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ALE Shock Calculations Using a Stabilized Serendipity Rezoning Scheme.*
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A rezone stencil for ALE shock calculations has been developed based on a stabilized variant of the serendipity element. 
This rezone stencil is compared to the Winslow rezone stencil. Unlike the Winslow stencil, which equalizes element volumes 
as well as node angles, the serendipity stencil equalizes node angles only. This may be advantageous for calculations involv­
ing strong density gradients such as those associated with shock compression.

1. Introduction
Our group is presently developing a new general-pur­

pose shock code applicable to problems involving high com­
pression, plastic flow, and vaporization. Thin regions of 
material, due either to initial geometry or high compression, 
will not be adequately represented by a fixed Eulerian mesh; 
on the other hand, no purely Lagrangian technique can rep­
resent highly distorted plastic or inviscid fluid flow ade­
quately. We have chosen to implement arbitrary Lagrangian- 
Eulerian (ALE) techniques in the new shock code so that it 
will be able to handle the entire range of phenomena of inter­
est.

1.1. Plastic Flow vs. Inviscid Fluid Flow

Plastic flow often results in the material behaving as if it 
was incompressible. Fully-integrated finite elements, in 
which the deformation field is approximated to the same or­
der as the velocity gradient, cannot be used to solve an in­
compressible flow problem1; such elements are unable to 
represent the Stokes flow field resulting from certain defor­
mation modes (the hourglass modes) with the result that 
these modes are filtered out of the velocity field. This is true 
no matter how fine the mesh is made. That is to say, the meth­
od is not convergent.

Generally, the problem is solved by reducing the order 
of approximation of the deformation field so that the hour­
glass modes are no longer coupled to the deformation. This 
renders the method convergent, but requires the introduction 
of hourglass control algorithms to prevent uncontrolled exci­
tation of the hourglass modes.2 A significant body of theoret­
ical work now exists for hourglass control methods which 
are tied to the shear modulus of the material. In practice, ad 
hoc parametrization is used for calculational simplicity with 
the complete theory providing guidance on the values to use

for the parameters.

If a calculation involves inviscid fluids, these hourglass 
control methods fail, since the shear modulus of the material 
is vanishingly small. This reflects the fact that a perfect fluid 
has no hourglass resistance. Since it is the hourglass distor­
tion that is ultimately responsible for mesh tangling, this is a 
serious difficulty.

One is left with a number of alternatives for solving the 
problem. The first is to avoid incompressible materials and 
use a fully integrated element. This is not a satisfactory solu­
tion. Many materials of interest will have Poisson’s ratio suf­
ficiently close to 0.5 at some point in a calculation that a 
mesh of fully-integrated elements will be too stiff.

The second alternative is to use different element tech­
nologies for different portions of the mesh. This fails if a sin­
gle material is both inviscid and nearly incompressible, 
which is not unknown.

The third alternative, which is explored in this paper, is 
to use an underintegrated element with standard hourglass 
control in an ALE setting. If a rezoning scheme can be found 
that reduces the hourglass component of the mesh, then ap­
plication of this scheme may be adequate to control hour­
glass deformation.

1.2. ALE Rezoning Schemes

A finite-element based ALE scheme generally functions 
like a normal Lagrangian finite-element method until the 
mesh distortion exceeds some limit. The material is then per­
mitted to flow through the mesh in such a way that mesh dis­
tortion is reduced to acceptable levels (which constitutes the 
semi-Eulerian mode of the ALE method).3

It is relatively easy to formulate a criterion for permit­
ting material convection. For example, one can switch on
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convection when one of the angles formed by element sides 
at a node becomes too acute or when the elements connected 
to a node differ too greatly in volume. In our case, convec­
tion would be switched on when the hourglass component of 
the deformation field of an element becomes too great.

It is somewhat more challenging to come up with a good 
rezoning scheme. Benson3 advocates the use of stencils that 
enforce equipotential relaxation, and this has become the de 
facto standard rezone method. However, as will be shown in 
this paper, there are classes of problems for which equipoten­
tial relaxation may be inferior to alternate methods if one is 
primarily interested in ALE hourglass control.

2. Rezoning stencils for ALE schemes 

2.1. The Winslow stencil
This stencil is derived from a finite difference represen­

tation of the Laplace equation4

V2/ = 0 (1)

Hence it is referred to as an equipotential relaxation stencil.

The chief drawback of the Winslow stencil is that it 
tends to equalize element volumes as well as to reduce the 
vorticity of the mesh (that is, to equalize the angles formed 
by element sides at each node). This eliminates any initial 
mesh grading that may be introduced by the analyst. If the 
material contains strong density gradients, as is the case for 
many problems of interest to our group, such mesh grading 
is a highly desirable feature.

Figure 1 illustrates this behavior. Winslow’s stencil has
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Figure 1. Winslow mesh

been applied to a mesh with unequal spacing of boundary 
nodes. One sees that elements away from the boundaries 
tend to be equal in volume despite the unequal boundary in­
tervals. Although one could introduce a source term into the 
equipotential scheme so as to “attract” the mesh to regions of 
high density, Benson notes that this source term could lead to 
mesh overlap.

2.2. The stabilized serendipity stencil

This stencil gets its name from the fact that it was orig­
inally derived from the isoparametric 8-node serendipity el­
ement used in finite element methods. It may also be derived 
from the finite difference representation of the partial differ­
ential equation

a4/
d2xd2y

= 0 (2)

with the general solution

f = yfi(x)+xf2(y). (3)

This stencil takes the form

x" + 1 = 0.5[x" + 0.5(^ + xJ + Xj + xJ)-0.25(x5 + x; + ^+xJ)] (4)

where the superscript denotes the iteration number and the 
subscript denotes the node number according to Benson’s 
numbering scheme. (See Figure 2.) The x" contribution on 
the right hand side is required for stability.
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Figure 2. Node numbering schemel

Figure 3 illustrates the properties of this rezoning 
scheme. The boundary nodes are spaced identically with 
Figure 1. One sees that there is no tendency to equalize ele­
ment volumes; only the vorticity of the mesh has been re­
duced.

Another striking feature of the serendipity stencil is that 
the resulting mesh is more sensitive to the boundaries than is 
the Winslow mesh. One therefore has a greater degree of 
control over the details of rezoning. Any suitable algorithm 
may be employed to redistribute the nodes along the bound-
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Figure 3. Stabilized serendipity mesh

aries of the mesh; the remainder of the rezoned mesh will 
then conform closely to the boundary.

2.3. Acceleration of convergence
The chief drawback of the stabilized serendipity stencil 

is that it converges very slowly. Figure 4 illustrates the prob-

x

Figure 4a. Initial hourglassed mesh

lem. After five iterations, one sees that the initial, highly dis­
torted mesh has begun to smooth near the boundaries; 
however, the center of the mesh remains highly hourglassed.

Ng acceleration5 provides a means of increasing the rate 
of convergence. Figure 5 illustrates that the hourglass pattern

x

Figure 4b. Mesh after five iterations

is smoothed much more quickly by four Ng-accelerated iter­
ations than by five iterations alone. (The computational cost 
is comparable). However, the global solution is still reached 
only very slowly; in the example, one sees an overall up­
wards distortion of the interior of the mesh that has not been 
completely removed by the Ng-acclerated iterations.

Figure 5. Mesh after four accelerated iterations

3. Conclusion

We are exploring the use of ALE techniques for the con­
trol of hourglassing in underintegrated inviscid fluid ele-
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ments. We find that the stabilized serendipity stencil has 
great potential as a rezoning scheme because it reduces mesh 
vorticity without destroying mesh grading. Ng acceleration 
is useful for increasing the rather slow rate of convergence of 
the stabilized serendipity stencil.
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