMA SYSTEM ORGANIZATION

Thé SMA architecture is based on the fact that brograms can be split into an access
process and an ezecute process. Each process is executed on its own processor, each of which
chtainé specialized hardware features designed to obtain high performance by exploiting the
intrinsic characteristics of 1ts associated process. A system block diagram of the SMA archi- ‘
tecture is shown in Figure 2. The Memory Access Processor (MAP) executes the access pro-
cess which is that portion of the instruction stream that is involvgd in instruci:ion and
" operand fetching and storing. The Computa;tion Processor (CP) perforn.'xs the ‘“‘useful” com-
putations on the operands fetched by the MAP, i.e., executes those instructions that perform
computa.tiohs and tests on program data. This architecture is an adaptation of the organiza—
tion originally proposed by Pleszkun and Davidson [Ples82], [P1Da83], [PSKDSG]. The basic
concept of SMA originated from the idea that improved performance could be obtained by
reducing the overhead of the access procegs and maximizing the overlap be;,tween memory
access a.ﬁd computation. -These objectives were addressed by investigating methods of reduec-
ing the amount of memory referencing required to support the access process and executing
the two procésses in parallel on distinct processors. Kahhaleh and Sohi each undertook per-
formance modeling éxperiments,'which helped to identify system bottlenecks, and suggested'
enhancements to the SMA architecture [Kahh83], [SoDa84], [Sohi83]. The SMA architecture
shown in Figure 2 also includes some features of the Decoupled Access/Execute archi.tecture
(DAE) proposed by Smith [Smit82], [Smit84]. The decoupled access-execute architecture has

also been under investigation for VLSI implementation [GHLPS85].

CoAmprut'ation Processor Memory Access Processor
Y y _ ‘
Inst. '
Buffer R : OIB
eg.

¥ Fil ¥

Decode i _lf___l‘?ﬁg _:]]ﬁR | Decode

& Issue . \ : & Issue

ﬁ. . .
B ¥
/] AGU IFU g

LY

SDQ SAQ RAQ FQ

ALU

Memory Controller

— |

My | | M| | M

" Figure 2. SMA Architecture Functional Block Diagram..

In this chapter we focus on the MAP organization and implementation issues. After a
high-level overview of the operation of the SMA architecture, we discuss, in detail, some of
the functional requirements and design tradeoffs, and the final recommended MAP organiza-

tion. The CP organization is modeled closely after the Cray-1 scalar architecture, and there-

fore, is discussed only briefly. This chapter concludes with a -programming example which
highlights the salient features of the SMA architecture’s operation and software require-

ments.

2.1. System Overview

.Pro'gra.m execution is initiated by the operating system by setting up the MAP Instruec-
tion Fetch Unit (IFU) with information necessary fo load the OIB with the starting instruc-
tion blocks of a program. Appropriate instruction blocks are sent to thé MAP and the CP. |
Under the control of the MAP program, the Address Generation Unit (AGU) computes the
addresses of operands that will be used in the CP. An operand fetch is initiated when the
AGU places an address in the Read Address Queue (RAQ) The Memory Controller responds
to the fetch request. by receiv'ing the address from the RAQ, fetching the selected word from
memory, and forwarding the word to the CP’s Input Data Queue (IDQ). The CP accepts
operands from the IDQ, computes new values as dictated by the executing CP program and
places outptit values in the Store Data Queue (SDQ). The AGU also generates rﬁemory
addresses for the output values computed by the CP, and places them in the Store Address
Queue (SAQ). A write to memory occurs when the corresponding SAQ and SDQ entries are '
both available at the heads ofAthese queues. Memory requests are qugued in the RAQ and
SAQ in thelc;)rder in which their addresses are generated by the MAP program. The RAQ
has priority over thel SAQ, and new read addresse§ are checked against pending writes in t,heA
SAQ. Thus, the correct sequence of memory refer_ences is maintained. In this manner, over-
lap between the access and computation phases of a program is achieved; instruction and
oﬁerand addresses are computed in the MAP concurrently with the processing of the CP pro-.

gram. A more thorough description of the execution of an SMA program is given in

Section 2.4.

The execution paradigrh outlined above is similar to that of tl;e.pipelined I-linit/E-unit
organiia.tion of the IBM 360/91 which uses distlinct fudction units for ,.'t.he instruction--
handling. and' execut'idn :tasks. The SMA architecture, however, differs from the Model 91 in
that each SMA processor executes a distinct instruction stream, which allows the processors'
to operate'much more autonomously. Several performance enhancements are realized by this
approac};. First,'.iAt is known' thet the scalar performance of most machinee is constrained by -
phe maximum instructjon decode and issue rate of one per cycle [Flyn72]. The effect of the
se-ca.lled Flyfm bottleneek is diminished in the SMA architecture by su‘pplying two - physical
instruction streams; one to each precessor. With this feature the SMA_ie able to double its
maximum instruction issue rate. Second, since the sources of CP operAands are contained
only in the'CP. Register File or the head of the IDQ, and the only destinations are the Regis—d
ter File or the tail of the SDQ, tdle architecture of the CP isvparticularly amenable to a RISC
implementation [PaSeSl],‘[PaDiSO]. The format of CP instructions contain only opeodes and’
register tags; no addressing modes are required for memory referencing since this is taken
care of by the MAP. | Benefits of a RISC implementation are a compa‘ct,ins'tr'uc‘t;ion set archi-
At.e‘ctur‘e and more economical hardware and firmware implementa,vt‘ien due to fewer and
simpler instructions. Third, though the usual data dependency e.nd hazard problems exist in
‘the CP instrdction stream, the SMA architecture is able to speed up memory aecessing by
forwarding some previously computed operand results back to the ‘CP quickly by imple.ment-
| ing store-fetch forwarding in the MAP. By examining the contents of the SAQ for each read
request, some memory‘referenci'ng can be eliminated. An associative search of the SAQ
detex;mines whether the AGU has generated a read address tha,t‘ma.tches a previously gen-

erated store address that is still enqueued. When this condition is detected, the associative

search logic signals the Memory Controller to abort the memdry read request and forward
the cérresponding data item from the SDQ back to the CP;s IDQ. If an RAQ—SAQ match is
found, .but the corresponding SDQ entry is empty, the Memory Controller waits for the data
item to'arrive- and; in the meantime, is free to service the instruction fetch queue. Data for-
warding ‘can be resolvea in the MAP, and no special tagging is required. This technique is
similar to the forwarding that occurs with the “multi-access feature” of the IBM 360/91

[Ande67).

As a result of the data.buﬁ‘eringt that takes place in the hardware queues, the processors
are capable of running asynchronously. The MAP can execute several instructions ahead of
the CP limited only by 1) one of its ‘queues becoming full, 2) the occurrence of a data depen-
dent branch which requires information from the CP, via the Branch Queue (BRQ), in order
to determine the flow of control, or 3) the situation where the access process contains more
inst;uctiong and, consequently, runs slower than the computation process. Note that the
first possibility does not present any performance degradation since it does not cause the CP
to wait. A significant advantage of the SMA architecture is that, in the absence of data
dependent branches \yhich need to be resolved in the CP, the MAP insfruction stream experi-
ences few data dependencies (see Section 3.2). This is a result of the fact that most of the
information necessary to support the access process is contained within tables in thé AGU.
After the AGU tables are initialized no further information is required from the main
memor};, and few instructions depend on previously issued instructions that require hore
than on'e cycle to execute. These phenomena, in the absence of the limitations sited, will

enable the MAP to slip ahead and prefetch operands for the CP.

Branch contrnl must be coordinated between the two. processors such that eaéh per-
‘forms similar branches within its own instfuction stream. Data dependent branches may be
resolved in either the CP or the MAP. Conditionnl branches based on t.he’value of prograﬁ
data contained inl a memory location, or in a general purpose registér, are rnsvo'lvedAin the CP
and Acommunicatechi to fhe MAP by transmitting a bit to the MAP.’s BRQ. Conditional
bra.nc‘heiS based on loop indices, or data structure dimensions, are resolved in the MAP and
comnlunicated to-the CP similarly. For examnle, a common high-level programming con-
struct is that of a Fortran DO loop:that repeats until a loop index reanhes its final nalue.
For each iteration, the MAP tests an index register to determine whether Athe loop 'has been
conlpleted and sends an appropriate bit to the CP’s'BRQ to indicate the outcome of the test.
The CP first executes its instructions corre;sponding to the DQ loop,‘-then executes a bfq
(Branch From Queue) instruction. Thev bfq instruction causes the control umit either tb
branch ba,c.k to the beginning of the lo'np and reexecute the loop instructions, or to continue
with the next. sequential instruction, depending on the bit value at the head of the BRQ.
Thus, for cach iteration Of. the loop, the CP deterlmings whether ‘to exit the‘loop bnsed on
queued branch test outcome information supplied by ‘the MAP.'.The opposite case of a
“branch resolved in the CP is handled similarly; héwever, in this case the MAP .exenutes the
qu instructic;n at the end of each loop'iteration. For performance fea§ons it is desirnble to
penmit the MAP t;,o maintain slip by producing code wherein the maximum number of condi- .
tional branches is résolved solely in the MAP. A branch instruction tnat is resolved in the
CP reqnires >the MAP to stop ,and wait for the CP to “catch u-p”:and transmit the outcome
of the branch test. The MAP must suspend operand fetching.during this interval; hence, the
stéady stream of operands to the CP iS interrupted. After the branch is rgsolved in the CP,

the CP will experience a memory wait time, slightly longer than the memory cycle time,

10

waiting for the stream of input operands to resume. During this process, all slip is lost while
the CP catches up, but once the branch is resolved, the MAP attempts to restore slip again.
In contrast, the outcome of a branch tesélthat is resolved in the MAP is generally determined
before the CP reaches the bfg instruction. The MAP can prc;ceed with instruction and
operand f:'etching withoﬁt delay, and the CP can resolve its bfgq instruction in a single cycle.
The MAP effectively performs branch lookahead for the CP and thereby maintains its slip in

this case.

The peak performance of the SMA architecture is achieved when the CP is constantly
supplied with operands (i.e., the IDQ is never empty). When this is the case, the CP never
experiences any delays waiting for the memory to respond‘to operand fetch requests, the
major cause of CP wait in conventional machines. We dc; not expect the SMA architecture
to achicve this idcal operating flow continuously, due to branching aﬁd various overhead fac-
tors such as setting ﬁp the AGU and IFU; however, we do expect fairly long bursts of execu-
tion at peak rate. This expectation is justified by simulations that show speedups in excess
of two for some programs, due to a combination of effective parallelism (less than tw;)) and

reduction of memory access wait time in the CP.

2.2. Memory Access Processor

"I'he Memory .Access Processor (MAP) is a special purpose processor designed to reduce .
the demand on the memory system bandwidth and to expedite instruction and operand fetch-
ing by employing efficient hardware mechanisms for generating addresses. The main perfor-
mance objective in the design of the MAP is to issue operand fetch requests at a rate

sufficient to keep the Computatioh Processor (CP) continually active. This goal implies

11

fetching operands from memory at a rate equal to that which the CP consumes operands
from the IDQ. If this objecti\}e can be ‘achi'eved, the CP will run at the rate at which it can
perform register.transfers, and memory ;ccess will' appear to beAtranspa-rer’lt. Ultimately, .it
wouid ‘be desirabié to stream operands to the CP at a rate that allows tl;e CP t,.oAperform'
computations appfoaching the speed of a vector m#c_hine with a sing.le memory port. For
. this to be possible, it is necess;cxry for the MAP to issue fetch requests at a rate a.pbroaching

one per cycle, and for the CP to contain pipelined function units and a sufficient number of '

internal registers.

The MAP contaiﬂs three main function units: The Address Geheration Unit (AGU)
computes operand addresses, the Instruction Fétch Unit (IFU) combutes iﬁstruction
addresses, and the Operand gnd Instruction Buffer (OIB) stores the MAP program instruction
bloci(s and immediate operands. Special pﬁrpose registers in the AGU are used to hold loop
count variables, base addressesi of scalar data areas, and data structure parameters. These
AGU operands are fetched with special load instructions. On arrival at the OIB, these
operands bypasé the buffer and are stored directly into the ACU registers. Arithmetic
hardware in ﬁhé AGU generates operagd addresses from the information stored in its regis-
ters, and most addresses are computed without the need for addi’tic‘mal inlformétion from
main memory, once the AGU infdrmation is initialized. The IFU executes prefetch instruc-
“tions which éause instruction fetch requests to be issied for instruction blocks ‘tila,t will .be.
needed by the MAP and the CP. The OIB receives the MAP ‘ins'tructiion blocks fetched by
the IFU. Instruction blocks cént;aining loops are trapped in the OIB which enables thg MAP
to reexecute loops in a ma.nnef simi]ar to the loop mode execution of the IBM' 360/91
[Ande67]. The OIB achieves a high hit ratio due to the determin.ist,ic' prefetching of instruc-

tions. Hardware queues buffer the memory requests produced by the AGU and IFU, and.

12

smooth the interface between the processors and the memory suBsystem.

In the next three sections we discuss the functional implementation of the three main
units that make up the MAP and address some of the overriding issues affecting the instruc-

tion set desigxi and system software requirements.

2.2.1. Address Generation Unit-

The Address Generation Unit (AGU) is an arithmetic function unit used to compute the
addresses of scalars, vectors, and multidimensional data structures. Operand addresses gen- .
erated by the AGU are placed in the RAQ or SAQ depending on whether the address per-
tains to a read request or a write request, respectively. qu goal in the design of the AGﬁ is
to issue one read or write request per memory cycle, thus, making most efﬁcieﬁt use of the
memory bandwidth and maximizing the rate of operand transfer to the CP. This require-
ment virtually dictates a pipelinéd implementation since address generation typically requires
that several arithmetic operations be performed for each memory reference. Also required is
a fairly large register set that holds vector parameters, indices, and base addresses. It is
essential to maintain this information in fast registers in the AGU in order to reduceAthe
amount of memory referencing required to obtain information needed to generaté operand
addresses [Ples82]. In addition to these special hardware requirements, it is necessary to
define several specia.l‘insAtructions‘ for controlling the access process. These are discussed after

the functional behavior of the AGU hardware is presented.

In general, computation of the address of an arbitrary element in an n-dimensional data
structure requires n -1 multiplications and n additions. Since data structures are usually

accessed in a nonrandom fashion, we can streamline the address computation process by stor-

13

ing some intermediate infofma.tion‘(e.g., base addresses of data structure subdimensions and
last address computed). Theré a.re,niany poSsibie hardware .conﬁg.ur‘a.tions for performing the
nécéssary a;rithnietic. The main tradeoﬁ' to be c<:)Ansidered is hAa.rdwar;e cémplexity’ versu-s
software‘com.plexit‘y. ‘More powerful hardware capability generally réduces th'e> burden placed
on the software, ‘wher.ea.s an economical hardware implementation. tends to put mére
demands on the compiler. Furthermore, greater computational flexibility and easé of pfo-
gra.m:mirig can be obtained at theA cost o':f greater register requirements and a more complex '
instruction set architecture. In what follows, we examine several possible'AGU impleménta—

tions and the tradeoffs that we considered before reaching our final design decisions.

In the SMA architecture, values in memory are considered to be one of three types: 1)
instructions, 2) scalars, or 3) vectors and multidimensional data structures. Instruction
address generation is considered in the discussion of the Instruction Fetch Unit in the next

subsection. The AGU computes addresses for the latter two.

To generate addresses 6f scalars efficiently, the AGU contains' a small set.of Scalar Base
Regist.ers (SBR)' which ca,ﬁ be dynamically loadéd By software. Scalar data items are
_grouped into Blocks by a compiler, and tHe base addresses of scalar data ;areas are loé.ded
into SBR entries. References to scalars are performed by 'specif_ying an SBR and a displace-
‘ment in conjﬁnction with the fetc'h (or store) instruction. In essence, Agro'ups of scalars are
tréa;ted like one-dimensional arrays. Displacements are relatively‘small integers requiring
just a few bits for encodilng';‘tl’lus, any scalar réference can be specified in a sir}gle word .
instruction where .the displaceﬁent is immediate data, and the base is indicated via an SBR

tag. The AGU can compute the effective address of a scalar and issue a fetch request, simply

by adding the displé,ceme'ht contained in the instruction to the contents of the specified SBR

14

.and placing the result in the RAQ. In this case, the only computation that is required is a
single addition. The SBRs are also used to contain argument and stack pointers for subrou-

tine and interrupt processing.

Gegera.tibn of addresses for the elements(of a vectof or multidimensional data structure
requires knowledge of the base address of the structure, the stride of each dimension, and the
values of indices used to select a specific element. The AGU contains three sets of 'registers
to héld.this information. The Structure Definition “Table (SDT) contains the characteristic ‘
parameters for oﬁe or more data structures, i.e., the base address and the dimension str{des. '
The Access Pa.ttérn Table (APT) contaiﬁs information that associates index registers with
the particular dimensions of data structures defined in the SDT. Each APT entry also con-
tains an offset value which is used to rﬁodify index values p.rior to address computation. This
c,;ffset feature is frequently useful in numerical applications where index values, used to select
particular #fray elements, are commonly modified by some small integer (e.g., A(i,j+1)).
Index Registers (IR) contain the current value, final value, and step size of index values used,

for example, in DO loop constructs of Fortran programs.

2.2.1.1. An Initial AGU Ilmplementation

As a preliminary design for the AGU organization, we considerea the hardware required
for a pipelined implementation of the straightforward multidimensional array address compu- .
tation algorithm (i.e., n additions and n-1 multiplications for .each element of an
n-dimensional structure). A function unit ‘tha.t impléments this algprithm is shown in Fig-
ure 3. This AGU impleme_pta.tion contains much flexibility in addressing arbitrary elements

of n-dimensional data structures and, at the same time, requires minimal effort from the

15

i

IR SDT

— —]
Current| Step Final' . Index e Base Addr.
Value Snze le}“i Ptr. (?ﬁsetm_. Stride of Dim. 1

‘ Scalar

¢ | Stride of Dim. 2

Stride

MUL

Base -

Addr

Displacement

SBR

: Scalar Base

>

ADD

u

Memory

Figure'3. Address Generation Unit — An Initial Implementation.

compiler to generéte code. Note that no effort was made to take advantage of the generally

nonrandom nature of memory referencing present in most programs. As a consequence, the

resulting hardware and control sequencing are relatively elaborate.

To fetch a data structure element requires specification of an SDT entry that contains
the Sase» address of the structure, in conjunction with the. fetch instruction. To compute
the eﬁ"gctive address of an element of an n-dimensional data structure, the index values for
each dimension (modified by APT offsets, if necessary) are multiplied by the corresponding

strides and successively added to the base address of the data structure. That is,

n

EA = B, + })S;{I; +O;), where B, is the absolute base address of the data structure, and

i=1
I;, O;, and S; are the index, offset, and stride, respectively, of the i*h dimension. The base -
addresses and strides are stored in the SDT, offset values are stored in the APT Offset field,
and the index values are stored m the IR Current Value ﬁeld.(see Figure 3). Each SDT regis-
ter contains two pointers: one points to the appropriate APT register, which is used to
enable the correct Offset and IR Current Value, the other points to the successor SDT entry,
which indicates the registers to be used in the next phase'of the c-om;;utation. The control
unit cycles through SDT entries until a null SDT pointer is encountered, and the summation
is accomplished by the feedback loop at the second 'adder.‘ Every data structure address is
essentially computed ‘“from scratch.” No intermediate addressing information is retained,
and no assumptions are made about the next address computation. Note that multiple data
structure deﬁnitions.in the SDT with similar traversal characteristics may share common

APT and IR registers.

As a simple ex;ample of how address generapion takes place in this unit, consider theA
comput;ation of the address for an array element A(2,5), where A is a 32 X 32 matrix. This
data structure is two-dimensional; therefore, thrée SDT entries are used: one contains the
ba;se address of tﬁe array A, and the other two contain the strides of the two dimensions..

During the first cycle, the index register containing the Current Value 2 is gated into the first

17

adder along with l;he corresponding APT Offset, which is 0 inA this case. The IR anbd,APT

-reg'ist;ers containing these va.lﬁes are en'abl'ed By the APT'poinyer‘~in the SDT entry which

contains the Base Address of A (refer go Figure 3) The‘base; 'address. o'f‘ A is sent to tﬁe

secoﬁd adder.. Dﬁring‘the second cycle, the SDT entry containiﬂg the s.t;;.ri'de of the first

dimensién, which has tﬁe value 32, is gated to the multiplier along witH the result of the ﬁrst
- adder, which is simply 2. At the same time, this SDT entry enables the index register con-

taini:ng the Current Value 5, via its corresponding APT register, which, again, contains an

Oﬂ'sét qf 0. On the third cycle, the SDT entry containing the stride of thé second dimeﬂsion, |
which is just 1, is seﬁt to the multiplier along with the result of the ﬁ_rs‘t,'a.dder which is 5,

’and the result of the previous multiply, 64, is forwarded to the second adder to be added o

the base a.dd.ress of the structure. On the ﬁﬁal cycle, the result of the's'econd multiply, 5, is
forwarded to t;.he second adder to be sumﬁled with the result of the previous ladd'ition a;t that

adder,'whi.ch was the E;a.ée address of A plus 64. The result of this final addition is the base

address of A blus 69', which isb.t'he address of A(2,5). This result is then placed in the RAQ.

(Noté that this glgorithm assumes that the array subscrjpting ranges from 0 to 31.)

Although- ﬁhis ﬁéy not seem like a pa.rticu_larly.expedient api)roach,' there are some
| redeeming advantages. Because of the independence of each address co'mputa,tion, éompletely
random references can be generated, i.e., index values can be .modiﬁed arbitrérily between
Amer{nory refefences with no additional overhead. This random access support is a -very useful
feature for some applications, and one that current vector processors do not have.‘ The

requirements placed on the compiler are simply to compute the stride of each data structure
dimeﬁsion from the high-level lahguagg declarations, determine the correct pointers for each
SDT entry, and generate instructions to load these values into the SDT prior to use. Simi-

larly, the APT and IR entries are taken directly from the source statements of the high-level

18

programming language. Disadvantages of this implementﬁtion are that a good deal of multi-
plexing is required at the adder inputs, and the algorithm to control the sequencing of the
compupation is fairly complex. Furthermore, inclusion of multiplication hardware is undesir-
able in terms of cost and speed, and the summation process that takes place in the feedback
loop reqﬁires several cyéles (one for each dimension) causing the algorithm to be slower than

we require.

2.2.1.2. An AGU Implementation with Intermediate Addresses

To streamline the address computation algorithm, we can do two thipgs: eliminate the
multiple cycle summation, and eliminate the need to perform multiplicationg. The former
can be achieved by retaining information froﬁ previous cdmputations. For example, access-
ing a ‘two-dimensional array can be treated like a vector if an intermediate address,
rep;gsenting the base of the secon;i dimension, is retained for use in subsequent address cal-
culations. With respect to a convcnt;ion&l innermost loop, ali accesses to an array lie within
a single dimension, and are some offset distance (de_rive_d from the inner loop index, J) from
this intermediate base address. The base address of the seéond dimension (B,) is a function
of the absolute base address of the dapd structure (Bl), the stride of the first dimension (S,),
the index governing the first dimension (/), and the offset of the index value (0-1),.i.e.,
‘B, = B, +S,{I +0,). Each time I is incremented in the outer loop, B, must be recom- '
puted. The effective address of an array element can now be computed in a single pass
through the pipeline; EA = B, +S8,4{J + O,). Generalization of this technique to higher-

dimensional data structures is obvious.

19

R APT SDT SBR

;’Cl;rrenz Step | Final Index|o gset ' Basel Stridel - Scalar Base|
" | Value | Size |Value Ptr. Base2 Stride2 .

MUL

Scalar -
Dlsplacement
. - D

Memory

Figure 4. Address' Generation Unit with Intermediate Base Addresses.

Figure 4 shows modifications to the AGU organization to support the address computa-
tion élgorithm just described. In this organization, the SDT associates a base address and a

stride for every dimension of each data structure. Each address computation involves only

20

the highest dimension SDT entry; therefore, it is no longer neceésary for the SDT registers to
maintain links to subsequeﬂt entries. Fﬁrthermore, the binding of APT and SDT entries can
be established at compile time as a pa,rt; of the normal register allocation activity, so explicit .
- pointers to APT registers are also unnecessary; however, inétructions that cause addresses to
be compﬁted must nowAspecify an APT register in addition to an SDT register. Finally, the
output of the second adder is now available as an input to the SDT in order to update subdi-
mension base addresses. The computation of an operand address is initiated by the fetch (or
stare) instrnetion with the SDT and APT registers corresponding to the highcat dimension ‘
specified. The compiler is expected to insert instructions to recompute subdimension base

addresses as required.

2.2.1.3. An AGU Implementation with No Multiplier

_The né;:essity of. performing multiplications can be eliminated in several ways. If the
Base Address field of an SDT entry for the highest dimension is used to store the address of
_ the last data item accessed, rather than the base address of that dimension, then subséquent
addresses in the inner loop can be computed by adding the stride of the highest aimension to
this value. Such an AGU is shown iq Figure 5. Each new address that is generated is also
stored back into the SDT entry representing the highest dimension base address. Here again,
whenever an lindex governing a lower dimension is modified, the base addresses of all higher
dimensions must be recomputed. This algorithm is very efficient in terms of hardware and
control i"or very regular accessing patterns; however, it lacks flexibility in accessing when less
regular pa.fterns are required. One particular drawback is that the address calculation is
in(;ependent of the index values. A program cannot modify index values without immedi-

ately updating the appropriate SDT registers, regardless of whether an operand address is to

21

IR APT l SDT ' . SBR
_oCurrent| Step | Final Index|o fsedl Basel | Stridel - Scalar Base
Value | Size |Value| . Ptr. ‘ Base?2 Stride?2
- Scalar
Displacement yy \
’ ADD

ADD

Figure 5. Address Generation Unit with No Multiplier.

- be genefated. For example, consider a DO loop where the instructions of. the loop aré con-
t;ained within a conditional IF state?nénti For this common situatién, operand fetches are
: required only: for iterations wﬁen the IF condition is true. In this imblenientgtipn, however,
the SDT values mﬁst always reflect the current state of the corresponding index registers
and, t.'hererbre, must be modified in every loop iteratioh since they cannot be computed,
whereas in the previous AGU design, the computation of subdimension base addresses can be
p‘erformed'just on iterations where actual operand fetches are required. The use of index

offsets is also complicated. A larger computational overhead can be incurred using this

22

approach. For some programs the access process may contain enough unnecessary address
computation that the MAP becomes the system performance bottleneck. Furthermore, this
technique teﬁds to reduce the addressing capability of the machine to that of a vector pfoces—
sor, which can efficiently access only a sequence of data items that are separated by a con-

stant stride.

2.2.1.4. The IFinal AGU Implementation

A second technique for eliminating multiplications is to normalize the index register
values and APT offsets to integral multiples of the stride of the dimension for which the
index value is used. For example, in the two-dimensional case, the Current Value, [, varies
from 0 to (N, - 1)§; in increments of S|, wﬁere N, is the upper bound (Final Value) of the
outer loop, and I, varies from 0 to (N, - 1)S, in increments of S,, where N, is the upper
bound of tﬂe inner loop. The Step Size of each IR is set equal to the dimension stride, and
the APT Oﬂ'sets‘corresponding to I, are also normalized to multiples of S,. Now the com-
putation of B, is reduced to By, = I, + O, +B,, and the effective address of an arr;xy ele-
ment is EA = I, + O, + B,. Multiplication of the sum of the current index value and the
offset by the dimension stride, as is performed in the first two AGU implementations, is no
longer necessary since this is ifnplicitly done each time an index value is incremented. Simi-
larly, it is no longerAnecessary to store the stride of each dimension in the SDT since these
values are now contained in the IR Step Size field. This feature reduces th;: size requirement
of the SDT by approximately 50 percent. Furthermore, the loop index values can be

modified arbitrarily between address computations.

23

These normalizations can easily be accomplished by the compiler; however, they tend to
Timit the amount of IR and‘A.PT sharing that can occur between data structures, and conse-
quently more index register space is req;lired. Fof'exampl'e, if two arra;'ysAare accessed in a
nested loop, one 4in row-major order, the other in column-major (Srder, alpérticular i_ndex
variable will indexl the first dimension in one array, and the second difnension in the sgcond

.array. Since the two dimensions ha.vé different strides ’and final values, the same IR cannot
be u‘sed‘to compute addresses for both arrays. This problem can Be solved by maintaining '
separate index registers for each array, with each being incremented by its correspoﬁding
stride. This ‘“dual” ihdex’_can be set up and maintained by the compjler? and negd not be
reflected in the high-level programming language. Either of these index registers may be
selected for the loop exit test. This situatio;l is actually qﬁite common in conventional com-
puters, and is handled by usihg more than one index register (if available) and several incre-

ment instructions per loop iteration.

A block diagram of this final AGU design is shown in Figure 6. The AGU co‘ntajins the
usual four register sets and two adders in cascade. This implemeﬁt_ation does not fully real-
ize the desigﬁ iject'ivie of generating one operand address per cycle ciue to the pipeline béing

| used to. perform functions chér than address generation, but, as sh<;wn in Chaﬁter 3, the
overall performance is generally good. In addition to computiné operand addresses, the AGU
:pipeline also :computes the adci_rgsses of operands required to initialize the AGU tébles, com-.
putes the addresses of data s'tr'ucture.subdimensions, increments (decrements) the index regis-
ters, and tests the IR Current Values against the Final Values in order to set branch signals.
'I"he cascaded architecture is vefy useful in implementing a pipelined increment and branch
instruction used for{progra.m control. After the ﬁrsﬁ adder perforrﬁs the increment operation,

the result is simultaneously stored back in the IR Current Value field and routed to the

24

OIB
Address Generation Unit
L Internal Bus
A
. 184 APTy SDT l SBR
Current| Step | Final | Index Oflsel VBase Addr Dim | . SRR
Value | Size |Value| Ptr. Base Addr Dim 2

Vv

ADD

Displacemen

:yy

l__\

=R=}

Memory

Figure 6. Address Generation Unit — The Final Design.

second adder along with the Final Value where the branch test is performed. The multifunc-

tionality of the pipeline limits the address generation rate to be somewhat less than one per

25

clock, but it also significantly reduces the complexity of the hardware.

. To compute a.ddresses‘of elements of an n-dimensional datla ;truéturc, n SDT entries
are used. One entry contains the absolute base addres’s‘ of the Ad.ata, structure, and the
remaining n-1 entriés-contain the addresses of subdimensions within the data structure.
Each subdimension base address is associated witﬁ a b’articular index register and is Amodiﬁed
'by multipies of the stride of ghe corresponding dimension as the p}rogrAam progresses. That
is,.each time an ihdéx regisﬁér for a given dimension is incremented, the _higher-;iimensiona.l A
base addresses are recomputed. by additional instructions. The hierarchical relationships of .
the SDT registers corréspohding to each dimension of a data structu}e are determined af
corhpile time as registers are allocated. Overhead is reduced by assi_gniﬁg the most fre-
quently changed index to the highest dimension. The compiler also -nbrmalizes the Final
Values, Step S_izeS, and Offsets to in‘tegrallmultiples of the strides of data sfruéture dimen--

sions for which they are used. All of these registers are loaded under software control.

2.2.1.56. Address Generation >

As a simple example of address generdtion in the MAP, consider the fetching of the ele-
ments of every third row of an N X N matrix in row major order. The high-level MAP

software to aécom-plish this task might be the following:

FORI = 1 to N BY 3 DO
FOR J = 0 to N-1 DO
FETCH A(I,J+1)
END
END

Note that the structure of the inner loop (i.e., using JH for 0 < J <N-1) is unnecessarily

complicated; however, it is useful for illustrative purposcs.

26

The A matrix is two dimensional; therefore, two SDT eAnt.ries are initialized. The first
SDT fegister is loaded with the base address of the first dim.ens;ion (B,), which is the absolute
base address of the data structure. Th.e' second SDT entry contains the base address of the
second dimension, ‘B,, which is defined to be B, +1 + O,, where O, is 0, and I is inmtially 0,
and ranées from O to (1\./—1)5'1 in increments of S, as the program runs. The base address of
the second dimension, then, varies as a function of I (B, and O, are constants); each time
index I is altered, B, must be recomputed. The SDT entry corresponding to B, (say, sdtl)
is associated with an APT entry (aptl), which contains an Offset equal to 0, and a pointer to
the index register containing /. Initially, this index register has a Currgnt Valug of 0, a
Final Value of (N -1)8,, and a Step Size of 3+S,. The second SDT entry (sdt2) points to an
APT entry (apt2), with Offset, O,, equal to i*S 2 and a pdinter to the index register contain-
ing J. The J index register has a Current Value of 0, a Final Value of (N -1)S,, and a Stei>
Size-of S, -The normalized Offsets, Final Values, and Step Sizes of indices are determined at

compile time from the loop bounds and data structure declarations.

In this example we have assumed that §; = N, and §, = 1; however, this need not be
the case. In general, each data structure element can be of any length, and thé loop bounds
are not necessarily required to coincide with the datg, structure dimensions. Arbitré,ry subar-
rays can be accessed, with any ordering of the dimensions, by adjusting the initial and final

values of index registers and assigning them to the dimensions of the structure appropriately. .

The execution of a fetch instruction for array element A(I,J+1) is initiated by an
assembly language instruction such as:

fetch sdt2, apt2

The specified APT register (apt2) enables the index register corresponding to J. The Current

27

Value of J and the Offset contained in- apt2 are gated into the first adgler;v The result is
'gated- to the second adder aloﬁg with B,, the ba;se address of thé second dimension, contained
ip sdt2. The résplt of the second adder, the a.dd:ress of A(I,J—Fl), is derr;ultiplexed to the
RAQ which pompléte's the address generation process for one data el;amgent.l |

‘To implement the complete code segment, we also need to initialize and in'crement the
a’pp‘ropria.i:e index registers, recompute Bé as I changes, and conditionally bra.nlch to the
beginning of ea.ch-loc.)p. The‘folAlowing code is representative of the Acoxire‘s.ponding MAP. pro- -

gram.

setup x1, (shrl)
out_Joop: setup x2, 3(sbrl)
comp 'sdt2, sdtl, aptl
_in_Joop: fetch sdt2, apt2
_ inc* x2, in_Joop
‘inc x1, out_Joop

SR o e

The two setup instrqctions loa.d the index registers x1, and x2, with initial information from
memory corresponding to the [/ ‘and J indices, respectively. The location of this iﬂforma.tion
in memory is determined by adding a displacement to-a previouslAy_Aloaded SBR. The comp
instruction 'cém'putes; 32 (stored in sdt2) from B'l'(sdtl) and [(point‘,ed to by aptl). ~The
inner looé is comprised of instructions 4 and 5. After initiating the.o;-)erand fetch,l the ipdex .
register correspon_ding to J (x2) is incremented by its Stép Siie and compared to its Final
:Val‘ue. As lo:ng as the Final Value is not reached, a branch to the la.bel z'n_lbo'p‘ is taken;
otherwise, the program procéeds sequentially. The sec.onvd‘inc in_stxfuction is reached whén th.e
inner loop exits. It increments I and closes the outer loop. Note that the index register con-
ta,iniﬁg J is ‘reir;itialized and Bé is repomputed whgnever the outer loop is executed. Addi-
tional instructions (not shown) are required to initialize the.SDT and APT registers. These

instructions are functionally similar to the index register setup instruction, and must be

28
executed at some time prior to executing the above code segment'.

2.2.2. Instruction Prefetching

The instiuction st;‘eams executed by each processor are segmented il;to a sequence of
instruction blocks [P'le582]. Brieﬂy, a basic instruction block is a maximal-length ordered set
of instructions such that all entry points into the set are to the first instruction,A all exit
points f;'om the set are from the last vinstrucAtion, and all instructions within the block are
execuled sequentially. We have expanded on this definition by eluninsting the requiremenl
that the instructions in a block be strictly sequential; complez instruction blocks may contain
branch instructions as long as the targets of the branches are also within. the same block.
With this generalization, complex instructioﬁ blocks may contain nested loops, two or more
adjacent loops, reconvergent branch trees, or combinations of these constructs and sequential
code. Any iﬁstmction block that does contain a loop, however, must be terminated by a con-
ditional branch or ofher speéialized instruction that initiates an> instruction block purge
operation in the instruction buffer. Instruction blogk handling is discussed in the next sec-

tion. The upper bound on the number of instructions in a block is determined.by the size.of

the i.nstruction buffer that receives the block.

Conceptually then, a program can be considered to be a logical sequence of instruction
blocks. Program control flow can be modeled by a directed graph, usually containing cycles,
where each vertex represents an instruction block. In general, control flow from one instruc-
tion block to the mext can be generalized to three cases. A block can be terminated by 1)
any nonbranch instruction, or 2) an unconditional bra{lch instruction, where, in both cases,

there is only a single successor block, or 3) a conditional branch, in which case two possible

29

successor blocks exist. Given that, from the program graph, the control flow of any program
is relétively predictable, it woﬁld seem »ahbdvantag'eous .t;o> exbloit this inherent program struc-
ture. In the SMA architecture we implerﬁent a meéhanism‘to initiate préfe-tching of instrué-
tioné into a high-sieed buffer (OIB). This is accomplished by including a pr;fétch instruction
as part <;f the basié inst;ruction set of the machine. Each MAP instruction block contains at
‘least one prefetch instruction which initiates the fetchiilg of‘ its successor .instruction blocks.
Each" MAP iﬂstruction block also contains tﬁe necessary prefetch instructions required to
feﬁch the corresponding CP instruction blocks. We rely on the compiler tb delineat.',e ins'truc-
tion blocks and to insért prefetch instructions into the MAP instruction '-'strt_aam suchAthat the
correct instruction blocks are fetched prior to being demanded for execution by the proces-
. , . ’
sors. This method of buffering instructions is very efficient since thé. prefetching is not

hueristic, and only those instructions that are in the immediate flow of program control are

fetched.

The control uhit identifies prefetch instructions and issues them to the Instruct:,iog Fetch
Unit (IFU). Figure 7 iliustrates the data flow of the IFU. The pfefetch instruction specifies
the starting é.ddrcss. (Block Addr) and the length (Block Len) of instruction blocks. - The
starting address can be specified as. immediate data in the seconvd"word of a.'t;wo-word
instruction, or as an offset, to be summed with the contents of an SBR, in a single-word
:inst;uction. The IFU generates sequential addresses corresponding to the .WOI-‘dS of the’
instruction block and places the addressgs in the Instruction Fetch Queue (IFQ).‘ The
Memory Controller services the requests in the IFQ and routes the fetched instruction words

to the OIB or the CP Instruction Buﬂ'er. -

30

le—Block Addr.
1 f—Block Len.

[Eon J, e i
[TAR el

= done

wait

J |

1FQ full

Figure 7. Instruction Fetch Unit (IFU).

Initially, the instruction block address is loaded ipto the Instruction Address Register
(IAR), and the sum of the block address and the block length is loaded into the End-Of-Block
Register (EOB). On successive clock.cycles the contents of the JAR are transferred to the
Instruction Fetch Queue (IFQ), and the result of the adder (LAR + 1) is gated back into the
IAR. A corr;parison of the contents of the IAR and EOB indicates the completion of the
address sequence by ;xsserting the signal done. This signal indicates to tl;e control unit th&‘ztA
another. prefetch instruction can be issued. The IFU is required to stop generating addresseé

temporarily whenever the IFQ becomes full. The wait signal indicates this condition.

Analysis of program graphs for a wide range of application programs has shown that,

on the average, the size of basic instruction blocks is on the order of.five or less [Kuck78].

31

This fact suggests that we can compute the EOB and increment the JAR with a simple 4 bit
'adder‘ and carry propagation iogic, Thj; approach would result in* an -economical hardwa_fe
implementa;tion,-but the maximum.bloc]; length wc;uld be limited to §ixt'ee1'1. Another possi-
bility would be tol'integ‘rate the IFU with the AGU by sharing one ;)f the A;GU’s existing 32
bit adders. The AGU Would be inhibited ‘whenever the IFU is a,ctive' (done = 0) and not
-stopped (wait = 0) Our simulation results show that the i)e,rfofma.nce degradation Aresult,ing
from: the AGU being interrupted to allow the IFU to fetch instructions is negligible (<1%) '
when the instruction buffer (OIB) is large enough i;o contain all the instrucfions of inner ioops
for programs dominatéd' by .inner ldop execution. Use of the full-precision AGU for IFU addi-
tions allows the instruction blocks to be larger, which is particularly desirable for 'thé larger

complex instruction blocks permitted here, without significant additional hardware cost.

2.2.3. Operé.nd and Instruction Buffer

 The Operand and Instruct'ion Buffer (OIB) is a high-speed circular buffer used to store
instructions and in-line operands prefetched by the IFU. The size of the OIB must be large
enough to coh-téin t’he instructions of .rea.sonably 'la’rge loops. For léo.ps of size less than n
| (the size of the buffer), the OIB is able to trap the corresponding instructions, and the MAP
can reexecute the‘loop repeatedly without refetching the instrucﬁion block. Thé" OIB achieves
‘a large hit fatio through the deterministic prefetching of instructions} di;éussed in the last’
section. Since the size of instruction blocks is controlled by the.compiler‘a‘mode'rate-buﬁ'er
size is feasible, and the OIB may be more economical than typical instruction cache imple-

mentations. The OIB is shown in Figure 8.

32

Control Unit from Memory .
‘ ’]: . 0

HEAD 1 Block i-1
PC -
LOAD __ Block i
PRFETCH-
brancﬂ Blocl(111
ADD Block i-1 n‘_Vl

Instruction Reg.

Figure 8. Operand and Instru;:tion Buffer (OIB).

The PC contains the OIB address of the next instruction to be executed, and the HEAD
register contains the OIB address of the first instruction of a loop mode block, while that
block is in execution. For nonloop mode blocks, the PC and the HEAD always contain the
same address, and both are incremented together as ins.tructions are fetched. In either case,
the HEAD points to the oldest valid instruction in the OIB. The LOAD register points to
the OIB location- where the next insﬁruction received from the Memory Controller will be
loaded, and the PREFETCH register points to the OIB location that is ﬁhe target of the next
instruction to be fetched by the IFU. The OIB supports one read operation and one write
operation per cycle; therefore, instructions fetched'by the IFU can be loaded into the OIB at
the same time as instructions are fetched for exécution by the AGU. The IFU loads the
instructions of the block(s) that will follow the currently executing' block; therefore, the

LOAD and PREFETCH pointers generally remain ahead of the PC. Due to the prefetching

33

mechanism, the next instruction to be executed by the AGU is usually contained in the OIB

or, in the worst case, is in the process of being fetched.,

. Three st',a.tus.‘bits afe associatéd with each ioca.tion in .the OIB: The valid bit indicates
whether . the ‘OIB 1oc‘ation contains a valid instruction (cf. Full/Empty bit), the loop bit
indicates whlether the OIB location contains an instrﬁction that is pa,rf, of a block that con-
tains a loc;p, and the last bit marks the OIB locations which contain the last instruction of
a block. The OIB sets the t;alid bit corresponding to the location of ea;ch_riew instruction as .
it is received from memory and any OIB location that has its valid bit set cannot be loaded
with a new instruction, To ensure that valid instructions are not ovefwritten, the ~valid bit
of Ath.e OIB location addressed by the PREFETCH fegiste; is checked priof to each instruc-
tion fetch request issued by the IFU. The IFU waits if the valid bit is 'sét. Instructions are
purged from tbe OIB; and'the correspondiﬁg OIB locations become ava.ila,ble‘ toAreceive new
instructioné from me_mory,'wheﬁ their ‘valid bits are reset. For blocks containing sequential
iqstructions, valid bit resets occur one instruction at a time as each instruction is executed,
and for loop mode instruction blocks, an entire block is‘invalidatedl (purged) in one operation
»by resetting the 'valid bits of all thé OIB locations that contain the blc;ck and then setting t';he
HEAD register equal to the PC. When the instructions of a loop modé block hé,veA been exe-
cuted the required number of timeis and are no longer néeded,. the HEAD and the PC are
'used to genelga.te a mask vector which is ANDed with the vector qf current valid :bits. The.
result resets the old valid bits to reflect the fact the locations occupied by the block are now
invalid and can be overwritten. This block purge operation is initiated by instructions that
terminate loop mode instruction blocks and other special .instructions used specifically for -
instruction handling. For example,‘ an unsuccessful conditional l;ré.nch' tha‘t'.is the last

instruction of a loop mode block (marked by the last and loop bits being set) causes control.

34

to exit the loop, purge the loop instruction block, and proceed to the first-instruction of the
next Block. The use -of both a HEAD register and valid b‘its may -appear to be redundant;
howev.e'r, Athe valid bits are required for the purpose of determining whether an instruction
which is the target of a forward branch (e.g., unconditional jump or sub}outine call) is
resident in the OIB. When jumping forward it is difficult to determine whether the PC has
jumped past the LOAD registér and points to an OIB location that has not yet been loaded
with‘thé desired instruction. The valid bits are also‘cOnvenient for permitting a quick vali-
dity test used, for example, in stalling the TF1] prefetch aperation. The HFEAD register is '

used simply to determine the starting location of block purge operations.

| The setting of the loop and last bits for each instruction is determlinec.l by control logic
in the IFU. Loop mode block's are determined by the comﬁiler and indicated to the IFU by a
flag in the prefetch instruction, and th.e last instruction of a block is known to the IFU when
the final acidress of an instruction sequence is generated. This information is relayed to the
Memory Controller which sets the appropriate bits for each instruction before they are sent
to the OIB. When the loop bit of an instrugtion is 0, indicating that it is contained in.a; non-
loop mode block, the valid i)it of that location is immediately reset, and the HEAD and the
PC are both incremented, when the instruction i§ fetched by the PC for execution. When
the loop bit of an instruction is set, indicating that it is contained in a loop mode block, only
the PC is inc.:remented, unle§s a block purge operation is initiated. To illustrate the use of
the status bits and the overall control of the OIB, we examine the three following cases.

These examples are representative of most situations encountered in the control of the OIB.

Consider an instruction block that contains strictly sequential instructions to be exe-

cuted once. As the address of each instruction of the block is generated by the IFU, the valid

35

bit of the target OIB location, i.e., the location addressed by the PREFETCH register,-is

checked. If the valid bit issef, this OIB’loéation already céntains an instruction that is still
required by the MAP. Thus, the IFU m'ust wait f(:>r the AGU to executé tile instruction ar'ld
reset thg valid bit. If the valid bit is reset, the IFU generates the inStruction é.ddress and ini-
tiates the memory'requést by placing the address in theAIFQ. The valz:d bit of the OIB loca-
tion is set when the instruction is loadgd from menigry. The loop bit of each instfuction of
the l:'>loc'k is reset indicating that no instruction in the block will be executed more than once.
When each instruction of the ‘I'Jlock is fetched for execution, the wvalid Bit of the OIB:loca-.
tion addressed by the. PC is checked to determine if the instruction is ‘present. If t',he. valid
bit is not set, the execution unit waits for the IFU to fetch the i‘nstr‘uction -and set the vaﬁd
bit; if the valid bit is set,.the instruction is ioaded into tHe instruction fegister in the control
unit, and the valid bit is reéet. When an instruction is éuccessfully fetched by the PC, the
PC and tﬁe HEAD a_l;e incremented. (Only one increment is performed and the result is
stored in botﬁ registérs.) In eﬂéét, by resetting the wvalid bit, the OIB location just fetched is

vacated, and the IFU is.free to load a new instruction in that location.

Now cohsider a;n instruction block containing a loop. As the IFU.fetcheé and loads ‘the
instruction block, both the valid bit and the loop bit of each instructjoﬁ are set. In this case, .
however, the OIB locations where the instruction block>resides cannot be marked invalid

after they are executed since at least some of the instructions may be‘reexecu.ted. The -con-
trol unit, therefore, does not reset the valid bit of instructions that haye their loop bit set.
The 'HEAD register maintains the OIB address of the first location of a loop mode block
while' it is being executed. As léng as the wvalid bits remain set,l the IFU cannot overwrite
the current block. As stated in the previous section, loop mode instruction blocks must have

a conditional branch (or a special ‘“purge’’ instruction) as the final instruction. - Conditional

36

branch instructions that are successful and are the last instruction of a loop mode block
cause control to transfer baék to a.loca.tion within the block. Since -the.placément of instruc-
tion blqcks in the OIB may be different from their relative location in the object module as
stored in memory, -all branches must be relative to the PC and not larger than the size of the
OIB. The branch target displacement can a,lv;/a.ys be determined by the compiler since, from
the program graph and instruction prefetching, the compiler determines what instruction

blocks will reside in the OIB at any given time, as well as their relative locations in the OIB.

Conditional branch instructions that are unsuccessful and are the last instruction of a loop

mode block cause control to proceed sequentially into the next block and cause the current

block to be purged. Purging the instruction block is accomplished by reseting the wvalid bit
‘ of each OIB location between the HEAD and the PC, including the location addressed by the

HEAD, then storing the contents of the PC in the HEAD.

In the. two cases discussed above, there was only one possible succeséor instruction block
and this block was located in the OIB immediately following the current block. Therefore,
transferring control from the current block to the successor block simply involved incr‘e‘ment-
ing the PC and, perhaps, purging the last instruction block. Loops too large to be contained
in the OIB must be handled as two or more sériai (nonloop mode) blocks. Some instruction

in each block initiates a prefetch for the next block, and the loop bit of each instruction of

‘the next block is reset by the IFU. The final block of the loop must prefetch both the first

block in jt;he loop, for the case when the loop terminating conditional branch is successful,
and- th;e next seqﬁential block after the loop, when the terminating conditional brgnch is
unsuccessful. A prefetch instruction is inserted in the final block such that the first block of
the loop will always be prefetched and will be located in the OIB immediately following the

last block of the loop. This is accomplished by placing the prefetch instruction for the first

37

biock of the loop' before the conditional branch that terminates the loop'. The prefetch
instruction for the block that §vill be executed when the branch is unsuccessful is placed after
the conditional brapch; therefore, it is'executed 6n1y when the loop has been exhaustea.
When the loop is'éxhausted, the first block of the loop has already i)een prefefched, and con-
sequently must beljum;;ed over and purged. Therefore, the final blockAQf the loop ml;st con-
- tain two instructions following the loqp terminating conditional branch: a prefetch for the
next'seq'uential block after the loop and an unconditional br@nch to jump over tile first block
of the loop. Any nonloop mode forward branch will cause a purge opera.fion which remc‘)vesv
the s.kipped code froh the OIB. (Note that backward branches within the OIB are supported
only when the branch and its target are within the same loop mode instruction block.) Thus,
the ﬁrst. block, which is not needed inv this ;:ase, will be ihvalidatéd. Note that a sﬁccessful
brahch, which is conceptually a branch vback to the beginning of the loop, is physically a
branch for"ward ‘in tl'x:e OIB. The a.ctual branch distances and directions can be determined
at combilla. time oncé the progrdm graph is constructed, and the size of loop mode and non-
léop mode blocks are determined. Also, in this case where the instruction block has t§vo pos-
sible successor blocks, the final (current) block and the first block of the loop, and at least
" one instruction of the next block aftelf the loop sh‘o'uld all fit in the OIB simultaneously. This
is required so that, for either branch ;)ut;come, the OIB location that is the target of the
branch is outsideA of the current block; otherwise, the control u.nit might jump to an OIB.

location that is still marked valid, but is not the correct next instruction.

Making the OIB reasonably large (e.g., 1K instructions) and limiting the maximum size
of an instruction block to be less than half the size of the OIB (e.g., 256 instructions) is a
simple conservative guideline that eliminates any possibility of deadlock caused by instruc-

tion handling. Using ‘this guideline it is always possible either to execute an existing

38

instruction or to load a new instruction. In general, the corﬁpiler must limit the size of
instrﬁction blocks such that _eithef the AGU or the IFU'will- be able to operate. The IFU will
become blocked by .the OIB only if the OIB is full, in which case the AGU must be able to
exe.cute, and eventually purge, instructions. If the AGU is blocked waiting for instructions to
arrive, tﬁen there must lbe available space in the OIB so the IFU can operate. A larger buffer
also makes the compilation problem simpler since Aeéirable instructioﬁ blocks typic’al,lly will

not have to be artificially trimmed to fit in the buffer.

2.3. Computation Processor

The Memory Access Processor, discussed in the previous section,'i_s designed to stream
operands to the computation section of the SMA architecfure, i.e., the Compntation Proces-
sor (CP), at the maximum possible rate. To accrue the [ull benefit of this high memory data
transfer rat;e, the CP mus.t be capable of processing input operands at a rate comparable to
that at which the MAP is able to deliver them. These rcquirements imply the need for mul-
tiple pipelined arithmetic and logic function units. in order to best evaluate the eﬂectiveﬁess
of the MAP, we have chosen to model the CP of the SMA architecture after the scalar com-

putation section of one of the fastest existing scalar processors, the Cray-1.

Figure 9 diagrams the scalar function ﬁnits of the Cray-1 in the context .of the SMA
drchitecture, more specifically, with the data flow of the CP. In the Cray-1 architecture,
each arithmetic and logic operation is implemented as an independent pipelined function
unit. Separate pipelines exist for both floating-point and integer operations. All function
units can operate simultaneously, and each can accept a new pair of operands every clock

cycle. Similarly, in each cycle the control unit can issue one instruction to any function unit,

39

Register
File

Recip. App.
. " | Multiply ‘
IDQ - . © Add . SDQ

»{f'loating-pt. —
= F'unctional|
Units |

Shift
| Logical |-

Add

- Integer
Functional| |
Units . |—

Figure 9. Computation Processor Data Flow.

-

~

.except when data dependencies force a stall. The sources, of operands are the régister file
and/or the IDQ (whose head is addressed as a pseud.o-r;egister),. and the result destination is
“either the reéistef file or the bDQ (whose tail is addressed as a pseudo;register).. For each’
instruction issued, the control unit places a reservation on thg destingtion register. ‘When
the instruction is completed and the result is stored, the register is {reed for use as a source
for subsequent instructions. Aﬂ instruction whose source or destination register is already
reserved is delayed from issuing until the register is freed by the’corripletion of a previously

issued instruction.

40

2.4. SMA Software

Shown in Figure 10(b) 'is'an SMA a;ssembly language program (MAP aﬁd CP code) used
to perform matrix multiplication as described by the C language a.lgorit'hm in Figure 10(a).
The SMA progra,m‘ is u's‘ed as input to the SMA simulator (discussed in Chapter 3), and accu-
rately reflects the instruction set of a realistic SMA implementation. Contrasted with the
SMA code .is the corresponding VAX! code produced by an optimizing C compiler brovided
with -the Unix? operating system. What is interesting in this comparison is that the inner
loop of the VAX assembly code consjsts of 20 instructions, whereas the inner loop of the.
SMA program consists of 9 instructions (5 in. the MAP and 4 in the CP). . This disparity is
due to the data structure address calculation ovérhéad which is relegated t:o' software in the

VAX. Note that most of the overhead in the SMA implementation (i.e., initializing the AGU

mmult(A,B,C)
int, A[N][N], R[NJ][N], C[N][N];

register i, j, k; ‘ :
for (i=1; i<=N; i++) {
for (j=1; j<=N; j++) {
ol —o,
for (k=1; k<=N; k++) {
Clili) = Clfi] + Al(k] * (][}

o
}

Figure 10(a). Matrix Multiplication Algorithm.

WAX is a trademark of Digital Equiptment Corporation.
2Unix is a trademark of Bell Laboratories. '

41

Inst. VAX Code SMA Code - Comments
o MAP CODE ‘

1 movl 81,11 pref Init,10,0 Prefetch MAP inst.

2 L3: movl $1,r10 Init: pref blk1,8,1 Prefetch all CP code.
'3 |l L2 mull3 '$400,r11,r0 _ load sbr0, scalar area '| Load Scalarbase reg.

4. addl2 12(ap),r0 load sdt0, (sbr0) sdt0 +—base of A.

5. ashl $2,r10,r1 load sdt2, 1(sbr0) sdt2 +—base of B.

6. addl2 rlr0 load sdt4, 2(sbr0) sdt4 +—base of C.

7. clrl, (r0) load apt0, 3(sbr0) apt0 +ptr to x0.

8. movl $1,r9 load aptl, 5(sbr0) aptl «ptr to x1.

9. {L1: mull3 $00,r11,r0 load apt2, 7(sbr0) apt2 +—ptr to x2. .
10. | addl2 4(ap),r0 load apt3, 9(sbr0) apt3 +—ptr to x3.
"11. | ashl $2,r9,r0 setup x0, 11(sbr0) Index for i.

12. | addl2 rl,r0 pref L3,14,1 Prefetch second block.
13. | mull3 $400,r9,r18 L3: setup x1, 14(sbr0) Index for j.

14. | addl2 8(ap),rl comp sdtl, sdt0, apt0 | sdtl «2D base of A.
15. |] ashl $2,r10,r2 comp sdt5, sdt4, apt0 | sdt5 «2D base of C.
16. | addl2 r2rl Le2: setup x2, 17(sbr0) "Index for k.

17. | mull3 (r1),(r0),r0 ~ setup x3, 20(sbr0) Other index for k.
18. { ' mull3 $400,r11,r1 {L1: comp sdt3, sdt2, apt3 sdt3 « 2D base of B.
19. | addl2 12(ap),rl | fetch sdtl, apt2 Fetch A(ik).

20. | ashl - §2,r10,r2 4 fetch sdt3, aptl Fetch B(k,j).

21. | “addl2 r2rl | inc x2 Inc k.

22. | addl2 (r1),r0 \ inc x3, L1 Inc other k & branch.
23, | mull3 $400,r11,r1 store sdt5, aptl Store C(i,j). -

24. |l | addl2 12(ap),rl inc - -x1,L2 Inc j.

25. | ~ ashl $2,r10,r2 inc x0, L3 Inc i.

26. | - -addl2 r2r1 ' End: ret o

27. | - movl r0,r1) ‘ ‘

28. (achbl $100,%1,r9,L.1 o CP CODE

29. acbl $100,81,r10,L2 || blkl: clr r0 r0 «0.

30. acbl $100,81,r11,L3 || floop: mov rl, IDQ rl —IDQ.

31. ret { mul rl, IDQ rl «—r1 xXIDQ.

32. | add 10, ri r0 «r0 + rl.

33. l bfq loop Branch to loop.

34. mov SDQ, r0 SDQ +-r0.

35. bfq blkl Branch to blkl.

36. bfq blkl Branch to blkl.

Figure 10(b).

Matrix Multiplication. VAX and SMA assembly
(Brackets demarcate the inner loops.)

language.

42

tables) is outside of the loop bodies and is therefore incurred only once.

The following describes the details of the SMA program. Thé operating system causes
the first instruction of the MAP program to be fetched and executed. Th"e first instruction is
a pref instruction which initiates the fetching of the first instruction block of the MAP pro-
gram. This instruction block is located at symbolic address Init, contains 10 instructions,
and is not a loop mode block (designated by the O flag in the instruction). The ﬁgst;' instrue-
tion in the first block of the MAP program initiates the fetching of the first instruction block
of the CP program. All eight instructions of the CP program are contained within a single
block starting at symbolic address blkl. The block contains three nested loops and, there-

fore, is designated a loop mode block.

The second instruction in the MAP program loads the first scalar base register (sbr0)
with the base address of a data area in memory §vhich contains the structure definition and
access pattern information. This information is generated at compile time but is not shown
here for simplicity. "L'he subsequent load instructions set up the specific SDT and APT regis-
ters. This information is stored in a set of locations which is some small offset from the con-
tents of sbr0. There are three two—dimensiongl matrices.being accessed; theréfore, six SDT
registers are used. Sdt0, sdt2, and sdt4 are loaded with the absolute base addresseé of arrays
A, B, and C, respectively. These three SDT entries are used to compute the base addresses
Vof the second dimensions of each structure later in the program. Three comp instructions.
are used for this purpose, and they essentially initialize the three additional SDT registers
(sdtl, sdt3, and sdt5) to the base addresses of the second dimension of each array. These
latter SDT registers are the ones specified in the actual fetch and store requests. Note that

the comp instructions must be located inside the loops since the second-dimension base

43

addresses are periodically recomputed. Next, four APT registers are initialized; all contain

offsets of zero and a pointer to a given index register.

The second- pref instruction starts the IFU i)refetching thelseéond MAP instruction
block which cénta.ips thie three nested loops starting at symbolic address L3. The four setup
instructions are equivalent to initializing a loop count variable before beginning a lopp. The
“setup instructions load the index registers with the Current Value, Final Value, and Step Size
(stride) f‘or the lodp indices z,] and k. The index register for 1 is set upl only once, and those
for j and k are set u'p'repea.tedly since they correspond to nested loops. There are _acthally.
“two k index registers (x2 and x3) since, in the source program, k indéxes both the second
dimension of thg A matrix and the first dimension of the B matrix with.diﬁerent strides (see
Figure 10(a)). Similarly, fogr APT registers are used instead of three. In computing
addresses fqr the elements of matrix A, apf2 is used, and for matrix B, apt3 is used. The
index registers containing.¢ and j can be shared between matrices A and C, and B and C,
respectively, since they each index along dimensions with the same length and stride :for the
two matrices théy access. Index register sharing is accomplished By specifying similar APT

registers in fetch, store, or comp instructions (cf. instructions 13 and 14, for example).

At this point the MAP enters the innérmost for loop deéignated by label L1. The comp
instruction chmputes the second dimension base address of the B matrix. This base addréss
must be recomputed for every inner loop iteration because it is.a function of the k inde).(.'

~This is a result of the fact thaf 't-,he a.igorithm accesses the Acolumns' of B, so the base address
of dimension two of array B cilapges for every itefation. (A clever programmer could devise
a way to avoid this recémputation in the inner loop; however, we wish to keep this example-

relatively straightforward.) The following two instructions fetch the required operands by

44

computing the addresses of A, , and B, ;. After the two addresses are computed and placed

in the RAQ, the k indexes are incremented and x3 is tested against its Final Value.

The result of the test causes the control unit to branch to t;he symbolic address L1 if
the test is suécessful, and to the next sequential instruction if not. The test also involves
sending a branch signal to the CP’s BRQ so that the CP can determine, by execution of the
bfq instruction, whether to reexecute its inner loop or to continue sequentially. -thn k
reaches its Final Value, control proceeds to the next sequential instruction, and the address 4
of G, is computed (store instruction) and placed in the SAQ. The actual memory write will

be initiated when the corresponding inner product is computed in the CP—accumulated in r0

and placed in the SDQ.

The CP code is rather straightforward. The first instruction simply initializes a register
which is used as the accumulator for partial products. The next four instructions form the
inner loop which computes innexl products. The values in the IDQ are, alternately, the values
of a row of the A matrix and the values of a column of the B matrix. Each pair of input
values are multiplied, and the product is summed with the contents.of r0. When k reaches
its Final Value in the AGU, the CP is instructed to exit the inner loop and con‘tinue with the
next sequential instruction. The next sequential instruction moves the inner product, accu-
mulated in r0, to the SDQ so it can be stored in memory. The CP then executes a condi-
-tiqnal branch to determine whether to reenter the loop to compute another inner product.-
The CP. continues in this manner until the last inner product has been computed and placed __
in the SDQ, i.e., until the j lobp and the ¢ loop have both been exhausted in the MAP pro-
gram and the last two bfg instructions in the CP code determine that no more input

operands will arrive.

45
CHAPTER 3.

SMA SIMULATION AND PERFORMANCE EVALUATION

In ordér to perform a precise evaluation of the SMA architecture describéd in the previ-
‘ous phabtér, we have developed a discrete-event register transfer le\)el simula.tox; for the
macl;ine; By accurately sim'ula.t;.ing the. execution of programs on the SMA architecturg, we .
have been able to observe the performance of the system and, in particular, the AGU. Recall
phat our primary objective in the désign of the SMA is to issue instruction'and operand fetch
requgsts to memory at a rate capable of supplying ihput to high perfo;maliée pipelined fune-
tionai units with a minimum of memory wait time. Through simulation fwé are interested in
’l‘obta,ining phe percent utilization, percent nonﬁtiliza.tion (i.e., blocked and/oi idle), and
throughput of the ma-in syster_ﬁ components (i.e., AGU, CP function units, and memory).
Simulation results show that the performance of the MAP hardware presented in Cha.pter 2
is more than sufficient for streaming operands to the CP at rates Which achie;'e high utiliza-
tion of the CP’s funétion units. Also of interest are the effects that rhemory’ access time and
-'q,ueue length have on the total exe'c_ut;ion"time since these parametefs are easily modified
without affecting the organiza.tion of the machine. Finally, the total execution time, as meas-
'ured 'by'the number of cycles required to execute benchmark programs, is used to compare’

the performance of the SMA architecture with that of the Cray-1 scalar unit.

The following section presents an overview of the SMA simulator. Sections 3.2 and 3.3
present simulation resuits concerning the utilization and throughput of each of the SMA sub-
systems, and the effects of memory access time and queue length on SMA performance,

respectively. In the final section we present a performance comparison of the SMA

46

architecture and the Cray-1 which, architectuvral'ly, represents the current state-of-the-art in
scalar processing. For all the simulation results presented here, the CP of the SMA architec-
ture was parameterized to perform instruction issue and computation at the rate characteris-
tic of the Cray-1 scalar unit [Cray77]. Performance statistics and comparison information

were derived from simulation of the first twelve Lawrence Livermore loops.

3.1. The SMA Simulator

Input to the SMA simulator is a program similar to thq,t chown in 'Figure 10(b). The.
simulator esséntially interprets and executes a defined assembly languagg. The sjmulator
reads a ﬁle' containing an SMA program and loadS“the instructions intg its memory. From
this point, the simulator fetches instructionA blocks and éxecutes instructions in a manner
charac£eristic of a;n actual SMA implementa.tio.n. All computations and register transfers
required by‘ an actual implementation are carried out by the simulator in the proper sequence

with the specified timing.

The timing delays of various components of the system are parameterized (e.g.,
floating-point and integer arithmetic operations, memory access time, AGU propagation
time, etc.). It is assumed that the delay of each stage of the AGU pipeline is equ'ivalent to
'the time required to perform one integer addition. The AGU pipeline propagation time is
.con’trolled by the integer addition parameter, and is twice the delay of the integer arithmetic |
unit in the CP. For the simulation results presented in this chapter the integer addition
parameter was set to one and, therefore, the number of cycles required by the AGU to pro-
duce a single operand address was two. No additional delay for multiplexing or bussing was

accounted for. The AGU is fully pipelined and, therefore, is capable of producing addresses

47

on consecutive ‘cycles. For example, two fefch instructions can be issued on consecutivg
.cycles, and the ;esulting addreéses they comlpute are produéed on consecutive cycles, after an
AGU prop@gatioh time of two. Some MAP instruétions cause more tha.ﬁ c;ne address to b’e
produceq by,fhe AGU (e.g., load Index Registér) so a MAP instrﬁction czla;n‘not always be
issued to the'AGU’ ev‘er'y cycle, even when. there are no data dependenc'ies or prefetch opera-

tions.

As in the Cfay;l, the 'CPA of the SMA al_‘chitecture contains mﬁltiple arithmetic and -
logic function units. In the simulatioﬁs we rén, only floating-point instructions were executed -
in the CP;Atherefore, it ;vas'sufﬁcient to simulate just the ﬁoating—pointlfunction units of the
Cré,ytl, namely, a ﬂéating-point add/subtract unit,'a ﬁoating—point mu}tiplication unit, and
a reciprocal approximation unit (see Figure 9). Only the ﬁrét two of these units were utilized
in our simulations. The addition unit and the multiplication unit are fully- pif)elined, and
each can accept one new operétion per clock cycle. The add unit delivers results in six
‘ cycles, and the multiply unit delivers results in seven cycles. In the Cray-1, the I;umber of
cycles is equal tb the number- of stages in each of ‘the pipelines. The two pipelines operate
independently.' ‘When an instruction is issued, its destination regisAter is mérked,reser{red
A'until the instruction is completed and the result is stored in the regisfer. An insl';ruction is
delayed from issuing until none of its source registers ére reserved by previously issued
instructions and, if the IDQ 1is a source, it must be nonempty. CP instructions .are always’

issued in order, as in the Cray-1.

For simplicity in the simulation, the memory unit is modeled as possessing infinite
in.terleaving; every memory word is contained in its own bank and, therefore, all memory

references are conflict free. This aspect of the SMA simulator does not model a feasible

48

machine; however, an adequate degree of interleaving should make conflict degradation
minimal for the SMA at a modest cost. The memory unit seivices one request per cyclev, and
the re;ult is delivered to the déstinatioﬁ after a delay defined by the memory access time
parameter (11 cycles for the Cra.y-i). Note that the memory system can accept requestsA on
consecutive memory cyéles even though prior requests have not been completed, resulting in

a memory that behaves like a perfectly pipelined 11 stage function unit.

The service priority of the memory address queues are as follows:

" 1) IFQ (Instruction fetch),
2) RAQ (Operand fetch),

3) SAQ/SDQ pair (Operand store).

f’ipelined computers are susceptible to hazards and the SMA architecture is no excep-
tion. A read-after-write (RAW) hazard occurs in the SMA when the AGU issues a read
request for a data item whose address appears in the SAQ, waiting to be written. As dis-
cussed in Section 2.1, the SMA simulator assumes that operands contained.in the SDQ can
be forwarded tc; the CP before they are written .to ﬁemory. This forwarding operation
minimizes the effect of RAW hazards which significantly improves the performance of the
SMA for benchmark programs that contain certain linear recurrences and data dependencies.
'Note that write-after-read hazards do not present any problem due t;o the fact that read
requests have higher priority that write requests. Also, write-after-write hazards do not

occur due to the queuing and servicing of write requests in order.

The lengths of all hardware queues and instruction buffers are variable. Hence, we are
able to monitor the performance of the system as a function of some of the machine parame--

ters.

49

The simulator reports a number of performance statistics for each run:

1) Total number of clock cyc'les' required to execute the .prog'ram.
-2) ’fhroughput of the MAP, CP, and mAemor)". ' |
3) Pefcerit utilization of the MAP, CP, and memory.
4) Percent c;f clock cycles that the MAP, CP, and memory is blocked:
" 5) Reasons for function unit blockage (z;,nd percent blocked ber reason).

6) Mean queue lengths.

Fun;:tion unit throughput is defined as the. percentage of all clock cycles in which an
instruction (or_ operation inAthe case of the memory ‘;mit) is successfully 'issﬁed. This figure is
also equivalent to the rate at which instructions iare completed. In the case of the AGU, the
output of the pipeline is actually greater 'than the pipeline throughput because some instruc-
tions (e.g., load, setup, etc.) cause more than one address to be computed. Function unit
utilization is recordedl as the percenta;ge of total c.lock cycles that a unit is a.cti\;e (i.e., at
least one compqtation in progress for pipelined units), or ié inactive due to .being blocked,
but ha.s work pending. InAgeheral, a function unit; beéomes blocked as a result of a depen-
‘dency in the instruction stream, when one 'of the queues or buffers that suéply input to the
unit is empty, or when one of the qﬁéueé tha§ accepts output, from the unit becomes full.
.The AGU bécomes blocked when an OIB miss occurs, when an instruction requires input
'from a table (or the BRQ, in case of the bfg instruction) that has not yet been populated
(i.e., a data dependencyA is p?ésént), or when an z;deress q'ueueth‘at is the destination of an
instruction is full.‘ In aI;y of t;,hgse cases,.the AGU must be idle for one or more cycles. For
the memory, blockage ‘can occur when the IDQ is full, or when either the CP instruction

huffer or the OIB is full. The memory unit is not considered to be blocked. on cycles when

50

‘the address queues (i.e., RAQ, SAQ, and IFQ) are all empty. The CP becomes blocked when
an in'struction buffer miss occurs, when data dependencies in the ‘instruction stream exist,
when a full SDQ is an instruction’s des;tiination, or when an empty IDQ is an instruction’s
source. In fact, this last statistic—the percent of cycles that the CP is blocked due to the
IDQ beiﬁg empty—is pérha.ps the single most important performance metric since it indicates
whether the MAP is accomplishing the task for which it was designed: namely, to prefetch

operands such that the memory access wait time experienced by the CP’s function units is

minimal.

3.2. SMA Performance

In this section we examine the utilizatién and throughput of the various SMA sgbsys—
tems. We are primarily interested in detcrmining whether the address generation hardware
of the AGU is sufficiently powerful to supply a CP, which has the‘computational capability
of the Cray-1 scalar unit, with operands at a rate which provides superior utilization and
throughput by minimizing memory access wait time. The most relevant function uhits in
regard to the overall performance of the machine are the AGU, the CP function units, and
the memory. For the simulation results presented in this section, the instruction buffers were
of length length 128, each of the AGU tables had 16 entries, and all queues were of length 4.
Code segmeﬁts corresponding to the inner loops of all the benchmark programs were con-
tained entirely in the OIB (the largest containing 106 wbrds), and at most 10 of the 16 AFGUA
table en'tries were used during.the simulations. As a result, the effect of instruction fetching
and AGU table loading was an insignificant percentage of the overall execution time (<1%);

hence, we do not provide an analysis of the performance of the IFU or OIB.

51

Shown in Table 1 are the function unit utilization and throughput statistics derived
| from the SMA simulator for Athe first t{wel{'e Lawrence Livermore loops. A good: description
of the natﬁre of these loops is found in [HsPG84]. These statistiés in‘dicate'a fairly good bal-
ance of Aactivity a.fnong‘ the units. The utilization figures for each unit are a,l'l \}ery high. This.
is a result of the I;a,ct, that a function unit that is blocked but does ha\"e instructions waiting
~ to issue, or has at least one active cqmputation in its pipeline, is considered to bé utilized.
The"pefcentage of execution time that each unit is blocked from issuing instructions seems to
be a bit alarmiﬁg; however, an average instruction issue rate of 0.425 iﬁstructions per cycle
in the CP is actuall); quite accepﬁable after the frequency of data dépéndencieé in the CP
instruction stream is taken into account. Furthermore, the CP has a somewhat higher

instruction throughput rate than the AGU since the inner loops of the CP programs contain

Table I. SMA Function Unit Utilization and Throughput.

AGU.| AGU | AGU || CP CP CP | Memory | Memory | Memory
Loop || Util. Blocked | T’put || Util. | Blocked | T’put Util. Blocked T’put
1 0.926 0.826 0.161 {| 0.965 0.708 | 0.258 0.994- 0.891 0.132
2 0.991 0.703 0.284 || 0.971 | 0.594 0.379 0.993 | 0.750 - 0.265
3 0.301 0.694 0.299 || 0.996 0.599 0.300 0.997 - 0.330 | 0.201
4 0.878 0.535 0.349 || 0.899 0.620 0.281 0.984 - - 0.617 © 0.293
3 0.997 0.589 0.404 |l 0.964 0.593 0.373 0.999 0.494 0:377
6 0.688 | 0.652 0.331 }| 0.928 0.682 0.320 0.998 0.348 0.267
7 0.996 0.830 0.170 || 0.984 0.677 0.407 1.000 ‘0.848 . 0.154 .
-8 0.988 0.809 0.178 |- 0.994 0.699 0.386 0.997 | 0.798 0.174
9 0.997 0.808 0.189 || 0.984 0.531 0.615 0.999 0.842 0.173°
10 .|} 0.998 | . 0.623 0.374 || 0.984 0.423 0.794 1.000 | 0.000 0.359
11 0.765 | 0.553 0.446 || 0.888 0.555 0.451 1.000 0.169 0.337
12 0.686 0.697 0.302 || 0.889 0.499 0.539 1.000 0.000 0.204
Avg. || 0851 | 0693 | 0.201 || 0.934 | 0598 | 0.425 | 0.997 0.507 0.245

52

roughly 30 percent more instructions, on. the average, than the. cbrresponding MAP programs
for the benchmarks that we ran. Notgé that the AGU throughput represents instructions
issued per clock, rather than addresses génerated per clock. Thus, multiple address instruc- |
‘tions as well as certain no-address instructions (e.g., setup) are each counted once when the
"AGU thfoughput is cal-culat,ed. Also, the “Blocked” statistics are not directly available as
such within the simulator and in some cases the estimate of Blocked time is slightly high.

Throughput slightly exceeds 1.00.

The percentage of execution time tl;at each unit is blocked, and the reasons why, pro-
vide better understanding of the behavior of the overall system throug_hput and its limita-
tions. Thus a closer look at blockage is in order. Table 2lpresents a breakdown of the func-
tion unit blockage rates and their respective causes for the AGU and the CP. These figures
were derivea from simulation of ‘the twelve Lawrence Livermore loops, with the queue lengths
all set to four. In these simulations, almost all memory unit blockage was caused by the IDQ
‘becoming full. While the IDQ is full, the CP is supplied with operancis and memory blbckage

is not a serious concern. Therefore, no further details are given for the memory unit.

The AGU can become blocked due to either a data dependency in the MAP instruction
stream, or the RAQ or SAQ becoming full. (The AGU can also become blocked by an OIB
.miSS during an instruction fetch; however, this was never the case during these simulations
due to the dominance of loop mode execution.) The MAP address queues fill up as a result of
the memory unit not being able to service read requests due to the IDQ being full (refer to
Figure 2). The IDQ, in fact, is full 51 percent of the time, on the average, as indicated by

“Memory Blocked” in Table 2. When the IDQ is full, the merlnory' unit becomes blocked

53

Table 2: SMA Function Unit Blockage and Causes.

AGU Data RAQ | SAQ 0)4 Data IDQ SDQ || Memory

Loop || Blocked | Depend. | Full Full || Blocked | Depend. | Empty | Full || Blocked
1 0.826 0.065 0.001 | 0.760 0.708 0.704 0.004 0.000 0.891

2 0.703 0.003 0.701 | 0.000 0.594 0.589 0.005 0.000 { 0.750 -
3 .0.694 0.000 0.694 | 0.000 0.599 0.596 0.003 0.000 0.330
4. 0.535 0.082 0.018 | 0.449 0.620 0.554 | 0.066 0.000 0.617
5 0.589 0.003 | 0.125 | 0.463 0.593 0.589 0.004 0.000 0.494
6 10.652 0.310 0.195 | 0.150 0.682 0.667 0.005 | 0.000 0.348
7 0.830 0.004 0.826 |. 0.000 0.677 0.677 0.000 0.000 0.848
8 0.809 0.000 0.521 | 0.288 0.699 0.698 0.001 0.000 0.798
9 0.808 '0.000 0.808 | 0.000 0.531 0.530° 0.001 0.000 0.842
10 0.623 - 0.000 | 0.000 | 0.623 0.423 0.389 0.034 | 0.000 || * 0.000
11 0.553 0.236 0.000 | 0.317 0.555 0.552 - 0.003 |.0.000 0.169
12 0.697 0.315 0.000 | 0.382 0.499 0.499 0.000 0.000 0.000
Avg 0.693 0.085 0.324 | 0.286 0.598 0.587 - 0.011 - | 0.000 0.507

which, in turn, causés«the address queues to back u.p, and hence the AGU becomes blocked.
Note, however, that a full queue; can be read from and written to on a given cycle, é.nd there-
fore even under the full queue condition there may not be a blocke'd‘ unit. Th(; ratc at which
each address 4qu‘eue Becomes full varies considerably among the loobs, whic‘:h‘indic.a,tes-tha.t
"these numbers are very application dependent. Table 2 shows th'at data debende_ncies
account for only. a small 'portion'of AGU blockage relative to the amount. of time that
:add_ress queues are full, except for loops 6, 11 and 12. We expected this to be the case since’
the AGU, 'bAeca.uvse of its unique design, requires little interaction with memory to compute
operand addresses, and MAP "instructions are relatively independent of each other, thereby

reducing the number of dependencies.

54

The vast majority of CP blockage, on the other hand, is caused by data dependencies.
In fa.ct, 98 percent of the time that the CP is blocked from issuing instructions is caused by
data dependencies; only two percent of the time that the CP is blocked is due to the IDQ
being empty.. Note that the dependency problem is inherent in the application code and
causes biocka.ge in any ﬁlach'ine organization with heavily pipelined function units. We made
no effort to improve this a.sbect of the machine’s performance. We can conclude from
Table 2 that instruction execution in the CP is rarely impeded by memory access wait time,
and therefore, the CP is performing at near its maximum rate, namely, the ideal pea,k rate
minus the data dependency degradation. This analysis of the results of Table 1 and Table ‘ZV
clearly indicate that the MAP is performing sufficiently well,i and is pérhaps ev'en over-

designed for cases where one of the address queues is full the majority of the time.

3.3. Effects of Queue Length and Memory Access Time

The effects that queue length and memory access wait time have on the overall execu-
tion time of the SMA architecture are worth investig@ting since they can eéch be changed
without modifying the basic organizatién of the machine. Intuitivély, increasing the size of
the address and data‘queues will help to smooth out perturbations in the flow of data items
through the machine, and thus'ma,y help to increase the overall utiliza.tipn and throughput of
-each subsystem. In the SMA architecture, queues basically allow the MAP and the memory
to continue fetchinngperands before previously fetched operands have been consumed by the’
CP. If.the machine operates in this state long enough, the IDQ may fill up, causing the MAP
to become blocked. As we showed in the last section, this situation does occurAand, in fact,
pc;ses no immediate performance problem since the CP is still able to run unimpaired for

some time. Even during subsequent intervals where the CP is able to process operands faster

55

than they can be delivered, the CP will not become blocked if the IDQ alrea.dy contains

several operands, and the MAP can resuppiy it before the CP empties the last operand. A
limit therefore éxists beyond which increased queljle length will'not‘prc‘wid'e any additional
speedup.‘ From a.. practical standpoint, the queues should be as s.mall as vpc'>ssible without

adversely affecting the execution time.

'_ Memlory access time also has an effect on the total number of cycles required to execute.
programs. This éﬁ'eét is pa;rticﬁlarly evident in applications where tﬁe MAP has difficulty .
sta.ying. ahead of the CP, i.e., whgré slip cannot be maintained. For example, slip is fre-
quently loét in programs containing data dependent branches which are resolved in the CP,
or.prlograms in which the MAP must execute more inst;ruc;tioris than the CP In these situaj
tiohs, incrementally larger memory access time will have an increasingly ﬁronounced effect oh
execution time. However, in prograrﬁs where the MAP is able to maintain slip, we will show
that the memory access time hés a less signiﬁcént effect on the total execution time. In gen-
eral, subject to loss of slip, increasing the meinory_ access. time is beneficial ‘sinAce it allows
reducing the sys;tem cost either by using a slower 'me'rnory or by 'keeping the same memory
and designing 'fa-ster or more heavily pipelined function units, in whiéhAcase'pe;rformance ;:a.n

be increased by speeding up the system clock rate.

To obsér\(e the effects that queue length.and memory access tirﬁe have on execution
tirh'e, we ran the several benchmarks and recorded the total execution time for queue lenéths'
ranging' from 1 to 8, and mem;)fy access times raﬁging from 2 to 12. Figure 11 shows graphs
of the total execution time versus queﬁe length for a range of ﬁlemory access times for a
matrix multiplication #lgorithm and for Lawrence Livermore loop 12. All the simulations

displayed similar characteristics. ' .

56

15+
MD=12

14}
MD=10

13}
MD=38
Cvcles

(%109

=6

MD=:
11+ MD=2

10}

. o
1 2 3 4 5 6 7 8
Queue Length

Figure 11(a). Execution Time vs. Queue Length for Matrix Multiplication.

These graphs show a striking performance improvement as the queue length ié increased
from one to two, particularly when the memory is slow. Very little speedup is achieved by
.increa.sing the queue lengths beyond two, or three when the memory access time is large..
Queue lengths of one are quite detrimental when the memory is slow. Thus the SMA, given
a modest amount of queuing, can tolerate a relatively slow memory with negligible perfor-
mance degradation. It is imporfant to point out, however, that in the simulations we ran

(Livermore loops, Gaussian elimination, and matrix multiplication) all branch decisions were

57

resolved in the MAP. For this type of program -the SMA architecture tends to perform well
A_beca.u'se the MAP never loses sjip, and tl;ere'fore always remains ahead of the CP. . Conceptu-
ally, the CP h‘a.s to wait for the first étream of sperands to a;rrive, a.ndA thereafter neve;r
endures phe compléte memory delay; a nonturbulent ﬁow of input éperand; iS always avail-
z;,ble to the CP. T';a.ble 2 substantiates this scenario by indicating that t;,he Ccp e);periences an
-empty IDQ only 1 percent of the tlime, on the average, for a memory access time of 11. This

implies that a large memory latency is virtually transparent for these types of programs, and -

140
130} MD=12
120} MD=10
Cycles
(x109) _
. 110} MD=8

100 MB=1

90

T |‘ - - 1 1 -1 L
1 . 2 3 4 5 - 6 7 8
Queue Length

T

LN
\

-

Figure 11(b). Execution Time vs. Queue Length for Lawrence Livermore Loop 12.

58

a faster memory would do little to improve performance.

We would expect the SMA to exhibit much different behavior for programs containing
data dependent branches in the inner lc;ops, however, because the MAP would lose its slip
advantage and, in .every loop iteration, the CP would experience the complete inemory access
time. The CP Qou-ld then experience more blockage due to an empty IDQ, and this effect
would be successively worse as memory access time is increased. Several oi:her situations
could a.l.so slow the MAP down. For example, in programs containing large loops or a sub-
stantial dynamic {irequency of nonlooping code, instruction ftetching could mteri'erg
significantly with the MAP’s perfbrman-ce. The stream of operands to phe CP v_vould be
intermittenf resulting in more potential for CP blockage. Furthermore, ‘in some applications, .
the MAP program may contain more instrucﬁons than thé corresponding CP program which
could also cause the CP to be blocked a greater portion of the time. In each of these cases,
we would e;(pect the asymptote for total execution time to be successively higher as memory

access time is increased.

3.4. Cray-1/SMA Performance Comparison

We have examined the characteristic behavior of the SMA architecture and shown
through simulation results that it is able to perform as expected on suitable benchmark pro-
grams. It is, however, also useful to compare the performance of the SMA architecture with
other existing high perfdrmance computers for these benchmarks. The Cray-1 was chosen for
comparison purposes because i’nforma.tion on its architecture and operation is readily avail-
able, and it represents the foundation of the Cray-2 architecture which is perhaps the fastest

existing scalar processor.

59

For this comparison, we are interested in obtaining the total number of cycles required
byAez.Lch machine to execute Athe benchﬁafk programs. The execution time's for the SMA
architecture were taken from the simul;.tor. As é.bove, l;he SMA macﬁiné being simulat;ad
was parameterizea to perform instruction issue and execution at the' same r#té as the Cray-1,
instruction buﬁ'ers. werel of length 128, AGU tal;les contained 16 entrieé, and all queues were
- of length 4. For our purposéé, the conditions for instruction issuing on the Cra,y;l can be

summarized as follows:

1) The target function unit (i.e., the floating-point addition unit or the
floating-point multiplication unit) must be free. :

2) The source registers must be free (i.e., not reserved as the destination of
" a prior instruction). -

3) The destination register must be free.
Instruction timings for the Cray-1 that are relevant to our simulations are the following:

» Floating-point addition takes 6 clock periods.
e Floating-point multiplication takes 7 clock periods.
e Branch resolution takes 2, 5 or 14 clock periods.

e Memory access takes 11 clock periods.

The function units are fully pipelined: therefore, instructions can be issued to the same unit
on consecutive clock cycles, prbvided no data dependencies exist. Each instruction places a
reservation on its destination register only, and this register is reserved until the result is

stored, i.e., is reserved for the duration of the execution time of -the instruction.

" The execution times for the Cray-1 were derived analytically. The Lawrence Livermore
loop kernels were each compiled using'the Cray-XMP Fortran compiler version 1.13 with the

automatic vectorizer turned off. From the Cray assembly language listings and knowledge of

60

the Cray-1 instruction issue and execution timipgs, we were able to derive accurate timing
estimates for each of the loops.' From our analysis of the Cray timings, it was evident that
the Crg.y ‘Fortran compiler did an excéllent job of interleaving computations and memory
access instructions such that memory access wait time was minimized. The code, however,
did contain an a.bunda.ﬁce of register transfer instructions, used mainly for address computa-

tion and loop control, that could have been avoided.

Thé SMA programs for the kernels were arranged to perform computations and memory
accesses in the same order as the compiled Cray code. We took this approach to insure that
the SMA had no special advantage, and so that the test would represent a qomparisqn of the
two machines’ actual performance on this code, rather than the efﬁcigncy of a particular
compiler or hand optimization. No special éptimizations were added to the SMA code, but
the code was designed to take advantage of the inherent features of :he machine. For exam-
ple, the sou.rce programs were divided into two instruction streams, and each one of the SMA
processors’ programs was significantly smaller than the Cray’s single program. Also, the
AGU tables were used to take advantage of register sharing and to minimize reloading. In
addition, the architectu?e of the SMA allows it to perform some basic operations faster than
the Cray. For example, branch inst:,ructions in i:he CP can complete in one clock cycle -
assuming that tﬁe corresponding branch Hiag is present in the BRQ‘a.tA the time the branch
instruction ié executed. In effect, the SMA architecture is able to “turn” a loop in a single
cycle when the MAP is ahead, whereas, in the Cray-1 evaluation five clock cycles are alwaysA

required to resolve a successful branch.

Table 3 shows the analytically computed times for the Cray-1, and the simulated times

for the SMA architecture for the Livermore suite. Some of the loops were run for the

61

number of iterations specified in the Fortran code, and some loops where run for an arbitrary
numBer of iterations (typicall); 1000 for singly ﬂested loops,. and 100 for doubly nested loops).
The total execution time in. seconds caﬁ be calcul:ated by'multi'plying ‘theA number of* cloék
cycles by 12.5 na.hosecbnds, the period of one machine cycle on the Cray-ll.‘ The floating-
point execution rat;e, _méasured in millions of floating-point operations p'er second (MFLOPS),
is then determined from knowledge of the total number of floating-point operations'executed
in the loop, and the total number of seconds required to run the loop. The speedups ’shown
are simply the ratio of SMA MFLOPS to Cray-1 MFLOPS in that roonf the table. Thev'
Avg. MFLOPS is _tilé arithmetic mean of the MFLOPS‘ﬁgures for '_th'e' 12 loops; e, it
represents the MFLOPS that would be seen if each loop was run for the same amount of ,

time. Note that in such an “average’’ job load, the SMA and the Cray-1 would have

- Table 3. SMA/Cray-1 Perforfnance Comparison.

L Cray-1 SMA
°oP Cycles MFLOPS [Cycles | MFLOPS || Speedup
1 18000 8.8Y 12463 12.8 . 1.44
2 11800 12.20 8448 17.05 1.40

3 19000 8.40 10062 15.87 - 1.89
4 1568 5.00 881 - 890 - 178
5 20252 . 7.87 10772 .14.79 1.88
6 45800 | 3.49 18206 |. 8.79 2.52
7 836100 15.31 637318 20.08 - 1.31
8 164640 17.49 141003 20.42 1.17
9 - 837800 16.23 628282 21.65 1.33
10 814500 . 8.84 629155 11.44 1.29
11 224400 3.57 ‘88784 | 9.01 2.53
12 253600 3.15 98291 8.14 258

Avg. 9.20) 14.08

H. mean || ' 6.59 12.50 1.89

62

different job loads; i.e., each machine would execute a different number of floating-point
oper;tions. Therefore, this “Avg.” weighting leads to a mAeaningle'ss speedup. The H. mean
(harmqni;: mean) MFLOPS for the 12Aloops was computed by equalizing the number of
floating-point. operations performed By each loop. This calculation accurately represents a
job loa.dl where each lo§p is run for the same fixed number, e.g. 1 million, of floating-point
operations on each machine. The number of seéonds required to execute each loop is com-
putéd from the MFLOPS figure for each loop. The H. mean MFLOPS is' then computed

from the sum of the seconds for each loop and the total number of floating-point operations

chosen.

Table 3 shows a wide range of speedups for the various loops. The speedup computea
from the harmonic mean of the MFLOPS is considerably éreater than the speedup computed
from the average MFLOPS. This is a result of the fact that, for loops Where the MFLOPS
tends to be; lower, the Cray-1 performs proportionally worse than the SMA, and these loops
tend to have a larger influence on the harmonic mean (cf. loops 6, 11 and 12). In general, the
performance of the Cray-1 fluctuates more than the performance of the SMA. The r;mge of
performance across all loops is approximately 5.5 to 1 for the Cray-1, whereas, for the SMA
the range is only 2.7 to 1. Thus the SMA provideé more balanced performance for the entire

job load.

It is interesting to consider the charactcristics of loops that have a large speedupAon the
SMA, a,nci conversely, those that do not. As mentioned above, the Cray Fortran compiler
does a very good job of generating code that tends to hide the long memory access time of
the Cray-1. This is accomplished by issuing fetch instructions far in advance of the instruc-

tions that will actually operate on those:operands. Since the Cré.y-l employs a single

83

instruction stream, it must issue instructions that perform address calculations and various
other overhead operations frorﬁ the sam_é instruction issue unit using a single stream. Wher-
ever possibie,- these types of instructionsl are insertéd in between'memor)} access instructions
and computation 4inst‘rUCtions, or between two computation instx;uctions, tlhat may have
dependencies. Heﬂce, ﬁany of the oyerhead instructions in the Cray brogram are issued on

- cycles that would otherwise be unused, and much of the memory access wait time is hidden

by pérfdrming other. necessary operations in the meantime. Unfortunately, the Cray com-

piler can only perform these optimizations when the loop in question cénta.ins a sufficient
number of instructioné of the propér types to work with. As loops get smaller, the; number
of possibilities for code rearrangement also becomes-less. For small loops it becomes impossi-
ble to mask the memo.ry access walt time, go it is here that we expec-t -the SMA to perform

particularly well relative to the Cray-1.

In Table 3, loop 8 shows the smallest speedup.” Loop 8 also happens to contain the larg-
est number of instructions of any in the suite (106 instructions in the inner lc;op). The
Cray-1 requires 156 cycles to execute the inner loop. The instrucfion issue logic is idle for 4
cycles while the' braﬁch outcome is being resolved, 40 cycles are dué to data dependenc'ies,
and only 6 cycles are idle due to memory access wait time. An instruétion is issuéd on each

of the remaining 106 cycles. Idle cycles due to memory access wait time amount to only 4

percent of the total execution time. In the SMA architecture, the inner loop of the CP pro-’

gram contains 59 instructions, and the inner loop of the M“\Plpr_ogram contains 34 instruc-
tions. The CP can execute a single pass of its inner loop in 117 cycles, assuming the IDQ is
always nonempty. The CP runs slowey than the MAP, which requires only 34 cycles per loop
iteration (i.e., no data dependencies are present) and, therefore, the CP performance bounds

the total execution time of the SMA for this loop. Data dependencies in the CP block

e

64

instruction issuing on 58 of the 117 cycles. The higher percentége of data dependency cycles
for tile CP, compared with the Cray-1, is a result of the reduced number of overhead instruc-
tions in the CP program. The number of cycles that the CP is blocked due to memory wait
time cannot be determined from a static analysis of the code; however, simulation results
reveal tﬁat, on the avérage, this number is less than one cycle per loop iteration. For this
loop, the difference in memory access wait time between the Cray-1 and the SMA is on the
orde.r of 4 percent; therefore, the slightly better SMA performance is mainly a result of
reduced overhead, rather than decreased memory access wait time. The Cray-1 thus per- '

forms well on this loop which accounts for the small SMA speedup.

On the opposite end of the spectrum, loop 12 shows the largest. speedup. The Cray-1
requires 12 instructions and 25 cycles to execute its inner ioop, whereas the CP requires only
5 instructions and 10 cycles. The Cray-1 and the CP both have the Sa.me 5 idle cycles due to
data dependencies. For this loop, 4 cycles are idle. due to memory access wait time on the
Cray-1, which represents 16 percent of the total. In the SMA, however, the CP instruction
issue unit is held up because of memory access wailt time an average of less than one éercent
of the total execution time per loop itera.tiqn. The difference in the percent of memory access
wait time per loop itération in the C;a.y-l over t’hé SMA is thus 4 times greater for loop 12
than it is for loop 8. Furfhermore, the Cray-1 requires 5 cycles to perform branch resolution;
‘whereas, the CP requires only 1. The additional 4 branch cycles on the Cray-1 account for
16 percent of its loop execution time. Fc;r larger loops, however, these branch cycles will
represent a much less significant percentage of the Cray-1’s total executioﬁ time. Thus,
address generation and other overhead coupled with the increased percentage of memory
access wait time cause the Cr.a,y-l to run considerably slower than the SMA architecture for

this loop.

65

CHAPTER 4.

CONCLUSIONS

- The Structulred Memory Access arc~hitecture~im’plementation presented in this thésis was
formulated with the intention of alleviating two well-known inefficiencies thai; exist in
curfenf. scalar computer architectures: address generation overhead and memory bandwidth-
utilization. Fulrthermore, the SMA ‘architecture introduces an additionai level of parallelism
which is not present‘ in current véctor supercomputers, namely, overlapped execution of the
access process and execute process on two distinct special-purpose, gsyn'chronously-coupled ‘
proéessors. By using simulation results derived from relpresentative b?nchmarks typical of
intendgd SMA workloads, the{Memory Access Processor was shown to .expedite proéessor-
memory Atraﬁ‘lc by efficiently computing instruction and operand addresses using
special-purpoée pipélined function units (i.e., the AGU and IFU), and at the same time,
reducing the deﬁland on memory bandwidth by requiring less in§eraction With mer'nory to

support the -access process. Our simulation results showed that, for typical numerical pro-

. grams, the MAP was capable of running slightly ahead of the CP, and consequently. was able

to issue operand fetch reqﬁests at a rate that rarely caused the CP to experience any memory -

- access wait time. Memory access wait time accounted for only 1 percent of the total execu-

tion time, on the average, for the benchmark programs that were simulated.

It was further discovered that, for programs in which branch decisions are resolved
solely in the MAP (i.e.; a broad class of numerical programs), a large memory cycle time had
a relatively minor eflect on total execution time for processor qucue léngths of three or more.

This phenomenon is a result of the fact that once the stream of input operands to the CP is

66

started, it is not ‘interrupted (assuming no ba.nk conflicts), and the long memory access Await
timé is seen only once by the CP. Thereafter, the MAP'remains sufficiently ahead, and it
‘appears to the CP as if most of its input operands were contained in registers (i.e., the head
of t'he IDQ is rarely empty when accessed by the CP). Note that this is only true for pro-
grams where loop boﬁnds are based on an index value or some other data item that is
resident in the MAP. In these situations, the MAP is essentially able to perform perfect

branch lookahead for the CP.

Comparison with the Cray-1 in nonvector mode showed that the SMA architecture’s
features do, indeed, provide improved performance in scalar processing over existing high
performance scalar machines. Since the CP is fare’ly required to wait for operands to arrive :
from memory, the instruction issue rate is improved and; hence, function unit utilization is
increased. -The dual instruction stream feature enables each SMA processor’s pr;gram to be

-signiﬁcantiy smaller than the conventional single. instruction stream program and also fre-
quently allows two instructions to be issued in a single cycle. Furthermore, the overhead
associated with branch resolution is reducgd in the SMA when these decisions are pel;formed
in the MAP, thus relieving the computation section of this chore. This overhead is particu- -
larly signiﬁcant on the Cray-1 for small loops whére branch resolution becomes a larger per-

centage of the total execution time. These factors account for the speedup shown by the

- SMA architecture over the Cray-1.

In all the simulations that we ran (the first twelve Lawrence Livermore loops, Gaussian
elimination, and matrix multiplication) all branch resolution was performed by the MAP.
Programs with this characteristic aré best suited for fast execution on the SMA machine.

Further analysis of the SMA architecture should also include simulation of programs that

67

would be expected to run less efficiently on'thi's' machine, for example, a prdgram containing
daté. dependent branches to Be res_olvedb in ‘I‘;he CP,or a daﬁa dependent branch to be resolved
_in the MAP, but which requires infor?nation fro§n the CP toldeterm'iné the outcome. In
leitlller of these caLses; we expect the speedup over the Cray-1 in scalar mode't(') be small; how-

ever, we expect any program to execute at least as fast as the Cray-1 in scalar mode.

_ Results presented in Table 2 indicate that, for many programs, the Address Generation
Unit ha-erwa.re o'ﬁ'ers higherl pefformance than is necessary. This is paftiqularly true in simu-.
lations where the CP program contains 2 large number of data depéndencies. When this is
the case, the MAP has lesé difficulty staying ahead of the CP becausé the CP’s instruction
iséug rate tends to be slightly lower, and consequéntly, the rate at wh.ich- the CP consumes -
input operands is lower. The MAP is blocked over 50 percent of thé time by full address
queues. in eight of the twelve Lawrence Liv.g:rmore loop simulations. This fact suggests that a
less complex hardware conﬁgufa.tion for the AGU may be possible which for many programs
would not compromise the overall performance of the machine. Another possiBle means of
making more efficient use of the AGU may be to tim‘e-multiplexl the MAP between two or

more CPs, each running separate code or, perhaps, parallel segments of. the same program.

Another obvious area for further in’vesﬁgation is that of examining t;he feasibility of

perfofming f/ector operations on the SMA architecture. It would be straightforward to
irhplement vector instructions on the SMA machine described herein. \What remains to be
determined ‘is whether the rri;cliine would be capéble of e){ecu.ting‘ vector operations at a rate
comparable to, o; substantiall]y.faster than, existing' vector machines. We believe that wit.h

enhancements to achieve comparable chaining, parallel execution, and peak memory

68

bandwidth, the SMA architecture could provide performance comparable to state-of-the-art

vector supercomputers on vectorizable code, and higher performance on scalar code.

69

'REFERENCES

[Ande67] '

Anderson, D. W., Sparacio, F. J., Tomasulo, R. M., “The IBM System/360" Model
91: Machine Philosophy and Instruction-Handling,” IBM Journal of Research and

" Development, Vol. 11, No. 1, January, 1967, pp. 8-24.

' [Cray77]
Cray Research. CRAY-1. Computer System, CAL Assembler Version 1 Reference
- Manual, Cray Research, Inc. , Chippewa Falls, Wisconsin, 1977.

[Flyn72]
Flynn, M. J, “Some Computer Organizations and Their Effectiveness,” IEEE
Transactions on Computers, Vol. C-21 No. 9, September, 1972, pp. 948-960.

[GHLP85]
Goodman, J. R., Hsieh, J. T., Liou, K., Pleszkun, A. R., Schechter, P. B., Young,
H. C, “PIPE A VLSI Decoupled Archltecture ” 12th Annual Internatzonal Sympo-
stum on Computer Architecture, June, 1985, pp. 20-27.

[Hamm??] '
Hammerstrom, D W, Da.v1dson E. S, “Information Content of CPU Memory Re-

ferencing Behavior,” Fourth Annual Symposzum on Computer Archztecture ‘vIarch
1977, pp. 184-192.

[HsPG84] . ' ‘ o :
Hsieh, J., Pleszkun, A. R., Goodman, J. R., “Performance Evaluation of the PIPE
Computer Architecture,” Computer Sclences Technical Report No. 566, University
.of Wisconsin, Madlson Wisconsin, November, 1984.

[Kahh83|

: Kahhaleh, B. Z., “Performance Modeling and Enhancement of the Structured -

. Memory Access Architecture,” CSG Report No. 23, Coordinated Science Laborato-
ry, University of Illinois, Urbana, Illinois, December, 1983.

(Kuck78] :
Kuck, D., The Structure of Computers and Computatwns Vol. 1, John Wiley and
Sons, I\'ew York, 1978.

70

[PaDi80] '
Pa.tterson D. A., Ditzel, D. R., “The Case for the Reduced Instruction Set Comput-
r,”’ Computer Archztecturc News Vol. 8, No. 6, October, 1980, pp. 25-33.

[PaSe81]
Patterson, D. A., Sequin, C. H.,, “RISC I: A Reduced Instruction Set VLSI Comput-
er,”” Eighth Annual Symposium on Computer Architecture, 1981, pp. 443-457.

[Ples82] '
Pleszkun, A. R., “A Structured Memory Access Architecture,” CSG Report No. 10,

Coordinated Science Laboratory, University of Illinois, Urbana, Illinois, August,
- 1982.

[PSKD86)
Pleszkun, A. R., Sohi, G. S., Kahhaleh, B. Z., Davidson, E. S., “Features of the
Structured Memory Access (SMA) Architecture,” Proc. IEEE Compcon, March,
1986, pp. 259-265. ‘ '

[PIDa83] ' » '
Pleszkun, A. R., Davidson, E. S., “A Structured Memory Access Architecture,”
International Conference on Parallel Processing, August, 1983, pp. 461-471.

[BoDa84] -
Sohi, G. S., Davidson, E. S., “Performance of the Structured Memory Access (SMA)
Archltecture ” Proc. 1984 Internatzonal Conference on Parallel Processmg, August,
1984, pp. 506-513,

[Sohi83] : S

Sohi, G. S., “Memory Access Prediction, Execution Overlap and Branch Lookahead
in the SMA Arichitecture,” CSG Report No. 17, Coordinated Science Labomtory,
University of Illinois, Urbana, Illinois, July, 1983.

[Smit82] .
Smith, J. E., “Decoupled Access/Execute Computer Architectures,” Ninth Annual
Symposium on Computer Architecture, April, 1982, pp. 112-119.

[Smit84]
Smith, J. E., “Decoupled Access/Executc Computer Architectures,” ACM Transac-
tions on Computer Systems, Vol. 2, No. 4, November, 1984, pp. 289-308.

BléLlOGRAbI""C DATA 1. Report No. 1= A ~ }3. Recipient’s Accession No.
SHEET A "CSRD-597 "
4. Title and Subtitle o) . S. Report Date
The Structured Memory Access Architecture: An "~ = August 1986
Implementation and performance evalutation ’ 6.
: 71 Author(s) . : . . 8. Performing Organization Rept.
__Joseph Cyr . : No- ¢SRD-597
9. Performing Organization Name and Address . 10. Project/Task/Work Unit No.
University of Illinois at Urbana-Champaign ‘ :
Center for Supercomputing Research and Development V1. Contract/Grant No.
Urbana, IL 61801-2932 . US NSF-DCR84-10110;
: _ ‘, ‘ DOE-DE-FG02-85ER25001
12. Sponsoring Organization Name and Address 13. Type of Report & Period
National Science Foundation, Washington, D.C.; and " mem? ,
b . Master's Thesis
U.S. -Department of Energy, Washington, D.C.
14,

.| 15. Suppiementary Notes

16. Abstracts

The Structured Memory Access (SMS) architecture implementation presented in
.this thesis is formulated with the intention of alleviating two well-known
inefficiencies that exist in current scalar computer architectures: address generatio
overhead and memory bandwidth utilization. Furthermore, the SMA architecture '
introduces an additional level of parallelism which is not present in current
pipelined supercomputers, namely, overlapped execution of the access process and
execute process on two distinct special-purpose, asynchronously-coupled processors.
Each processor executes a separate instruction stream to perform its specific task
which, together, are functionally equivalent a conventional program. Our simulation
results show that, for typical numerical programs, the access processor (MAP) is
capable of achieving slip, i.e. running suficiently ahead of the execute processor

(CP) so that operand fetch requests for data items required by the CP are issued
lLearly enough and rapidly enough for the CP rarely to experience any memory access

-

17. Key Wards and Document Analysis. 17a. Descriptors

Architecture
Performance-evaluation
Decoupled access-execute
Memory accessing
Pipelining

wait time. 1In this manner the SMA tolerates
long memory access time, albeit high bandwidth
paths to memory without sacrificing performan
Speedups relative to the Cray-l in scalar mode
often exceed two, due to. dual processing and
reductions in memory wait tiem.

17b. Identifiers/Open-Ended Terms

17¢c. COSATI Field/Group

18. Availability Statement - 19.. Security Class (This 21. No. of Pages
: -) Repaorr) 70
Unlimited Distribution | PLAE Se"cmunty Class (This 22. Price
' : . Page to
UncLassIFIED

FORM NTIG: 38 (10.70) USCOMM-DC 40329-PT71

