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Abstract

Chaos theory provides a new paradigm in monitoring complexity changes
in heart rate variability. Even in cases where the spectral analysis only
shows broad band characteristics estimations of dimensional complexity
parameters can show quantitative changes in the degree of chaos present in
the irterbeat interval dynamics. We introduce the concept of dimensional
complexity as dynamical monitoring parameter and discuss its propertics in
connection with control data and data taken during cardiac arrest. Whereas
dimensional complexity provides a quantitative indicato: of overall chaotic
behavior, recurrence plots allow direct visualization of recurrences in arbi-
trary high dimensional pattern-space. In combination these two methods
from non-linear dynamics exemplify a new approach in the problem of heart-
rate monitoring and identification of precursors of cardiac arrest. Finally
we mention a new method of chaotic control, by which selective and highly
offective perturbations of nonlinear dynamical systems could be used for
improved pacing patterns.
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Introduction

A basic feature of recent methods in nonlinear dynamics is a geometrical view
of temporal processes. From an observed time series of, say, interbeat intervals,
a sequence of multidimensional vectors is reconstructed. These vectors can be
interpreted as patterns in the ohserved time signals. With the methods from
chaos theory it is possible to operate in this space of temporal patterns with
seometrical and quantitative methods (see e.g. |5]). In this contribution we want
Lo discuss the concept of fractal dimension and also the concept of close recurrences

of patterns, which might diagnostically indicate some significant regularity in the
lieart rate dynamics.

Below we give a briel overview of the concepts of dynamical dimension esti-
mates and then describe the methods we have used to obtain an unbiased estimate
of dominating dimensional commplexity parameters and .he detailed structure of
the scaling properties of reconstructed attractors.

Assume we are measuring a single variable discrete time-series r(t,,) = I,
In the current context r,, would correspond to an interspike interval or instanta-
neons heart rate. ‘Then we can reconstruct vectors 7, in a n-dimensional state
space through time delay coordinates: T = (Tmifm-kTm-zks- o Fmon=1)h)s
where m runs from (n — 1)k + 1 to the number 144 of data points and ks the
time delay. The successive sequence of points Loy, Tm—ps Tm-2ks-+ - Fino(n=1)k CitD)
be viewed as a temporal finite pattern of the signal. The embedding dimension n
determines the length of the pattern, the delay time & determines the degree of
detail or fines tructure that is resolved in the pattern. Periodic behavior in Lhe
signal can be identified by closed loop in pattern apace, which can be visualizad if
the embedding dimension is not greater than three. Chaotic solutions are seen ge-

ometrically as structured, non-repeating orbita in the reconstructed pattern state
space.

Here and in the following figures we want to illustrate nur method with the
help of the two different heart rate signals (control set and ischemia) of figs. (1,
). The time delay for the reconstruction should be chosen in a way that the
coordinates of £, are maximally independent.  We nse the coneept of mutual
mformation content [3] to determine the optimal delay time. In figure 3 we plot
the mntual information content of three different heart condition as a function
of delay time. For the dimension caleulation we have chosen a delay of 9 beat
imtervals, The inerease in mutual information content from the control to ischemia
medieates a decrease in chaos for the transition to pathology.

From the data vectors £, we seleet a subset of equally spaced (in titne)
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reference veetars £, cor cach of the n-dimensional reference vectors, we deternine
the local gange function Ny (r), which counts the number of data points in a
~)

neighborhood of f, of size r. In a log-log-representation this function typically

exhibits a scaling region over which a slope can be defined. T'his means that we

have: logNe (1) = log ol§,) +dglog r where ¢(§,) is a position dependent scale
q-Ve, ;

factor. This slope is then interpreted as the pointwise dimension dc', of the system
at point & (see e.g. [1). [7). [8], [9], [11)]).

From theoretical arguments we know that the estimation of the dimension
value itself would require a much large data set. But we think that especially
in bio-medical applications it might be useful for diagnostic purposes to compare
significant relative changes in the “dimensional complexity parameter” ([8], [9])
even for relatively small data sets. Similar arguments are also used in connection
with spectral analysis. In order to minimize the bias in dimension estimates, we
introduced an algorithm which determines the fit-range, goodness of fit (GF),
andd the estimated dimension automatically for each reference point and for cach
cimbedding dimension (9]

Dynainics of Dimensional Complexity

Sinee our reference points are sampled at equal time intervals, we obtain a se-
quence of dimension values that reflects the temporal ordering on the attractor
although the dynamics itself is chaotic and recurrences are quasi random. It is
pussible through our method to localize the specific regions on a reconstructed
attractor responsible for sigrificant changes in the apparent 'ocal dimersiouality.

In tigs. 4,5 we plot the pointwise dimension obtained in this way as a function
of the reference point for the time series shown in figs. 1, 2. The dynamies of
the dimensional complexity parameter confirms the evidence from the mutual
iformation content: The average of the pointwise dimensional complexity as a
measure for the degree of chaos in the system decreases, as the heart goes from
the cantrol state to ischemia.  In the control state we estimate a dimensional
complexity o = 7.7 £ L0 compared to a value of d . 5.2 1 2.5 in the ischemic
state. We also can observe that in the latter we have a clear structure in the
dimensional complexity series with minimal values below o 2 2,

The method of estimating the point wise dimension at a sequence of time
mstanees 1w equivalent to probing the attractor at different geometrical locations,
We think that this information is very helpful in associating changes in the com



plexity of the dynamies with geometrical featnres of the reconstructed data set;
it offers stronger insights into the characteristics of the system.

Recurrence Plots

The tim~ dependent pointwise dimension or crowding index give us information
about the scaling braavior in a n dimensional aeighborhood of the reconstructed
syvstem at a given point in time. As mentioned above, we are only interested
in the contribution of those points of the system, which are not temporarily too
close. bt revisit the neighborhood after some elapsed recurrence time. From the

dimensional complexity alone we cannot deduce any information about the time
in which those recurrences take place. It would be possible that a large number
of recurrences are generated through some localized small scale dynamics of the
svstem. ‘Then it coald take the system a very long time before it visits the same
neighborhood again,  In other, more regular types of attractors, the recurrence
could occur in periodic time intervals. In distinction to random systems we can
identify conditions of a chaotic attractor under which relatively short recurrences
are frequent. For some applications it might be interesting to obtain quantitative
information about the dynamics of *hose recurrences. A very elegant way of
representing this information was introduced in [1]. We have modified the original
method slightly for computational and visualization purposes.

From a (reconstructed) vector time series ot = 1,..., Naea WE compute
the distances \,,; between eacu of the vectors £, m = l,...,[ﬂ.‘lﬂ] and the
vetor £y shifted in time by an amount of I, for [ = 1,... ,[ﬂ,_eh] We now can
detine a threshold distance € > 0 and define the recurrence times Tr(m, ¢) through
the condition: Qp, ra(m.e) < ¢. In the graphical representation of these functions
we observe the periodic structures of the signal in the recurrences (see fig. 6).
We obtain more complete information about recurrences at different distances ¢
by plotting the graph of A, cither in a three dimensional representation or with
the hielp of color coding. Not~ that each of these reconstructed vectors can be
represented as a pattern in the time series, and therefore this method might he
helpful in the context of pattern analysis of sealar signals.

Besides estimating the fractal dimension of heart rate data and examining
tecurrences i pattern space, recent efforts have tried to extract dynamical equa-
tions from the observed time series (see ez [2]). The parameters obtained in this
way for the reconstructed model are of limited accuracy bhecanse of factors like
limited Ghservation time/resolution, stationarity ete.

Having an approximate model of the healthy heart dynamies now allows s



to test the response of the heart rate dynamics to external pacing generated by
the reconsiructed model equations This pacing would have to be aperiodic with
characteristic features optimized for maximal “resonant™ response.  This type
of approach has been successfully applied ([6]. [10]) in a general context. We
suspect that this concept of chaotic stimulation might have possible applications
in cardiac pacemakers with the goal to reverse (under minimal eletro-chemical
perturbations) the transition to cardiac arrest.
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Figure 1+ An R minte file of R B intervals recorded from the standard heart Joad
vatirface lead) of a pig. The data set represents within-subjeet. control conditions
i whtch the animal is alert and awake.
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Figure 2: An 8 minute file of R-R intervals recorded from the standard heart leacd
of the same pig. The data set represents test conditions of 100of the left anterior
descending artery of the heart (LAD). Recording taken on the same day as the
uther files,
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Fienre 3: Mutual information content of R-R interval signals of healthy control
ottam earve), 50% occlusion (middle enrve), and ischemia (top). This seems to
i ate a loss in chaotic complexity during the transition to a pathological state.
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IFigure 4: Time series of pointwise dimension values for the heart rate signal of
lig. 1 (control state). From the ng4, = 347 skalar data points we reconstruct a
vector time series with a time delay of £ = 9. Under these conditions we obtain
Nuee = 669 vector data points £, in a 20- dimensional embedding space. Out of
thase we choose the first n,.; = 650 vectors as reference vectors £;. To avoid points
which are .emporally very close we don't count vectors Z,, in a neighborhood of f,
whenever | m — jv |< 3. For this data file we have to reject 264 reference vectors
due o insufficient scaling behavior.
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Figure 5: Same as in fig. 1 for the data of fig. 2 (ischemia). ‘The numerical
patameters are basically the same. For this file we only have to reject 103 reference
vectors indicading a lower degree of chaos.
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Figure 8: Recurrence plot Am Ta(m.) for the data of fig. 1 (left) and 2 (right).
[n horizontal direction we have the time index m, in vertical direction we Lave
the time shift [ between the two vectors, whose separation is computed. Periodic
structures in the signal is represented by horizontal lines. Vertical lines indicate
vlustering properties of the reconstructed signal. Diagonal lines indicate relaxation
1vpe oscillations.



