

Optimization of Radially Heterogeneous 1000-MW(e) LMFBR Core Configurations

Volume 1: Design and Performance of Reference Cores

EPRI

EPRI NP-1000
Volume 1
Project 620-25
Interim Report
November 1979

MASTER

Keywords:

LMFBR Core
HCDA
Heterogeneous Core
No Void Coefficient
Bull's-Eye Core

RECEIVED BY TIC APR 1 1980

Prepared by
Argonne National Laboratory
Argonne, Illinois

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

ELECTRIC POWER RESEARCH INSTITUTE

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

**Optimization of Radially Heterogeneous
1000-MW(e) LMFBR Core Configurations
Volume 1: Design and Performance of
Reference Cores**

**NP-1000, Volume 1
Research Project 620-25**

Interim Report, November 1979

Prepared by

ARGONNE NATIONAL LABORATORY
Applied Physics Division
EBR-II Division
9700 South Cass Avenue
Argonne, Illinois 60439

Principal Investigators

W. P. Barthold
Y. Orehwa
S. F. Su
E. Hutter
R. V. Batch
J. C. Beitel
R. B. Turski
P. S. K. Lam

DISCLAIMER

This book was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Prepared for

Electric Power Research Institute
3412 Hillview Avenue
Palo Alto, California 94304

EPRI Project Manager
Edward L. Fuller
Nuclear Power Division

EP
DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

ORDERING INFORMATION

Requests for copies of this report should be directed to Research Reports Center (RRC) Box 50490, Palo Alto, CA 94303, (415) 961-9043 There is no charge for reports requested by EPRI member utilities and affiliates, contributing nonmembers, U S utility associations, U S government agencies (federal, state, and local), media, and foreign organizations with which EPRI has an information exchange agreement On request, RRC will send a catalog of EPRI reports

~~CONFIDENTIAL 1979 Electric Power Research Institute~~

EPRI authorizes the reproduction and distribution of all or any portion of this report and the preparation of any derivative work based on this report in each case on the condition that any such reproduction, distribution, and preparation shall acknowledge this report and EPRI as the source

NOTICE

This report was prepared by the organization(s) named below as an account of work sponsored by the Electric Power Research Institute Inc (EPRI) Neither EPRI members or EPRI the organization(s) named below nor any person acting on their behalf (a) makes any warranty or representation, express or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights, or (b) assumes any liabilities with respect to the use of, or for damages resulting from the use of, any information, apparatus, method, or process disclosed in this report

Prepared by
Argonne National Laboratory
Argonne, Illinois

EPRI PERSPECTIVE

PROJECT DESCRIPTION

A hypothetical core disruptive accident (HCDA) and the impact it might cause, particularly on the underside of the head of a liquid metal fast breeder reactor (LMFBR) is a controversial issue. The debate is how much capability for safe absorption of impact energy must be designed into the reactor vessel and head. Neutronics and thermo-hydraulics analysts and core designers are the ones to whom this report is directed. Reactor vendors of early large-size LMFBRs can use this work as a sound starting base for improvements. The immediate application of this work is to provide the core design for the prototype large breeder reactor design studies conducted under EPRI Research Project 620.

This work, "Optimization of Radially Heterogeneous 1000-MW(e) LMFBR Core Configurations," is presented in four volumes. These are as follows:

- Volume 1: Design and Performance of Reference Cores
- Volume 2: Appendix A--Design Assumptions and Constraints
Appendix B--Radially Heterogeneous Core Configurations
- Volume 3: Appendix C--Optimization of Core Performance Parameters
- Volume 4: Appendix D--Optimization of Core Configurations
Appendix E--Component Designs

PROJECT OBJECTIVES

The objective of the work reported here is to make the characteristics of large cores such that the impact energy of an HCDA would approach zero. Without special provisions, an LMFBR vessel and head will have greater impact resistance than would be needed by such a core, thus relieving the controversy and assuring a safe design feature.

This report presents the results of the second of three phases of effort to optimize a radial heterogeneous 1000-MW(e) LMFBR core design that will minimize energetics in

an HCDA and yet have highly desirable breeding gain and core performance. The final results of the three phases are intended to establish a reference core design that will be safe, licensable, reliable, and efficient.

PROJECT RESULTS

Although not reflected in the work reported, doubling time is not the simple figure of merit that it originally appeared to be. A minimum compound system doubling time is quite desirable when the U.S. utility industry is plutonium limited, i.e., all of the available Pu (owned by the utilities) is being fully utilized in breeder plants. However, this is not the case and probably will not be true until well after the year 2010. Emphasis will be shifted to maximize total net plutonium produced rather than doubling time. In-core inventory will optimize at a somewhat higher quantity of Pu.

As stated in the text there are too many uncertainties in the fuel costs to make them a figure of merit between designs. However, on a consistent basis of estimating, the promising core designs show only small differences in costs. It is highly probable that costs can be significantly improved over those listed in the text.

Edward L. Fuller, Project Manager
R. K. Winkleblack, Program Manager
Nuclear Power Division

ABSTRACT

A parameter study was conducted to determine the interrelated effects of: loosely or tightly coupled fuel regions separated by internal blanket assemblies, number of fuel regions, core height, number and arrangement of internal blanket subassemblies, number and size of fuel pins in a subassembly, etc. The effects of these parameters on sodium void reactivity, Doppler, "incoherence," breeding gain, and thermohydraulics were of prime interest. Trends were established and ground work laid for optimization of a large, radially-heterogeneous, LMFBR core that will have low energetics in an HCDA and will have good thermal and breeding performance.

Table of Contents

	<u>Page</u>
1.0 INTRODUCTION	1-1
1.1 DESIGN OBJECTIVES	1-1
1.2 OUTLINE OF STUDY	1-2
2.0 CONCLUSIONS AND RECOMMENDATIONS	2-1
2.1 CONCLUSIONS	2-1
2.2 RECOMMENDATIONS	2-3
3.0 DESIGN ENVIRONMENT	3-1
3.1 DESIGN GROUNDRULES	3-1
3.2 DESIGN APPROACH	3-1
3.2.1 Preliminary Analyses	3-1
3.2.2 Final Design Analysis	3-3
3.3 OPTIMIZATION	3-3
3.3.1 Configuration	3-3
3.3.2 Design Parameters	3-4
3.4 METHODOLOGY	3-5
3.4.1 Design Analysis Flow Sheet	3-5
3.4.2 Computational Methods	3-6
3.4.3 Calculational Approach	3-8
4.0 CORE DESIGN AND ANALYSIS	4-1
4.1 NUCLEAR DESIGN ANALYSIS	4-1
4.1.1 Core Layout	4-1
4.1.2 Fissile Inventory	4-2
4.1.3 Burnup and Reactivity Swing	4-2
4.1.4 Control Requirements	4-3
4.1.5 Power and Flux Distribution	4-4
4.1.6 Breeding Performance	4-6
4.1.7 Safety Parameters	4-7
4.1.9 Transient Response	4-7

	<u>Page</u>
4.1.9.1 Introduction	4-7
4.1.9.2 Methodology	4-7
4.1.9.3 Reactivity Insertions	4-8
4.1.9.4 Transient Results	4-8
4.1.9.4.1 Configuration A	4-8
4.1.9.4.2 Configuration B	4-8
4.1.9.5 Conclusions	4-9
4.2 THERMAL-HYDRAULIC ANALYSES	4-9
4.2.1 Inlet and Outlet Temperature of Configuration A	4-9
4.2.2 Orificing Scheme of Configuration A	4-9
4.2.3 Temperature Distributions of Configuration A	4-10
4.2.4 Sensitivity of Cladding Temperature to Orificing Criteria of Configuration A	4-11
4.2.5 Inlet and Outlet Temperature of Configuration B	4-11
4.2.6 Orificing Scheme of Configuration B	4-12
4.2.7 Temperature Distributions of Configuration B	4-12
4.2.8 Sensitivity of Cladding Temperature of Orificing Criteria of Configuration B	4-13
4.3 MECHANICAL DESIGN ANALYSES	4-14
4.3.1 Fuel Pin Design	4-14
4.3.2 Fuel Assembly Design	4-14
4.3.3 Blanket Fuel Pin	4-15
4.3.4 Blanket Assembly	4-15
4.3.5 Control Assembly	4-15
4.3.6 Duct Life	4-15
4.4 FUEL CYCLE COST	4-16
5.0 DESIGN EVALUATION	5-1
5.1 CENTER CORE VS. CENTER BLANKET CONFIGURATION	5-1
5.2 LOOSELY VS. TIGHTLY COUPLED CORES	5-2
5.3 CONTINUOUS RING VS. BROKEN RING CONFIGURATIONS	5-3

List of Figures

<u>No.</u>	<u>Title</u>	<u>Page</u>
1.	Design Analysis Flow Sheet	5-5
2.	Preliminary Optimum Configurations	5-6
3.	Configuration A, Peak Power Density at BOL, No Rods Inserted	5-7
4.	Configuration A, Peak Power Density at BOL, Row 11 Rods 15% Inserted	5-7
5.	Configuration A, Peak Power Density at BOEC Conditions	5-8
6.	Configuration A, Peak Power Density at MOEC Conditions	5-8
7.	Configuration A, Peak Power Density at EOEC Conditions	5-9
8.	Configuration B, Peak Power Density at BOL, No Rods Inserted	5-9
9.	Configuration B, Peak Power Density at BOL, Row 11 Rods Inserted	5-10
10.	Configuration B, Peak Power Density at BOEC	5-10
11.	Configuration B, Peak Power Density at MOEC	5-11
12.	Configuration B, Peak Power Density at EOEC	5-11
13.	Configuration A, Total Flux Distribution at BOL, No Control Rods Inserted	5-12
14.	Configuration A, Total Flux Distribution BOL, Row 11 Control Rod Inserted	5-13
15.	Configuration A, Total Flux Distribution at BOL, Primary Control Rods Inserted	5-14
16.	Configuration A, Total Flux Distribution at BOL, Secondary Control Rods Inserted	5-15
17.	Configuration A, Total Flux Distribution at BOL, Row 11 and Secondary Control Rods Inserted	5-16
18.	Configuration A, Total Flux Distribution at BOL, All Rods Inserted . .	5-17
19.	Configuration A, Total Flux Distribution at BOEC	5-18
20.	Configuration A, Total Flux Distribution at MOEC	5-19
21.	Configuration A, Total Flux Distribution at EOEC	5-20
22.	Configuration B, Total Flux Distribution BOL, No Control Rods Inserted	5-21
23.	Configuration B, Total Flux Distribution at BOL, Row 11 Control Rods Inserted	5-22
24.	Configuration B, Total Flux Distribution at BOL, Primary Control Rods Inserted	5-23

<u>No.</u>	<u>Title</u>	<u>Page</u>
25.	Configuration B, Total Flux Distribution at BOL, Secondary Control Rods Inserted	5-24
26.	Configuration B, Total Flux Distribution at BOL, Row 11 and Secondary Control Rods Inserted	5-25
27.	Configuration B, Total Flux Distribution at BOEC	5-26
28.	Configuration B, Total Flux Distribution at MOEC	5-27
29.	Configuration B, Total Flux Distribution at EOEC	5-28
30.	60¢ Reactivity Step Insertion, Configuration A	5-29
31.	60¢/500 ms Reactivity Ramp, Configuration A	5-29
32.	60¢ Reactivity Step Insertion, Configuration B	5-30
33.	60¢/500 ms Reactivity Ramp, Configuration B	5-30
34.	Orificing Scheme of Configuration A with Equal Peak Clad Temperature at BOL in Core and at EOL in the Internal Blankets	5-31
35.	Configuration A BOL Average Coolant Temperature at Core Mid-Plane (Orificed for Minimum Peak Temperature)	5-32
36.	Configuration A BOL Average Coolant Temperature at Top of Core (Orificed for Minimum Peak Temperature)	5-33
37.	Configuration A BOL Average Coolant Temperature at Outlet (Orificed for Minimum Peak Temperature)	5-34
38.	Configuration A BOEC Average Coolant Temperature at Core Mid-Plane (Orificed for Minimum Peak Temperature)	5-35
39.	Configuration A EOEC Average Coolant Temperature at Top of Core (Orificed for Minimum Peak Temperature)	5-36
40.	Configuration A EOEC Average Coolant Temperature at Outlet (Orificed for Minimum Peak Temperature)	5-37
41.	Configuration A BOL Average Duct Wall Temperature at Core Mid-Plane (Orificed for Minimum Peak Temperature)	5-38
42.	Configuration A BOL Average Duct Wall Temperature at Top of Core (Orificed for Minimum Peak Temperature)	5-39
43.	Configuration A BOL Average Duct Wall Temperature at Outlet (Orificed for Minimum Peak Temperature)	5-40
44.	Configuration A EOEC Average Duct Wall Temperature at Core Mid-Plane (Orificed for Minimum Peak Temperature)	5-41
45.	Configuration A EOEC Average Duct Wall Temperature at Top of Core (Orificed for Minimum Peak Temperature)	5-42
46.	Configuration A EOEC Average Duct Wall Temperature at Outlet (Orificed for Minimum Peak Temperature)	5-43
47.	Coolant Temperatures at Mid-Plane	5-44
48.	Coolant Temperatures at Top of Core	5-45
49.	Coolant Temperatures at Outlet	5-46
50.	Nominal Clad Temperatures at Mid-Plane	5-47
51.	Nominal Clad Temperatures at Top of Core	5-48

<u>No.</u>	<u>Title</u>	<u>Page</u>
52.	Nominal Clad Temperatures at Outlet	5-49
53.	2σ Clad Mid-Wall Temperatures at Mid-Plane	5-50
54.	2σ Clad Mid-Wall Temperatures at the Top of Core	5-51
55.	2σ Clad Mid-Wall Temperatures at the Outlet	5-52
56.	Orificing Scheme of Configuration A with Equal Peak Clad Temperature at EOEC	5-53
57.	Orificing Scheme of Configuration B with Equal Peak Clad Temperatures at BOL in the Core and at EOL in the Internal Blankets	5-54
58.	Configuration B BOL Average Coolant Temperature at Core Mid-Plane (Orificed for Minimum Peak Temperature)	5-55
59.	Configuration B BOL Average Coolant Temperature at Top of Core (Orificed for Minimum Peak Temperature)	5-56
60.	Configuration B BOL Average Coolant Temperature at Outlet (Orificed for Minimum Peak Temperature)	5-57
61.	Configuration B EOEC Average Coolant Temperature at Core Mid-Plane (Orificed for Minimum Peak Temperature)	5-58
62.	Configuration B EOEC Average Coolant Temperature at Top of Core (Orificed for Minimum Peak Temperature)	5-59
63.	Configuration B EOEC Average Coolant Temperature at Outlet (Orificed for Minimum Peak Temperature)	5-60
64.	Configuration B BOL Average Duct Wall Temperature at Core Mid-Plane (Orificed for Minimum Peak Temperature)	5-61
65.	Configuration B BOL Average Duct Wall Temperature at Top of Core (Orificed for Minimum Peak Temperature)	5-62
66.	Configuration B BOL Average Duct Wall Temperature at Outlet (Orificed for Minimum Peak Temperature)	5-63
67.	Configuration B EOEC Average Duct Wall Temperature at Core Mid-Plane (Orificed for Minimum Peak Temperature)	5-64
68.	Configuration B EOEC Average Duct Wall Temperature at Top of Core (Orificed for Minimum Peak Temperature)	5-65
69.	Configuration B EOEC Average Duct Wall Temperature at Outlet (Orificed for Minimum Peak Temperature)	5-66
70.	Coolant Temperature at Midplane	5-67
71.	Coolant Temperatures at Top of Core	5-68
72.	Coolant Temperatures at Outlet	5-69
73.	Nominal Clad Temperatures at Mid-Plane	5-70
74.	Nominal Clad Temperatures at Top of Core	5-71
75.	Nominal Clad Temperatures at Outlet	5-72
76.	2σ Mid-Wall Clad Temperatures at Mid-Plane	5-73
77.	2σ Mid-Wall Clad Temperatures at Mid-Plane	5-74

<u>No.</u>	<u>Title</u>	<u>Page</u>
78.	2 σ Mid-Wall Clad Temperatures at Outlets	5-75
79.	Orificing Scheme of Configuration B with Equal Peak Clad Temperature at EOEC	5-76
80.	Total Power Per Assembly (MWth) at BOL, Configuration A	5-76
81.	Total Power Per Assembly (MWth) at EOEC, Configuration A	5-77
82.	Peak-to-Average Power Per Assembly at BOL, Configuration A	5-77
83.	Total Power Per Assembly (MWth) at BOL, Configuration B	5-78
84.	Total Power Per Assembly (MWth) at EOEC, Configuration B	5-78
85.	Peak-to-Average Power Per Assembly at BOL, Configuration B	5-79

List of Tables

<u>No.</u>	<u>Title</u>	<u>Page</u>
I.	Number of Assemblies Per Region	5-80
II.	Fissile Inventories, kg	5-81
III.	Average Fissile Enrichment, % H.M.	5-82
IV.	Discharge Burnups (MWD/T)	5-83
V.	Primary and Secondary Control System Assignments	5-84
VI.	Control Rod Worths	5-84
VII.	Control Rod Requirements	5-85
VIII.	Power Distribution	5-86
IX.	(Peak/Average) Power Densities	5-87
X.	Nominal Peak Nuclear Linear Heat Rating, kW/ft	5-88
XI.	Peak Fast Fluxes	5-88
XII.	Breeding Ratios	5-89
XIII.	Breeding Performance	5-89
XIV.	Configuration A Sodium Void Reactivities from Perturbation Calculations	5-90
XV.	Configuration B Sodium Void Reactivities from Perturbation Calculations	5-90
XVI.	Isothermal Doppler Coefficients of Configuration A	5-91
XVII.	Isothermal Doppler Coefficients of Configuration B	5-91
XVIII.	Normalized Peak Power Density $P(t)/P(o)$ for Configuration A in a 60¢ Step Insertion into the Outer Core	5-92
XIX.	Normalized Peak Power Density $P(t)/P(o)$ for Configuration A in a 60¢/500 ms Ramp into the Outer Core	5-92
XX.	Normalized Peak Power Density $P(t)/P(o)$ for Configuration B in a 60¢ Step Insertion into the Outer Core	5-93
XXI.	Normalized Peak Power Density $P(t)/P(o)$ for Configuration B in a 60¢/500 ms Ramp into the Outer Core	5-93

<u>No.</u>	<u>Title</u>	<u>Page</u>
XXII.	Inlet and Outlet Temperatures of Configuration A at EOEC	5-94
XXIII.	Inlet and Outlet Temperatures of Configuration A Orificed for Equal Clad Temperatures at EOEC	5-94
XXIV.	Orificing Scheme of Configuration A	5-95
XXV.	Orificing Scheme of Configuration A Orificed for Equal Clad Temperature at EOEC	5-95
XXVI.	Nominal Cladding Temperature Axial Profiles for Design Limiting Fuel Pin, Configuration A	5-96
XXVII.	2 σ Cladding Temperature Axial Profiles for Design Limiting Fuel Pin, Configuration A	5-97
XXVIII.	Peak Temperatures for the Assembly With the Hottest Fuel Pin, Configuration A	5-98
XXIX.	Inlet and Outlet Temperatures of Configuration B	5-99
XXX.	Inlet and Outlet Temperatures of Configuration B Orificed for Equal Clad Temperatures at EOEC	5-99
XXXI.	Orificing Scheme of Configuration B	5-100
XXXII.	Orificing Scheme of Configuration B Orificed for Equal Clad Temperatures at EOEC	5-100
XXXIII.	2 σ Cladding Temperature Axial Profiles for Design Limiting Fuel Pin, Configuration B	5-101
XXXIV.	Nominal Cladding Temperature Axial Profiles for Design Limiting Fuel Pin, Configuration B	5-102
XXXV.	Peak Temperatures in the Assembly With the Hottest Fuel Pin, Configuration A	5-103
XXXVI.	Fuel Pin and Assembly Data	5-104
XXXVII.	Blanket Pin and Assembly Data	5-105
XXXVIII.	Control Assembly Compositions	5-106
XXXIX.	Duct Wall Pressure Differential Profile for Design Limiting Duct	5-107
XL.	Fabrication Cost Breakdown	5-108
XLI.	Fuel Cycle Costs of Configuration A	5-109
XLII.	Fuel Cycle Costs of Configuration B	5-110

I. SUMMARY

In unprotected loss-of-flow transients in large homogeneous LMFBRs, high ramp rates from sodium voiding can result in energy releases that may challenge the integrity of the containment. Thus there is a strong incentive for designing large LMFBRs that have a low sodium void reactivity. Heterogeneous designs that consist of successive radial core and blanket zones are most promising. Based on the results of previous safety analyses of heterogeneous cores, a sodium void reactivity of $\$2.50$ or less is considered sufficient to assure that the reactor will not become super-prompt critical. The sodium voided from the core is limited to that coming from the core fuel assembly and upper axial blanket regions. By properly arranging and sizing the core and blanket zones in such designs, a low value of sodium void reactivity can be obtained. The purpose of this research project was to determine what "properly arranged and sized core and blanket zones" meant in 1000 MWe LMFBRs and to develop optimum core configurations in regard to sodium void reactivity and compound system doubling time. During the course of this investigation the following questions had to be answered:

1. Should the different core regions be separated by blanket regions with a thickness of one or less row of blanket assemblies (tightly coupled) or more than one row (loosely coupled)?
2. Should the center of the reactor be a blanket or core fuel region? How thick should this region be?
3. Should the reactor have 2, 3, or more core regions?
4. Is the reduction in core height an effective means to lower the sodium void reactivity?
5. Is it more important to add blanket assemblies to the reactor core to lower sodium void reactivity or has a change in configuration a greater impact while maintaining the number of core fuel and blanket assemblies?
6. How important are the selection of the number of fuel pins per assembly and fuel pin diameter in regard to lowering sodium void reactivity?

Very early results showed that it was easy to construct reactors which had the same number of fuel and internal blanket assemblies but which differed as much as a factor of two in sodium void reactivity. This placed even greater emphasis on the optimization of the core layout.

The optimization of the core layout proceeded in three steps. Each step required more detailed analysis but yielded also more information.

The first step was a screening of the various means to lower sodium void reactivity. At the end of the screening phase, six basic configurations were selected for further design and performance analysis and optimization. The major criterion for the selection of those six configurations was the achievable sodium void reactivity. However, both doubling time and power shape sensitivity were also considered. The second step was a sub-optimization of those six configurations with respect to fuel pin diameter and doubling time. The figures of merit in this optimization were (a) sodium void reactivity, (b) doubling time, (c) breeding ratio, (d) specific inventory, and (e) maximum change in linear heat rating in fuel assemblies over one cycle. At the completion of the sub-optimization, two core layouts and specific design parameters were selected. These configurations were optimized in the third step, the optimization phase. Upon completion of this phase, two optimized configurations were selected for detailed design and performance analysis. After this design and performance analysis was completed one core design was recommended for conceptual design.

The screening phase (first step) dealt with a comparative study of tightly and loosely coupled heterogeneous center core and center blanket configurations. Earlier assembly designs for fuel and blankets were used; these had fuel, structure and coolant volume fractions of $0.3817/0.1689/0.3976$ and $0.5664/0.1267/0.2438$, respectively. The assembly size, however, was changed as the number of fuel pins per assembly changed.

Throughout this study the tightly and loosely coupled configurations were kept as separate as possible in order to identify more clearly the generic issues which must be taken into account when constructing a radially heterogeneous core. Although, as the final configurations of this study show, the optimum cores with respect to the design constraints are a hybrid of tightly and loosely coupled, the following conclusions were instrumental in arriving at these configurations.

1. With respect to achieving a low sodium void reactivity and a low doubling time neither center core nor center blanket configurations show a clear advantage.

2. It is very difficult to construct a "reasonable" tightly or loosely coupled, center blanket or center core configuration with a \$2.00 sodium void reactivity at the EOEC. On the other hand cores with a \$3.00 limit on the sodium void reactivity can be readily constructed.
3. Center blanket configurations are less sensitive with regard to power peaking than center core configurations. In addition, 2-core zone configurations show a better burnup vs. power peaking performance than 3-core zone configurations. When a single enrichment is desirable a center core configuration leads to excessively high power peaking.
4. The sodium void reactivity contribution from the internal blanket assemblies on an assembly basis is significantly higher for tightly coupled cores than for loosely coupled cores.
5. Height reduction can be an effective means for reducing the sodium void reactivity for both tightly coupled and loosely coupled cores.
6. In general, primarily the configuration and not the number of internal blanket assemblies determines the sodium void reactivity.
7. In tightly coupled cores rearranging internal blankets to change the number of core zones does not significantly affect the sodium void reactivity.
8. Ranking configurations according to achievable sodium void reactivity favors loosely-coupled cores.
9. Ranking configurations according to breeding performance and power peaking sensitivity favors tightly-coupled cores.
10. Recommended for further analysis were the following basic configurations:

<u>Coupling</u>	<u>Configuration</u>	<u>No. of Core Zones</u>	<u>No. of Pins/Fuel Assembly</u>
LC	CB	2	271
LC	CB	3	271
LC	CC	3	271
TC	CB	3	331
TC	CB	4	331
TC	CC	4	331

TC - tightly coupled, LC - loosely coupled, CB - center blanket
 CC - center core

During the sub-optimization phase (step 2) those six configurations were analyzed in more detail. Core height and fuel pin diameter were varied and for each configuration, detailed fuel assembly designs were developed which were all subject to the following basic design assumptions:

Reactor outlet temperature:	875° F
Reactor coolant temperature rise:	280° F
Fuel bundle pressure drop:	≤ 75 psi
Fuel p/d ratio:	≥ 1.18
Cladding thickness/fuel O.D.:	0.05
Peak linear heat rating:	13.4 kw/ft
Maximum allowable stress in	
duct wall:	18,000 psi

The performance analysis of a total of 36 cores which differed with respect to neutronic coupling, core height, and fuel pin diameter allowed the following conclusions:

1. To achieve sodium void reactivities of \$2.50 or less, tightly coupled cores require core heights of 36 inches or less. For the loosely coupled cores, heights of less than 48 inches are required.
2. As fuel pin size increases, the sodium void reactivity decreases.
3. The tightly coupled cores have generally lower doubling times than the loosely coupled cores.
4. Among the tightly and loosely coupled cores, the fuel pin sizes of 0.24 inches and 0.26 inches, respectively, show the lowest doubling times.
5. For the cores analyzed, no clear advantage in regard to specific inventory and sodium void reactivity can be identified for either tightly or loosely coupled systems.
6. Because of the high power swing over an equilibrium cycle observed for the center core configurations, they were eliminated from further analysis. Earlier analysis had shown that those configurations showed also a higher sensitivity in power peaking for small enrichment split changes. They always performed equal to or worse than the center blanket configuration.
7. Loosely coupled systems show a greater power swing than tightly coupled systems.

8. A loosely coupled and a tightly coupled 3-core zone center blanket configuration with 271/331 fuel pins per assembly, core height of 40/36 inches and 0.26/0.24 in. fuel pins, respectively, were chosen for further optimization.

During the optimization phase (step 3) the core layouts of these two candidate cores were modified to see if any improvement could be made with regard to breeding performance, power peaking, power shape sensitivity, power swing, etc. The pin diameters for the respective cores remained unchanged during the optimization of the configurations. The modification for the 40 in. core concentrated on tightening the coupling and at the same time reducing the core region sizes to keep the sodium void reactivity below ≤ 2.50 . The modifications for the 36 in. core emphasized the reduction of the center blanket size and the creation of a broken ring-arrangement of internal blanket assemblies to improve the power peaking performance and to simplify the reactivity control.

Upon completion of this task the following conclusions could be drawn:

1. The design constraints of
 - a. ≤ 2.50 sodium void reactivity
 - b. ≤ 15 year doubling timeare very restrictive.
2. The selection of configuration is very important in regard to
 - a. sodium void reactivity
 - b. power shape sensitivity
 - c. power swing
 - d. burnup swing and control requirements
3. The following performance parameters are also affected by the configuration selection but to a lesser extent
 - a. specific inventory
 - b. breeding ratio
 - c. doubling time
4. For a given core height, tightly coupled configurations generally perform better than loosely coupled configurations with respect to the performance parameters listed in 2 except for the sodium void reactivity.
5. The region size split among the three core regions is important for sodium void reactivity reductions.
6. The highest power swing over a burnup cycle exists in the outermost core region. This region has always a negative power swing.

7. The introduction of isolated internal blanket assemblies in the outermost core region
 - a. lessens the need for loosely coupled systems to achieve a given sodium void reactivity
 - b. reduces the power shape sensitivity
 - c. leads to lower power and burnup swings
8. Broken ring arrangements are better than closed ring arrangements because
 - a. there is better coupling between regions
 - b. flux peaks are created which
 - determine the location of control rods
 - enhance control rod worth
9. Control rod positioning is very important
 - a. burnup can be controlled very efficiently by control rods located in the outermost core region because
 - the outermost core region is the largest core region which makes a symmetrical arrangement less difficult
 - the withdrawal of control rods counteracts the drop in assembly power observed in cores burned without control
 - b. control rods located next to an internal blanket region have a lower worth than control rods surrounded by fuel assemblies except for the outermost core region where for some configurations the worth of the control rod can be higher when placed next to an internal blanket assembly
10. While there is the potential for arranging the internal blanket assemblies such that only one core enrichment is needed, no extensive efforts were undertaken at this stage to develop such a core because of
 - a. calculational uncertainties
 - b. having different enrichment zones is a more conservative approach
11. The choice of calculational techniques is very important
 - a. r-z models are good for
 - inventory calculation
 - breeding performance calculation
 - sodium void reactivity estimates
 - b. hexagonal geometry models are needed for the calculation of
 - all power shape information
 - control rod worth

The two most promising core configurations chosen are both tightly coupled, although one evolved from a loosely coupled core. Both cores showed low power shape sensitivities to small enrichment split changes and low power and burnup swings and good power peaking characteristics.

A complete nuclear analysis of these two cores (derived from a loosely coupled configuration/derived from a tightly coupled configuration) determined the fissile inventories (4268.4/4213.4 kg at BOEC), burnup (83.90/100.7 MWd/t peak), reactivity swings (0.49/1.8 Δk), control rod requirements (24/36 rods), total control rod worths (7.29/8.76 Δk total), power and flux distributions for different control insertion patterns, the breeding performance (15.7/15.3 yrs. CSDT), the safety parameters, such as sodium void reactivity ($\$2.38/\2.23 at EOEC), isothermal Doppler coefficients for both sodium-in ($45.6/46.1 \text{ T dk/dT} \times 10^{-4}$ core at EOEC), and sodium-out conditions ($28.6/28.2 \text{ dk/dT} \times 10^{-4}$ core at EOEC), and the transient behavior which shows very little space-dependence during a 60 δ reactivity step on a ramp insertion.

The thermal-hydraulic analysis dealt with the calculation of coolant flow distribution, temperature distributions for coolant, cladding and duct, orificing schemes, fission gas plenum pressures, and assembly pressure drop. Emphasis was placed on keeping peak clad temperatures low and producing a uniform assembly coolant exit temperature. The orificing strategy employed equalized the maximum 2σ cladding midwall temperature at the beginning-of-life for the core and the end-of-life for the blankets in all orificing zones. The resulting peak 2σ clad midwall temperatures consistent with an inlet temperature of 595 $^{\circ}\text{F}$ and a mixed mean outlet temperature 875 $^{\circ}\text{F}$ was (1200.4 $^{\circ}\text{F}/1149.9 $^{\circ}\text{F}).$$

Fuel assemblies for the two final cores were designed in detail taking into account duct rounding due to creep (0.140/0.133 in.), dilation due to swelling (0.0276/0.0707 in.), and peak stresses in duct corners (33,832/34,222 psi). Finally, the design and analysis cores concluded with fuel cycle cost calculations yielding (9.2/9.9 mils/kWh).

Recommended for conceptual design is the 40 in. high core with 0.26 fuel pins. The main reason for this selection is the low number of control rods needed.

1.0 INTRODUCTION

This report summarizes the work under EPRI contract No. RP620-25 on Task 1 of "Optimization of Safety and Breeding Characteristics of the PLBR Phase A Core Design" covering the period from May 1978 to December 1978.

1.1 DESIGN OBJECTIVE

The objective of the core design and analysis efforts is to develop practical design concepts of fuel assemblies, blanket assemblies, control assemblies and removable shield pieces as well as core, blanket, shield and restraint arrangements that are characterized by:

- a. a doubling time of \leq 15 years
- b. a sodium void reactivity of \leq \$2.50 for voiding the flowing sodium from all fuel zones
- c. incoherence in boiling that contributes to ultimate safety
- d. a negative prompt power coefficient during approach to power as well as at high powers
- e. design conservatism in regard to maximum clad temperature, peak linear power, low power peak to average ratio, small outlet temperature gradients
- f. economical fabrication cost

The design which has been developed and will be refined is a way to accomplish the objectives. It is expected to establish feasibility and a "yardstick" against which other designs can be measured.

The first task of this design and optimization effort was to develop a core configuration and determine specific core design parameters (core height, fuel pin and assembly design, environment for operation, etc.) which meet the design objectives. This preconceptual design phase will be followed by a conceptual design effort.

1.2 OUTLINE OF STUDY

The primary goal of the preconceptual design effort was to develop a core configuration and to determine core design parameters consistent with the overall design objectives. The study was very comprehensive, starting with an optimization procedure that led to selection of two designs for detailed analysis. This process led to many conclusions and recommendations, which are listed in Section 2. The methods used during the optimization and preconceptual design phases differed substantially, depending upon the goals for the various tasks. Section 3 describes the design approach, methodology, and optimization approach. The basis for the design was provided by design assumptions and constraints similar to those used in the Proliferation Resistant Core Design Study. Since there is a multitude of heterogeneous core arrangements, a procedure was designed in order to eliminate undesirable layouts, and identify the most promising layouts. A classification of different designs was made by dividing the possible arrangements into center core and center blanket configurations. The subdivision of these configurations into tightly and loosely coupled cores followed. This introduces an arbitrariness which is unavoidable since there is neither the tightly coupled core nor the loosely coupled core. There are differences in the degree of coupling and the assignment of "loosely" or "tightly" to measure coupling is by necessity arbitrary. In this study, cores with internal blankets of more than one row thickness are called loosely coupled. If the thickness of the internal blanket regions is one row or less, those cores are called tightly coupled.

At the beginning of the study an assessment was made of the various means of reducing sodium void reactivities in radially heterogeneous cores. Both tightly and loosely coupled systems with center blanket or center core zones were investigated. Variables in this study were the number and size of core regions, the number of internal blanket assemblies, core height, coupling, and the number of fuel pins per assembly. Upon completion of the study, six basic core configurations were selected, which were then optimized with respect to fuel pin diameter and core height. The two most promising tightly and loosely coupled cores were selected for further analysis.

The two most promising configurations were modified to see if it was possible to further improve the performance characteristics by changing the core layout slightly. The results of these analyses led to two cores which showed optimum performance. One core was derived from the loosely coupled systems and

the other was derived from the tightly coupled systems. Both resultant cores are tightly coupled. The results of the performance analysis for those cores are shown in Section 4.0 of the main report.

The nuclear design effort covered the determination of core layout, fissile inventory, burnup and reactivity swing, control requirements, power and flux distribution, breeding performance, safety parameters, kinetics parameters and transient response. The details of this analysis are shown in Section 4.1.

The thermal-hydraulic analyses dealt with the calculation of coolant flow distribution, temperature distribution for coolant, cladding and duct, orificing schemes, fission gas plenum pressures, and assembly pressure drop. Emphasis was placed on keeping peak clad temperatures low and producing a uniform assembly coolant exit temperatures. Details of this analysis are shown in Section 4.2.

The results of the mechanical design analyses are detailed in Section 4.3. They encompass fuel pin design, assembly design and duct life analysis. Results of both bundle-duct and cumulative damage fraction analyses are reported.

The core design and analysis activities are concluded by fuel cycle cost calculations which are reported in Section 4.4.

An evaluation of center core vs. center blanket configuration, loosely vs. tightly coupled cores and tall vs. short cores is presented in Section 5.0.

The basis for this evaluation is presented in Appendices B, C, and D. A complete list of design assumptions and constraints is given in Appendix A. Details of the analysis leading to selection of the six basic core configurations are presented in Appendix B. Appendix C presents the results of the core height and pin diameter optimization of the six basic core configurations and the selection process leading to the choice of the two most promising tightly and loosely coupled cores. Details of the final step of configuration optimization of these most promising cores are presented in Appendix D.

The results of generic hardware design activities including design options for assembly keys, lower grid design option, mixing promoters in assemblies etc. are shown in Appendix E.

2.0 CONCLUSIONS AND RECOMMENDATIONS

2.1 CONCLUSIONS

Based on the analysis presented in this report, the following conclusions can be drawn:

1. Low sodium void reactivities can be achieved by
 - a. decoupling
 - b. core height reduction
 - c. adding blanket assemblies to increase the parasitic absorptions
2. The design constraints of
 - a. $\leq \$2.50$ sodium void reactivity
 - b. ≤ 15 year doubling time
 - c. no significant power shape sensitivityare very restrictive
3. The arrangement of internal blanket assemblies is very important with regard to
 - a. sodium void
 - b. burnup swing
 - c. doubling time
4. Tightly coupled cores perform better than loosely coupled cores regarding
 - a. doubling time
 - b. specific inventory
 - c. power shape sensitivity
5. Center blanket configuration perform better than center core configuration because
 - a. power peaking is less sensitive to
 - enrichment
 - burnup
 - b. center core regions have very high power swings
 - c. there is greater flexibility in core arrangement
 - d. fewer discriminator zones are needed.
6. Three core regions are sufficient to meet design constraints
 - a. four or more core regions increase complexity without improving performance

- b. two core regions cannot meet all design constraints
- 7. Broken ring arrangements are better than closed ring arrangements because
 - a. there is better coupling between regions
 - b. flux peaks are created which
 - determine the location of control rods
 - enhance control rod worth
- 8. Control rod positioning is very important
 - a. burnup can be controlled very efficiently by control rods located in the outermost core region because
 - the outermost core region is the largest core region, which makes a symmetrical arrangement less difficult
 - the withdrawal of control rods counteracts the drop in assembly power observed in cores burned without control
 - b. control rods located next to an internal blanket region have a lower worth than control rods surrounded by fuel assemblies, except for the outermost core region, where for some configurations the worth of the control rod can be higher when placed next to an internal blanket assembly.
- 9. While there is the potential for arranging the internal blanket assemblies such that only one core enrichment is needed, no extensive efforts were undertaken at this stage to develop such a core because
 - a. of calculational uncertainties
 - b. having different enrichment zones is a more conservative approach
- 10. Meaningful figures of merit are
 - a. sodium void reactivity
 - b. doubling time
 - c. breeding ratio
 - d. specific inventory
 - e. peak burnup
 - f. damage fluence
 - g. maximum assembly power change during life and over one cycle
 - h. sensitivity of power shape
 - i. burnup swing and control rod requirements

Fuel cycle cost is not a meaningful figure of merit at present, although generic trends in fuel cycle cost should guide the design.
- 11. The choice of calculational techniques is very important
 - a. r-z models are good for
 - screening

- inventory calculation
 - breeding performance calculation
 - sodium void reactivity estimates
- b. hexagonal geometry models are needed for the calculation of
 - enrichment split
 - all power shape information
 - control rod worth
 - accurate sodium void reactivities

12. Between the two configurations which were analyzed in detail there were only small difference with respect to the different figures of merit except for the control requirements

2.2 RECOMMENDATIONS

Upon completion of the pre-conceptual activities presented in this report, the following recommendations are made:

1. The following core configuration is recommended for further design analysis
 - a. tightly coupled
 - b. center blanket
 - c. 3-core region
 - d. 40 inch core height
 - e. 0.26 inch fuel o.d.
 - f. 271 pins per fuel assembly
2. Proceed with conceptual design and analysis
 - a. nuclear, thermal-hydraulic and mechanical design analyses
 - assembly and fuel pin design
 - core layouts
 - breeding performance
 - safety parameters
 - power distribution and sensitivities
 - temperature
 - orificing
 - cladding
 - duct
 - coolant
 - pin and assembly life
 - core restraint and seismic analyses
 - fuel management
 - fuel cycle cost assessment and optimization

- b. trade-off and sensitivity analyses
 - number of enrichment zones versus power peaking versus fuel life
 - number of enrichment zones versus number of orificing zones for a fixed number of discriminating zones
 - axial and radial blanket thickness versus shield
 - performance vs. design parameter changes
 - performance vs. calculational methods
- c. transient and safety analyses
 - operational transients
 - design-limiting transients
 - accident analysis
- d. startup analysis
 - transition first core-equilibrium core
 - temperature
- e. power shape and reactivity control
- f. instrumentation needs
- g. component designs
 - lower inlet plenum
 - assembly keys
 - assembly design (fuel, blanket, shield, control)
 - fuel pin
 - core restraint system
 - upper internals

3. Assess calculational methods and data

- a. nuclear analyses
- b. thermal-hydraulic analyses
- c. mechanical analyses
- d. results of critical experiments

3.0 DESIGN ENVIRONMENT

3.1 DESIGN GROUNDRULES

The reactor net electric power is in the 1000 MWe class. The reactor inlet temperature is 595°F and the reactor outlet temperature is 875°F. The resulting thermal efficiency is 0.316. The core layouts are those of heterogeneous reactors. Details of the design assumptions and constraints are listed in Appendix A. They cover:

1. Fuel assembly parameters
2. Blanket assembly parameters
3. Flow parameters
4. Limiting conditions
5. Material properties
6. Physics parameters
7. Fuel management
8. Economic parameters
9. Figures of merit

The hot channel factors used in this study are those developed for CRBRP. They are different for fuel and blanket assemblies. The structural material used in this study is an improved CW316SS similar to the N-lot stainless steel. In line with the design conservatism employed in this study the design was not pushed to every limit specified in the design assumptions and constraints. Examples for the conservatism in the selection of design parameters are bundle pressure drop (75 psi instead of 90 psi), linear heat rating of the reference design (less than 13.5 kW/ft instead of 15 kW/ft).

3.2 DESIGN APPROACH

The design analysis efforts consisted of a preliminary set of analyses and then a final analysis of two designs.

3.2.1. Preliminary Analyses

The purpose of all preliminary analyses was to narrow down the multitude of design options to two designs which then would be analyzed in detail. This

process of narrowing down design options was very complex and extended over several steps. First the means to reduce sodium void reactivity in radially heterogeneous cores were investigated. This effort covered loosely and tightly coupled center core and center blanket configurations. The design modifications were developed by changing:

- number of core regions
- degree of coupling
- size of center blanket regions
- size of center core regions
- core height
- number of fuel pins per assembly
- number of fuel assemblies per core region

Details of this analyses are reported in Appendix B.

Upon completion of these analyses, six basic heterogeneous configurations were identified. They were three tightly coupled systems and three loosely coupled systems. Among both types of configurations were one center core configuration and two center blanket configurations. For the tightly coupled systems the center blanket configurations had either three or four core zones compared to two or three for the loosely coupled systems. The purpose of the analysis that followed was to determine optimum combination of fuel pin size, core height and core configuration. Since the power level was maintained at approximately 1000 MWe any change in core height required a change in core layout. For tightly coupled cores, the core heights selected were 32 inches and 36 inches. The fuel pin diameters selected were 0.24 inch, 0.26 inch and 0.28 inch. For the loosely coupled cores, the chosen core heights were 40 inches and 48 inches with fuel pin diameters of 0.26 inch, 0.28 inch, and 0.30 inch.

After completion of these analyses the two most promising cores, one tightly and the other loosely coupled, were selected. While the previous step in the preliminary analysis aimed mostly at an optimization of fuel pin diameter, core height, and an elimination of less promising core concepts (see Appendix C for details) the next step in the analysis attempted to optimize the core configuration. This was done by leaving the basic core configuration the same, i.e., a center blanket configuration with three core zones, but changing the detail of the assembly arrangements. After completion of the analysis, two core configurations with specific design parameters were selected for detailed performance analysis.

3.2.2 Final Design Analysis

After completion of the preliminary analyses two promising configurations were identified with core heights of 36 inches and 40 inches and fuel pin sizes of 0.24 inch and 0.26 inch, respectively. There were more than those two configurations which showed good performance. Three of the tightly coupled cores showed approximately the same performance. The core selected was the one which had the lowest sodium void reactivity ($\$2.23$) and a low doubling time (15.3 years). Among the cores derived from the loosely coupled systems were several arrangements which showed low sodium void reactivity and also low doubling time. The core finally selected was synthesized from cores which had been analyzed during the preliminary analyses.

The final analysis encompassed nuclear, thermal-hydraulic and mechanical design analysis. This analysis was subject to the design assumptions and constraints outlined in Appendix A. Upon completion of this analysis, a reference design was recommended for conceptual design analysis.

3.3 OPTIMIZATION

3.3.1 Configuration

The optimization of the core configuration was constrained by the $\$2.50$ sodium void reactivity limit. Only configurations which were able to meet this limit were analyzed in more detail. Among those configurations, the major criteria for the optimization were (1) the sensitivity of the power shape to slight changes in enrichment split and (2) the maximum power swing in a fuel assembly over a burnup cycle. Specific inventory, breeding ratio and doubling times were considered also in this optimization process but these figures of merit are less important than power shape sensitivity and power swing. The latter two performance characteristics relate to potential thermal hydraulic and subsequent safety problems. Since enrichment specifications have certain tolerances, these tolerances can be translated into a possible enrichment split uncertainty. If minor changes in enrichment split cause large changes in the peak power density, this leads to excessively high sodium and clad temperatures and possible pin failure. If this effect is taken into consideration in the design of the fuel assembly, it requires increased coolant flow through those assemblies which would be affected in case the enrichment split for the fuel as loaded was not at its nominal value. The possible undercooling on the other hand, raises peak clad temperature.

Another aspect of the sensitivity of the power shape to enrichment split changes relates to the enrichment split change due to burnup. Very delicate control rod insertion patterns would be required to control not only the reactivity change but also a highly sensitive power shape. Therefore, even though a quantitative description of the limiting power shape sensitivity is not possible at the time, the less sensitivity a configuration shows the better.

The same qualitative description applies to the power swing over a burnup cycle. The larger the power swing is over a cycle the higher is the required overcooling and the higher are the clad temperatures. Therefore, the smaller the power swing the better the configuration.

3.3.2 Design Parameters

The optimization of design parameters was subject to two constraints. For one, the core configuration had to meet the \$2.50 sodium void reactivity criterion. Secondly, the configuration had to show low power shape sensitivity and a low power swing. The criteria for the optimization of design parameters were then in their order of importance:

- doubling time
- specific inventory
- control system simplicity

While the first two criteria are self-explanatory, the last criterion relates essentially to the control requirements. For example, a small pin design might yield a low specific inventory and also a low doubling time. However, the small fuel pin size might also lead to a very high burnup swing thus requiring a very large number of control assemblies. In this case, design trade-offs have to be considered. If doubling time and specific inventory are the same for several designs then the design with the least control requirements would be preferred if the reduced control requirements can also be translated into a reduction of the number of control assemblies. Because of the symmetry requirements this reduction might not always be possible. In this case that design is preferred which perturbs the power shape the least during a cycle.

Fuel cycle cost was used as another figure of merit. The significance was not the actual mills/kWh data but the trend in fuel cycle cost resulting from a design change. The current uncertainties in fuel cycle cost data do not render fuel cycle cost to be a meaningful figure of merit in absolute terms.

3.4 METHODOLOGY

Both detailed rigorous methods as well as approximate methods were employed in the design analyses presented in the report. Up to the selection of the reference design, approximate methods dominated the nuclear and thermal-hydraulic design analysis. For the final design analyses, the more detailed rigorous methods were used for both nuclear and thermal design. The nuclear analysis was based upon NSMH properties with minor modifications. The irradiation induced swelling correlation is derived from the NSMH Rev. 7 correlation by increasing the incubation period τ from 6.3 to 9.0. The steady-state swelling rate R is reduced to 0.7 R . The irradiation induced creep calculation is based upon the nominal proposed NSMH Rev. 4 correlation using only 70% of the steady-state swelling rate and $\tau = 9.0$. The stress rupture properties for steady-state analysis are the ones for nominal unirradiated N-lot steel.

3.4.1 Design Analysis Flow Sheet

The design analysis flow sheet is presented in Fig. 1. It shows schematically the various steps in the design evolution.

Performance Estimates: Estimates are required on clad and duct temperatures, fluence and power distribution.

Fuel Pin Design: Based on the design groundrules, the following fuel pin design parameters are fixed: cladding o.d., cladding thickness, fuel smear density, peak linear heat rating, plenum location and length. Active core length and axial blanket thicknesses are selected. CDF is estimated.

Fuel Assembly Design (NIFD Code): The following design parameters are calculated: duct diameter, duct wall thickness, creep and swelling dilation of the duct as a function of axial position, fuel pitch/diameter ratio, assembly pitch, pressure drop, spacer wire thickness. The code furthermore calculates bundle-duct-interaction (BDI), number of subassemblies required, flow requirements, as well as the following blanket assembly parameters: pin diameter, pitch-to-diameter ratio, wire thickness, assembly dimensions.

Preliminary Neutronics and T&H Design (SYNBURN and REBUS Codes): For r-z core models, the SYNBURN and REBUS codes calculate the following parameters: specific fuel inventory, burnup swing, burnup, fluence, breeding performance, power distribution, mass balances. Based on these results, improved estimates are derived for blanket overcooling, clad and duct temperatures.

Final Neutronics and T&H Design (REBUS, DIF2D, PARC1D, PARC2D, CORE-3D, FLORF, ENERGY): Determined are: detailed core layout and control system layout, control rod worth, breeding performance, inventories at beginning of life (BOL), beginning of equilibrium cycle (BOEC), end of equilibrium cycle (EOEC), power distribution, burnup swing, burnup, Doppler coefficient, sodium void coefficient. The T&H analyses cover the following subjects: orificing, maximum coolant velocity, maximum pressure drop, flow distribution, core-wide clad, duct and coolant temperatures.

Remaining Performance Analyses (FX2, COST, ORIGEN, CAFAIL): The remaining analyses cover transient analyses, fuel cycle cost calculations, fission product decay heat calculations and CDF calculations.

3.4.2 Computational Methods

In the following, the calculational methods used for design analysis will be described briefly.

The MC²-2-SDX code system was used to determine heterogeneously and homogeneously self-shielded nuclear cross sections for core and blanket regions based on ENDF/B-IV cross section data.

For burnup analysis, 8-group cross sections and for sodium-void and Doppler calculations, 21 group cross sections were used. Separate cross section data sets were prepared for core and blanket regions as well as for four different temperatures and for cores with and without sodium.

The fuel assembly designs were carried out with the NIFD code. Input data for this code are coolant inlet and outlet temperature, bypass flow fraction, blanket temperature penalty, maximum coolant velocity, maximum linear heat rating, radial power peaking, core height and axial blanket thickness, fuel pin diameter, reactor power and power split, stress limits and fast fluence. Output data are fuel pitch-to-diameter ratio, duct wall thickness, duct stresses (corner, wall), duct inside flat-to-flat distance, required interassembly gap as a function of axial position (allowing for swelling, irradiation creep and handling), number of fuel assemblies needed, bundle pressure drop, and volume fractions. The code can handle both wire-wrapped as well as gridded assemblies. Based on the number of required fuel assemblies and the estimated number of control positions, the code also determines the actual number of fuel assemblies for a hexagonal core layout where the corners can be rounded off, if needed.

The approximate nuclear performance was obtained from the SYNBURN code. This code is a 2D synthesis burnup code which calculates beginning- and end-of-

equilibrium cycle performance characteristics and mass balances. The buckling treatment which allows for some flexibility in this code was adjusted to bring good agreement with more rigorous methods. The SYNBURN code provided enrichment splits which were then used as first guesses in REBUS r-z geometry calculations.

The approximate thermal analysis was based on adjustments to results obtained from rigorous methods by correcting for differences in linear heat rating, coolant flow rates and heat fluxes. In case no detailed analysis for a similar design was available, orificing was based on concentric orificing zones and the local peak-to-average power ratios.

The rigorous nuclear analysis of the first cycle and the equilibrium cycle was carried out with the REBUS code package. The REBUS code package performs burnup calculations in 1 and 2D. The code system handles discrete burnup, equilibrium cycle analysis, homogenized fuel management, discrete fuel management, fuel shuffling as well as a large variety of fuel recycle options. DIF2D is the 2-dimensional diffusion code used in REBUS. Burnup analysis was carried out using both r-z and hexagonal geometry options. Control rod worth calculations were carried out in hexagonal geometry using bucklings obtained from r-z geometry calculations.

PARC1D and PARC2D are one- and two-dimensional perturbation codes which were used for worth calculations in general and sodium void and Doppler reactivity distribution in particular.

After completion of the nuclear analysis, core layout, fuel management, and power distribution feed into the thermal analysis. The codes CORE-3D and ENERGY were used together with the FLORF code for a rigorous thermal analysis.

The CORE-3D code determines steady-state core-wide temperature distributions. It is based on the ENERGY code and takes interassembly heat transfer into account without limiting the number of fuel assemblies of which the core consists. Fuel assemblies were orificed individually. Coolant temperatures were calculated inside all fuel assemblies as well as duct temperatures and cladding hot-spot temperatures.

The ENERGY code determines the temperature distribution inside a fuel subassembly. The various mixing modes are lumped into an equivalent turbulent cross flow which is described by an effective eddy diffusivity. The code was used for a detailed thermal analysis of the design limiting assemblies.

The FLORF code is used to assign orificing zone numbers to all assemblies in the core based solely on assembly power and regardless of the physical location of the assembly. Therefore, assemblies can be in the same orificing zone even though they are not positioned next to each other. The assignment of orificing zones is governed by maximum clad temperatures which should be equal in all zones. It is permissible to use different temperature limits in different regions of the reactor and/or to select power distributions at any time in life and any region which are considered the limiting distributions.

The steady state cumulative damage fraction (CDF) was calculated with the CAFAIL code which uses correlations for rupture life and cladding wastage as specified by the groundrules.

3.4.3 Calculational Approach

The methods employed in the various steps of the preliminary analysis and the final analysis differed greatly reflecting on the different purposes of each step.

During the preliminary analysis the first step was to investigate the means to reduce sodium void reactivity. Beginning-of-life (BOL) calculations were carried out in r-z geometry. The enrichment split for the multi-core region arrangements was obtained from 1-D calculations. BOL sodium void reactivity calculations were carried out with a 2D perturbation code. The justification for using BOL conditions rather than end-of-equilibrium cycle (EOEC) conditions was the finding that for a two year residence time, the difference in sodium void reactivity for BOL and EOEC conditions was always $\$1.15 \pm 5\%$. Therefore, a sodium void reactivity target of \$2.50 at EOEC required a BOL value of \$1.35 or less. Using perturbation rather than direct eigenvalue calculations for the sodium void reactivity provided insight into the spatial distribution of the sodium void reactivity and helped in the development of core configuration. During the first step of the preliminary analyses, r-z burnup calculations were carried out for selected cores. No detailed fuel pin or assembly designs were developed. But instead those designs were derived from the original Phase A fuel pin and assembly design.

During the second step of the preliminary analyses, detailed burnup calculations were carried out in r-z geometry. Specific fuel pin and assembly designs were developed subject to the design groundrules. Since the emphasis was placed on determining fuel pin sizes and core heights, no hexagonal geometry calculations were carried out at this stage. The performance parameters calculated at this step of the preliminary analysis were EOEC sodium

void reactivities, breeding ratios, doubling times, fissile inventories, fluences and changes in assembly power output.

The step in the elimination process which followed was an optimization of the configuration. This required both r-z and hexagonal geometry burnup analysis with explicit representation of control rods as well as their insertion and withdrawal.

The final analysis was carried out in r-z and hexagonal geometry and included nuclear, thermal-hydraulic and mechanical design calculation. These calculations were complemented by transient and fuel cycle cost calculations.

4.0 CORE DESIGN AND ANALYSIS

The analysis and optimization of the various types of tightly and loosely coupled configurations, as described in Appendices B, C, and D has resulted in the two configurations shown in Fig. 2. These represent preliminary optimum configurations with respect to a compound system doubling time of about 15 years and EOEC sodium void reactivity less than \$2.50. We have two configurations because of the two distinct starting points in this study. Namely, the class of loosely coupled cores, which lead to configuration A, and the class of tightly coupled cores which lead to configuration B. The two configurations are similar in that they are both center blanket configurations and have three core zones. We note that neither of the final cores can be put into either the class of loosely or tightly coupled cores, and may be considered hybrids. A general feature of both configurations, with respect to the previous classification, is that the inner and middle core regions are more tightly coupled than the middle and outer core regions. Although the configurations have these common features, they also retain some features which reflect their evolutionary origin. For example, configuration B which derives from the tightly coupled cores is shorter (36 in.) than configuration A (40 in.) and the fuel assemblies have respectively 331 and 271 fuel pins. A more detailed description of the designs is given in section 4.3 of this report.

This section will present a detailed analysis of the nuclear, thermal-hydraulic, and mechanical performance characteristics of configurations A and B. Based on these data a final optimum core will then be chosen in a conceptual design study.

4.1 NUCLEAR DESIGN ANALYSIS

4.1.1 Core Layout

The core configurations for this analysis are given in Fig. 2. They are center-blanket cores with three core zones each. The number of assemblies per region are listed in Table I. The total number of core assemblies in configuration A is 330 and in configuration B it is 342. Configuration A has a

total of 157 internal blanket assemblies divided into four region, while configuration B has 145 separated into three regions. The fourth internal blanket region in configuration A consist of clumps of three assemblies each and is not considered as a ring separating two core zones. It will be treated in the data tabulations as a part of internal blanket 3. The number of radial blanket and radial shield assemblies is the same for both configurations. The total number of assemblies in configuration A is 883 and in configuration B it is 889.

4.1.2 Fissile Inventory

The fissile inventories for the beginning of life (BOL), beginning of equilibrium cycle (BOEC), and the end of equilibrium cycle (EOEC), are listed for both configurations in Table II. The total reactor fissile inventory at BOL for configuration A is 3861.9 kg, at BOEC 4268.4 kg, and at the EOEC 4575.0 kg. For configuration B the respective values are 3790.9 kg, 4213.4 kg, and 4489.7 kg. In the inner and middle core zones the fissile inventories of configuration B are higher, while for the outer core zone, the fissile inventory of configuration A is higher. Overall, configuration A has a slightly higher fissile inventory. For BOEC conditions this difference of 1.3% is due mainly to the bigger pin size in configuration A.

The average fissile enrichment by region is given for the two configurations in Table III. The enrichment in the core zones varies from 17.7 to 19.4% H.M. at BOL, and reduces to from 16.3 to 17.5% H.M. at the EOEC as the power shifts from the core to the blankets.

4.1.3 Burnup and Reactivity Swing

The peak and average burnups for the two configurations under equilibrium cycle conditions are given in Table IV. Both peak and average core discharge burnups are higher for configuration B than for configuration A. The highest value for configuration B occurs in the outer core zone and is 100.7 MWD/Kg. This can be compared with the highest value of 83.90 MWD/Kg for configuration A, which also occurs in the outer core zone. The higher core burnup is due to the smaller pin size in configuration B. The peak discharge burnup in the internal blankets are comparable; the highest values occur in internal blanket 3 and are 22.10 MWD/Kg and 20.96 MWD/Kg for configuration A and B, respectively.

The reactivity for both cores decreases over the equilibrium cycle. This reactivity swing is 0.49% Δk for configuration A and 1.8% Δk for configuration B.

This difference is due in part to the difference in the pin diameter between the two configurations, but mostly because of the enhanced internal breeding due to the addition of internal blanket four in configuration A. In addition, the larger reactivity swing in configuration B implies a greater control requirement. This has been taken into account in the construction of the configurations by allowing 30 control positions in configuration B as opposed to 24 in configuration A.

4.1.4 Control Requirements

The control assembly assignments for the two configurations are given in Table V. For configuration A there are 12 control assemblies in the primary system and 12 in the secondary system, and for configuration B there are 12 in the primary system and 18 in the secondary system, which were chosen arbitrarily. The primary system serves both a safety and an operational function. This system must have sufficient worth at any time in the reactor cycle to shut down the reactor from any operating conditions, and to maintain subcriticality over the full range of coolant temperatures expected during shutdown. In addition, the primary control system is designed to meet fuel burnup and load requirement for each cycle as well as to compensate for criticality and refueling uncertainties. The secondary control system must have sufficient worth at any time in the reactor cycle to shut down the reactor from any operating conditions to hot-standby conditions. Both primary and secondary control systems must be capable of performing the specified functions independently, even with the failure of any single active component (i.e., a stuck rod). Allowance must also be made for both control systems for the maximum reactivity fault associated with any anticipated occurrence.

The control assembly compositions were assumed to be those of the CRBRP design with 92% enriched B_4C . The results of the control system worth calculations in hexagonal geometry are given in Table VI. The total worth of both the primary and the secondary system is somewhat greater for configuration B than for configuration A.

The item-by-item reactivity requirements for the primary and secondary control systems are listed in Table VII. The requirement for controlling the excess reactivity (for the primary control system only), which usually is the most important component for a homogeneous reactor, is about a third smaller for configuration A than for configuration B. This is because the burnup swing for the configuration A core (0.49% Δk) is also smaller when

compared to that of configuration B (1.8% Δk). This difference in burnup swings also leads to the difference in the control requirements for the maximum reactivity fault, for the amount of excess reactivity (plus uncertainties) dictates the maximum reactivity insertion that can occur due to any single rod run-out. The control requirement for cold criticality prediction uncertainty for CRBRP is 0.3% Δk and is adopted here for both configurations. The control requirement for fissile refueling tolerance (0.3% Δk) is based on a 0.5% uncertainty in batch fissile enrichment. The hot-to-cold component (requirement for both control systems) is assigned large uncertainties because the reactivity insertion due to the radial and axial core contractions is not readily available. The maximum reactivity control requirements, including uncertainties, for the primary and secondary control systems of configuration A are 3.65 and 2.58% Δk respectively, while for configuration B they are 4.24 and 3.47% Δk , respectively.

In Table VII the control system worths including one stuck assembly are compared with the control requirements. For configuration A the primary system worth is 3.65% Δk and the secondary system worth 2.58% Δk . The values are substantially higher than the respective control requirements of 2.33% Δk and 1.31% Δk . On the other hand, for configuration B almost no margin exists between the primary system worth of 4.24% Δk and the requirement of 4.02% Δk . For the secondary system the control worth is twice that of the requirement. It is therefore more appropriate to reassign some secondary control rods of configuration B as defined in Table VI to the primary system.

In making the above comparisons, it must be kept in mind that the reactivity worth of each control rod depends strongly on the positions of other control rods. This is especially true for a parfaït core in which the flux distribution is very sensitive to the control rod insertion pattern. Thus, the above results must only be viewed with respect to the preliminary control system assignments in Table V.

4.1.5 Power and Flux Distribution

The power fractions for the different regions of the two configurations at BOL, BOEC, and EOEC are given in Table VIII. For configuration A the power fraction in the core region decreases from 89.9% at BOL to 75.7% at EOEC, and in the internal blankets the power fraction increases from 6.5%

at BOL to 16.8% at EOEC. Similarly for configuration B, the change in core power is from 89.7% at BOL to 76.7% at the EOEC and in the internal blankets from 5.8% to 14.6% respectively.

The peak assembly powers at the mid-plane for BOL, BOEC, MOEC, and EOEC conditions for configuration A are given in Figs. 3 through 7. The peak power density of 809.1 watts/cc at BOL with no control rods inserted occurs in the outer core zone. Inserting the row 11 rods 15% to maintain reactor criticality decreases this peak to 643.4 watts/cc and shifts the peak power density to a value of 678.2 watts/cc in a subassembly in the middle core zone. In Fig. 5 the BOEC peak power densities are shown under the condition of the row 11 control rods inserted 15%. As the burn cycle proceeds and the row 11 rods are withdrawn to compensate for the reactivity loss the peak power density shifts to the outer core zone and is 623.4 watts/cc at the EOEC (see Figs. 5 through 7).

Similar results are given in Figs. 8 through 12 for configuration B. The BOL peak power density with the row 11 rods completely inserted is 772.9 watts/cc and occurs in the middle core zone. At the EOEC with the rods withdrawn the peak power density is 694.1 watts/cc and is in the outer core zone.

The peak-to-average power densities at BOL, BOEC, and EOEC for the various reactor regions of the two configurations are given in Table IX. The total core peaking factor for configuration A at BOL is 1.45 and increases to 1.54 at the EOEC. For configuration B the respective change is from 1.53 to 1.60. Overall, power peaking in configuration A is somewhat lower than in configuration B. Some further descriptions of the power distributions are given in Figs. 80 through 85.

The nominal peak nuclear linear heat ratings are listed for both BOL and EOL in Table X. Core configuration A has a higher peak linear heat rating both at BOL and EOL, 13.4 and 12.0 kW/ft as compared to 13.2 and 11.4 kW/ft respectively for configuration B. However, the EOL peak blanket linear heat ratings are higher for configuration B than for configuration A. For the internal blanket and the radial blanket of configuration A the values are 12.8 kW/ft and 8.7 kW/ft respectively, while 15.3 kW/ft and 10.7 kW/ft for configuration B.

The peak fast fluxes in the core and blanket regions are given in Table XI. In the core the peak fast flux for configuration A is 3.39×10^{15} n/cm²-sec and 3.57×10^{15} n/cm²-sec for configuration B. For a core

residence time of 2 cycles at 255.5 days per cycle the peak fast fluence is 1.45×10^{23} nvt for configuration A and 1.50×10^{23} nvt for configuration B. For the internal blankets, whose residence time is also 2 cycles, the respective peak fluences are 1.28×10^{23} nvt and 1.32×10^{23} nvt.

In Figs. 13 through 21 contour flux maps are given for configuration A. The BOL reactor conditions are shown in Figs. 13 through 18 with different control rod insertions. The flux peaking at BOL about the row 11 primary rods is especially noteworthy, for this peak significantly enhances the worth of these control rods. The effect of inserting this rod can be seen in Figs. 13 and 14. The change in the flux distribution over the equilibrium cycle is shown in Figs. 19 through 21, where the reactivity swing is being controlled with the row 11 primary rods. As the burnup proceeds and these rods are withdrawn the buildup of the characteristic flux peak near this rod can be seen.

The analogous situations are shown in Figs. 22 through 29 for configuration B. We note (see Fig. 22 for example) that also in configuration B a flux peak exists at the row 11 primary control positions, and therefore enhances the worth of these control rods.

4.1.6 Breeding Performance

The breeding ratios for the different regions of the two reactors are listed in Table XII for BOL, BOEC, and the EOEC. The core breeding ratio of configuration A is 0.550 at BOL and reduces to 0.497 at the EOEC as the power shifts to the blankets. For configuration B the BOL core breeding ratio is 0.628 and reduces to the same value as that of configuration A, 0.497, at the EOEC. The total reactor breeding ratios for configuration A are 1.488 at BOL and 1.380 averaged over the equilibrium cycle. The respective values for configuration B are 1.530 and 1.354.

The compound system doubling times for the two configurations are listed in Table XIII. Under the assumptions of a two year residence time for core and internal blanket assemblies, a five year residence time for the radial blanket assemblies, a one year out-of-pile time, and 1% fuel cycle losses, the doubling time for configuration A is 15.7 years and for configuration B 15.3 years. This could be reduced somewhat, as is shown for configuration A, by using a one year residence time for the internal blankets. In this case configuration A has a 15.1 year compound system doubling time.

4.1.7 Safety Parameters

The sodium void reactivities for the two configurations are given in Table XIV and XV. The results are calculated in first order perturbation theory and thus the break down with respect to voiding the individual zones is given. The values are for the removal of the flowing sodium only. Both configurations have sodium void reactivities, for voiding the flowing sodium from the core plus the upper axial blanket, which are below \$2.50 at the EOEC. The BOL value for configuration B is almost half of the BOL sodium void reactivity of configuration A. However, due to the greater burnup of configuration B its sodium void reactivity increases to within 15¢ of the sodium void reactivity of configuration A at the EOEC.

In Tables XVI and XVII the isothermal Doppler coefficients are given for both configurations with sodium-in and sodium-out conditions at BOL and at the EOEC. The total core Doppler coefficient at BOL for configuration A is 0.0053 for sodium-in and 0.0031 for sodium-out and decreases to 0.0046 and 0.0029 respectively at the EOEC. The total internal blanket Doppler coefficient, on the other hand, is 0.0039 and 0.0031 at BOL for sodium-in and sodium-out, and increases to 0.0048 and 0.0036 respectively at the EOEC. For configuration B the core Doppler coefficient is 0.0051 and 0.0031 at BOL for sodium-in and sodium-out, and at the EOEC 0.0046 and 0.0028 respectively. The internal blanket Doppler coefficients for configuration B are somewhat lower than for configuration A. At BOL these are 0.0026 and 0.0022 for sodium-in and sodium-out and 0.0038 and 0.0029 respectively at the EOEC.

4.1.9 Transient Response

4.1.9.1 Introduction

Investigation of transient response of both configuration A and B to reactivity insertions into the outer core region via control rod withdrawal was conducted. The aim here was primarily to assess the space dependent kinetics effect of these configurations. Comparison of results with the Phase A design was made.

4.1.9.2 Methodology

The two-dimensional space-time kinetics code FX2² was used to study the configuration A and B designs in one-sixth hexagonal symmetry. The Doppler feedback effect came from the temperature-dependent cross sections. An adiabatic heat transfer model (i.e., a constant heat transfer rate from fuel to coolant throughout the transient) was used in the transient analysis.

4.1.9.3 Reactivity Insertions

Two different reactivity insertion rates were studied: a 60¢ step and a 60¢/500 ms ramp, both coming from withdrawing the control rods from the outer core region.

4.1.9.4 Transient Results

4.1.9.4.1 Configuration A

When a 60¢ reactivity step was inserted into the outer core region, the peak power density normalized to its initial value for each of the three core zones (inner, middle and outer) rose rapidly in the first millisecond, and reached a peak value near 4 milliseconds. Furthermore, the outer core peak power density rise was only 2.3% and 3% higher than those of the middle core and inner core (2.507 vs. 2.511 and 2.501). These results were given in Table XVIII and Fig. 30.

For the 60¢/500 ms, again the normalized peak power density in all three core zones rose in unison, with that of the outer core zone slightly greater (2.3% and 2.7%) than those of the middle and inner core zones (2.113 vs. 2.064 and 2.056). These results were shown in Table XIX and Fig. 31.

4.1.9.4.2 Configuration B

The transient response of configuration B was similar to that of configuration A to both the 60¢ step and 60¢/500 ms ramp. With the 60¢ step insertion, the normalized peak power density in the outer core reached the peak value of 2.553, while those of the middle and inner cores respectively reached 2.503 and 2.490. The difference between the outer core normalized peak power density and those of the middle and inner cores were respectively 2.0% and 2.5%.

For the 60¢/500 ms ramp, the normalized peak power density in the outer core reached its maximum value of 2.131, relative to those of 2.083 and 2.071 for the middle and inner core. The difference here between the outer core normalized peak power density and those of the middle and inner cores were 2.3% and 2.9%. These results were shown in Tables XX-XXI and Figs. 32-33.

4.1.9.5 Conclusions

Based on the above analysis, the following conclusions can be made.

1. Both configuration A and B had very little space-dependence effects during a 60¢ step or ramp insertion transient. The normalized peak power density in the outer core zone where reactivity was inserted was never more than 3% greater than that of the middle or inner core for both configurations A and B for either the 60¢ step or ramp insertion.

2. In comparison, the Phase A design exhibited a maximum normalized peak power density of 3.3 in the inner core where reactivity was inserted, and about 2.5 in the middle and outer cores, when a 60¢ step reactivity was inserted in the inner core.

4.2 THERMAL-HYDRAULIC ANALYSES

4.2.1 Inlet and Outlet Temperature of Configuration A

Inlet and outlet temperatures for core, core plus internal and radial blankets, and the reactor are given in Table XXII. The core inlet temperature is 595°F, with a core ΔT of 313°F. The ΔT across the core and blankets is 295°F. The cold by-pass is 5% of the total reactor flow. Cold by-pass flow does not include flow through control channels. The γ heating in those channels was taken into account in calculating the coolant temperature rise.

4.2.2 Orificing Scheme of Configuration A

The orificing zones are shown in Fig. 34. There are three orificing zones in the core, four in the internal and radial blankets, and one for the control and radial reflector assemblies. BOL powers with control rods inserted were used for the core and EOL powers were used for the internal and radial blankets in determining the flow distribution. At these burnup stages, the peak cladding midwall temperatures (2σ values) were made equal for the hottest fuel or blanket pin in each orificing zone.

The coolant flow rates, coolant velocities, and the number of assemblies in each of the orificing zones are given in Table XXIV. The flow splits are 74.8%, 24.9%, and 0.5% for the core, internal and radial blankets, and control and shield assemblies. The maximum coolant velocity is 25.6 ft/sec.

The sensitivity of peak cladding temperatures to using EOEC powers for the core and blankets will be discussed in section 4.2.4.

4.2.3 Temperature Distributions of Configuration A

Temperature distributions for the duct and coolant on a core wide basis, orificed for minimum peak temperature, at various axial locations (core midplane, core and upper axial blanket interface, and the top of the upper axial blanket) are given in Figs. 35 to 46. The duct temperature calculations took into account the interassembly heat transfer. The averaged duct temperatures given in Figs. 41 to 46 were averaged over the six-flats of each assembly. The highest average duct temperature is 894°F, at the top of the upper axial blanket in an assembly in the twelfth row of the core at beginning of life.

The average coolant temperature is obtained from averaging the coolant subchannels interior to the assembly. The maximum coolant outlet temperature is 1013°F, and occurs in the same assembly which has the highest average duct temperature.

While the highest average outlet temperatures are achieved in the assembly in the twelfth row, the limiting (or hottest) fuel pin is in an assembly in row eight. For the assembly with the hottest fuel pin, the coolant as well as nominal and 2σ clad midwall temperatures are shown respectively in Figs. 47 to 55 for three axial locations. The peak coolant subchannel outlet temperature is 1003°F. With a hot channel factor of 1.232, the peak 2σ coolant subchannel outlet temperature is 1098°F. The peak nominal clad midwall temperature for the hottest pin in this assembly is 1026°F at the core and upper axial blanket interface. The peak 2σ clad midwall temperature for this pin is 1145°F at the same axial location. These temperatures occur at beginning-of-life conditions. How they vary from beginning-of-life to end-of-life conditions is shown in Tables XXVI and XXVII. At EOL, the peak nominal and 2σ clad midwall temperatures are 973 and 1077°F, which is a reduction of 53 and 68°F, respectively, from their BOL values. Tables XXVI and XXVII also give the nominal and 2σ temperature at the clad outer diameter. The temperature drop across half of the clad thickness is 23°F at the core and axial blanket interface where the clad midwall temperature reaches its maximum.

A summary of nominal and 2σ peak temperatures for the cladding, coolant, and duct is given in Table XXVIII. The 2σ peak cladding temperatures are 1122, 1145 and 1178°F at the outer diameter, midwall and inner diameter, respectively. These temperatures occur for the hottest pin at BOL. As mentioned before, at EOL, a reduction of 68°F is observed. The 2σ peak duct and coolant temperatures are 926 and 1024°F, respectively.

4.2.4 Sensitivity of Cladding Temperature to Orificing Criteria of Configuration A

The orificing strategy employed equalized the maximum 2σ cladding temperature at beginning-of-life for the core and end-of-life for the blankets in all orificing zones. This means that the blanket pins and some of the driver fuel pins are overcooled for most of their life.

The flow split between core and blanket assemblies was changed to equalize the peak clad temperature at end-of-equilibrium cycle conditions. This led to the orificing scheme shown in Fig. 56. The coolant flow rates, velocities and number of assemblies in each zone are shown in Table XXV. While this orificing strategy lowered the peak clad temperatures at EOEC for the core from 1145°F to 1134°F, some fuel assemblies had much higher temperatures at beginning-of-life conditions than obtained with the reference orificing. This is due to the fact that control rod insertion and the power shift to the blanket assemblies over an equilibrium cycle cause a large decrease in rating in driver fuel assemblies located far from the inserted rods. Consequently, determining the flow for these assemblies at EOEC conditions causes them to be undercooled at beginning-of-life. The fuel assemblies on the flats of rows thirteen and fourteen are very sensitive to control rod insertion. Orificing these assemblies for EOEC when control rods are withdrawn leads to clad midwall temperatures of more than 1200°F at BOL when the row twelve rods are inserted.

It needs to be assessed which orificing strategy improves performance. The latter strategy leads to higher clad temperatures at BOL when cladding hoop stresses are very small and lower temperatures at EOL when hoop stresses are high thus possibly improving fuel life.

4.2.5 Inlet and Outlet Temperature of Configuration B

Inlet and outlet temperatures for core, core plus internal and radial blankets, and the reactor are given in Table XXIX. The core inlet temperature is 595°F, with a core ΔT of 312°F. The ΔT across the core and blankets is 295°F. The reactor ΔT is 280°F. The cold by-pass flow is 5% of the total reactor flow. Cold by-pass flow does not include control channels since γ heating is taken into account in calculating the temperature rise through them.

4.2.6 Orificing Scheme of Configuration B

The orificing zones are shown in Fig. 57. There are three orificing zones in the core, four in the internal and radial blankets and one zone for the control and radial reflector assemblies. BOL powers with control rods inserted were used for the core and EOL powers were used for the radial and internal blankets in determining the coolant flow distribution. At these burnup stages the 2σ peak cladding midwall temperatures were made equal for the hottest fuel or blanket pin in each of the orificing zones.

The number of assemblies in each zone, the coolant flow rates and the coolant velocities are shown in Table XXXI. The flow splits are 78.1%, 21.6% and 0.3% for the core, internal and radial blankets, and control and shield assemblies. The maximum coolant velocity is 25.6 ft/sec.

The sensitivity of cladding temperatures to using EOEC powers for the core and blanket assemblies will be discussed in section 4.2.8.

4.2.7 Temperature Distributions of Configuration B

Temperature distributions for the duct and coolant on a core wide basis at three axial locations (core midplane, core and upper axial blanket interface, and top of the upper axial blanket) are shown in Figs. 58 to 69. The calculations of duct temperatures took into account interassembly heat transfer. The average duct temperatures given in Figs. 64 to 69 were averaged over the six flats of each assembly. The highest average duct temperature is 817°F, at the top of the upper axial blanket in an assembly in the thirteenth row of the core at beginning of life.

The average coolant temperature is obtained from averaging the coolant temperatures of the subchannels interior to the assembly. The maximum coolant outlet temperature is 1009°F, and occurs in the same assembly which has the high average duct temperature.

While the highest average coolant temperatures are achieved in row 13, the limiting (or hottest) fuel pin is in an assembly in the ninth row. For the assembly with the limiting fuel pin, the coolant as well as nominal and 2σ clad midwall temperatures are shown in Figs. 70 and 78 for three axial locations. The peak coolant subchannel outlet temperature is 1016°F. Applying a hot channel factor of 1.232 for the coolant AT gives a 2σ peak outlet temperature of 1114°F. The peak nominal clad midwall temperature for this assembly is 1041°F at the core and upper axial blanket interface. The

peak 2σ clad midwall temperature for the hottest pin in this assembly is 1164°F at the same axial location. These temperatures occur at beginning of life conditions. Tables XXXIII and XXXIV show how the temperatures vary from beginning-of-life to end-of-life conditions. At EOL, the peak nominal and 2σ clad temperatures are 990 and 1100°F, which is a reduction of 51 and 64°F, respectively, from BOC values. Tables XXXIII and XXXIV also give the nominal and 2σ temperature at the clad outer diameter. The temperature drop across half of the clad thickness is 24°F at the core and upper axial blanket interface where the clad temperature reaches its maximum.

A summary of nominal 2σ peak temperatures for the cladding, coolant, and duct is given in Table XXXV. The 2σ peak cladding temperatures are 1140, 1164, and 1188°F at the outer diameter, midwall and inner diameter, respectively. These temperatures occur for the hottest pin at BOL. As mentioned before, at EOL, a reduction of 64°F is observed. The 2σ peak duct and coolant temperatures are 936 and 962°F, respectively.

4.2.8 Sensitivity of Cladding Temperature of Orificing Criteria of Configuration B

The orificing strategy employed equalized the maximum 2σ cladding temperature at beginning-of-life for the core and end-of-life for the blankets in all orificing zones. This means that the blanket pins are overcooled for most of their life and the driver fuel pins are overcooled after the initial core loading.

The flow split between core and blanket assemblies was changed to equalize the peak clad temperature at end-of-equilibrium cycle conditions. This resulted in the orificing scheme show in Fig. 79. The coolant flow rates, velocities and number of assemblies in each zone are shown in Table XXXII. This orificing strategy lowered the peak clad temperatures in the core at BOL from 1164 to 1125°F. However, some fuel assemblies had much higher temperatures at beginning-of-life conditions than obtained with the reference orificing. This is due to the fact that control rod insertion and the power shift to the blanket assemblies over an equilibrium cycle cause a large decrease in rating in driver fuel assemblies located far from the inserted rod. Consequently, determining the flow for these assemblies at EOEC conditions causes them to be undercooled at beginning-of-life. Orificing for EOEC caused the fuel assemblies on the flats of rows five and six to be placed in flow zone three while the reference orificing

placed them in zone two. The resulting decrease in flow raised the peak 2 σ clad midwall temperature from 1164 to 1204°F at BOL. This emphasizes the importance of using a detailed hexagonal power distribution including control rod insertion when orificing heterogeneous cores.

4.3 MECHANICAL DESIGN ANALYSES

The structural material used for claddings and ducts is 20% CW316SS. In the following, the designs of fuel pin, fuel assembly, blanket pin, blanket assembly, control assembly, as well as duct life will be discussed for both configurations A and B.

4.3.1 Fuel Pin Design

The fuel pin design parameters are summarized in Table XXXVI. The optimization studies gave optimum fuel pin diameters of 0.26 in. and 0.24 in. The cladding thickness to diameter ratio (t/d) selected is 0.050 which gives cladding thicknesses of 0.013 in. and 0.012 in. for configurations A and B, respectively. At this stage of analysis, the fuel inside the cladding tube was characterized only by a fuel smear density of 88% T.D. The core fuel sections are 40 in. and 36 in. long. The fuel pins are wire-wrapped with a helical pitch of 12 in. and wire thicknesses of 0.051 in. and 0.048 in.

The top fission gas plenum is 40 in. long for Core A and 36 in. long for Core B. The top and bottom axial blanket sections are 15 in. and 16 in. long and have a fuel smear density of 90% T.D.

It is expected that the plenum length for both cores can be reduced after detailed fuel lifetime analyses are carried out.

4.3.2 Fuel Assembly Design

The fuel assembly design parameters are summarized in Table XXXVI.

For Core A, the fuel assembly contains 271 fuel pins with a p/d ratio of 1.197. The fuel bundle pressure drop is 71.5 psi. For this design, the peak stress in the duct corner is 33,832 psi. This stress level is well below the maximum allowable stress for 20% CW316SS. The duct wall thickness was determined such that the combined primary membrane plus bending stress intensity is 18,000 psi. Further reduction in duct wall thickness are, therefore, possible.

For Core B, the fuel assembly contains 331 fuel pin with a p/d ratio of 1.200. The fuel bundle pressure drop is 73.3 psi. The peak stress in the

duct corner is 34,222 psi. As for Core A, the duct wall thickness for Core B can be further reduced.

4.3.3 Blanket Fuel Pin

The blanket fuel pin design parameters are summarized in Table XXXVII. The pin diameters are 0.425 in. and 0.484 in. and the cladding thicknesses are 0.013 in. and 0.012 in. for Core A and Core B, respectively. The fuel smear density is 90%. The wire wrapped around the fuel pin is 0.030 in. thick and has a helical pitch of four in. At this stage of the analysis, no attempt was made to optimize the length of the fuel column to minimize fuel cycle cost. Blanket fuel pin analysis will also lead to a significant reduction in the plenum length.

4.3.4 Blanket Assembly

The assembly dimensions are identical to those of the fuel assemblies. The assembly contains 127 blanket pins with a p/d of 1.07.

4.3.5 Control Assembly

No specific design for a control assembly was developed. For the control system design it was assumed that the control assembly for this reactor has the same volume fractions of steel, sodium, and poison as for the CRBRP control assembly shown in Table XXXVIII.

4.3.6 Duct Life

Three sets of constraints govern the duct life analysis carried out for this study:

- a. maximum duct wall stress
- b. duct-duct interaction
- c. bundle-duct interaction

The maximum wall stress defined for this study was 0.55 maximum allowable stress. With an ultimate tensile strength for 20% CW316SS of 78 ksi, the calculated nominal maximum primary membrane plus bending stress intensities for driver ducts are 18,000 psi which are well below the allowable limit.

To avoid duct-duct interaction, the distance between ducts was selected such that at end-of-life conditions none of the assemblies exceeds the pitch line. In calculating the duct dilation, both the swelling and creep effects were taken into consideration. The duct wall pressure differential profiles

for the design limiting duct is shown in Table XXXIX. The maximum duct dilations for the hottest fuel assembly subject to the maximum fluence in the core occurs six in. above the core midplane. These dilations are 0.215 in. and 0.200 in. for Core A and Core B, respectively. They were chosen as the gap distances between assemblies.

A simplified seismic analysis showed that the thickness of a 4 in. wide load pad has to be approximately 0.200 in. to withstand the stresses in a seismic event. The load pad thickness was calculated according to the following formula:

$$t = 0.0013 (L_F)^{\frac{1}{2}} \left(\sum_i w_i + B \right)^{\frac{1}{2}}$$

with

t = load pad thickness for a four-in. wide pad (in.)

L_F = duct inside flat-to-flat distance (in.)

$\sum_i w_i$ = sum of the weights of heavy metal of a radial row of assemblies from the core center to the shield section

B = correction term to account for bridging and even load distribution = 400

The actual ACLP thicknesses for Core A and Core B are 0.328 in. and 0.317 in. which are well above the required thickness of 0.200 in. Using the correlations for bundle-duct interaction developed by GE and modified by CE for the Proliferation Resistant Large Core Design Study (PRLCDS) showed bundle-duct interferences of less than one spacer wire which is well below the allowable interference of 2-3 wires.

4.4 FUEL CYCLE COST

Fuel cycle cost were determined for Core A and Core B. The economic assumptions for this analysis are shown in Appendix A. The fabrication cost were determined using the N-factor formula HEDL developed for the Proliferation Resistant Large Core Design Study. The results of the fabrication cost calculation are shown in Table XL. On an assembly basis, the fabrication cost are about the same for Core A and Core B. The total fuel cycle cost shown in Tables XLI and XLII show a 0.8 mill/kWh (or 9%) advantage of Core A over Core B. Since neither of those cores is cost-optimized this difference is insignificant. By cutting down the length of the radial blanket pins the

reprocessing charges can be reduced. This together with a slight increase in fuel residence time can bring the fuel cycle cost well below 8 mill/kWh.

Nomenclature:

Zone 1-3 Core Zones

Zone 4-6 Axial Blanket Zones

Zone 7 Internal Blanket Zones

Zone 8 Radial Blanket Zones

5.0 DESIGN EVALUATION

The basis for this evaluation is established in Appendices B, C, and D, which outline the steps of the elimination/optimization process. Thus, the following conclusions can be drawn regarding the choices between center core vs. center blanket configurations, loosely-coupled vs. tightly-coupled cores, and continuous ring vs. broken ring configurations.

5.1 CENTER CORE VS. CENTER BLANKET CONFIGURATION

Both types of configurations can lead to feasible designs. For center core configurations, the relation between core region size and power plant output is of special significance. The center core region has to be small to permit a low overall sodium void reactivity. Typically it has not more than 4-5 rows of fuel, i.e. 37 to 61 fuel assemblies. The power output for this region is only approximately 300-450 MW which represents 10-15% of the total reactor power output of a 3000 MW plant. Therefore, for such a power level the reactor has to have at least three core regions. In case of a tightly coupled system, at least four core regions seem to be necessary to achieve a low sodium void reactivity core.

Center blanket configuration, on the other hand, can be constructed with as little as two core zones in a loosely coupled configuration and three in a tightly coupled configuration.

The different requirements on the number of core regions affects directly the number of different enrichments needed to flatten the power. Even though it might be possible to arrange the internal blanket assemblies such that they flatten the power sufficiently even for only one or perhaps two different core fuel enrichments, the uncertainties in the prediction of power shapes in heterogeneous cores are currently too great to rely solely on calculation for such arrangements. Therefore, center blanket configuration allows for core designs with fewer discriminator zones than center core configurations.

Because of the small size of the center core region required to yield low sodium void reactivities, a greater sensitivity especially in power peaking is observed in the center core configuration compared to center blanket configurations. Changing the enrichment in the inner-most core zone by 0.5%

leads to substantially greater changes in peak power density in the inner-most core zone in center core than in center blanket configuration. Because any enrichment specification will have certain tolerances a center core configuration would require more corrective action by the control system to flatten the power than a center blanket configuration.

Center core configurations showed significantly higher assembly power swings over a burnup cycle than center blanket configurations. The result of these greater changes in assembly power is a higher peak clad temperature because the enhanced overcooling in one part of the core has to be compensated by higher coolant temperature rises in other parts of the core.

Center core configurations had in some instances slightly smaller specific inventories than center blanket configurations but whenever this occurred the differences were small. In regard to doubling time, sodium void reactivity and control requirements, no advantage could be identified for either configuration.

Therefore, center blanket configurations were chosen over center core configurations since the latter perform at best as well as the former but in addition have serious flaws in regard to power shape sensitivity.

5.2 LOOSELY VS. TIGHTLY COUPLED CORES

The neutronic coupling concept was introduced to distinguish between different core configurations. "Loosely" and "tightly coupled" cores were configurations which differed in the degree of neutronic coupling. Both terms are used to qualitatively describe different core configurations. The degree of neutronic coupling depends on the thicknesses of the internal blanket regions separating the core regions from each other. For a reactor with two core regions, Avery's coupling coefficients can be determined easily and related to power peaking. When going to more than two core zones and a broken ring rather than a continuous ring configuration is used, it is very difficult if not impossible to determine meaningful coupling coefficients and relate them to power peaking. Therefore, no efforts were made to determine coupling coefficients for the various cores which have been analyzed. The terms "loosely" and "tightly coupled" cores were applied to cores with more than one or less than one row of blanket assemblies separating core zones, respectively.

Loosely coupled cores achieved low sodium void reactivities at core heights of 40 in. or more. However, they showed high specific inventories, large doubling times and very strong sensitivities in power peaking.

Tightly coupled cores on the other hand required core heights of less than 40 in. to achieve sodium void reactivities of less than \$2.50. They generally showed lower specific inventories, lower doubling times and lower sensitivities in power peaking, than loosely coupled cores. For optimized cores, the reactor diameters for loosely and tightly coupled cores were quite similar since the lower core height required smaller fuel pins for optimum conditions thus offsetting the otherwise unavoidable increase in reactor size coming from the increase in the number of fuel pins necessary to maintain the reactor power level.

While the tightly coupled cores showed generally a better performance than the loosely coupled cores, neither the strictly tightly coupled cores nor the strictly loosely coupled cores were considered optimal. However, the optimum core configuration is closer to the tightly coupled system rather than a loosely coupled system. The disadvantages of the strictly tightly coupled cores were the low core height which either led to an increase in the number of fuel assemblies which had to be fabricated or an increase in the number of fuel pins per assembly which leads to increased fuel bundle-duct interaction. The lower core height and the resulting smaller fuel pin size led to higher fuel burnups. The major disadvantage of the loosely coupled core is the strong sensitivities of the power shape to either uncertainties in enrichment or fuel burnup. Furthermore, the transient response of the core is very dependent on the specific location of the reactivity perturbation.

The core configuration finally selected is a "hybrid" in that it is more tightly coupled in the center of the reactor where the core regions are small in size and more loosely coupled in the outer core regions. With this arrangement, the advantages of both the loosely and tightly coupled cores were combined at only minor penalties in sodium void reactivity and doubling time.

5.3 CONTINUOUS RING VS. BROKEN RING CONFIGURATIONS

The broken-ring arrangements showed definitive improvements over continuous ring configurations with regard to power peaking, power swing, and control rod worth. The broken ring arrangements create flux peaks where control rods can be located. These flux peaks enhance the worth of control rods.

But by placing the control rods in the outermost core region additional benefits can be derived. For all core configurations, the outermost core region always has a substantial power reduction over an operating cycle if the burnup analysis is carried out with the control rods in their fully withdrawn position. By creating a flux peak in the outermost core region the insertion of a control rod would level out the fluxes at beginning-of-cycle condition. As burnup progresses the control rods are withdrawn thus counteracting the otherwise decreasing flux level.

In analyzing both configurations, it is important to realize the limitations of the calculational methods employed. r-z models are not suitable for optimization of core configurations since the discrete control rod location have to be modelled as a control ring. This model will not give any valid information at all as to the required enrichment split, power peaking and control rod worth. To obtain these information, hexagonal geometry models have to be analyzed.

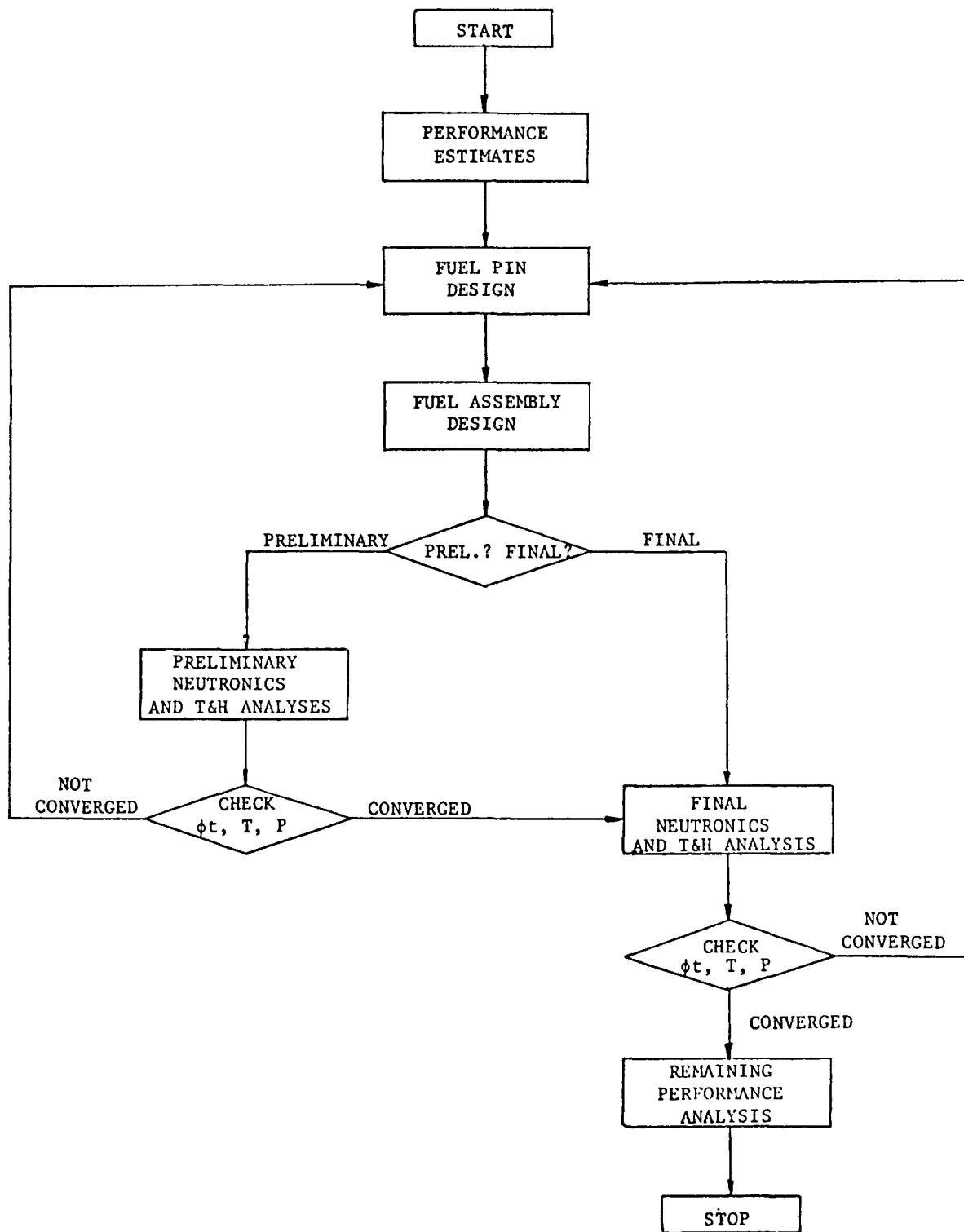
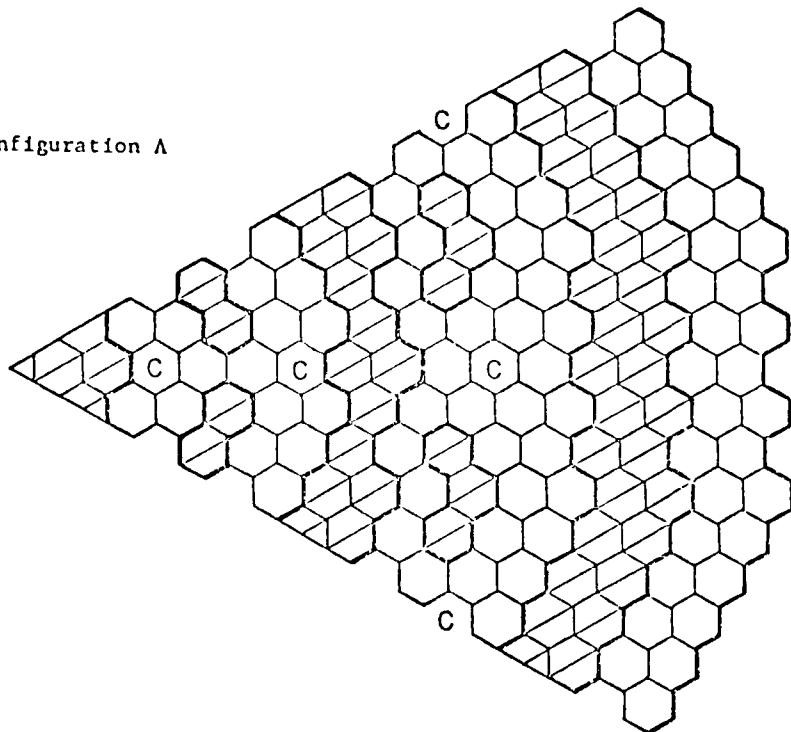



Fig. 1. Design Analysis Flow Sheet

Configuration A

Configuration B

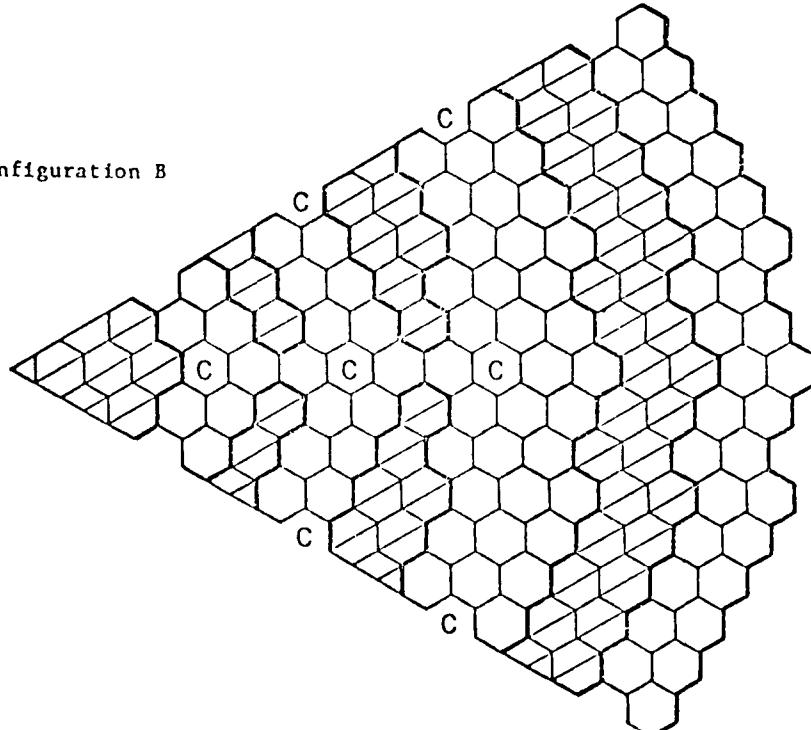


Fig. 2. Preliminary Optimum Configurations

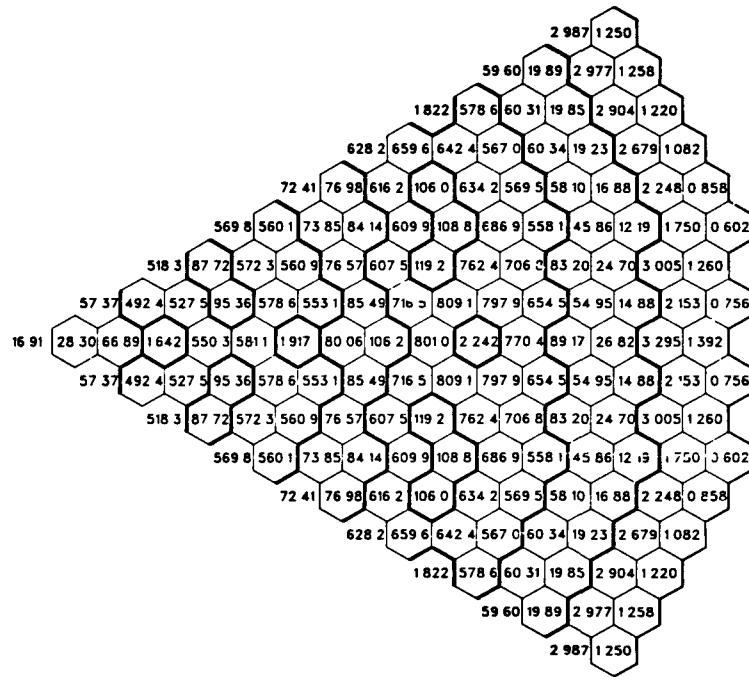


Fig. 3. Configuration A, Peak Power Density at BOL,
No Rods Inserted

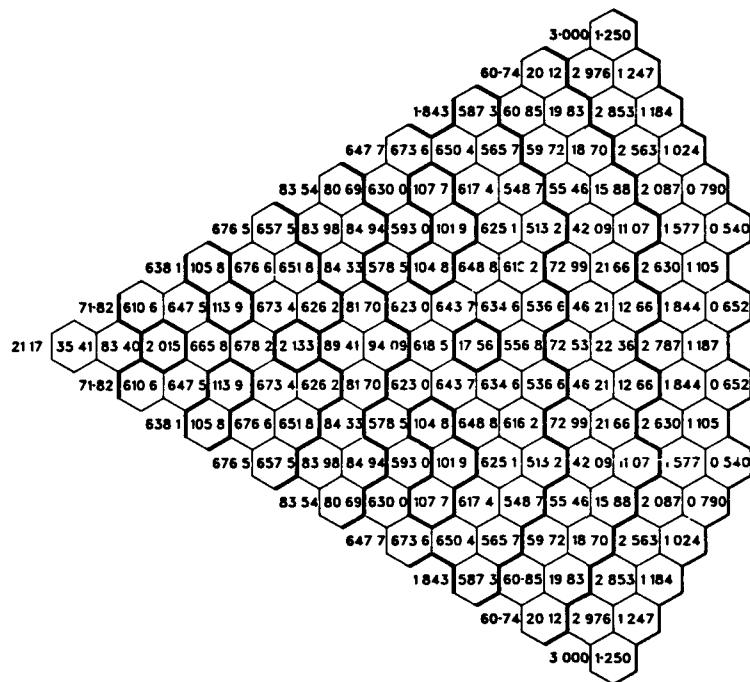


Fig. 4. Configuration A, Peak Power Density at BOL,
Row 11 Rods 15% Inserted

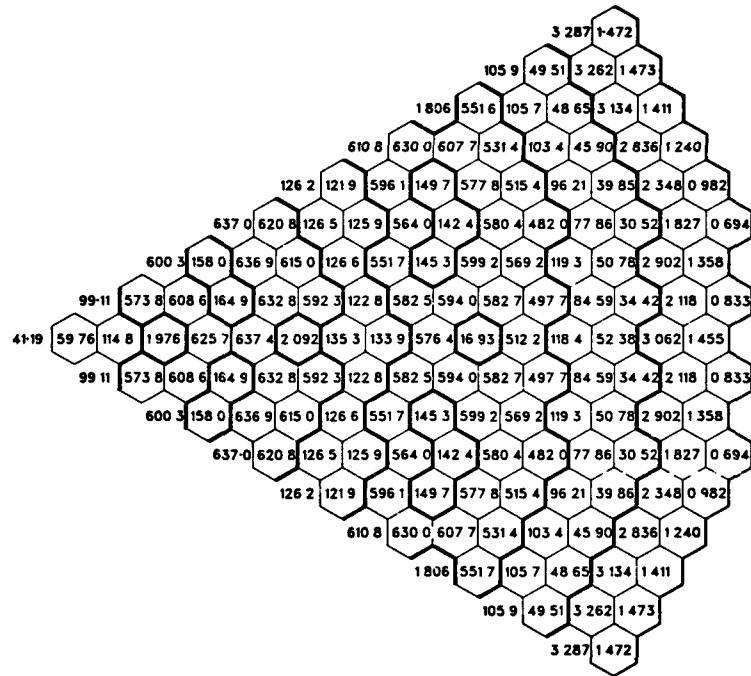


Fig. 5. Configuration A, Peak Power Density at BOEC Conditions

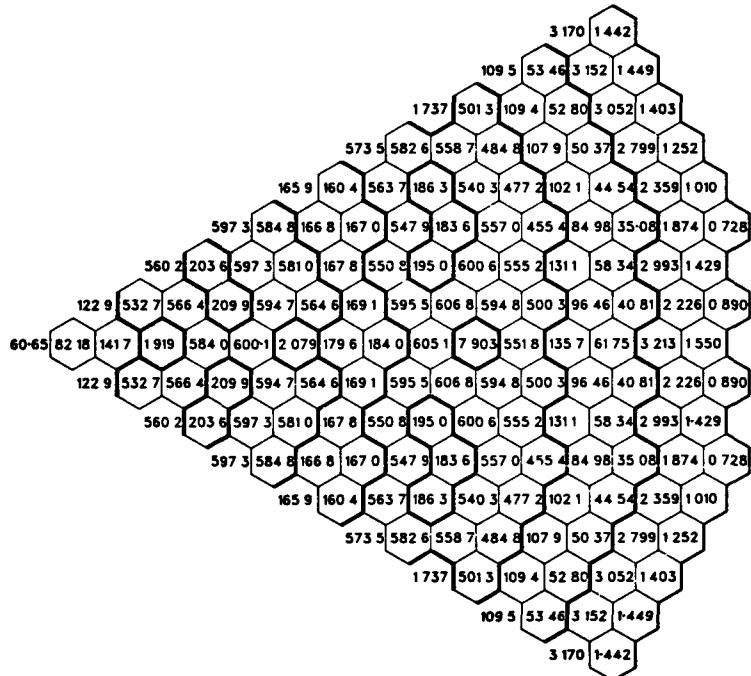


Fig. 6. Configuration A, Peak Power Density at MOEC Conditions

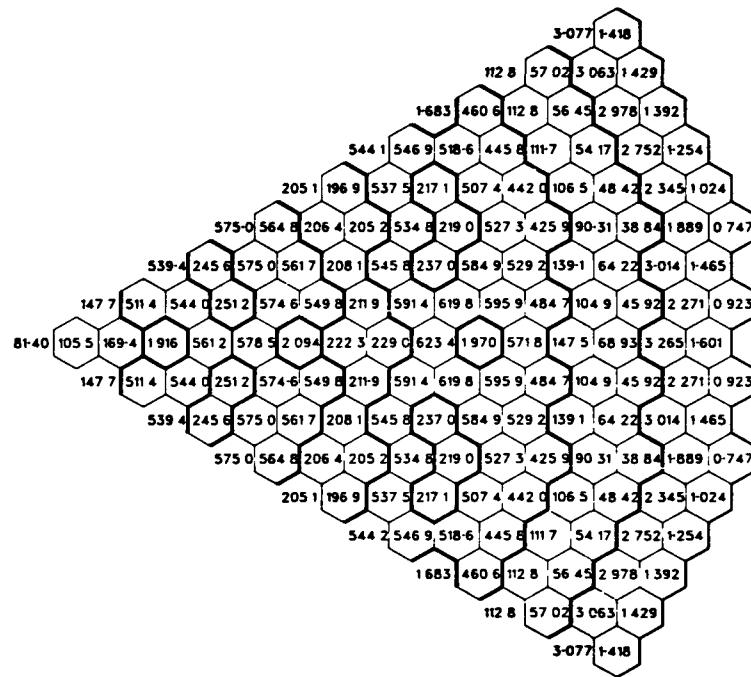


Fig. 7. Configuration A, Peak Power Density at EOEC Conditions

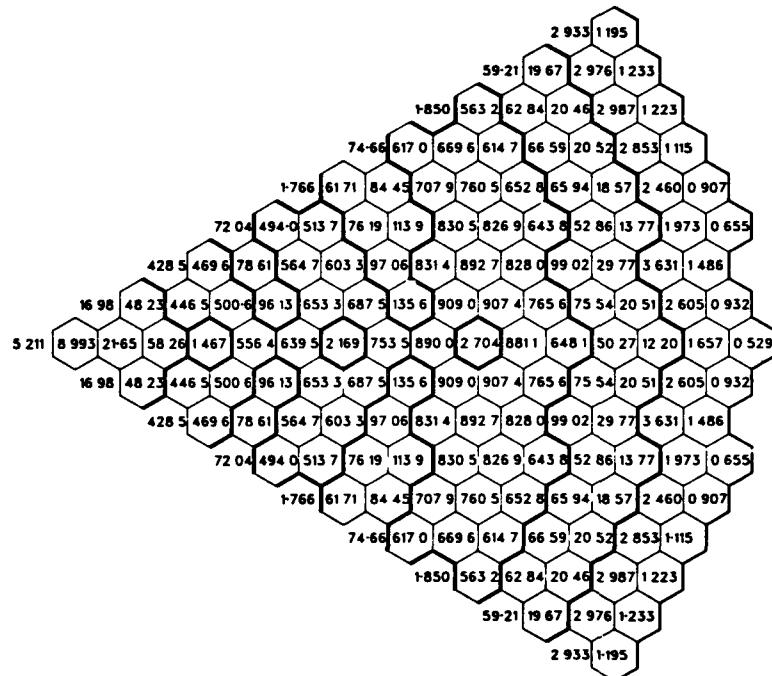


Fig. 8. Configuration B, Peak Power Density at BOL, No Rods Inserted

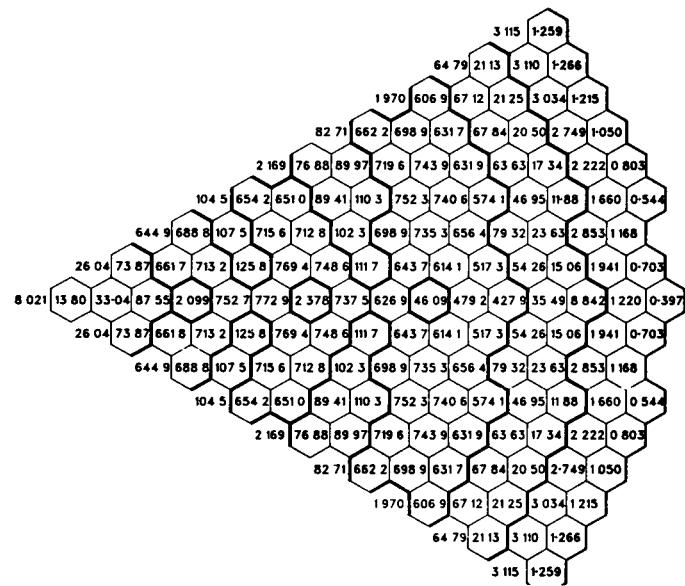


Fig. 9. Configuration B, Peak Power Density at BOL,
Row 11 Rods Inserted

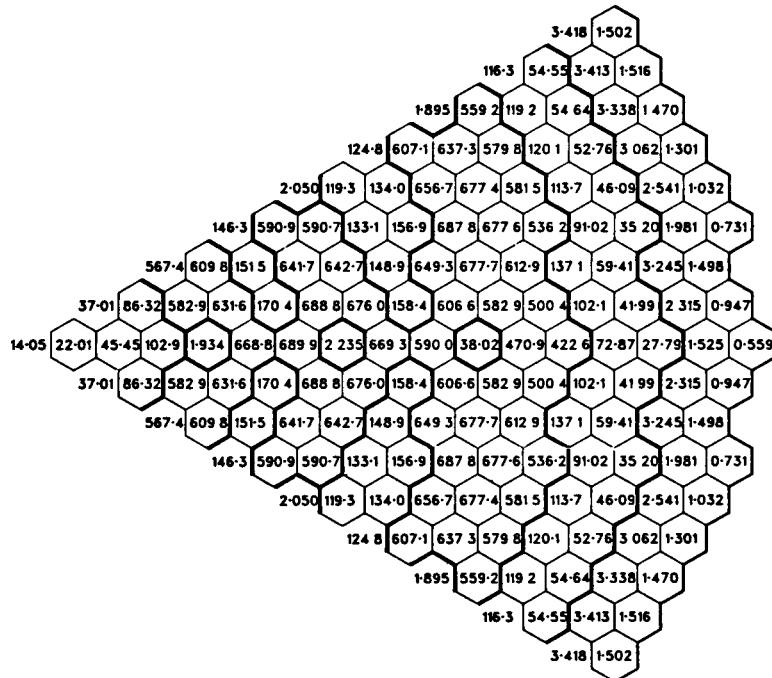


Fig. 10. Configuration B, Peak Power
Density at BOEC

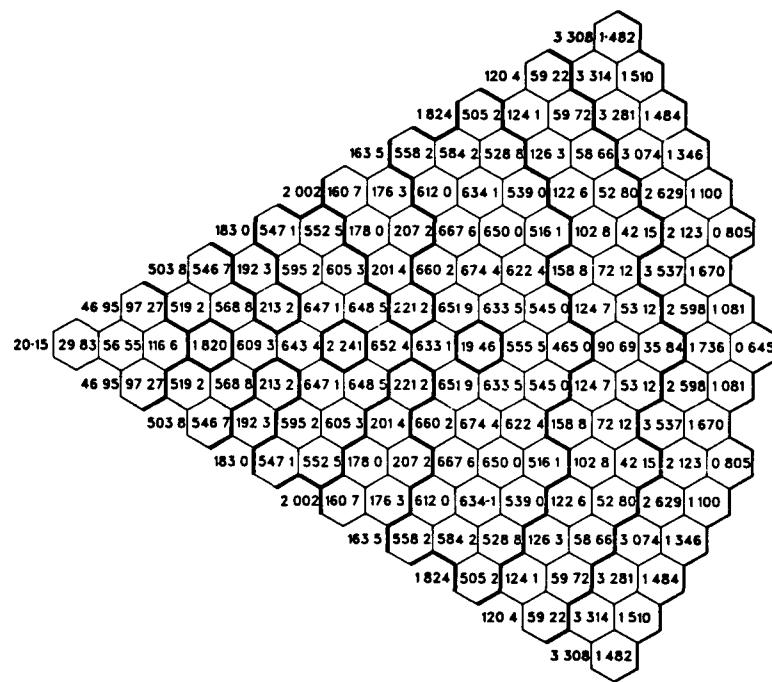


Fig. 11. Configuration B, Peak Power Density at MOEC

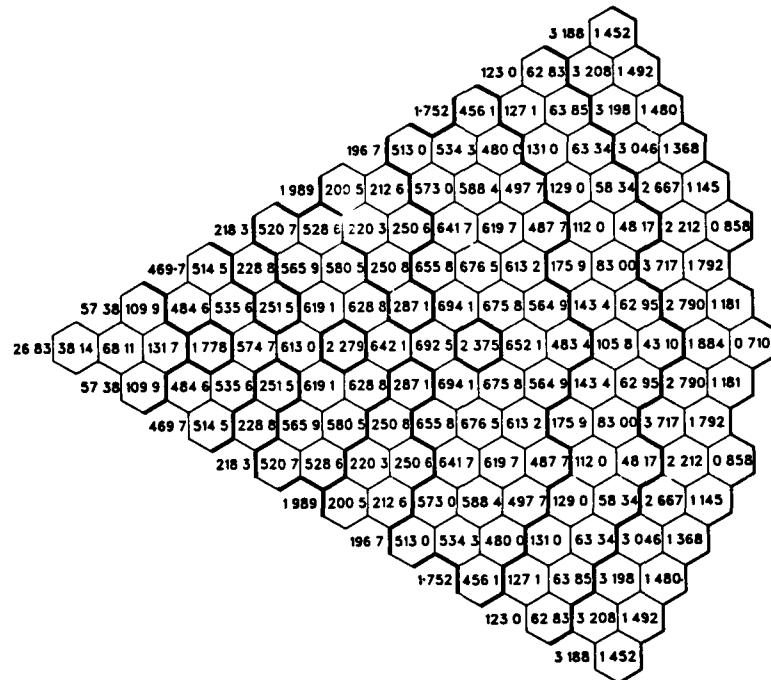


Fig. 12. Configuration B, Peak Power Density at EOEC

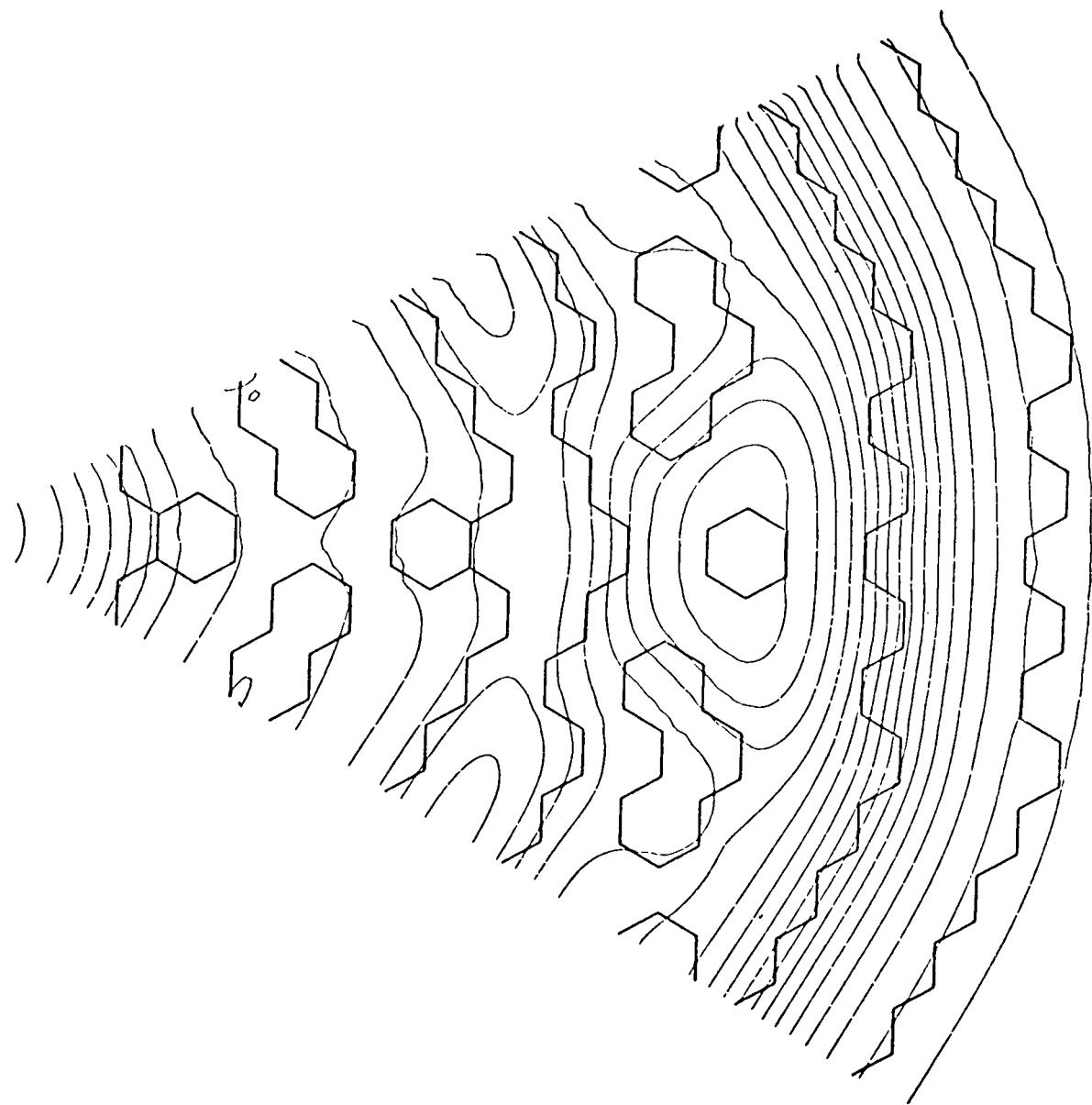


Fig. 13. Configuration A, Total Flux Distribution at BOL,
No Control Inserted

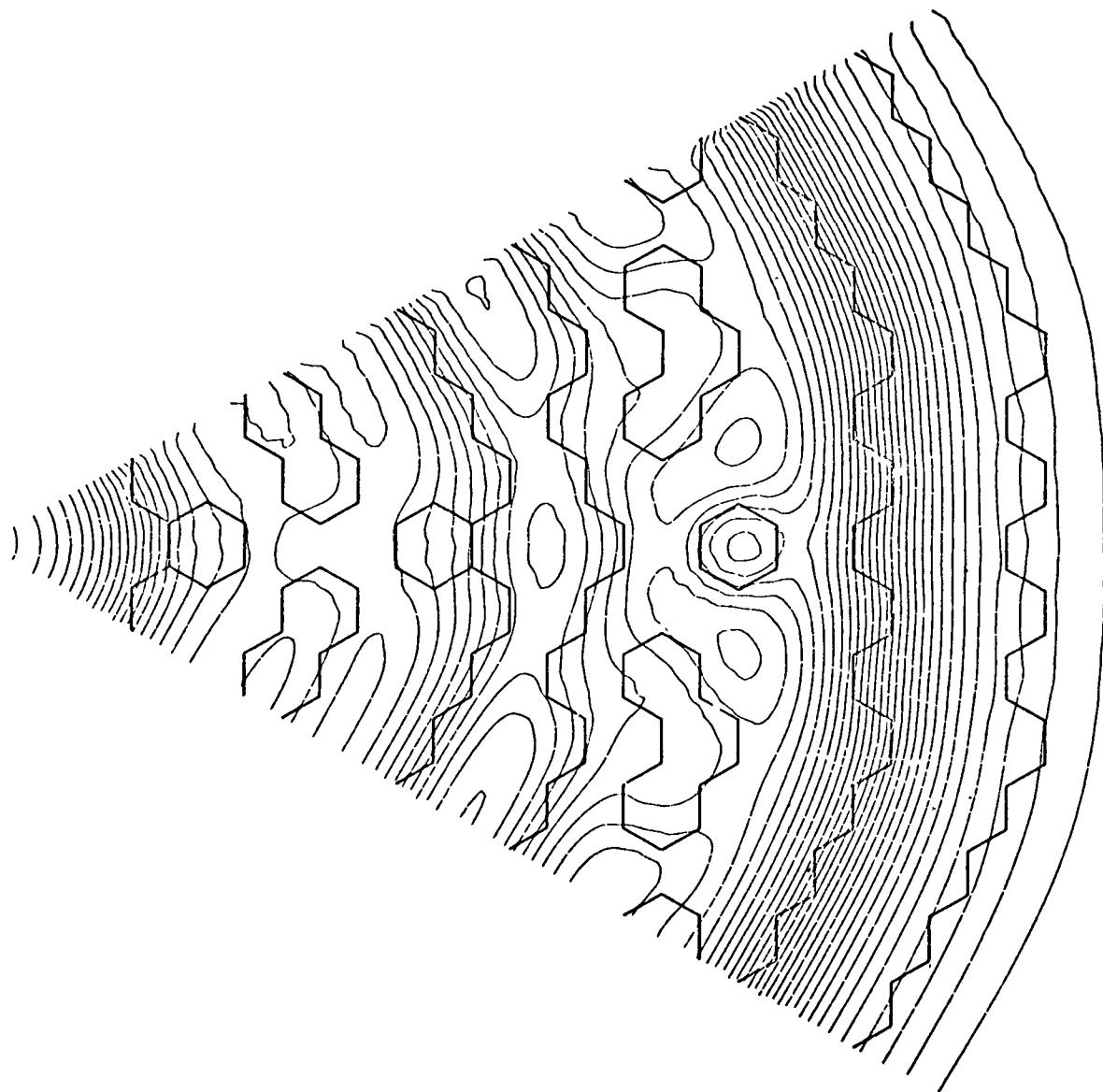
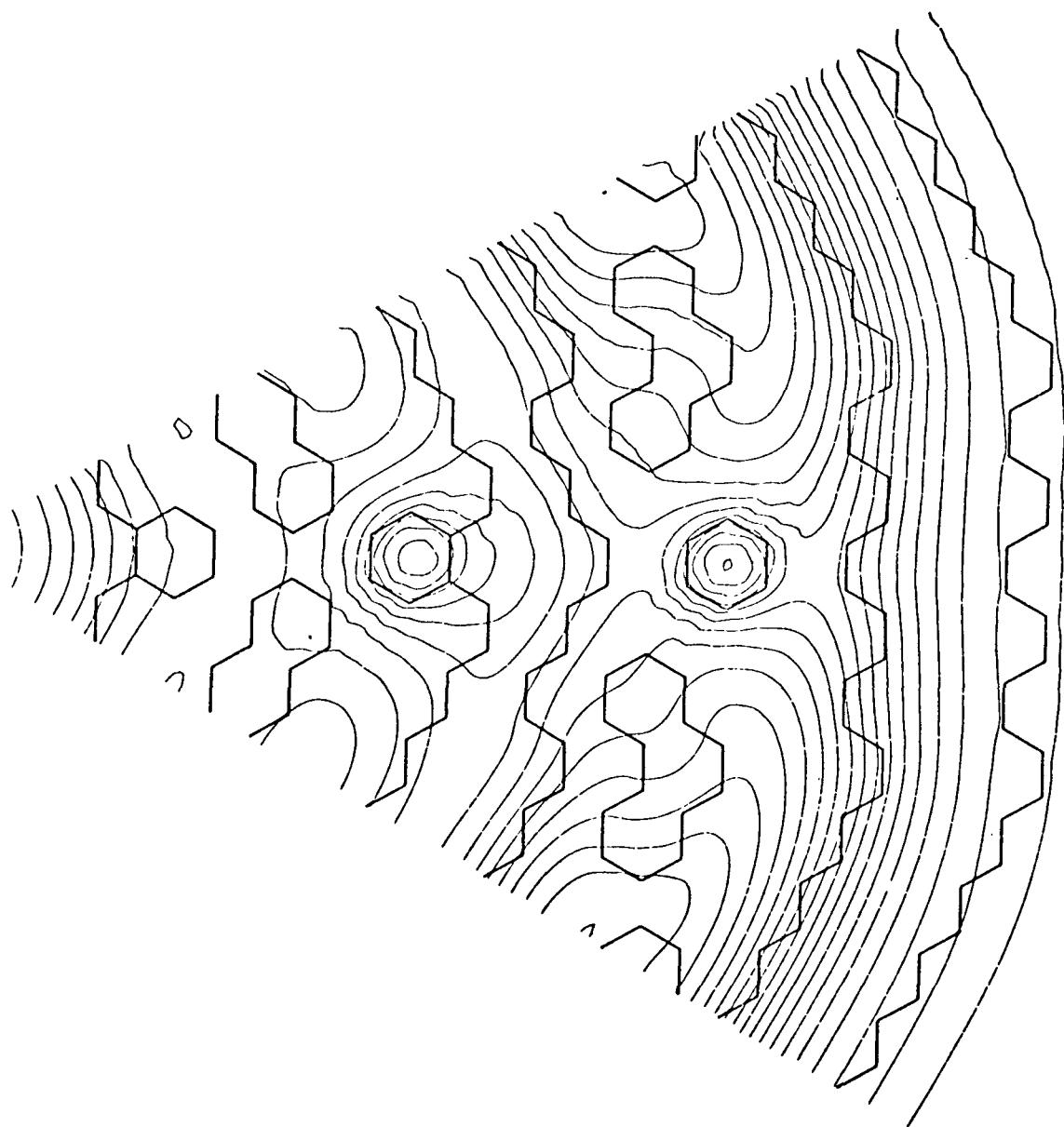



Fig. 14. Configuration A, Total Flux Distribution BOL,
Row 11 Control Rod Inserted

**Fig. 15. Configuration A, Total Flux Distribution at BOL,
Primary Control Rods Inserted**

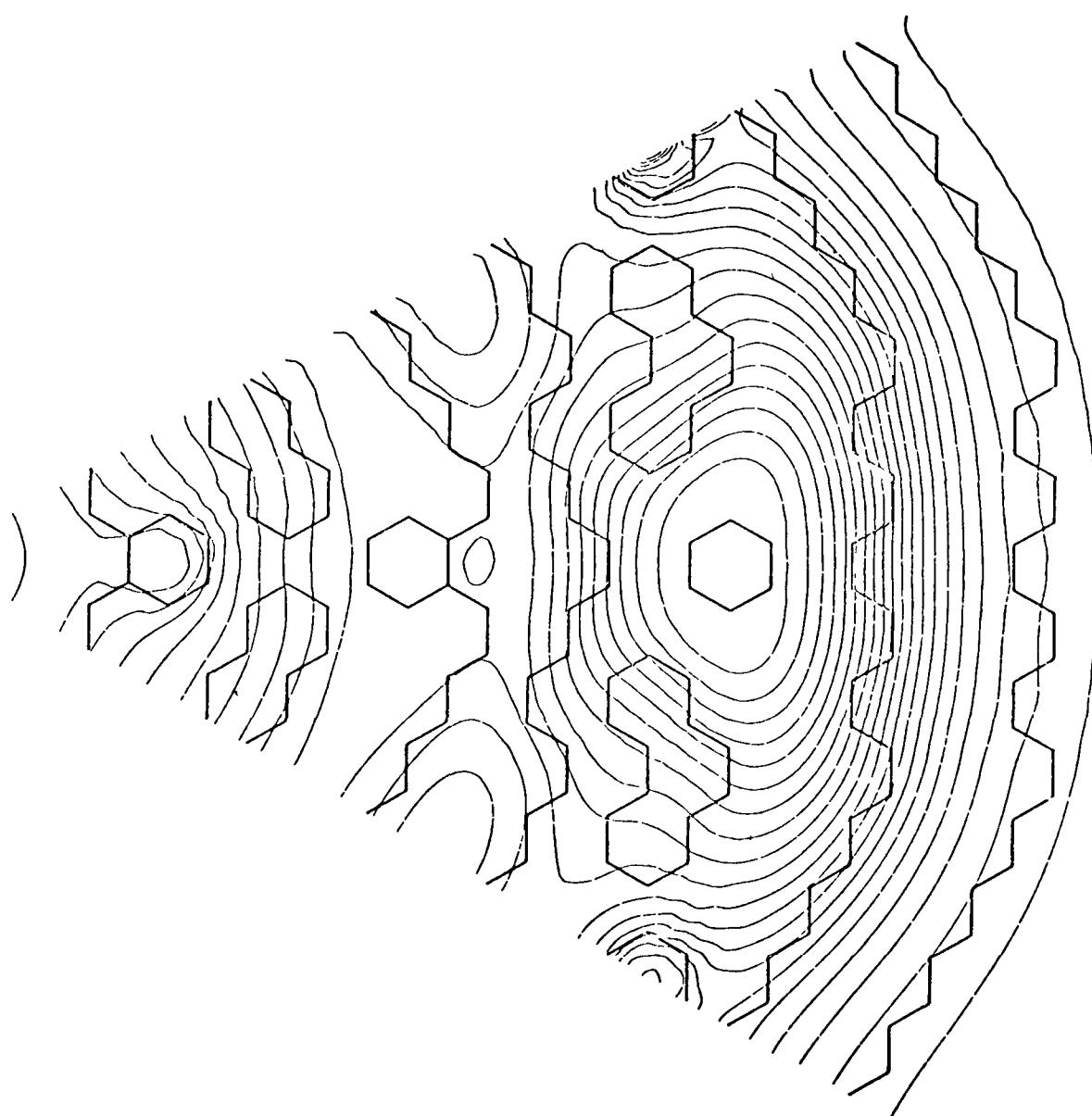
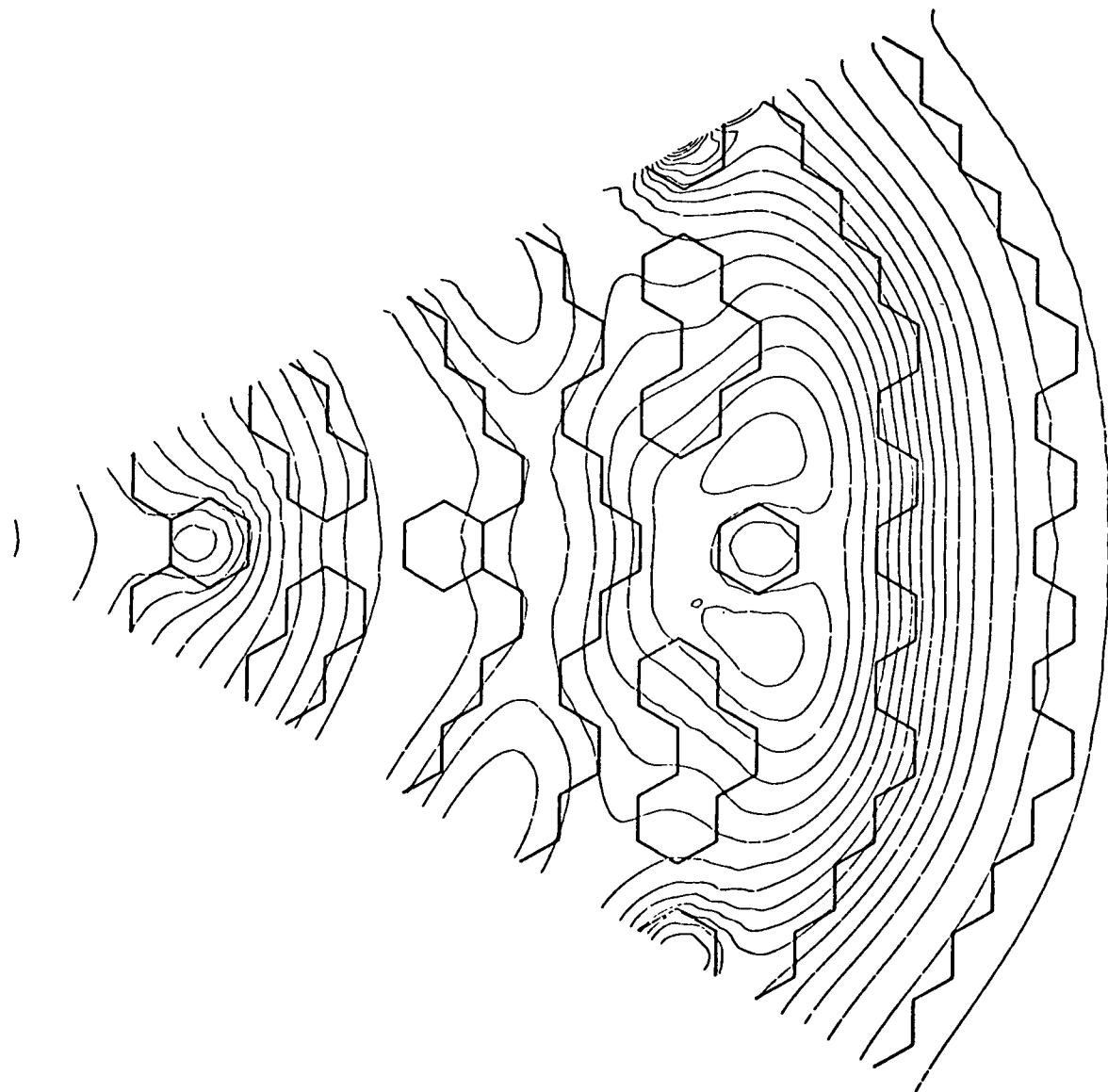
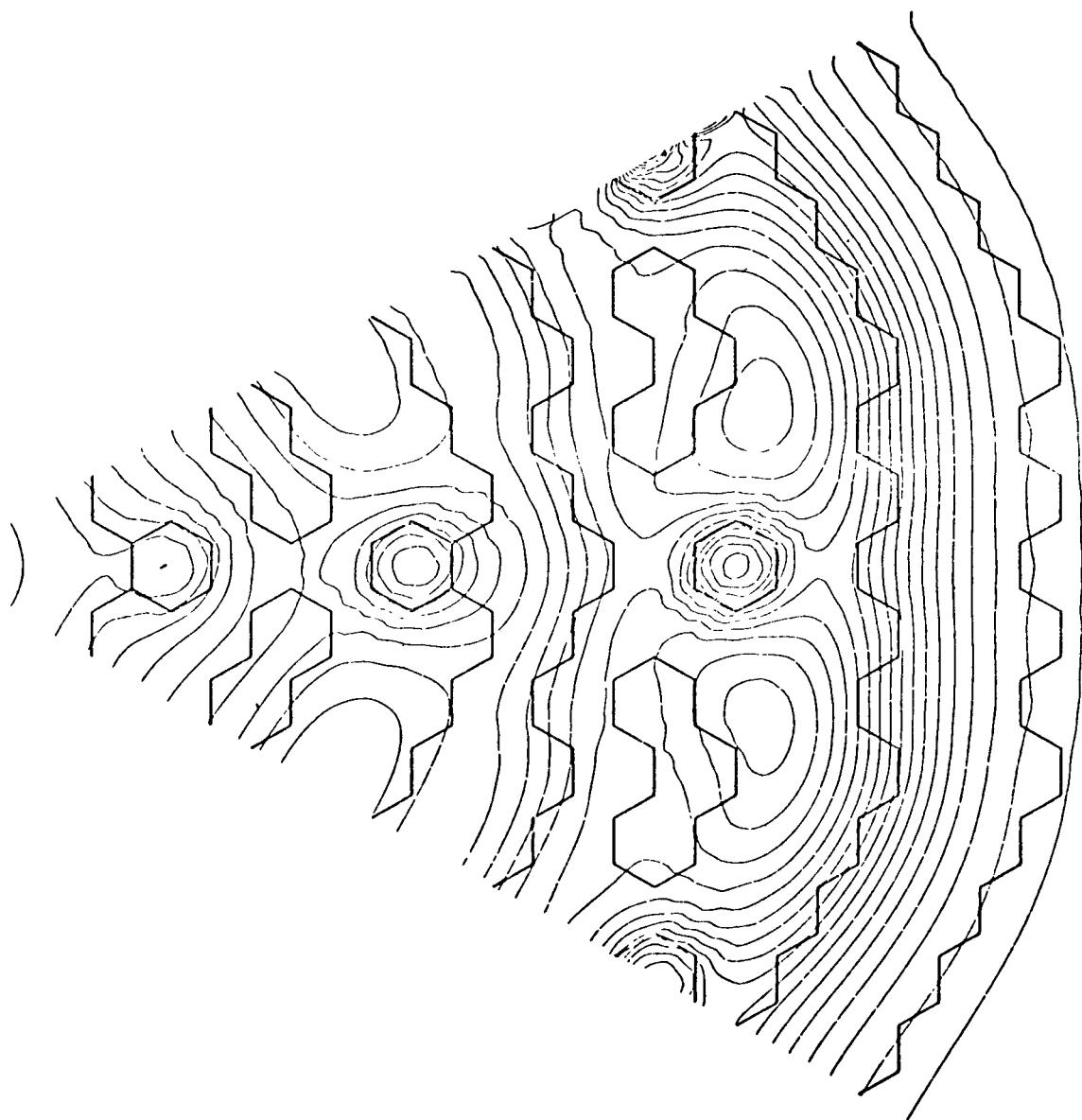




Fig. 16. Configuration A, Total Flux Distribution at BOL,
Secondary Control Rods Inserted

**Fig. 17. Configuration A, Total Flux Distribution at BOL,
Row 11 and Secondary Control Rods Inserted**

**Fig. 18. Configuration A, Total Flux Distribution at BOL,
All Rods Inserted**

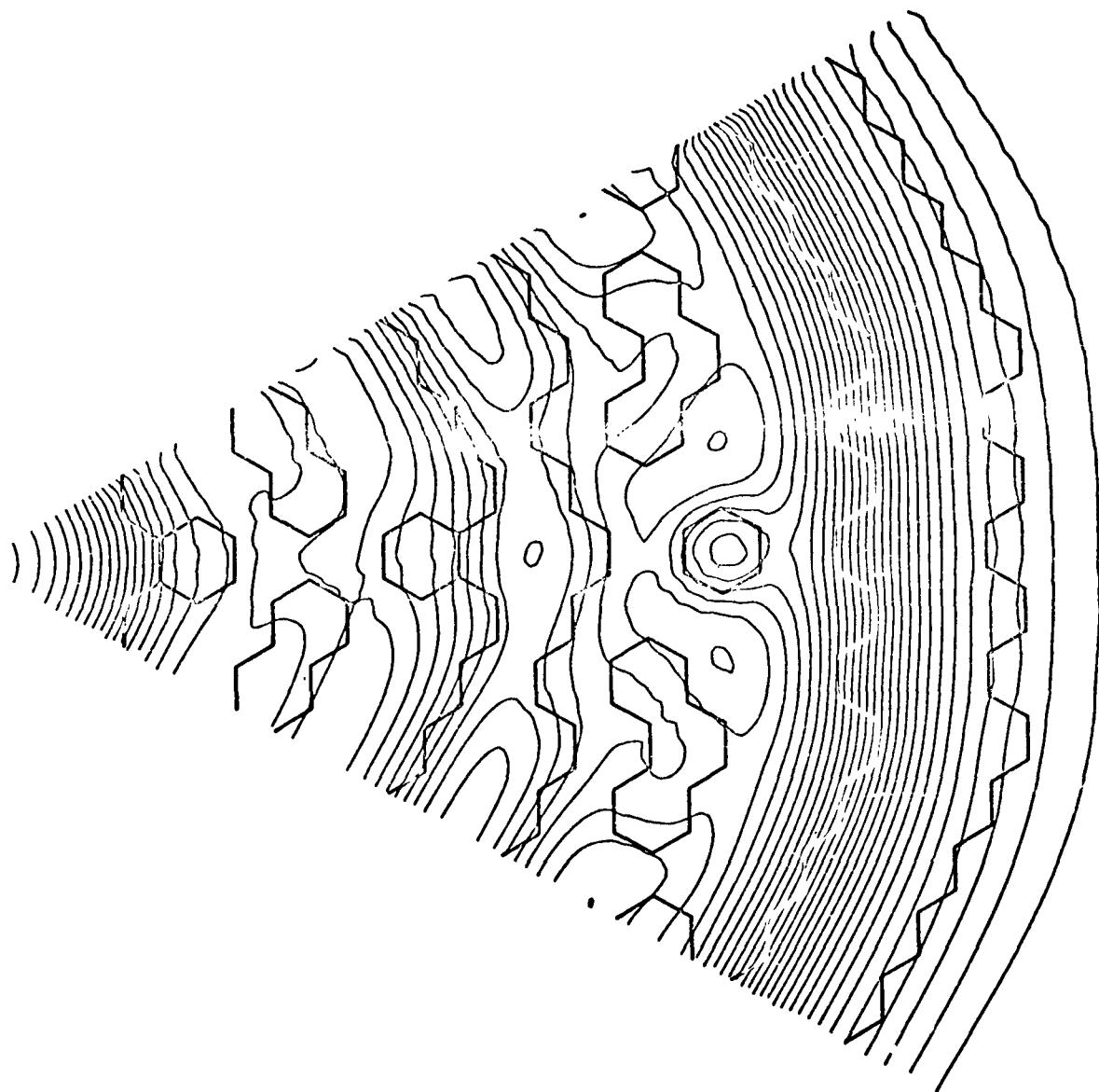


Fig. 19. Configuration A, Total Flux Distribution at BOEC

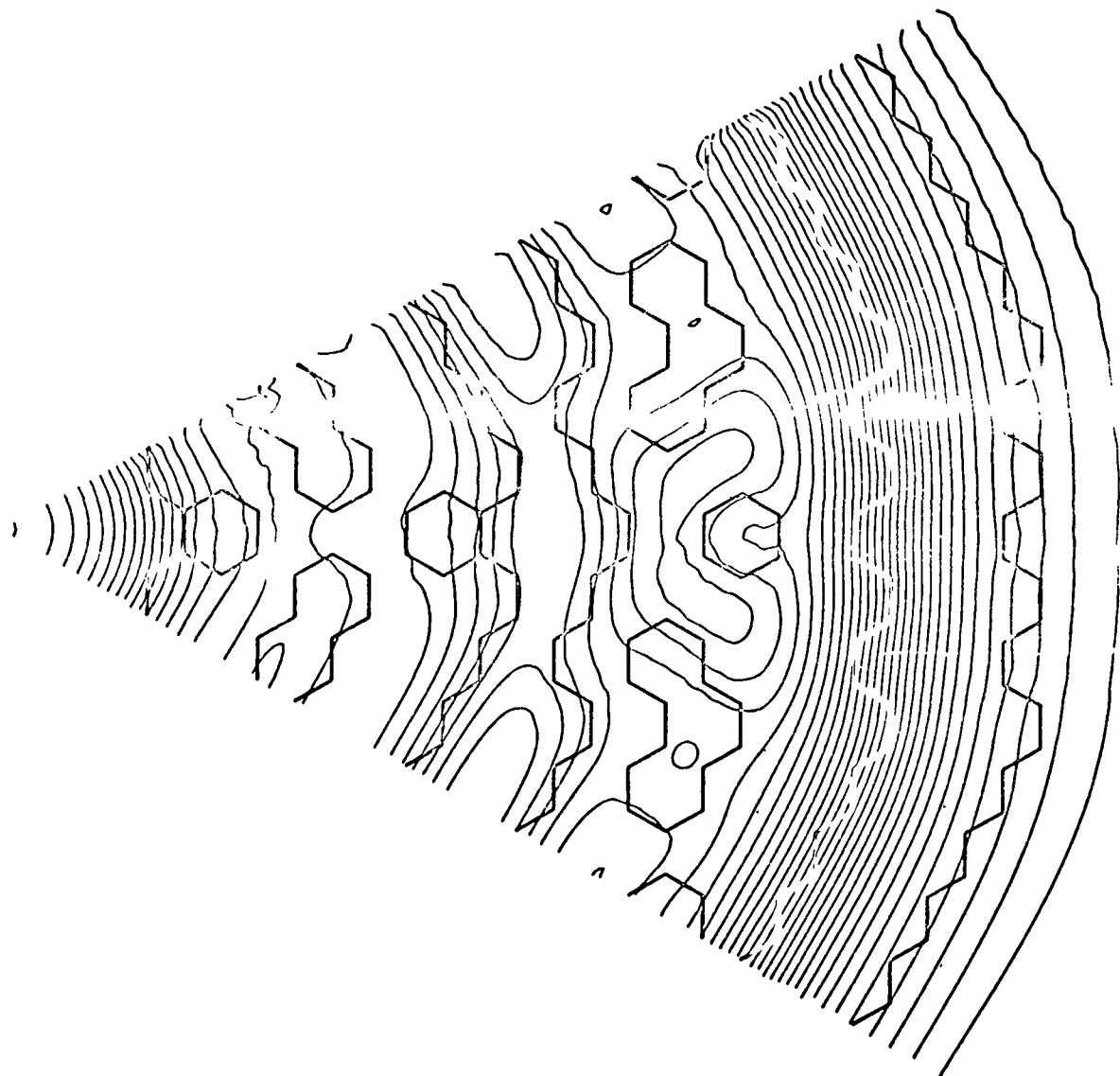


Fig. 20. Configuration A, Total Flux Distribution at MOEC

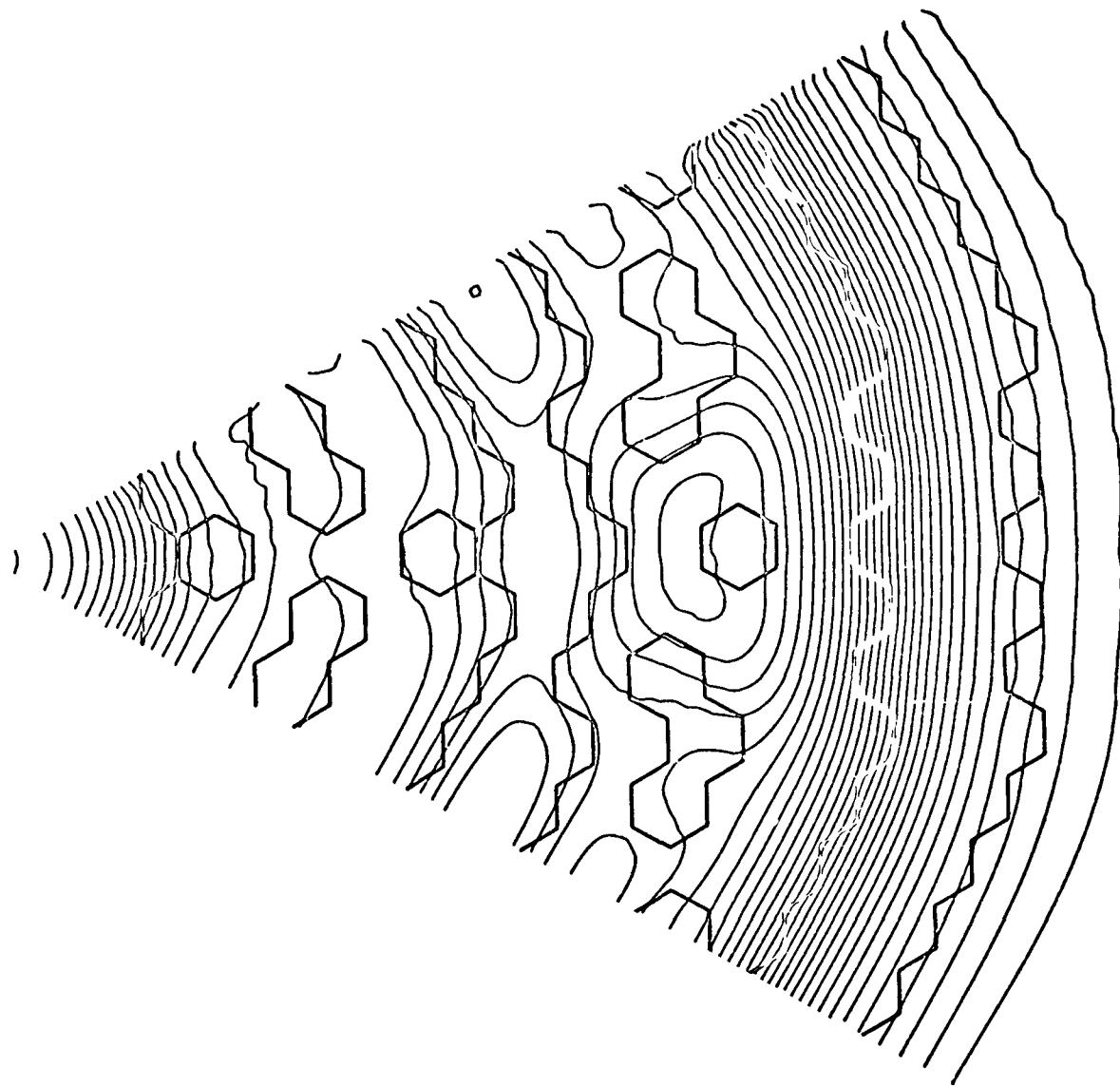


Fig. 21. Configuration A, Total Flux Distribution at EOEC

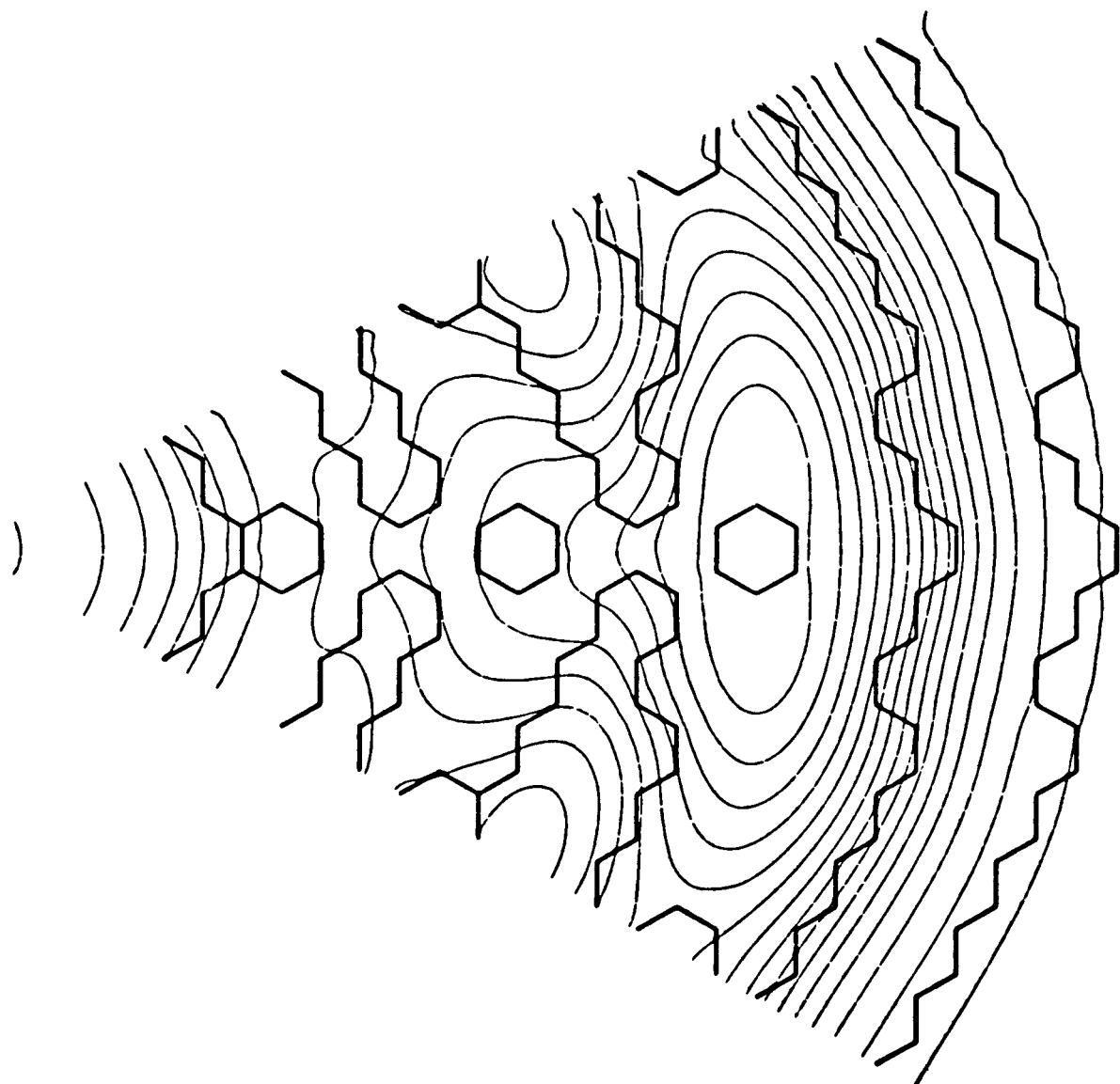


Fig. 22. Configuration B, Total Flux Distribution BOL,
No Control Rods Inserted

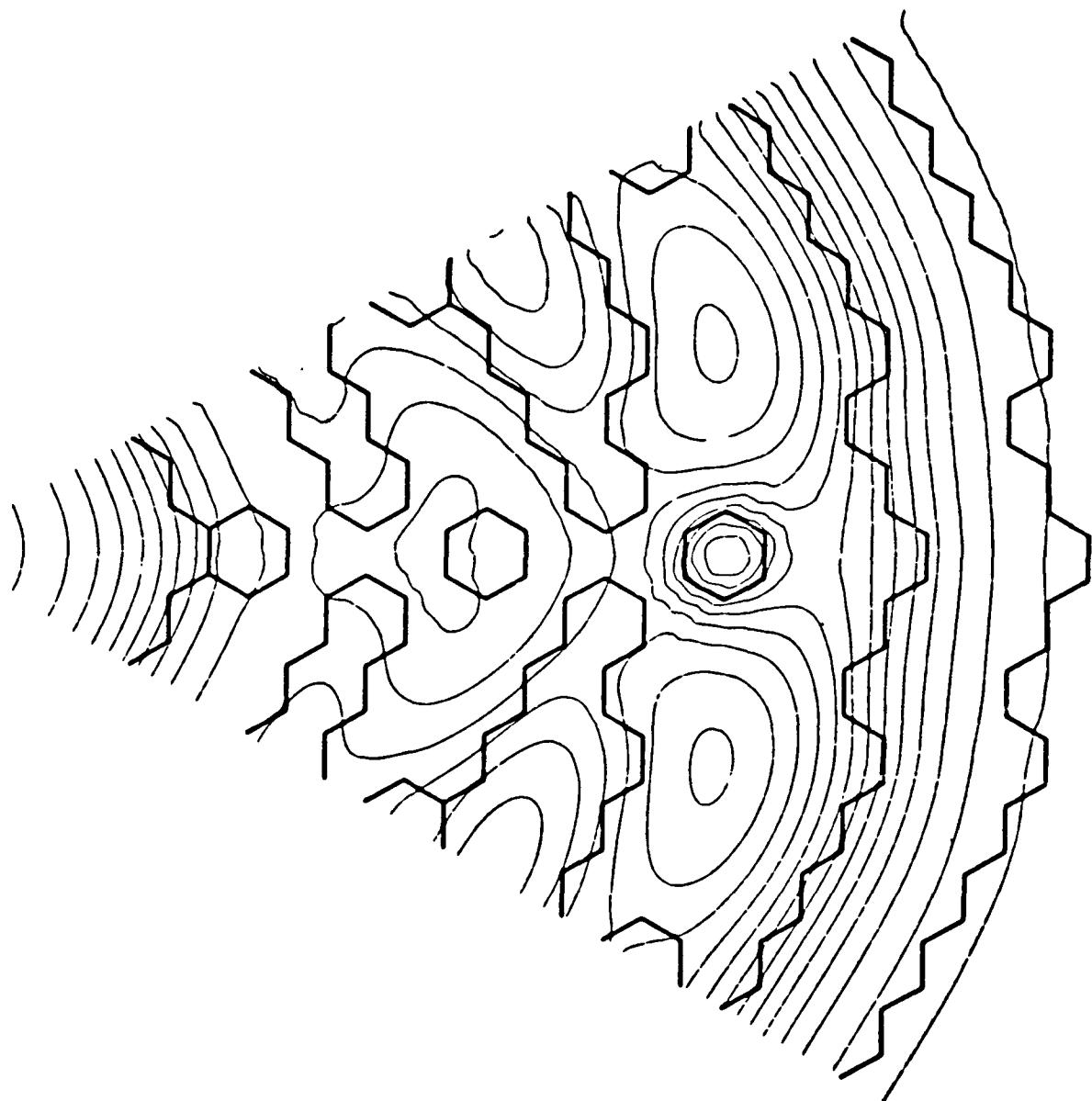


Fig. 23. Configuration B, Total Flux Distribution at BOL,
Row 11 Control Rods Inserted

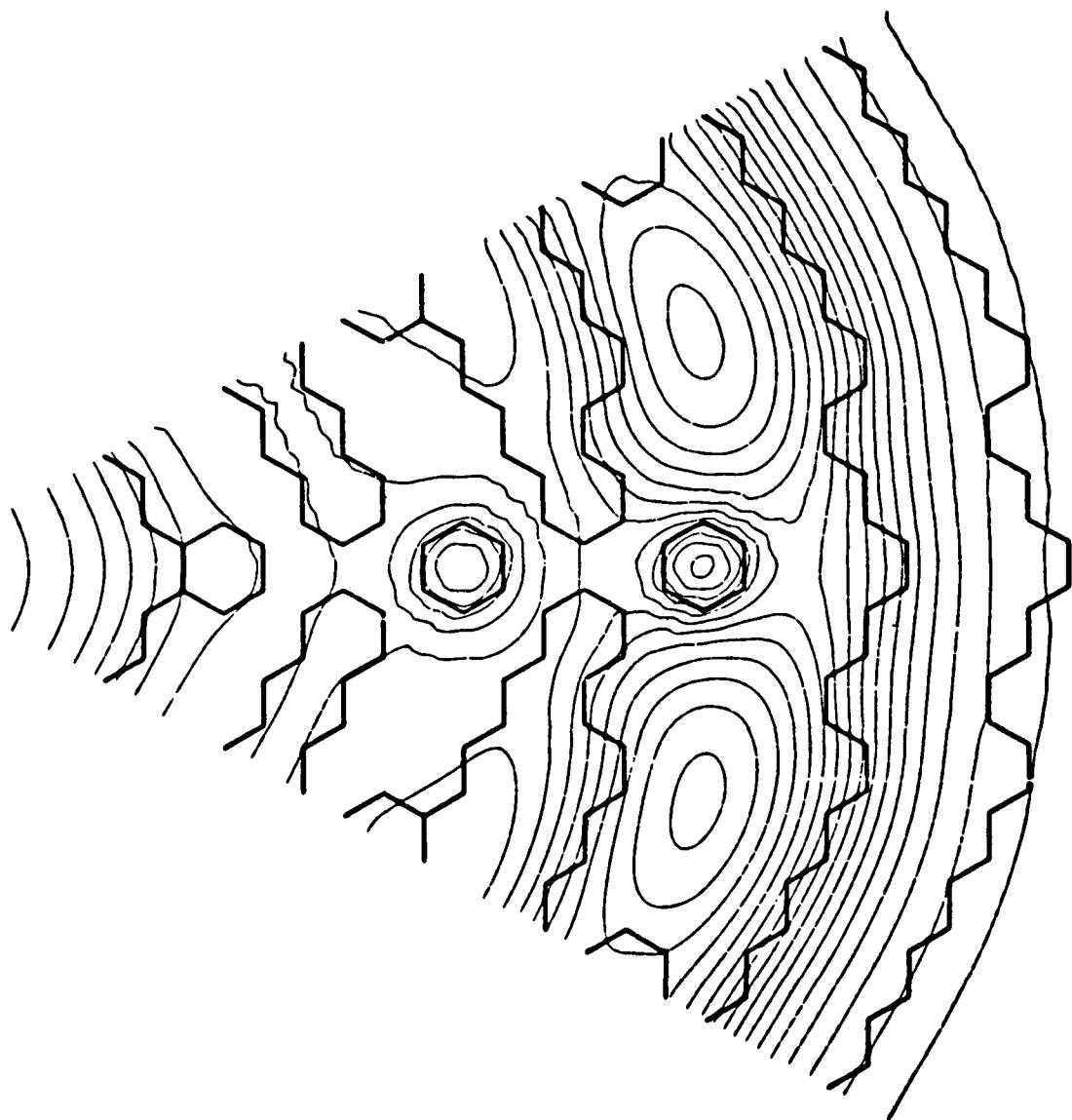
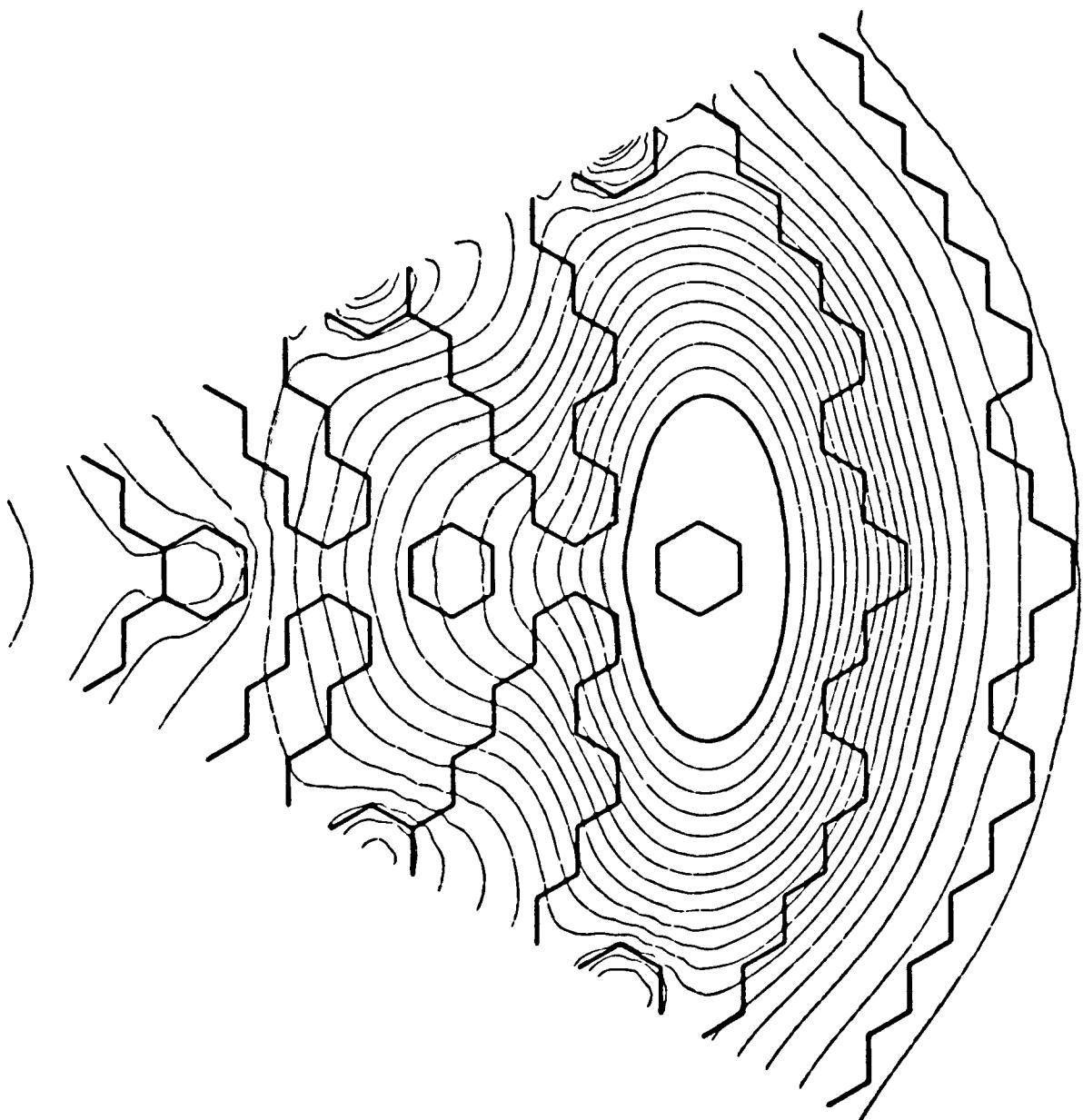



Fig. 24. Configuration B, Total Flux Distribution at BOL,
Primary Control Rods Inserted

**Fig. 25. Configuration B, Total Flux Distribution at BOL,
Secondary Control Rods Inserted**

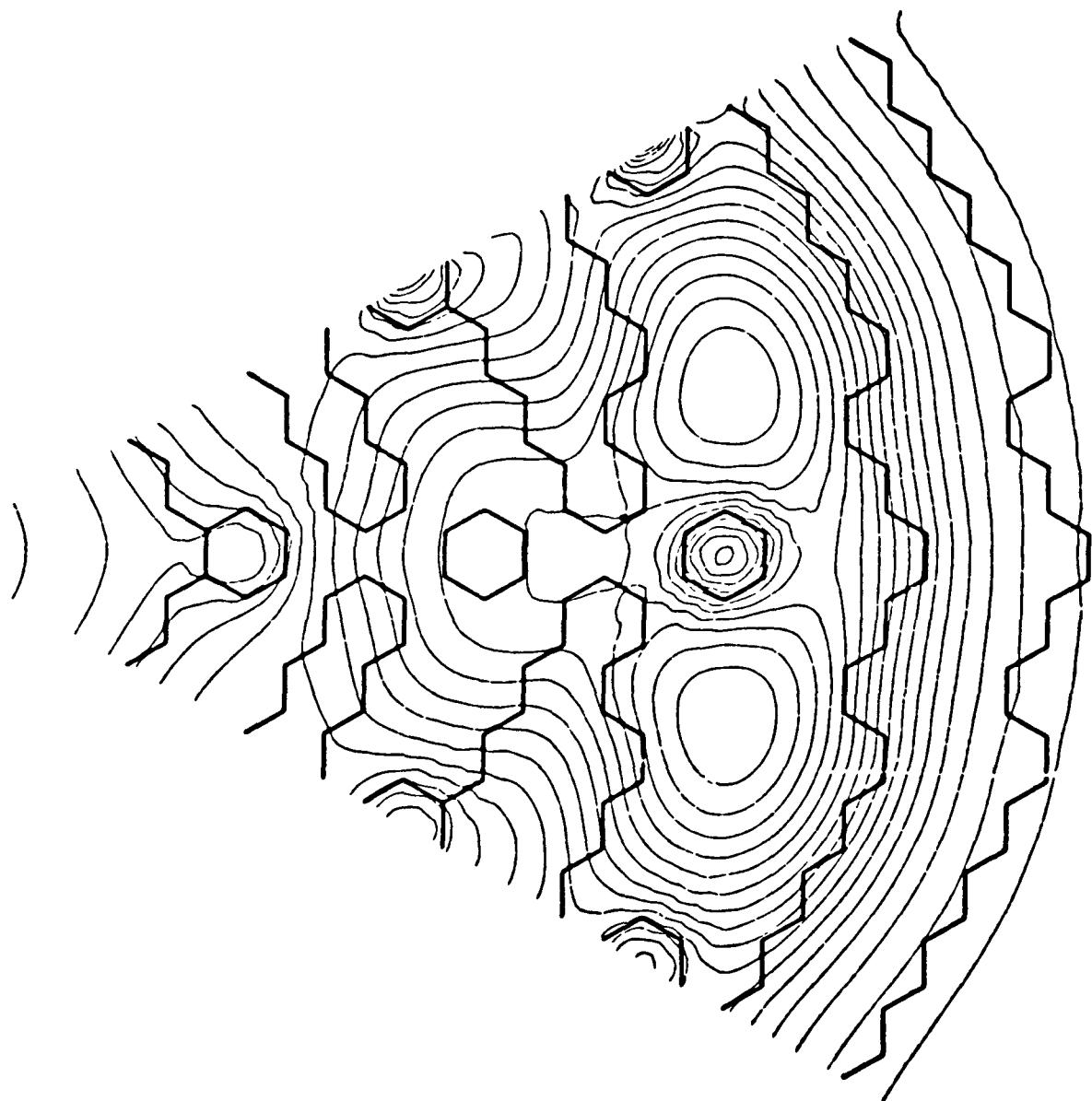


Fig. 26. Configuration B, Total Flux Distribution at BOL,
Row 11 and Secondary Control Rods Inserted

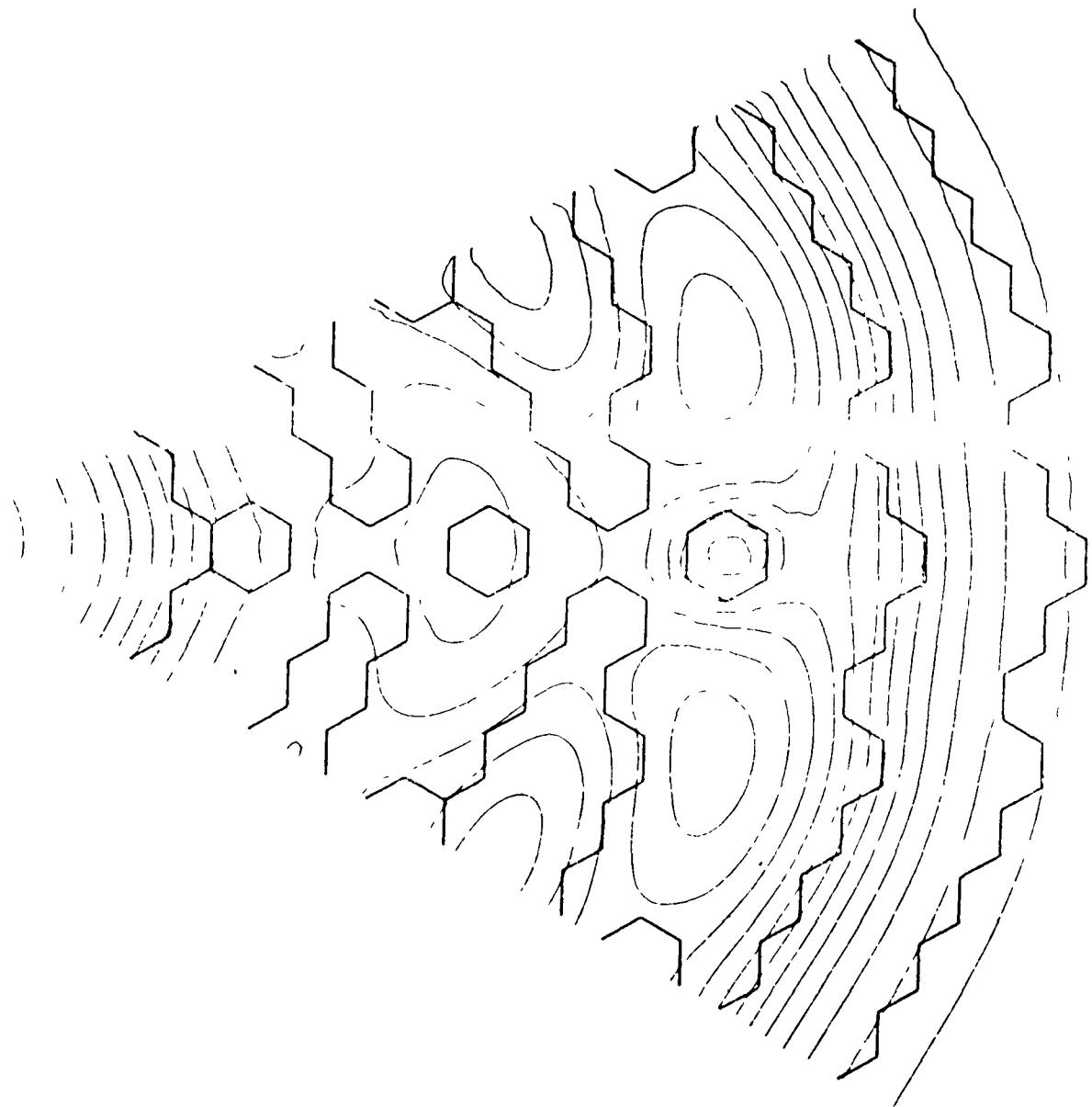


Fig. 27. Configuration B, Total Flux Distribution at BOEC

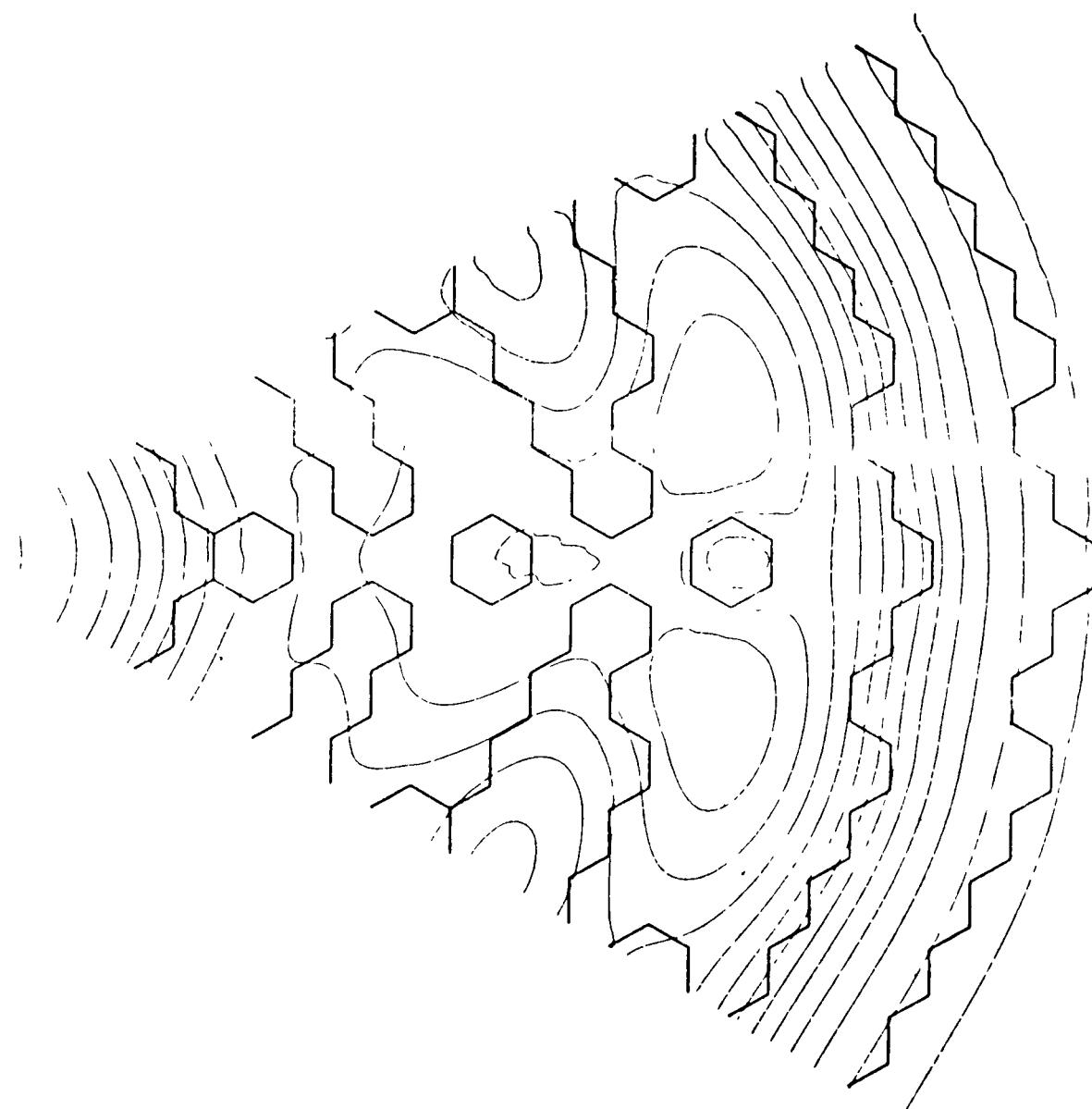


Fig. 28. Configuration B, Total Flux Distribution at MOEC

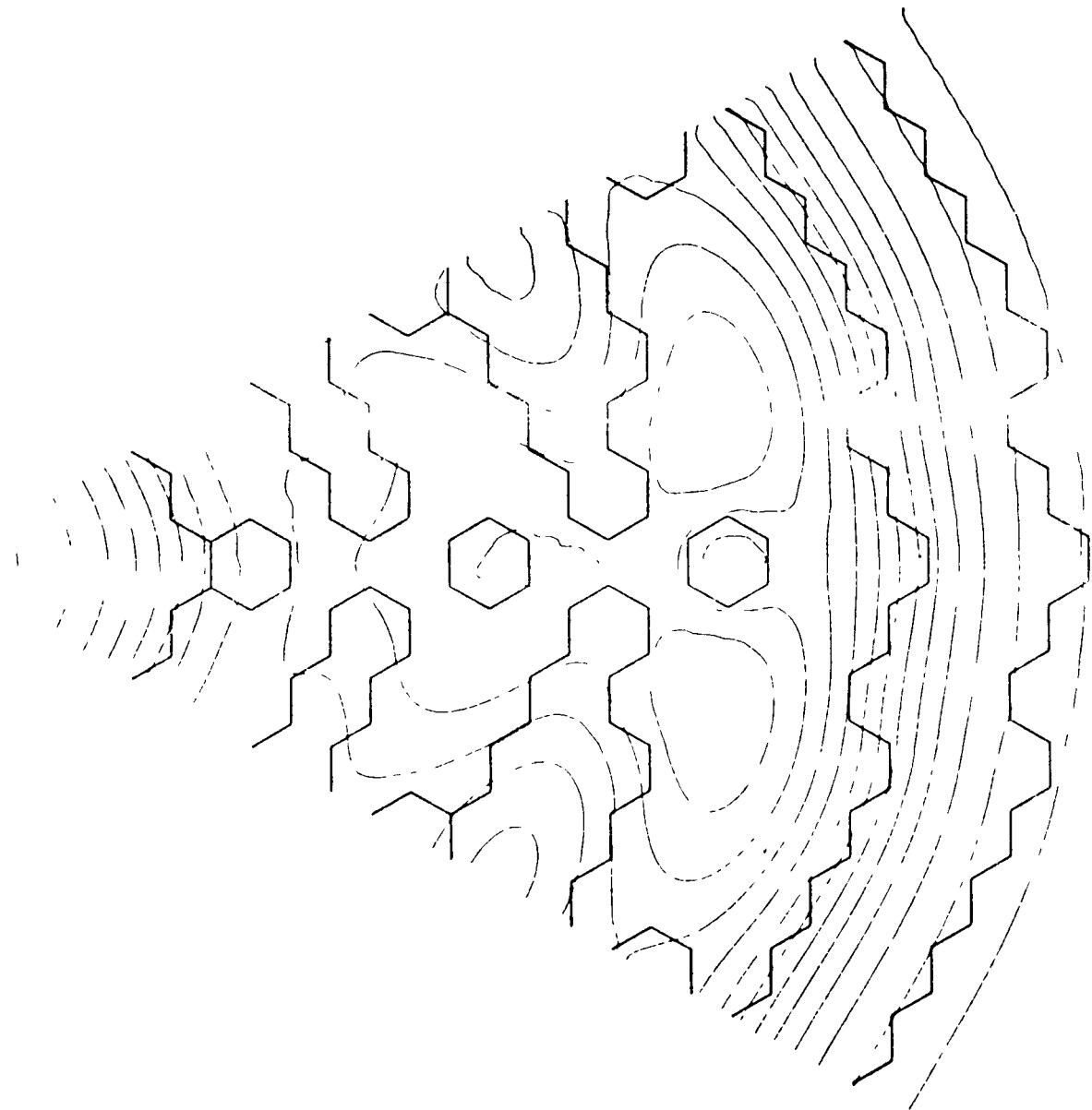


Fig. 29. Configuration B, Total Flux Distribution at EOEC

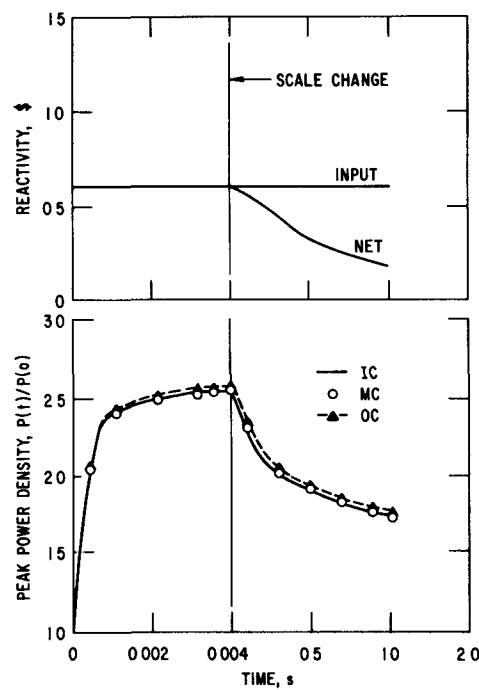


Fig. 30. 60¢ Reactivity Step Insertion,
Configuration A

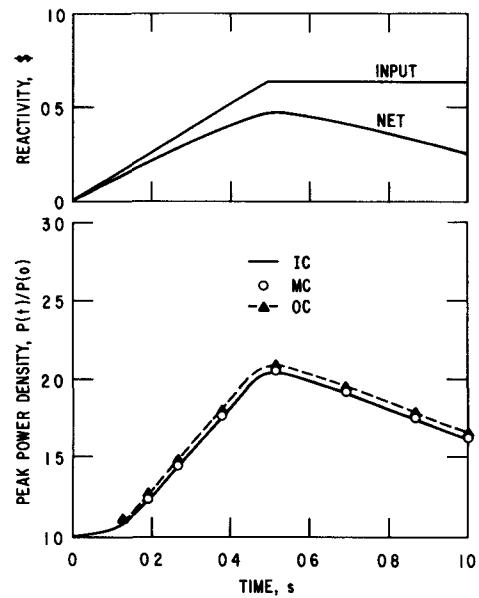


Fig. 31. 60¢/500 ms Reactivity Ramp,
Configuration A

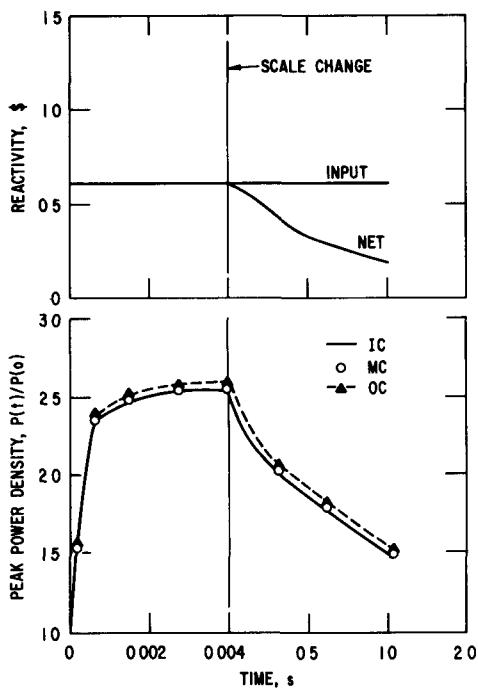


Fig. 32. 60¢ Reactivity Step Insertion,
Configuration B

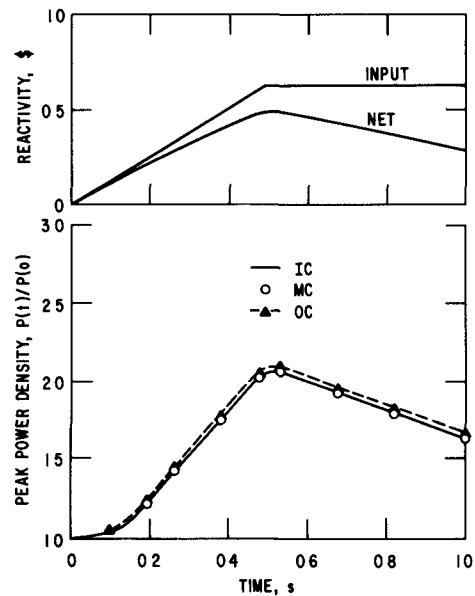


Fig. 33. 60¢/500 ms Reactivity Ramp,
Configuration B

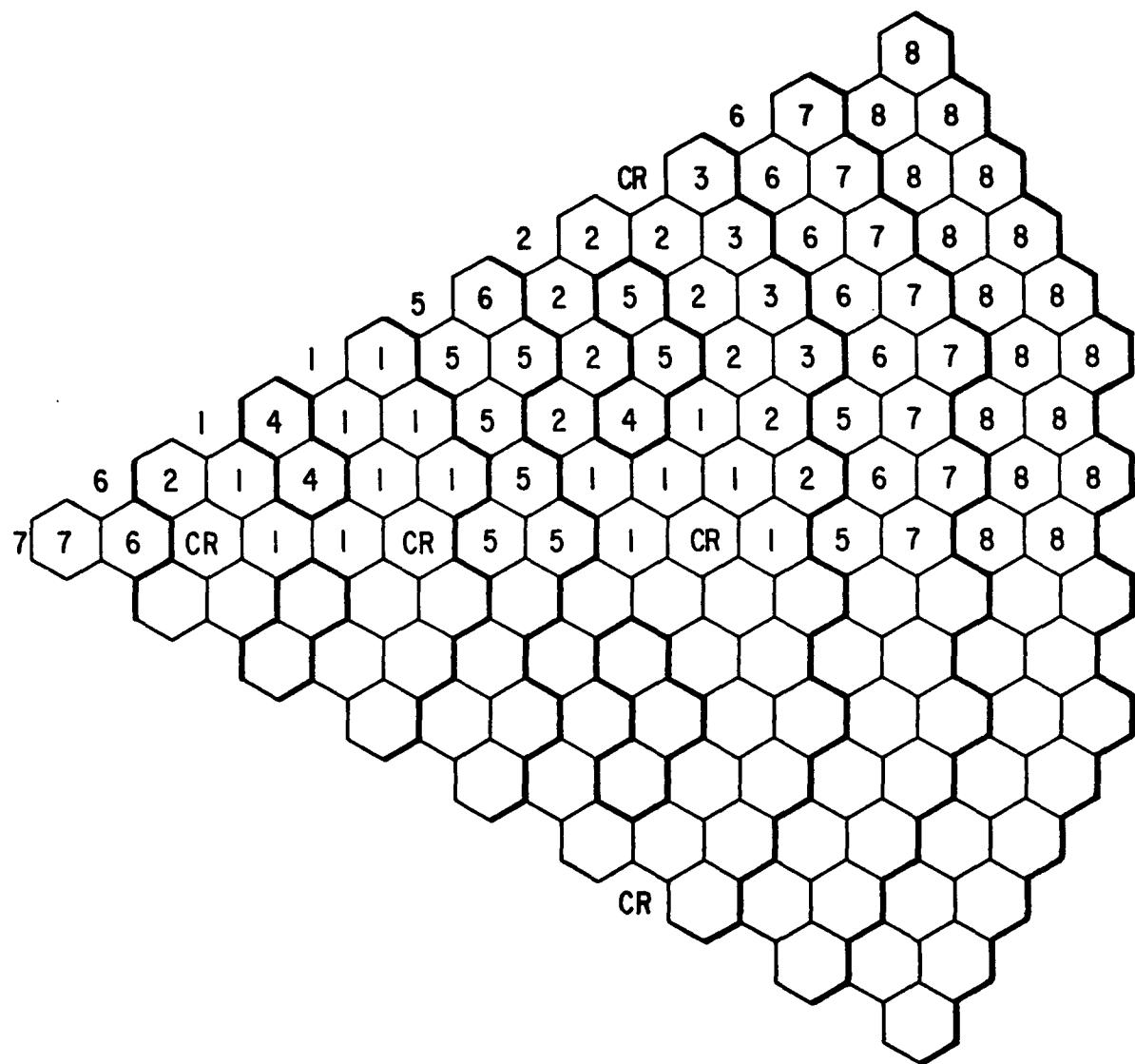
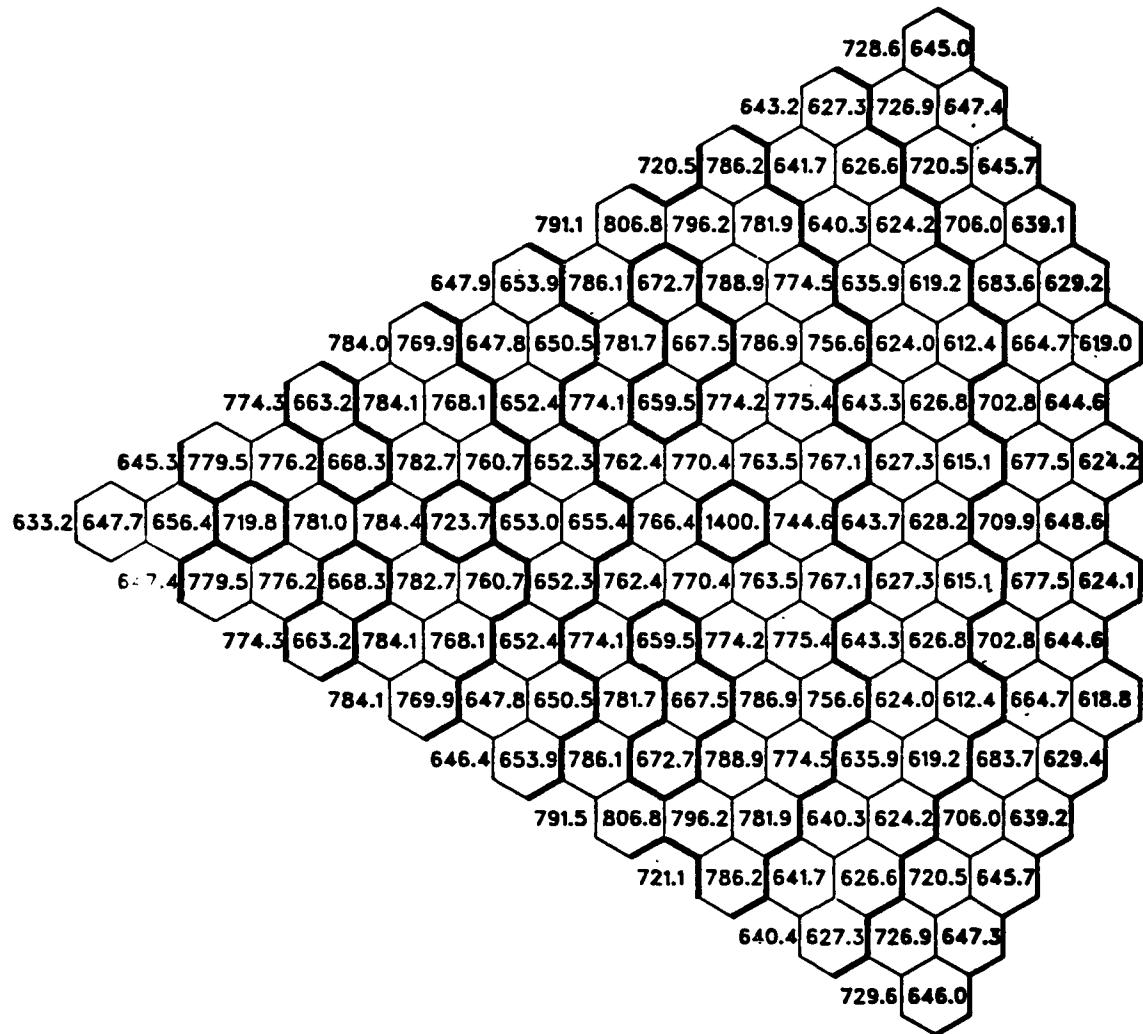



Fig. 34. Orificing Scheme of Configuration A with Equal Peak Clad Temperature at BOL in Core and at EOL in the Internal Blankets

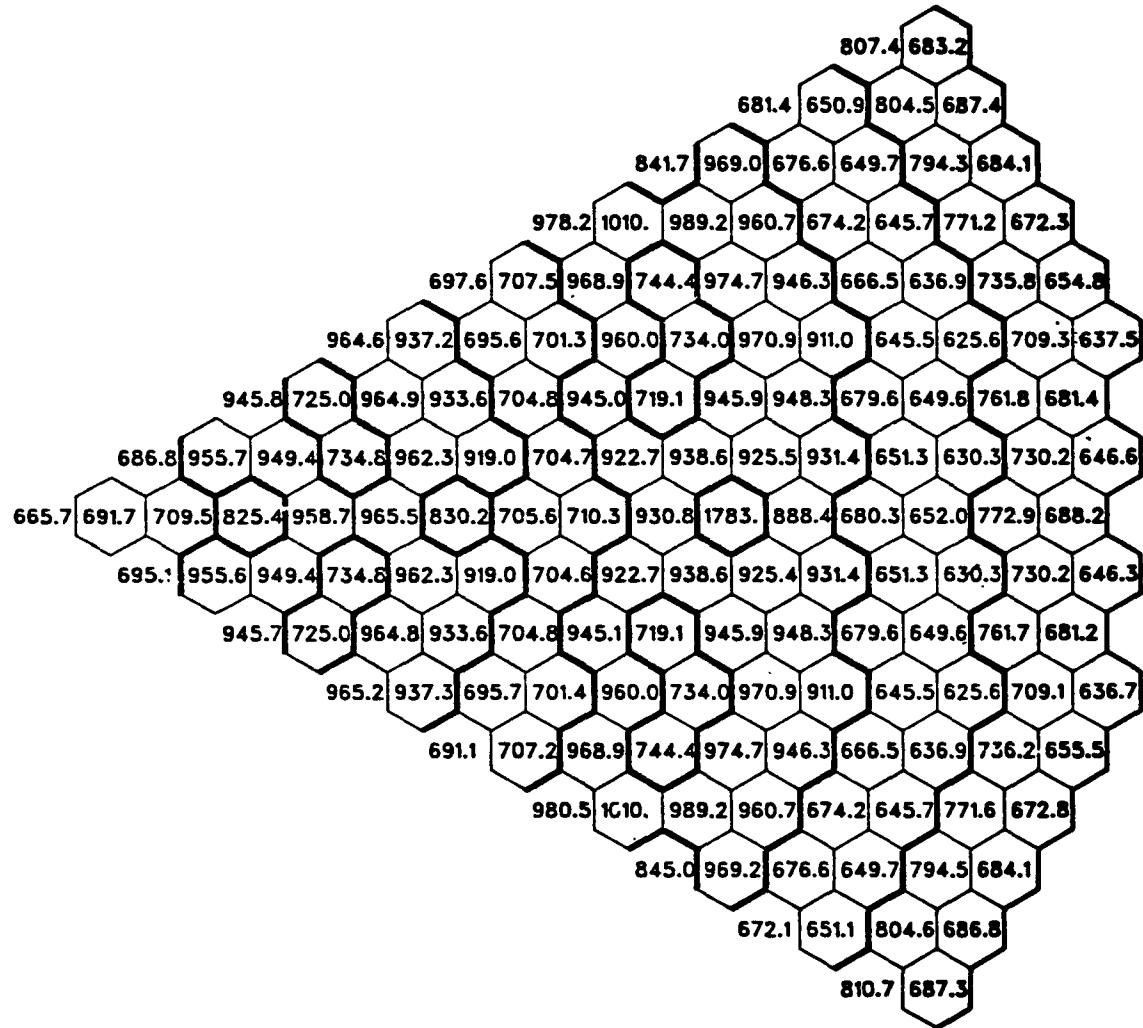


Fig. 36. Configuration A BOL Average Coolant Temperature at Top of Core (Orificed for Minimum Peak Temperature)

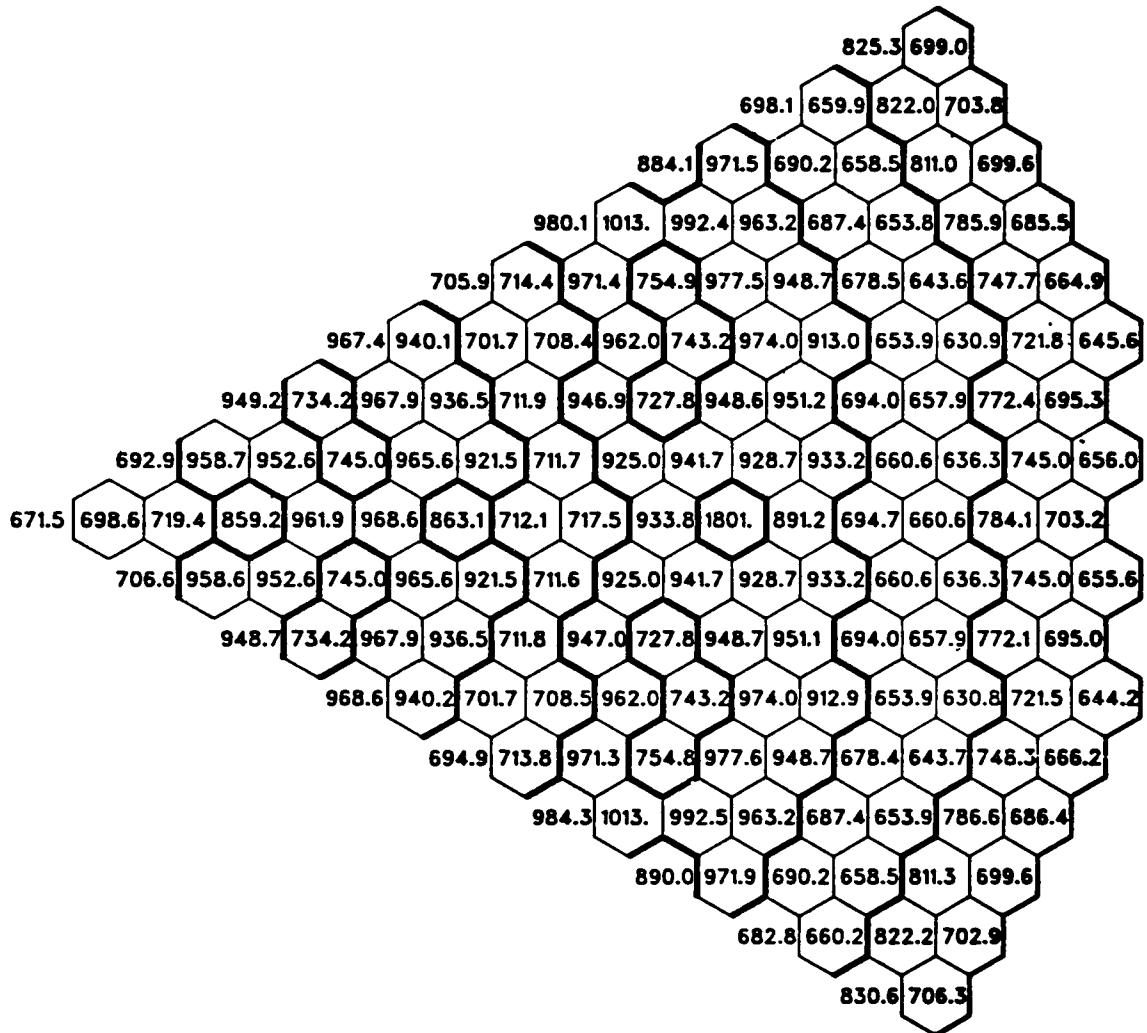


Fig. 37. Configuration A BOL Average Coolant Temperature at Outlet (Orificed for Minimum Peak Temperature)

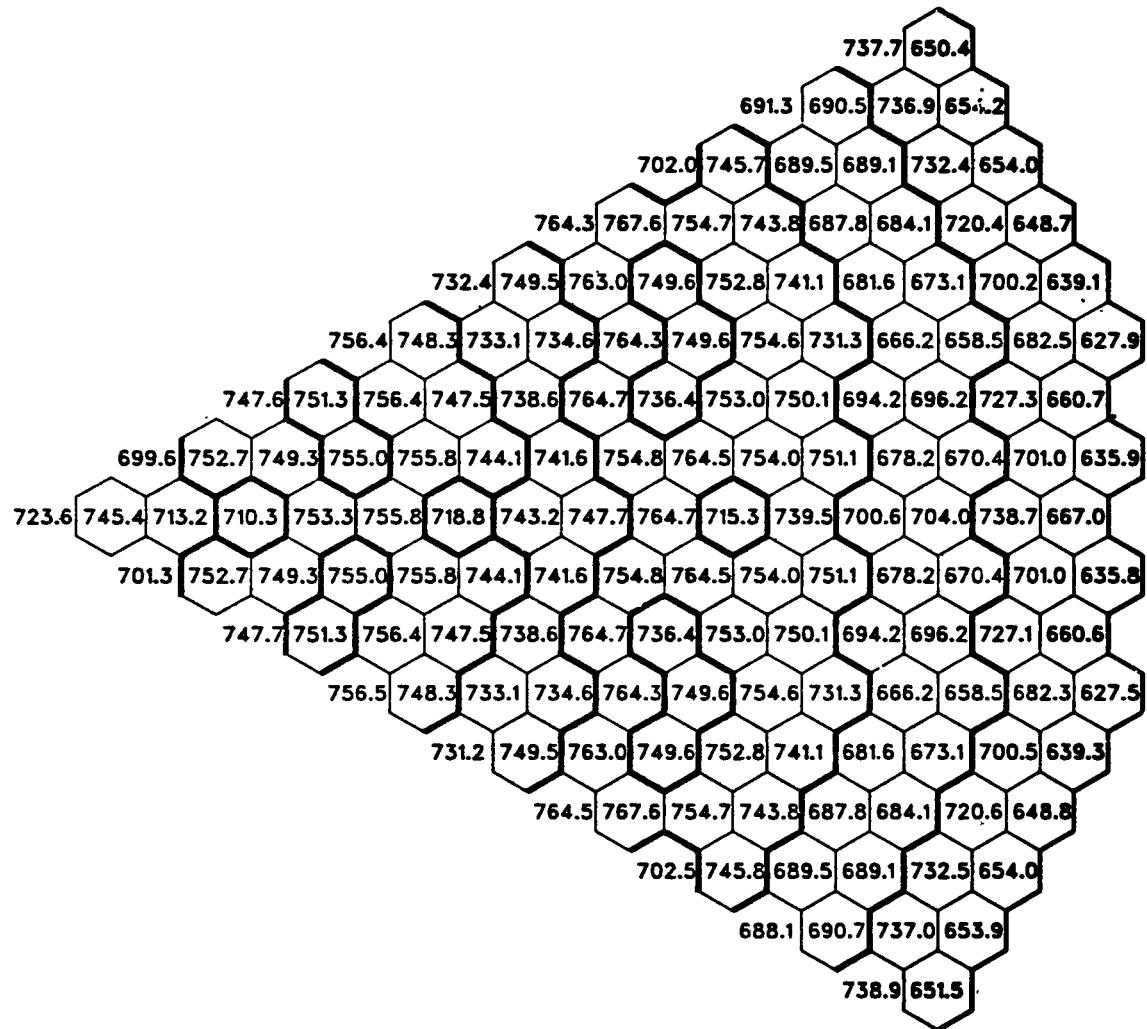


Fig. 38. Configuration A EOEC Average Coolant Temperature at Core Mid-Plane (Orificed for Minimum Peak Temperature)

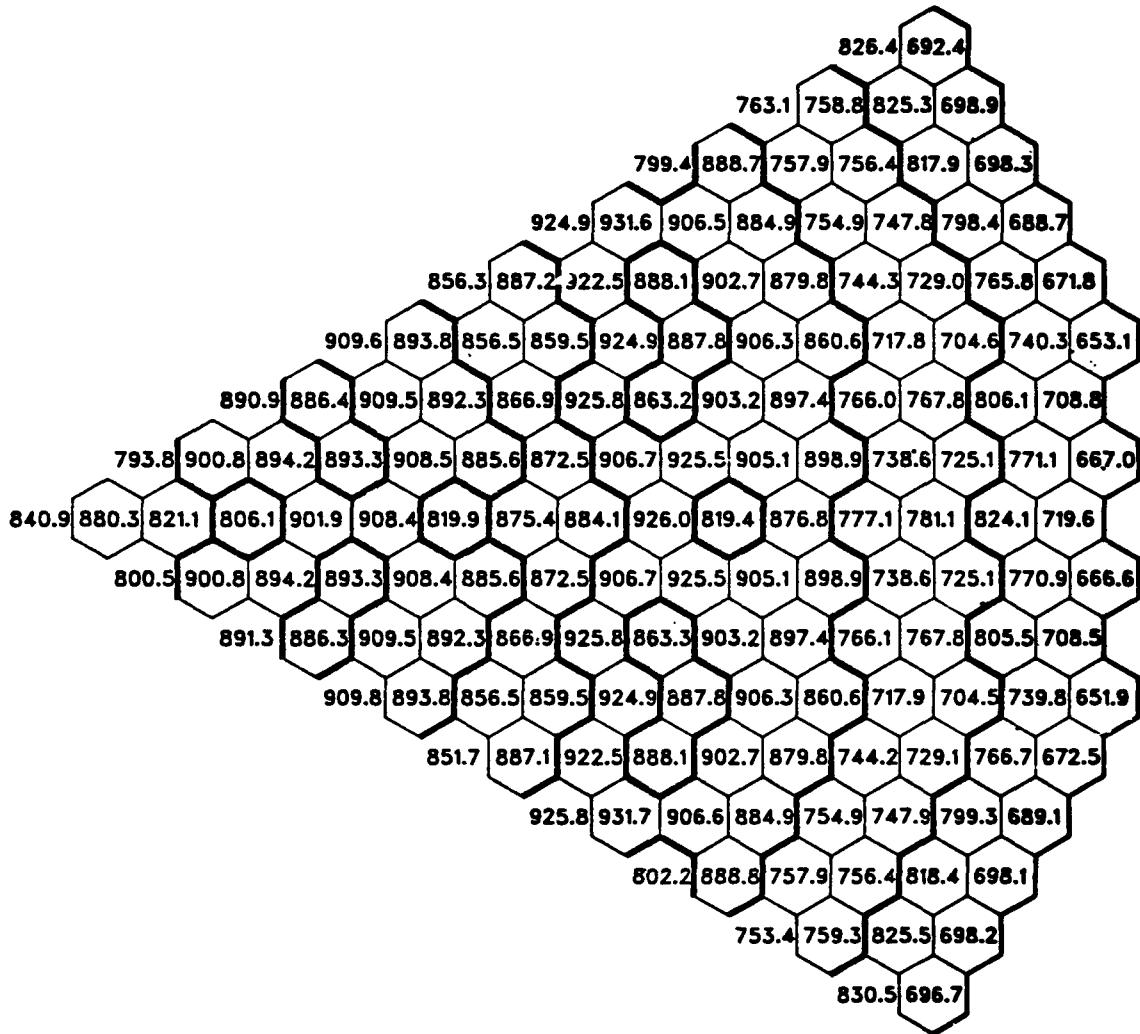


Fig. 39. Configuration A EOEC Average Coolant Temperature at Top of Core (Orificed for Minimum Peak Temperature)

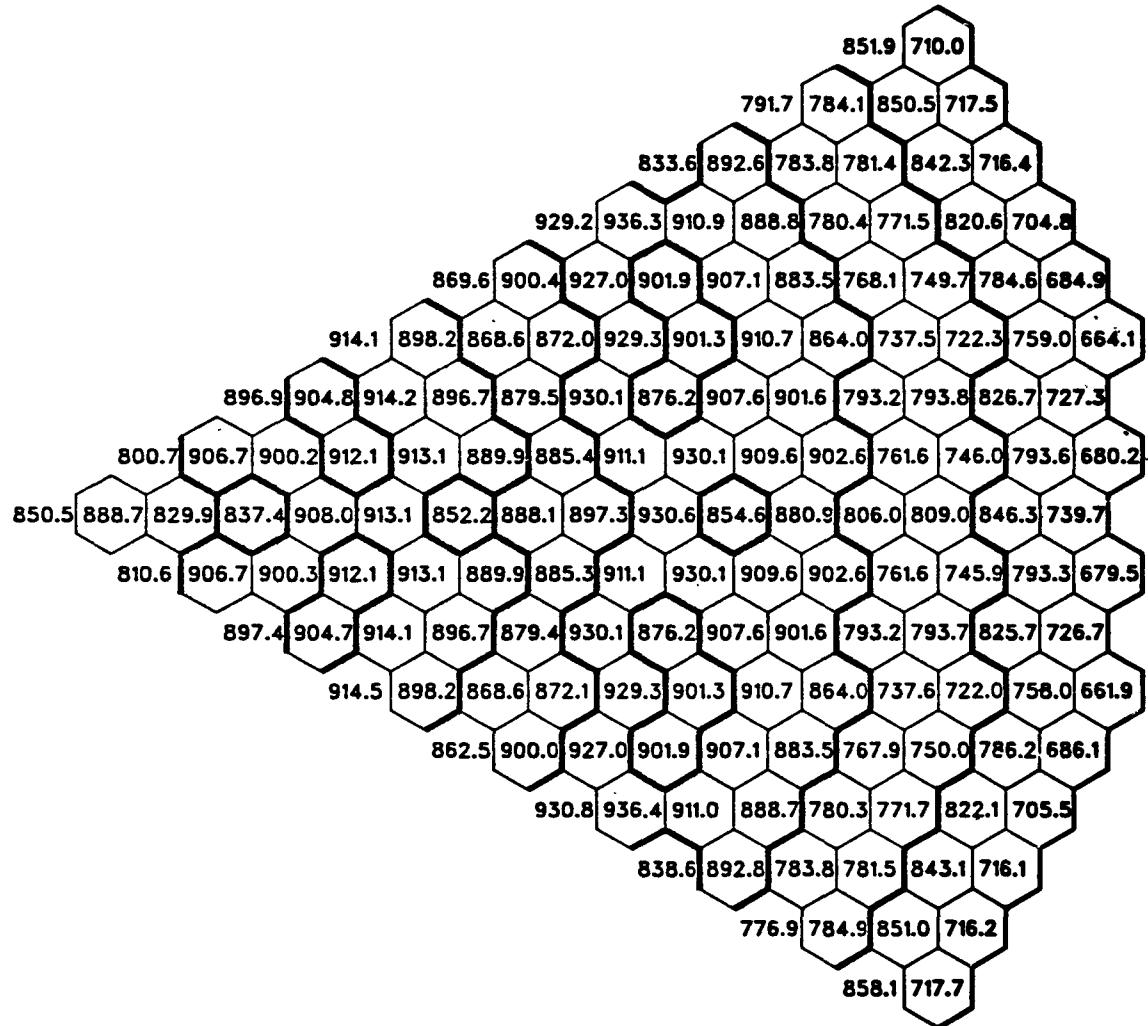


Fig. 40. Configuration A EOEC Average Coolant Temperature at Outlet (Orificed for Minimum Peak Temperature)

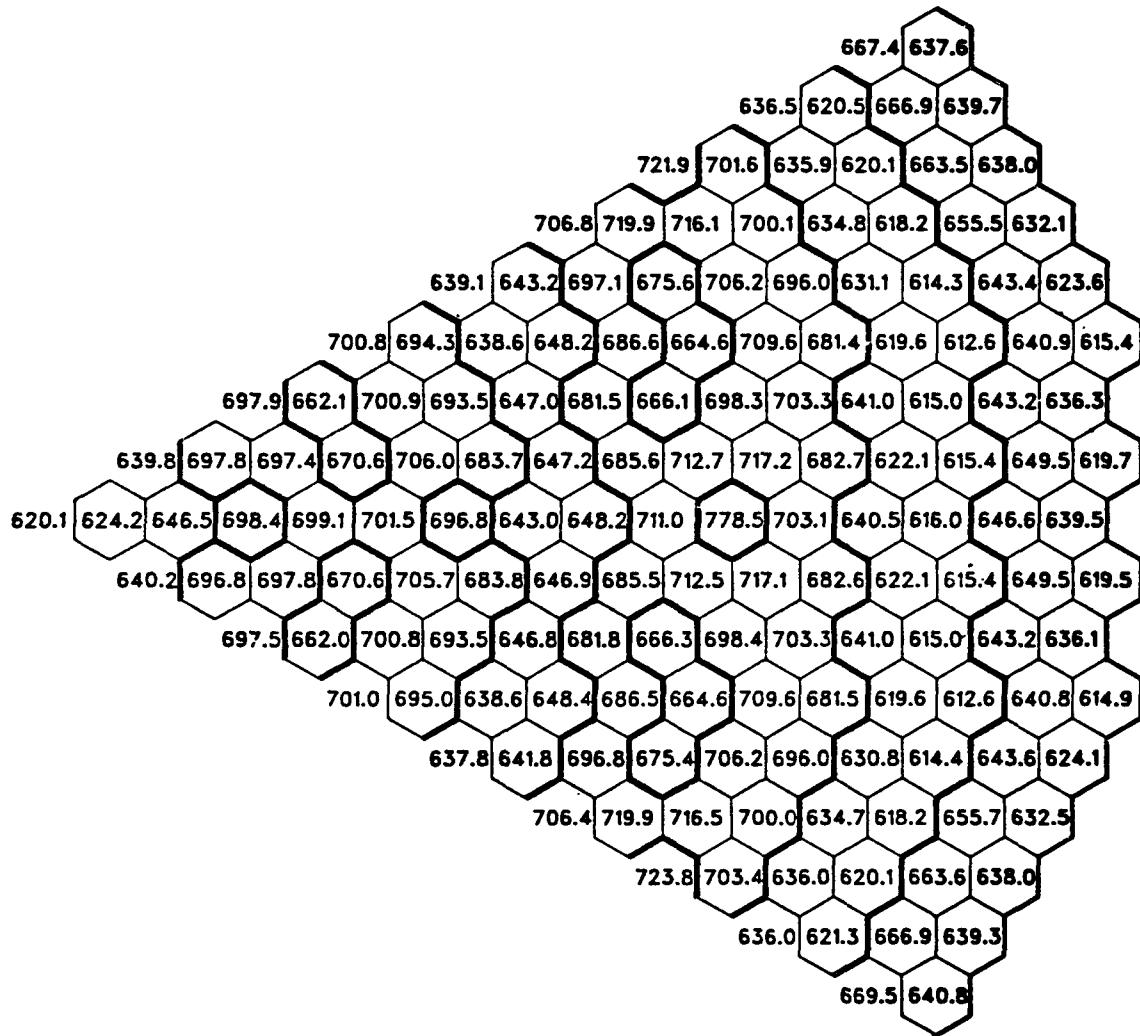


Fig. 41. Configuration A BOL Average Duct Wall Temperature at Core Mid-Plane (Orificed for Minimum Peak Temperature)

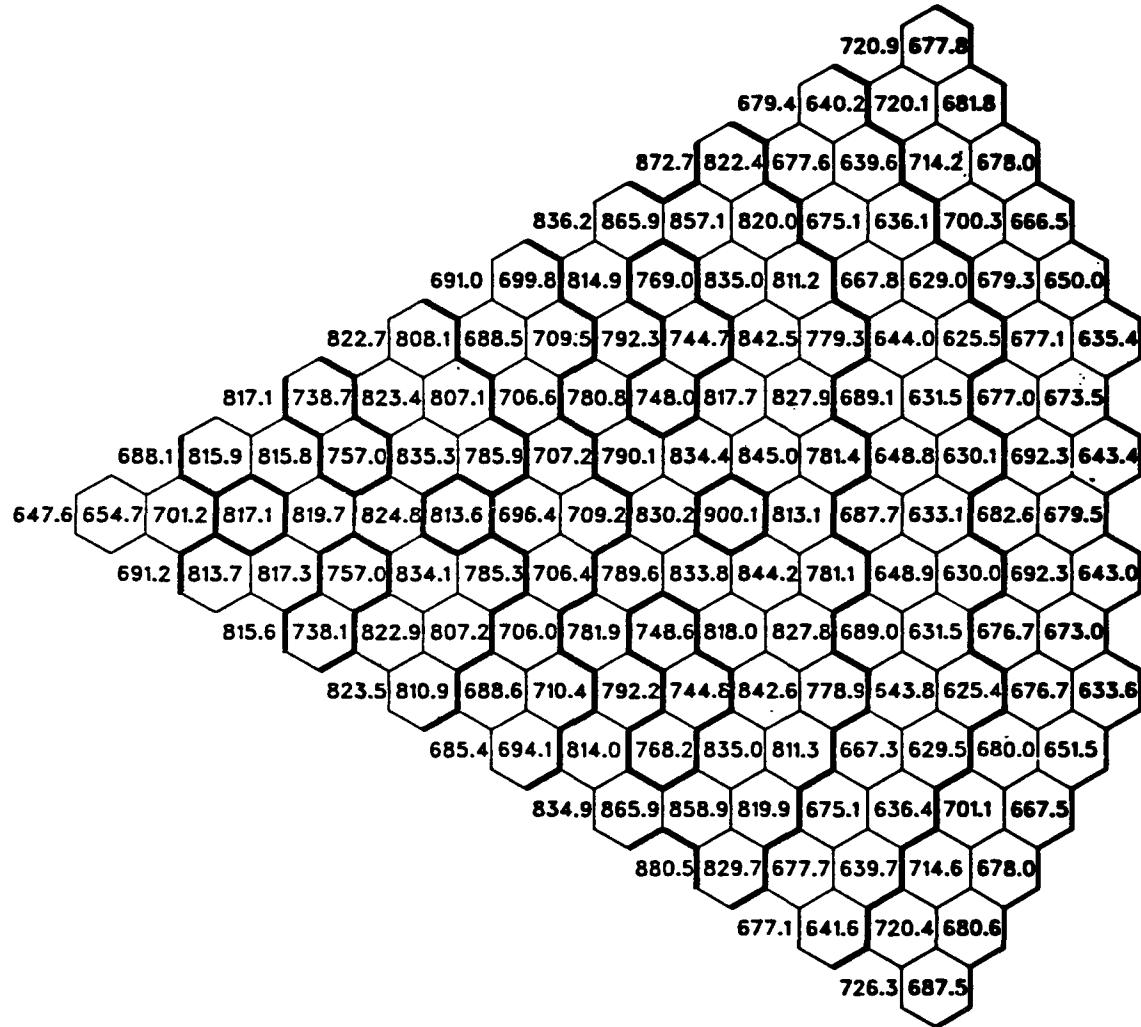
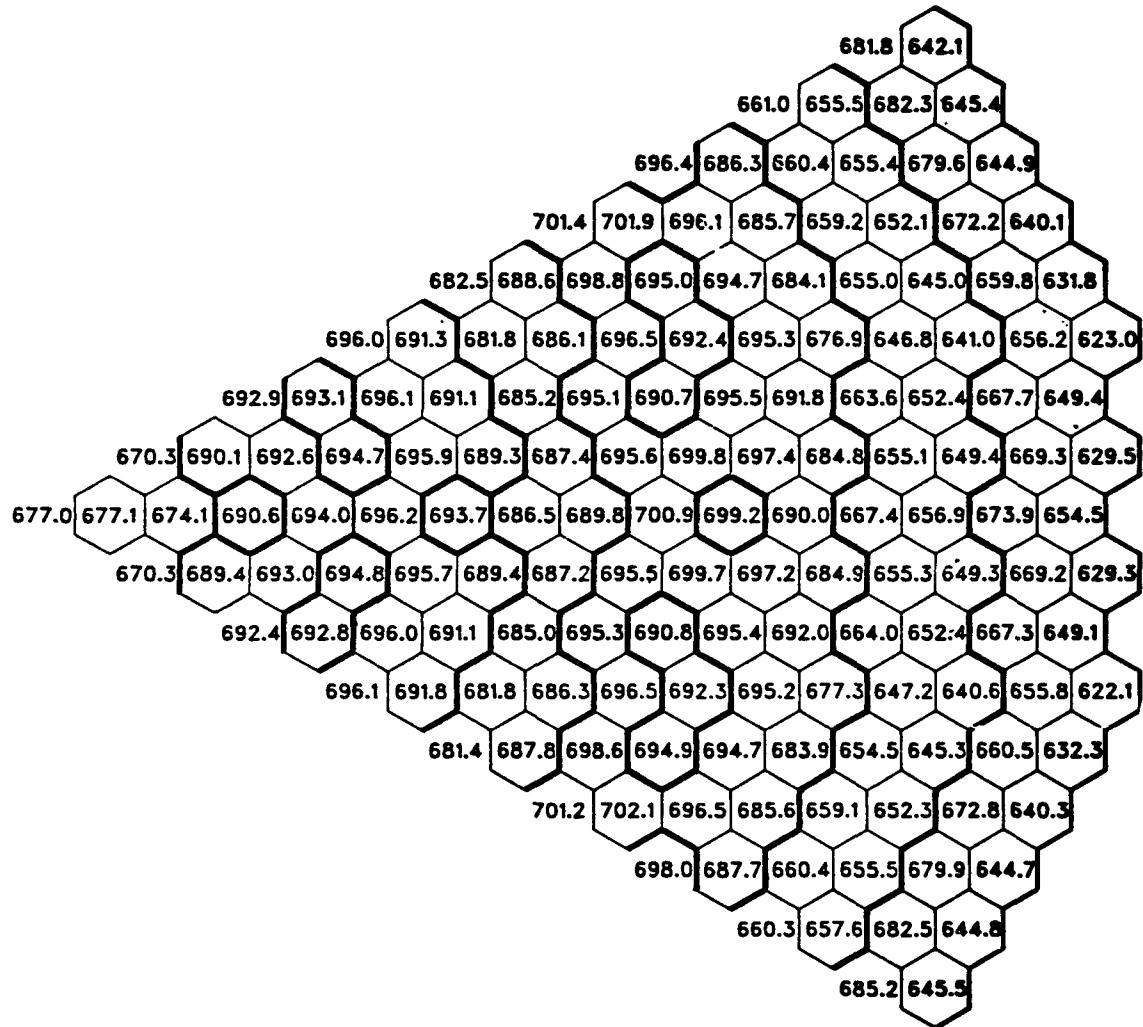



Fig. 42. Configuration A BOL Average Duct Wall Temperature at Top of Core (Orificed for Minimum Peak Temperature)

Fig. 43. Configuration A BOL Average Duct Wall Temperature at Outlet (Orificed for Minimum Peak Temperature)

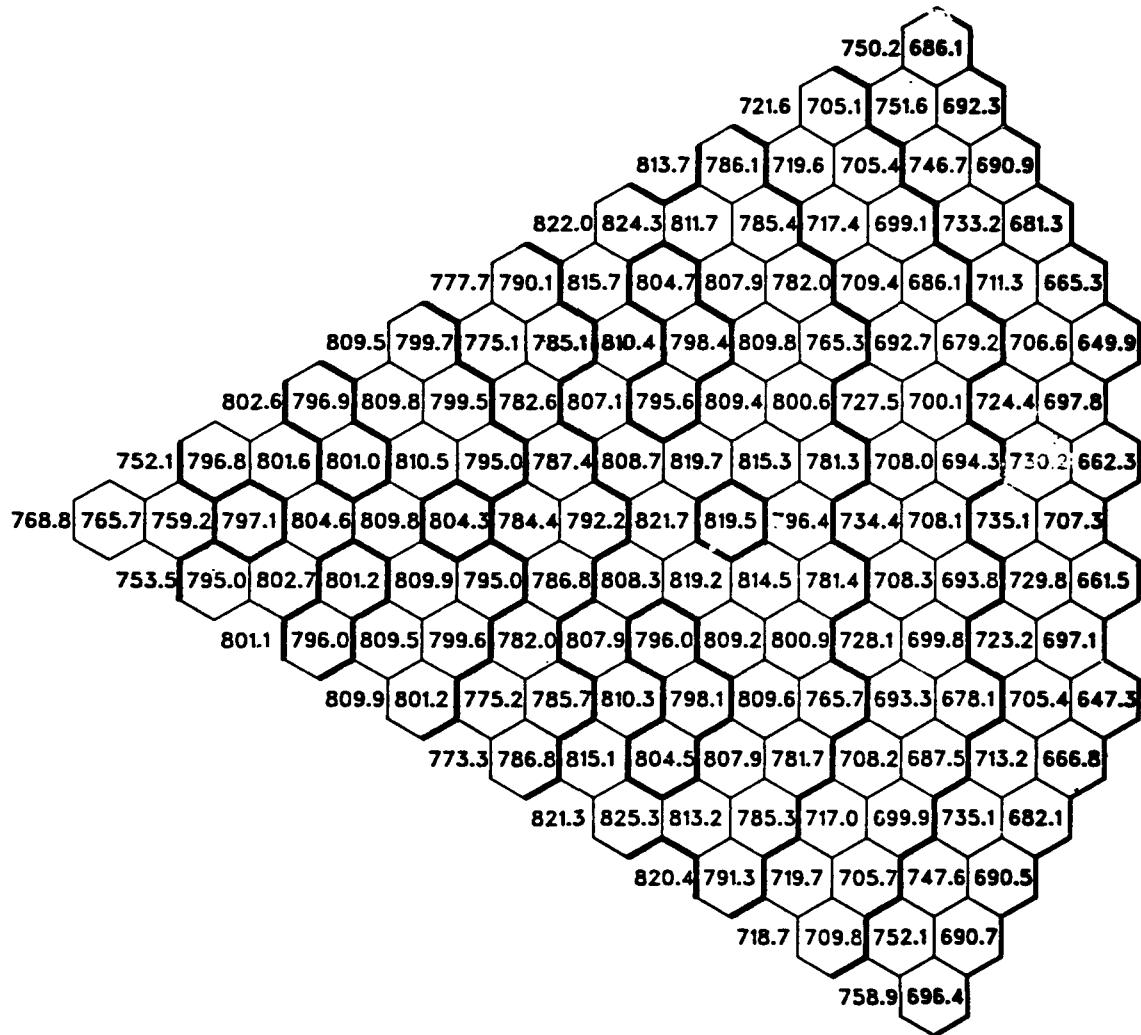


Fig. 45. Configuration A EOEC Average Duct Wall Temperature at Top of Core (Orificed for Minimum Peak Temperature)

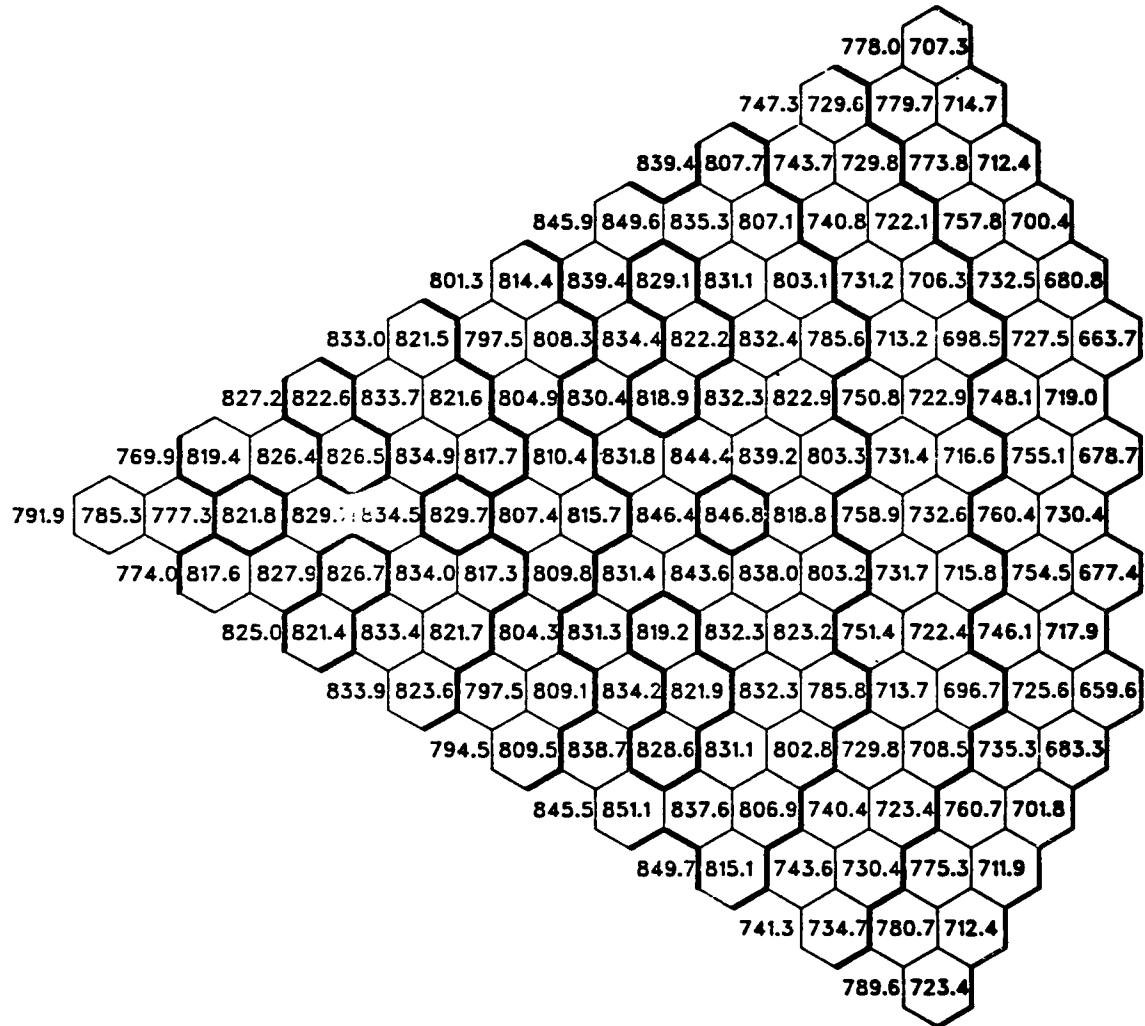


Fig. 46. Configuration A EOEC Average Duct Wall Temperature at Outlet (Orificed for Minimum Peak Temperature)

AXIAL DIST (IN) 35.00 ZSTAR 1.3461E 02 ALESTA 1.2556E-03 AVERAGE TEMP 767.9 AVERAGE WALL TEMP 706.6

COOLANT TEMPERATURE BY SUBCHANNEL

	708	710	709	708	706	705	703	702	700	698	697
	710	767	769	767	765	763	761	759	756	751	699
		768	783	782	779	777	775	773	770	767	750
	712	785	791	790	787	785	782	780	778	775	765
		773	793	792	790	787	785	783	780	778	774
	713	787	794	793	790	788	786	783	781	778	775
		775	794	794	792	789	787	784	782	780	777
	714	788	796	794	792	789	787	785	782	780	777
		776	796	795	793	791	788	786	783	781	779
	715	790	797	795	793	791	788	786	783	781	779
		777	797	796	794	792	789	787	785	782	780
	716	791	798	797	794	792	789	787	785	782	780
		778	798	798	795	793	791	788	786	783	781
	717	792	799	798	795	793	791	788	786	783	781
		779	799	799	797	794	792	789	787	785	782
	718	793	801	799	797	794	792	789	787	785	782
		780	800	800	798	795	793	791	788	786	783
	719	793	802	800	798	795	793	791	788	786	783
		777	801	801	799	797	794	792	789	787	785
	716	777	801	801	799	797	794	792	789	787	785
		717	793	802	800	798	795	793	791	788	786
	717	780	800	800	798	796	793	791	788	786	784
		717	793	801	799	797	794	792	790	787	785
	718	779	799	799	797	794	792	790	787	785	782
		718	792	800	798	796	793	791	788	786	784
	718	779	798	798	796	793	791	788	786	784	781
		718	791	798	797	794	792	790	787	785	782
	717	778	797	797	794	792	790	787	785	782	780
		717	790	797	796	793	791	788	786	784	781
	717	777	796	795	793	791	788	786	784	781	779
		717	789	796	795	794	792	790	787	785	782
	716	776	795	794	792	790	787	785	782	780	777
		716	788	795	793	791	788	786	784	781	779
	716	774	793	792	790	788	785	783	781	778	774
		716	786	792	790	788	785	783	780	778	775
	715	769	784	782	780	778	776	773	771	768	751
		715	768	770	768	766	764	762	760	758	752
	712	712	711	710	709	708	707	705	704	700	701

Fig. 47. Coolant Temperatures at Mid-Plane

AXIAL DIST (IN) ZSTA 2.1153E 02 ALPSTA 1.1925E-03 AVERAGE TEMP 938.5 AVERAGE WALL TEMP 839.0

COOLANT TEMPERATURE BY SUBCHANNEL

840	842	841	838	834	831	828	825	822	819	818
842	913	922	919	915	911	906	902	897	883	821
914	946	946	943	938	934	929	925	917	883	
845	950	973	973	968	964	959	954	949	941	913
928	975	981	977	972	968	963	958	952	939	892
849	957	985	986	982	977	972	968	963	958	948
932	982	989	985	981	976	971	966	961	955	915
852	960	989	990	986	981	977	972	967	962	918
935	984	992	989	984	979	974	969	965	960	889
855	962	991	993	989	984	979	974	970	965	916
937	987	994	991	986	982	977	972	967	962	887
857	964	994	995	991	986	982	977	972	967	915
940	989	997	994	989	984	979	974	970	965	885
859	967	996	998	994	989	984	979	975	970	914
942	992	995	996	991	987	982	977	972	967	883
861	969	999	1000	996	991	987	982	977	972	913
943	994	1001	998	994	989	984	979	975	970	880
861	966	1000	1002	999	994	989	984	979	975	913
932	992	1003	1001	996	991	987	982	977	972	870
858	932	992	1003	1001	996	992	987	982	977	815
859	966	1000	1003	999	994	989	984	979	975	918
943	998	1002	999	994	989	984	980	975	970	883
861	969	999	1000	996	992	987	982	977	972	821
943	992	995	996	992	987	982	977	972	968	886
862	968	997	998	994	989	984	980	975	970	822
942	990	997	994	989	984	980	975	970	965	888
863	966	994	996	992	987	982	977	975	970	824
940	988	995	992	987	982	977	972	968	963	890
863	964	992	993	989	984	980	975	970	965	825
939	986	992	989	984	980	975	970	965	960	892
863	962	990	991	987	982	977	972	968	963	826
937	983	989	986	981	977	972	967	962	956	894
862	960	986	987	983	978	973	968	964	958	827
934	977	982	978	973	969	964	959	954	941	895
861	953	975	974	970	965	960	956	951	943	829
921	949	949	946	942	937	933	929	920	916	887
858	918	926	924	920	917	913	909	904	900	830
855	852	851	850	848	846	844	841	837	830	833

Fig. 48. Coolant Temperatures at Top of Core

AXIAL DIST (IN) ZSTAR ALPSTA AVERAGE TEMP AVERAGE WALL TEMP
 70.00 2.6922E-02 1.1906E-03 943.0 864.2

COOLANT TEMPERATURE BY SUBCHANNEL

862	863	861	858	855	852	848	846	843	841	841
863	901	912	910	906	902	898	894	889	875	843
	902	931	934	930	926	922	918	913	903	874
866	934	962	965	962	957	953	948	943	932	901
917	964	976	974	969	965	960	955	948	930	885
870	943	980	986	983	979	974	969	964	958	944
923	974	989	988	984	979	974	969	964	956	935
873	947	985	993	990	986	981	976	971	966	959
926	977	993	993	989	984	979	974	969	964	955
876	949	988	996	993	989	984	979	974	969	964
928	980	996	996	991	987	982	977	972	967	962
879	952	990	998	996	992	987	982	977	972	967
931	983	998	998	994	989	984	979	975	970	965
882	954	993	1001	999	994	989	984	979	975	962
933	985	1001	1001	996	992	987	982	977	972	967
885	956	995	1003	1001	997	992	987	982	977	972
933	986	1003	1003	999	994	989	984	980	975	970
885	950	995	1005	1003	999	994	989	984	980	975
921	981	1004	1005	1001	997	992	987	982	977	972
883	921	981	1004	1005	1001	997	992	987	982	977
884	950	995	1005	1004	999	994	989	985	980	975
	933	987	1003	1003	999	994	989	985	980	975
885	956	995	1004	1001	997	992	987	982	977	972
	935	986	1001	1001	997	992	987	982	977	972
887	956	994	1001	999	994	989	985	980	975	970
	935	984	999	998	994	990	985	980	975	970
889	955	991	999	996	992	987	982	977	972	968
	934	982	996	996	992	987	982	977	972	967
889	953	989	996	994	989	985	980	975	970	965
	933	980	994	993	989	984	980	975	970	964
890	952	987	994	991	986	982	977	972	967	960
	932	976	990	989	985	980	975	970	965	957
890	949	982	987	984	980	975	970	965	959	945
	928	967	977	975	971	966	962	957	950	933
889	940	965	968	964	960	956	951	946	935	906
	914	936	939	937	933	929	925	921	911	884
887	912	920	920	917	914	910	907	901	887	861
	885	881	880	879	878	876	874	871	867	861
	885	881	880	879	878	876	874	871	867	864

Fig. 49. Coolant Temperatures at Outlet

AXIAL DIST (IN) NOMINAL BUNDLE AVG N.W. NOMINAL PEAK N.W.
 35.00 820.8 858.3

CLAD TEMPERATURES BY SUBCHANNEL

762	770	768	766	764	762	759	757	755	752	746									
770	822	824	821	818	815	813	810	807	801	753									
823	837	835	832	830	827	824	821	817	800										
772	840	846	843	840	837	834	831	828	825	815	752								
829	847	846	843	840	837	834	831	828	823	802									
774	843	849	847	844	841	838	835	832	829	825	814	751							
830	849	848	845	842	839	836	833	830	827	822	801								
775	844	851	848	845	842	839	836	833	830	827	824	812	750						
832	851	850	847	844	841	838	835	832	829	826	821	800							
777	846	852	850	847	844	841	838	835	832	829	826	822	811	749					
833	852	851	848	845	842	839	836	833	830	827	824	819	798						
778	847	854	851	848	845	842	839	836	833	830	827	824	821	810	748				
835	854	853	850	847	844	841	838	835	832	829	826	823	818	797					
779	849	855	853	850	847	844	841	838	835	832	829	826	823	819	808	747			
836	855	854	851	848	845	842	839	836	833	830	827	824	821	816	795				
780	850	857	855	852	849	845	842	839	836	833	830	827	824	821	818	807	746		
837	857	856	853	850	847	844	841	838	835	832	829	826	823	820	815	794			
781	851	858	856	853	850	847	844	841	838	835	832	829	826	823	820	816	805	788	
835	858	857	855	852	849	846	843	839	836	833	830	827	824	821	818	813	790		
772	835	858	857	855	852	849	846	843	839	836	833	830	827	824	821	818	813	790	739
779	835	858	857	855	852	849	846	843	840	836	833	830	827	824	821	818	813	790	
780	837	857	856	853	850	847	844	841	838	835	832	829	826	823	820	816	805	787	
780	850	857	855	853	852	849	846	843	840	837	834	830	827	824	821	818	807	748	
780	837	855	855	852	849	846	843	840	837	834	831	828	825	822	819	809	796		
780	835	854	853	850	847	844	841	838	835	832	829	826	823	820	818	797			
779	834	853	852	849	846	843	840	837	834	831	828	825	822	819	809	799			
778	833	851	850	847	844	841	838	835	832	829	826	823	821	818	800				
778	845	851	849	846	843	840	837	834	831	828	825	822	819	813	752				
777	831	850	849	846	843	840	837	834	831	828	825	822	819	814	753				
776	830	848	846	844	841	838	835	832	829	826	823	820	817	814	753				
776	841	846	844	841	838	835	832	829	826	823	820	817	814	753					
775	825	838	836	833	830	828	825	822	818	801									
766	771	769	768	766	764	762	760	758	754	749									

Fig. 50. Nominal Clad Temperatures at Mid-Plane

AXIAL DIST (IN) NOMINAL BUNDLE AVG H.W. NOMINAL PEAK H.W.
55.00 960.3 1026.3

CIAD TEMPERATURE BY SUBCHARGE

862	867	865	862	858	855	851	848	845	842	838
867	936	944	941	937	932	928	923	918	904	843
937	969	969	964	960	955	950	945	937	903	
870	972	996	995	990	985	980	975	970	962	934
951	998	1003	999	994	989	984	979	973	960	912
874	979	1008	1008	1004	999	994	989	984	978	968
955	1004	1011	1007	1002	997	992	987	982	976	936
877	982	1011	1012	1008	1003	998	993	988	983	977
958	1007	1014	1011	1006	1001	996	991	985	980	967
880	985	1014	1015	1011	1006	1001	996	991	986	980
960	1010	1017	1013	1008	1003	998	993	988	983	975
883	988	1016	1018	1013	1008	1003	998	993	988	983
963	1012	1019	1016	1011	1006	1001	996	991	986	981
885	990	1019	1020	1016	1011	1006	1001	996	991	986
965	1015	1022	1018	1014	1009	1003	998	993	988	983
887	992	1022	1023	1019	1014	1009	1003	998	993	988
966	1017	1024	1021	1016	1011	1006	1001	996	991	986
888	990	1023	1025	1021	1016	1011	1006	1001	996	991
882	956	1015	1026	1024	1019	1014	1009	1004	998	993
885	955	1015	1026	1024	1019	1014	1009	1004	999	993
887	990	1023	1025	1021	1016	1011	1006	1001	996	991
966	1017	1024	1021	1016	1011	1006	1001	996	991	986
887	992	1022	1023	1019	1014	1009	1004	999	994	988
966	1015	1022	1019	1014	1009	1004	999	994	988	983
888	991	1019	1021	1016	1011	1006	1001	996	991	986
888	965	1013	1020	1016	1011	1006	1001	996	991	986
888	989	1017	1018	1014	1009	1004	999	994	989	984
888	964	1011	1017	1014	1009	1004	999	994	989	984
888	987	1015	1016	1011	1006	1001	996	991	986	981
962	1008	1015	1011	1006	1001	996	991	986	981	974
888	985	1012	1013	1009	1004	999	994	989	983	978
960	1005	1012	1008	1003	998	993	988	983	976	962
887	982	1009	1009	1005	1000	995	990	984	979	969
957	999	1004	1000	995	990	985	980	974	961	915
886	976	997	996	991	987	982	977	972	964	936
943	971	971	968	963	959	954	949	941	908	
883	941	948	946	942	938	934	930	925	911	852
877	877	875	874	872	869	867	864	859	852	853

Fig. 51. Nominal Clad Temperatures at Top of Core

AXIAL DIST (IN) NOMINAL BUNDLE AVG N.W. NOMINAL PEAK N.W.
 70.00 943.5 1005.8

CLAD TEMPERATURE BY SUBCHANNEL

862	863	862	859	855	852	849	846	844	842	842									
864	902	912	911	907	903	899	895	889	875	843									
903	931	934	931	927	922	918	913	903	875										
867	934	963	966	962	958	953	948	943	932	901	843								
918	965	976	974	970	965	960	955	948	931	885									
870	943	980	987	984	979	975	970	965	958	944	906	842							
923	974	989	989	984	979	975	970	964	956	935	886								
874	947	986	993	991	986	981	977	972	966	960	944	904	841						
926	978	994	993	989	984	979	975	970	964	955	934	884							
877	950	988	996	994	989	985	980	975	970	965	958	942	903	840					
929	981	996	996	992	987	982	977	972	968	962	953	932	882						
880	952	991	999	997	992	987	982	977	973	968	962	955	940	901	840				
932	983	999	999	994	990	985	980	975	970	965	960	951	929	881					
883	955	993	1001	999	995	990	985	980	975	970	965	960	953	938	889	839			
934	985	1001	1001	997	992	987	982	978	973	968	963	957	949	927	879				
885	956	995	1004	1002	997	992	987	982	978	973	968	963	958	951	935	886	840		
934	987	1003	1004	999	995	990	985	980	975	970	965	960	955	946	924	876			
885	951	995	1006	1004	1000	995	990	985	980	975	970	965	960	955	948	931	889	840	
922	982	1004	1006	1002	997	992	987	983	978	973	968	963	958	952	942	917	866		
884	921	982	1004	1006	1002	997	992	987	983	978	973	968	963	958	952	942	917	868	
884	951	995	1006	1004	1000	995	990	985	980	975	970	965	961	955	948	931	891	845	
934	987	1004	1004	1000	995	990	985	980	975	970	965	961	955	946	925	880			
886	957	996	1004	1002	997	992	987	983	978	973	968	963	958	951	936	899	848		
934	986	1002	1001	997	992	988	983	978	973	968	963	958	949	928	884				
886	957	994	1002	999	995	990	985	980	975	970	966	960	953	939	902	850			
936	988	999	999	995	990	985	980	975	970	966	960	951	931	886					
889	955	992	999	997	992	988	983	978	973	968	963	956	941	904	852				
935	982	997	997	992	988	983	978	973	968	962	954	933	888						
890	954	990	997	994	990	985	980	975	970	965	958	943	906	853					
934	980	994	994	990	985	980	975	970	965	956	935	890							
891	952	987	994	991	987	982	977	972	967	960	945	908	855						
932	977	990	989	985	980	975	971	965	957	957	937	892							
891	949	982	988	985	980	976	971	966	959	946	909	857							
928	968	978	976	971	967	962	957	950	933	892									
890	941	966	968	965	961	956	952	946	936	906	859								
914	937	940	937	934	930	926	921	911	884										
888	912	921	920	917	914	911	907	902	887	861									
885	882	881	880	878	876	874	872	867	861	865									

Fig. 52. Nominal Clad Temperatures at Outlet

AXIAL DIST (IN) 2-SIGMA BUNDLE AVG N.W. 2-SIGMA PEAK N.W.
 39.00 917.3 966.1

CLAD TEMPERATURE BY SUBCHANNEL

846	860	857	854	851	848	845	841	838	834	821								
861	921	922	918	914	910	906	902	898	890	838								
922	939	936	932	928	924	919	915	910	889									
864	943	949	945	941	937	933	929	924	920	907	833							
929	951	949	945	941	936	932	928	924	918	891								
866	946	953	950	946	941	937	933	929	925	920	905	832						
931	954	952	948	944	939	935	931	927	922	916	889							
868	948	955	952	948	944	939	935	931	927	923	919	904	830					
933	956	954	950	946	942	937	933	929	925	920	914	888						
870	950	958	954	950	946	942	937	933	929	925	921	916	902	828				
935	958	956	952	948	944	940	935	931	927	923	919	912	886					
872	952	960	956	952	948	944	940	935	931	927	923	918	913	900	827			
937	960	958	954	950	946	942	937	933	929	925	921	916	910	884				
874	954	962	959	954	950	946	942	938	933	929	925	921	916	911	898	825		
939	962	961	956	952	948	944	940	935	931	927	923	919	914	908	882			
875	956	964	961	957	952	948	944	940	935	931	927	923	919	914	909	895	823	
941	964	963	959	958	950	946	942	938	933	929	925	921	916	912	906	880		
876	957	966	963	959	954	950	946	942	938	933	929	925	921	917	912	907	893	822
938	966	965	961	957	952	948	944	940	936	931	927	923	919	914	910	903	874	811
861	938	966	965	961	957	952	948	944	940	936	931	927	923	919	914	910	903	874
875	957	966	963	959	955	950	946	942	938	933	929	925	921	917	912	907	893	824
981	964	963	959	955	950	946	942	938	933	929	925	921	917	912	906	880		
875	956	964	961	957	952	948	944	940	936	931	927	923	919	914	910	896	827	
940	962	961	957	952	948	944	940	936	931	927	923	919	914	908	883			
875	955	962	959	955	950	946	942	938	934	929	925	921	917	912	898	828		
938	960	959	955	950	946	942	938	934	929	925	921	917	910	885				
874	953	960	957	953	948	944	940	936	931	927	923	919	914	900	880			
936	958	957	953	948	944	940	936	932	927	923	919	912	886					
873	951	958	955	950	946	942	938	934	929	925	921	916	902	881				
934	956	955	950	946	942	938	934	929	925	921	915	888						
872	945	956	953	948	944	940	936	932	927	923	919	904	833					
933	954	952	948	944	940	936	932	927	923	917	890							
870	947	954	950	946	942	938	934	929	925	920	906	834						
930	952	950	946	941	937	933	929	924	918	892								
869	944	950	946	942	938	933	929	925	920	907	835							
924	940	937	933	929	925	921	916	911	890									
867	922	923	919	916	912	908	904	900	892	836								
850	861	859	856	854	851	848	844	841	836	826								

Fig. 53. 2σ Clad Mid-Wall Temperatures at Mid-Plane

AXIAL DIST (IN) 2-SIGMA BUNDLE AVG H.W. 2-SIGMA PEAK H.W.
55.00 1063.2 1145.4

CLAD TEMPERATURES BY SUBCHANNEL

943	951	948	944	940	935	930	926	922	918	911									
951	1034	1044	1040	1034	1029	1023	1017	1010	993	919									
	1035	1074	1074	1068	1062	1056	1051	1044	1034	992									
956	1079	1107	1106	1100	1094	1087	1081	1074	1064	1029	919								
	1053	1110	1116	1111	1105	1098	1092	1085	1078	1061	1003								
960	1088	1122	1123	1117	1111	1104	1098	1091	1084	1072	1032	917							
	1058	1118	1126	1121	1115	1109	1102	1096	1089	1081	1063	1001							
964	1091	1127	1128	1122	1116	1109	1103	1097	1090	1083	1070	1029	915						
	1061	1121	1130	1125	1119	1113	1106	1100	1093	1087	1079	1060	999						
968	1095	1130	1131	1126	1119	1113	1106	1100	1094	1087	1080	1067	1026	913					
	1065	1125	1133	1129	1123	1116	1110	1103	1097	1090	1084	1075	1057	996					
971	1098	1133	1134	1129	1123	1116	1110	1103	1097	1090	1084	1077	1064	1023	911				
	1068	1128	1136	1132	1126	1119	1113	1107	1100	1094	1087	1081	1072	1054	994				
974	1101	1136	1138	1132	1126	1119	1113	1107	1100	1094	1087	1081	1074	1061	1020	909			
	1071	1131	1140	1135	1129	1123	1116	1110	1103	1097	1091	1084	1077	1069	1051	991			
976	1104	1140	1141	1136	1129	1123	1116	1110	1103	1097	1091	1084	1078	1070	1058	1017	908		
	1072	1134	1143	1139	1132	1126	1120	1113	1107	1100	1094	1087	1081	1074	1066	1047	987		
977	1101	1141	1144	1139	1132	1126	1120	1113	1107	1100	1094	1087	1081	1074	1067	1053	1010	908	
	1060	1132	1145	1142	1136	1129	1123	1116	1110	1104	1097	1091	1084	1078	1071	1062	1041	974	
968	1059	1132	1145	1142	1136	1129	1123	1116	1110	1104	1097	1091	1084	1078	1071	1062	1041	976	
	974	1101	1142	1144	1139	1133	1126	1120	1113	1107	1100	1094	1088	1081	1075	1067	1054	1012	914
976	1072	1138	1143	1139	1133	1126	1120	1113	1107	1100	1094	1088	1081	1074	1066	1048	991		
	976	1104	1140	1141	1136	1129	1123	1117	1110	1104	1097	1091	1084	1078	1071	1058	1019	917	
977	1072	1132	1140	1136	1129	1123	1117	1110	1104	1097	1091	1084	1078	1070	1052	995			
	977	1102	1137	1138	1133	1126	1120	1113	1107	1101	1094	1088	1081	1074	1061	1023	919		
978	1071	1129	1137	1133	1126	1120	1113	1107	1101	1094	1088	1081	1073	1055	997				
	978	1100	1134	1135	1129	1123	1117	1110	1104	1097	1091	1084	1077	1071	1065	1026	921		
978	1069	1126	1134	1129	1123	1117	1110	1104	1097	1091	1084	1076	1058	1000					
	978	1097	1131	1132	1126	1120	1114	1107	1101	1094	1088	1080	1068	1028	923				
977	1066	1123	1130	1126	1120	1113	1107	1101	1094	1088	1079	1061	1003						
	977	1094	1128	1128	1123	1117	1110	1104	1097	1091	1084	1071	1031	925					
976	1068	1119	1127	1122	1116	1109	1103	1097	1090	1082	1064	1005							
	976	1091	1123	1124	1118	1111	1105	1099	1092	1085	1073	1034	927						
975	1060	1112	1117	1112	1106	1100	1093	1087	1079	1063	1007								
	975	1083	1109	1107	1102	1095	1089	1083	1076	1066	1032	929							
971	1043	1077	1077	1072	1067	1061	1055	1049	1039	998									
	971	1040	1049	1046	1041	1036	1031	1026	1019	1002	931								
961	963	961	959	956	953	949	945	940	931	930									

Fig. 54. 2σ Clad Mid-Wall Temperatures at the Top of Core

AXIAL DIST (IN) 2-SIGMA BUNDLE AVG M.W. 2-SIGMA PEAK M.W.
 70.00 1024.7 1101.6

CLAD TEMPERATURE BY SUBCHANNEL

924 926 924 920 916 912 908 905 902 899 899
 926 973 986 984 980 975 970 965 958 940 901
 974 1009 1013 1009 1004 999 993 987 975 940
 930 1013 1049 1052 1048 1042 1037 1031 1024 1011 973 901
 993 1051 1065 1062 1057 1051 1045 1039 1031 1009 953
 935 1025 1070 1078 1075 1069 1063 1057 1051 1043 1026 978 900
 1000 1063 1081 1080 1075 1069 1063 1057 1050 1040 1014 953
 939 1029 1077 1086 1083 1077 1071 1065 1059 1053 1045 1026 977 899
 1004 1067 1086 1086 1081 1075 1069 1063 1057 1050 1039 1013 952
 943 1033 1080 1090 1087 1081 1075 1069 1063 1057 1051 1042 1023 974 898
 1007 1070 1090 1090 1084 1079 1072 1066 1060 1054 1048 1037 1010 949
 947 1036 1083 1093 1090 1085 1079 1073 1067 1061 1054 1048 1039 1020 972 897
 1010 1074 1093 1093 1088 1082 1076 1070 1064 1058 1051 1045 1034 1007 947
 950 1039 1086 1096 1093 1088 1082 1076 1070 1064 1058 1052 1045 1037 1018 969 896
 1013 1076 1096 1096 1091 1085 1079 1073 1067 1061 1055 1048 1042 1031 1005 945
 953 1040 1089 1099 1096 1091 1085 1079 1073 1067 1061 1055 1049 1042 1034 1015 966 897
 1013 1078 1099 1099 1094 1088 1082 1076 1070 1064 1058 1052 1046 1039 1028 1001 942
 953 1034 1088 1101 1099 1094 1088 1082 1076 1070 1064 1058 1052 1046 1039 1030 1009 958 898
 998 1072 1099 1101 1097 1091 1085 1079 1073 1067 1061 1055 1049 1043 1035 1023 992 929
 951 997 1072 1099 1102 1097 1091 1085 1079 1073 1067 1061 1055 1049 1043 1034 1015 966 901
 952 1034 1088 1102 1099 1094 1088 1082 1076 1070 1064 1058 1052 1046 1039 1028 1001 960 908
 1013 1078 1099 1099 1094 1088 1082 1076 1070 1064 1058 1052 1046 1039 1028 1002 947
 954 1041 1089 1099 1097 1091 1085 1079 1073 1067 1061 1055 1049 1042 1034 1015 970 907
 1015 1077 1096 1096 1091 1085 1079 1073 1067 1061 1055 1049 1042 1031 1006 951
 956 1041 1087 1097 1094 1088 1082 1076 1070 1064 1058 1052 1045 1037 1019 974 910
 1015 1075 1093 1093 1088 1082 1076 1070 1064 1058 1052 1045 1034 1009 954
 958 1039 1084 1094 1091 1085 1079 1073 1067 1061 1055 1049 1040 1022 976 912
 1014 1073 1091 1090 1085 1079 1073 1067 1061 1055 1048 1043 1037 1012 956
 959 1038 1082 1091 1088 1082 1076 1070 1064 1058 1052 1043 1025 979 914
 1013 1070 1087 1087 1082 1076 1070 1064 1058 1051 1040 1015 959
 960 1035 1078 1087 1084 1078 1072 1066 1060 1054 1045 1027 981 916
 1011 1066 1082 1081 1076 1070 1064 1058 1051 1041 1016 961
 960 1032 1073 1080 1076 1070 1064 1058 1052 1044 1027 983 918
 1006 1055 1067 1065 1059 1054 1048 1042 1033 1012 961
 959 1022 1052 1055 1051 1046 1040 1035 1028 1015 979 920
 989 1017 1020 1017 1012 1008 1003 997 985 952
 956 986 997 996 993 989 985 980 973 956 923
 953 949 948 946 944 942 939 936 931 923 928

Fig. 55. 2σ Clad Mid-Wall Temperatures at the Outlet

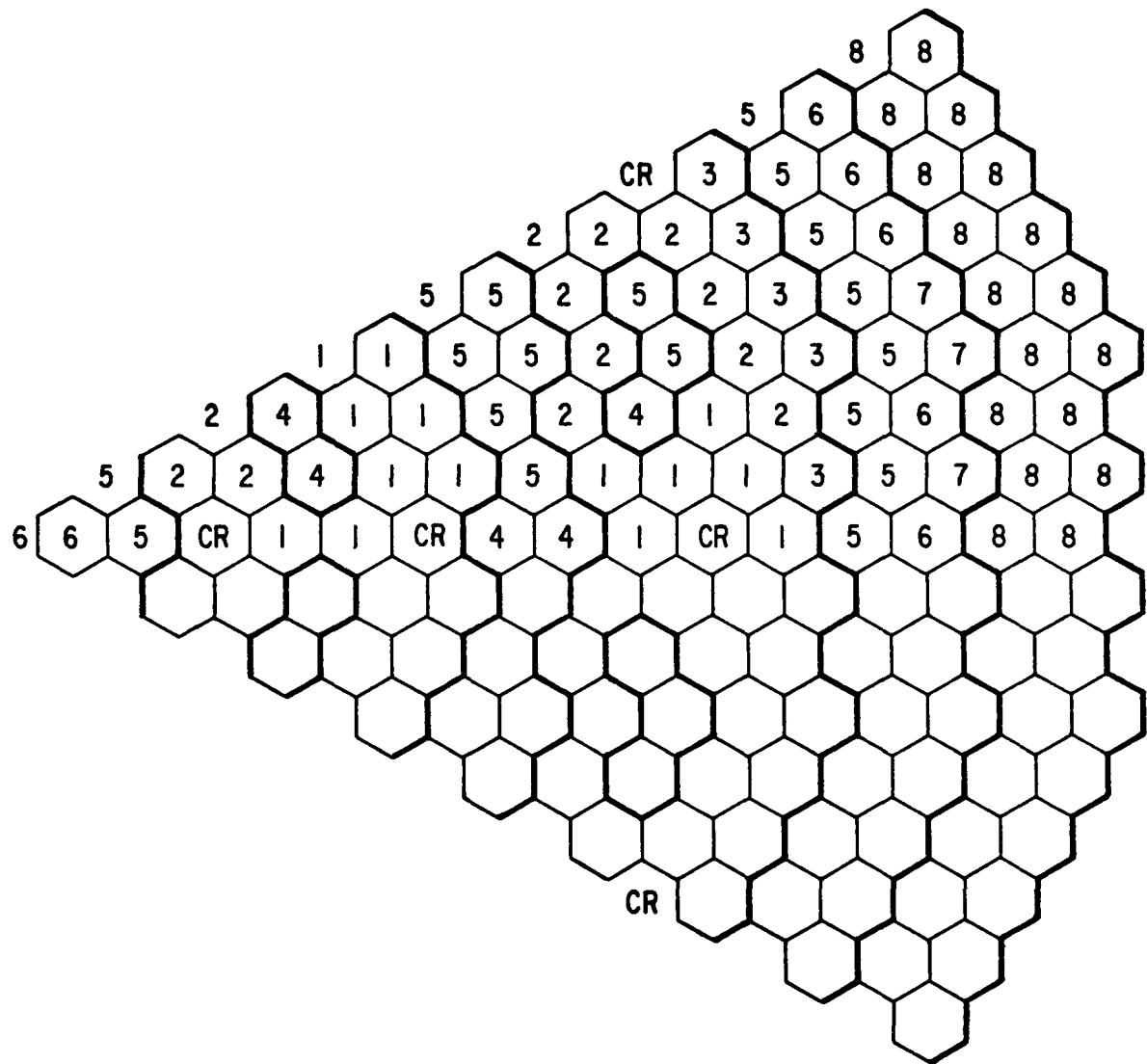


Fig. 56. Orificing Scheme of Configuration A with Equal Peak Clad Temperature at EOEC

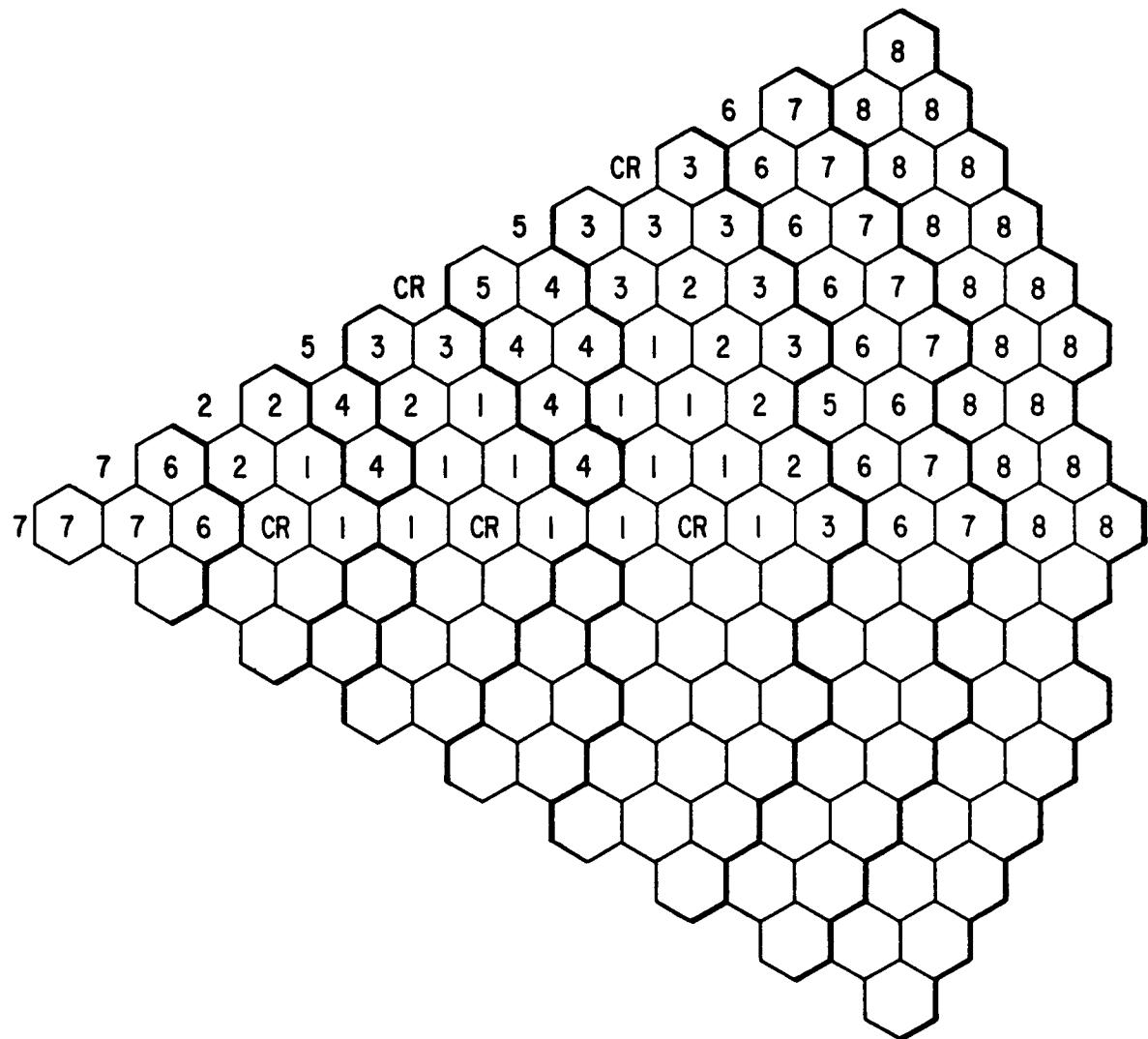


Fig. 57. Orificing Scheme of Configuration B with Equal Peak Clad Temperatures at BOL in the Core and at EOL in the Internal Blankets

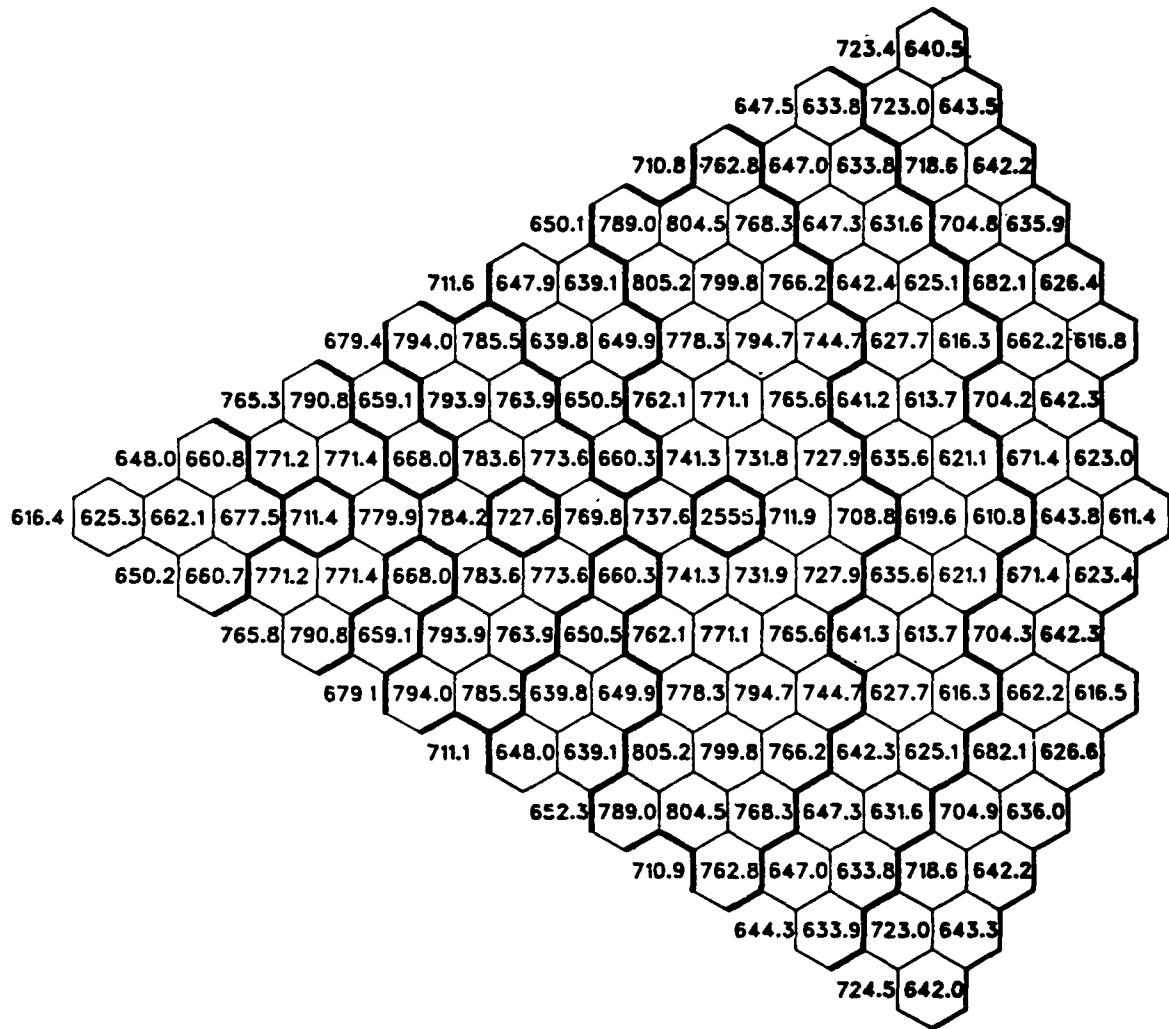


Fig. 58. Configuration B BOL Average Coolant Temperature at Core Mid-Plane (Orificed for Minimum Peak Temperature)

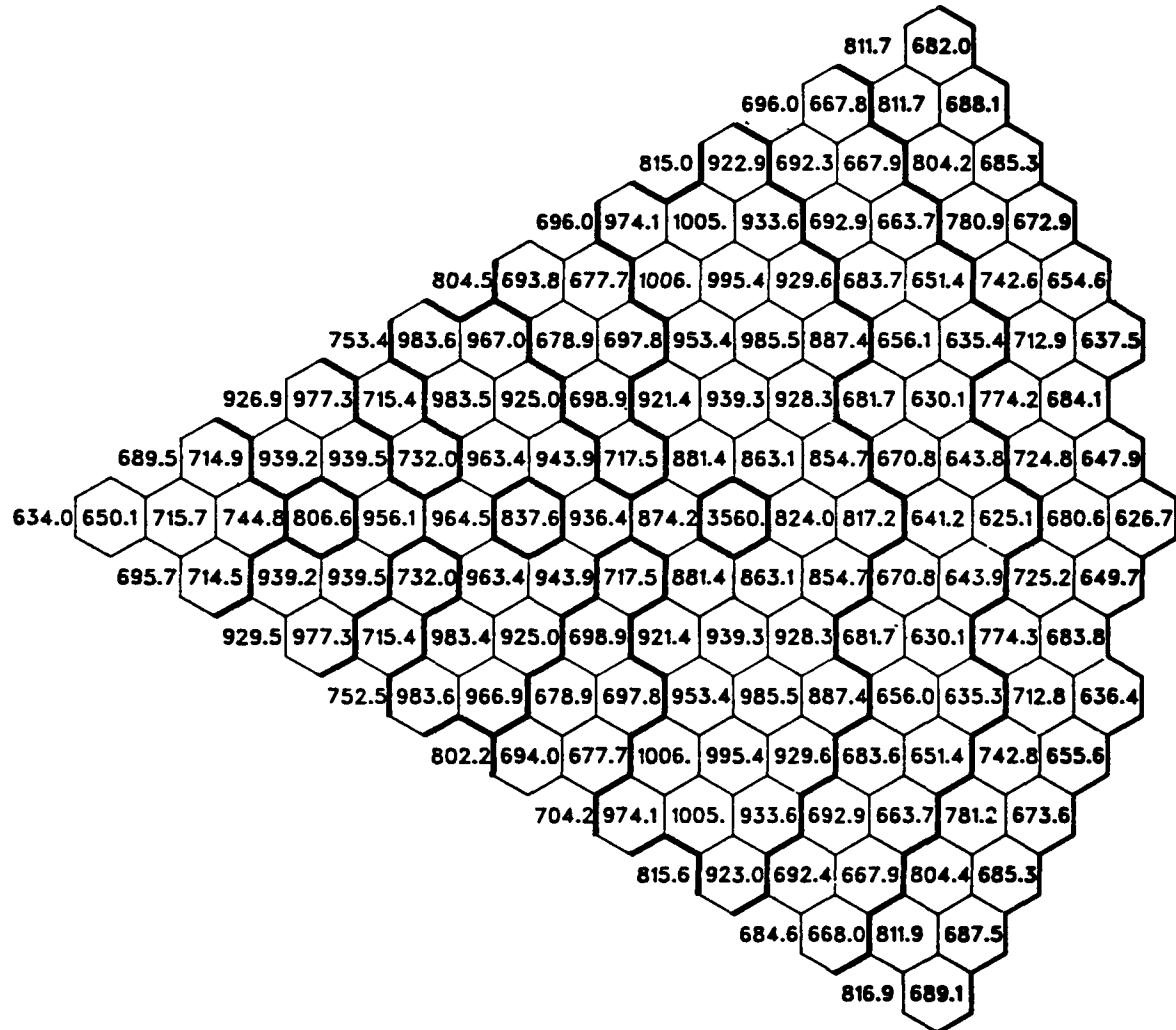


Fig. 59. Configuration B BOL Average Coolant Temperature at Top of Core (Orificed for Minimum Peak Temperature)

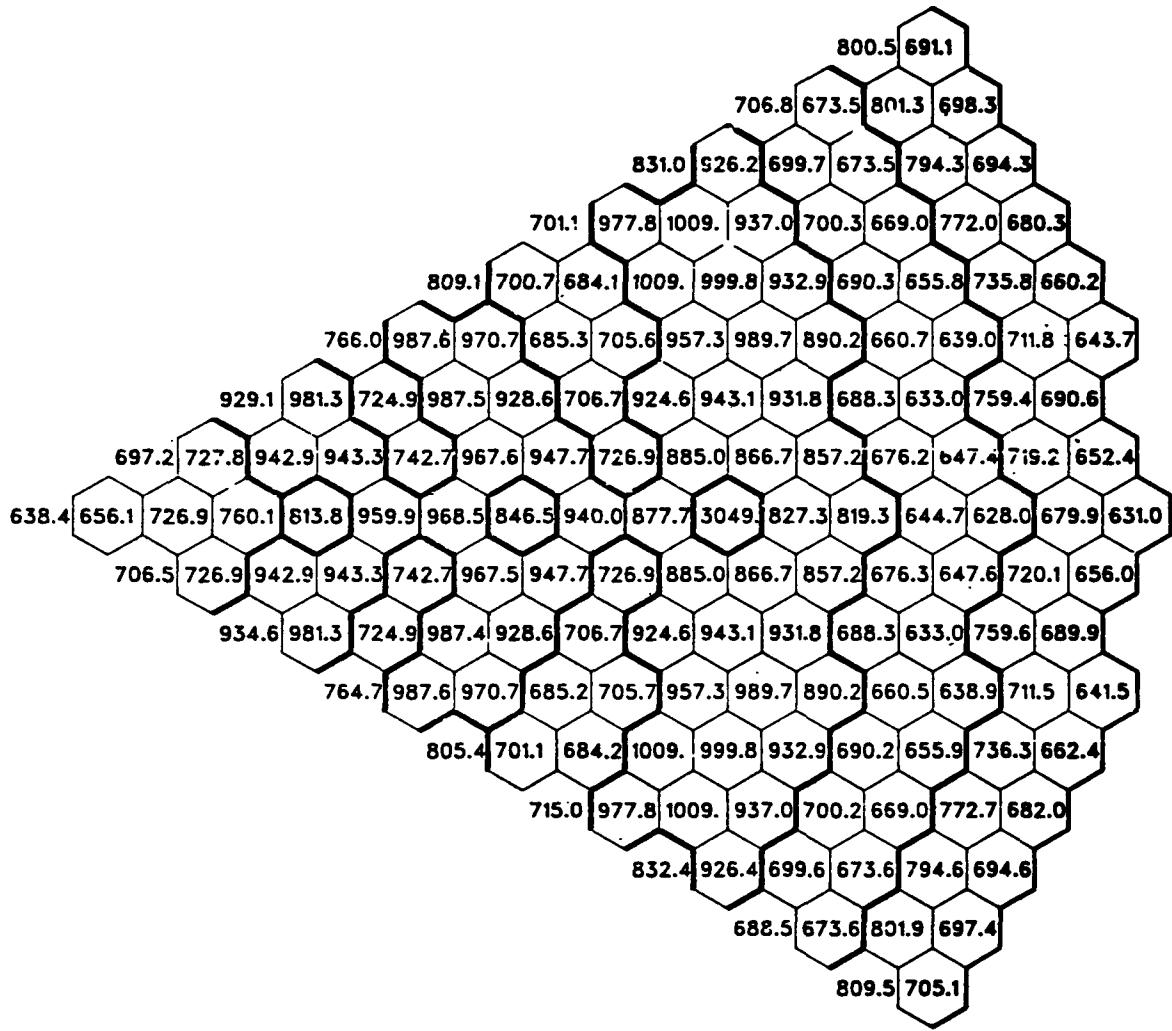


Fig. 60. Configuration B BOL Average Coolant Temperature at Outlet (Orificed for Minimum Peak Temperature)

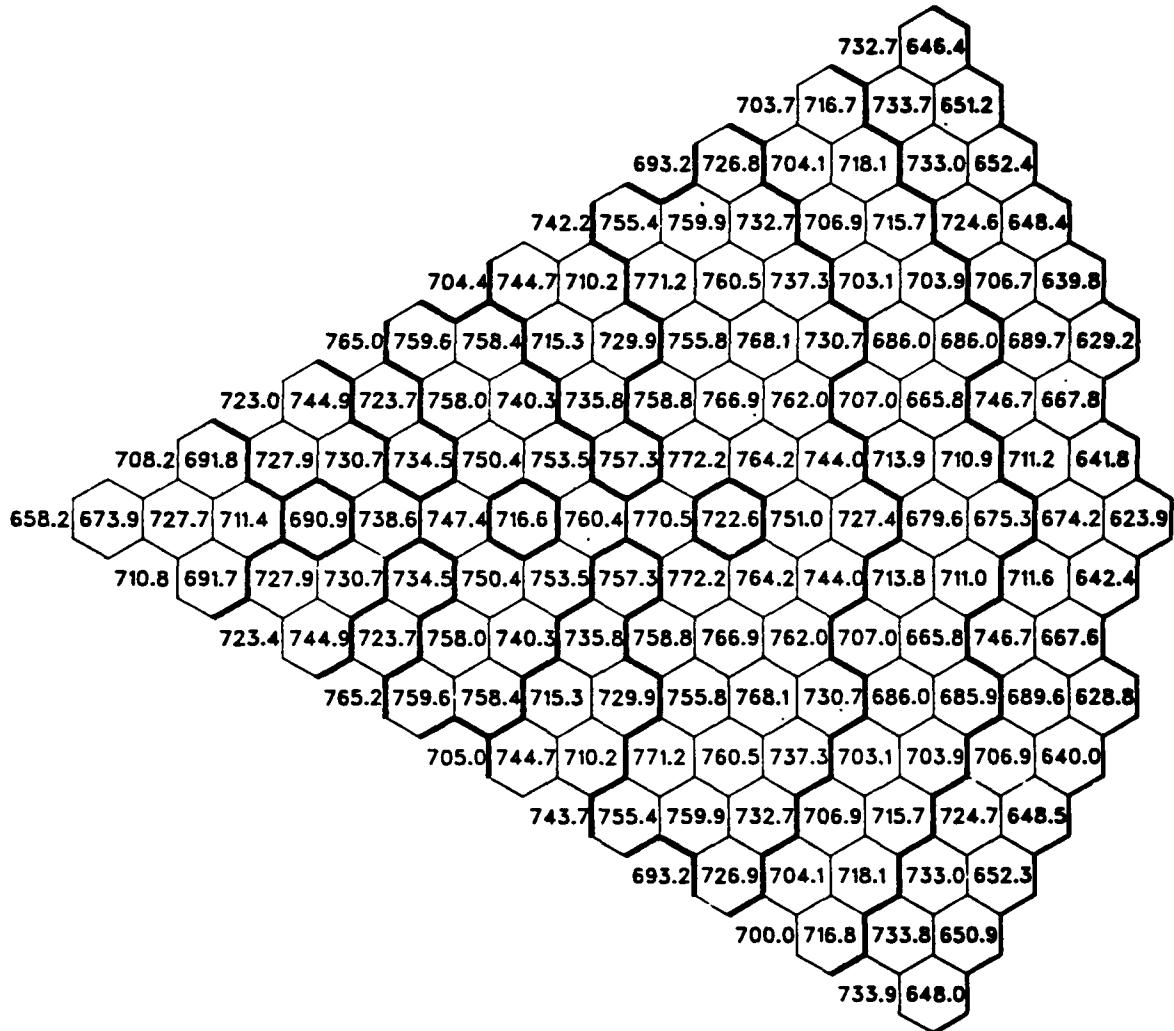


Fig. 61. Configuration B EOEC Average Coolant Temperature at Core Mid-Plane (Orificed for Minimum Peak Temperature)

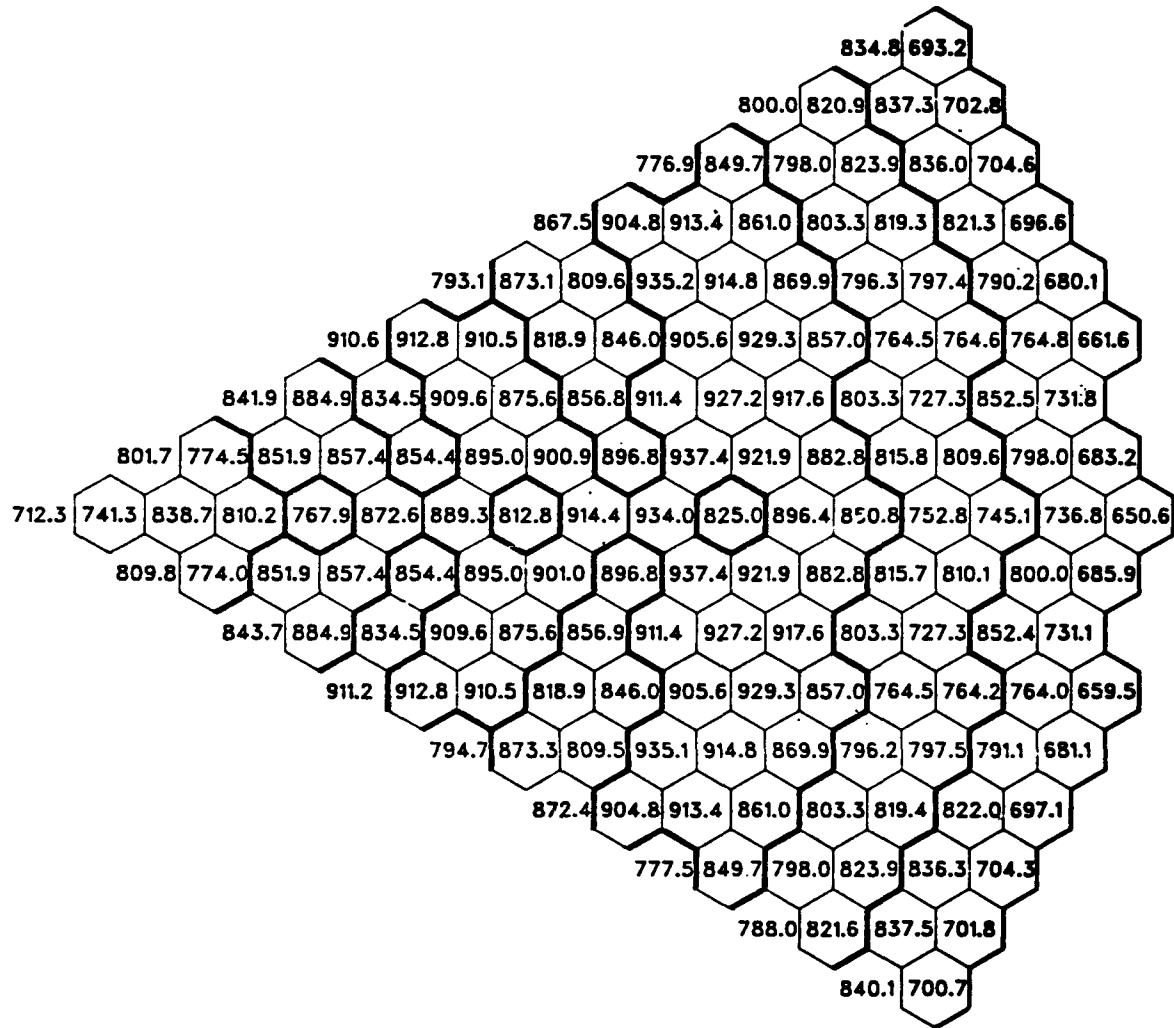


Fig. 62. Configuration B EOEC Average Coolant Temperature at Top of Core (Orificed for Minimum Peak Temperature)

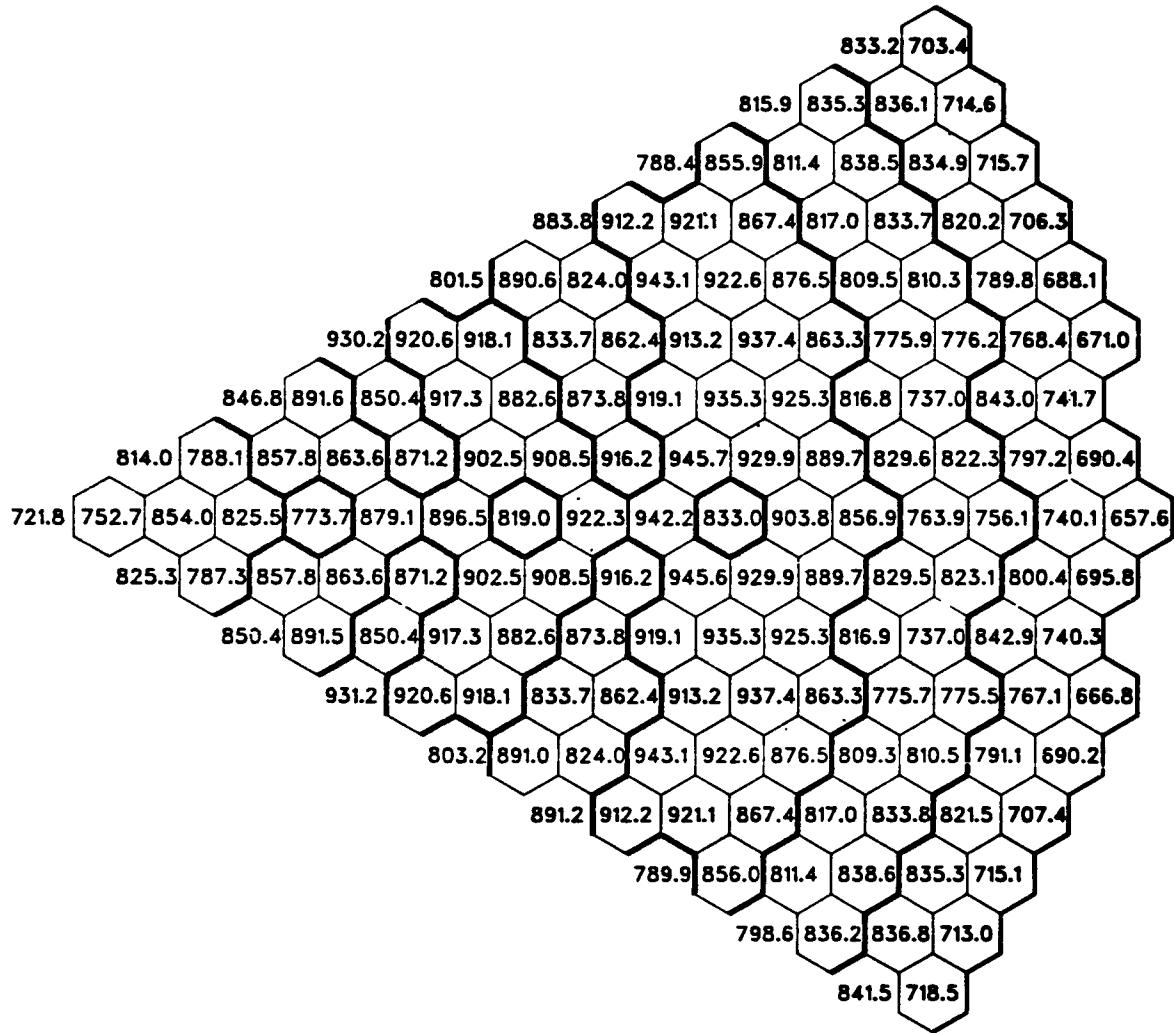


Fig. 63. Configuration B EOEC Average Coolant Temperature at Outlet (Orificed for Minimum Peak Temperature)

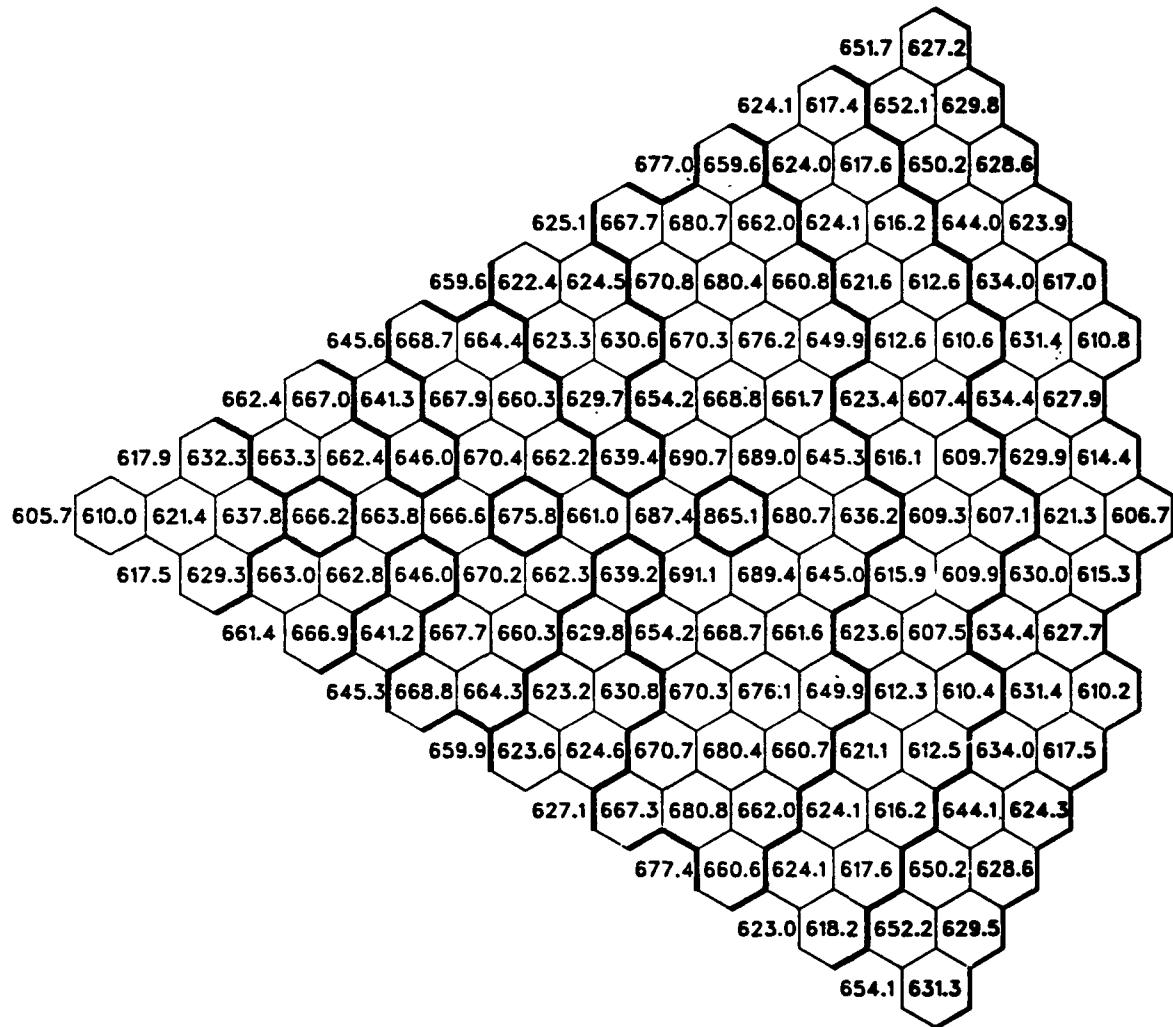


Fig. 64. Configuration B BOL Average Duct Wall Temperature at Core Mid-Plane (Orificed for Minimum Peak Temperature)

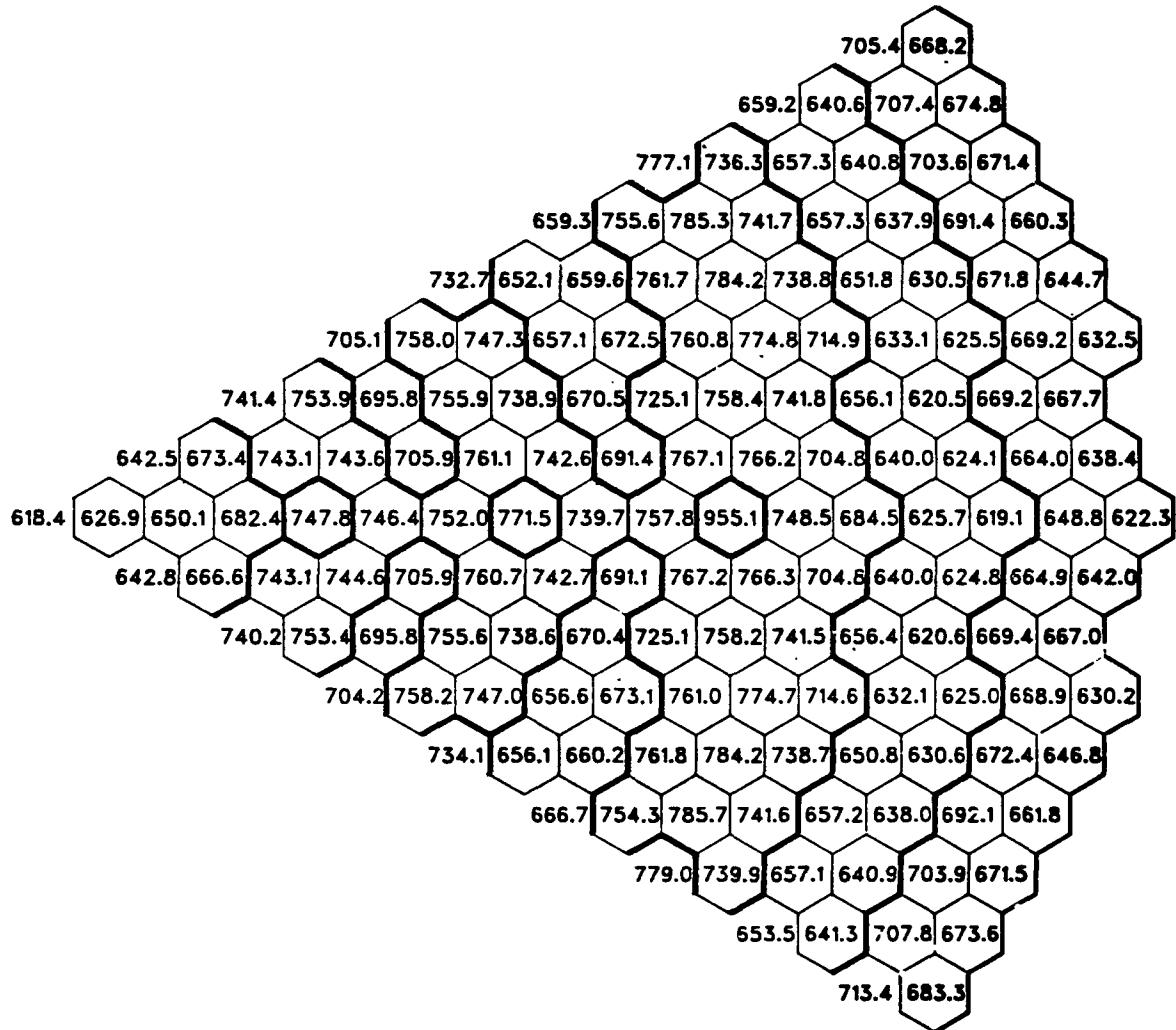


Fig. 65. Configuration B BOL Average Duct Wall Temperature at Top of Core (Orificed for Minimum Peak Temperature)

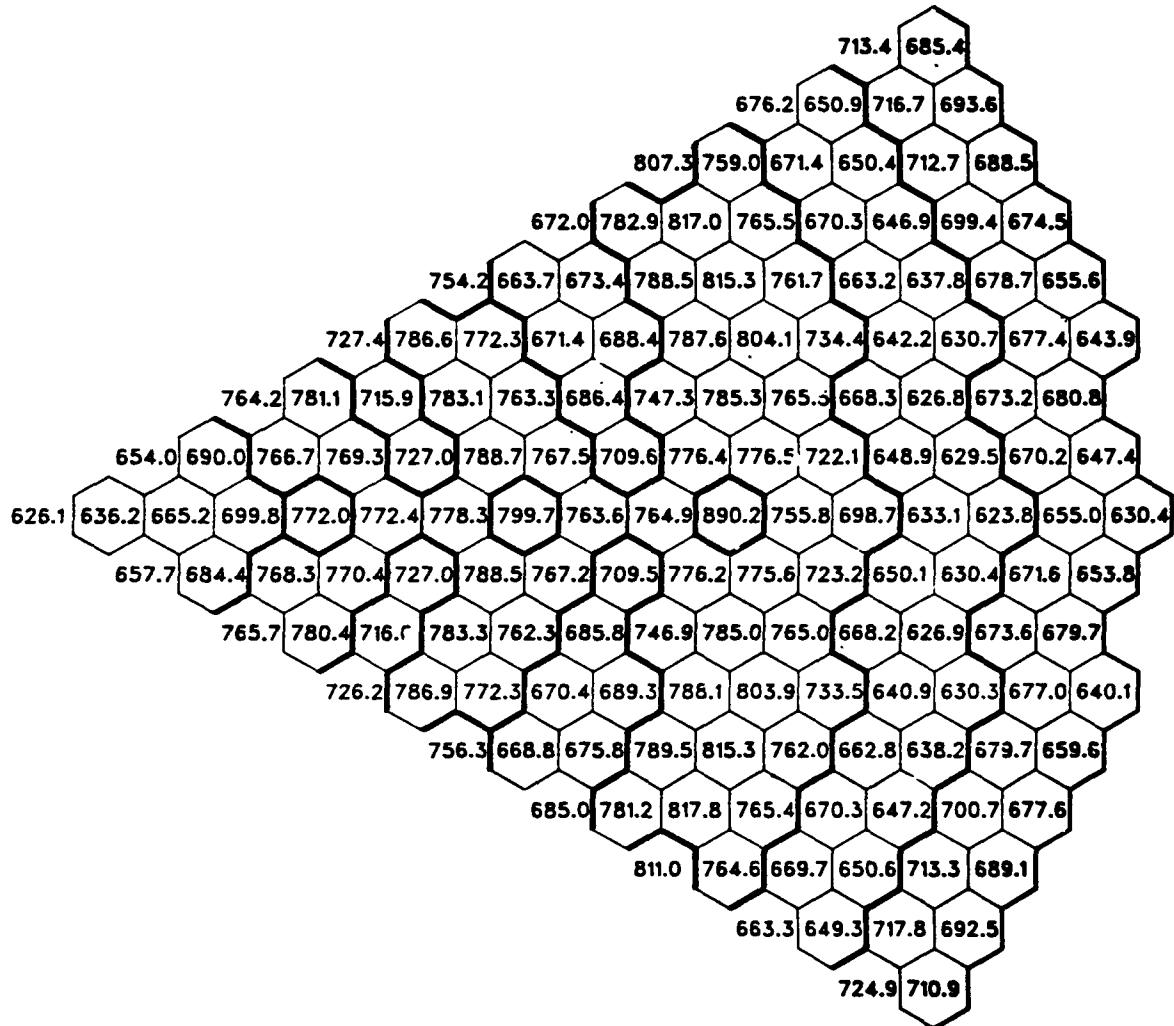


Fig. 66. Configuration B BOL Average Duct Wall Temperature at Outlet (Orificed for Minimum Peak Temperature)

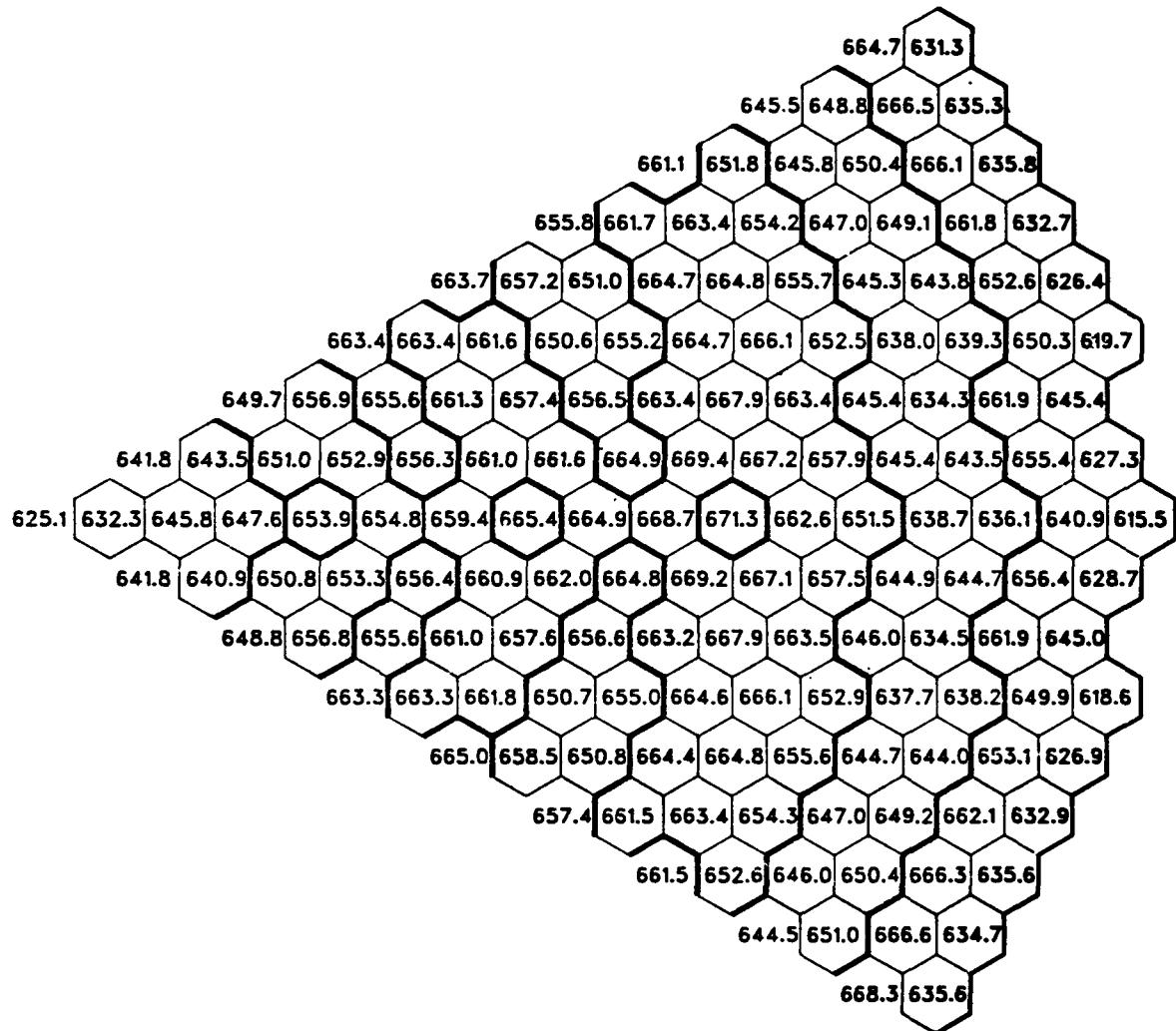


Fig. 67. Configuration B EOEC Average Duct Wall Temperature at Core Mid-Plane (Orificed for Minimum Peak Temperature)

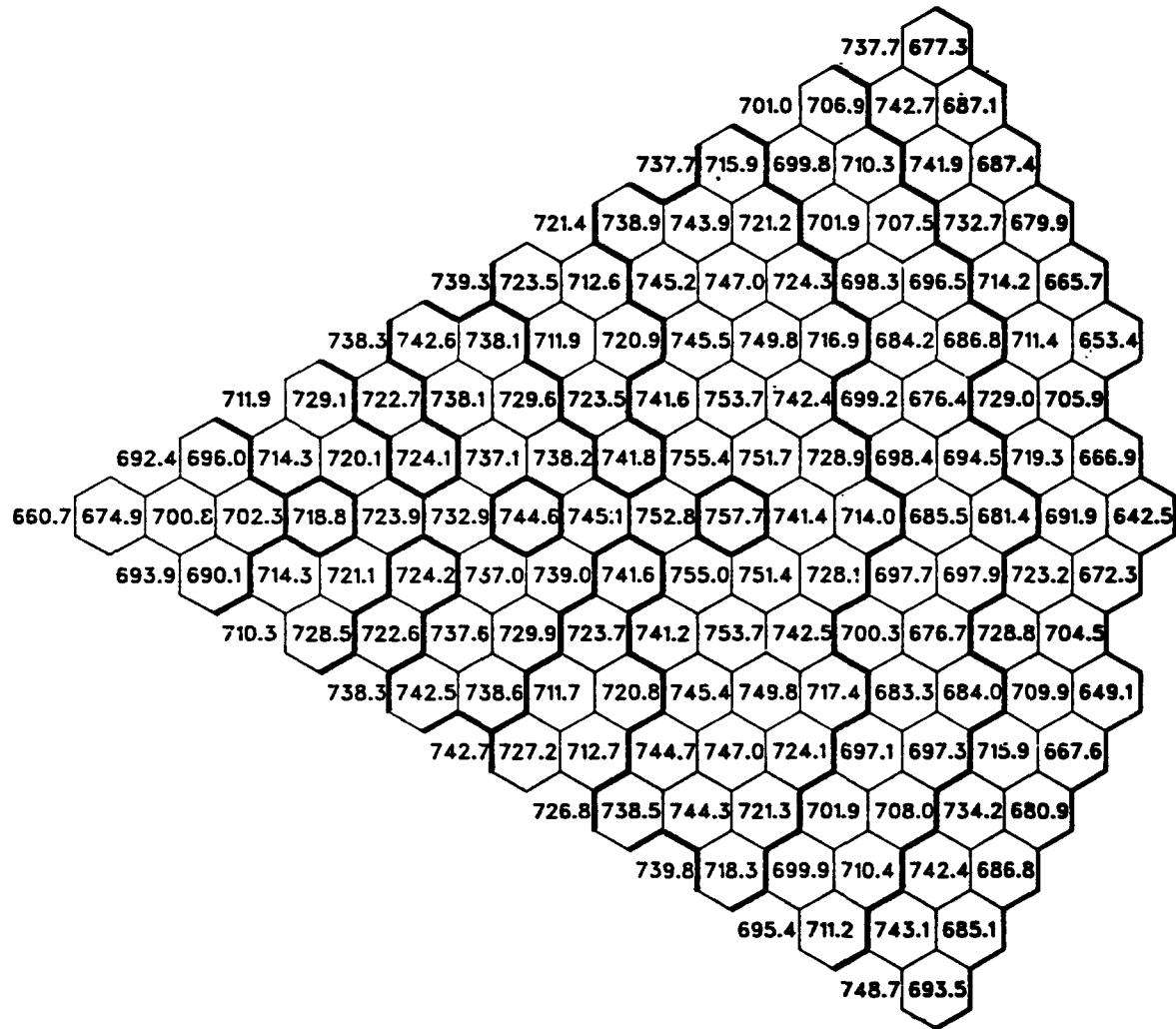


Fig. 68. Configuration B EOEC Average Duct Wall Temperature at Top of Core (Orificed for Minimum Peak Temperature)

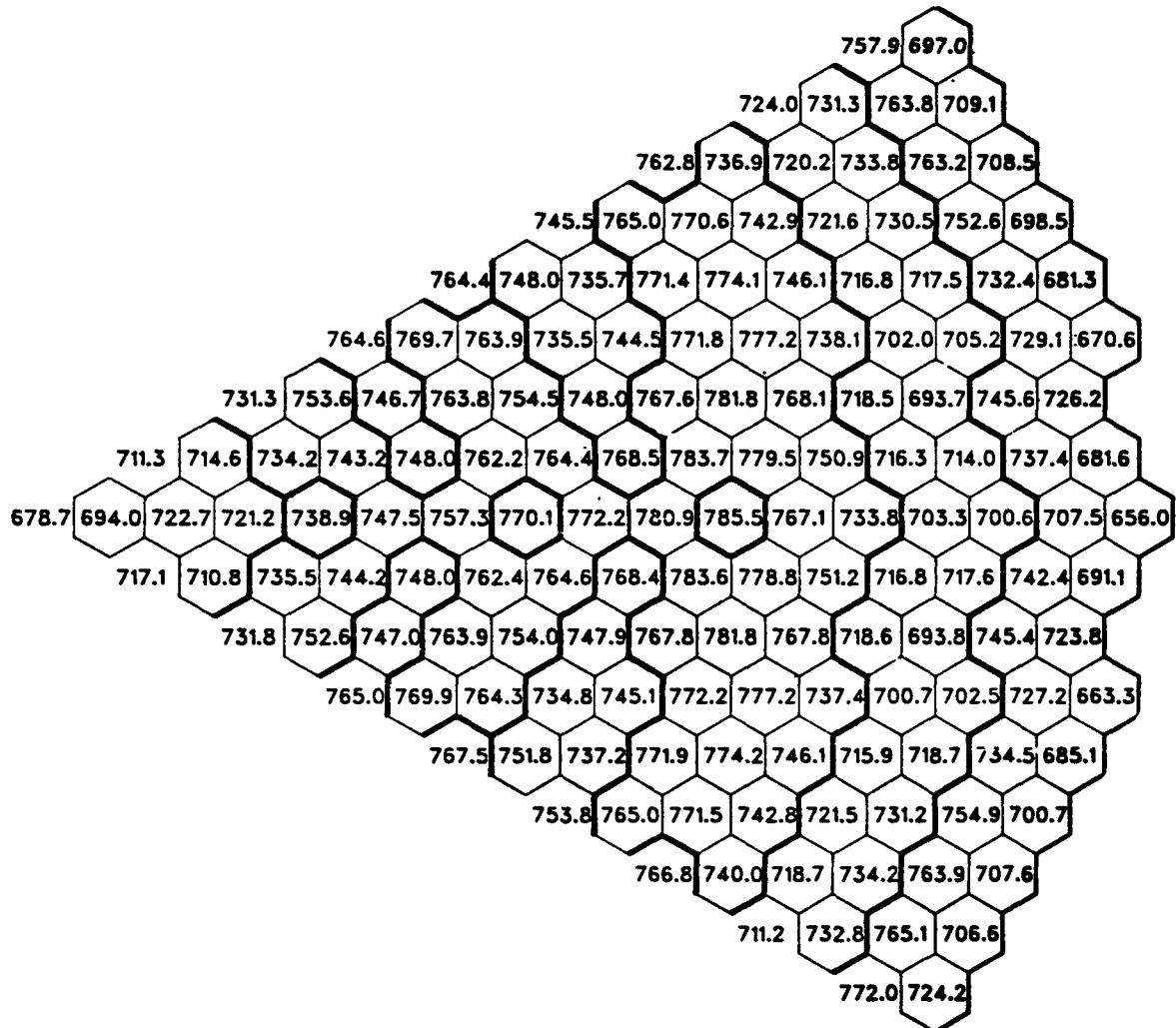


Fig. 69. Configuration B EOEC Average Duct Wall Temperature at Outlet (Orificed for Minimum Peak Temperature)

AXIAL DIST (IN) SSTAN ALPSTA AVERAGE TEMP AVERAGE WALL TEMP
34.00 1.4167E-02 1.2391E-03 776.6 709.0

COOLANT TEMPERATURE BY SUBCHANNEL

712 714 713 712 711 710 709 708 707 705 704 702
 713 778 780 778 777 775 774 772 770 769 768 764 704
 778 794 793 791 789 788 786 784 783 780 763
 715 795 801 800 798 796 794 793 791 789 787 779 704
 783 802 802 800 798 796 795 793 791 789 786 766
 716 797 803 802 800 798 797 795 793 791 789 787 778 703
 783 803 803 801 799 797 796 794 792 790 788 785 765
 716 797 804 803 801 799 797 795 794 792 790 788 786 777 703
 784 804 803 802 800 798 796 794 793 791 789 787 784 764
 717 798 805 803 801 800 798 796 794 793 791 789 787 785 776 702
 785 804 804 802 800 799 797 795 793 792 790 788 786 783 763
 717 799 805 804 802 800 798 797 795 793 791 790 788 786 784 775 701
 785 805 805 803 801 799 798 796 794 793 791 790 788 787 785 782 762
 718 799 806 805 803 801 799 797 796 794 792 790 788 787 785 783 774 701
 786 806 805 804 802 800 798 796 795 793 791 789 787 786 784 781 761
 718 800 807 805 803 802 800 798 796 794 793 791 789 787 786 784 782 773 700
 786 806 806 804 802 801 799 797 795 793 792 790 788 786 785 783 780 760
 719 800 807 806 804 802 800 799 797 795 793 791 790 788 786 784 783 780 771 699
 787 807 807 805 803 801 799 798 796 794 792 791 789 787 785 783 782 778 758
 719 800 808 806 805 803 801 799 797 796 794 792 790 789 787 785 783 781 779 770 698
 784 807 807 806 804 802 800 798 797 795 793 791 789 787 785 783 782 780 777 754 698
 716 783 807 807 805 804 802 800 798 796 795 793 791 789 787 786 784 782 780 777 755
 717 800 807 806 804 803 801 799 797 795 793 791 790 788 786 785 783 781 779 770 700
 786 806 806 804 802 801 799 797 795 793 792 790 788 786 784 783 781 778 758
 718 800 806 805 803 801 800 798 796 794 792 791 789 787 785 783 782 780 771 700
 785 805 805 803 801 799 798 796 794 792 790 789 787 785 783 782 778 759
 718 799 805 804 802 800 798 797 795 793 791 789 788 786 784 782 780 771 701
 785 804 804 802 800 798 796 795 793 791 789 788 786 784 782 780 779 759
 718 797 804 803 801 799 797 795 793 791 789 788 786 784 782 780 772 701
 784 803 802 801 799 797 795 794 792 790 788 786 785 783 781 778 760
 717 796 803 801 800 798 796 794 793 791 789 787 785 783 781 773 702
 783 802 801 800 798 796 794 792 791 789 787 785 783 780 760
 717 795 802 800 799 797 795 793 791 790 788 786 784 782 773 702
 782 800 800 798 797 795 793 791 789 788 786 784 781 761
 716 794 800 799 797 795 793 791 789 788 786 784 783 774 774 702
 780 799 799 797 795 794 792 790 788 787 785 782 762
 716 793 799 798 796 794 793 791 789 787 785 783 774 702
 779 798 797 796 794 792 790 789 787 785 782 762
 715 791 797 795 794 792 790 788 787 785 783 774 702
 775 789 788 787 785 783 782 780 778 776 774 759
 714 774 776 775 773 771 770 768 767 765 760 760 702
 712 712 711 711 710 709 708 707 706 705 702 702

Fig. 70. Coolant Temperature at Midplane

AXIAL DIST (IN) 27718 ALPSTA AVERAGE TEMP AVERAGE WALL TEMP
 52.00 2.1667E 02 1.1723E-03 956.3 843.6

COOLANT TEMPERATURE BY SUBCHANNEL

848	851	850	848	845	843	940	838	835	832	830	829
850	933	942	940	937	934	931	928	924	920	907	831
	933	969	969	966	963	960	956	953	950	983	906
852	971	995	995	991	988	984	981	977	974	968	940
	946	997	1002	999	995	992	988	985	981	977	966
855	976	1005	1006	1002	999	995	992	988	984	981	973
	949	1001	1007	1005	1001	998	994	990	987	983	979
857	978	1007	1008	1005	1001	998	994	990	987	983	979
	951	1002	1009	1006	1003	999	996	992	989	985	981
859	979	1008	1009	1006	1003	999	995	992	988	985	981
	952	1004	1010	1008	1004	1001	997	993	990	986	983
861	981	1009	1011	1007	1004	1000	997	993	989	986	982
	953	1005	1011	1009	1005	1002	998	995	991	988	984
862	982	1011	1012	1009	1005	1002	998	994	991	987	984
	955	1006	1013	1010	1007	1003	1000	996	992	989	985
863	983	1012	1013	1010	1006	1003	999	996	992	988	985
	956	1007	1014	1012	1008	1004	1001	997	994	990	987
864	984	1013	1010	1008	1004	1000	997	993	990	986	983
	956	1008	1015	1013	1009	1006	1002	999	995	991	988
863	981	1018	1016	1013	1009	1005	1002	998	995	991	987
	945	1007	1016	1014	1011	1007	1003	1000	996	993	989
860	984	1006	1016	1014	1010	1007	1003	999	996	992	989
	960	980	1013	1015	1012	1008	1005	1001	997	994	990
862	985	1012	1013	1010	1006	1002	999	995	992	988	985
	954	1007	1014	1011	1008	1004	1001	997	994	990	986
862	983	1012	1013	1010	1006	1002	999	995	992	988	984
863	981	1005	1012	1009	1006	1002	998	995	991	988	984
	955	1009	1010	1007	1004	1000	996	993	989	986	982
863	983	1003	1009	1007	1003	1000	996	993	989	985	982
	979	1007	1008	1005	1001	998	994	991	987	983	980
863	981	1001	1007	1005	1001	997	994	990	987	983	979
	977	1005	1006	1003	999	995	992	988	985	981	978
862	980	1002	1003	1000	997	994	990	987	983	980	976
	950	999	1005	1002	999	995	992	988	984	981	977
862	975	1002	1003	1000	997	994	990	986	982	979	975
	988	996	1002	1000	996	993	989	986	982	978	975
862	973	1000	1001	998	994	991	987	984	980	976	972
	946	994	1000	997	994	990	986	983	979	976	971
861	971	997	998	995	991	987	984	980	977	973	966
	943	989	993	991	987	984	980	976	973	969	958
859	965	987	986	983	980	976	973	969	966	960	933
	930	961	962	959	956	953	950	946	943	936	901
857	928	936	934	932	929	926	923	920	917	903	831
	853	851	850	849	848	846	845	843	841	837	831
	834										

Fig. 71. Coolant Temperatures at Top of Core

AXIAL DIST (IN) 2.8333E 02 ALPESTA 1.1696E-03 AVERAGE TEMP 960.7 AVERAGE WALL TEMP 872.2

COOLANT TEMPERATURE BY SUBCHANNEL

874	876	875	873	870	867	864	862	859	857	855	855
875	917	929	929	926	923	920	916	913	908	894	857
918	949	953	951	948	945	941	938	934	925	893	
878	951	983	986	984	980	977	974	970	966	956	857
933	984	996	995	992	988	985	981	978	972	955	905
880	960	999	1006	1004	1001	997	993	990	986	981	968
937	992	1008	1008	1004	1001	997	994	990	986	979	959
883	962	1003	1011	1009	1006	1002	998	995	991	987	982
939	994	1011	1011	1008	1004	1000	997	993	989	985	978
885	964	1004	1013	1011	1008	1005	1000	997	993	989	986
941	996	1012	1012	1009	1006	1002	998	995	991	987	983
888	965	1006	1014	1012	1009	1005	1002	998	994	991	987
942	997	1013	1014	1010	1007	1003	1000	996	992	989	985
890	966	1007	1015	1014	1010	1007	1003	999	996	992	988
944	999	1015	1015	1012	1008	1005	1001	997	994	990	986
892	968	1008	1017	1015	1011	1008	1004	1001	997	993	990
945	1000	1016	1016	1013	1010	1006	1002	999	995	991	988
893	968	1009	1018	1016	1013	1009	1006	1002	998	995	991
946	1000	1017	1018	1014	1011	1007	1004	1000	996	993	989
892	962	1008	1019	1017	1014	1010	1007	1003	1000	996	992
930	994	1017	1015	1016	1012	1008	1005	1001	998	994	990
890	930	998	1017	1018	1015	1012	1008	1004	1001	997	994
890	961	1008	1018	1017	1013	1010	1006	1002	999	995	992
892	999	1016	1016	1013	1009	1006	1002	998	995	991	988
891	967	1008	1016	1014	1011	1007	1004	1000	996	993	989
894	998	1014	1014	1011	1007	1003	1000	996	993	989	985
892	966	1006	1014	1012	1009	1005	1001	998	994	991	987
893	965	1004	1012	1010	1006	1003	999	995	992	988	985
892	998	1009	1009	1006	1002	999	995	991	988	984	981
893	963	1002	1009	1007	1004	1000	997	993	989	986	982
891	992	1007	1007	1004	1000	996	993	989	986	982	978
893	962	999	1007	1005	1002	998	994	991	987	983	980
890	989	1008	1004	1004	1001	997	994	990	987	983	979
893	960	997	1004	1002	999	995	992	988	984	981	975
893	957	992	999	996	993	989	986	982	979	974	961
893	954	978	989	987	984	981	977	974	970	965	968
892	949	976	979	977	973	970	967	963	959	950	919
889	919	985	985	987	987	984	981	981	981	981	862
889	917	927	927	925	923	920	918	915	910	895	864
887	883	882	881	880	879	877	876	873	870	864	867

Fig. 72. Coolant Temperatures at Outlet

AXIAL DIST (IN) 2-SIGMA BUNDLE AVG B.W. 2-SIGMA PEAK B.W.
 52.00 1088.7 1164.5

CLAD TEMPERATURE BY SUBCHANNEL

51-70

957 966 965 961 958 954 951 947 943 940 936 929
 965 1062 1073 1070 1066 1062 1057 1053 1049 1043 1026 938
 1063 1106 1106 1102 1097 1093 1089 1084 1079 1070 1026
 968 1109 1138 1137 1132 1128 1123 1118 1114 1109 1101 1067 937
 1079 1140 1145 1142 1137 1132 1127 1123 1118 1112 1098 1037
 972 1115 1150 1150 1146 1141 1136 1132 1127 1122 1117 1107 1068 935
 1082 1145 1152 1149 1148 1139 1135 1130 1125 1120 1114 1099 1035
 975 1118 1152 1153 1149 1144 1139 1135 1130 1125 1120 1115 1105 1066 933
 1084 1147 1155 1151 1146 1142 1137 1132 1127 1122 1119 1112 1096 1032
 977 1119 1158 1155 1151 1146 1141 1136 1132 1127 1122 1117 1112 1102 1063 931
 1086 1149 1156 1153 1148 1143 1139 1134 1129 1124 1119 1115 1108 1093 1030
 979 1121 1156 1157 1153 1148 1143 1138 1133 1129 1124 1119 1114 1109 1099 1060 929
 1088 1151 1158 1155 1150 1145 1140 1136 1131 1126 1121 1116 1111 1105 1090 1027
 981 1123 1158 1159 1158 1149 1145 1140 1135 1130 1125 1121 1116 1111 1106 1096 1057 927
 1090 1152 1160 1156 1152 1147 1142 1137 1132 1128 1123 1118 1113 1108 1102 1087 1024
 983 1124 1159 1160 1156 1151 1146 1142 1137 1132 1127 1122 1118 1113 1108 1103 1093 1054 925
 1091 1154 1162 1158 1153 1149 1144 1139 1134 1129 1125 1120 1115 1110 1105 1099 1084 1022
 984 1126 1161 1162 1158 1153 1148 1143 1138 1134 1129 1124 1119 1115 1110 1105 1100 1090 1051 923
 1091 1155 1163 1160 1155 1150 1145 1141 1136 1131 1126 1121 1117 1112 1107 1102 1096 1081 1018
 983 1122 1162 1168 1159 1155 1150 1145 1140 1135 1131 1126 1121 1116 1111 1107 1102 1096 1044 922
 1078 1153 1168 1162 1157 1152 1147 1142 1138 1133 1128 1123 1118 1114 1109 1108 1099 1093 1075 1004 917
 973 1077 1153 1168 1161 1156 1152 1147 1142 1137 1132 1128 1123 1118 1113 1108 1104 1099 1092 1074 1005
 979 1121 1161 1163 1159 1154 1149 1144 1139 1134 1130 1125 1120 1115 1111 1106 1101 1096 1085 1045 927
 1089 1158 1161 1153 1148 1144 1139 1134 1129 1124 1120 1115 1110 1105 1100 1094 1079 1019
 981 1124 1155 1160 1155 1151 1146 1141 1136 1131 1127 1122 1117 1112 1107 1103 1097 1088 1050 929
 1089 1151 1158 1155 1150 1145 1141 1136 1131 1126 1121 1117 1112 1107 1102 1096 1081 1021
 981 1122 1156 1157 1152 1148 1143 1138 1133 1128 1124 1119 1114 1109 1108 1099 1089 1052 930
 1087 1148 1155 1152 1147 1142 1137 1133 1128 1123 1118 1113 1109 1104 1098 1083 1023
 982 1119 1153 1154 1149 1144 1140 1135 1130 1125 1120 1116 1111 1106 1101 1091 1054 931
 1085 1145 1152 1149 1144 1139 1134 1130 1125 1120 1115 1110 1105 1100 1084 1026
 981 1116 1150 1150 1146 1141 1137 1132 1127 1122 1117 1113 1108 1102 1093 1055 932
 1083 1142 1149 1146 1141 1136 1131 1126 1122 1117 1112 1107 1101 1086 1026
 980 1114 1147 1147 1143 1138 1133 1129 1124 1119 1114 1109 1104 1094 1057 933
 1080 1139 1146 1142 1138 1133 1128 1123 1119 1114 1109 1103 1088 1027
 979 1111 1143 1144 1140 1135 1130 1125 1121 1116 1111 1106 1096 1058 938
 1078 1136 1142 1139 1138 1129 1125 1120 1115 1110 1108 1089 1028
 978 1108 1140 1140 1135 1131 1126 1121 1116 1112 1106 1097 1059 935
 1074 1129 1138 1131 1126 1121 1116 1112 1107 1101 1088 1028
 976 1100 1127 1126 1121 1117 1112 1107 1103 1098 1090 1057 935
 1057 1095 1096 1092 1088 1083 1079 1075 1070 1061 1018
 972 1054 1064 1062 1058 1055 1051 1047 1043 1038 1021 936
 961 964 963 961 959 957 954 952 948 944 936 934

Fig. 73. Nominal Clad Temperatures at Mid-Plane

AXIAL DIST (IN) NOMINAL BUNDLE AVG H.W. NOMINAL PEAK H.W.
34.00 830.9 864.9

CLAD TEMPERATURE BY SUBCHANNEL

767	775	778	772	771	769	768	766	764	763	761	753
775	834	836	834	832	830	828	826	824	821	816	761
	835	850	848	846	844	842	840	838	835	833	815
777	852	857	855	853	851	849	846	844	842	839	830
	839	858	857	855	853	851	848	846	844	842	838
778	853	859	857	855	853	851	848	846	844	842	839
	840	859	858	856	854	852	850	847	845	843	841
779	854	860	858	856	854	852	849	847	845	843	840
	841	860	859	857	855	853	850	848	846	844	841
779	855	861	859	857	855	852	850	848	846	844	841
	842	861	860	858	856	853	851	849	847	845	842
780	856	862	860	858	855	853	851	849	846	844	842
	843	862	861	859	856	854	852	850	847	845	843
781	856	863	861	858	856	854	852	850	847	845	843
	843	862	862	860	857	855	853	851	848	846	844
781	857	863	862	859	857	855	853	850	848	846	844
	844	863	863	860	858	856	854	851	849	847	845
782	858	865	863	861	859	856	854	852	850	848	846
	842	865	864	862	860	858	856	854	851	849	847
782	858	864	862	860	858	856	853	851	849	847	845
	845	864	863	861	859	857	854	852	850	848	846
782	859	865	863	861	859	856	854	852	850	848	846
	842	865	864	862	860	857	855	853	851	849	847
773	858	864	862	860	857	855	853	851	848	846	844
	842	864	864	862	860	858	856	854	851	849	847
780	858	864	863	860	858	856	854	851	849	847	845
	844	863	862	860	858	856	854	851	849	847	845
781	857	863	861	859	857	855	852	850	848	846	844
	843	863	863	861	859	857	855	852	850	848	846
781	856	862	861	859	857	854	852	850	848	846	844
	842	860	860	858	856	854	852	850	848	846	844
780	854	860	858	856	854	852	850	848	846	844	842
	840	859	858	856	854	851	849	847	845	843	841
779	853	859	857	855	852	850	848	846	844	842	840
	839	857	857	854	852	850	848	846	844	842	840
779	851	857	855	853	851	849	847	845	843	841	839
	836	856	855	853	851	849	846	844	842	840	838
778	850	856	854	852	850	847	845	843	841	839	837
	836	855	854	852	850	848	846	844	842	840	838
777	849	854	853	850	848	846	844	842	840	838	836
	835	853	852	850	847	845	843	841	839	836	834
776	847	852	850	847	845	843	841	839	836	834	825
	830	844	843	841	839	836	834	832	830	827	810
774	829	831	829	827	825	823	821	819	817	815	757
	766	771	770	769	768	766	765	763	762	760	757

Fig. 74. Nominal Clad Temperatures at Top of Core

AXIAL DIST (IN) NOMINAL BUNDLE AVG N.W. NOMINAL PEAK N.W.
52.00 979.8 1040.7

CLAD TEMPERATURE BY SUBCHANNEL

872	878	877	874	872	869	866	863	860	857	855	851
877	958	966	964	961	958	954	951	948	943	930	856
	958	993	994	990	987	983	980	976	972	966	929
880	996	1019	1019	1015	1011	1008	1004	1000	997	990	963
	971	1021	1026	1023	1019	1015	1011	1008	1004	1000	938
882	1001	1029	1030	1026	1022	1019	1015	1011	1007	1003	996
	974	1025	1031	1029	1025	1021	1017	1018	1010	1006	937
884	1003	1031	1032	1029	1025	1021	1017	1014	1010	1006	994
	975	1027	1033	1030	1027	1023	1019	1015	1012	1008	935
886	1004	1032	1033	1030	1026	1022	1019	1015	1011	1007	998
	977	1028	1036	1032	1028	1024	1020	1017	1013	1009	933
888	1005	1034	1035	1031	1028	1024	1020	1016	1013	1009	997
	978	1029	1036	1033	1029	1026	1022	1018	1014	1010	989
889	1007	1035	1036	1033	1029	1025	1021	1018	1014	1010	1006
	980	1031	1037	1038	1031	1027	1023	1019	1016	1012	1008
891	1008	1036	1037	1034	1030	1027	1023	1019	1015	1011	1008
	981	1032	1038	1036	1032	1028	1024	1021	1017	1013	1009
892	1009	1038	1039	1035	1032	1028	1024	1020	1017	1013	1009
	981	1033	1040	1037	1033	1030	1026	1022	1018	1015	1011
893	1006	1038	1040	1037	1033	1029	1025	1022	1018	1014	1010
	970	1031	1041	1038	1035	1031	1027	1023	1020	1016	1012
885	969	1031	1046	1038	1034	1031	1027	1023	1019	1015	1012
	888	1005	1038	1039	1036	1032	1029	1025	1021	1017	1013
889	979	1032	1038	1036	1032	1028	1024	1021	1017	1013	1009
	889	1007	1036	1036	1034	1030	1026	1022	1019	1015	1011
890	979	1030	1036	1033	1030	1026	1022	1018	1014	1011	1007
	890	1006	1038	1035	1031	1027	1024	1020	1016	1012	1009
891	978	1027	1033	1031	1027	1023	1020	1016	1012	1008	1004
	890	1004	1031	1032	1029	1025	1021	1017	1014	1010	1006
892	976	1025	1031	1028	1025	1021	1017	1013	1010	1006	1002
	890	1002	1029	1030	1026	1023	1019	1015	1011	1007	1004
889	974	1023	1029	1026	1022	1018	1015	1011	1007	1003	1000
	889	1000	1026	1027	1024	1020	1016	1013	1009	1005	1001
893	972	1020	1026	1023	1020	1016	1012	1008	1005	1001	997
	888	997	1024	1025	1021	1018	1014	1010	1006	1003	999
890	970	1018	1023	1021	1017	1013	1009	1006	1002	998	994
	887	995	1021	1021	1018	1014	1010	1007	1003	999	995
886	967	1013	1017	1018	1010	1007	1003	999	995	991	980
	886	989	1011	1010	1006	1003	999	995	992	988	955
883	954	985	985	982	979	976	972	969	965	959	923
	883	952	960	958	955	952	949	946	943	939	926
876	877	876	875	873	872	870	868	865	862	856	855

Fig. 75. Nominal Clad Temperatures at Outlet

AXIAL DIST (IN) 2-SIGMA BUNDLE AVG E.W. 2-SIGMA PEAK E.W.
34.00 930.7 974.7

CLAD TEMPERATURE BY SUBCHANNEL

853	868	866	864	862	860	857	855	852	849	847	832
868	937	938	935	933	930	927	924	921	918	911	847
938	955	953	950	947	944	941	938	935	931	910	
870	958	964	961	958	955	952	949	946	943	939	928 846
943	965	964	961	958	955	952	949	945	942	938	912
872	960	967	964	961	958	955	952	949	946	942	939 927 844
944	967	966	963	960	956	953	950	947	944	941	936 910
873	961	968	965	962	959	956	953	950	947	944	941 937 925 843
946	968	967	964	961	958	954	951	948	945	942	939 934 908
874	962	969	967	963	960	957	954	951	948	945	942 939 935 923 841
947	969	968	965	962	959	956	952	949	946	943	940 937 932 907
875	963	970	968	965	961	958	955	952	949	946	943 940 937 933 921 840
948	970	969	966	963	960	957	954	950	947	944	941 938 935 930 905
876	964	971	969	966	963	959	956	953	950	947	944 941 938 935 931 919 838
949	971	970	967	964	961	957	954	951	948	945	942 939 936 933 929 917 836
877	965	973	970	967	964	961	957	954	951	948	945 942 939 936 933 929 917 836
950	973	971	968	965	962	959	956	953	950	946	943 940 937 934 931 926 901
878	966	974	971	968	965	962	959	955	952	949	946 943 940 937 934 931 927 915 835
951	974	972	969	966	963	960	957	954	951	948	944 941 938 935 932 929 924 899
879	967	975	972	969	966	963	960	957	953	950	947 944 941 938 935 932 929 925 913 833
947	974	974	971	967	964	961	958	955	952	949	946 942 939 936 933 929 927 922 893
862	987	978	973	970	967	964	961	958	955	951	948 945 942 939 936 933 930 926 921 898
876	966	978	972	968	965	962	959	956	953	950	947 944 940 937 934 931 928 924 912 835
949	973	971	968	965	962	959	956	953	949	946	943 940 937 934 931 928 923 914 836
876	965	972	970	966	963	960	957	954	951	948	945 942 939 936 933 930 926 921 898
948	971	969	966	963	960	957	954	951	947	944	941 939 936 932 929 924 899
876	963	970	968	964	961	958	955	952	949	946	943 940 936 933 930 927 915 837
946	969	967	964	961	958	955	952	949	945	942	939 936 933 930 925 900
875	961	968	966	962	959	956	953	950	947	944	941 938 935 932 929 916 838
948	966	965	962	959	956	953	950	947	943	940	937 934 931 926 901
874	959	966	964	960	957	954	951	948	945	942	939 936 933 930 925 901
943	964	963	960	957	954	951	948	945	941	938	935 932 930 927 902
873	957	964	962	958	955	952	949	946	943	940	937 934 933 930 927 916 839
941	962	961	958	955	952	949	946	943	939	936	933 928 903
871	955	962	960	956	953	950	947	944	941	938	935 932 931 919 880
939	960	959	956	953	950	947	944	941	937	934	930 908
870	953	960	957	954	951	948	945	942	939	936	932 920 880
937	958	957	954	950	947	944	941	938	935	930	905
868	951	956	954	951	948	944	941	938	935	932	921 881
931	947	945	942	939	936	933	930	927	923	903	
866	929	931	928	925	922	919	917	914	911	904	881
850	862	860	858	856	854	852	850	847	845	841	829

Fig. 76. 2 σ Mid-Wall Clad Temperatures at Mid-Plane

AXIAL DIST (IN) NOMINAL BUNDLE AVG B.W. NOMINAL PEAK B.W.
68.00 960.9 1019.0

CLAD TEMPERATURE BY SUBCHANNEL

875	876	875	873	870	867	865	862	860	857	855	855
876	918	930	929	926	923	920	917	913	908	894	857
918	950	954	951	948	945	942	938	934	925	894	
878	951	983	987	984	981	977	974	970	966	957	923 857
933	984	997	995	992	989	985	981	978	972	955	905
881	960	999	1006	1004	1001	997	994	990	986	981	969 928 856
937	992	1008	1008	1005	1001	997	998	990	986	980	959 905
883	962	1003	1011	1009	1006	1002	999	995	991	988	982 969 927 858
939	995	1011	1011	1008	1004	1001	997	993	990	986	979 958 904
886	964	1005	1013	1011	1008	1004	1000	997	993	990	986 980 967 925 853
941	996	1012	1013	1009	1006	1002	999	995	991	988	983 976 956 902
888	965	1006	1014	1013	1009	1005	1002	998	995	991	987 983 978 968 923 852
943	997	1014	1014	1011	1007	1003	1000	996	993	989	985 981 974 954 900
890	967	1007	1015	1014	1010	1007	1003	999	996	992	989 985 981 976 962 921 851
944	999	1015	1015	1012	1008	1005	1001	997	994	990	987 983 979 972 951 898
892	968	1009	1017	1015	1012	1009	1004	1001	997	994	990 986 983 979 973 960 919 850
895	1000	1016	1016	1013	1010	1006	1002	999	995	992	988 984 981 977 970 949 896
893	968	1010	1018	1016	1013	1009	1006	1002	998	995	991 988 984 980 976 971 957 916 850
944	1000	1017	1018	1015	1011	1007	1004	1000	996	993	989 986 982 978 974 967 946 893
892	962	1009	1019	1018	1014	1011	1007	1003	1000	996	992 989 985 982 978 974 968 953 909 850
931	995	1017	1019	1016	1012	1009	1005	1001	998	994	990 987 983 980 976 972 964 939 881
891	930	998	1017	1018	1016	1012	1008	1005	1001	997	994 990 987 983 979 976 971 963 939 883
890	961	1008	1018	1017	1014	1010	1006	1003	999	995	992 988 985 981 977 973 968 953 910 854
893	999	1016	1016	1013	1010	1006	1002	999	995	991	988 984 981 977 973 966 986 896
891	967	1008	1016	1016	1011	1008	1004	1000	997	993	989 986 982 979 975 969 956 917 856
894	998	1018	1018	1014	1011	1007	1004	1000	996	993	989 985 982 978 974 967 948 899
892	966	1006	1014	1012	1009	1005	1002	998	994	991	987 984 980 976 971 958 919 857
894	996	1012	1012	1009	1005	1001	998	994	990	987	983 979 975 975 969 949 900
693	965	1004	1012	1010	1007	1003	999	996	992	988	985 981 977 972 959 920 858
893	994	1009	1009	1006	1003	999	995	992	988	984	981 977 970 950 901
894	964	1002	1009	1008	1004	1001	997	993	990	986	982 979 973 960 921 859
891	992	1007	1007	1004	1000	997	993	989	986	982	978 971 951 902
894	962	999	1007	1005	1002	998	995	991	987	984	980 975 961 922 859
894	990	1008	1008	1004	1001	998	994	990	987	983	979 972 952 902
894	960	997	1008	1002	999	995	992	988	985	981	976 962 923 860
893	938	987	1001	1000	997	994	990	986	983	979	972 953 903
893	957	993	999	997	993	990	986	982	979	978	962 923 861
892	935	978	989	988	984	981	977	974	970	965	948 903
892	949	976	979	977	974	970	967	964	950	950	919 863
889	920	945	949	947	944	941	938	935	932	923	893
889	917	927	927	925	923	920	918	915	910	896	864
887	884	883	881	880	879	878	876	874	870	864	868

Fig. 77. 2σ Mid-Wall Clad Temperatures at Mid-Plane

AXIAL DIST (IN) 2-SIGMA BUNDLE AVG H.W. 2-SIGMA PEAK H.W.
68.00 1046.0 1117.5

CLAD TEMPERATURE BY SUBCHANNEL

940 942 941 938 934 931 927 924 921 918 916 916
941 993 1007 1006 1003 999 995 991 987 981 963 918
993 1032 1037 1034 1030 1026 1022 1018 1013 1002 963
948 1034 1073 1078 1075 1070 1066 1062 1057 1052 1041 1000 918
1012 1075 1090 1088 1084 1080 1076 1071 1067 1060 1039 977
947 1045 1093 1102 1099 1095 1091 1086 1082 1077 1071 1056 1005 916
1017 1085 1104 1104 1100 1095 1091 1087 1082 1077 1069 1044 978
950 1048 1098 1108 1106 1101 1097 1093 1088 1084 1079 1072 1055 1004 918
1019 1088 1107 1108 1104 1099 1095 1090 1086 1081 1076 1068 1042 976
953 1050 1100 1110 1108 1108 1099 1095 1090 1086 1081 1077 1070 1053 1001 913
1022 1089 1109 1110 1106 1101 1097 1092 1088 1083 1079 1074 1065 1040 973
956 1051 1102 1112 1110 1105 1101 1096 1092 1087 1083 1078 1074 1067 1050 999 911
1023 1091 1111 1111 1107 1103 1098 1094 1089 1085 1081 1076 1071 1062 1037 971
959 1053 1103 1113 1111 1107 1103 1098 1094 1089 1085 1080 1076 1071 1064 1047 996 910
1025 1093 1112 1113 1109 1105 1100 1096 1091 1087 1082 1078 1073 1068 1059 1038 969
961 1055 1105 1115 1113 1109 1104 1100 1095 1091 1086 1082 1077 1073 1068 1061 1045 994 909
1027 1094 1114 1114 1111 1106 1102 1097 1093 1088 1084 1079 1075 1070 1065 1057 1031 967
962 1055 1106 1116 1114 1110 1106 1101 1097 1092 1088 1083 1079 1074 1070 1065 1059 1042 991 909
1025 1095 1115 1116 1112 1108 1103 1099 1094 1090 1085 1081 1076 1072 1067 1062 1054 1028 963
962 1048 1105 1118 1116 1112 1107 1103 1098 1094 1089 1085 1080 1076 1071 1067 1062 1055 1036 982 909
1009 1088 1115 1117 1114 1109 1105 1100 1091 1087 1082 1078 1074 1069 1064 1059 1049 1018 948 911
959 1008 1087 1115 1117 1113 1109 1104 1100 1095 1091 1086 1082 1078 1073 1069 1064 1059 1049 1019 989
959 1047 1104 1117 1115 1111 1106 1102 1097 1093 1089 1084 1080 1075 1071 1066 1055 1036 983 914
1023 1093 1118 1114 1110 1106 1102 1097 1093 1088 1084 1079 1075 1070 1066 1061 1052 1027 966
960 1053 1104 1114 1112 1108 1104 1099 1095 1090 1086 1081 1077 1072 1068 1063 1057 1040 992 917
1025 1092 1111 1111 1108 1103 1099 1094 1090 1085 1081 1076 1072 1067 1062 1058 1030 969
961 1053 1102 1111 1109 1105 1101 1096 1092 1087 1083 1078 1074 1069 1065 1058 1042 994 918
1025 1089 1108 1109 1105 1100 1096 1091 1087 1082 1078 1073 1069 1064 1058 1031 971
962 1051 1099 1109 1106 1102 1098 1093 1089 1084 1080 1075 1071 1066 1060 1043 995 919
1023 1087 1105 1106 1102 1097 1093 1088 1084 1079 1075 1070 1065 1057 1033 972
963 1049 1096 1106 1104 1099 1095 1090 1086 1081 1077 1073 1068 1061 1045 997 920
1022 1084 1103 1103 1099 1094 1090 1085 1081 1077 1072 1067 1059 1038 973
963 1047 1094 1103 1101 1096 1092 1087 1083 1079 1074 1069 1063 1046 998 921
1020 1081 1100 1100 1096 1091 1087 1082 1078 1073 1068 1060 1036 974
963 1045 1091 1099 1097 1093 1088 1084 1080 1075 1070 1064 1048 999 922
1018 1078 1095 1095 1091 1086 1082 1077 1073 1068 1060 1036 975
963 1042 1085 1093 1090 1086 1081 1077 1073 1068 1062 1047 1000 923
1013 1067 1080 1079 1075 1071 1066 1062 1058 1051 1031 974
961 1031 1065 1069 1066 1062 1058 1053 1049 1044 1033 994 925
995 1027 1031 1029 1025 1022 1018 1014 1010 999 963
958 992 1005 1004 1002 999 996 993 989 984 966 927
955 951 949 948 947 945 943 941 939 934 927 931

PEAK CLAD MID-WALL TEMPERATURE OF 1164.5 AT 52.00 INCHES

Fig. 78. 2 σ Mid-Wall Clad Temperatures at Outlets

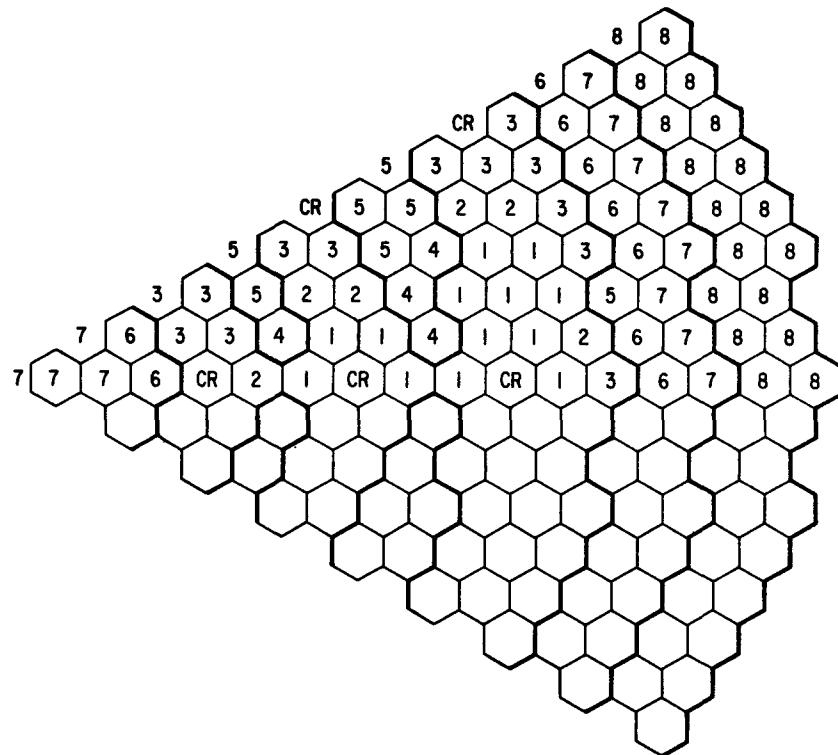


Fig. 79. Orificing Scheme of Configuration B with Peak Clad Temperature at EOEC

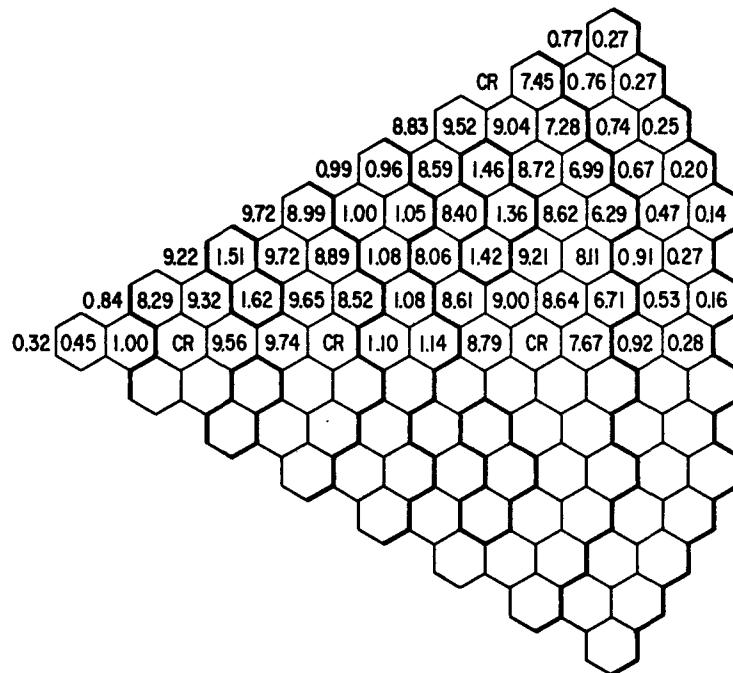


Fig. 80. Total Power Per Assembly (MWth)
at BOL, Configuration A

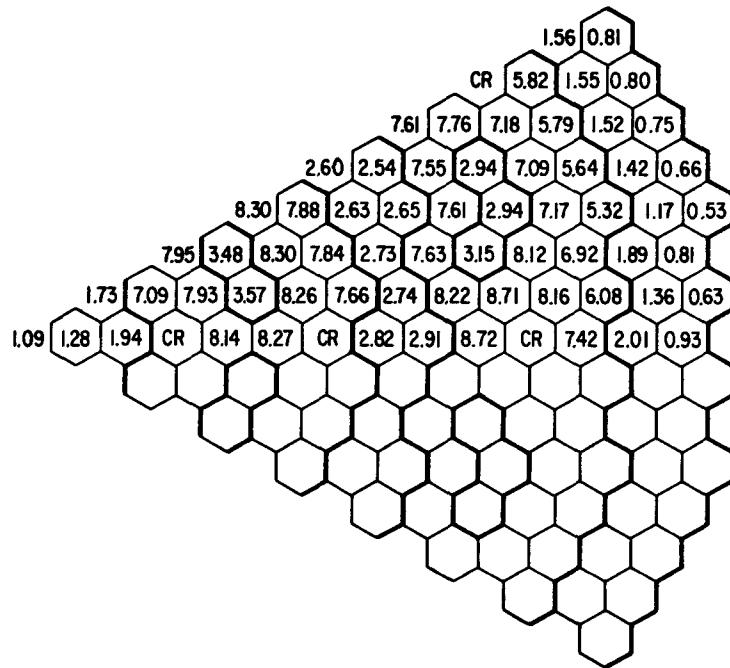


Fig. 81. Total Power Per Assembly (MWth) at EOEC,
Configuration A

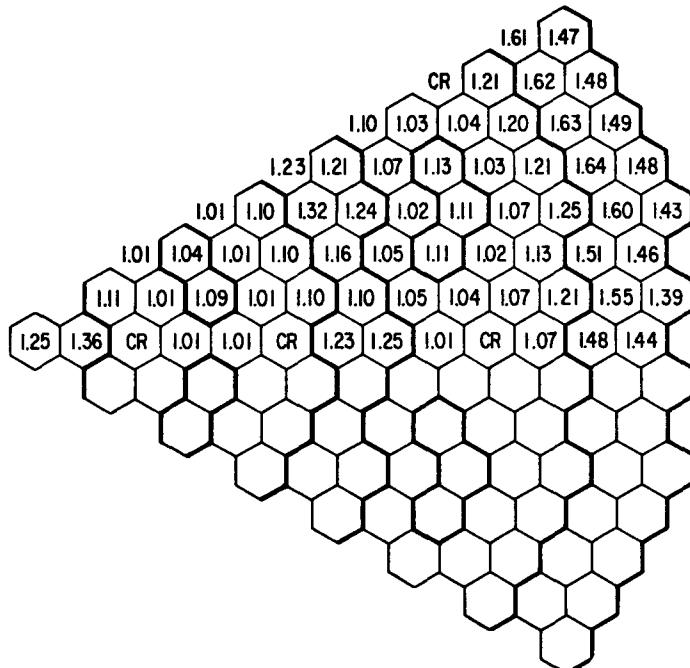


Fig. 82. Peak-to-Average Power Per Assembly
at BOL, Configuration A

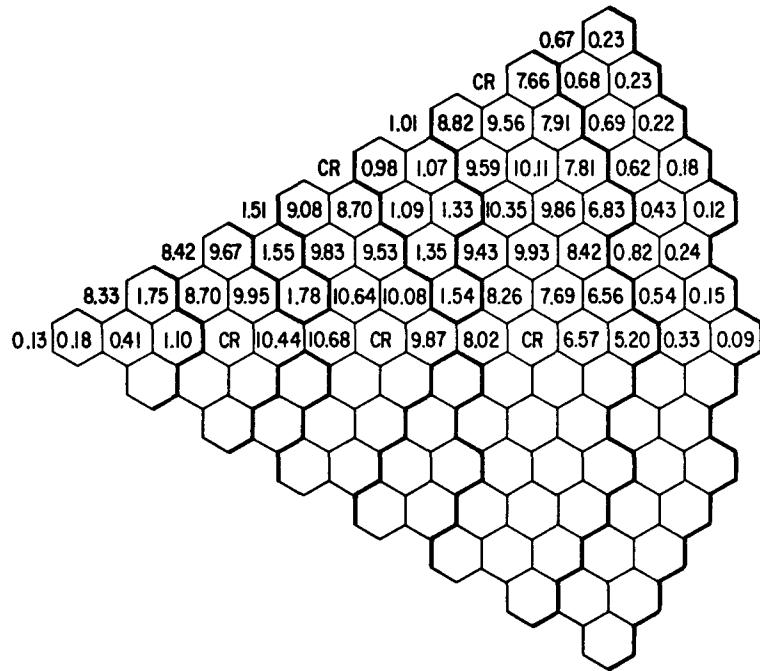


Fig. 83. Total Power Per Assembly (MWth) at BOL,
Configuration B

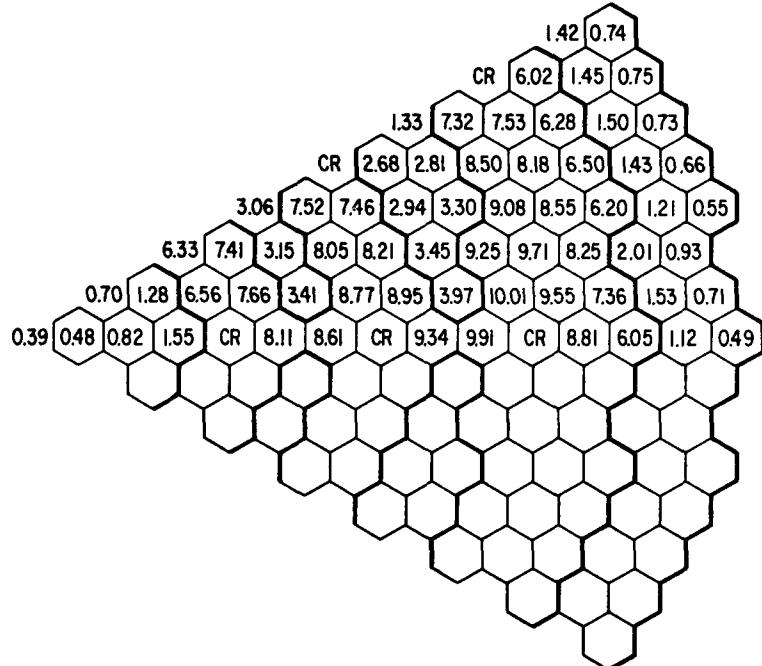


Fig. 84. Total Power Per Assembly (MWth) at EOEC,
Configuration B

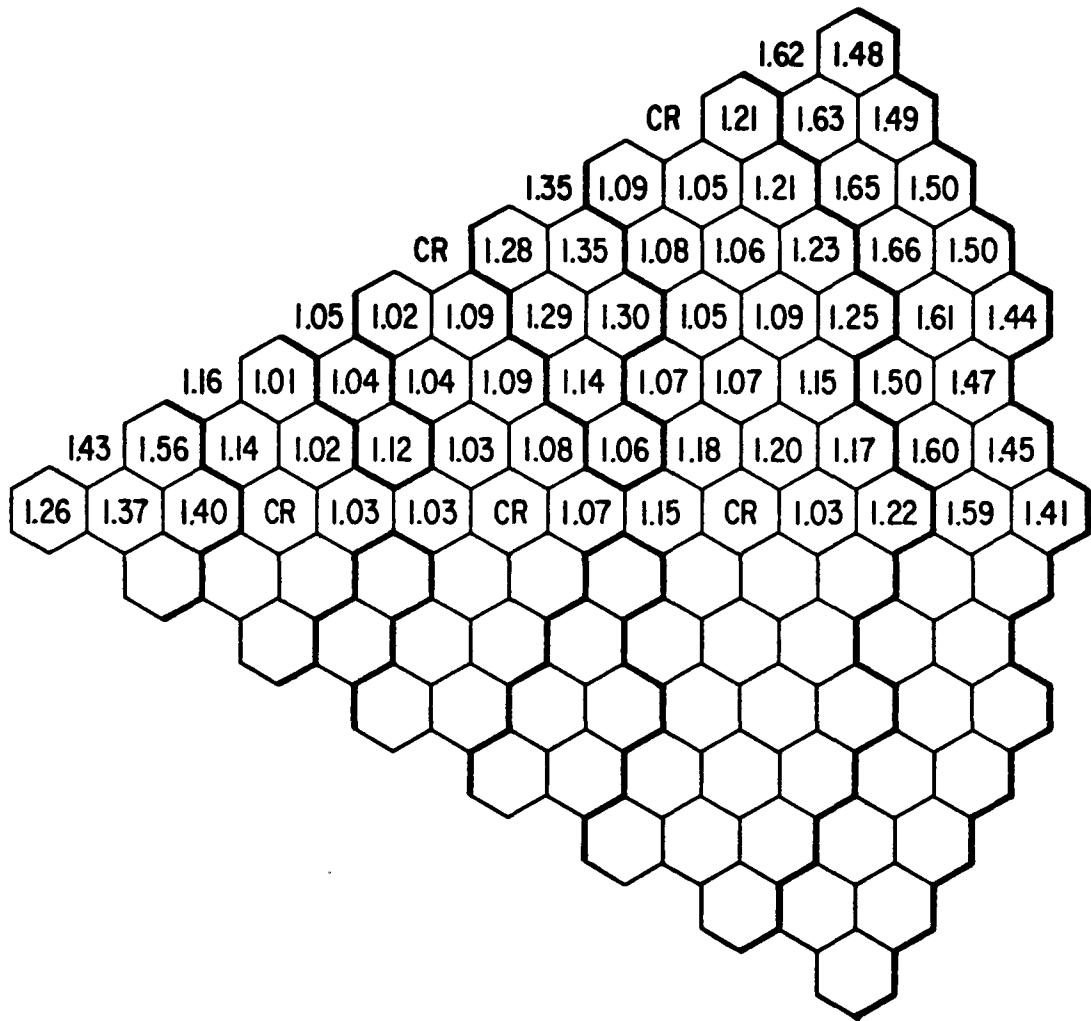


Fig. 85. Peak-to-Average Power Per Assembly
at BOL, Configuration B

TABLE I. Number of Assemblies Per Region

Region	Configuration A	Configuration B
Inner Core	36	48
Middle Core	72	84
Outer Core	222	210
Core	330	342
Internal Blanket 1	19	37
Internal Blanket 2	24	30
Internal Blanket 3	78	78
Internal Blanket 4	36	-
Internal Blankets	157	145
Control Assemblies	24	30
Radial Blanket	174	174
Shield Assemblies	198	198

TABLE II. Fissile Inventories, kg

	Configuration A			Configuration B		
	BOL	BOEC	EOEC	BOL	BOEC	EOEC
Inner Core	415.7	397.7	363.7	566.7	537.3	480.7
Middle Core	831.4	794.1	724.1	942.4	894.4	802.9
Outer Core	2614.8	2514.0	2320.5	2281.6	2154.1	1979.9
Total Core	3861.9	3705.8	3408.3	3790.9	3585.8	3263.6
Internal Blanket 1	0.0	19.5	55.4	0.0	64.7	185.3
Internal Blanket 2	0.0	34.3	95.0	0.0	46.4	128.1
Internal Blanket 3 + 4 ^a	0.0	143.5	401.4	0.0	107.7	300.0
Total Internal Blanket	0.0	197.3	551.8	0.0	218.8	520.7
Axial Blanket	0.0	55.3	161.4	0.0	74.7	216.9
Radial Blanket	0.0	310.0	453.5	0.0	334.1	488.5
Total Reactor	3861.9	4268.4	4575.0	3790.9	4213.4	4489.7

^aApplies to configuration A only

TABLE III. Average Fissile Enrichment, % H.M.

	Configuration A			Configuration B		
	BOL	BOEC	EOEC	BOL	BOEC	EOEC
Inner Core	17.7	17.2	16.3	19.4	18.7	17.5
Middle Core	17.7	17.2	16.3	18.4	17.8	16.7
Outer Core	18.1	17.6	16.8	17.8	17.1	16.3
Internal Blanket 1	0.0	0.6	1.8	0.0	0.5	1.5
Internal Blanket 2	0.0	0.9	2.5	0.0	0.9	2.6
Internal Blanket 3 + 4 ^a	0.0	0.7	2.2	0.0	0.8	2.3
Axial Blanket	0.0	0.3	0.9	0.0	0.4	1.2
Radial Blanket	0.0	1.1	1.6	0.0	1.2	1.7

^aApplies only to Configuration A

TABLE IV. Discharge Burnups (MWD/Kg)

	Configuration A		Configuration B	
	Average	Peak	Average	Peak
Inner Core	62.44	81.34	73.82	88.34
Middle Core	65.06	83.26	74.05	95.31
Outer Core	54.63	83.90	58.64	100.7
Internal Blanket 1	4.88	12.78	3.44	9.86
Internal Blanket 2	9.66	19.41	10.60	19.61
Internal Blanket 3 + 4 ^a	7.75	22.10	7.96	20.96
Axial Blanket	1.55	5.52	1.99	3.62
Radial Blanket	5.68	21.21	5.92	22.19

^aApplies to Configuration A only

TABLE V. Primary and Secondary Control System Assignments

Configuration A			Configuration B		
Row	Primary System	Secondary System	Row	Primary System	Secondary System
4	-	6	5	-	6
7	6	-	8	6	-
11	6	-	9	-	6
13	-	6	11	6	-
Total	12	12	13	-	6
			Total	12	18

TABLE VI. Control Rod Worths

	Configuration A		Configuration B	
	Primary System	Secondary System	Primary System	Secondary System
Total Worth, ^a %Δk	4.28	3.01	4.95	3.81
Stuck Rod Worth, %Δk	0.39	0.27	0.44	0.21
Minimum Worth, %Δk	3.89	2.74	4.51	3.60

^a-2 σ values with unit bias of $1\sigma = 4\%$; all primary or secondary rods inserted simultaneously.

TABLE VII. Control Rod Requirements

		Configuration A	Configuration B
<u>Primary Control Requirements, $\% \Delta k$</u>			
Hot-to-cold shift		0.94 ± 0.17	0.94 ± 0.17
Maximum reactivity fault		0.20	0.44
Excess reactivity at BOEC (nominal + uncertainty)		0.73	2.18
Criticality uncertainty		± 0.30	± 0.30
Fissile tolerance		± 0.30	± 0.30
	Total	1.87 ± 0.46	3.56 ± 0.46
	Maximum Requirement	2.33	4.02
<u>Primary Control Worths, $\% \Delta k$</u>			
Total worth		4.65	5.38
-2σ values ^a		-0.37	-0.43
Stuck rod		<u>-0.63</u>	<u>-0.71</u>
	Total	3.65	4.24
<u>Secondary Control Requirements, $\% \Delta k$</u>			
Hot-to-cold shift		0.94 ± 0.17	0.94 ± 0.17
Maximum reactivity fault		0.20	0.44
	Total	1.14 ± 0.17	1.38 ± 0.17
	Maximum Requirement	1.31	1.55
<u>Secondary Control Worths, $\% \Delta k$</u>			
Total		3.27	4.14
-2σ values ^a		-0.26	-0.33
Stuck rod		<u>-0.43</u>	<u>-0.34</u>
	Total	2.58	3.47

^aUnity bias, $1\sigma = 4\%$

TABLE VIII. Power Distribution

	Configuration A			Configuration B		
	BOL	BOEC	EOEC	BOL	BOEC	EOEC
Inner Core	10.4	9.4	9.3	13.9	13.2	12.6
Middler Core	21.6	19.8	19.2	24.2	23.2	22.2
Outer Core	57.9	54.4	47.1	51.6	48.5	41.9
Total Core	89.9	83.7	75.7	89.7	84.9	76.7
Internal Blanket 1	0.5	0.7	1.4	0.8	1.0	1.9
Internal Blanket 2	1.2	1.8	3.2	1.7	2.5	4.2
Internal Blanket 3 + 4 ^a	4.8	7.4	12.1	3.3	4.8	8.5
Total Internal Blanket	6.5	10.0	16.8	5.8	8.3	14.6
Axial Blanket	1.3	1.6	2.4	2.0	2.2	3.3
Radial Blanket	2.1	4.3	4.7	2.4	4.3	4.9

^aApplies only to configuration A

TABLE IX. (Peak/Average) Power Densities

	Configuration A			Configuration B		
	BOL	BOEC	EOEC	BOL	BOEC	EOEC
Inner Core ^a	1.37	1.36	1.36	1.42	1.42	1.46
Middle Core ^a	1.41	1.34	1.32	1.41	1.39	1.43
Outer Core ^a	1.52	1.49	1.58	1.57	1.53	1.59
Internal Blanket 1 ^a	3.72	3.15	2.79	5.17	3.96	3.47
Internal Blanket 2 ^a	2.19	2.21	2.18	2.48	2.28	2.25
Internal Blanket ^a 3 + 4 ^c	2.14	2.52	2.33	3.06	2.58	2.34
Axial Blanket ^a	3.66	3.36	3.35	3.65	3.21	3.07
Radial Blanket ^a	6.84	3.93	3.73	7.61	3.94	3.73
Core ^b	1.45	1.45	1.54	1.53	1.49	1.60

^azone peak value/zone average value^bexcluding internal blanket regions^capplies to configuration A only

TABLE X. Nominal Peak Nuclear Linear Heat Rating, kW/ft

	Configuration A		Configuration B	
	BOL	EOL, Discharged	BOL	EOL, Discharged
Core	13.4	12.0	13.2	11.4
Internal Blanket	4.8	12.8	5.6	15.3
Radial Blanket	3.1	8.7	3.5	10.7

TABLE XI. Peak Fast Fluxes

	Peak Fast Flux $\times 10^{-15}$			% Total Flux (> 0.1 MeV)			Peak Fast Fluence ($\times 10^{-23}$)
	BOL	BOEC	EOEC	BOL	BOEC	EOEC	
Configuration A							
Core	3.39	3.32	3.26	58.1	58.0	57.6	1.45
Internal Blanket	2.92	2.91	2.91	51.8	52.5	53.6	1.28
Radial Blanket	1.52	1.60	1.61	43.7	46.2	46.9	0.71
Configuration B							
Core	3.96	3.66	3.57	60.3	58.7	58.1	1.59
Internal Blanket	3.16	3.01	2.94	51.2	52.4	53.4	1.32
Radial Blanket	1.63	1.80	1.98	42.4	46.4	47.1	0.83

TABLE XII. Breeding Ratios

	Configuration A			Configuration B		
	BOL	BOEC	EOEC	BOL	BOEC	EOEC
Inner Core	0.065	0.060	0.062	0.078	0.074	0.076
Middle Core	0.135	0.125	0.128	0.145	0.139	0.143
Outer Core	0.350	0.324	0.307	0.305	0.296	0.277
Total Core	0.550	0.514	0.497	0.628	0.509	0.497
Internal Blanket 1	0.052	0.048	0.052	0.090	0.147	0.159
Internal Blanket 2	0.100	0.092	0.093	0.127	0.116	0.118
Internal Blanket 3 + 4 ^a	0.414	0.387	0.378	0.307	0.269	0.268
Total Internal Blanket	0.566	0.527	0.523	0.52	0.458	0.466
Axial Blanket	0.144	0.138	0.139	0.217	0.174	0.178
Radial Blanket	0.227	0.220	0.202	0.260	0.219	0.205
Total Reactor	1.488	1.398	1.361	1.530	1.361	1.346

^aApplies only to configuration A

TABLE XIII. Breeding Performance

Assembly Residence Time, yrs.					Configuration A	Configuration B
Core	Internal Blanket	Radial Blanket	Out-of-Pile Time, yrs.	Fuel Cycle Losses %	Compound System Doubling Time, yrs.	Compound System Doubling Time, yrs.
2	2	5	1	1	15.7	15.3
2	1	5	1	1	15.1	

TABLE XIV. Configuration A Sodium Void Reactivities^a from Perturbation Calculations

Region	%Δk		\$ ^b	
	BOL	EOEC	BOL	EOEC
Core				
Zone 1	0.086	0.135	0.23	0.37
Zone 2	0.181	0.301	0.50	0.82
Zone 3	0.282	0.472	0.77	1.29
Total	0.549	0.908	1.50	2.48
Internal Blanket				
Zone 1	0.006	0.016	0.02	0.04
Zone 2	0.074	0.081	0.20	0.22
Zone 3	0.284	0.307	0.78	0.84
Total	0.364	0.404	1.00	1.10
Axial Blanket	-0.078	-0.074	-0.21	-0.20
Core + Upper Axial Blanket	0.510	0.871	1.40	2.38

^afor voiding flowing sodium^b $\beta_{eff} = 0.00365$ TABLE XV. Configuration B Sodium Void Reactivities^a from Perturbation Calculations

Region	%Δk		\$ ^b	
	BOL	EOEC	BOL	EOEC
Core				
Zone 1	0.071	0.164	0.19	0.45
Zone 2	0.174	0.347	0.48	0.96
Zone 3	0.108	0.348	0.29	2.38
Total	0.353	0.859	0.98	2.38
Internal Blanket				
Zone 1	-0.087	0.006	-0.24	0.02
Zone 2	0.086	0.112	0.24	0.31
Zone 3	0.162	0.190	0.45	0.52
Total	0.161	0.304	0.45	0.84
Axial Blanket	-0.112	-0.105	-0.31	-0.29
Core + Upper Axial Blanket	0.297	0.806	0.82	2.23

^afor voiding flowing sodium^b $\beta_{eff} = 0.003614$

TABLE XVI. Isothermal Doppler Coefficients of Configuration A ($-T \frac{dk}{dT} \times 10^4$)

Region	Sodium - in		Sodium - out	
	BOL	EOEC	BOL	EOEC
Core				
Zone 1	6.74	6.47	4.31	4.00
Zone 2	14.42	13.66	7.19	8.83
Zone 3	31.98	25.76	19.78	16.13
Total	53.14	45.89	31.28	28.96
Internal Blanket				
Zone 1	2.10	3.71	1.99	3.17
Zone 2	8.70	10.31	6.10	6.64
Zone 3	28.61	34.27	22.68	25.87
Total	39.41	48.29	30.77	35.68
Radial Blanket	4.99	6.34	4.26	5.41
Axial Blanket	3.10	4.49	3.05	4.16

TABLE XVII. Isothermal Doppler Coefficients of Configuration B ($-T \frac{dk}{dT} \times 10^4$)

Region	Sodium - in		Sodium - out	
	BOL	EOEC	BOL	EOEC
Core				
Zone 1	6.82	6.56	4.88	4.36
Zone 2	14.18	14.23	9.69	9.03
Zone 3	29.76	25.27	16.91	14.79
Total	50.72	46.09	31.48	28.18
Internal Blanket				
Zone 1	2.04	3.28	2.17	3.16
Zone 2	8.39	10.47	7.00	7.72
Zone 3	16.06	24.15	13.27	17.82
Total	26.49	37.90	22.44	28.7
Radial Blanket	4.88	7.247	4.09	6.54
Axial Blanket	4.21	6.44	4.07	5.90

TABLE XVIII. Normalized Peak Power Density $P(t)/P(0)$
for Configuration A in a 60¢ Step
Insertion into the Outer Core

Normalized Peak Power Density $P(t)/P(0)$			
Time, sec	Inner Core	Middle Core	Outer Core
0	1.000	1.000	1.000
0.3339-4	1.067	1.069	1.092
0.4014-4	1.098	1.103	1.131
0.5796-4	1.186	1.192	1.226
0.1293-3	1.492	1.499	1.544
0.6784-3	2.369	2.379	2.448
0.3460-2	2.501	2.511	2.570
0.1136-1	2.486	2.497	2.553
0.9079-1	2.283	2.294	2.345
0.2908	1.970	1.980	2.028
0.4908	1.782	1.791	1.838
0.6908	1.648	1.657	1.706
0.8908	1.548	1.556	1.606
1.0000	1.502	1.511	1.559

TABLE XIX. Normalized Peak Power Density $P(t)/P(0)$
for Configuration A in a 60¢/500 ms Ramp
into the Outer Core

Normalized Peak Power Density $P(t)/P(0)$			
Time, sec	Inner Core	Middle Core	Outer Core
0	1.000	1.000	1.000
0.3339-4	1.000	1.000	1.000
0.1466	1.191	1.192	1.197
0.2670	1.413	1.413	1.429
0.3811	1.700	1.704	1.733
0.4871	2.056	2.064	2.113
0.5854	1.985	1.994	2.053
0.7854	1.791	1.800	1.856
1.0000	1.650	1.657	1.710

TABLE XX. Normalized Peak Power Density $P(t)/P(0)$
for Configuration B in a 60¢ Step
Insertion into the Outer Core

Normalized Peak Power Density $P(t)/P(0)$			
Time, sec	Inner Core	Middle Core	Outer Core
0	1.000	1.000	1.000
0.325-4	1.073	1.079	1.101
0.564-4	1.194	1.202	1.235
0.130-3	1.515	1.525	1.564
0.589-3	2.326	2.340	2.388
0.162-2	2.485	2.499	2.549
0.121-1	2.490	2.503	2.553
0.1170	2.210	2.222	2.271
0.3167	1.911	1.922	1.969
0.5167	1.732	1.743	1.788
0.7167	1.608	1.618	1.664
1.0000	1.481	1.489	1.533

TABLE XXI. Normalized Peak Power Density $P(t)/P(0)$
for Configuration B in a 60¢/500 ms
Ramp into the Outer Core

Normalized Peak Power Density $P(t)/P(0)$			
Time, sec	Inner Core	Middle Core	Outer Core
0	1.000	1.000	1.000
0.1379	1.167	1.169	1.171
0.3340	1.545	1.549	1.568
0.4239	1.804	1.811	1.843
0.5080	2.071	2.083	2.131
0.5940	1.961	1.974	2.025
0.7936	1.768	1.779	1.828
1.0000	1.631	1.642	1.687

TABLE XXII. Inlet and Outlet Temperatures of Configuration A at EOEC

	°K	°F
Core Inlet	586	595
Core Average Outlet	760	908
Core ΔT	174	313
(Core + Radial Blanket) Average Outlet	750	890
(Core + Radial Blanket) ΔT	164	295
Reactor Inlet	586	595
Reactor Outlet	741	875
Reactor ΔT	155	280

TABLE XXIII. Inlet and Outlet Temperatures of Configuration A Orificed for Equal Clad Temperatures at EOEC

Core Inlet	586	595
Core Average Outlet	756	902
Core ΔT	170	307
(Core + Radial Blanket) Average Outlet	750	890
(Core + Radial Blanket) ΔT	164	295
Reactor Inlet	586	595
Reactor Outlet	741	875
Reactor ΔT	155	280

TABLE XXIV. Orificing Scheme of Configuration A

Zone	Number Assemblies	Power MWt	Flow 10^6 lb/hr	Flow/ass'y lb/hr	Avg. ΔT deg. F	Velocity ft/sec
1	156	1265.4	45.140	289361	312.0	25.6
2	126	911.5	31.869	252928	318.3	22.4
3	48	272.0	10.121	210857	299.1	18.7
4	36	122.5	4.511	125333	302.2	17.5
5	108	285.1	11.570	107127	274.3	14.9
6	90	146.4	8.289	92105	196.6	12.8
7	97	75.3	4.608	47508	181.9	6.6
8	222	5.8	0.340	1538	189.6	-
Total	883	3084.0	116.448	---	294.7	----

TABLE XXV. Orificing Scheme of Configuration A
Orificed for Equal Clad Temperature at EOEC

Zone	Number Assemblies	Power MWt	Flow 10^6 lb/hr	Flow/ass'y lb/hr	Avg. ΔT deg. F	Velocity ft/sec
1	138	1123.1	40.854	296043	305.9	26.2
2	132	980.8	34.610	262197	315.4	23.2
3	60	345.0	13.435	223917	285.8	19.8
4	42	139.9	5.002	119095	311.3	16.5
5	180	400.1	17.696	98311	251.6	13.6
6	73	67.3	3.518	48192	212.8	6.7
7	36	22.0	0.945	26250	259.8	3.6
8	222	5.8	0.388	1748	166.3	-
Total	883	3084.0	116.448	-----	294.7	----

TABLE XXVI. Nominal Cladding Temperature Axial Profiles For Design Limiting
Fuel Pin, Configuration A

Distance From Bottom of Fuel (in.)	Beginning of Life				End of Life			
	Clad o.d. Temperature (°F)	Clad M.W. Temperature (°K)						
8.	597	587	597	587	597	587	597	587
16.	618	599	633	607	615	597	628	604
24.	693	640	718	654	680	633	703	646
32.	790	694	820	711	766	681	792	696
40.	890	750	919	766	853	729	878	743
48.	972	795	993	807	925	769	944	780
56.	1006	814	1007	815	955	786	956	786
64.	1006	814	1007	815	955	786	955	786
72.	1006	814	1006	814	954	785	954	785

TABLE XXVII. 2σ Cladding Temperature Axial Profiles For Design Limiting Fuel Pin, Configuration A

Distance From Bottom of Fuel (in.)	Beginning of Life				End of Life			
	Clad o.d. Temperature (°F)	Clad M.W. Temperature (°K)						
8.	598	588	599	588	597	587	598	588
16.	633	607	665	625	629	605	656	620
24.	733	663	786	692	717	654	763	679
32.	858	732	919	766	826	714	879	744
40.	982	801	1038	832	933	774	983	801
48.	1078	854	1119	877	1017	820	1054	841
56.	1103	868	1105	869	1039	833	1041	834
64.	1102	868	1103	868	1039	833	1039	833
72.	1101	867	1101	867	1038	832	1039	833

TABLE XXVIII. Peak Temperatures for the Assembly With
the Hottest Fuel Pin, Configuration A

	Temperature, $^{\circ}$ F	
	Nominal	2σ
Cladding		
Outer Diameter	1015	1122
Mid Wall	1026	1145
Inner Diameter	1037	1178
Coolant ^a	1003	1098
Duct ^a	863	925

^aLocal peak values within the assembly.

TABLE XXIX. Inlet and Outlet Temperatures
of Configuration B

	°K	°F
Core Inlet	586	595
Core Average Outlet	759	907
Core ΔT	173	312
(Core + Radial Blanket) Average Outlet	750	890
(Core + Radial Blanket) ΔT	164	295
Reactor Inlet	586	595
Reactor Outlet	741	875
Reactor ΔT	155	280

TABLE XXX. Inlet and Outlet Temperatures of
Configuration B Orificed for Equal
Clad Temperatures at EOEC

Core Inlet	586	595
Core Average Outlet	754	898
Core ΔT	168	303
(Core + Radial Blanket) Average Outlet	750	890
(Core + Radial Blanket) ΔT	164	295
Reactor Inlet	586	595
Reactor Outlet	741	875
Reactor ΔT	155	280

TABLE XXXI. Orificing Scheme of Configuration B

Zone	Number Assemblies	Power Mwt	Flow 10^6 lb/hr	Flow/ass'y lb/hr	Avg. ΔT deg. F	Velocity ft/sec
1	138	1243.3	43.458	314911	318.4	25.6
2	90	690.7	24.795	275502	310.0	22.4
3	114	791.1	29.032	254666	303.3	20.7
4	84	276.4	11.461	136436	268.4	17.8
5	36	90.7	3.603	100096	280.2	13.1
6	102	137.2	7.567	74185	201.8	9.7
7	97	65.2	3.302	34041	219.7	4.5
8	228	5.4	0.318	1395	189.0	--
Total	889	3300.0	124.604	-----	294.7	-----

TABLE XXXII. Orificing Scheme of Configuration B Orificed for Equal Clad Temperatures at EOEC

1	132	1205.9	44.876	339969	299.1	27.6
2	66	527.0	18.567	281311	315.9	22.9
3	144	992.2	36.798	255543	300.1	20.8
4	48	169.6	6.521	135848	289.4	17.8
5	72	197.5	7.560	104993	290.7	13.8
6	90	126.0	5.831	64784	240.5	8.5
7	109	76.5	4.069	37329	209.2	4.9
8	228	5.4	0.381	1671	157.7	--
Total	889	3300.0	124.604	-----	294.7	-----

TABLE XXXIII. 2 σ Cladding Temperature Axial Profiles for Design
Limiting Fuel Pin, Configuration B

Distance From Bottom of Fuel (in.)	Beginning of Life				End of Life			
	Clad o.d. Temperature (°F)	Clad M.W. Temperature (°K)						
8.	597	587	598	588	597	587	597	587
16.	614	596	630	605	612	595	626	603
24.	735	664	788	693	719	655	767	681
32.	878	743	939	777	845	725	901	756
40.	1016	820	1071	850	968	793	1018	821
48.	1115	875	1151	895	1055	841	1088	860
56.	1118	876	1120	878	1059	844	1060	844
64.	1118	876	1118	876	1059	844	1059	844
72.	1117	876	1118	876	1058	843	1058	843

TABLE XXXIV. Nominal Cladding Temperature Axial Profiles for Design
Limiting Fuel Pin, Configuration B

Distance From Bottom of Fuel (in.)	Beginning of Life				End of Life			
	Clad o.d. Temperature (°F)	Clad M.W. Temperature (°K)						
8.	596	586	597	587	596	586	597	587
16.	606	592	614	596	598	588	599	588
24.	694	641	720	655	682	634	706	648
32.	805	703	836	720	781	689	809	705
40.	918	765	946	781	881	754	906	759
48.	1003	813	1022	823	957	787	974	796
56.	1019	821	1020	822	971	795	972	795
64.	1019	821	1020	822	971	795	971	795
72.	1019	821	1019	821	971	795	971	795

TABLE XXXV. Peak Temperatures in the Assembly with
the Hottest Fuel Pin, Configuration A

	Temperature, $^{\circ}$ F	
	Nominal	2σ
<i>Cladding</i>		
Outer Diameter	1028	1140
Mid Wall	1041	1164
Inner Diameter	1054	1188
Coolant ^a	1016	1114
Duct ^a	877	942

^aLocal peak values within the assembly.

TABLE XXXVI. Fuel Pin and Assembly Data

	Configuration A	Configuration B
FUEL PIN		
Fuel Parameters		
Plutonium Content (Pu fissile/Pu+U)		
Fuel form	-----mixed oxide-----	
Fuel smear density, %TD	-----88-----	
Cladding Parameters		
Cladding outside diameter, mm (in.)	6.6 (0.260)	6.1 (0.240)
Cladding wall thickness, mm (in.)	0.33 (0.013)	0.30 (0.012)
Cladding material	-----20% CW316SS-----	
Plenum Parameter		
Location	-----Top-----	
Length, mm (in.)	1016 (40.0)	914 (36.0)
Volume, cc and in. ³		
Bond Type		
	-----Helium-----	
FUEL ASSEMBLY		
Pins Per Assembly	271	331
Pin Pitch-to-Diameter Ratio	1.197	1.200
Spacer Description		
Wire wrap diameter mm (in.)	1.29 (0.051)	1.22 (0.048)
Spacer pitch, cm (in.)	30.48 (12.0)	30.48 (12.0)
Edge ratio	1.0	1.0
Overall Bundle Length, cm (in.)	279.4 (110.0)	264.2 (104.0)
Lattice Pitch, cm (in.)	14.36 (5.653)	14.62 (5.757)
Duct Inside Flat-to-Flat, cm (in.)	13.24 (5.212)	13.52 (5.323)
Duct Wall Thickness, mm (in.)	2.87 (0.113)	2.97 (0.117)
Interduct Gap, mm (in.)	5.46 (0.215)	5.08 (0.200)
Duct Material	-----20% CW316SS-----	

TABLE XXXVII. Blanket Pin and Assembly Data

	Configuration A	Configuration B
BLANKET PIN		
Fuel Parameters		
Fuel type	depleted U	
Plutonium content, Pu/Pu+U	0% at BOL	
Fuel Form	oxide	
Fuel smeared density, %T.D.	90	
Cladding Parameters		
Cladding outside diameter, mm (in.)	10.80 (0.425)	11.02 (0.434)
Cladding wall thickness, mm (in.)	0.33 (0.013)	0.30 (0.012)
Cladding material	20% CW316SS	
Plenum Parameters		
Location	Top	
Length, mm (in.)	1016 (40.0)	914 (36.0)
Volume cm ³ and in. ³		
Bond Type	Helium	
BLANKET ASSEMBLY		
Pins Per Assembly	127	
Pin Pitch-to-Diameter Ratio	1.070	1.070
Spacer Description		
Wire wrap diameter, mm (in.)	0.76 (0.030)	0.76 (0.030)
Spacer pitch, cm (in.)	15.24 (6.0)	15.24 (6.0)
Edge ratio	1.0	1.0
Overall bundle length, cm (in.)	297.4 (110.0)	264.2 (104.0)
Lattice Pitch, cm (in.)	14.36 (5.653)	14.62 (5.757)
Duct Inside Flat-to-Flat, cm (in.)	13.24 (5.212)	13.52 (5.323)
Duct Wall Thickness, mm (in.)	2.87 (0.113)	2.97 (0.117)
Interduct Gap, mm (in.)	5.46 (0.215)	5.08 (0.200)
Duct Material	20% CW316SS	

TABLE XXXVIII. Control Assembly Compositions

Control rod full in	
B ₄ C Pellet	0.3174
Void	0.0216
Coolant	0.3323
Structure	0.3287
Control rod full out	
Coolant	0.8842
Structure	0.1158

TABLE XXXIX. Duct Wall Pressure Differential Profile
For Design Limiting Duct

Distance Above Bottom of Active Fuel (in.)	Duct Wall Pressure, psi	
	Configuration A	Configuration B
0	61.7	62.0
2	60.4	60.6
4	59.1	59.2
6	57.8	27.8
8	56.5	56.3
10	55.2	54.9
12	53.9	53.5
14	52.6	52.1
16	51.3	50.7
18	50.0	49.3
20	48.7	47.9
22	47.4	46.5
24	46.1	45.1
26	44.8	43.7
28	43.5	42.3
30	42.2	40.8
32	40.9	39.4
34	39.6	38.0
36	38.3	36.6
38	37.0	
40	35.7	

TABLE XL. Fabrication Cost Breakdown

	Core A	Core B
Fixed Overhead, \$	19,945	19,945
Variable Overhead, \$	13,235	13,235
Assembly, \$	13,397	13,397
Pin, \$	24,034	28,956
Heavy Metal, \$	1,204	1,125
Fissionable Material, \$	10,771	10,118
Pellet, \$	1,211	1,442
Steel, \$	11,957	13,129
Axial Blanket, \$	1,729	1,918
10% Change, \$	9,748	10,327
Total Cost, \$		
\$/Assembly	107,232	113,592
\$/kg Heavy Metal	1,675	1,900
\$/Pin	396	343

These costs should be used only for comparing cores A and B. Actual costs are expected to be significantly lower.

REF A

TABLE XLI. Fuel Cycle Costs of Configuration A

	RESIDENCE TIME (YRS)	FABRICATION CUST (\$/KG)	REPROCESSING CUST (\$/KG)	USAGE FACTOR (KG/KWH)
ZONE 1	0.20002E 01	0.16750E 04	0.59500E 03	0.16596E-02
ZONE 2	0.20002E 01	0.16750E 04	0.59500E 03	0.0
ZONE 3	0.20002E 01	0.16750E 04	0.59500E 03	0.0
ZONE 4	0.20002E 01	0.0	0.59500E 03	0.12810E-02
ZONE 5	0.20002E 01	0.0	0.59500E 03	0.0
ZONE 6	0.20002E 01	0.0	0.59500E 03	0.0
ZONE 7	0.20002E 01	0.25000E 03	0.59500E 03	0.19581E-02
ZONE 8	0.50005E 01	0.25000E 03	0.59500E 03	0.86775E-03
ZONE 9	0.60006E 01	0.25000E 03	0.59500E 03	0.0
	FABRICATION (MILL/KWH)	REPROCESSING (MILL/KWH)	FABRICATION CC (MILL/KWH)	REPROCESSING CC (MILL/KWH)
ZONE 1	0.27799E 01	0.98748E 00	0.43257E 00	-0.70101E-01
ZONE 2	0.0	0.0	0.0	0.0
ZONE 3	0.0	0.0	0.0	0.0
ZONE 4	0.0	0.70222E 00	0.0	-0.54110E-01
ZONE 5	0.0	0.0	0.0	0.0
ZONE 6	0.0	0.0	0.0	0.0
ZONE 7	0.48952E 00	0.11651E 01	0.76173E-01	-0.82707E-01
ZONE 8	0.21694E 00	0.51631E 00	0.61209E-01	-0.87926E-01
ZONE 9	0.0	0.0	0.0	0.0
CARRY CHARGE ON PL INVENTORY	=	0.71846037E 01		
REVENUE	=	-0.48222046E 01		
CHARGE ON REVENUE	=	0.17434245E 00		
LOSSES	=	0.29779458E 00		
CARRY CHARGE ON LOSSES	=	-0.51820204E-02		
CREDIT FOR SALE AT PLANT END	=	-0.82980794E 00		
TOTAL FUEL CYCLE COST	=	0.91920710E 01		

REF B

TABLE XLII. Fuel Cycle Costs of Configuration B

	RESIDENCE TIME (YRS)	FABRICATION CUST (\$/KG)	REPROCESSING CUST (\$/KG)	USAGE FACTOR (KG/KWH)
ZONE 1	0.20002E 01	0.19000E 04	0.59500E 03	0.16078E-02
ZONE 2	0.20002E 01	0.19000E 04	0.59500E 03	0.0
ZONE 3	0.20002E 01	0.19000E 04	0.59500E 03	0.0
ZONE 4	0.20002E 01	0.0	0.59500E 03	0.14735E-02
ZONE 5	0.20002E 01	0.0	0.59500E 03	0.0
ZONE 6	0.20002E 01	0.0	0.59500E 03	0.0
ZONE 7	0.20002E 01	0.25000E 03	0.59500E 03	0.18748E-02
ZONE 8	0.50005E 01	0.25000E 03	0.59500E 03	0.89980E-03
ZONE 9	0.60005E 01	0.25000E 03	0.59500E 03	0.0
	FABRICATION (MILL/KWH)	REPROCESSING (MILL/KWH)	FABRICATION CC (MILL/KWH)	REPROCESSING CC (MILL/KWH)
ZUNE 1	0.30548E 01	0.95664E 00	0.47535E 00	-0.67911E-01
ZUNE 2	0.0	0.0	0.0	0.0
ZUNE 3	0.0	0.0	0.0	0.0
ZUNE 4	0.0	0.87672E 00	0.0	-0.62238E-01
ZUNE 5	0.0	0.0	0.0	0.0
ZUNE 6	0.0	0.0	0.0	0.0
ZUNE 7	0.46871E 00	0.11155E 01	0.72435E-01	-0.79191E-01
ZUNE 8	0.22495E 00	0.53538E 00	0.63469E-01	-0.91173E-01
ZUNE 9	0.0	0.0	0.0	0.0
CARRY CHARGE ON PL INVENTORY	=	0.70420153E 01		
REVENUE	=	-0.43552718E 01		
CHARGE ON REVENUE	=	0.15073760E 00		
LOSSES	=	0.29504630E 00		
CARRY CHARGE ON LOSSES	=	-0.50846115E-02		
CREDIT FOR SALE AT PLANT EOL	=	-0.81420922E 00		
TOTAL FUEL CYCLE COST	=	0.99311924E 01		