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ABSTRACT 

We discuss the light-cone quantization of gauge theories from two perspectives: 
as a calculational tool for representing hadrons as QCD bound-stales of rclativistic 
quarks and gluons, and also as a novel method for simulating quantum field theory 
on a computer. The light-cone Fock state expansion of wavefunctions at fixed light 
cone lime provides a precise definition of the parton model and a general calculus 
for hadronic matrix elements. We present several new applications of light-cone 
Fock methods, including calculations of exclusive weak decays of heavy hadrons, 
and intrinsic heavy-quark contributions to structure functions. A general non-
perturbative method for numerically solving quantum field theories, "discretized 
light-cone quantization," is outlined and applied to several gauge theories, includ­
ing QCD in one space and one time dimension, and quantum electrodynamics in 
physical space-time at large coupling strength. The DLCQ method is invariant 
under the large class of light-cone Lorentz transformations, and it can be formu­
lated such that ultraviolet rcgularizalion is independent of the momentum space 
discretization. Both the bound-stale spectrum and the corresponding relativis­
t s light-cone wavefunctions can be obtained by matrix diagonalization and related 
techniques. We also discuss the construction of the light-cone Pock basis, the struc­
ture of the light-cone vacuum, and outline the renormalizalion techniques required 
for solving gauge theories within the light-cone Hamiltonian formalism. 
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Introduction 

In quantum chromodynamics, hadrons are relativistic bound states of con-
fined quark and gluon quanta. Although the momentum distributions of quarks in 
nucleons are well-determined experimentally from deep inelastic lepton scattering 
measurements, there has been relatively little progress in computing the basic wave-
functions of hadrons from first principles in QCD. The most interesting progress 
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has come from lattice gauge theory ' and QCD sum rule calculations, both of 
which have given predictions for the lowest moments {xf) of the proton's distri­
bution amplitude, 4>y{*i,Q)- The distribution amplitude ia the fundamental gauge 
invariant wavefunction which describes the fractional longitudinal momentum dis­
tributions of the valence quarks in a hadron integrated over transverse momentum 
up to the scale Q. However, the results from the two analyses arc in strong 
disagreement: The QCD sum rule analysis predicts a strongly asymmetric three-
quark distribution (See Pig. 1), whereas the lattice results, obtained in the 
quenched approximation, favor a symmetric distribution in the i , . Models of the 
proton distribution amplitude based on a quark-di-quark structure suggest strong 
asymmetries and strong spin-correlations in the baryon wavefunctions. Even 
less is known from First principles in non-perturbativc QCD about the gluon and 
non-valence quark contributions to the proton wavefunctionv although data from 
a number of experiments now suggest non-trivial spin correlations, a significant 
strangeness content, and a large x component to the charm quark distribution in 
the proton. 

There are many reasons why knowledge of had rem wavefunctions, particularly 
at the amplitude level, will be necessary for future progress in particle physics. For 
example, in elcctroweak theory, the central unknown required for reliable calcula­
tions of weak decay amplitudes arc the hadronic matrix elements. The coefficient 
functions in the operator product expansion needed to compute many types of 
experimental quantities are essentially unknown and can only be estimated at this 
point. The calculation of form factors and exclusive scattering processes, in gen­
eral, depend in detail on the basic amplitude structure of the scattering hadrons 
in a general Lorcntz frame. Even the calculation of the magnetic moment of a 
proton requires wavefunctions in a boosted frame. We thus need a practical com­
putational method for QCD which not only determines its spectrum, but also a 
method which can provide the non-perturbativc hadronic matrix elements needed 
for general calculations in hadron physics. 

It is clearly a formidable task to calculate the structure of hadrons in terms 
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Figure 1, The proton distribution amplitude ^/>(r,,/j) evaluated at the scale fi — 
1 GcV from QCD sum rules. The enhancement at large xj correspond to a strong 
correlation between the a high momentum u quark with spin parallel to the proton spin. 

of tlicir fundamental degrees of freedom in QCD. Even in the case of abelian 
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quantum electrodynamics, very little is known about the nature of the bound 
state solutions in the large a, strong-coupling, domain. A calculation of bound 
state structure in QCD has to deal with many complicated aspects of the theory 
simultaneously: confinement, vacuum structure, spontaneous breaking of chiral 
symmetry (for massless quarks), while describing a rclativistic many-body system 
which apparently has unbounded particle number. 

The first step is to find a language in which one can represent the hadron in 
terms of relativistic confined quarks and gluons. The Belhe-Salpeter formalism 
has been the central method for analyzing hydrogenic atoms in QED, providing 
a completely covariant procedure for obtaining bound state solutions. However, 
calculations using tbis method are extremely complex and appear to be intractable 
much beyond the ladder approximation. It also appears impractical to extend this 
method to systems with more than a few constituent particles. 

An intuitive approach for solving relativistic bound-state problems would be 
to solve the Hamiltonian eigenvalue problem 

H ty>) = V ~p2 + A/2 |v) (i) 

for the particle's mass, M, and wavefunction, \rp}. Here, one imagines that \ip) is an 
expansion in multi-particle occupation number Fock states, and that the operators 
H and P are second-quantized Heisenberg picture operators. Unfortunately, this 
method, as described by Tamm and DancofF, is severely complicated by its non-
covariant structure and the necessity to first understand its complicated vacuum 
eigensolution over all space and time. The presence of the square root operator also 
presents severe mathematical difficulties. Even if these problems could be solved, 
the eigeasolution is only determined in its rest system; determining the boosted 
wavefunction is as complicated as diagonalizing H itself. 

Fortunately, "light-cone" quantization, the Lorenlz-frame-independent method 
we shall emphasise in these lectures, offers an elegant avenue of escape. The square 
root operator does not appear in light-cone formalism, and the vacuum structure IB 
relatively simple; for example, there is no spontaneous creation of massive fermions 
in the light-cone quantized vacuum. 
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Quantization on the Light-Cone 

There are, in fact, many reasons to quantize rclativistic field theories at fixed 
light-cone time r = t + zfc Dirac, in 1949, showed that a maximum number of 
Poincare generators become independent of the dynamics in the "front form" for­
mulation, including certain Lorentz boosts. In fact, unlike the traditional equal-
time Hamiltonian formalism, quantization on the light-cone can be formulated 
without reference to the choice of a specific Lorentz frame; the eigensolutions of 
the light-cone Hamiltonian thus describe bound stales of arbitrary four-momentum, 
allowing the computation of scattering amplitudes and other dynamical quantities. 
However, the most remarkable feature of this formalism is the apparent simplicity 
of the light-cone vacuum. In many theories the vacuum state of the free Hamil­
tonian is an cigenstatc of the total light-cone Hamiltonian. The Fock expansion 
constructed en this vacuum state provides a complete relativistic many-particle 
basis for diagonalizing the full theory. 

General Features of Light-Cone Quantization 

In general, the Hamiltonian is the "time" evolution operator H = ijp which 
propagates fields from one space-like surface to another. As emphasized by Dirac, 
there are several choices for the evolution parameter T. In the "Instant Form" T = t 
is the ordinary Cartesian time. In the "Front Form,* or light-cone quantization, one 
chooses r = t+z/c as the light-cone coordinate with boundary conditions specified 
as a function of i , y, and z~ = ct — z. Another possible choice is the "point form," 
where T = y/t^t2 — x2. Notice that all three forms become equivalent in the non-
rclativistic limit where, effectively, c —* co. A comparison of light-cone quantization 
with equal-time quantization is shown in Table 1, 

Table 1. A comparison of light-cone and equal-time quantization. 

Instant Form Front Form 

E, P 

Pl +M7 

P~ — - 1 V 

Conserved quantities E, P 
t — / H 1 V 

p-, p + , y± 
Momenta PzOQ P+>0 
Bound state equation Hxp = Eij) p+p-^ = M V 
Vacuum Complicated Trivial 
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Although the instant form is the conventional choice for quantizing field theory, 
it has many practical disadvantages. For example, given the wavefunction of an n-
electron atom, </\i(*ii' = 0), At initial time t = 0, then, in principle, one can use the 
Hamiltonian H to evolve it>n{*i*t) to later times l. However, an experiment which 
could specify the initial wavefunction would require the simultaneous measurement 
of the positions of all of the bound electrons, such as by the simultaneuus Compton 
scattering of n independent laser beams on the atom. In contrast, determining the 
initial wavefunction at fixed light-cone time r = 0 only requires an experiment 
which scatters one plane-wave laser beam, since the signal reaching each of the n 
electrons IB received along the light front at the same light-cone time r — U + z%\c. 

As we shall discuss in these lectures, light cone quantization allows a precise 
definition of the notion that a hadron consists of confined quarks and gluons. In 
light-cone quantization, a free particle is specified by its four momentum A** = 
(Jt+,Jt~,Jtj.) where tr* =s Jt° ± jfc*. If the particle is on its mass shell and has 
positive energy, its Light-cone energy is also positive; k~ = {k^ + m 2 ) / fc + > 
0. In perturbation theory, transverse momentum £ k± and the plus momentum 
£ k+ are conserved at each vertex. The light-cone bound-state wavefunction thus 
describes constituents which are on their mass shell, but off the light-cone energy 
shell: p - < 5 > ~ » -

As wc shall show explicitly, one can construct a complete basis of free Fock 
states (cigenstales of the free light-cone Hamiltonian) |n) (n| = / in the usual way 
by applying products of free field creation operators to the vacuum state |0) : 

10} 
| « : i , A , ) = 6'(A IA,)rf t(*2A2)|0) 

k w : & M = #{ki*)*fi(k2*2)*'Ub**) l°> ( 2 ) 

where 6̂ , d* and a* create bare quarks, antiquaries and gluons having three-
momenta i , and helicilics Â . 

Note, however, that in principle In the case of a theory such as QED, with 
massive fermions, all states containing particles have quanta with positive fr+, and 
the zero-particle stale cannot mix with the other states in the basis. The free 
vacuum in such theories is thus an exact cigenstate of HLC< However, as we shall 
discuss in later sections, the vacuum in QCD is undoubtedly more complicated 
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due to the possibility of color-singlet states with P* = 0 built on four or more 
zero-mode massleas gluon quanta. 

The restriction fc+ > 0 for mans.. e quanta is a key difference between light-cone 
quantization and ordinary equal-time quantization. In equal-time quantization, 
the state of a par ton is specified by its ordinary three-momentum k± = (&1, A:2, J:1). 
Since each component of Jb̂  can be either positive or negative, there exiBt zero total 
momentum Pock states of arbitrary particle number, and these will mix with the 
zero-particle state to build up the ground state. However, in light-cone quantization 
each of the particles forming a zero-momentum state must have vanishingly small 
Jt+. Such a configuration represents a point of measure zero in the phase space, 
and therefore such states can usually be neglected. 

Actually some care must be taken here, mnce there are operators in the theory 
that are singular at k+ = 0—t.g. the kinetic energy (je£ + Af 2 )/ft + . In certain 
circumstances, states containing k+ —» 0 quanta can significantly alter the ground 
stale of the theory. One such circumstance Is when there is spontpneous symmetry 
breaking. Another is the complication due to massless gluon quanta in a non-
Abelian gauge theory. Nevertheless, the space of states that can play a role in the 
vacuum structure is much smaller for light-cone quantization than for equal-time 
quantization. This suggests that vacuum structure may be far simpler to analyze 
using the light-cone formulation. 

Even in perturbation theory, light-cone quantization has overwhelming advan­
tages over standard time-ordered perturbation theory. For example, in order to 
calculate a Feynman amplitude of order gn in TOPTH one must suffer the cal­
culation of the sum of n time-ordered graphs, each of which is a non-covariant 
function of energy denominators which, in turn, consist of sums of complicated 
square roots pf = */p? + m?. On the other hand, in light-cone perturbation the­
ory (LCPTH), only a few graphs give non-zero contributions, and those that are 
non-zero have light-cone energy denominators which are simple sums of rational 
forms p~ = (p2

Li + mfypf. 

Probably the worst problem in TOPTH are the contributions from vacuum 
creation graphs, as illustrated for QED in Fig. 2(a). In TOPTH, all intermediate 
states contribute to the total amplitude as long as three-momentum is conserved; 
in this case pi + pb + k — 0 . The existence of vacuum creation and annihilation 
graphs implies that one cannot even compute any current matrix element with­
out considering the effect of the currents arising from pair production from the 
vacuum. This is illustrated in Fig. 2(b). In contrast, in light-cane perturba-
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(a) 

^ k 
Pi 
k p 1 + p 2 + k=0 p+q 

Figure 2. (a) Illustration of a vacuum creation graph in time-ordered perturbation 
theory. A corresponding contribution to the form factor or a bound state is shown in 
figure (b). 

tion theory (LCPTH), an intermediate slate contributes only if the total p± and 
p + are conserved. In the case of vacuum creation graphs in QED, this implies 
PIJ. + ih± + P3J. = 0 J. ftnd pf + pf + Aj = 0. However, the latter condition 
cannot be satisfied since each massive form ion has strictly positive p+ > 0. Thus 
aside from theories which permit zero modes, there are no vacuum creation graphs 
in LCPTH. 

Figure 3. Time-ordered contributions to the electron's anomalous magnetic mo­
ment. In Fight-cone quantization with ?+ = 0, only graph (a) needs to be computed to 
obtain the Schwinger result. 

In fact, light-cone perturbation theory is sufficiently simple that it provides 
in many cases a viable alternative to standard covariant (Feynman) perturbation 
theory. Each loop of a r-ardered diagram requires a three-dimensional integration 
over the transverse momentum tPkij. and light-cone momentum fraction x% = 
k*fp+ with (0 < x, < 1.) For example, the lowest order Schwinger contribution to 
the electron anomalous magnetic moment, a = % (g — 2) = ^r, is easily computed 
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Lei*, i.LAil 
A B C 0 

MI (a) 

A B C 

(b) 

Figure 4. Construction of a renormalizcd amplitude in LCPTfl using the method 
of alternating denominators. The mass rcnormalization counterlcrm is constructed 
locally in momentum space in graph (b) by substituting the light-cone energy difference 
P£ = p- rather than PJ - PJ. 

from just one LCPTH diagram. (See Fig. 3). Calculations of the higher order 
terms in a require rcnormalizatioii in the context of light-cone 11 amiltoman field 
theory. As shown in Ref. II renormalization in LCPTI1 can be carried out in 
close correspondence to Lagrangian methods. In the case of QED one can use the 
Pauli-Villars method to regulate the ultra-violet divergences. Then for each T-
ordered diagram with divergent subgraphs, the required local counter-term can be 
computed using the method of "alternating denominators." A simple example 
for one LCPTH graph for Compton scattering is shown in Fig. 4. Additional 
divergences which occur due to the 7 ' couplings (in covariant gauges) can be 

IS 
eliminated by subtraction of the divergent amplitude subgraph at p+ = 0. 

One of the most interesting applications or LCPTH would be the pcrturbative 
calculation of the annihilation cross section Ite+e-, since one would automatically 
calculate, to the same order in perturbation theory, the quark and gluon jet dis­
tributions appearing in the final state. It is advantageous to use the light-cone 
gauge A+ = 0 since one wants to describe gtuon distributions with physical polar­
ization. The extra complications in the renormalization procedure induced by a 
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non-covariant axial gauge have recently been discussed by Langnau and Burkardt. 
A non-perturbalive light-cone quantization calculation of Ae+ e- for QED in one 
space and one time has been given by Hiller 
merits in later sections. 

13 We will return to these develop-
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Representa t ion of Hadrons on the Light-Cone Fbck Basis 

One or the most important advantages of light-cone quantization is that the 
light-cone Fock expansion can be used as the basis for representing the physical 
states of QCD. For example, a pion with momentum £ = ( P + , P j.) is described 
by the expansion, 

where the sum is over all Fock states and helicities, and where 

n^-n^-'p-E'i) 

n^ii"!!^ 1 8 '^ E ^ • 
(4) 

The wavefunction 4/'n/*<(£ii&iiiAi) is thus the amplitude for finding partons in a 

specific light-cone Pock state n with momenta { X | P + , X | P j . + k±i) in the pton. 
The Fock slate is oft" the tight-cone energy shell: £ kf > P~ . The tight-cone mo­
mentum coordinates x,\ with $3|L| x; and frj_,-, with 2J=I *-L* ~ " J-> a r e actually 
relative coordinates; i.e. they are independent of the total momentum P + and 
P± of the bound state. The special feature that light-cone wavefunctions do not 
depend on the total momentum is not surprising, since x, in the longitudinal mo­
mentum fraction carried hy the i l h-parton (0 < x,- < I), and k±i is its momentum 
"transverse" to the direction of the meson. Both of these are frame independent 
quantities. The ability to specify waveftmctbns simultaneously in any frame is a 
special feature of light-cone quantization. 

In the light-cone Hamiitonian quantization of gauge theories, one chaoses the 
light-cone gauge, q • A = J 4 + = 0, for the gltion field. The use of this gauge results 
in well-known simplifications in the perturbativc analysis of light-cone dominated 
processes such as high-mnmentnm hadronic form factors, i t is indispensable if one 
desires a simple, intuitive Fock-state basis since there are neither negative-norm 
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gauge boson states nor ghost states in A+ = 0 gauge. ThuB each term in the 
normalization condition 

is positive. 
The coefficients in the light-cone Fock state expansion are the parton wavefunc-

tions 0,,/tf (z;, £j_;, A;) which describe the decomposition of each hadron in terms 
of its fundamental quark and gluon degrees of freedom. The light-cone variable 
0 < x,- < I is often identified with the constituent's longitudinal momentum frac­
tion XJ = kf/Pn in a frame where the total momentum P* -* oc. However, in 
light-cone Hamillonian formulation of QCD, ZJ is the boost-in variant light cone 
fraction, 

Jfc+ Jb9 4 . fc* 
x» - p+ - pa + px ' w 

independent of the choice of Lorentz frame. 

Calculation of Hadronic Processes from Light-Cone Wavefunctions 

Given the light-cone wavefunctions, 0„///(X|,*i», A,*), one can compute virtu­
ally any hadronic quantity by convolution with the appropriate quark and gluon 
matrix elements. For example, the leading-twist structure functions measured in 
deep inelastic lepton scattering are immediately related to the light-cone probabil­
ity distributions: 

2MF1(T,Q) = £ ^ « £ e = C f l / p ( x , g ) (7) 

where 

ca/p( *, Q) = Y,ITI dJ^^ w4w<*. ̂  W £ **• - *) w 

is the number density of partons of type a with longitudinal momentum fraction 
x in the proton. This follows from the observation that deep inelastic lepton 
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scattering in the Bjorken-scaling limit occurs if xy matcheB the light-cone fraction 
of the struck quark. (The J£ 4 is over all partons of type a in state n.) However, 
the light cone wavefunctiona contain much more information for the final state of 
deep inelastic scattering, such as the multi-parton distributions, spin and flavor 
correlations, and the spectator jet composition. 

As was first shown by Dretl and Yan, it is advantageous to choose a coor­
dinate frame where q+ = 0 to compute form factors Fj(g2), structure functions, 
and other current matrix elements at spacclike photon momentum. With such a 
choice the quark current cannot create pairs, and (p'|j + |p) can be computed as a 
simple overlap or Fock space wavefunctions; all off-diagonal terms involving pair 
production or annihilation by the current or vacuum vanish. In the interaction 
picture one can equate the full Hcisenberg current to the quark current described 
by the free Hamiltoman at r = 0. Accordingly, the form factor is easily expressed 
in terms of the pion's light cone wavefunctions by examining the /i = + compo­
nent of this equation in a frame where the photon's momentum is transverse to 
the incident pion momentum, with <j± = Q2 = —V2- The spacelike form factor is 
then just a sum of overlap integrals analogous to the corresponding nonrelativistic 
formula: (See Fig, 5. ) 

Figure 5. Calculation of the form factor of a bound Btale from the convolution of 
(iglit-cone Fock amplitudes. The result is exact if one rams over all 4'n-

TO3) = £ 5 > / n ^^^AWi<.*>irfAW±HA.-). (9) 
« 1. rt * a 
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Here ea is the charge of the struck quark, A 2 > q±, and 

q± Tor llie struck quark 
for all other partons. 

(10) 

Notice that the transverse momenta appearing as arguments of the first wavefunc-
tion correspond not to the actual momenta carried by the partons but to the actual 
momenta minus Xiq±, to account for the motion of the final hadron. Notice also 
that l± and fcj. become equal as tf± —* D, and that Fw —* 1 in thiB limit due to 
wavefunction normalization. All of the various form factors of hadrons with spin 
can be obtained by computing the matrix element of the plus current between 
states of different initial and final hadron hehcities. 

As we have emphasized above, in principle, the light-cone wavefunctions de­
termine all properties of a hadron. The general rule for calculating an ampli­
tude involving wavefunction V'o * describing Fock state n in a hadron with P. = 
( P + , X L ) I "as the form4 (see Fig. 6 ): 

A, J i 

dxifkjj (A) dn*.- . *** A,-) nA}(Xip+, xiP±+jfcxi, A,-) (ii) 

where Tn is the irreducible scattering amplitude in LCPTh with the hadron 
replaced by Fock state n. If only the valence wavefunction is to be used, IS 
irreducible with respect to the valence Fock state only; e.g. 1% ' for a pion has 
no qq intermediate states. Otherwise contributions from all Fock states must be 
summed, and 7^ ' is completely irreducible. 

+ *•• 

-%, 1-x 

Figure 8. Calculation of hadronic amplitudes in the light-cone Fock formulism. 
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The lcptonic decay of the ?r± is one of the simplest processes Lo compute since 
it involves only the qq Fock state. The sole contribution to T~ decay is from 

(0 (*.-r+(i - -»)**| 0 = ->/2P+U 

(12) 
where ne = 'A is the number of colors, / , « 93 MeV, and where only the Lt = 
Sx = 0 component of the general qq waveFunction contributes. Tliua we have 

IS?" w*'*^-2^* ( l 3 ) 

This result must be independent of the ultraviolet cutoff A of the theory provided 
A is large compared with typical hadronic scales, This equation is an important 
constraint upon the normalization of the du wavefunction. ft also shows that there 
is a finite probability for finding a ir** ID a pure dn Fock state. 

The fact that a hadron can have a non-zero projection on a Fock state of fixed 
particle number seems to conflict with the notion that bound states in QCD have 
an infinitely recurring parton substructure, both from the infrared region (from 
soft gluons) and the ultraviolet regime {From QCD evolution to high momentum). 
In fact, there is no conflict. Because of coherent color-screening in the color-singlet 
hadrons, the infrared gluons with wavelength longer than the hadron size decouple 
from the hadron wavefunction. 

The question of parton substructure is related lo the resolution scale or ultravi­
olet cut-off of the theory. Any rcnormatizable theory must be defined by imposing 
an ultraviolet cutoff A on the momenta occurring in theory. The scale A is usually 
chosen to be much larger than the physical scales ft of interest; however it is usually 
more useful to choose a smaller value for A, but at the expense of introducing new 
higher-twist terms in an effective Lagrangian: 

£<A> = 4 A W A W A ) ) + £ (xJ *C"A'<Q'<AWA» + ° (A) ( 1 4 ) 

where 

4 A » = - i FJ2>F< A* u' + ̂ A ) [ i^ A > - m(A)] <MA> . (15) 

The neglected physics of parton momenta and substructure beyond the cutoff scale 
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has the effect of renormalizing the values of the input coupling constant g{\2) and 
the input mass parameter m(A 2) of the quark partons in the Lagrangian. 

One clearly should choose A large enough to avoid large contributions from the 
higher-twist tormB in the effective Lagrangian, but small enough so that the Fock 
space domain ia minimized. Thus if A is chosen of order 5 to JO times the typical 
QCD momentum scale, then it ia reasonable to hope that the mass, magnetic 
moment and other low momentum properties of the hadron could be well-described 
on a Fock basis of limited size. Furthermore, by iterating the equations of motion, 
one can construct a rclativistic Schrodinger equation with an effective potential 
acting on the valence lowest-particle number state wavefunction. Such a picture 
would explain the apparent success of constituent quark models for explaining the 
hadronic spectrum and low energy properties of hadron. 

It should be emphasized that infinitely-growing parton content of hadrons due 
to the evolution of the deep inelastic structure functions at increasing momentum 
transfer, is associated with the renormalization group substructure of the quarks 
themselves, rather than the "intrinsic" structure of the bound state wavcfunc­
tion. The fact that the light-cone kinetic energy ( '*"* ) of the constituents in 
the bound state is bounded by A 2 excludes singular behavior of ttie Fock wavefunc-
tions at x —• 0. There arc several examples where the light-cone Fock structure of 
the bound state solutions is known. In the case of the supcr-rcnormalizable gauge 
theory, QED(\ +1) , thr probability of having non-valence states in the light-cone 
expansion of the lowest lying meson and baryon eigenslatcs to be less than 1 0 - 3 , 

18 even at very strong coupling. In the case of QFiD(3+l), the lowest state of 
posiLronium can be well described on a light-cone basis with two to four particles, 
Je+c-"), | c + e " 7 ) , | e + c~77) , and \e+e~t+e~); in particular, the description of 
the Lamb-shift in positronium requires the coupling of Lhc system to light-cone 
Fock states with two photons "in flight" in lighl-cone gauge. The ultraviolet cut­
off scale A only needs to be taken large compared to the electron mass. On the 
other hand, a charged particle such as the electron docs not have a finite Fock 
decomposition, unless one imposes an artificial infrared cut-off. 

We thus expect that a limited light-cone Fock basis should be sufficient to rep­
resent bound color-singlet states of heavy quarks in QCD(3+1) because of the co­
herent color cancellations and the suppressed amplitude for transversely-polarized 
gluon emission by heavy quarks. However, the description of light hadrons is 
undoubtedly much more complex due to the likely influence of chirai symmetry 
breaking and zero-made gluons in the light-cone vacuum. Wc rrt-urn to this prob­
lem later. 
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Even without solving the QCD light-cone equations of motion, we can antici­
pate some general features of the behavior of the light-cone wavefimcliona. Each 
Fock component describes a system of free particles with kinematic invariant mass 
squared: 

M2 = Tk*i + m \ (16) 

On general dynamical grounds, we can expect that states with very high M2 are 
suppressed in physical hadrons, with the highest mass configurations computable 
from perturbative considerations. We also note that eVi Xi = in fpotpl'i = y( — yp 
is the rapidity difference between the constituent with light-cone fraction x,' and 
the rapidity of the hadron itself. Since correlations between particles rarely extend 
over two units of rapidity in hadron physics, this argues that constituents which are 
correlated with the hadron's quantum numbers are primarily found with x > 0.2. 

The limit x —* 0 is normally an ultraviolet limit in a light-cone wavefunction. 
Recall, that in any Lorcntz frame, the light-cone fraction is x = k+/p+ = (ka + 
ks)/(P° + Px). Thus in a frame where the bound state is moving infinitely fast in 
the positive z direction ("the infinite momentum frame"), the light-cone fraction 

becomes the momentum fraction x —* ks/p*. However, in the rest frame P = 0 , 
x TS (k° + kx)/M. Thus i —* 0 generally implies very large constituent momentum 
kz —» — k° —• - c o in the rest frame; it is excluded by the ultraviolet regulation of 
the theory—unless the particle has strictly zero mass and transverse momentum. 

If a particle has non-rclativistie momentum in the bound state, then we can 
identify k* ~ xM — m. This correspondence is useful when one matches physics 
at the relativistic/non-relativistic interface. In fact, any non-reiativistic solution 
to the Schrddinger equation can be immediately written in light-cone form by 
identifying the two forms of coordinates. For example, the Schrodinger solution 
for particles bound in a harmonic oscillator potential can be taken as a model for 

19 
the light-cone wavefunction for quarks in a confining linear potential: 

-(*?**=*) 
This form exhibits the strong fall-ofF at large relative transverse momentum and 
at the x —> 0 and z —* 1 endpoinls expected for soft non-perturbative solutions in 
QCD. The perturbative corrections due to hard gluor exchange give amplitudes 
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suppressed only by power laws and thus will eventually dominate wavefunction 
behavior over the soft contributions in these regions. This ansatz is the central 
assumption required to derive dimensional counting perturbative QCD predictions 
for exclusive processes at large momentum transfer and the x —* 1 behavior of 
deep inelastic structure functions. A review is given in Ref. 20. A model for 
the polarized and unpolarized gluon distributions in the proton which takes into 
account both perturbative QCD constraints at large x and coherent cancellations 
at low x and small transverse momentum is given in Ref. 17. 

The Light-Cone Hamiltonian Eigenvalue Problem 

In principle, the problem of computing the spectrum in QCD and the corre­
sponding light-cone wavcfunctions for each hadron can be reduced to diagonalizing 
the QCD light cone Hamiltonian in Heisenberg quantum mechanics: Any hadron 
state must be an eigenstate of the light-cone Hamiltonian. For convenience we will 
work in the "standard" frame where P , = {P+,P±) = (l,0j.) and P~ = JM|. 
Then the state |jr) satisfies an equation 

C^-//£ C)k)-o. (18) 

Projecting this onto the various Fock states {qq\, {qqg}... results in an infinite 
number of coupled integral eigenvalue equations, 

(m-Z5^) 

{qqg\ V \qq) {qqg\ V \qqg) 

(19) 

where V is the interaction part of Hie- Diagrammatically, V involves completely 
irreducible interactions—i.e. diagrams having no internal propagators—coupling 
Fock states. (See Fig. 7.) We will give the explicit forms of each matrix element 
of V in a later section. 

In principle, these equations determine the hadronic spectrum and wavefunc-
tions. However, even though the QCD potential is essentially trivial on the light-
cone momentum space basis, the many channels required to describe a hadronic 
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Figure 7. Coupled eigenvalue equations Tor the liglil-conc wavefunctions of a pion. 

state make these equations very difficult to solve. For example, Fock states with 
two or more gluons are required just to represent the effects of the running coupling 
constant of QCD. 

In the case of gauge theories in one space and one time dimension, there are no 
physical gluon degrees of freedom in light-cone gauge. The computational prob­
lem is thus much more tractable, and it is possible to explicitly dtagonalize the 
light-cone Hamiltonian and thus solve these theories numerically. In this method, 
"discretized light-cone r, iMitization" (DLCQ) the light-cone Fock state basis is 
rendered discrete by imposing periodic (or anti-periodic) boundary conditior-1; ' 

A central emphasis of these lectures will be the use of DLCQ methods to solve 
non-perturbative problems in gauge theory. This method was first used to obtain 
the mass spectrum and wavefunctions of Yukawa theory, ifn/tifr, in one space and one 
time dimensions. This success led to further applications including QED(1+J) 

22 A for general mass form ions and the masslcss Schwinger model by Eller ct a/., </> 
23 

theory in l + l dimensions by Harindranath and Vary, and QCD(1+1) for Nc 
= 2,3,4 by Morn bos tel et at. Complete numerical solutions have been obtained 
for the meson and baryon spectra as well as their respective light cone Fock state 
wavefunctions for general values of the coupling constant, quark masses, and color. 

14 

Similar results for QCD(l-f-l) were also obtained by Burkardt by solving the 
coupled light-cone integral equation in the low particle number sector. Burkardt 
was also able to study non-additive nuclear effects in the structure functions of 
nuclear states in QCD(1+1). In each of these applications, the mass spectrum and 
wavefunctions were successfully obtained, and all results agree with previous ana-

13 
lytical and numerical work, where they were available. More recently, Hiller has 
used DLCQ and the Lanczos algorithm for matrix diagonalization method to com­
pute the annihilation cross section, structure functions and form factors in 1-1-1 
theories. Although these arc just toy models, they do exhibit confinement and are 
excellent tests of the light-cone Fock methods. 
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In addition to the above work on DLCQ, Wilson and his colleagues at Ohio 
State have developed a complimentary method, the Light-Front Tamm Damcoff 
approach.M'26 which uses a fixed number Fock basis to truncate the theory. Wilson 
has also emphasized the potential advantages of using a Gaussian basis similar to 
that used in many-electron molecular systems, rather than the plane wave basis 
used in the DLCQ work. 

The initial successes of DLCQ provide the hope that one can use this method for 
solving 3+1 theories. The application to higher dimensions is much more involved 
due to the expansion of the degrees of freedom arid the need to introduce ultraviolet 
and infrared regulators and truncation procedures which minimize violations of 
gauge invariance and Lorenlz in variance. This is in addition to the work involved 
implementing two extra dimensions with their added degrees of freedom. In these 
lectures, we will discuss some initial attempts to apply DLCQ to gauge theories in 

27 2B 29 30 
3+1 dimensions. ' ' ' We return to these applications in later sections. 

The striking advantages of quantizing gauge theories on the light-cone have 
31 been realized by a number of authors, including Klaudcr, Lcutwylcr, and Streit, 

M A>| -nM 4 I | U 

Kogut and Soper, Rohrlich, Lcutwylcr, Casher, Chang, Root, and Yan, 
Lepage and Brodsky, Brodsky and Ji, Lepage, Brodsky, Huang, and Macken-

19 38 
zie, and McCartor. Leulwylcr recognized the utility of defining quark wave-
functions on the light-cone to give an unambiguous meaning to concepts used in 
the parton model. Casher gave the first construction of the light-cone Hamiltonian 
for non-Abelian gauge theory and gave an overview of important considerations in 
light-cone quantization. Chang, Root, and Yan demonstrated the equivalence of 
fight-cone quantization with standard covariant Feynman analysis. 

Franke, * ' Karmanov, ' and Pervushin have also done important work 
on light-cone quantization. The question of whether boundary conditions can be 
consistently set in light-cone quantization has been discussed by McCartor and 
Lenz. They have also shown that for massive theories that the energy and mo­
mentum derived using light-cone quantization arc not only conserved, but also are 
equivalent to the energy and momentum one would normally wriLc down in an 
equal-time theory. 

The approach that we use in these lectures is closely related to the light-cone 
Fock methods used in Ref. 4 in the analysis of exclusive processes in QCD. The 
rcnormalization of light-cone wavefunctions and the calculation of physical observ-
ables in the light-cone framework is also discussed in that paper. The analysis of 
light-cone perturbation theory rules for QED in light-cone gauge used here is sim-
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ilar to that given in Ref. 19, A number of other applications of QCD in light-cone 
quantization are reviewed In Ref. 20. 

A mathematically similar but conceptually different approach to light-cone 
quantization is the "infinite momentum frame'1 formalism. This method involves 
observing the system in a frame moving past the laboratory close to the speed 
of light. The first developments were given by Weinberg. Although Ught-conc 
quantization is similar to infinite momentum frame quantization, it differs since no 
reference frame IB chosen far calculations, and it is thus manifestly Lorentz covari-
ant. The only aspect that "moves at the speed of light" is the quantization surface. 
Other works in infinite momentum frame physics include Drell, Levy, and Yan, 
Susskind and Frye, Bjorken, Kogut, and Soper, and Hrodsky, Roskies, and 
Suaya. This last reference presents the infinite momentum frame perturbation 
theory rules for QED in Feynman gauge, calculates one-loop radiative corrections, 
and demonstrates renormalizability. 

Light-Cone Wavefunctions and High Momentum-Transfer 
Exclusive Processes and Light-Cone Wavefunctions 

One of the major advantages of the light-cone formalism is that many properties 
of large momentum transfer exclusive reactions can be calculated without explicit 
knowledge of the form of the non-perturbative light-cone wavefunctions. The main 
ingredients of this analysis are asymptotic freedom, and the power-law scaling 
relations and quark helicity conservation rules of perturbative QCD. For example, 
consider the light-cone expression (9) for a meson form factor at high momentum 
transfer Q2. If the internal momentum transfer is large then one can iterate the 
gluon-exchange term in the effective potential for the light-cone wavefunctions. The 
result is the hadron form factors can be written in a factorized form as a convolution 
of quark "distribution amplitudes" <ft(xi,Q), one for each hadron involved in the 

4 52 amplitude, with a hard-scattering amplitude 7 / / . ' The pion's electromagnetic 
form factor, for example, can be written as ' "' 

0 0 

Here 7// is the scattering amplitude for the form factor but with the pions replaced 
by collinear qq pairs—i.e. the pions are replaced by their valence partons. We can 
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also regard T\\ as the free particle matrix element of the order 1/Q2 term in the 
effective Lagrangi&n for t*qq —• qq-

The process-independent distribution amplitude <t>u[x,Q) is the probability 
amplitude for finding the qq pair in the pion with xg = x and Xg = 1 — x. It is 
directly related to the light-cone valence wavefunction: 

" n/%*"*•'* m*)$z**)\*)m .(22) 

The kx integration in Eq. (2L) is cut off by the ultraviolet cutoff A = Q implicit 
in the wavefunction; thus only Fock stales with invariant mass squared M2 < Q 2 

contribute. We will return later to the discussion of ultraviolet regularizattoo in 
the light-cone formalism. 

It is important to note that the distribution amplitude is gauge invariant. In 
gauges other than light-cone gauge, a path-ordered "string operator" 
Pexp(/0 dsigA{sz) • r) must be included between the ^ and $. The line inte­
gral vanishes in light-cone gauge because A«z = A+z~/2 = 0 and so the factor can 
be omitted in that gauge. This (rom-perturbative) definition or $ uniquely fixes 
the definition of Tjt which must itself then be gauge invariant. 

The above result is in the form of a factorization theorem; all of the non-
pert ur bat ive dynamics is factorized into the non-perturbative distribution ampli­
tudes, which sums all internal momentum transfers up to the scale Q2. On the 
other hand, all momentum transfers higher than Q2 appear in T/f, which, because 
of asymptotic freedom, can be computed perturb at ively in powers of the QCD 
running coupling constant aa(Q2), 

Given the factorized structure, one can read off a number of general features of 
the PQCD predictions; e.g. the dimensional counting rules, hadron helicity conser-
vation, color transparency, etc. In addition, the scaling behavior of the exclusive 
amplitude is modified by the logarithmic dependence of the distribution amplitudes 
in In Q2 which is in turn determined by QCD evolution equations. 

An important application of the PQCD analysis is exclusive Compton scatter­
ing and the related cross process 77 —* pp. Each helicity amplitude for yp —• 70 
can be computed at high momentum transfer from the convolution of the proton 
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distribution amplitude with the 0{a\) amplitudes for qqtpt -» 9997- The result is 
a cross section which scales as 

dff 
di hp -» IP) = FjBcAtJn a) 

(23) 

if the proton helicity is conserved. The helicity-flip amplitude and contributions 
involving more quarks or g Jons in the proton wavefunction are power-law sup­
pressed, The nominal s~6 fixed angle scaling follows from dimensional counting 
rules. It is modified logarithmically due to the evolution of the proton distribu­
tion amplitude and the running of the QCD coupling constant. The normalization, 
angular dependence, and phase structure are highly sensitive to the detailed shape 
of the non~pertiirbative form of ^ p (x, , (?-). Recently Kronfeld and Nizic have 
calculated the leading Campion amplitudes using model forms for 4>p predicted in 
the QCD sum rule analyses; the calculation is complicated by the presence of in­
tegrate poles in the hard-scattering subprocess 7>/. The results for the unpolarized 
cross section are shown in Fig. 8. 

/ ^ 1 0 5 

—1 1 i 1 — 

Proton Campton Scattering 

60 120 
8 (degrees) 

180 

SI Figure 8. Comparison of the order a^/s6 PQCD prediction far proton Cbmpton 
scattering with the available tialn. The calculation assumes PQCD fflctomation awd 
distribution nmpliludes computed from QCD sum rule moments.. 

There also has been important progress testing PQCD experimentally using 
measurements of the p —* N* form factors. In a recent new analysis of existing 
SLAC data, Stoler has obtained measurements of several transition form factors 
of the proton to resonances at W = 1232,1535, and 1680 MeV, As is the case of 
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the clastic proton form factor, the observed behavior of the transition form factors 
to the 7V*(1535) and W»(1680) are each consistent with the Q-* fail-off and dipole 
scaling predicted by PQCD and hadron helicity conservation over the measured 
range ] < Q2 < 21 GeV2. In contrast, the p -+ A(1232) form factor decreases 
faster than \/Q* suggesting that non-leading processes are dominant in this case. 
Remarkably, this pattern of scaling behavior is what is expected from PQCD and 
the QCD sum rule analyses, since, unlike the case of the proton and its other 
resonances, the distribution amplitude <f>N*(zi,X2,x3iQ) oi the A resonance is 
predicted to be nearly symmetric in the x,-, and a symmetric distribution leads 
to a strong cancellation of the leading helicity-conscrving terms in the matrix 
elements of the hard scattering amplitude for qqq —• ~}*qqq. 

These comparisons of the proton form factor and Compton scattering pre­
dictions with experiment are very encouraging, showing agreement in both the 
fixed-angle scaling behavior predicted by PQCD and the normalization predicted 
by QCD sum rule forms for the proton distribution amplitude. Assuming one can 
trust the validity of the leading order analysis, a systematic scries of polarized tar­
get and beam Compton scattering measurements on proton and neutron targets 
and the corresponding two-photon reactions 77 —» pp will strongly constrain a 
fundamental quantity in QCD, the nucleoli distribution amplitude 0 ( i , ,Q 2 ) . It is 
thus imperative fo~ theorists ta develop methods to calculate the shape and nor­
malization of the non-pcrturbalive distribution amplitudes from first principles in 
QCD, 

Is PQCD Factorization Applicable t o Exclusive Processes? 

One of the concerns in the derivation of the PQCD results for exclusive ampli­
tudes is whether the momentum transfer carried by the exchanged gluons in the 
hard scattering amplitude Tjf is sufficiently large to allow a safe application of per-

58 
turbation theory. The problem appears to be especially serious if one assumes a 
form for the hadron distribution amplitudes 4>u{xi\ Q") which has strong support 
at the endpaints, as in the QCD sum rule model forms suggested by Chernyak and 
Zhitnitskii and others. 

59 This problem has now been clarified by two groups: Gari el al. in the case of 
baryon form factors, and Mankicwicz and Szcstepamak, for the case of meson form 
factors. Bach of these authors has pointed 011L that the assumed non-perturLativc 
input for the distribution amplitudes must vanish strongly in the endpoint region; 
otherwise, there is a double-counting problem for momentum transfers occurring 
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in the hard scattering amplitude and the distribution amplitudes. Once one en-
forces this constraint, {e.g. by using exponentially suppressed wavefunctiona ) 
on the basis functions used to represent the QCD moments, or uses a sufficiently 
large number of polynomial basis functions, the resulting distribution amplitudes 
do not allow significant contribution to the high Q7 form faetcrs to come from 
soft gluon exchange region. The comparison of the PQCD predictions with exper­
iment thus becomes phenomenologically and analytically consistent. An analysis 
of exclusive reactions on the effective Lagrangian method is also consistent with 
this approach. In addition, as discussed by Botts, potentially soft contributions 
to targe angle hadron-hadron scattering reactions from Landshoff pinch contribu­
tions arc strongly suppressed by Sudakov form factor effects. 

The empirical successes of the PQCD approach, together with the evidence 
for color transparency in quasi-elastic pp scattering gives strong support for 
the validity of PQCD factorization for exclusive processes at moderate momentum 
transfer. It seems difficult to understand this pattern of form factor behavior if 
it is due to simple convolutions of soft wavefunctions. Thus it should be possible 
to use these processes to empirically constrain the form of the hadron distribution 
amplitudes, and thus confront non-perturbative QCD in detail. 

Light-Cone Quantization and Heavy Particle Decays 

One of the most interesting applications of the light-cone PQCD formalism 
is to large momentum transfer exclusive processes to heavy quark decays. For 
example, consider the decay ifc -» 77. If we can choose the Lagrangian cutoff 
A 2 ~ ml, then to leading order in l/mei all of the bound state physics and virtual 
loop corrections are contained in the cc Fock wavefunction ^{x^kja). The hard 
scattering matrix element of the effective Lagrangian coupling cc —* 77 contains 
all of the higher corrections in o,(A 2) from virtual momenta |fe2| > A 2. Thus 

1 

M(vc - 77) = fj-k± Jdx4*\x, k±) 1*K\dB - 77} 
0 

(24) 
1 

jdx<f>(x,\)T{

H%c-+n) 

where <£(x, A 3) is the qc distribution amplitude. This factorization and separation 
of scales is shown in Fig. 9. Since the ifc is quite non-relativistic, its distribution 
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Amplitude is peaked at x — ] /2, and its integral over x is essentially equivalent to 
the wavefunction ut the origin, >̂(r — 0 ). 

-CDLL, 3 3 • ( W 
(A) ^ Y 

|k 2 |<A z |k z |>A 2 

Figure 9. Factorizntion of perturbative and non-perturbative contributions to the 
decay t}t — 77. 

Another interesting calculational example of quarkonium decay it. PQCD is the 
annihilation of ih*>. Jjij> into baryon pairs. The calculation requires the convolution 
of the hard annihilation amplitude Tjt(tx —* ggg —* uuduud) with the J ftp., baryon, 

4 3 

and anti-baryon distribution amplitudes,' (See Fig. 10. ) The magnitude of the 
computed decay amplitude for y/ -* pp is consistent with experiment assuming 
the proton distribution amplitude computed from QCD sum rules. The angular 
distribution of the proton in e+e~ -+ Jji> -* pp is also consistent with the liadron 
helicity conservation rule predicted by PQCD; i.e. opposite proton and anti-proton 
helicity. 

Figure 10. Calculation of J/V> — pp in PQCD. 
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The effective Lagrangian method was used by Lepage, Caswell, and Thacker 
to systematically compute the order a»[Q) corrections to the hadronic and photon 
decays of quarkonitim. The scale Q can then be set by incorporating vacuum 
polarization corrections into the running coupling constant. A summary of the 
results can be found in Ref. 65. 

Exclusive Weak Decays of Heavy Hadrons 

An important application of the PQCD effective Lagrangian formalism is to the 
exclusive decays of heavy hadrona to light hadrons, such as B° —> ir +ir~, A ' + , A*~. 
To a good approximation, the decay amplitude M= (B\Hw hi***"} is caused by 
the transition I -» W+Tt\ Lhus M = / rP?§f (ff~|^|B") where J? is the ft -» u 
weak current. The problem is then to rccouple the spectator d quark and the 
other gluon and possible quark pairs in each B° Pock state to the correspond­
ing Pock state of the final state TT~. (Sec Fig. 11. ) The kinematic constraint 
that («/y - ;!»)" = ml then demands that at least one quark line is far off shell: 
i 4 = iitPB-V*)'1 ~ -/«"/» "- - t - 5 GeV2, where wc have noted that the light quark 
lakes only a fraction (1 - y) ~ */(fc^ + m^)/mg of the heavy meson's momentum 
Bitter all of the valence quarks must have nearly equal velocity in a bound state, 
lit view of the successful applications ' of PQCD factorization to form factors at 
mutiieiilum transfers in the few Ge.V- range, it is reasonable to assume that (\p^\) 
is sufficiently large that we can begin to apply pertiirbativc QCD methods. 

_^- n + B " i f f 0 

^ H d (1-y) 
(a) 

b . % x * > 

1-x 1-y 
(b) 

Piguri- 11. ('iiliulation of tin- wcilt di-rny P — irjr in lite PQCD formnlinni or Iter. 
(!U. Tin- glnuii exrhwijsr kmirl «f tin* hmlron wAwfuiuliflii is exposed where hard 
liniment urn transfrr is ri'iiuirmi. 
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The analysis of the exclusive weak decay amplitude can be carried out in par-
allel to the PQCD analysis of electroweak form Factors at large Q7. The first 
Btcp is to iterate the wavefunction equations of motion so that the large momen­
tum transfer through the gluon exchange potential is exposed. The heavy quark 
decay amplitude can then be written as a convolution of the hard scattering ampli­
tude for Qq —* W+tf convoluted with the B and it distribution amplitudes. The 
minimum number valence Fock state of each hadron gives the leading power law 
contribution. Equivalent^ we can choose the ultraviolet cut-off scale In the La-
grangian at (A 2 < itms) so that the hard scattering amplitude TiiiQq —» W+qq) 
must be computed from the matrix elements of the order 1/A* terms in 6C Thus 
TJI contains all pcrturbative virtual loop corrections of order a,( A 2). The result is 
the Factorizcd form: 

M{B -* JTT) = fdXJdy<t,g(y,A)TiiM*>*) (25) 

which is expected to be correct up to terms of order 1/A*. All of the non-perturbalive 
fift 

corrections with momenta \k'\ < A2 are summed in the distribution amplitudes. 

In order to make an estimate of the size of the B -* wir amplitude, in Rcf. 
66 we have taken the simplest possible forms for the required wavefu net ions 

4>As) « 7sp\rS(l - y) (26) 

for the pion and 

["-i-nfe]" 
for the B, each normalized to its meson decay constant. The above form for the 
heavy quark distribution amplitude is chosen so that the wavefunction peaks at 
equal velocity; litis is consistent with the phcnomcnological forms used to describe 
heavy quark fragmentation into heavy hadrons. WecBtimate t ~ 0.05 to 0.10. The 
functional dependence of the mass term g(x) is unknown; however, it should be 
reasonable to take g(j) ~ 1 which is correct in the weak binding approximation. 
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One now can compute the leading order PQCD decay amplitude 

M(B« -+«-*+) = ^V:dVulir!:+(T-\V»\Ba) (28) 

where 

\2\ 
( w - | V | B°) = ̂ ^ - * J dx J dy **(*) MV) 

X 
Tt\?w-lsl"h'y*irB + MB9(x))m»] (29) 

*?<? 2 

TT^-lM^h + Mah'tfB + Afflg(x))757>) 
(*2 - M2

B)Q2 

Numerically, this gives the branching ratio 

BR(Bn - . i r + O ~ 10"8^Af (30) 

where f = lOlV'ut/V^I is probably less than unity, and N has strong dependence 
on the value of g: N ss 180 for g = 1 and Â  = 5,8 for g «= 1/2. The present 
experimental limit is 

B f t ( i ? n - > a - + j r - ) < 3 x KT 1 . (31) 

A similar PQCD analysis can he applied to other two-body decays of the B\ the ra­
tios of the widths wilt not be so sensitive to the form of the distribution amplitude, 
allowing tests of the flavor symmetries of the weak interaction. 

Light-Cone Quantization of Gauge Theory 

In this section we will outline the canonical quantization of QCD in A+ = 0 
gauge, following the discussion in Rcfs. 4 and 19. The quantization proceeds in 
several steps. First we identify the independent dynamical degrees of freedom in 
the Lagrangian. The theory is quantized by defining commutation relations for 
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these dynamical fields at a given light-cone time r — i + z (we choose T = 0). 
These commutation relations lead immediately to the definition of the Fock state 
basis. Expressing the dependent fields in terms of the independent fields, we then 
derive a light-cone Hamiltonian, which determines the evolution of the state space 
with changing r. Finally we derive the rules for T-ordered perturbation theory. 

The purpose of this exercise is to illustrate the origins and nature of the Fock 
state expansion, and of light-cone perturbation theory in QCD. In this section 
we will ignore the subtleties to the zero-mode large scale structure of non-Abelian 
gauge fields. Although these have a profound effect on the structure of the vacuum, 
the theory can still be described with a Fock state basis and some sort of effective 
light-cone Hamiltonian. At the least, this procedure should be adequate to describe 
heavy quark systems. Furthermore, the short distance interactions of the theory 
are un. fected by this structure, according to the central ansatz of perturbative 
QCD. 

The Lagrangian (density) for QCD can be written 

£ = - i T r ( F " " F ^ ) + V ( « p - m ) V > (32) 

where F"" = &iAv - dvA* + ig[A*, A"\ and iD" = id* - gA*. Here the gauge 
field /l" is a traceless 3 x 3 color matrix (A* = £ 0 / l ° T a , TT(TaTb) = l/26ah, 
[71 0, Th] = icabcTc,...), and the quark field V' is a color triplet spinor (for simplicity, 
we include only one flavor). In order to maintain charge conjugation symmetry 
in the construction of the Hamiltonian, it is understood that this expression is 
averaged with its Hermctian conjugate. 

Given the Lagrangian density, one can calculate the energy momentum tensor 
and stress tensor in the usual way from the independent dynamical fields and 
their conjugate momenta. At a given light-cone time, say r = 0, the independent 
dynamical fields are V>± = A±tf> and A*± with conjugate fields i$± and 8*A\, where 
A± = 7°7*/2 are projection operators (A+A- = 0, A± = A±, A+ + A_ = 1) and 
5 * = 9° ± d 3 . Using the equations of motion, the remaining fields in C can be 
expressed in terms of \&+, A\: 
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0_ = A_V> = — i~8j_ • ~c?x + Pm U"+ 

= "?- ~Jg+ 9^X'"^±^+ > 

/ t + = 0 , (33) 

*~ = J f ^ ' * A + { ^ F { t i a + ^ - * U + 2 0 + r * + ^ J 
- Jt~ + 2 f f J r . a + j ' . > . i j . O J , \ r » f / , ^ T » \ 

with 0 = i a and c?x = 7°"7*' 
To quantize, we expand the fields at r — 0 in terms of creation and anniliilatian 

operators, 

* , + ( x ) • / I F T S T E {^A> **tt A > c ~"' 

^ ( x ) = / t ^ T o ^ £ {«<^ A> 4<*> *"** + c c } i r = x+ = 0 , 

+ rft(i,A) ii +(t,A) e ' f c t } , r = *+ = 0 (34) 

*+>o A 

with commutation relations {k = (Jt+,fciJ): 

{''(*, A), ftt(g,A)} = {rf(fc,A), rf*<£, A')} 

= [a( t ,A) ,at ( £ i V)] 
(35) 

where A is the quark or gluon liclicity. These definitions imply canonical com­
mutation relation!! for the fields with their conjugates (T = x+ — y + = 0, x = 

31 



{*+<£), *ife>} = *+**(*-»)* 
(36) 

[>V(*),^i(y)]=«f> **(*-£). 
It should be emphasized that these commutation relations are not new; they are 
the usual commutation relation for free fields evaluated at fixed light-cone rather 
than ordinary time. 

The creation and annihilation operators define the Pock state basis for the 
theory at r 3 0, with a vacuum |0) defined such that 6|0) = o*|0) = a |0) = 0. 
The evolution of these states with r is governed by the light-cone Hamiltonian, 
Htc — P~y conjugate to T. The Hamiltonian can be readily expressed in terms of 
V>+ and A\: 

HLC = fh + V , (37) 

where 

mist* 

x •*• + rf'(i, A)4(t, A) - ^ — — > + constant 

(38) 
is the free Hamiltonian and V the interaction: 

V= JSX {25Tr(jaM"pPMP])-^Tr(p,J4»'] p „ i j ) 

+ 50 /ifr + 5

2Tr ( [ ia + >,^] ^JL_ [id+A»,Avf) 
(39) 
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with $ s 0_ + V+ (-* V1 as ^ -» 0) and A*1 = (0,4", /I'jJ (-• ^ as g - . 0). The 
Fock slates arc obviously cigcnsLatcs or //o with 

Wo |» : tf.ku) = E ( ^ £ ^ ) > : *?*u) • < 4 0> 

It is equally obvious that they are not eigenstalcs of V, though any matrix element 
of V between Fock states is trivially evaluated. 

The first three terms in V correspond to the familiar three and four gluon ver­
tices, and the gluon-quark vertex [Fig. 12(a)], The remaining terms represent new 
four-quanta interactions containing instantaneous fermion and gluon propagators 
[Fig, 12(b)]. All terms conserve total three-momentum k = (k+,k±), because of 
the integral over z in V. 

The matrix elements of the light-cone Hamiltonian for the continuum case can 
be found in Refs. [19,28,27]. For the sake of completeness, the explicit expressions 
are compiled in Tahles '2a-d for the vertex V, the contraction C, and the seagull 
interaction S, respectively, to the extent they are needed in the present context, 
The light cone Hamiltonian H\,c - T + V + S + C is the sum of these three 
interactions and of the free or 'kinetic' energy 

r = E ( = ^ £ ) l i fe + < 4 ) + E ( f ) _ <*••• 

The creation operators A,, d\ and a\ create plane wave states for the electrons, 
positrons, and photons, respectively, characterized by the four kinematical quan­
tum numbers q = (x,Arj.,A), and the destruction operators 6g, d7 and aq destroy 
them correspondingly. They obey the usual (anti-)commutation relations. Each 
single particle carries thus a longitudinal momentum fraction x, transverse momen­
tum £j_, and helicily A. The fermbns have mass mp and kinetic energy ! 5 E—-S the 
photons are massless. The symbol £ ? denotes summation over the entire range of 
the quantum numbers. In the continuum limit sums are replaced by integrals,i.e. 
£ * — * C L f d q , where 

] +00 +0O 

Ct = — ~ and Jdq S £ j d x Jd&±h jd^±)» • 

The normalization volume is denoted by il = 2L\\{2L±)2, and the total longitudinal 
momentum by P + . 
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Table 2a: The matrix dements of the vertex interaction V. — The transversal 
polarisation vector is defined as ej.(A) = (~\x — »'y)/>/2~. The coupling constant 
g is hidden in g~t with g2 — j 2 7>rn* ' n t n e continuum limit one replaces sums by 
integrals and 0 = g2 by 0 = CL0 = jjp, since o 2 = 4ira in oor units. — The 
Gell-Mann matrices arc denoted by T*lCl, and the totally anti-symmetric structure 
constants of SU(NC) by C$E = c o i c . The are related by [^.T*] = i^T'. 

Graph Matrix Element = MomentumxHelicityxFlavorxColor Factor 

V ^ w ( l ; 2 , 3 ) = 

,2 

1 —*~ 
+^4(A3)[(f) 3-(^) 
+SV? 4(Aa) - [ ( ^ - ( t )J , £ tfjfc #g 7%, 

W £ ^ • [(H - (HI 6X *A # u eats 

H_„(li2,3) <4 

4 

2,3) + 6j4a, 1 ^ ( 1 : 2 , 3 ) ) 

+ E S l ) W > * (aI«2«3 V,- M ( l ;2 ,3) + oSoJai ^ w ( l 5 2 , 3 ) ) 
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Table 2b: The matrix dements of the contraction energy C. — The effective 
coupling constant g ia given by g2 = g2 -fa. The color coefficient for the quarks 
are given by C> a E a ,c(T"T 0 )^ = (JV* - 1)/2JVC, and for the gluons by CG = 
E«.„ TV(T-T-') = JV//2, respectively. 

Graph Matrix Element as Infinite Sums as Finite Sums 

1 — 9 -

1 — 9 -

X , t i HJ.,B=1 

Ml) _ ~3^F V" I" 1 , ] 1 _ g2^F T^ £ ^ 1 
•• ff

 2 ^ N*l + x) T x(x, - x)] * xx J- 2im 

1 , / V W V - ^ 

W M f t . 1 
1 V W W , 

^ L x i ( x + xi) i i ( x - x i 

r<"> - o 

) x i ,<*-- 27rn ni,n=l 

c = E„«!«i [pi"n) + c^(i) + cfH>(i)] + (*{&i+«*{*) [cjg)(i) + c^(iy 
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Table 2c: The matrix elements of the seagull interaction S. — The coupling 
constant g is hidden ic g1 = g2 j&$. In the continuum limit one replace* sums by 
integrals and g* by TpCi = 5^, since g* = 4*or in our unitB. 

Type Graph Element = Momentum xHelicityxFlavorx Color Factor 

Si 
1 - > • - - y > — 3 

2 

- » — p — * — 3 

> ^ > 4 

C _ ^2 I *£*£ ***£ 7-ej7^ ej«* 

ft 
T > ^ > a 
a < 5 < 4 

—2 2 

& 
( - > — | A / \ A A 3 

2 » W V V — > — 4 

1 3 ^ J 3 

5* — A - «»; «S * i : * 

« 

ClC'CCj 

«i»< 

s7 

1—«r-jATU\A3 

2—»—k/w\,4 

2 4 w v 4 
r 2 . * . . < r 3 ~ I t > 

S-V-VA? 'J 

Of, *A fyf '^elej^oji* 

$> 

1*VWykAAA>3 

2<vw&/\n/u4 
f V W U W V b J 

2-VWVXAAA.4 

2 n T ^ ^ U 4 

U u W t f ' 3 

2 « T J ^ S r t 4 

°i9—at — 
c(«) _ 
• 5 W - W — 

c(«) _ 
Jgg—gg — 

o M „ S99"»B -

o(»»0 _ 
J W—9» — 

_J2 (*.+»] jx,+r«} ^ rf, 

g2 n—1 J?1 tf* 
* 4 v / r jr 3 r j i< A, Aj 

C 2 ] 

2f2 1 
™ 4</X]Xl'3Z4 

4 «£ 
*i *x 

1 

I 

1 

I 

1 

/"»« / I B 
" • H i 1 ' * * ) 

/ ^O (TO 

joa 0 0 "aioj^ojo* 

/7* l 0 0 

5 = £,..„.*,«, (*!4*A + <*I4«W 5i(l,2;3,4) 
+ S „ l t , l M < *MW4 fc(1.2!3,4) 

+ ^fi,«>.fi,«< (*M*3°< + di«a*««) 55(1,2:3,4) 

-*-Sf>«*«. (6M««4 + aJaJda6i) S7{1,2;3,4) 
+ £,„„,„,* «j«5«i^ 5«(1,2;3,4) 
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Tabic 2d: Tlie matrix elements of the fork interaction F. — The coupling constant 
3 is hidden in gm = g* -pfa 

Type Graph Momentum x Helicity x Flavor x Color Factor 

F3 *m p ^3 2 ft*-i M r ' . ^ CjC| 

F 5 

W W 4 
•MS 

g2 1 1 M „ 

V W \ T 

F <9> 

ft *4 
*£ 
«6 *l*Q a 

aim 

F 7 

I'VWXi * — •) 

9—SM 

s—m 

Fi9) = 

g—gqq 

jy2 1 

"9 (r,-Zt)y/xtx3 

* ( r i - r j ) 1 y/nxi 

%*-%*X sii *sn 
£*£*& tf 3 w 
ft «i * / j ' ^ l A , 1 ^ 

F 9 

1 ' w v w w v ; 

1 w w a ^ i 

r 1—988 a 
«9 04 

J7(«) _ 
r 3—339 — 

a* 1 ft ' A i p o /to 
1 '-'ajaj'-'ojot 

+ £« ,** ,» (*iMi«4 + 4 ( few) ft(l;2,3,4) + h.c. 
+ E „ * * * «i«2**i F7(l i213,4) + h.c. 
+ E * * * * «!«2«3a4 F9(l;2,3,4) + h.c. 
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(a) 

X X J-
z x x x 
3-83 4S07A26 

Figure 12. Diagrams which appear in the interaction Ilamiltonian Tor QCD on the 
light cone. The propagators with horizontal bars represent "instantaneous" gluon and 
quark exchange which arise from reduction or the dependent fields in A+ = 0 gauge, 
(a) Basic interaction vertices in QCD. (b) "Instantaneous" contributions. 

Light-Cone Perturbation Theory Tor Gauge Theory 

The light-cone Green's functions are the probability amplitudes that a Btate 
starting in Fock state |i) ends up in Fock state |/) a (light-cone) time T later 

( / | i )G(/ , i ;r) = < / | e - f f ^ 2 | , ) 

= * / ^ e - ' r / 2 C ( / , « ; e ) ( / | t ) , 

where Fourier transform G(f,i;t) can be written 

( / W W , i i 0 . ( / |__L_- |») 

1 1 . . 1 

(41) 

- ( ' t - HLC +1'0+ t - Ih + «*0+ e - H0 +1'0+ 

1 . . 1 , . 1 
e - Ha +1'0+ e - Ha +1*0+ e - Ha +1"0+ 

(42) 
The rules for T-ordered perturbation theory follow immediately when (c — Ho)~l 

is replaced by its spectral decomposition. 

1 „ [f. dk? J<kXi |n : fc Xj) (n : fc,-, Xt\ 
t - H0 + t0 + ffJ11 1 6TT' it,+ c - S ( * 2 + rn2)i/k? + i0+ l ' 
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The sum becomes a sum over all states n intermediate between two interactions. 
To calculate G(/,i;e) perturbatively then, all r-ordered diagrams must be 

considered, the contribulian from each graph computed according to the following 
rules: 

1. Assign a momentum Jf to each line such that the total k+,k± are conserved 
al each vertex, and such that k2 = m 3 , i.e. k~ = {k~ + m a)/fr + . With 
fermions associate an on-shell apinor. 

.<*.*]-3k(**+*.+*i-*i){2Jj *:[ ( M) 
or 

• ^ A > - 5 P ( * + - ^ + ^ ^ ) { S 1 AII ( 4 5 ) 

where \(T) = l/\/2(1,0,1,0) and X{i) = l /v^f(0 ,1 ,0 , - l ) T . For gluon 
lines, assign a polarization vector t** = (0, 2e± • k±/k+, fx) where ?x(T) = 

- l /x /2(U0 and ?j.U) = l / ^ ( l , - i ) . 
2. Include a factor 0(k+)/k+ for each internal line. 
3. For each vertex include factors as illustrated in Fig. 13. To convert incoming 

into outgoing lines or vice versa replace 

u *-* v , u *-* —V, t «-> e* (46) 

in any of these vertices. 

4. For each intermediate state there is a factor 

v- * i - . , n W 
t - £ k~ + i 0 + 

intcnii 

where * is the incident P~, and the sum is over all particles in the interme­
diate state. 

5. Integrate J dk+iPk±/Mix3 over each independent k, and sum over internal 
hclicities and colors. 
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Figurr- 13, Graphics! rules for QCI1 in lighl-ranc pert urliai ion tlii?ory. 

6. Include a factor — ] for each closed fermion loop, for each fermion line that 
both begins and ends in the initial state (i.e. v...n), and for each diagram 
in which fcrmion lines are interchanged in either of the initial or final slates. 

As an illustration, the second diagram in Fig. 13 contributes 
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(48) 
(times a color factor) to the qq ~* qq Green's function, (The vertices for quarks 
and gluons of definite helicity have very simple expressions in terms of the mo­
menta of the particles.) The same rules apply for scattering amplitudes, but with 
propagator-- i m it ted for external lines, and with c = P~ of the initial (and final) 
states. 

The light-cone Fock state representation can thus be used advantageously in 
perturbation theory. The sum over intermediate Fock states is equivalent to sum­
ming all T— ordered diagrams and integrating over the transverse momentum and 
light-cone fractions x. Because of the restriction to positive *, diagrams corre­
sponding to vacuum fluctuations or those containing backward-moving lines are 
eliminated. For example, such methods can be used to compute perturbative con­
tributions to the annihilation ratio R& — a{ee —» hadronsj/ctee —* ft+fi~) as well 
as the quark and gluon jet distribution. The computed distributions are functions 
of the light-cone variables, x, k±, A, which are the natural covariant variables for 
this problem. Since there are no Faddeev-Popov or Gupta-Bleuler ghost fields in 
the light-cone gauge A+ = 0, the calculations are explicitly unitary. It is hoped 

70 
that one can in this way check the three-loop calculation of Gorishny, et al. 

The Lorentz Symmetries of Light-Cone Quantization 

It is important to notice that the light-cone quantization procedure and alt 
amplitudes obtained in light-cone perturbation theory (graph by graph!) are man­
ifestly invariant under a large class of Lorentz transformations: 

1. boosts along the 3-direction — i.e. p + —» A"p+, p~ —» K~lp~, px —* Px ' o r 

each momentum; 
2. transverse boosts — i.e. p + —• p + , p~ —»• p~ + 2p± • Q± + p+Qj.» P± ~* 

P± + P*Ql for each momentum [Qi like K is dimensionless); 
3. rotations about the 3-direction. It is these invariances which also lead to the 
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frame independence of tiie Fock state wave functions. 
More generally, we can understand those properties from the fact that the 

maximum number (seven) of the ten Poincare generators are kinematic in Hght-
9 71 cone and thus leave the state unchanged at r = 0. 

Light-Cone Poincare Generators 

The seven generators that commute with the light-cone energy 

P~ = P° - p 3 , (49) 

are the three momenta, 

p+ = p» + p\ j P ± = ( p l i f t ) ) (50) 

the longitudinal rotation and boost operators, 

J 3 , A 3 , (51) 

and the light-cone boost operators, 

R [Ki + Jt) _(AWi) 
BUm—£—, B±2= ^ . (52) 

Thus one can diagonalize the light cone energy P~ within a Fock basis where the 
constituents have fixed total P + , P±, and J$, For convenience we shall define the 
light cone Hamiltonian as the operator 

HLC = P-P+-Pi (53) 

so that the eigenvalues of Hie correspond to the invariant spectrum M2 of the 
theory. 

The boost invariance of the eigensolutions of Hie reflects the fact that the 
boost operators K$, B^i and Bx2 are kinematicai. The remaining Poincare gener­
ators, the light-cone angular momentum operators, 

( ^ - J2) (K2 + J1) 
—vf—' X 2 = — ~ J $ — * * 

are dynamical and do not commute with P~ or Hie-

42 



In order to understand these features better, we shall discuss the construction 
of the LC Fock basis for mesons in QCD in some detail. It is easiest to start in 
a "standard frame" with total momentum P^ = l.T^jjtd = "0*1 {>" any units!) 

71 

and then boost to a general frame. To simplify the notation we shall write the 
conserved three momenta in the form kt ~ (Jt*,£x») which becomes (ar0»*±i) in 
the standard frame. We can then build the light-cone Fock states by applying the 
free quark, anti-quark, and gluon field operators to the free vacuum: 

|») « 6f(*a, A„)<%, A,)a'(fc, Ac) |0) , (55) 

where £x^ = 1 ,£ k±i = Oj., and £ A; = A, since 

•h p+ = i, 7* x = ~o±,\\ = x\p+ = i,~P± = O X , A \ (56) 

In addition, in each Fock state the color indices of the quark and gluon quanta can 
be combined to form SV{^)c color-singlet representations. (A general group the­
ory procedure for finding all such irreducible representations is given by Kaluza. ) 
Since the Fock basis is complete, we can write the eigensolution to the pion wave-
function in the standard frame in the form 

„ ,/c,/l - x I 
A, Q 

x fcWu^i)^ - x , - * i , - A I ) | 0 ) 

1 ^ ^ = 1 , ^ = 0,)) = ^ / ^ ^ / ^ ^ ^ ^ ) 

(57) 

+£/***w«,|o> + 

Thus with this construction ~?± \VW) = 1?x, and P + | * r ) = I l*r> • The 
eigenvalue problem for the pion in QCD is then 

P-|¥r) = mS|¥,) . (58) 

which in the Fock basis reduces to the problem of diagonalizing the Heisenberg 
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matrix: 

J2 M#id»> H*»> - "4 H*r> - (59) 
n 

The eigensotuttons then determine the complete Fock representation of the pion 
light-cone wavefunction. 

Given the pion eigensolution in the standard frame, we can immediately con­
struct the pion wavefunction at any total three-momentum Q — (Q+,Q±) since 
the boost operators A'j, B±i, and B±2 can all be constructed from the free quark 
and gluon fields. The boost operators have the action 

and 

Thus wc define the boost operator 

U(Q+^l) = c'i^^J-e-tn Q + i < 3 , (62) 

so that 

U(Q+,7t±V'*[*,h*W-l{Q*,'$±) = **(«Q,£L + * ? i , A ) , (63) 

etc. Thus the pion wavefunction in a general frame is 

*«<0+, ?x) = "«?+, Q±)**(Q+ = i, V± = »x), m 

since Si(*J-t+ I» Q ±) — Q x» a n t ^ 5Zi z » ' ? + = G + - Since f/is only a function of the 
free fields, the result is the Fock expansion of Eq. (4). Thus, as emphasized above, 
the light-cone wavefunctions tf>n{xi, k±i, \i) and its relative coordinates x,- and k±i 
are independent of the total momenta Q+, Q ± , The actual particle momenta are 
with plus momentum A + = xi<?+» transverse momentum k±i •+ xtQ± and spin 
projection Jj = A,. The spinors and polarization vectors for such particles are 
given explicitly in the proceeding section. 
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Spin on the Light-Cone 71 

If a theory is rotational invariant, then each eigenstate of the Hamiltonian 
which describes a state of nonzero mass can be classified in KB rest frame by its 
spin eigenvalues 

P° = M,~P* = l?\=s(a + l) P° = M,? = t \ , (65) 

and 

jAp° = M,~P* = 1?\ = s« P° m M,*? = If \ (66) 

This procedure is more complicated in the light-cone scheme since the angular 
momentum operator does not commute with //fc* Nevertheless, one can construct 

Tl light-cone operators J2 = Si + 3\ and 3^ where 

j3 = J3 + tijBuPxjfP+ , (67) 

and 

J± = ^7*ke{SA.tP+ - B±tP~ - KzP±l + j2£emP±m), M 
(68) 

P+

y P ± \ to obtain the rest which, in principle, could be applied to an eigenstate 
frame spin quantum numbers. This is straightforward for J j since it is kmematical; 

—* —* in fact, ,73 = J3 in a frame with P ±= 0 ±. However, 3± is dynamical and depends 
on the interactions. Thus it is generally difficult to explicitly compute the total 
spin of a state using light-cone quantization. Nevertheless, this is not a problem in 
practice since, given the spectrum of the light-cone Hamiltonian, one can identify 
the rest-frame spin of each eigenstate simply by counting the number of degenerate 
levels appearing at each value of J3. 
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Discrete Light-Cone Symmetries 

The QCD Hamiltonian has a number of global symmetries which are also char­
acteristic of its eigensolutions. It is thus useful to pre-diagonalize the Light-Cone 
Fock state basis with respect to all of the operators which commute with Hie 
and then diagonalize Hie within each super-s**Iection sector. The most important 
global symmetries are 
Light-Cone Parity, 

Ijlc = e-irJiIp< (69) 

where 

^ * w ( * » * J . i f *ia* *i) = *g f (* i -*± i i*±g i -*i) ! (70) 

Lighi-Cone Time-Reversal, 

l$c = e-iwJ>IPITi (71) 

where 

/ ^ M * , k±\f) = ^ 7 ( * , - * i , A,-) ; (72) 

and Light-Cone Charge-Conjugation: 

/£?fti( z> £L, AI , A2) = - ^ ( 1 - i , -k±, A2, At) . (73) 

By pre-djagonalizing in the eigensectors of these symmetries, one reduces the ma­
trix size of the representations of Hie by a factor of two for each symmetry. 

Renormalization and Ultra-Violet Regulation of 
Light-Cone-Quantized Gauge Theory 

An important element in the light-cone Hamiltonian formulation of quantum 
field theories is the regulation of the ultraviolet region. In order to define a renor-
malizable theory, a covariant and gauge invariant procedure is required to elim­
inate states of high virtuality. The physics beyond the scale A is contained in 
the normalization of the mass m(A) and coupling constant g(A) parameters of the 
theory, modulo negligible corrections of order 1/An from the effective Lagrangian. 
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The logarithmic dependence of these input parameters is determined by the renor­
malization group equations. In Lagrangian field theories the ultraviolet cut-off IB 
usually introduced via a spectrum of Pauli-Villars particles or dimensional regula­
tion. Another interesting possibility is to work with a super-symmetric extension 
of theory which is finite, and then introduce soft symmetry breaking to give the 
super-partners large mass of order A. 

An analogous ultraviolet regularization must also can a)Bo be followed in the 
case of quantization in the light-cone Hamiltonian framework. For example, one 
can construct the ultraviolet regulated Hamiltonian H^c for QED(3+1) directly 
from the Lagrangian using Pauli-Viltars regulation for both the ultraviolet and 
infrared regions. The Pauli-Villars spectral conditions must be chosen to eliminate 
both logarithmic and potentially quadratic divergences. 

As an example of this procedure, we have shown in Ref. 28 that the lepton 
mass renormalization counterterms computed in LCPTH using discretization is 
identical to that of the Lagrangian perturbation theory in the continuum limit. 
It was also verified numerically (to 12 significant figures) that this procedure is 
also consistent within the context of the non-perturbative diagonalization of the 
light-cone Hamiltonian for the electron state within a truncated Pock space basis 
k>. in). 

The Pauli-Villars regulation allows a complete implementation of time-ordered 
Hamiltonian perturbation theory at P —• oo, in a form which is essentially equiv­
alent to LCPTH. The renormalized amplitudes can be explicitly constructed 
in each order in perturbation theory simply by subtracting local mass vertex and 
wavefunction renormalization counterterms defined using the "alternating denom­
inators" method. (See Fig.' 4). In addition, it is shown in Ref. 51 that Z-grapba 
or instantaneous fermion exchange contributions can be automatically included 
leading to a numerator factor from each time ordering identical to the numerator 
of the corresponding Feynman amplitude. These methods have been successfully 
applied to the calculation of the electron magnetic moment to two and three loop 
order. More recently, Langnau' has extended the g - 2 calculations in LCPTH 
using dimensional regulation for the transverse momentum integrations in both 
Feynman and light-cone gauge. 

The above method for ultraviolet regulation is not sufficient for non-perturbative 
problems, such as the diagonalization of the light-cone Hamiltonian. In the previ­
ous sections we have discussed the discretization of the fight-cone Fock basis using 
DLCQ. In such methods, one needs to provide a priori some type of truncation 
of the Fock state basis. Since wavefunctions and Green's functions decrease with 
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virtuality, one expects that states very far off the light-cone energy shell will have 
no physical effect on a system, except for renormalization of the coupling constant 
and mass parameters, Thus it is natural to introduce a "global" cut-off such that 
a Fock state \n) is retained only if 

V ^ + W ' - J t f * < A 2 . (74) 
*—' Xi 
»rn 

Here M is the mass of the system in the case of the bound state problem, or the 
total invariant mass y/a of the initial state in scattering theory. One can also limit 
the growth of the Fock state basis by introducing a "local" cutoff on each matrix 
element (n\HLc\m) by requiring that the change in invariant mass squared 

*ji + m] ^ fy + rrif 
•cm 

< A2 . (75) 

Similarly, one can use a lower cutoff on the invariant mass difference to regulate 
73 

the infrared region. 
The global and local cutoff methods were used in Ref. 4 to derive factor­

ization theorems for exclusive and inclusive processes at large momentum trans­
fer in QCD. In particular, the global cut-off defines the Fock-state wavefunctions 
V»A(ar, fcj.. A) and distribution amplitude ^(x,A), the non-perturbative input for 
computing hadronic scattering amplitudes. The renormalization group proper­
ties of the light-cone wavefunctions and the resulting evolution equations for the 
structure functions and distribution amplitudes are also discussed in Ref. 4. The 
calculated anomalous dimensions fK for the moments of these quantities agree with 

. 7 4 results obtained using the operator product expansion. 
The global cut-off conveniently truncates the ultraviolet and infrared regions 

of the Fock space basts, and it is easily implemented in practice. However, there 
several complicating features if this method is used as the sole ultraviolet cut-off 
of the Meld theory: 

• Gauge-in variance is obviously destroyed by the implementation of a strict 
cut-off in momentum space. In fact, this problem can be largely avoided by 

28 
using the following "gauge principle": the matrix element of an instan­
taneous gluon exchange four-point interaction is nonzero only if the corre­
sponding three-point gluon exchange interactions are allowed by the Fock 
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space cutoff. Similarly, instantaneous fermion exchange matrix elements arc 
non-zero only if the corresponding propagating fermion interactions are per­
mitted. One can easily check that this principle retains gauge in variance 
in tree diagrams in gauge theory and preserves the boost invariance of the 
light-cone flainiltonian theory. 

• Use of the global cut-off alone implies that the cut-off of a self-energy insertion 
countcrtcrm for any particle depends on the invariant mass of the entire Fock 
state. This implies that the renormalization counterterms for a given particle 
depends on the kinematics of the spectators appearing in that Pock state. 
Formally, this dependence is power-law suppressed by at leasL a power of 
1/A2, but in practice, it is advantageous to keep A 2 of reasonable size. The 
spectator problem is avoided if one uses the local cut-off. 

• En general, light-cone quantization using the global or local cutoff can lead 
to terms in If£c of the form Sm^-^r^, Although such a term is invariant 
under the large class of light-cone Lorentz transformations, it is not totally 
invariant. For example, such terms arise in order g2 as a result of normal-
ordering of the four-point interaction terms. (Note that this complication 
does not occur in a strictly covariant regulation procedure such as Pauli-
Villars.) Thus in this cut-off procedure one has to allow for an extra mass 
count€*rterni insertions in the numerator matrix elements of the light-cone 
interaction Hamiltonian. Burkardt and Langnau have suggested that the 
extra coimtertenns can be fixed by a posteriori imposing rotational symmetry 
on lh<; bound slate solutions, so that all Lorentz symmetries are restored. 

Each of the proposed cut-offs thus have advantages and disadvantages fcr the 
DLCQ program. A global cut-off is necessary to limit the size of the Fock space 
for the numerical diagonalization of the light-cone Hamiltonian or to truncate it to 
a finite set of equations of motion. However, for the purpose of renormalization, 
it is possibly advantageous to simultaneously implement other regulators, such as 
the local cut-off, a Pauli-V ; . -s spectrum, Bupersyrnmetric partners, etc. 

Ideally, one can apply all of this to QCD(3+I). Once one has defined the reg­
ulated light-cone Hamiltonian, solved for its spectrum, as in the DLCQ procedure, 
the mass m(A) and coupling constant g[X) parameters can be fitted by normal­
izing the output mass and charge radius of the proton state, say, to experiment. 
Non-pertiirbative QCD would then be tested by comparison with the remaining 
hadron and nuclear spectrum and wavefunctions. We discuss the beginning of 
the application of this program to three-space one-time theories in the following 
sections. 
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Discretized Light-Cone Quantization: Applications to QCD(l-f-l) 

As we have seen in the proceeding sections, QCD dynamics takes a rather 
simple form when quantized al equal light-cone "time" T = t + zfc. In light-cone 
gauge A* = A0 + A' = 0, the QCD light-cone Hamiltonian 

HqcD = HQ+gHi+92H2 (76) 

contains the usual 3-point and 4-point inters lions plus induced terms from in­
stantaneous gluon exchange and instantaneous quark exchange diagrams. The 
perlurbative vacuum serves as the lowest state in constructing a complete basis 
set of color-singlet Fock states of //Q in momentum space. Solving QCD is then 
equivalent to solving the eigenvalue problem: 

#QCD|* > - M2\V > (77) 

as a matrix equation on the free Fock basis. The set of eigenvalues {M2} repre­
sents the spectrum of the color-singlet states in QCD. The Fock projections of the 
eigenfunction corresponding to each hadron eigenvalue gives the quark and gluon 
Fock state wavefunctions i^ni^i,k±u Xi) required to compute structure functions, 
distribution amplitudes, decay amplitudes, etc. For example, the e +e~ annihila­
tion cross section into a given J = \ hadronic channel can be computed directly 
from its V>w Fock stale wavefunction. 

The basic question is whether one can actually solve the light-cone Hamiltonian 
21 

eigenvalue problem, even numerically. This is the goal of the DLCQ method. We 
first observe that the light-cone momentum space Fock basis becomes discrete 
and amenable to computer representation if one chooses (anti-)periodic boundary 
conditions for the quark and gluon fields along the z~ = t — ct and z± directions, 
In the case of renormalizable theories, a covariant ultraviolet cutoff A is introduced 
which limits the maximum invariant mass of the particles in any Fock state. One 
thus obtains a finite matrix representation of # Q C D which has a straightforward 
continuum limit. The entire analysis is frame independent, and fermions present 
no special difficulties. 
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Construction of the Discrete LC Fock Basis 

The key step in obtaining a discrete representation of the light-cone Hamil-
tonian in a form amenable to numerical diagonalization, is the construction of a 
complete, countable, Fock stale basis, 

£l*)W = '- (78) 
n 

This can be explicitly done in QCD by constructing a complete set of colar-singlct 
eigenstates of the Tree Hamiltonian as products of representations of free quaH< and 
gluon fields. The states arc chosen as eigenstates of the constants of the motion, 
P+, P ±, Jt, and the conserved charges. In addition, one can pre-diagonalize the 
Fock representation by classifying the states according to their discrete symmetries, 
as described in the previous section. This step alone reduces the size of the matrix 
representations by as much as a factor of 16. 

The light-cone Fock representation can be made discrete by choosing periodic 
(or, in the case of fermions, anti-periodic) boundary conditions on the fields: 

*(*-) *= ±v(*~ - 1 ) , < 7 9) 

*[z±) = HxL - l±) (80) 

Thus in each Fock state, 

and each constituent 

P + = ~ A ' , (81) 

*f = f«." , (82) 
win-re the positive integers 7tt- satisfy 

£ > = * ' . (83) 
i 

Similarly 

£ u = £ ~ * U • ^ 

where the vector integers sum to 0 j_ in the standard frame. 
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The positive integer K ia called the "harmonic resolution." Notice that for any 
choice of K, there are only a finite number of partitions of the plus momenta, and 
thus only a finite set of rational values of r, = kf/P* = m/K appear: 

*, = £ ' K ' •*•-*"• ( 8 S ) 

Thus eigensolutions obtained by diagonalizing HLC on t n i B basis determine the 
deep inelastic structure functions Fj(x) only at the Bet of rational discrete points 
ar,\ The continuum limit thus requires extrapolation to K —» oo. Note that the value 
of L is irrelevant, since it can always be scaled away by a Lorcntz boost. Since 
HLC* P+I P±, and" the conserved charges all commute, Hie is block diagonal. 

The DLCQ program becomes especially simple for gauge theory in one-space 
one-time dimensions because of the absence of transverse momenta but also be* 
cause there are no gluon degrees of freedom. In addition, for a given value of the 
harmonic resolution K the Pock basis becomes restricted to finite dimensional rep* 
resentations. The dimension of the representation corresponds to the number of 
partitions of the integer A' as a sum of positive integers n. The eigenvalue problem 
thus reduces to the diagonalization of a finite Hermitian matrix. The continuum 
limit i.i clearly A" —» oo. 

Since continuum scattering states as well as single hadron color-singlet hadronic 
wavefunctions are obtained by the diagonalization of HtC\ o n e can also calculate 
scattering amplitudes as well as decay rates from overlap matrix elements of the 
interaction Hamiltonian for the weak or electromagnetic interactions. In principle, 
all higher Fock amplitudes, including spectator gluons, can be kept in the light-
cone quantization approach; such contributions cannot generally be neglected in 
decay amplitudes involving light quarks. 

22 
One of the first applications of DLCQ to local gauge theory was to QED in 

one-space and one-time dimensions. Since A* = 0 is a physical gauge, there are no 
photon degrees of freedom. Explicit forms for the matrix representation of HQED 
are given in Ref. 22, The QED results agree with the Schwinger solution at zero 
fcrmion mass, or equivalent]}', infinite coupling strength. 

is More recently DLCQ has been used to obtain the complete color-singlet 
75 

spectrum of QCD in one space and one time dimension for Nc = 2,3,4. The 
hadronic spectra are obtained as a function of quark mass and QCD coupling 
constant (see Fig. 14). 
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Figure H. The baryon aitd meson spectrum in QCD(l-r-t) computed in DLCQ for 
Nc = 2 , 3 , 4 M S I function or quark mass and coupling constant. 

Where they are available, the spectra agree with results obtained earlier; in 
particular, the lowest meson mass in SU(2) agrees within errors with lattice Hamil-
tonian results. The meson mass at Nc = 4 is close to the value predicted by 
't Hooft in the large Wc limit. The DLCQ method also provides the first re­
sults for the baryon spectrum in a non-Abelian gauge theory. The lowest baryon 
mass is shown in Fig. 14 as a function of coupling constant. The ratio of meson 
to baryon mass as a function of Nc also agrees at strong coupling with results 
obtained by Frishman and Sonnenschein. Precise values for the mass eigenvalue 
can be obtained by extrapolation to large K by fitting to forms with the correct 
functional dependence in 1/A". 

(o) Baryon Mass 

lb) 
Meson Mass 
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QCD(1+1) in the mfg -» 0 Limit 

It is interesting to see how one QCD(l-f-l) and QED(1+1) become equivalent 
to theories of non-interacting hadrons theories in the Schwinger zero quark mass 
limit. The emergence of massless hadrons at zero quark mass in the non-Abelian 

18 
theory may be understood by studying the momentum Bpace transforms of the 
SU{N) currents (at i + = 0) 

I 
lff-l|ife-e-'*«7*(0 (85) 

-L 

which satisfy [V^Vt

b\ = ifabcV£+l + £l6*%+ifl. The currents j + a are denned 
by point splitting along x~; however for A+ = 0, the path- ordered exponential 
included to ensure gauge invariance reduces to one. The algebra may be extended 
to include the t/(l) current j + = {^}s : ^>\^>R : . The transformed operator 
Vjt commutes with the other SU[N) elements, and the related operator at = 

( j ) J t(Ar)Vjt satisfies the free boson commutation relations (<!*,«[] = 6^. 

The interacting part of the Hamiltonian is greatly simplified when expressed 
in terms of these operators: 

2 f 
Pf = —fey <**"*"!*'-y _L;' + f l(*")i + , ,(r) (85) 

-L 

becomes 

t=—oo 

Because VJ,B = Qa, the contribution at k = 0 is proportional to the total charge 
Q^Q* and so may be discarded. 

The Vt are color-singlet bi-linear operators in t£fli and so may be used to create 
mesonic-like states with momentum P+ = ^« . In the limit where mfg is zero, 
the entire Hamiltonian is given by Eq. (86). Because the V* commute with the Vf 
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which appear in f, 

M2Vk |0) = ^ [ P - , Vt) |0) = 0. (85) 

Not only is the state created by acting with V± on the vacuum an exactly masslcss 
cigenstate in this limit, but states formed by repeated applications are also exactly 
massless. Furthermore, acting with Vfe on an eigenstate of non-zero mass produces 
a degenerate state of opposite parity. This argument is independent of the value 
of the numerical momentum K and so gives an exact continuum result. 

If the gauge group is U(N) rather than SU[N)i the additional term associated 
with the ex t rac t I), 

appears in P~. The «* satisfy free bosonic commutation relations, and this addi­
tional interaction is therefore the discrete light-cone Hamiltonian for free bosons 
of mass squared g'/'iv. These formerly massless states created by the a\ are pro­
moted to the free massive bosons found in the Schwinger model and are discussed 
in Rcfs. 78 and '22. The quark wavefunctions for these states at infinite coupling 
or zero fermion mass are constant in x, reflecting their point-like character. 

St ructure Functions for Q C D ( 1 + 1 ) ' 8 

As we have emphasized, when the light-cone Hamiltonian is diagonalizcd at a 
finite resolution A', one gets a complete set of eigenvalues corresponding to the to­
tal dimension of the Fork state basis. A representative example of the spectrum is 
shown in Fig. 15 for baryon states [D = I) as a function of the dimensionless vari­
able A = 1/(1 + irm2/g2). Notice that spectrum automatically includes continuum 
states with B = 1 . 

The structure functions for the lowest meson and baryon states in SU(3) at two 
different coupling strengths mfg — 1.6 and mjg = 0.1 arc shown in Figs. 16 and 17. 
Higher Fock states have a very small probability; representative contributions to 
the baryon structure functions are shown in Figs. 18 anil 19. For comparison, the 
vatence wavefunction of a higher mass state which can be identified as a composite 
of meson pairs (analogous to a nucleus) is shown in Fig. 20. The interactions 
of the quarks in the pair state produce Fermi motion beyond x = 0,5. Although 
thesp results are for one-time one-space theory they do suggest that the sea quark 
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Figure 15, lU-prcscnlalive bnryon spectrum for QCD in one-space and one-time 
dimension 
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Figure 10. The mourn quark momentum distribution in QCD[t+l] computed using 
DiCQ 18 

distributions in physical hadrons may be highly structured. We will discuss this 
possibility further in the next section. 

The Heavy Quark Content of the Proton 

The DLCQ results for sea quark distributions in QCD(1+1) may have implica­
tions for the heavy quark content of physical hadrons. One of the most intriguing 
unknowns in nucleon structure is the strange and charm quark structure of the 
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Figure 17. The liaryon quark momentum distribution in QCD[I+1] computed using 
lUCQ.1* 
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Figure 18. Contribution to tfic baryon quark momentum distribution from qqqgq 
sUtra for QCDH + l ] , id 

nucleon wavcfunction. The EMC spin crisis measurements indicate a significant 
ss content of the proton, with the strange quark spin strongly anti-correlated with 
the proton spin. Just as striking, the EMC measurements of the charm struc­
ture function of the Fc nucleus at large x t j ~ 0.4 appear to be considerably larger 
than that predicted by the conventional photon-gluon fuBton model, indicating an 
anomalous charm content of the nucleon at large values of x. The probability of 
intrinsic charm has been estimated to be 0,3%. 

As emphasized in the previous sections, the physical content of a hadron in 
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Figure 19. Contribution to the baryon quark momentum distribution Tram qqqqqqq 
states for QCDJ1 +II1* 
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Figure 20. Comparison of the meson quark distributions in the qq"qq Fock state 
with that of a continuum meson pair state. The structure in the former may be due to 

Id 
the fact that these four-particle wavefunctions are orthogonal. 

terms of its quark and gluon constituents, including sea-quark distributions, is 
represented by its light-cone wavefunctions &*{2i,pj.i,X), winch the projections 
of the hadron wavefunciion on the complete set of Fock states defined at fixed 
light-cone time T = t + z/c Here n = (Ei + pn)/{E + pi), with £ i z; = 1, is 
the fractional (tight-cone) momentum carried by parton t. The determination of 
the light-cone wavefunctions requires diagonalizing the light-cone Hamiltonian on 
the free Fock basis. As we have discussed, this has, in fact, been done for QCD in 

IB 
one-space and one-time dimension. 
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In Pig. 21 we show recent results obtained by Hornbostel for the structure 
functions of the lowest mass meson in QCD(l+l ) wavefunctions for Nc = 3 and 
two quark flavors. As seen in the figure, the heavy quark distribution arising from 
the wQ<7 Fock component has a two-hump character. The second maximum is 
expected since the constituents in a bound state tend to have equal velocities. The 
result is insensitive to the value or the Q2 of the deep inelastic probe. Thus intrinsic 
charm is a feature of exact solutions to QCD(1+1). Note that the integrated 
probability for the Fock states containing heavy quarks falls nominally as g2/m^ 
in this super-renormalizable theory, compared to j 2 / m Q dependence expected in 
renannftlizable theories. 
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Figure 21. The heavy i]uark structure function Q{r) = GQ/S{(X) of the lightest 
meson in QCD(1 + I) with Nt = 3 -mil g/m, = 10. Two flavors are assumed with (a) 
mg/in f = I (101 and (b) mo/wi4 = 5. The curves nrc normalized to unit area. The 
probability of the qqQ$ state is 0.56 x 10" ? and 0.11 x IO - 4 , respectively. The DLCQ 
method Tor diagonaliiing the )igbt-coin< Namillonian is used with anti-periodic boundary 
conditions. The harmonir resolution is taken at K = 10/2. (From Ref. 81.) 

In the rase of QCD(3+1}, we also expect a two-component structure for heavy-
quark structure functions of the light hatlrons. The low j-f enhancement reflects 
the fact that the gluon-splitling matrix elements of heavy quark production favor 
low jr. On the other hand, the QQqq wavefunclion also favors equal velocity 
of the constituents in order to minimize the off-shell light-cone energy and the 
invariant mass of the Fock state ronst it uenta. In addition, the non-Abelian effective 
Lagrangian analysis discussed above allows a heavy quark fluctuation in the bound 

I r | 1 i 1 1 r 

Momentum Distribution q q Q 0 

{a) mQ/ntq-S 
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state wavefunctjon to draw momentum from all of the hadron's valence quarks 
at order I /m^. This implies a significant contribution to heavy quark structure 
functions at medium to large momentum fraction x. The EMC measurements of 

. . . 80 
the charm structure function of the nucieon appear to support tins picture. 

It is thus useful to distinguish extrinsic and intrinsic contributions to struc­
ture functions. The extrinsic contributions are associated with the substructure of 
a single quark and gluon of the hadron. Such contributions lead to the logarithmic 
evolution of the structure functions and depend on the momentum transfer scale 
of the probe. The intrinsic contributions involve at least two constituents and are 
associated with the bound slate dynamics independent of the probe. (See Fig. 
22.) The intrinsic gluon distributions are closely related to the retarded mass-
dependent part of the bound-state potential of the valence quarks. In addition, 
because of asymptotic freedom, the liadron waveftmction has only an inverse power 
M~2 suppression for high mass fluctuations, whether heavy quark pairs or light 
quark pairs at high invariant mass M. This "intrinsic hardness" of QCD wavefunc-
tions leads to a number or interesting phenomena, including a possible explanation 
for "cumulative production,'1 high momentum components of the nuclear fragments 
in nuclear collisions. This is discussed in detail in Ref. 82. 

Calculation of the r + c ~ Annihilation Cross Section 

An important advantage of the free LC Fock basis is that the electrowcak 
currents have a simple representation. Thus once one diagonal izes the light-cone 
Hamiltonian, one can immediately compulc current matrix elements, such as the 
proton-anti-proton time-like form factors (0|j ' '(0)|^) pp{s) or any given hadronir 
final slate contribution to the total annihilation cross section trr+t-(s). This pro­
gram lias recently been carried oul explicitly using the DLCQ method and Lanczos 
tri-diagonalization by Hillcr ' for QED(1+1), A typical result is shown in Fig. 23. 
It would be interesting 1o repeal this non-pcrturbative calculation for a renormal-
izable theory like the Gross-Neveu model in (1 + 1) dimensions, and analyze how 
the channel-hy-cliannel calculation merges into the asymptotic fn^dom result. 

Applications of DLCQ to Gauge Theories in 3-+1 Dimensions 

The diagonalization of the light-cone Hamiltonian 

" l .H (M = A/,3 !</',}. (87) 
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Figure 22. Illustrations of (n) extrinsic (leading twist) and (b) intrinsic (higher twist 
0((i7/m?}) QCD contributions to the charm structure function or the proton Gc/p{x). 
The magnitude of the intrinsic contribution is controlled by the multi-gluon correlation 
parameter ft in the proton wavefunction. The intrinsic contribution dominates Gt(p(x) 
at large x. 

^FGeV l i t 

Figure 23. Calculation of fl(+e-(s) in QED(1+1) using the DLCQ method. The 
results are shown for different coupling constants. For display purposes, the plot is 
clipped at R = 5. In addition, in order to give finite widths to what would have been 
f—functions, the infinitesimal e was set to 0.01 (from Ref. 13). 

provides not only the eigenvalues A/,* but also the relativistic boost-invariant eigen-
functions |V'i)> In the fotlowing sections we will discuss specific implementations of 
the DLCQ method for quantum electrodynamics and QCD in 3 + 1 dimensions. 
Although the QED spectrum is well understood from Bethe Salpeter and other 
approaches, it is important and interesting to study this system at strong cou­
pling strength for passible clues to confinement and hadronization mechanisms in 
QCD. Furthermore at moderate a we can make contact with the precision QED 
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results of Yennic, Lepage, Bod win, and others, and possibly understand the va­
lidity of standard perturbative expansions in QED. However, most important for 
our purposes, positronium serves as a crucial system to validate the DLCQ meth-
ods. In addition to the work discussed here, Kaluza has recently used a DLCQ 
diagonalization approach to obtain the lepton structure function in positromum. 

In the complete formulation of DLCQ, one constructs a complete discretized 
light-cone Fock basis in momentum space. The LC Hamiltonian can then be visu­
alized as a matrix with a finite number of rows and columns assuming an invariant 
ultraviolet cut-off. Next, one formulates all necessary model assumptions, in accord 
with co variance and gauge-in variance, thus obtaining a discrete representation of 
th; quantum filed theory. At any stage, one can go to the continuum limit, convert 
the matrix equation to an integral equation, and solve it with suitably optimal­
ized numerical methods. One should emphasize, that the regularization scheme of 
DLCQ" explicitly allows for such a procedure, since the regularization scales are 
equal both for discretization and the continuum, contrary to lattice gauge theory, 
for example. 

Testing Discretized Light Cone Quantization with Positronium 

In the simplified DLCQ model we shall discuss here, we will consider only 
the charge zero sector of QEI)(3+1) and include only the Jx ~ 0 electron-positron 
(ee) and the electron-positron-photon (ccj) Fock states, denoted collectively by \eS) 
and \cc-j), respectively. In effect we have analyzed the muontum system fi+e~ at 
equal lepton mass to avoid complications from the annihilation kernels. Even when 
one restricts the Pock states to one dynamical photon, one is considering a complex 
non-perturbative problem, similar to ladder approximation in the Bethe-Salpeter 
formalism. The light-cone approach has the advantage that one obtains the Dirac-
Coulomb equation in the heavy mtion limit. (In the Bethe-Salpeter approach, one 
must include all crossed graph irreducible kernels to derive the Dirac equation.) 
However, it should be emphasized that in any formalism the physics of the Lamb 
Shift and vertex corrections to the hyperfine interaction cannot occur until one 
includes the contributions of at least two dynamical photons "in flight." 

It is convenient to introduce the projectors P+Q = 1, with P = £,- |(ee"),-J {(«),• | 
and Q = £ t |(ce7)») ((ec7)j|. The index i runs over all discrete light-cone momenta 
and helicities of the partons (electron e, positron e and photon 7) subject to fixed 

28 total momenta and to covariant regularization by a sharp momentum cut-off. 
The Hamiltonian Eq. (87) can then be understood as a block matrix. There are a 
number of restrictions and simplifications due needed to maintain gauge invariance 
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when the Fock space is limited in momentum space. The structure of these blocks 
in terms of matrix elements needs to be discussed in some detail. For example, the 
matrix elements as depicted hi Fig. 24 for the Q-space contain either an instan­
taneous boson or an instantaneous fermion line. According to the general gauge 
principle ' for DLCQ, one should include the instantaneous graphs only if the 
'instantaneous parton1 wilt be accompanied by a real 'dynamic parton1 with the 
same space-like momentum and in the same Fock space configuration. Otherwise 
gauge invariance of the scattering amplitudes is violated already on the tree level. 
Thus, diagram (a) has to be excluded, since there are no |ee77) Fock states in 
the model, as well as diagram (b) since the two photon states are absent. Actu­
ally, only diagram (d) survives the gauge cut-off in the Q-space. Similarly in the 
P-space, only diagram (a) of Fig. 25 survives. 

ZIZ 

MI (b) (d) euu;? 

Figure 24. The instantaneous interactions in the Q-space. - Graph (a) and (h): 
The instantaneous boson interactions S ^ L , j and SjjL,j• respectively. Graph (c) and 
(d): The instantaneous fermion interactions s j j l . w and S^-.9rr respectively. 

s i s i X.KJ. X\K; 

m (a> (b) mini 

Figure 25. The aiT-diagonal matrix elements in /*-space. - (a): the instantaneous 
boson graph SisL.»l ( u ) : the iterated graph VV = VCV. - The figure displays also 
the space-like momentum assignment of the fcrrnions; those of 'he boson are fixed by 
momentum conservation. Graph (h) holds for x. > x', the corresponding one Tor x < x' 
is not shown. 
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As part of the model, one additional simplification has been made, namely to 
omit diagram (d) of Pig. 24, i.e. 

S « - w = 0 >n p-spacc. (88) 

One has no good reason to do so except mathematical simplification, since the Q-
spacc matrix is now rendered diagonal. An equivalent assumption has been made 
in all of the preceding work.' ' 

By inverting the matrix {Mf - HLC) = t"> - #Lc) 5 l 1 t l i e Q" sPa c e> i c -

Q I*) = Q—^—QHLCP \1>i). (89) 

Eq. (37) can be identically rewritten as 

//rfr(w) W'iM) = A/?M |<Mw)}, (90) 

the 'effective Hamiltonian' acting only in P-space, i.e. 

//cff(w) = PHicP + PHicQ — l - n - QHUJP. (91) 
ui - If ic 

Once |V*i(̂ )) = P |0«) >s known, one can calculate the Q-space wave function from 
Bq. (89) by quadrature. 

Despite acting only in P-space, Eq. (90) is not simpler to solve than the full 
problem, Eq. (87). But it can be approximated easier. Since the Q-space matrix 
is diagonal by construction, <*/ — Hue can be inverted trivially. Characterizing the 
electron by its Lagrangian mass mp, its longitudinal momentum fraction x, its 
transverse momentum k±, and by its spin projection «i, and correspondingly the 
positron as displayed in Fig. 25, the effective Hamiltonian 

H*iu) = ^f + C + S + WH = x0^) + V e f f K ) (92) 

contains thus the free part, the diagonal contraction terms C in the P-space, the 
seagull interaction S = sJjL,,j m t n e P-Bpace, and the iterated vertex interaction 

W{yt) = V , j-V. The latter connects the P-space with the Q-spa.ce through 
w - M&, 

the vertex interaction V = V ?—w with the 'energy1 denominator u> — M^. Note, 
that the effective potential V̂ IT is strictly proportional to a. 
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Iii general u> should he chosen as the eigenvalue Aff, To correct for the violation 
of gauge iiivnri.itirc by Eq. (88) approximately, however, one replaces the eigenvalue 
uj with a function of (x,k± ), «'.c- with the symmetrized mass (squared) 

This (second ad-hoc) assumption restores the gaugc-invariancc of the ee-scattcring 
amplitude in the P-sector, at least. This completes the model. 

The projection technique of deriving an effective Hamiltonian is fairly stan-
84*1 dard in many-body theory,' and has been applied to light-cone fonnulation be-

fore. " Since we have truncated the Fock states, the model can be regarded as a 
light-rune gauge theory analogue or the Tamm-Dancoff approach used in equal-
time theory. A similar approach was applied recently ' to a scalar field model 
in lighl-ronc coordinates. 

The Light-Cone Tamm-Dancoff Equation 

In the continuum, the matrix equation (91) becomes an integral equation 

Jm|-r£f . , 2 ] , , r A 
{x(i - x ) " Mi r , , ( x ' h ' 3 1 ' S 3 ) 

(94) 

»)•'! I) 

38 The finite domain of integration D is set by covariant Fock space regularization, 

2 ^ 4 < A ' + 4m|, (95) 
x(l -x) 

with given cut-off scale A. Combined with Eq. (93), we shall speak of this equation 
as the Tight-cone Tamm-Dancoff' equation. 

The effective interaction V^g, which is also displayed diagrammaticaJly in Figs. 
25 and 26, appears to have two kinds of singularities, namely a 'Coulomb singular* 
ity' at (x = x' and k± = £/), and a 'colinear singularity*at (x = i ' and &L ^ *x). 
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(a) (b) 
MINUt 

Figure 26. The diagonal matrix elements in P-space. - (a): the instantaneous con­
traction terms, (b): the iterated graph IV = VGV (self-mass diagram). 

The latter is caused by the instantaneous interaction 

but it will be cancelled by a corresponding term in the iterated vortex interaction 
VV(ut). Strictly speaking, one should treat the diagonal interaction matrix clement 
for x — x' andkx = k± differently from the off-diagonal elements (x,£j_) / (x1, A '̂), 
which is always possible going back to the disrrelizcd rase. The diagonal matrix 
clement C + W(ui) is displayed in Fig. 26 and vanishes strictly for u> = u* due 

0 1 

to mass renormalization. One might expect a diagonal contribution from the 
instantaneous interaction S, but its matrix element vanishes for x — x' in DLCQ." 

As an example, consider the off-diagonal matrix element of the iterated vertex 
interaction (x, k\; | , j | W(w) 
the matrix elements (See Tab 

x\ Jlj_'; T, J.) for J > x'. Straightforward insertion of 
cs 2a-d) gives 

1 ' ©(x^w) ± ( U V x - x ' x>) l U ' V x - x ' + 1 - W 

The denominator 1?(x,x';w) = —(x —x') (w- A/^ ) is introduced for convenience. 
The polarization sums can be expressed in terms of the transverse scalar and 
vector products, ki • £/ and K±/\K±, respectively. One obtains straightforwardly 
2(a(T) ' 4)(eL*U) ' %±) = *x - S±' - ii± A k±'. The coJinear singularities in 

wu>) = - i I f % (i + T'V-X')) + J L / , + *t'-»h 
K ' 2v2 Z>(x,x';w) i(x - x') 2 V ^ z ( l - x) V r (x - x') a V + x'(l - x')f 

Ak±kl _ 4 • *± ~ ikj. A fej _ 4 • *± + % A k^l 
( J - X ' ) 3 X*X ( l -x '^ l - ! ) J 
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cancel against those of 5 , and the effective interaction becomes finally for w = w* 

(r,4;Tj|v;rr(u;-)k^T4) = -~==7^- f T fm 2

F (J- + 7 1 ±. A 
\ I I / 2jrzV{x1x')i \x'3. (I — x')(l — x ) / 

, %? %* *j,-ft 1 '-»fci.Afc L ' e r ^ - r i i i A ^ 
r ( l - x ) x ' ( l - x ' ) x'x + ( l - x ' X l - x ) J ' 

(96) 
with P ( J , T ' ) = V(x,x'\ui*). The effective potential has no ultraviolet or infrared 
singularities. Only the usual integrable 'Coulomb singularity' in Z>(x,x') remains. 

T h e Light -Cone Cou lomb Schrodinger Equa t ion 

At this stage, the original matrix equation (87) has been approximated by the 
Tamm-Danroff Equation, Eq. (94). For orientation, it is useful to consider the 
non-rclativistic limit (£[ 2 < mjl and (x - \)2 <£ 1). In this limit the TDE, 
and particularly Eq. (96) are easily converted into the 'Light-Cone Schrodinger 
equation' 

i ( l - - r ) l* J 4 m f . ( x - i ' ) + ( i t 1 ' - * l ) 2 

(97) 
One should note however, that this equation is kind of a hybrid since the non-
relativistic limit is taken only in the potential energy. Therefore, it cannot and 

at 

does not precisely yield Bohr spectrum. When the non-relativistic limit ia taken 
consistently by replacing the longitudinal momentum fraction with a 'parallel mo-
mcnttim' ty = '2my{x — ̂ ) , collecting the momenta into a ll-vector k = (fy, fcjj, 
substituting the kinetic energy (mjp + &L)/X(1 — x) by Am\ + 4 P , and using the 
definition A/,2 = <[mf + 4mp£, one arrives straightforwardly at the usual Coulomb 
Schrodinger equation in momentum space, i.e. 

D 

including the correct reduced mass mt = rrtf/2. Fock space rcgularization converts 
itself into a 3-momentum cul-ofT, i.e. the domain of integration D is given by 
k2< A2/«1. 
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Solving the Integral Equations 

As one sees from the above discussion, even at the level of only one dynamical 
photon, there are available a whole sequence of approximations: DLCQ-Matrix 
equation *=> Tamm-Dancoff Equation =J- Light-Gone Schrddtnger equation => 
Coulomb Schrodinger equation. Each of these approximation equations have been 
recently investigated by numerical means. ' the numerical effort turns out to be 
remarkably small, provided the numerical methods are optimized to the particular 
problem. 

Implementing the Symmetries 

A particularly important optimization for numerical solutions is the utilization 
of the light-cone symmetries. Some approaches to gauge field theory do not respect 
the elementary symmetries of the Lagrangian, by nature of their construction. 
However, the exact Lagrangian symmetries need not be violated by DLCQ or 
its approximations. For example, the Lagrangian is invariant under an arbitrary 
rotation of the coordinate system in the x - y-plane, corresponding to conservation 
of the projection of the total angular momentum Jt. Introducing the coordinates 
(k±)x = k±costp and [k±)v = fcisini,o, one can Fourier transform the continuum 
version of Lhe Tamm-Dancoff Fq. (04), and in particular the effective potential 
Vtlt = ^cfr(UJ*) according to 

2* 2r 

0 0 

= {xtk±,Ls;suS2\V^\x\kjm,L'I;s'1,s'2). 

In this way, one replaces the azimuthal angle \p by the projection of the orbital 
angular momentum Lt — 0, ± 1 , . . . as a variable, although neither Lz nor Sx = 
a\ + sn arc individually a good quantum number. The explicit expressions for the 
matrix elements of l̂ fTi a r e derived straightforwardly from those in Tables 2a-d. 
For the case Jx = 0, they arc compiled in Tables 3 and 4. 
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Table 3: The matrix elements of the effective interaction for Jr = 0 and x > x'. 

I (x,*L, Jz,sus2\ V«.ff(w') |x',*[, Jx,3],a^) Helicity factora 

mF(l-i')i'(l-r)« A 

-'"F^if^B+ftj.i^A 

+ m F(l- , ' ) ( t - r ) 3 l ^ • B + A ^ A 

+ B UP + (l-rl(l-»'j 

**i,-»S 

&»,,»!, 4,,-,} ^ M ; 

" * i . » . 

Abbreviations: 

A = B = j ( ] + « A ) i 

+(-*0{¥(iir-*) + * ( i -A)} 
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Table 4: The matrix elements of the effective interaction for Jx = 0 and x < a1. 

£ (xfk±, Jt,st,s2| Veff{w*) )x',*[, J „a J ,4 ) 

+ m F( i -» ' i ( i -^ a i {E: B + M r A 

+ m F ( l - A - 1 : t J ' ' { £ B + * ± F A 

Helicity factors 

+ B(s*+<!-*>< l-*'f) 
**»,*i **I^J *'i,»s 

&»tA *»!,«$ ^i.ai 

Abbreviations: 

A = B = i ( l + a A ) ; 

+<*-->{¥te-i)+¥(±-ri?)} 
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The Lagrangian is also invariant under the operation of charge conjugation £, 
parity V, and time reversal T. Neither V nor T t however, is an explicit symmetry 
of the light-cone Hamiltonian, because V and 7* do not leave the x+ = 0 plane 
invariant. (Parity interchanges x + and x~,) However, cxp(—ixJz)VT, for exam­
ple, or exp(—iVJi)P are exact symmetries. In the numerical work quoted 
below the combined symmetry VT with eigenvalues ±1 will be used. 

When including both the rotational and the combined VT symmetry, Eq. (94) 
can be rewritten in terms of *{x,Jbxi*M = nz* J d*petl''*ti>{x,k±isit$2)i «'•€< the 
Fourier-transformed wavefunctions. The "coordinate1* Jx will be dropped in the 
sequel for notational simplicity. Since Jx is an exact symmetry, the matrix elements 
(•AI êff \J[) w ' l h different Jz vanish strictly in the present representation. 

Solving the Light-Cone Tamm-Dancoff Equation 

How does one solve an equation like (94) in practice? — As a rule, one can 
evaluate the integrals by Gaussian quadratures, mapping the integral equation 
onto another matrix equation. By converting the integration over the longitudinal 
momentum x into a Gaussian sum with weights ta\ \ the Tamm-Dancofl" Equation 
(94) becomes 

{ ™*t% ~ **}•(*. fe.) - £ ^ / d f f «xi, *xl V* |*,, !£)*(„, k±) 
ft r 

+C«{xit ftx)#(*i, *L) + E ^ ' M 3 <*<•-*•*-' %* I** *i)*<^ *L) = °-
i=i J 

(100) 
(The domain of summation and integration is the same as in the Tamm-Dancoff 
Equation as given by Eq. (95).} In this expression two terms which sum to zero 
are included, i.e. Ccctij^jJlH1) ^ J - C ^ i , JCLM 1 !*! . ) - With the continuum part 
defined by 

Ctdx, Jtx) = fdx'dk? {*, Jfcx| Vat |x'. *x> . (101) 
D 

one easily identifies its discredited partner Cett in Eq. (100). Their sum thus van­
ishes in the continuum limit. 

The reason for introducing the 'Coulomb counter terms' is the following; The 
kernel of the Tamm-DancofT Equation is singular, as can be seen explicitly in the 
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approximate Eqs. (97) and (98). Despite being inlegrablc, th)B singularity is a nu­
merical nightmare, and is present whenever one deals with a Coulomb-like problem 
in a momentum-space representation. For example, it is close to impossible to get 
numerically stable solutions as function of the number of integration points (and 
resolution) N. However, when the Coulomb terms arc added, the singularity in 
the kernel and in the (discrete) counter term tend to cancel in the vicinity of the 
singularity, since by construction, they have the same residue. What remains is 
a smooth function which can be approximated easier. The continuum part of the 
counterlerm restores the original equation. Ideally it should be calculated analyt­
ically, or if this turns out loo difficult, it can be evaluated numerically with ultra 
high resolution. 

Instead of x, k± (and ip) one can use 'spherical momentum coordinates1 r, 8 
as defined by Jtj, = */A 2 + 4rn|.sin0 and x = \ + rcosO. The variables r 
and cos0 are discrctized in the intervals [0, —. * - ] and [—1,1] with w; as the 

Gaussian weights. In order to get an eigenvalue problem with a symmetric matrix 
the wavefunction * is substituted by •(?•(,cosflj) = $(r;,cos0j)/ri^EJiwJ. The 
actual matrix elements are therefore (r;,cQ5 0y| V^g |rj,0[) A 2 rirĵ  ^E3JwJwtt5j. For 
convenience the same number of integration points N in r and cos0 will be used 
in the sequel. Further details are given in Ref. 84. 

The spectrum of the Tamm-Dancoff Equation obtained using the above method 
is displayed in Fig. 27 as a function of the resolution. It is remarkable how fast the 
lowest two eigenvalues approach a limiting value. These two states are identified 
as the singlet and the triplet state of positronium, as verified by the fact that 
their wave function has the correct symmetries. It is not surprising to see the 
comparatively slow convergence of the higher excited states. Although their wave 
functions in momentum space are also localized near x K ^ and k± s; 0, they 
have more nodal structures. Consequently, more integration points are needed to 
resolve their structure. 

We should emphasize two points. First, the numerical methods arc obviously 
very efficient. For example, only a 25 x 25 matrix (for N — 5) is needed to 
render the singlet and the triplet state reasonably stable as function of N. This 
corresponds to only two transverse momentum states. Second, one has established 
that the longitudinal and transverse continuum limit of DLCQ exists. One should 
emphasize that the light-conc approach is well-defined, covariant, and numerically 
very economical. Most of the results have been generated by diagonalizing matrices 
of dimension as small as 225x225. A particularly important role for achieving this 
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Figure 27. The iiivnriaiii mass squared eigenvalues or the Tamin-DancofT equation 
versus the number of integration paints N. - Note the goad convergence with Af, and 
l he appenranee of the hyperfine splitting. Calculations are done for J, — 0, A = m 
and a =• 0.3. The numerically integrated Coulomb counter term for the Tumm-Diuici 
equation is included. 

result, is played by the Coulomb counter terms. In general they are quite necessary 
for investigating numerically Coulomb-like problems in momentum representation. 
Tin; methods applied are not only efficient but also precise, The calculation have 
bc«.'n done for two vastly difTerent values of the fine structure constant, namely 
a ~ 0.3 and a = 1/137. In order to extract the hypcrfine shift the latter requires 
A numerical stability within ten significant figures (10~ 1 0!). 

On can also examine the convergence of the low lying spectrum as a function 
of scale A and make quantitative comparisons with analytical results. In Table 5 
the binding coefficient of the singlet mass (Bs = (4(2 — Af,)/a 2) and the singlet to 
triplet mass difference in the form of the hyperfine coefficient (Cnr = (Mt—\f3)/a*) 
are tabulated for five values of A and two values of a. The extrapolation to A -* oo 
is made by a Pade approximation. One should emphasize, that the. deviation of 
the calculated mass squared eigenvalues from the free value is extremely small for 

a = —TZ- A reliable extraction of the data in Table 5 thus requires numerical 
137 

accuracy to ten significant figures. The fact that the calculations do not become 
numerically unstable as a function of A is taken as a final and overall indicator 

i i i i I i « • i • i t l • i i I i i i l 
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Tabic 5: The singlet binding and the hyperfine coefficient for the Light-cone Taram-
DancoiF Equation as function of A and a. - Calculations are done N = 15 inte­
gration points, and extrapolated to A -+ oo with a Pade-Approximand /(A) = 
(ci + Q / A J / O +<*/A) using the values A = 1.0, 3.0, and 5.0. 

a = m 
A Bs Cu *4 B, Chr 

1.0 1.0503 0,1348 1.0 0.9345 0.1023 
2.0 1.1834 0.2888 2.0 0.9922 0.1955 
3.0 1.2390 0.3857 3.0 1.0053 0.2366 
4.0 1.2723 0.4533 4.0 1.0127 0.2581 
5,0 1.2960 0.5037 5.0 1.0211 0.2667 
CO 1.4025 0.8317 0 0 1.0459 0.3140 

that one can master the numerical aspects of the problem. 
What should one expect analytically? In an expansion up to order a*, the 

S9 singlet and the triplet mass of positronium (excluding annihilation) is given by 

M. = 2 - i a

2 ( l + ^ o 2 ) and Mt = 2 - i t t

2 ( l - l * 2 ) , (102) 

respectively, where here (and in the following) masses are given in units of the phys­
ical electron mass. The hyperfine coefficient is then the Fermi value (Chr)p • = j . 
Bodwin ei a/, have summarized the analytical work for the higher order correc­
tions to the hyperfine shift in positronium: 

*-SK-(-i)-;("**) 12 a (103) 

The term ^ is set in parentheses since it originates in the photon annihilation term. 
The impact of the coefficient K is small; its uumerical value is K = +0.427. A 
complete calculatton is not yet available for A'', except that is contains a In a 
term; it is set zero. Eq. (103) predicts therefore the values Chf = 0.333 for a = 757 
and Cu as 0.257 for a = 0.3. It should be noted that part of the higher order 
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corrections come from contributions in which two dynamical photons are in flight; 
thus a strict correspondence with the spectrum of light-cone model is not expected. 

The numbers in Table 5 agree with the analytical predictions only to first ap­
proximation. In particular, they are not as accurate as the recent results of Koniuk 

90 91 
et aL ' for a corresponding model using equal time quantization. Although the 
present hyperfine shift for a =s •jjy is reasonably in between the Fermi and the 
Bodwin et al.values, the singlet state is slightly over-bound by four percent — in 
view of the numerical accuracy a small but significant deviation. For a = ^ the 
discrepancy is even more accentuated. Instead of B» — 1.118 one geta 1.403, which 
shows that the a* coefficient is overrated by about a factor 3. The hyperfine shift 
points to the same direction, it is larger than the analytical value by roughly a 
factor 3. 

One must conclude that the Tamm-DancofT Equation overdoes the relativistic 
effects. We conjecture that the right correction will come when the ad-hoc as­
sumption, Eq. (88), will be relaxed and the restriction to one dynamical photon is 
removed. 
Summary and Discussion of the Tamm-Dancoff Equation Results 

The numerical tests of the light-cone Tamm Dancoff approach in positron-
ium provide some confidence that one can use light-cone Fock methods to solve 
relativistic bound state problems in gauge theory. The Tamm-Dancoff Equation 

2 

reproduces the expected Bohr spectrum Mn ~ 2n»(l —Bn~^) almost quantitatively, 
as well a the typical relativistic deviations like the hyperfine shift v = a*C^f[o). 
The binding coefficients B„ ~ ~r are reproduced with small but significant devia­
tions, one percent by order of magnitude. They are much smaller for the physical 
value a — 1/137 than for the very large value a = 0.3. Similarly, the hyperfine 
coefficient for a = 1/137 is close to the correct value CM ~ j , but for a = 0.3 it is 
almost twice as large. 

But the Tamm-DancofT Equation does not solve the original physical problem. 
Tt mistreats it by a so far uncertain approximation, stated in Eq. (88). It is however 
possible to relax this constraint Eq. (88) and generate the full resolvent without 
uncontrolled approximations: Quite in general, the full resolvent G(u)) in the Q-
space can be expanded in terms of the free resolvent Go(w) and of the instantaneous 
annihilation interaction S^a\ i.e. G(u>) = GQ(W) + Go(u)S f o )G(w). With W(u) = 
KG(w)Vf the next-to-lcading order becomes wW{w) = VGo(u)S^Go{u)V^ The 
superscript indicates the power of a. Figure 28 collects essentially all possible 
graphs classified according to whether the two vertices sit on the same or on a 
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(a) (a*) 

-GESD-GEffi-
(b) (b*) 

t-91 (C) ( C ) SB3IA3! 

Figure 28. Some typical graphs to order Q Z which begin and end with a vertex 
interaction Vf^9f(x). The instantaneous interaction S»—u l s sandwiched in between 
them. In diagram (8) and {a') the vertices arc one different, else they are on the same 
linm. 

different fcrmion line. Considering the same case as in section 3, graphs 28(a) and 
28(a') turn out to vanish, strictly. Graphs 28(b) and 28(b') must be absorbed into 
mass rcnormalization, only graphs 28(c) and 28(c/) need to be considered. As it 
turns out they can be re-summed explicitly to all orders, with the exact result 

~ °° t 
*—' ] -f a 

Both a and H^'2' diverge logarithmically with the scale A. For sufficiently large 
values one gets by order of magnitude a ~ olnA/mp and W^ ~ o^lnA/mF-
The re-summed interaction W therefore is proportional to a instead of to a 2 , 
and independent of A it is probably able to account for the small but significant 
deviations in the binding coefficients and the hyperiine shift. 

The Lanczos Method for DLCQ 

The most serious practical difficulty for implementing DLCQ matrix diagonal-
ization for physical theories in 3 + 1 dimensions, is the rapidly growing size of 
the matrix representation as one increases the size of the Fock basis. Fortunately, 
the matrix representations of Hie in the free Fock basis are extremely sparse, and 
one can take advantage of efficient algorithms for diagonalizing such matrices. An 
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important example of such an algorithm is the Lanczos method, which has been 
13 30 29 

used for DLCQ problems in papers by Hiller, Kaluza, and Hollenberg, et al. 
For example, lot / / be an N x ff Hermctian matrix. Apply H to a tost state vector 
|i>i). The result is 

ffM = * i h ) + A M , (i(M) 

where \v2) is orthonormal to \v\). Applying / / to the new state vector gives: 

/ / h ) = fa \vi) + a2 |v2) + fa \vt).. (105) 

where \vj) is orthonormal to |vj) and |vx). However, if we apply H to \v$) one only 
gets three non-zero terms: 

H \v3) = 0 |m) + fa M + a 3 |wa) + fa h > . (106) 

Thus, by construction, (i',| U\VJ) is tri-diagonal, and the eigenvalues of its first 
P x P submatrix of this matrix converges rapidly to the lowest P eigenvalues of 
H. The computer lime for obtaining these eigenvalues grows like JN* where / is 
a measure of the sparscness of // . This is much less than the time required for 
diagonalizing // itself, which grows like N3. In the work of Hollenberg el al. one 
can handle matrices of sizes approaching Ar = 10*. 

Firs t Applications of DLCQ to QCD(3+1) 

The application of the DLCQ mcLliod to QCD(3+1) will inevitably be dif­
ficult since meaningful numerical resulls will require Fock states containing two 
or inure gluons. At the least, asymptotic freedom cannot appear in the coupling 
constant renormalization unless one allows for two or more gluons "in flight." A 
consistent renormali?,atimn program for the non-Abelian theory has not been com­
pletely worked out within the non-perturbative framework. However, as an initial 
exercise to test the power of the Lanczos method, Hollenberg et ai have diagonal-

* ized the unrenormalized light cone Hamiltonian for QCD(3+1) within the meson 
Fock classes Iff)'and \oqg) only. Figure 29 shows the result for the lowest me­
son eigenvalue M2 as a function of QCD bare coupling g for several values of 
the quark mass. The Fock space was limited by taking the harmonic resolution 
A' = 6; in addition, the ultraviolet cut-off used in this work limited the square of 
the Fock slate invariant mass to 24 GcV2. The maximum transverse momentum 
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a t Q± = tzt' ~ * ^ e ^ ' w ' ^ -̂L transverse points. The fact that the mass-squared 
spectrum turns negative at large coupling may possibly be cured by a consistent 
light-cone Hamiltonian rcnormalization procedure or the use of the Coulomb singu­
larity trick used for positronium. Another possibility is that negative eigenvalues 
of the P~ actually represents a cross-over with a negative P+ spectrum. 

2 4 
COUPLING (Q> ^ 

Figure 29. First computation of the low-lying meson spectrum of QCD(3 + ]) 
computed using Lanczos diagonalizBtjoji. Only the lowest two Fock classes are retained. 
See Ref. 29. 

The Light-Cone Vacuum 

In the introduction we discussed the remarkable feature that the perturba-
tive vacuum in lighl-cone perturbation theory can also be an eigeustate of the full 
Hamiltonian. Let us review the arguments: By definition, the perturbattve vacuum 
is annihilated by the free Hamiltonian: H^c jQ) = 0. In gauge theory the inter­
action terms in Hie are three-and four-point interactions; for example, in QED, 
the application on the vacuum of the interaction H\c = JtPxetjry • A$ results 
in a sum of terms tf ( t a J a ^ ) ^ ^ ) |0). Just as in the discussion of LCPTH, P+ 
conservation requires £ i=i kf = 0. However kf" = 0, is incompatible with finite 
energy for the massive fermions. Thus the total light-cone Hamiltonian also an­
nihilates the perturbative vacuum: HLC |0) = 0, In contrast, the state H |0) is a 

78 



highly complex composite of pair fluctuations in equal-time quantization. 
The apparent simplicity of the vacuum in light-cone quantization is in severe 

contradiction to normal expectations for the atnicture of the lowest mass eigen-
state of QCD. In the instant form, the QCD vacuum is believed to he a highly 
structured quark-gluon condensate, which in turn iB believed to be connected to 

93 
color confinement, chiral Bymmetry breaking, the Goldstone pion, etc. In the 
standard model, the W± and Z basons acquire their mass through the spontaneous 
symmetry breaking of the scalar Higgs potential. Thus an immediate question is 
how one can obtain non-trivial vacuum properties in a light-cone formulalion of 

94 
gauge field theory. This problem has recently been attacked from several direc­
tions. In the analyses of Hornbostel and Lenz et n/., one can trace the fate of the 
equal time vacuum as one approaches the Pt —* oo or equivalently rotate 0 —»ir/2 
as the evolution parameter r = / cos & + f sin 9 approaches time on the light-cone. 
As shown in Refs. 23 and 94, one finds that for theories that allow spontaneously 
symmetry breaking, there is a degeneracy of light-cone vacua, and the true vacuum 
state can differ from the perturbative vacuum through the addition of zero mode 
quanta with fc+ = Jt~ = fcj. = 0. 

An illuminating analysis of the influence of zero modes in QED{1 +1) has been 
given by Werner, Heinz) and Krusche. They show that although it is correct to 
impose the gauge condition 4 + = 0 on the particle sector of the Fock space, one 
must allow for A+ ^ 0 if k+ = 0. Allowing for this degree of freedom, one obtains a 
series of topological 8 vacua on the light-cone which reproduce the known features 
of the massless Schwinger model including a non-zero chiral condensate. However, 
the effect of the infrared zero mode quanta decouples from the physics of zero charge 
bound states, so that the physical spectrum in one-space one-time gauge theories 
is independent of the choice of vacuum. The freedom in having a non-zero value for 
A+ at Jt+ = 0 can also be understood by using the gauge 9"M + ~ k+A+ = 0. 

It is thus anticipated that zero mode quanta are important for understanding 
the light-cone vacuum for QCD in physical space-time. In particular, the non-
Abelian four-point interaction term 

Hf = -kj j d*xTr{[A^Av)[A»,Av)} (107) 

plays a unique and an essentia] role, since 
HfC |0) ^ 0 as long as one allows for 

zero mode gluon fields in the Fock space. Thus the true Hght-cone vacuum \il) 
is JioL necessarily identical to the perturbative vacuum |0). In fact the zero mode 

79 



excitations of H\c produce a color-si nglct gluon condensate {Q\G^vG,u,\il) ^ 0 of 
the type postulated in the QCD sum rule analyses. The effect of such condensates 
will be to introduce "soft" insertions into the quark and gluon propagators and 
their effective masses mfji2), and to modify the perturbative interactions at large 
distances. (See Fig. 30). ThuB unlike the one-space one-time theory, the zero-mode 
gluon excitations do affect the color-singlet bound states. On the other hand, such 
zero mode corrections to vacuum cannot appear in Abelian QED(3+1) as long as 
a non-zero fermion mass appears in the free Hamiltanian. 

141 " M / l A f t N tMMk 

Figure 30. Effect of a zero-mode gluon condensate on quark mid gluoci propagntoin. 

Advantages of Discretized Light-Cone Quantization 

As we have discussed in these lectures, the method of discretized light-cone 
quantization provides a relativistic, frame-independent discrete representation of 
quantum field theory amenable to computer simulation. In principle, the method 
reduces the light-cone Hamiltonian to diagonal form and has the remarkable feature 
of generating the complete spectrum of the theory: bound states and continuum 
states alike. DLCQ is also useful for studying relativistic many-body problems in 
relativistic nuclear and atomic physics. In the nonrelativistic limit the theory js 
equivalent to the many-body Schrodinger theory. As we have reviewed in these 
lectures, DLCQ has been successfully applied to a number or field theories in one-
space and one-time dimension, providing not only the bound-state spectrum of 
these theories, but also the light-cone wavefunctions needed to compute structure 
functions, intrinsic sea-quark distributions, and Lhe f.*t~ annihilation cross section. 

Although our primary has been to apply light-cone methods to non-pcrturbative 
problems in QCD in physical space-time, it is important to first validate these 
techniques- particularly the renormalizntion program-in the much simpler Abelian 
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theory of QED. In the proceeding sections we have quantized quantum electrody­
namics on the tight-rone in a discretized form which in principle allows practical 
numerical solutions for obtaining its spectrum and wavefunctions at arbitrary cou­
pling strength a. We also have discuss a frame-independent and approximately 
gauge-invariant particle number truncation of the Fock basis which is useful both 

26 
for computational purposes and physical approximations. In this method ul­
traviolet and infrared regularixations are kept independent of the discretization 
procedure, and arc identical to that of the continuum theory. One thus obtains a 
finite discrete representation of the gauge theory which is faithful to the continuum 
theory and is completely independent or the choice of Lorentz frame. Hopefully, 
these techniques will be applicable to non-Abelian gauge theories, including quan­
tum chromodynamics in physical space-time. 

The recent applications of DLCQ to the positrouium Bpectrum are encouraging, 
but they also show formidable numerical difficulties as the number of Pock slates 
and level of discreteness grows. Whether QCD can be solved using such methods 
— considering its large number of degrees of freedom is unclear. 

Nevertheless, DLCQ has the potential for solving important non-perturbative 
problems in gauge theories. It has a number of intrinsic advantages: 

• The formalism is independent of the Lorentz frame - only relative momentum 
coordinates appear. The computer does not know the Lorentz frame! 

• Fermions and derivatives are treated exactly; there is no fermion doubling 
problem. 

• The ultraviolet and infrared regulators arc introduced in DLCQ as Lorentz 
invariant momentum apace cut-offs of the continuum theory. They are thus 
independent of the discretization. 

• The field theoretic and rcnormalization properties of the discretized theory 
arc faithful to the continuum theory. No non-linear terms are introduced by 
the discretization. 

• One can use the exact global symmetries of the continuum Lagrangian to 
pre-diagonalize the Fock sectors. 

• The discretization is denumerable; there is no over-counting. The minimum 
number of physical degrees of freedom are used because of the light-cone 
gauge. No Gupta-Bleulcr or Faddeev-Popov ghosts occur and unitarity is 
explicit. 

• Gauge invariance is tost in a Hami I Ionian theory. However, the truncation 
can be introduced in such a way as to minimize explicit breaking of the gauge 
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symmetries. 
• The output is the full color-singlet spectrum of the theory, both bound states 

and continuum, together with their respective light-cone wavcFunctions. 
There are, however, a number of difficulties that need to be resolved: 
• The number of degrees of freedom in the representation of the light-conc 

Hamiltonian increases rapidly with the maximum number of particles in the 
Fock state. Although heavy quark bound states probably only involve a 
minimal number of gluons in flight, this is probably not true for light hadrons. 

t Some problems of ultraviolet and infrared regulation remain. Although Pauli-
Villars ghost states and finite photon mass can be used to regulate Abelian 
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theories, it is not suitable method in non-Abelian theories. This problem 
may poBsibly be avoided by working with finite but broken, super-symmetric 
theories. A cutoff in the invariant mass of the Fock state introduces extra 
renormalization terms compatible with the light-cone Lorentz symmetries. 

t The renormalization procedure is not completely understood in the context 
of non-perturbative problems. However, a non-perturbative recursive repre­
sentation for electron mass rcnortiialization has been successfully tested in 
QED(3+1). 

• The Coulomb singularity in the effective gluon-exchange potential is poorly 
approximated in the discrete form. An analytic trick must be used to speed 
convergence. Such a method has been tested successfully in the case of the 
positronium spectrum in QED(3+1). 

t The light-conc gauge introduces extra divergences at k+ —> 0 which in prin­
ciple cancel between instantaneous gluon exchange and gluon propagation. 
However, this cancellation requires relating instantaneous potential terms to 
higher gluon number Fock states. 

• The vacuum in QCD is not likely to be trivial since the four-point interaction 
term in g*Gfyv can introduce new zero-mode color-singlet states which mix 
with the free vacuum state. Thus a special treatment of the QCD vacuum 
is required. In the case of zero mass quarks, there may be additional mixing 
of the perturbative vacuum with fermion zero-modes. Since the zero-mode 
#* = 0 states have no spatial structure, the light-cone vacuum is evidently 
much simpler than that of the equal-time theory. In the case of massless 
fermions, chiral symmetry could be spontaneous broken by fermion pair zero-
modes which form a chiral condensate. 

82 



Acknowledgements 

Much of the material presented in these lectures is based on collaborations with 
Kent Hornbostd, Andrew Tang, Peter Lepage, Matjaz Kaluga, Michael Krautgartner, 
Thomaii Eller, and I'Vank Wolz. We particularly thank Alex Langnau and Matthias 
Burkardt far many valuable discussions and suggestions. We also wish to thank 
Professors II. Mi iter and his colleagues for their work in organizing an outstanding 
Winter School in Schladrning. 

83 



REFERENCES 
1. A, S. Kronfeld and D. M. Photiadis, Phys. Rev. Dai, 2939 (1985). 
2. G. Martiiiclli and C. T. Sachrajda, Phys. Lett, E2JI, 319 (1989). 
3. V. L. Chernyak, A.R. Zhitnitskii, Phys. Rept. 112, 173 (1984). See also 

M. Gari and N. G. Stcphanis, Phys. Lett. B1Z5, 462 (1986), and references 
therein. 

4. G. P. Lepage and S. J. Brodsky, Phys. Rev. 1222, 2157 (1980); Phys. Lett. 
SIB, 359 (1979); Phys. Rev. Lett, fl, 545, 1625(E) (1979). 

5. See P. Kroll, Wuppertal University preprint WU-B-90-17 (1990), and refer­
ences therein. 

6. For a review, sec S. J. Brodsky, SLAC-PUB 5529 (1991), to be published in 
the proceedings of the Lake Louise Winter Institute (1991). 

7. I. Tamm, J. Phys (USSR) £, 449 (1945). S. M. Dancoff, Phys. Rev. Zfi, 382 
(1950). 

6. Wc shall use the conventional term "tight-cone quantization" as the equiv­
alent to the front-form and null-plane quantization. For further discussion, 
sec P. L. Cluing, W. N, Polyzou, F. Coester, and B. D. Keistcr, Phys. R.cv. 
£31, 2000 (1988), and references therein. 

9. P.A.M. Dirac, Rev, Mod. Phys. 21, 392 (1949). 
10. Gribov has emphasized the interesting alternative possibility that hadrons in 

QCD arc actually bound states of light quarks with negative kinetic energy. 
This removes the exclusion of negative k+ in the Fock basis and thus would 
have profound consequences for light-cone quantization. Sec V. N. Gribov, 
Lund preprint, LU TP 91-7 (1991). 

11. For a discussion of ^normalization in light-cone perturbation theory, sec 
S. J. Brodsky, R. Roskics and R. Snaya, Phys. Rev. BJJ, 4574 (1974), and 
also Ref. 4. 

12. M. Burkardt, A. Langnau, SLAC-PUB-5394, (1990), and to be published. 
13. .1. R. Killer, University of Minnesota preprints (1990), and Phys. Rev. 

D4Jl,24l8(199l). 
14. S. D. Drell and T. M. Van, Phys. Rev. Lett. 21, 181 (1970). 
15. S. J. Hrodsky and S. D. Drell, Phys. Rev. 1)22., 2236 (1980). 
16. G. P. Lepage and B. A. Thackcr, CLNS-87/114, (1987). Sec also G. P. Lepage 

and W. Caswell, Phys. Lett. 1£IB., 437 (1986). 

84 



17. S. J. Brodsky and I. A. Schmidt, Phys. hcii.Q2M.Mi (1990); Phys. Rev. 
D43. 179 (1991). 

18. K. Hornbostel, S. J. Brodsky, H. C. Pauli, Phys. Rev. JML 3814 (1990). 
19. G. P. Lepage, S. J. Brodsky, T. Huang, P. B. Mackenzie, published in the 

Proceedings of the Banff Summer Institute, 1981. 
20. S. J. Brodsky, G. P. Lepage, in Perturbative Quantum Chromodynamics, p. 

93, edited by A. H- Mueller (World Scientific, Singapore, 1989). 
21. H. C. Pauli and S. J. Brodsky, Phys. Rev. 1232, 1993 (1985); Phys. Rev. 

] M , 2001 (1985). 
22. T. Eller, II. C. Pauli, S. J, Brodsky, Phys. Rev. J23&, 1493 (1987). 
23. A. Harindranath and J. P. Vary, Phys. Rev. DSfi, 1141 (1987). 
24. M. Burkardt, Nucl. Phys. AS04. 762 (1989). 
25. R. J. Perry, A. Harindranath, K. G. Wilson, Phys, Rev. Letters fi5_, 2959 

(1990), R. J. Perry, and A. Ilarindranath, Ohio State University preprint 
(1990). 

26. D. Mustaki, S. Pinsky, J. ShigcmiLsu, K. Wilson, Ohio State University 
preprint (1990). 

27. A. C. Tang, SLAC-351 (1990). 
28. A. C. Tang, S. J. Brodsky, and H. C. Pauli, SLAC-PUB-5425 (1991), to be 

published in Phys. Rev. D. 
29. L C. L. Hollenbcrg, K. Higashijima, R. C. Warner, B. H. J. McKellar, 

KEK-TH2B0, (1991). 
30. M. Kaluga, University of Heidelberg thesis, and to be published (1990). 
31. J. R. Klauder, H. Leutwyler, and L. Streit, Nuovo Cimcntous 59 315 (1969). 
32. J. B. Kognt and D. E. Soper, Phys. Rev. fil 2901 (1970) 
33. F. Rohrlich, Acta Pliys. Austriaca, Suppl. VIII, 2777 (1971). 
34. H. Leutwyler, Nucl. Phys. BJ£, 413 (1974). 
35. A. Casher, Phys. Rev. UH, 452 (1976). 
36. S. J. Chang, R. G. Root, T. M. Yan, Phys. Rev, D2, 1133 (1973); S. J. 

Chang, T. M. Yan, Phys. Rev. D2,1147 (1973). 
37. S. J. Brodsky, C. R. Ji, SLAC-PUB-3747, (1985), 
38. G. McCartor, Z. Phys. CJ1, 271 (1988); and SMU preprint SMUTH/91-02 

(1991). 
39. E. V. Prokhvatilov and V. A. Franke, Sovj. J. Nuc!. PhyB. 42, 688 (1989). 

85 

http://hcii.Q2M.Mi


40. V, A. Franke, Y. V. Novozhilov, and E. V. Prokhvatilov, Letters in Mathe­
matical Physics 5_, 239 (1981). 

41. A. M. Annenkova, E. V. Prokhvatilov, and V. A. Franke Zielona Gora Pedag. 
Univ. preprint - WSP-IF 69-01 (1990). 

42. V. A. Karmanov, Nucl. Phys. Blfifi, 378 (1980). 
43. V. A. Karmanov, Nuclear Physics, A3fi2, 331 (1981). 
44. V. N. Pcrvushin, Nuclear Physics B l i , 197 (1990). 
45. G. McCartor, Z. Phys. £41 271, (1988). 
46. F. Lenz, in the proceedings of the NATO Advanced Summer Institute on 

Nonperturbalivc Quantum Field Theory Cargese, France, Aug 8-18, 1989. 
Edited by D. Vautherin, F. Lenz, and J.W. Negcle. Plenum Press, N. Y. 
(1990). 

47. S. Weinberg, Phys. Rev. 150., 1313 (1966). 
48. S. D. Droll, D. Levy, T. M. Yan, Phys. Rev. lfil, 2159 (1969); Phys. Rev. 

Hi, 1035 (1970); Phys. Rev. D_l, 1617 (1970). 
49. L. Susskind, Phys. Rev. J&, 1535 (1968); L. Susskind, G. Frye, Phys. Rev. 

lfil, 2003 (1967). 
50. J. D. Bjorken, J. B. Kogut, D. E. Soper, Phys. Rev. B3, 1382 (1971); J. B. 

Kogut, D. E. Soper, Phys. Rev. D_l, 2901 (1970). 
51. S. J. Brodsky, R. Roskies, It Suaya, Phys. Rev. J2B, 4574 (1973). 
52. General QCD analyses of exclusive processes are given in Ref. 4, S. J. Brodsky 

and G. P. Lepage, SLAC-PUB-2294, presented at the Workshop on Current 
Topics in High Energy Physics, Cai Tech (Feb. 1979), S. J. Brodsky, in the 
Proc. of the La Jolla Insl. Summer Workshop on QCD, La Jolla (1978), 
A. V. Efremov and A. V. Radyushkin, PhyB. Lett. EM, 245 (1980), V. L. 
Chernyak, V. G. Serbo, and A. R. Zhitnitskii, Yad. Fiz. 31, 1069 (1980), 
S. J. Brodsky, Y, Frishman, G. P. Lepage, and C. Sachrajda, Phys. Lett, 
91B. 239 (1980), and A. Duncan and A. H. Mueller, Phys. Rev. Q21, 1636 
(1980). 

53. QCD predictions for the pion form factor at asymptotic Q2 were first obtained 
by V. L. Chernyak, A. R. Zhitnitskii, and V. G. Serbo, JETP Lett. 26^ 594 
(1977), D. R. Jackson, Ph.D. Thesis, Cal Tech (1977), and G. Farrar and 
D. Jackson, Phys. Rev. Lett. 41, 246 (1979). See also A. M. Polyakov, 
Proc. of the Int. Symp. on Lepton and Photon Interactions at High Energies, 
Stanford (1975), and G. Parisi, Phys. Lett. 84fi, 225 (1979). See also S, J. 

86 



Broddky and G. I*, [>epage, in High Energy Physics-tfl*'\- • "weeding* of the 
XXth International Conference, Madison, Wisconsin. • ••: '•* • by L. Durand 
and L. G. Pondrom (AIP, New York, 1981); p. 568. A. . I- -« iov and A. V. 
Radyushkin, Rev. Nuovo Cimcnto 3_, I (1980); Phya. Lett. laM, 245 (1980). 
V. L. Cbernyak and A. R. Zhilnitsky, JETP Utt. 25, ]] (1977); G. Parisi, 
Phys. Lett. 43, 246 (1979); M. K. Chase, Nucl. Phys. B J R 125 (1980). 

54. S. J. Brodsky, G. R. Farrar, Phys. Rev. Jill, 1309 (1975). 
55. A. Kronfeld and B. Nizic, Fermilab-Pub 91/64-T (1991). The Compton 

scattering data are from M. Shupe tt a/., Phys. Rev. 1219, 1921 (1979). 
56. P. Stolcr, Phys. Rev. Lett, fifi, 1003 (1991); and to be published in Phys. 

Rev. D. 
57. C. E. Carlson and J. L. Poor, Phys. Rev. D38. 2758 (1988). 
58. N. tsgur and C. H. Llewellyn Smith, Phys. Lett. B2U, 535 (1989) 
59. J. Hanspcr, R. Eckardl, and M. V. Gari et a/., Ruhr-Universitat Bocbum 

preprint (1991). 
60. A. Szczepaniak, L. Mankiewicz Univ. of Florida Preprint (1991). 
61. S. J. Brodsky, SLAC-PUR-5529 (1991). 
62. J. Botts, Nucl. Phys. 0353.20 (15191). 
63. P. V. LandshofT, Phys. Rev. QUI, 1024 (1974), 
64. S. J. Brodsky, G. P. Lepage, and P. B. Mackenzie Phys. Rev. B2fi, 228 (1983). 

For a recent discussion of the scale fixing problem in QCD, sec J. C. Collins, 
ANL HEP-CP-90-58 (1990). 

65. W. Kwong, P. B. Mackenzie, R. Rosenfcld. and J. L. Rosner Phys. Rev. D37 
3210,(1988). 

66. A. Szczepaniak, E. M. Henley, S. J. Brodsky, Phys.Lett. B242, 287 (1990). 
67. S. J. Brodsky, G. P. Lepage, and S. A. A. Zaidi, Phys. Rev. D2& 1152 (1981). 
68. As noted by U. Dokshilscr and A. Mueller (private communication), virtual 

loop corrections related to the Sudakov form factor due to the difference in 
the overall heavy quark mass scale A/t

2 and the hard scattering scale can 
also modify the hard scattering amplitude. However, such corrections are 
not expected to be large. 

69. D. Bartoletta it */., Piiys. Rev. Lett. fi2 2436 (1989). 
70. S. G. Gorishny, A. L. Kataev, and S. A. Larin, Phya. Lett. B212, 238 (1988). 
71. We follow here the notation and discussion of D. Sopcr, Phys. Rev. Q± 1620, 

(1971); and K. Mornbostel. CLNS-90-1038, (1990). 

87 



72. A. Langnau, to be published. 
73. It also should be noted that in Gribov's approach to quark confinement, 

Pauli-Villars or dimensional regulation cannot even be used in principle 
for strong coupling problems in QCD because of the way it eliminates the 
negative energy sea. Sec Ref. 10. 

74. S. J. Brodsky, Y. Frishman, G. P. Lepage and G\ Sachrajda, Phys. Lett. 
21£, 239 (1980). 

75. SU[N) gauge theories, restricted to one spatial dimension and time have 
been studied extensively at large N; sec e.g. G. 't Hoofl, Nucl. Phys. BJ5, 
461 (1974); C. G. Callan, N. Coote, and D. J. Gross, Phys. Rev. 012, 1649 
(1976); M. B. Einhorn, Phys. Rev. J214, 3451 (1976); and 1. Bars and M, B. 
Green, Phys- Rev. HI 7, 537 (1978). 

76. C. J. Burden and C. J. Haincr, Phys. Rev. 1131, 479 (1988), and references 
therein. 

77. Y. Frishman and J. Souncnscheiri, Nucl. Phys. B294. 801 (1987), and Nucl. 
Phys. B301. 346 (1988). 

78. BergknolT, H., Nucl. Phys. BJ22, 215 (1977). 
79. For a recent discussion and further references, see G, S. Kim, Nucl. Phys. 

0351,87(1991). 
80. J. J. Aubert, ct al., Nucl. Phys. B213. 31 (1983). See also E. Hoffmann and 

R. Moore, Z, Phys. £2Q, 71 (1983). 
81. K. Hnrnboslel, private communication; S. J. Brodsky and K. Hornbostel, to 

be published. 
82. S. J. Brodsky and P. Hoycr, SLAC-PUB-5422, (1991). 
83. G. T. Bodwin, D. R. Venule, and M. A. Gregorio, Rev. Mod. Phys._56_, 723 (1985). 
84. M. Krautgarlner, II. C. Pauli, and F. Wolz, Heidelberg preprint MPIH-V4-

1991. 
85. P. M. Morse and H. Fushbach, Methods in Theoretical Physics, 2 Vols, 

Mc Graw-Hill, New York, N.Y., 1953. 
86. M. Sawicki, Phys Rev. D31, 2666 (1985). 
87. M. Sawicki, Phys. Rrv. 033., 1103 (H>86). 
88. L. Mankicwicz, private communication. 
89. H. A. Bcthc and E. E. Salpeter, Quantum Mechanics of One- and Two-

Eirctran Atoms, Springer, Heidelberg, 1957. 

88 



90. W. Dykshoorn, R. Koniuk, and R. MunoB-Tapia, Phys. Rev. AiL, 60 (1990). 
91. W. Dykshoorn and R. Koniuk, Phys. Rev. A41, 64 (1990). 
92. We thank V. Gribov for an illuminating discussion on this point. 
93. See, for example, M. II- Thoma and H. J. Mang, Z. Phys, £M, 349 (1989), 
94. St. Glazek, Phys. Rev. £38 3277 (1988). 
95. Tli. Hcinzl, St. Krusche, and E. Werner, Rcgensburg preprint TPR 90-44. 

80 


