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ABSTRACT

We: discuss the light-cone quantization of gauge theories from two perspectives:
as a calculational tool for representing hadrons as QCD bound-stales of relativistic
quarks and gluons, and also as a novel method for simulating quantum field theory
on a computer. The light-cone Fock state expansion of wavefunctions at fixed light
cone {ime provides a precise definition of the parton model and a general calculus
for hadronic matrix elements. We present several new applications of light-cone
Fock methods, including calculations of exclusive weak decays of heavy hadrons,
and intrinsic heavy-quark contributions to structure functions. A general non-
perturbative method for numerically solving quantum field theories, “discretized
light-cone quantization,” is outlined and applied tv several gauge theories, includ-
ing QCD in one space and one time dimension, and quantum clectrodynamics in
physical space-time at large coupling strength. The DLCQ method is invariant
under the large class of light-cone Lorentz iransformations, and it can be formu-
lated such that ultraviolel regularization is independent of the momentum space
discretization. Both the bound-state spectrum and the corresponding relativis-
tic light-cone wavefunctions can be obtained by matrix diagonalization and related
technigues. We also discuss the construction of the light-cone Fock basis, the strue-
ture of the light-cone vacunm, and outline the renormalization techniques required
for solving gauge thecries within the light-cone Hamiltonian formalism.
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Introduction

In quantum chromodynamics, hadrons are relativistic bound states of con-
fined quark and gluon quanta. Although the momentum distributions of quarks in
nucleons are well-determined experimentally from deep inelastic lepton scattering
measurements, there has been relatively little progress in computing the basic wave-
Tunctions of hadrons from first principles in QCD. The most interesting progress
has come from lattice gauge 1;lwor_v,r"2 and QCD sum rule calculat.ions,a both of
which have given predictions for the lowest moments {z%) of the proton’s distri-
bution amplitude, ¢y(z;, Q). The distribution amplitude is the fundamental gauge
invariant wavefunction which describes the fractional longitudinal momentum dis-
tributions of the valence quarks in a hadron integrated over transverse momentum
up to the scale Q:‘ However, the results from the two analyses are in strong
disagreement: The QCD sum rule analysis predicts a strongly asymmetric three-
quark distribution (See Fig. 1), whereas the lattice results? obtained in the
quenched approximation, favor a symmetric distribution in the ;. Models of the
proton distribution amplitude based on a quark-di-quark structure suggest strong
asymmetries and strong spin-correlations in the baryon wavefunctions:  Even
less is known from first principles in non-perturbative QCD about the gluon and
non-valence quark contributions to the proton wavefunction, although data from
a number of experiments now suggest non-irivial spin correlations, a significant
strangeness content, and a large = component to the charm quark distribution in
the proton.6

There are many reasons why knowledge of hadron wavefunctions, particularly
at the amplitude level, will be necessary for future progress in particle physics. For
example, in electroweak theory, Lthe central unknown required for reliable calcula-
tions of weak decay amplitudes are the hadronic matrix elements. The coefficient
functions in the operator product expansion needed to compute many types of
experimental quantities are essentially unknown and can only be estimated at this
point. The calculation of form faclors and exclusive scatlering processes, in gen-
eral, depend in detail on the basic amplitude structure of the scattering hadrons
in a general Lorentz frame. Even the calculation of the magnelic moment of a
proton requires wavefunctions in a boosted frame. We thus need a practical com-
putational method for QCD which not only delermines its spectrum, but also a
method which can provide the non-perturbative hadronic matrix elements needed
for general calculations in hadron physics.

It is clearly a formidable task to calculate the structure of hadrons in terms
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Figure 1, The praton distribution amplitude ép{z;,u) evaluated at the scale u ~

1 eV from QCD sum rules® The enhancement al large x; correspond to n strong
correlation between the a high momentum u quark with spin parallel to the proton spin.

of their fundamental degrees of freedom in QCD. Even in the case of abelian



quantum electrodynamics, very little is known about the nature of the bound
state solulions in the large o, strong-coupling, domain. A calculation of bound
state structure in QCD has to deal with many complicated aspecis of the theory
simultaneously: confinement, vacuum structure, spontaneous breaking of chiral
symmetry (lfor massless quarks), while describing a relativistic many-body system
which appareniily has unbaunded particle number.

The first step is to find a ianguage in which one can represent the hadron in
terms of relativistic confined quarks and gluons. The Betlhe-Salpeter formalism
has been the central method for analyzing hydrogenic atoms in QED, providing
a completely covariant procedure for obtaining bound state solutions. However,
calculations using this method are extremely complex and appear to be intractable
much beyond the ladder approximation. It also appears impractical 1o exiend this
method to systems with more than a few constituent particles.

An intuitive approach for solving relativistic bound-state problems would be
to solve the Hamiltonian eigenvalue problem

Hlg) = VP +M2ip) (1)

for the particle's mass, M, and wavefunction, [¢}. Here, one imagines that [} is an
expansion in multi-particle cccupation number Fock states, and that the operators
Hand P are second-quantized Heisenberg picture operators. Unfortunately, this
method, as described by Tamm and Dancoff, is severely complicated by its non-
covariant structure and the necessity to first understand its complicated vacuum
eigensolution over all space and time. The presence of the square root operator also
presenis severe mathematical difficulties. Even if these problems could be solved,
the eigensolution is only determined in its rest system; determining the boosted
wavefunction is as complicated as diagonalizing H itself.

Fortunately, “light-cone™ quantization, the Loreniz-frame-independent method
we shall emphasize in these lectures, offers an elegant avenue of esca.pe.a The square
root operator does not appear in lighi-cone formalism, and the vacuum structure ia
relatively simple; for example, there is no spontaneous creation of massive fermions
in the light-cone quantized vacuum,



Quantization on the Light-Cone

There are, in facl, many reasons to quantize relativistic field theories at fixed
light-cone time r = ¢ + z/c. Dirac, in 1949, showed that a maximum number of
Poincare generators become independent of the dynamics in the “front form" for-
mulation, including certain Loreniz boosts. In fact, unlike the traditional equal-
time Hamiltonian formalism, quantization on the light-cone can be formulated
without reference to the choice of a specific Lorentz frame; the eigensolutions of
the light-cone Hamiltonian thus describe bound states of arbitrary four-momentum,
allowing the computalion of scatiering amplitudes and other dynamical quantities.
However, the most remarkable feature of this formalism is the apparent simplicity
of the light-cone vacuum. In many theories the vacuum state of the free Hamil-
tonian is an eigenstate of the total light-cone Hamiltonian. The Fock expansion
constructed on this vacuumn state provides a complete relativistic many-particle
basis for diagonalizing the full theory.

General Features of Light-Cone Quantization

In general, the Hamiltonian is the “time” evolution operator H = if; which

propagates fields {rom one space-like surface to another. As emphasized by Dirac,
there are several choices for the evolulion parameter 7. In the “Instant Form” r = 1
is the ordinary Cartesian time. In the “Front Form,” or light-cone quantization, one
chooses T = 14z /c as the light-cone coordinate with boundary conditions specified
as a function of z,y, and 2~ = ¢t — z. Another possible choice is the “point form,”
where 7 = v/c212 — 72, Notice that all three forms become equivalent in the non-
relativistic limit where, effectively, ¢ — co. A comparison of light-cone quantization
with equal-time quantization is shown in Table 1.

Table 1. A comparison of light-cone and equal-time quantization.

Instant Form Front Form
Hamiltonian H = \/T"2+Mz +VIP = fi;;u_’ +V
Conserved quantities E, P P-, Pt P n
Momenta P<>0 Pt>0
Bound state equation| Hy = Ey PtPy = M¥%
Vacuum Complicated Trivial




Although the instant form is the conventional choice for quantizing field theory,
it has many practical disadvantages. For example, given the wavefunction of an n-
electron atom, Yu(Zi,t = 0), at initial time ¢t = 0, then, in principle, one c¢an use the
Hamiltonian H to cvolve ¢,(£;.t) Lo Inter times {. However, an experiment which
could specify the initial wavefunction would require the simultaneous measurement
of the positions of all of the bound electrons, such as by the simulianevus Compton
scaltering of n independeni laser beams on the alom. In contrast, determining the
initial wavefunction at fixed light-cone time r = 0 only requires an experiment
which scatters one plane-wave laser beam, since the signal reaching each of the n
electrons is received along the light front at the same light-cone time 7 = ¢ 4+ zi/c.

As we shall discusas in these lectures, light cone quantization allows a precise
definition of the notion that a hadron consists of confined quarks and gluons. In
light-cone quantization, a free particle is specified by ils four momentum &* =
(k*, k=, k)) where ¥ = k% &+ k% Jf the particle is on its mass shell and has
positive energy, its light-cone energy is also positive: k~ = (k3 + m?)/kt >
0. In perturbation theory, transverse momentum Y &) and the plus momentum
Y. k* are conserved at each vertex. The light-cone bound-state wavefunction thus
describes constituents which are on their mass shell, but off the light-cone energy
shell: P~ < Y k™4,

As we shall show explicitly, ane can construct a complete basis of free Fock
states (eigenstales of the free light-cone Hamiltonian) |n) (n| = [ in the usual way
by applying products of free field creation operators to the vacuum state D) :

|0)
9 : kidi) = btk A1) d (k5 A2) |0)

loo < k:hi) = Bk A ) (kg he) 0¥ (s As) [0) 2)

where 3!, d' and a! create bare quarks, antiquarks and gluons having three-
momenta k; and helicities A;.

Note, however, that in principle In the case of a theory such as QED, with
massive fermions, all states containing particles have quanta with positive k¥, and
the zero-particle state cannot mix with the other states in the basis!” The free
vacuum in such theories is thus an exact cigenstate of Hyo. However, as we shall
discuss in later sections, the vacuum in QCD is undoubtedly more complicated



due to the possibility of color-singlel states with P* = 0 built on four or more
zero-mode massless gluon quanta.

The restriction k* > 0 for mass. . e quanta is a key difference between light-cone
quaniization and ordinary equal-time quantization. In equal-time quantization,
the stale of a parton is specified by ils ordinary three-momentum E = (k) &2, k%),
Since each component of i:l can be either positive or negative, there exist zero total
momentum Fock states of arbitrary particle number, and these will mix with the
zero-particle staie to build up the ground state. However, in light-cone quantization
each of the particles forming a zero-momentum state must have vanishingly small
k*. Such a configuration represents a point of measure zero in the phase space,
and therefore such states can usually be neglecied.

Actually some care must be taken here, since there are operators in the theory
that are singular at &+ = 0—e.g. the kinetic energy (fc'f + M?%)/k*. In certain
circumstances, states containing &+ -—+ D quanta can significantly alter the ground
state of the theory. One such circumstance is when there is spont*neous symmetry
breaking. Another is the complication due to massless gluon ¢nanta in a non-
Abelian gauge theory. Nevertheless, the space of states Lthat can play a role in the
vacuurn structure is much smaller for light-cone quantization than for equal-time
quantization. This suggests that vacuum structure may be far simpler to analyze
using the light-cone formulation.

Even in perturbation theory, light-cone guantization has overwhelming advan-
tages over standerd time-ordered periurbation theory. For example, in order to
calculate a Feynman amplitude of order g" in TOPTH one must suffer the cal-
culation of the sum of n time-ordered graphs, each of which is a non-covariant
function of energy denominators which, in turn, consist of sums of complicated
square roots p = 4/p? -+ m?. On the other hand, in light-cone perturbation the-
ory (LCPTH), only a few graphs give non-zero contributions, and those that are
non-zero have light-cone energy denominators which are simple sums of rational
forms p~ = (54, + m§)/p}.

Probably the worsl problem in TOPTH are the contributions from vacuum
creation graphs, as illustrated for QED in Fig. 2(a). In TOPTH, all intermediate
states coniribute to the total amplitude as long as three-momentum is conserved;
in this case g} + 2 + F = T. The existence of vacuum creation and annihilation
graphs implies that one cannol even compute any current matrix element with-
out considering the effect of the currents arising from pair production from the
vacuum. This is illustrated in Fig. 2(b). In contrast, in light-cone perturba-



(a) {o) Y

Py

K k=0
é_ Py+Po+k 5 =3
ann p2 SHMAT

Figure 2. (a) Rlustration of a va uum creation graph in time-ordered perturbation
theory. A corresponding contribution to the form factor of a bound stale ia shown in
figure (b).

tion theory (LCPTH), an intermediate slate contributes only il the total 7} and
pt are conserved. In the case of vacuum creation graphs in QED, this implies
BiL 4+ + = 0, and p! + p3 + k} = 0. However, the latter condition
cannot be satisfied since each massive fermion has strictly positive pf > 0. Thus
aside from Lhearies which permit zero modes, there are no vacuum creation graphs

.
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Figure 3. Time-ordered contributians to the electron’s nnomalous magnetic mo-
ment. In light-cone quantization with ¢+ = 0, only graph (a} needa to be computed to
obtain the Schwinger resuit.

In fact, light-cone perturbation theory is sufficiently simple that it provides
in many cases a viable alternative to standard covariant (Feynman) perturbation
theary. Each loap of a r-ardered diagram requires a three-dimensional integration
over the transverse momentum d?F;, and light-cone momentum fraction z; =
kt/p* with (0 < z; < 1.) For example, the lowest order Schwinger contribution to
the electron anomalous magnetic moment, a = (9 — 2} = £, is easily computed
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Figure 4. Construction ol‘ a renormalized amplitude in LCPTH vsing the method
of alternating denominators.’ The mass renormalizalion counterierm is constructed
locally in momentwm space in graph (b) by substituting the light-cone energy difference
Pg = Py rather than Pz — P

from just one LCPTH diagram. (See Fig, 3). Calculations of the higher order
terms in o require renormalization in the contexi of light-cone Hamiltonian field
theory. As shown in Ref. 11 renormalization in LCPTH can be carried out in
close correspondence to Lagrangian methods. In the case of QED one can use the
Pauli-Villars method to regulate the ultra-violet divergences. Then for each -
ordered diagram with divergent subgrapihs, the required local counter-term can be
computed using the method of “alternating denominators.” " A simple example
for one LCPTH graph for Compton scatlering is shown in Fig. 4. Additional
divergences which occur due to the v~ couplings (in covariant gauges) can be
eliminated by subiraction of the divergent amplitude subgraph at p* = 0.'

One of the most interesting applications of LCPTH would be the perturbative
calculation of the annthilation cross section R,.+.~, since one would antomatically
calculate, to the same order in perturbation theory, the quark and gluon jet dis-
iributions appearing in ihe final state. H is advantageous Lo use the light-cone
gauge AY = 0 since one wants to describe gluon distributions with physical polar-
ization. The extra complications in the renormalization procedure induced by a
non-covariani axial gauge have recently been discussed by Langnau and Burkardt?
A non-perturbative light-cone quantization calculation of R.+.- for QED in one
space and one time has been given by Hiller* We will return 1o these develop-
ments in later sections.
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Representation of Hadrons on the Light-Cone Fock Basis

One of the most important advantages of light-cone quantization is that ithe
light-cone Fock expansion can be used as the basis for representing the physical

states of QCD. For example, a pion with momentum £ = (P*, 7 1) is described
by the expansion,

n:zPt P+ E.Liwh) YaselzikLin i) (3)

_dz.'d'zfc'_!_.-
IJI' : E) = / v )
'§ ; VEilbr

where Lhe sum is over all Fock states and helicities, and where

ﬁd:r; = Hdz.—& 1-—- Z:r,'
i i ¥

ﬁdz;;l.l' = Hdzi:_l,i lﬁ‘ﬂ'a &2 ZE_LJ
{ i ]

The wavefunclion w,,,,(x.-,.i-‘ LisAi) i8 thus Lthe amplitude for finding partons in a

specific light-cone Fack state n with momenla [;r,'P"',ng’. L+ E 1 i) in the pion,
The Fack state is off the light-cone energy shell: 3 k7 > P~. The light-cone mo-
mentum coordinates z;, with Y, ri and k4, with Yo Fii= ) 1, are actually
relative coordinates; i.c. they are independent of the total momentum P+ and
P) of the bound state. The special feature that light-cone wavefunctions do not
depend ou the total momentum is not surprising, since z; i4 the longitudinal mo-
meztum fraction rarried by the i*-parton (0 < z; < 1), and &1 ; is i{ts momentum
“transverse” to the direction of the meson. Both of these are [rame independent
quantities. The ability to specily wavelunctions simultancously in any frame is a
special feature of light-cone quantization.

In the light-cone Hamiltonian guantization of gauge theories, onc chooses the
light-cone gange, g- A = A+ = 0, for Lthe gluon ficld. The use of this gange results
in well-known simplifications in the perLurbative analysis of light-cone dominated
processes such as high-momentum hadronic form factors. I\ is indispensable if one
desires a simple, intuitive Fock-state basis since there are neither negative-norm
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gauge boson states nor ghost states in A* = 0 gauge. Thus each term in the
normalization condition

Z/H ds,dzkl' I'ubn/r(zl's E.Ll',‘\!')lz =1 (5)

F]
Y 16

is positive.

The coefficients in the light-cone Fock stale expansion are the parton wavefunc-
tions v,y (zi, Eii, A;) which describe the decomposition of each hadron in terms
of its fundamental quark and gluon degrees of freedom. The light-cone variable
0 < z; < 1 is often identified with the constituent’s longitudioal momentum frac-
tion z; = k?/P., in a frame where the total momentum P* — oo. However, in
light-cone Hamiltonian formulation of QCI}, z; is the boost-invariani light cone
fraction,

KRk
= BT T PP (©)

independent of the choice of Lorentz frame.
Calculation of Hadronic Processes from Light-Cone Wavefunctions

Given Lhe light-cone wavefunctions, ¢, (.r.-,l-:' 14y A}, ONEC can compute virio-
ally any hadronic quantily by convolution with the appropriate quark and gluon
matrix elements. For example, the leading-twist structure functions measured in
deep inelastic lepton scattering are immediately related to the light-cone probabil-
ity distributions:

oM Fi(z,Q) = @ D IXAAAER) (7)

where

AREXEDD f H d?::'i“ AP i, i WP Y Bz —2)  (8)

e b=g

i the number density of partons of Lype a with lengitudinal momentum fraction
z in the proton. This follows from the observation that deep inelastic lepton
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scattering in the Bjorken-scaling limit occurs if x; matches the light-cone fraction
of the struck quark. (The Y, is over all partons of type a in state n.) However,
the light cone wavefunctions contain much more information for the final state of
deep inelastic scattering, such as the multi-parton distributions, spin and flavor
correlations, and the spectator jet composition.

As was first shown by Drell and Yan,l'l it is advantageous Lo choose a coor-
dinate frame where g% = 0 to compute form factors Fi(q?), structure functions,
and other current matrix elemenis at spacelike photon momentum. With such a
choice the quark current cannot create pairs, and {p'|5|p) can be computed as a
simple overlap of Fock space wavelunctions; all off-diagonal terms involving pair
production or annihilation by the cutrent or vacuum vanish. In the inieraction
picture one can equate the full Heisenberg current to the quark current described
by the free Hamiltonian at 7 = 0. Accordingly, the form factor is easily expressed
in terms of Lthe pion's light cone wavefunctions by examining the ¢ = + compo-
nent of this equation in a frame where the photon’s momentum is transverse to
the incident pion momentum, with §? = * = —¢?. The spacelike form factor is
then just a sum of overlap integrals analogous to the corresponding nonrelativistic

formula: ' (See Fig. 5. )

o?=-G*
xR+ (1),
&
I [ “

b A

p p+q

LLAESE

Figure 5. Calenlalion of the form factor of a bound atale from the convolution of
light-cone Fock mmplitudes. The result is exact if one sums cver all ¥,.

FeY =Y Te [T] IT =5 doihsi 0oy, 70 60 e Bun ). (9

J
nA, a 167
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Here ¢, is the charge of the struck quark, A® ﬁ'}_. and

-

~ Fli— ziqL + ¢y for the struck quark
&= - (10)
kii—zif) for all other partons.

Notice that the transverse momenta appearing as arguments of the first wavefunc-
tion carrespond not to the actual momenta carried by the partons but to the actual
momenta minus 2;¢s , to account for the motion of the final hadron. Notice also
that £, and k), become equal as §; — 0, and that Fr — 1 in this Jimit due to
wavefunction normalization. All of the various form factors of hadrons with spin
can be obtained by computing the matrix element of Lthe plus current between
states of different initial and final hadron helicities.”

As we have emphasized above, in principle, the light-cone wavefunctions de-
termine all properties of a hadron. The general rule for calculating an ampli-
tude involving wavefunction qb.‘.“, describing Fock state n in a hadron with £ =

(P+, P ), has the form" (see Fig. 6 ):

= daid?ky; - I 5
S [ TI Tt oM Faso ) TP Py Faind) (1)
A i y

where T{Y is the irreducible scattering amplitude in LCPTh with the hadron
replaced by Fock state n. If only the valence wavefunction is to be used, T.EA] is
irreducible with respect to the valence Fock state only; e.g. T,(.M for a pion has
no ¢q intermediate states. Otherwise contributions from all Fock states must be
summed, and T.EM is completely irreducible.

ant "E_. 1-x | s

Figure 8. Calenlation of hadronic amplitudes in the light-cone Fock formalism.
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The lcptonic decay of the 7% is one of the simplest processes Lo compute since
it involves only the g7 Fock state. The sole contribution to =™ decay is from

(0 |#uvt(t — vs)ipu| #7) = —V2P* )y

dz d2k (A) Ve 7 Uy
1673-1. ( z, ]\/—{\/ITS‘T.'-(I—TE] ‘/-'2 + (THl)
(12)

where n. = 3 is the number of colors, fy =2 93 MeV, and where oniy the [; =
8; = @ component of the general ¢§ wavelunction contributes, Thus we have

/ dx dzkl
16x3 2\/_

This result must be independent of the ultraviolet cutofl A of the theory provided
A is large compared with typical hadronic scales, This equation is an imporiant
constraint upon the normalization of the d wavefunction. [t also shows that there
is a finite probability for finding a #™ in a pure du Fock state.

The fact that a hadron can have a non-zero projection on a Fock state of fixed
particle number seems to conflict with the notion that bound states in QCD have
an infinitely recurring parton substructure, both from the infrared region (from
soft gluons) and the ultraviolet regime {from QCD evolution o high momentum).
In fact, there is no conflict. Because of coherent color-screening in the color-singlet
hadsons, the infrared gluons with wavelength longer than Lhe hadron size decouple
from the hadron wavefunction.

The questian of parion substructure is related to the resolution scale or ultravi-
alet cut-off of the theory. Any renormalizable theory must be defined by imposing
an ultraviolet cutoff A on the momenta occurring in theory. The scale A is usually
chosen to be much larger than the physical scales u of intercst; however it is usually
more useful to choose a smaller value for A, but at the expense of introducing new
higher-twist terms in an effective Lagrangian: 18

{13)

N AT 1 N£1
£ = £l as(A)m(AN + Y (X) 8 au(A)m(A)) + O (K) (14)
n=]

where

€ =~ FipdFenr 4 G [igh) — m(a)] gl (15)

The neglected physics of parton momenta and substructure beyond the cutoffl scale
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has the effect of renormalizing the values of the input coupling constant g{A?) and
the input mass parameter m(A?) of the quark partons in the Lagrangian.

One clearly should choose A large enough to avoid large contributions from the
higher-twist termas in the effective Lagrangian, but small enough so that the Fock
space domain ia minimized. Thus if A is chosen of order 5 to 10 times the typical
QCD momentum scale, then it is reasonable to hope ihat the mass, magnetic
moment and other low momentum properties of 1he hadron could be well-described
on a Fock basis of limiled size. Furthermore, by iterating the equations of motion,
one can construct a relativistic Schrodinger equation with an effecuive potential
acting on the valence lowest-particle numbes state wavcfunction! Such a picture
would explain the apparent success of constituent quark models for explaining the
badronic specirum and low energy properties of hadron.

It should be emphasized that infinitely-growing parton content of hadrons due
io the evolution of the deep inelastic structore functions at increasing momentum
transfer, is associated with the renormalization group substructure of the quarks
themselves, rather than the “intrinsic” structure of the bound state wavefunc-
tion)” The fact that the light-cone kinetic cnergy (ﬂ%'"-—:> of the constituents in

the bound state is bounded by A2 excludes singular behavior of the Fock wavefunc-
tions at ¢ — 0. There are several examples where the light-cone Fock structure of
the bound state solutions is known. In the case of the super-renormalizable gauge
theory, QED(1 + 1), the probability of having non-valence states in the light-cone
expansion of the lowest lying meson and baryon eigenstates to be less than 1073,
even at very sirong n:oupling.la In the case of QED(3+1), the lowest state of
positronium can be well described on a light-cone basis with iwo Lo four particles,
Ie"‘c‘), Ic"’e'-y), |ete=yv}, and |e*e~ete~); in particular, the description of
the Lamb-shifl in positronium requires Lhe coupling of the system to light-cone
Fock states with two photons “in flight” in light-cone gauge. The ultraviolet cut-
off scale A only needs 10 be taken large compared to the clectron mass. On the
other hand, a charged particle such as the electron does nol have a finile Fock
decomposition, unhless one imposes an artificial infrared cnt-off.

We thus expect thal a limited light-cone Fock basis should be sufficient to rep-
resent bound color-singlet states of heavy quarks in QCD(3+1) because of the co-
herent color cancellations and the suppressed amplitude for transversely-polarized
gluon emission by heavy quarks. However, the description of light hadrons is
undouhtedly much more eomplex due to the likely influence of chiral symmetry
breaking and zere-mode gluons in the light-cone vacuum. We return to this prob-
lem later.
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Even without solving the QCD light-cone equations of molion, we can antici-
pate some general features of the behavior of the light-cone wavefunctions. Each
Fock component describes a system of {ree particles with kinematic invarianl mass

squared:

2 _ o Kfi +m?
M? = 2 e (16)
On general dynarmical grounds, we can expect that states with very high M? are
suppressed in physical hadrons, with the highest mass configuralions computable
from perturbative considerations. We also note that én z; = én f:i’;,'} =y —yp
is the rapidily difference between the constituent with light-cone fraction z; and
the rapidity of the hadron itsell. Since correlations between particles rarely extend
over two units of rapidity in hadron physics, this argues that constituents which are

correlated with the hadron’s quantum numbers are primarily found with z > 0.2.

The limit r — 0 is normally an ultraviclet limit in a light-cone wavelunction.
Recall, that in any Lorentz frame, the light-cone fraction is z = kt/p*t = (k0 4
k*)/(P® + P?). Thus in a frame where the bound state is moving infinitely fast in
the positive z direction (“the infinile momentum frame”), the light-cone fraction
becomes the momentum fraction z — &%/p*. However, in the rest frame F= 3’,
z = (k% + k*)/M. Thus £ — 0 generally implics very large constituent momentum
k* — —k? o —og in the rest frame; it is excluded by the ultraviolet regulation of
the theory—unless the parlicle has strictly zero mass and transverse momentum.

If a particle has non-relativistic momentum in the bound slate, then we can
identify k* ~ rM — m. This correspondence is useful when one matches physics
at the relativistic/non-relativistic interface. In fact, any non-relativistic solution
to the Schrédinger equation can be immediately written in light-cone form by
identifying the two forms of coordinates. For example, the Schridinger solution
for particles bound in a harmonic oscillator potential can be taken as a model for

the light-cone wavefunction for quarks in a confining linear potential: o
- 2 k2. 4 m?
$zi Fis) = Aexp(~bM?) = exp— (62 A—ﬂ‘—) .o
;7 T

This form exhibils the strong fall-off at large relative transverse momentum and
at the r — 0 and z — | endpoinis expected for soft non-perturbative solutions in
QCD. The periurbative corrections due to hard gluon exchange give amplitudes
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suppressed only by power laws and thus will eventually dominate wavefunction
behavior over the soft contributions in these regions. This ansatz is the central
assumplion required to derive dimensional counting perturbative QCD predictions
for exclusive processes al large momentum transfer and the x — 1 behavior of
deep inelastic structure funclions. A review is given in Ref. 20. A model for
the polarized and unpolarized gluon distributions in the proton which takes into
account both perturbative QCD constraints at large z and coherent cancellations
at fow z and small transverse momentum is given in Ref. 17.

The Light-Cone Hamiltonian Eigenvalue Problem

In principle, the problem of computing the spectrum in QCD and the corre-
sponding light-cone wavefunctions for each hadron can be reduced to diagonalizing
the QCD light cone Hamiltonian in Heisenberg quantum mechanics: Any hadron
state must be an eigenstate of the light-cone Hamiltonian. For convenience we will
work in the “standard” frame where P, = (P*,P;) = (1,0) and P; = M2,
Then the state |7} satisfies an equation

(MZ - Hic) Ir) = 0. (18)

Projecting this onto the various Fock states {¢7|, {gFg]... resulls in an infinite
number of coupled integral eigenvalue equations,

- Ix
kL4 m? "

(""3 - e ) Vogosx
i ' .

(q@l VIgg) (gl Vlege) -] [ Yeasx
= | {qqol VIe7) ({qa0lVIqG9) | | Yugosr

where V is the interaction part of H;c. Diagrammatically, V involves completely
irreducible interactions—i.e. diagrams having no internal propagators—coupling
Fock states. (See Fig. 7.) We will give the explicit forms of each matrix element
of V in a later section.

In principle, these equalions determine the hadronic spectrum and wavefunc-
tions. However, even though the QCD potential is essentially trivial on the light-
cone momentum space basis, the many channels required to describe a hadronic
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Figure 7. Coupled cigenvalue equations for the light-cone wavefunctions of a pion.

state make those equations very dificult ta solve, Far example, Fack states with
two or more gluons are required just to represent the effects of the running coupling
constant of QCD.

In the case of gauge theories in one space and one time dimension, there are no
physical gluon degrees of freedom in lighl-cone gauge. The computational prob-
lem is thus much more tractable, and it is possible to explicitly diagonalize the
light-cone Hamiltonian and thus solve these theories numerically. In this method,
"discretized light-cone «aantization” (DLCQ) the light-cone Fock state basis is

1

rendered discrete by imposing periodic (or anii-periodic) boundary conditiors. '

A central emphasis of these lectures will be the use of DLCQ methods to solve
non-perturbative problems in gauge theory. This method was first used to abtain
the mass spectrum and wavefunctions of Yukawa theory, Yié, in one space and one
time dimensions?’ This success led to further applications including QED(1+41)
for gencral mass fermions and Lthe massless Schwinger model by Eller ef ul.,2 2 F
theory in 141 dimensions by Harindranath and Val'_\-',2 3 and QCD(141) for Nc
= 2,3,4 by Hornbostel et af.w Completle numerical solutions have been obtained
for the meson and baryon specira as well as their respective light cone Fock state
wavefunctions for general values of the coupling constant, quark masses, and color.
Similar resulls for QCD(1+1) were also obtained by Burkardt™ by solving the
coupled light-cone integral equation in the low particle number sector. Burkardt
was also able {0 study non-additive nuclear eflects in the structure functions of
nnclear states in QCD(1+1). In each of these applications, the mass spectrum and
wavefunctions were successfully obtlained, and all results agree with previous ana-
lytical and numerical work, where they were available. More recently, Hiller 3 has
used DLCQ and the Lanczos algorithm for matrix diagonalization method to com-
pute the annihilation cross section, structure functions and form factors in 141
theories. Although these are just toy models, they do exhibit confinetnent and are
excellent tests of the light-cone Fock methods.
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In addition to the above work on DLCQ, Wilson and his colleagues at Ohio
Siate have developed a complimentary method, the Light-Front Tamm Damcoff
aa,ppmach.2 %28 which uses a fixed number Fock basis to truncate the theory. Wilson
has also emphasized the potential advantages of using a Gaussian basis similar to
that used in many-electron melecular systems, rather than the plane wave basis
used in the DLCQ work.

The initial successes of DLCQ provide the hape that one can use this method for
solving 3+1 theories. The application to higher dimensions is much more involved
due to the expansion of the degrees of freedom and the need to introduce ultraviolet
and infrared regulators and truncation procedures which minimize violations of
gauge invariance and Lorentz invariance. This is in addition o the work involved
implementing two extra dimensions with their added degrees of freedom. In these
lectures, we will discuss some initial attempts to apply DLCQ to gauge theories in

341 dimensions® 253 We return to these applications in later seclions.

The striking advantages of quantizing gauge theories on the light-cone have
been realized by a number of authors, including Klauder, Leutwyler, and Streil.,s !
Kogut and Soper,z 2 Rohrlich.a 3 Leutwyler? y Caaiher,a 8 Chang, Root, and Ya.n?ﬁ
Lepage and Brodsky.‘ Brodsky and Ji,?' 4 Lepage, Brodsky, Huang, and Macken-

zie,lg and McCartor® Leutwyler recognized the utility of defining quark wave-
functions on the light-cone io give an unambiguous meaning to concepis used in
the parton model. Casher gave the first construction of the light-cone Hamiltonian
for non-Abelian gauge theory and gave an overview of imporiant considerations in
light-cone guantization. Chang, Root, and Yan demonstraied the eguivalence of

light-cone quaniization with standard covariant Feynman analysis.

F ranke,:’ 34041 l(armz\ncw;ﬂ"I3 and Pervushin®* have also done important work
on light-cone quantization. The guestion of whether boundary conditions can be
consistently set in light-cone quantization has been discussed by McCartor”® and
Lenz° They have also shown that for massive theories that the energy and mo-
mentum derived using light-cone quantization are not only conserved, but also are
equivalent to the energy and momentum one would normally wrile down in an
equal-lime theory.

The approach that we use in these lectures ig closely related to the light-cone
Fock mcthods used in Rel. 4 in the analysis of exclusive processea in QCD. The
renormalization of light-cone wavefunciions and the calculation of physical observ-
ables in the light-cone framework is also discussed in that paper. The analysis of
fight-cone perturbation theory rules for QED in light-cone gauge used heze is sim-
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ilar to that given in Refl. 19. A number of other applications of QCD} in light-cone
quantization are reviewed in Ref, 20.

A mathemalically similar but conceptually different approach to light-cone
quantization is the “infinite momentum frame” formalism. This method involves
observing the system in a frame moving past the laboratory close 1o the speed
of light. The first developments were given by V‘}'\einberg.4 ! Although light-cone
quantization is similar to infinite momentum frame quantization, it differs since no
reference frame is chosen for calculations, and it is thus manifestly Lorentz covari-
ant. The only aspect that “moves at Lthe speed of light” is the quantization surface.
Other works in infinite momentum frame physics include Drell, Levy, and Yan'®
Susskind and F‘rye:' o Bjorken, Kogut, and Soper,m and Brodsky, Roskies, and
Suaya..'r' ! This last reference presents the infinite momentum frame perturbation
theory rules for QED in Feynman gauge, calculates one-loop radiative corrections,
and demonstrates renormalizability.

Light-Cone Wavefunctions and High Momentum-Transfer
Exclusive Processes and Light-Cone Wavefunctions

One of the major advantages of the light-cone formalism is that many properties
of large momentum transfer exclusive reactions can be calculated without explicit
knowledge of the form of the non-perturbative light-cone wavefunctions. The main
ingredients of this analysis are asymptotic freedom, and the power-law scaling
relations and quark helicity conservation rules of perturbative QCD. For example,
consider the light-cone expression (9) for a meson form [actor at high momentum
transfer Q2. If the internal momentum transfer is large then one can iterate the
gluon-exchange term in the effeclive potential for the light-cone wavefunctions. The
result is the hadron form factors can be written in a factorized form as a convolution
of quark “distribution amplitudes” ¢{zi,Q), one for each hadron involved in the
amplitude, with a hard-scattering amplitude Tj."’ 2 The pion's electromagnetic

. 4,52,53
form faclor, for example, can be written as ™"

Fe(Q%) =/ldrjdy#(y'QlTa(r'y.Q)ér(nQ) (l +0 (é)) . (20)
0 [

Here Ty is the scatiering amplitude for the form factor but with the pions replaced
by collinear g pairs—;.e. the pions are replaced by their valence partons. We can
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also regard Ty as the free particle matrix element of the order 1/Q? term in the
cfiective Lagrangian for v*¢7 — qﬁ.a

The process-independent distribution amplitude® ¢,(z,Q) is the probability
amplitude for finding the 47 pair in the pion withz; = zand zz =1~z MW is
directly related to the light-cone valence wavefunction:

¢e(z,Q) = ‘f;it ALY (21)
- z” u:P":' ‘7 Y5 (@)
= B [Gr et pTo |

The £, integration in Eq. (21) is cut off by the ultraviolet cutoff A = § implicit
in the wavefunction; thus only Fock states with invariant mass squared M? < Q?
contribute. We will relurn later to the discussion of ultraviolet regularization in
the light-cone formalism.

It is important to note that the distribution amplitude is gauge invariant. In
gauges other than light-cone gauge, a path-ordered ‘“string operator”
Pexp(f,,J dstg A(sz) - £) must be included between the ¢ and 1. The line inte-
gral vanishes in light-cone gange because A-z = Atz~ /2 = D and so the factor can
be omitted in that gange. This (non-perturbative) definition of ¢ uniquely fixes
the definition of Ty which must itself then be gauge invariant,

The above result is in the form of a factorization theorem; all of the non-
perturbative dynamics is factorized into the non-perturbative distribution ampli-
tudes, which suma all internal momentum transfers up to the scale Q%. On the
other hand, all momentum transfers higher than Q* appear in Ty, which, because
of asymptotic {freedom, can be computed perturbatively in powers of the QCD
running coupling constant a,{Q?).

Given the factarized structure, one can read off a number of general features of
the PQCD predictions; e.g. the dimensional counting rules, hadron helicity conser-
vation, color transparency, etc?® In addition, the scaling behavior of the exclusive
amplitude is modified by the logarithmic dependence of the distribution amplitudes
in £n Q? which is in turn determined by QCD evolution equations.

An important application of the PQCD analysis is exclusive Compton scatter-
ing and the related cross process vy — pp. Each helicity amplitude for yp — vp
can be computed at high momentum transfer from the convolution of the proton
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distribution amplitude with the @(a2) amplitudes for ggg7 — gggy. The result is
a cross section which scales as

F(Bopm,tn s)

4 (23)

do

TP~ 1P =
if the proton helicity is conserved. The helicity-flip amplitude and contributions
involving more quarks or g ons in the proton wavefunction are power-law sup-
pressed. The nominal s—9 fixed angle scaling follows from dimensional counting
rules™ 1t is modified logarithmically due to the evalutian of the proton distribu-
tion amplilude and the running of the QCD coupling constant! The normalization,
angular dependence, and phase siructure are highly sensitive to Lthe detailed shape

of the non-perturbative form of ¢p(zi, @*). Recently Kronfeld And Nizic™ have
calculated the leading Compton amplitudes using model forms for ¢, predicted in

the QCD sum rule analysess;3 the calculation is complicated by the presence of in-
tegrable poles in the hard-scattering subprocess Ty. The results for the unpolarized
cross section are shown in Fig. 8.
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Figure 8. Comparison 5 of the order al/s8 PQCD prediction for proton Compton
scatiering with the available dota. The calcnlation assumes PQCD factorization and

distribution nmplitudes computed from QCI sum rule nioments. .

There also has been impartant progress testing PQCD experimemually using
measurements of the p — N* form factors. In a recent new analysis of existing
SLAC data, Stoler™® has abtained measurements of several transition form factors
of the proton to resonances at W = 1232, 1535, and 1680 MeV. As is the case of
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the elastic proton form factor, the observed behavior of the Lransition form factors
1o the N*(1535) and N*(1680) are each consistent with the Q@ fail-off and dipole
scaling predicted by PQCD and hadron helicity conservation over the ineasured
range 1 < Q% < 21 GeV2. In contrast, the p — A(1232) form factor decreases
{aster than 1/Q* suggesting thal non-leading processes are dominant in this case.
Remarkably, this pattern of scaling behavior is what is expected from PQCD and
the QCD sum rule ema‘lysea,3 since, unlike the case of the proton and its other
resonances, the distribution amplitude ¢n+(zq,232,23,%) of the A resonance is
predicted Lo be nearly symmetric in the z;, and a symmetric distribution leads
to a strong cancellation® of the leading helicity-conserving terms in the matrix
elements of the hard scattering amplitude for ggg — ¥*qqq.

These comparisans of the prolon form factor and Compton scattering pre-
dictions wilth experiment are very encouraging, showing agreement in both the
fixed-angle scaling behavior predicted by PQCD and the normalization predicied
by QCD sum rule forms ifor the prolon distribution amplitude. Assuming one can
trust the validity of the leading order analysis, a systematic series of polarized tar-
gel and beam Compton scatiering measurementis on proton and neutron iargets
and the corresponding two-pholon reactions ¥y — pp will strongly constrain a
fundamental quantity in QCD, the nucleon distribution amplitude ¢(z;, @%). It is
thus imperative fo- theorisis 1o develop methods to calculate the shape and nor-
malization of the non-perturbalive distribution amplitudes from first principles in

QCD.
Is PQCD Factorization Applicable to Exclusive Processes?

One of the concerns in the derivation of the PQCD results for exclusive ampli-
tudes is whether the momentum transfer carried by the exchanged gluons in the
hard scattering amplitude Ty is sufficiently large to allow & safe application of per-
turbation t.heory.5 ® The problem appears to be especially serious if one assumes a
form for the hadron distribution amplitudes ¢4 (i, @*) which has strong support
at the endpaints, as in the QCD sum rule model forms suggested by Chernyak and
Zhitnitskii and others’

This problem has now been clarifiedd by two groups: Gari et al’® in the case of

baryon form factors, and Mankiewicz and Szczepaniak .6 " for the case of meson form
factors, Bach of these authors has pointed oul that the assumed non-perturlative
input for the distribution amplitudes must vanish strongly in the endpoint region;
otherwise, there is a double-counting problem for momentum transfers occurring
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in the hard scattering amplitude and the distribution amplitudes. Once one en-
forces this constraint, (e.g. by using exponentially suppressed wnvefunctionslg)
on the basis functions used to represent the QCD moments, or uses a sufliciently
large number of polynomial basis functions, the resuiting distribution amplitudes
do not allow significant contribution to the high Q2 form facicts Lo come from
softl gluon exchange region. The comparison of the PQCD predic.ions with exper-
iment thus becomes phenomenologically and analytically consistent. An analysis
of exclusive reactions an the effective Lagrangian method®! is also consistent with
this approach. In addition, as discussed by Bt:at.l‘.s,G 2 potentially soft contributions
to large angle hadron-hadron scattering reactions from Landshoff pinch contribu-
tions™ are strongly suppressed by Sudakov [orm factor effects.

The empirical successes of the PQCD approach, together with the evidence
for color transparency in quasi-elastic pp scattering™ gives strong suppori for
the validity of PQCD Jaclorization for exclusive processes at moderate momenium
transfer. It seems difficult to understand ihis pattern of form factor behavior if
it is due to simple convolutions of soft wavefunctions. Thus it should be possible
to use these processes to empirically constrain the form of the hadron distribulion
amplitudes, and thus confront non-perturbative QCD in detail.

Light-Cone Quantization and Heavy Particle Decays

One of the most interesting applications of the light-cone PQCD formalism
is to Iarge momentum transfer exclusive processes to heavy quark decays. For
example, consider the decay n. — 7. If we can choose the Lagrangian cutoff
A% ~ m?, then to leading order in 1/m,, all of the bound state physics and virtual
loop cotreclions are contained in the ¢€ Fock wavefunction ¢y, (<, ky;). The hard
scattering matrix element of the effective Lagrangian coupling c€ — ¥ contains
all of the higher corrections in a,(A?) from virtual momenta |k%| > A%, Thus

1
Mg = 1v) = / L f dz pi0(z, k1) TP (e - 17)
° (24)

1
= / dz §(z,A) T eE - 1)
0

where ¢(z, A?) is the 5. distribution amplitude. This factorization and separation
of scales is shown in Fig. 9. Since the . is quite non-relativistic, its distribution
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amplitude is peaked at = = 1/2, and its integral over x is essentially equivalent to

1he wavefunclion at the origin, ¢(F = F).
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Figure 9. Factarization of perturbative and non-perturbative contributions to the
decay ne — 77

Another interesting calculational example of quarkonium decay ir. PQCD is the
annihilation of 1lie J/3 into baryon pairs. The calculation requires the convolution
of the hard annihilation amplitude Ty (c¢ — gg9 — uud uud) with the J/+, baryon,
and anti-baryon distribution amplitudes’” (See Fig. 10. ) The magnitude of the
computed decay amplitude for 1 — Pp is consistent with experiment assuming
the proton distribution amplitude computed from QCD sum rules’ The angular
distribution of the proton in ete™ — J/# — pp is also consistent with the hadron
helicity conservation rule predicied by PQCD; i.e. opposite proton and anti-proton
helicity.

Jiy

a9 _
BE1IAIG P

Figure 10. Calculation of J/vs — pf in PQUCD.

26



The effective Lagrangian method was used by Lepage, Caswell, and Thacker ®
to systematically compule the order a,(é) corrections to the hadronic and pholon
decays of quarkonium, The scale § can then be sel by incorporating vacuum
polarization corrections into the running coupling constant™ A summary of the
results can be found in Rel. 65.

Exclusive Weak Decays of Heavy Hadrons

An important application of the PQCD effective Lagrangian {formalism is to the
exclusive decays of heavy hadrons to light hadrons, such as B® — rtx—, K+, K™, 6
To a good approximation, the decay amplitude M= { B|Hw|n*x~} is cansed by
the transition b — W thus M = f,pﬁ% (ﬂ'"lJﬂB") where J,, is the ]
weak current. The problem is then to recouple the spectator d quark and the
other gluon and possible quark pairs in each B? Fock state to the correspond-
ing Fock state of tho final state #~. (See Fig. 11. ) The kinematic constraint
that {#p — px)* = m? then demands that at least one quark line is far off shell:

i =(yrp—p:) ~ —pump ~ —1.5 GeV?, where we have noted that the light quark

takes only a fraction (1 = y) ~ +/{(k} 4+ m3)fmg of the heavy meson's momentum
gince all of the valence gquarks must have nearly equal velocity in a bound state.
In view of the suceessful applicationssﬁ of PQCD factorization to form factors at

matenlum transfers in the few Gel?® range, it is reasonable to assume that (jp}()
is sufficiently large that we can begin to apply perturbative QCD methods.

- ’ +¢
, b “{:E x Wr
cl 'D-h_ + = ! 37 =
AWS J n
1-x  1-y
AP (h] arraa

Figure 11, Calenlation of the weak decay B — xz in the PQCD formalism of Ref.
6. The gluon exchange kernel of the hndron wavefunction is exposed where hard
muonentum transfer i required.
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The analysis of the exclusive weak decay amplitude can be carried out in par-
allel io the PQCD analysis of electroweak form factors®  at large @%. The first
slep is to iterate the wavefunction equations of motion go that the large momen-
tum transfer through the gluon exchange potential in exposed, The heavy quark
decay amplitude can then be written as a convolution of the hard scattering ampli-
tude for Q7 — W*gg convoluted with the B and = distribution amplitudes. The
minimum number valence Fock state of each hadron gives the leading power law
contribution. Equivalently, we can choose tlie ultraviolet cut-off scale in the La-
grangian at (A2 < gmp) 30 1hat the hard scaitering amplitude Ty(QF — W)
must he computed from the matrix elements of the order 1/A? terms in 5. Thus
Ty contains all perturbative virtual loop corrections of order a,(A2). The result is
the factorized form:

1 1
M(B—xx)= [ dr [ duosty. NITusetz,N) (25)
1] (1]

which is expected to be correct up to termsof order 1/A4. All of the non-perturbative
. . 2 . N . . fis
correclions with momenta [&*| < A® are summed in the distribution amplitudes.

In order to make an estimate of the size of the # — w7 amplitude, in Ref.
66 wo have taken the simnplest possible forms for the required wavefunctions

Suln} ox s Pey(l —y) (26)

for Lthe pion and

palz) o BlPBY m”g(z)zl (27)

1 T
[1 et ie)

for the B, each normalized to its meson decay constant. The above form for the
heavy quark distribution amplitude is chosen so that the wavefunction peaks at
equal velocity; this is consistent with the phenomenological forms used Lo describe
heavy quark fragmentalion into heavy hadrons. We estimate ¢ ~ (.05 to 0.10. The
functional dependence of the mass term g{(x) is unknown; however, it should be
reasonable to take g(z) ~ 1 which is correct in the weak binding approximation.
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One now can compute Lhe leading order PQCD decay amplitude

M(BY — rmnt) = PE (x~|V*| BY) (28)

\/—ud llb

where
Srad@®) [, [
(m1ve18%) = 2248 os [ aybate)beted
[1] 0

Tr[?.-'m"h'r"(fn + Mpg(z))157] (29)
Q2

'l‘r[h-n‘r"(h + Mp)*(Pa + Mpg(z))1s70)
(k3 — ME)Q?

Numerically, this gives the branching ratio
BR(B" - x*r™) ~ 10782 N (30)

where £ = 10|V,3/ V| is probably less than unity, and N has strong dependence
on the value of g: N = 180 for ¢ = 1 and N = 5.8 for g = 1/2. The present

experimental Iimitw is
BR(B" - str ) <3 x 1074, (31)

A similar PQCD analysis can be applied to other two-body decays of the B; the ra-
tias of the widths will not be so sensitive to the form of the distribution amplitude,
allowing tests of the flavor symmetrics of the weak interaction.

Light-Cone Quantization of Gauge Theory

In this section we will outline the canonical quantization of QCD in A* =0
gauge, following the discussion in Refs. 4 and 19. The quantization proceeds in
several steps. First we identify the independent dynamical degrees of freedom in
the Lagrangian. The theory is quantized by defining commutation relationa for
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these dynamical fields al a given light-cone time * = t 4 z (we choose 7 = 0).
These commutation relations lead immediately to the definition of the Fock state
basis. Expressing the dependent fields in terms of the independent fields, we then
derive a light-cone Hamiltonian, which determines the evolution of the state space
with changing 7. Finally we derive the rules for 7-ordered perturbation theory.

The purpose of this exercise is to illustrate the origins and nature of the Fock
state expansion, and of light-cone perturbation theory in QCD. In this section
we will ignare the subtleties to the zero-mode large scale structure of non- Abelian
gauge fields. Although these have a profound effect on the struciure of the vacuum,
the theory can still be described with a Fock state basis and some sort of eflective
light-cone Hamiltonian. At the least, this procedure should be adequate to describe
heavy quark systems. Frrthermore, the short distance inleractions of the theory
are un. fected by this structure, accarding o the central ansatz of perturbative

QCD.

The Lagrangian (density} for QCD can be written

L= _é- Te(F™ Fp) + % (i D —m)y (32)

where " = gHAY — 9 A* + ig[A#, A¥] and 1D* = i6* — gA*. Here the gauge
field A¥ is a traceless 3 x 3 color matrix (A* = 3~ A%T°, Tr(T°T*) = 1/26%,
[T°, T = ic™T*,...), and the quark field ¢ is a color triplet spinor (for simplicity,
we include only one flavor). In order to maintain charge conjugation symmetry
in the construction of the Hamillonian, it is understood that this expression is
averaged with ils Hermetian conjugate.

Given the Lagrangian density, one can calculate the energy momentum tensor
and siress iensor in the usual way from the independent dynamical fields and
their conjugate momenta. At a given light-cone time, say r = 0, the independent
dynamical fields are ¢4 = Ayt and Aj_ with conjugate fields W’l and 8* A’ , where
Az = 1°7%/2 are projection operators (A4 A—- =0, AL = Az, Ay +A_=1) and
9% = 3" + 3. Using the equations of motion, the remaining fields in £ can be
expressed in terms of 15, Aj_:
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b= A= [tDJ. ﬂu.+ﬁm]¢'+

o~

—
= '—_Fgfil' o),

At=0, (33)

- 2 a3 . .

A” = ;BTH'?J_- A+ (84_)._,{[.6”1,4 ]+2¢1T ¢+T“}
=A+ \E "')?{["9+A" ']+2¢IT°¢+T=} :

with § = 1 and @' = 7°7'.
To quantize, we expand the fields at r = 0 in terms of creation and annihilation
opcralors,

balz) = ]“kfhijm ) gk, ) e

kt16x3
kt>D
+dlil ) vk e} | r=2t=0 ()

i(.’r)=/dk Jh_z{( z\)tfl_(l)c_'}"+C'C’}, r=xt=0,

A+ 1623
kt>D

with commulation relations {(k = (k*‘,i.: IR)H
{az, ), otip.n} = {a, 0, dhip )}
= [a(g, 3), at(p, )] 5
=162 k% 67k — p) v
{bb}={dd)l=...=0,

where A is the quark or gluon helicily. These definitions imply canonical com-
mutation relationa for the ficlds with their conjugates (r = x* =yt =< 0, £ =
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(:-1:.1.)1"'):
{+02), pl@)} = A+ Bz -w),
(36)
[42), 8* 4] (y)] =i z—y) .

It should be emphasized that these commutation relations are not new; they are
the usual commutation relation for free fields evaluated at fixed light-cone rather
than ordinary time.

The creation and anoihilation operalors define the Fock slate basis for the
theory at r = D, with a vacuum |0) defined such that 5|0} = d[0) = a0} = 0.
The evolution of these states with 7 is governed by the light-cone Hamiltonian,
Hic = P, conjugale to 7. The Hamillonian can be readily expressed in terms of
¥4 and A%

Hic=Hl+V, (37)

where

/d’ {Tr 84,9, 4%) + vl 0, ey + Am) a+ (i), - n,|_+.3m)¢+}

=% [ St (ot ma gk + e nuen

16m3 &+
x kal;’ +di(E, Ay ok, N) "l+” }+consta.nt
(38)
is the free Hamiltonian and ¥ the interaction:
__ Y T e pyuge
= fd’: {29'[&(:6".4 [4,,4)) - & 1 ([4% 2] A 4])
+ab K +ome([i0° 8, A) i 1007 A
. (39)
Sy SO A Sr X + A 2
+ 6 Ryl BF -0 (s 1047, 4)] )9
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with ¢ = ¢_ + ¥y (— ¢ as g — 0) and A* = (0, z‘.Al) (= A* as g - 0). The
Fack states are obviously cigenstates of Hg with

Ho|n: k} ky;) = Z("*”‘) |n - kF kas) (40)

It is equally obvious that they are not eigenstates of V', though any matrix element
of V between Fock stales is trivially evaluated,

The first three terms in V correspond to the familiar three and four gluon ver-
tices, and the gluon-quark vertex [Fig. 12(a)]. The remaining terms represent new
four-quanta interactions containing instantaneous fermion and gluon propagators
[Fig. 12(b)]. All terms conserve total three-momentum k = (k*, £y ), because of
the integral over z in V.

The matrix elements of the light-cone Hamiltonian for the continuum case can
be found in Rels. [19,28,27]. For the sake of completeness, the explicit expressions
are compiled in Tables 2a-d for the vertex V, the contraction C, and the seagull
interaclion §, respectively, to the extent they are needed in the present context,
The light conc Hamiltonian Hiyc = T+ V + § + C is the sum of these three
nteractions and of the [ree or ‘kinetic’ encrgy

mi + k2 k2
T=Y (—k?-&) (blbg + dhg) + > ('f) ala,.
L] ¢ q 1

The creation operators bz, d: and a; create plane wave states for the electrons,
positrons, and photons, respectively, characterized by the four kinematical quan-
tum numbers g = (:r,E_L,A), and the destruction operators b;, d, and ag destroy
them correspondingly. They obey the usual (anti-)commutation relations. Each
single particle carries thus a longitudinal momentum [raction z, transverse momen-
tum £, and helicity A. The fermions have mass mp and kinetic energy —ﬂ"-gl- the
photons are massless. The symbol 3°, denotes summation over the entire range of
the quantum numbers. In the continuum limit sums are replaced by integrals,i.e.
2y — C1 [ dq, where

c=for and [ dq-Hl f] de fd(ku, jd(h)y

The normalization volume is denoted by 2 = 21y(2L 1 )%, and ihe total longitudinal
momentum by P*.
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Table 2a: The matrix clements of Lthe vertex interaction V. — The transversal
polarisation vector is defined as €1 (A} = (~AF — if)/v2. The coupling constant
g is hidden in g, with §° = ¢? p#p. In the continuum limit one replaces sums by

integrals and # =

Foyf=0Cf= 721, since g2 = 4wa in our units. — The

Gell-Mann matrices are denoted by T7, ., and the totally anti-symmetric structure
constants of SU(N;) by C}. ¢, The are related by [T“ T"] = jeobeTe,

Graph

Matrix Element = MomentumxHelicity xFlavorx Color Factor

Vigg(1;2,3)
2

1-)_4:3

1

+g _zlamp ;—,-;1;: 5_,\, .s-‘= & Ta,
aEam-[(8),-(8)] sna o

L1}
4
5y @) (!’-L) (*})J 63:, 6.;. T,

V!‘“V‘i(li 2, 3]

5 oh T

L
+
I..-
&
4.
>&
+¢h
&>

~ - [/ F, 4
+5ZE @) !;L (&) 5_*;1 6% & T,
S NEXAIE - (%)) s& 8 o

= -\/&5 &) [

_g 232y £_|_( *3 )

=g\ mas &(h)- [(

vt N’ ::‘-ﬂ’ ST

(%)

f“'\/"\r'-\'/""'\

LT Y A

)
)
)] 6% 1 i,
) I S
)] & 1 o

d3dy

e
(=]
|

V=3unw (8lbzas — d}dzas) Vyge(1;2,3)
+ Lo ngs (@l8tr — aldldi) V2 0(1;2,3)
+ Lo (11 fdabs Vy—gg(1;2,3) + tldlay Vo (1:2,3)
+ gt (alazay Vpugy(1;2,3) + aaaqal Vot (1:2,3))
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Table 2b: The matrix elements of the contraction energy C. — The effective

coupling constant g is given by 3% = g? p3y. The color coefficient for the quarks

are given by Cp = 3, (T*T%)ee =

2osa, Te(T4T*') = Ny/2, respectively.

(N2 - 1)/2N,, and for the gluons by Cg =

Graph

Matrix Element as Infinite Sums

as Finite Sums

n

{g) _ ~2 Z 1 — 1 — 932 2 : L_P: 2
Co" =97Cr ) [(tl -z (n +=)’] =% CP- (21"1
zky fiLn=]

lo) _ 2CF 1 ~2CF
6 = 2 ZE:L’(-‘!MI) -‘B(rl—-t)] Z

LP"‘
Onn

we) _
Cy Z[r1(r+ml) zl(z——:r,)]

9 _ 7 =z Ao (2 + z0)?

r(z+ 1) zoy(z ~1)?

(?}"’ = 0

_29

|

~,g_c,-_ i LP|

i+ Py + )] + G+ alan) [P+ ci)]
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Table 2c: The matrix elements of the seagull interaction 5. — The coupling
constant ¢ is hidden ic 3 = g% piyy. In the continuum limit one replaces sums by
integrals and g% by §°C = 525, since g? = 4% in our unita.

Type Graph Element = Momentum x Helicity x Flavor x Color Factor

5| 3 |-y ey e T TI

s (3. .|0a= Py sy ool T,
R S = -7 ey 6% 6% ofef TiTm,

s | TN (Sl = P inAn B gk &h  TaTn
2NANN——=— 4
Tt e s Pk Ay 4 Tam
fm; Sitw = Pyl shay &8 aTa.Ce,,
2 4

51 ;_jm’\: Seg—g9 = § ,,1,,7;’3 s% &% & .5{; ToTS
SR s PakplEE a6 6 T80
S

S )4 4 |silhe = —@ guted el o) o) 1 ClaiCia
?m; Svw= P ampy/RE dXeY 1 ci.0n.,
EMg Sg:?"= 7 | :;xl;.u:q 62: 6:\‘; 1 Caa,Casal
N Be 1 ChuCh
B, [S50 = it S%6% 1 ChCh

5 =T e (B1830abe + dididads) $1(1,2:3,4)
+ X dldibady S3(1,2:3,4)
+ Ev: 2,03.08 (b}a;b’“‘ + dIa;dacu) S5(1,2;3,4)
+ Ty qngae (Bldiasas + alaldaby) 51(1,2;3,4)

L D, “} "tzﬂaﬂc 55(1,2;3,4)




Table 2d: The malrix elements of the fork interaction F'. — The coupling constant

g is hidden in §°* = g% 7;%-“

Type Graph Momentum x Helicity x Flavor x Color Factor
F 1—>§§ Fi= Pty sk, Rl Ta TR,
4
BTTTLC Mes Prtodn AvRs o T
1%5 Fye= & (,r_l;,‘;r\/f_‘} a8 & T8, Cn,,
4
Fi 'W“Eﬁ%f Rlw= Tammvim 0NN o TaTH
2
' { 53 Flag=-Fsazan OGN & Tams
2
R Sor R TER NS
4
Fy ‘W’“ﬁi Files = Pomiopiais ek, 1 Ch.Cha,
4
1%; F, s;:-)gsy = ¢ m 6.'\‘: 5-‘\4\'3 1 Cé1a:Casa
4

F =3, o (Bhb2dsby + d}dabady) F3(1;2,3,4) + h.c.

+ ¥ ponaae (Blbaazas + d}doasas) F(152,3,4) + he.
+ L “Ia?dab‘ F(1,2,3,4) + hee.

+ Zm V02403, 04 ﬂ}dzd;d‘ Fg(li 2; 31 4) + h.c.
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Figure 12. Dingrams which appear in the interaction Hamiltorian for QCD on the
light cone. The propagators with horizontal bars represent “instantaneocus” gluon and
quark exchange which atise from reduction of the dependent fields in A = 0 gauge.
(a) Basic interaction vertices in QCD. {b) “Instantaneous” contributions.

Light-Cone Perturbation Theory for Gauge Theory

The light-cone Green's funclions are the probability amplitudes that a state
starting in Fock state [i) ends up in Fock state |f} a (light-cone) time 7 later

(1) G(fii7) = (fle~Heel2)i)
de . (41)
=i [ 52 PG,
where Fourier transform G(f,I; ¢} can be written
i)

1 + 1 v 1
e~Hio+i0,  e—Hp+104. e—Hy+104

1
e— Hpe +1i04

U Gtz = (7 |
=(f
1 1 1

Vv
+£—Hu+i0+ e—Hn+iU+Vf—Hu+i0++

iy.
(42)
The rules for r-ordered perturbation theory follow immediately when (e — Hp)™!

ia replaced by its speciral decomposition.

1 o dkf Phy |k, N (n kg, )
e— Hy+i0; §,/H 1673 kF e — (k2 + m2)ifkF +i0,4 (43)
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The sum becomes a sum over all states n intermediate between two interactions.

To calculate G{f,{;¢) perturbatively then, al! r-ordered diagrams must be

considered, the contribution from each graph computed according to the following

rules:
1.

Assign a momentium &* to each line such that the total k%, k; are conserved
al each vertex, and such that &% = m? ie. &~ = (k* + m?)/k*. With
fermions associate an on-shell spinor.

gyt + - i x(1) A=t
Wk ) = = (K +8m+ 3, iu) {x(l) \l (44)
ar
of I — l +_ — ." X(l) A=T
L(L..\)————‘/F(k Bm+ Ty kl) {x(T) rel (45)

where (1) = 1/v2(1,0,1,0) and x(}) = 1/v2(0,1,0,-1)T. For gluon
lines, assign a polarization vector ¢* = (0, 2¢ - E 2 [k, €)) where & (1) =

—1/VZ(1,8) and ()} = 1/vV2(1, ~i).

2. Include a factor 8(k*)/k™* for each internal line.

3. For each vertex include factors as illustrated in Fig. 13. To convert incoming

into outgoing lines or vice versa replace

U, T~ =7, e ¢’ (46)

in any of these vertices.

For each intermediate state there is a [aclor

]
(- 3, k404 “n

interm

where ¢ is the incident P~ and the sum is over all particles in the interme-
diale state.

Integrate [ dk*d?k) /162 over each independent k, and sum aver internal
helicities and colors.
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Yertex Facior Color Factor

a c - T
; 7 > git(c) fy wla)
b

alipa — pp) -1ita-1p iCbe

+ cyclic perautations)

ﬂz{‘b‘fcf:;":[ 4 f:;"r.‘b'f:l} I-Cnhr "(?(‘dt

g 9% 6la) fo s /7 ulc) T 1

C 2pd - py)
+ _ut + _ ot
a gg(; o (ng ’:b “}'_'g'* pd} ’:‘ . (rafe feede
d {pe +pp )
b—r—re>—a W -ry) . .
2 g2 ffa) vt ulb) Sl (e e T
c d (ne + g ¥

b:I:n PR UL UL T
c d {pe ~pg )

e o

4507 A25

Figure 13. Graphical cules for QCIY in light-cone perturbation theory.

6. Include a factor —1 Jor each closed fermion loop, for each fermion line that
both begins and ends in the initial state (i.c. ¥...u), and for each diagram
in which fermion lines are interchanged in either of the initial or final states.

As an illustration, the second diagram in Fig. 13 contributes
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L (kY - &)
- x (BFE), W-H

i=bd
g fr‘ u(b)e® (&, —~ &y AYu(e)Ti{d) flkqg — ks, A)ulc) ]
X F] —kLa)? ) mi
- r (B), -Gt - T (%),

i=b,c

(48)
(times a color factor) to the g§ — ¢§ Green's function, (The vertices for guarks
and gluons of definite helicity have very simple expressions in terms of the mo-
menta of 1he particles.) The same rules apply for scattering amplitudes, but with
propagators « mitted for external lines, and with ¢ = P~ of the initial (and final)
stales,

The light-cone Fock state represeniation can thus be used advantageously in
perturbation theory, The sum over intermediate Fock slates is equivalent to sum-
ming all 7—ordered diagrams and integrating over the transverse momentum and
light-cone fractions z. Because of the restriction to positive z, diagrams corre-
sponding to vacuum fluctuations or those containing backwatd-moving lines are
eliminated. For example, such methods can be used to compute perturbative con-
tributions to the annihilation ratio Rz = o(e€ — hadrons)/o(e8 — p*u~) as well
as the quark and gluon jet distribution. The computed distributions are functions
of the light-cone variables, x, k1, A, which are the natural covariant variables for
this problem. Since there are no Faddeev-Popov or Gupta-Bleuler ghost fields in
the light-cone gauge A% = 0, the calculations are explicitly unitary. It is hoped
that one can in this way check the three-loop calculation of Gorishny, et al,

The Lorentz Symmetries of Light-Cone Quantization

It is important to notice that the light-core quantization procedure and all
amplitudes obtained in light-cone perturbation theory (graph by graph!) are man-
ifestly invariant under a large class of Loreniz transformations:

1. boosls along the 3-direction — i.e. pt — Kpt, p~ — K~1p~, p — py for
each momentum;
. transverse boosts — i.e. pt — pt, pm — p~ +2p) - Q4 +pTQ%, Py —
pL + p*t Q) for each momentum (@ like K is dimensionless);
3. rotations about the 3-direction, It is these invariances which also lead to the

[ o]
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{rame independence of Lhe Fock state wave functions.

More generally, we can understand these properties from the fact that the

maximum number (seven) of the ten Poincare generators are kinematic in light-
cone and thus leave the state unchanged at r = 0. b

Light-Cone Poincare Generators

The seven generators that commute with the lighl-cone energy
P =P _p, (49)
are the three momenia,
Pt=pP'+ P, P =(P.,P), (50)

the longiludinal rotation and boost operators,

Ja, A3, (51)
and the light-cone boost operators,
(K1 + J2) (K2~ J1)
B =2 Bia= 2V 9
A1 \/E 42 ﬁ (52)

Thus one can diagonalize the light cone energy P~ within a Fock basis where the
constituents have fixed total P¥, P, , and J;. For convenience we shall define the
light cone Hamiltonian as the operator

Hic=P P*-P} (53)

50 that the eigenvalues of Hyc correspond to the invariant specirum M2 of the
theory.

The boost invariance of the eigensolutions of H;o reflects the fact that the
boost operators K3, By and B, are kinematical. The remaining Poincare gener-
ators, the light-cone angular momentum operators,

(K = J2)

SJ_1=T. and S_Lg

are dynamical and do not commute with P~ or Hyc.

_ K3+ )

v (54)
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In order Lo understand these features better, we shall discuss the construction
of the LC Fock basis for mesons in QCD in some detail. It is easiesi to start in
a “standard frame” with total momentum P}, =1, 7 Latd = 0 1 (in any unita!)
and then boosi to a general frame!’ To simplify the notation we shall write the
conserved three momenta in the form &; = (&} & 4 ;) which becomes (za,j:' 1) in
the standard frame. We can then build the light-cone Fock states by applying the
free quark, anti-quark, and gluon field operators to the free vacuum:

fiu) = b (ka, Xa)dt (R, Dp)a'(ke, M) [0) (85)
where Y xi =1,3 k), =01, and 3 A; = A, since

Ja P+=l,_!_"._|_=_0-._|_,e\>='\ P+=l,7;_|_=0l,¢\> . (56)

In addition, in each Fock state the color indices of the quark and gluon quanta can
he combined to form SU{3)¢ color-singlet represeniations. (A general group the-
ory procedure for finding all such irreducible representations is given by Kaluza. )
Since Lhe Fock basis is complete, we can write the eigensolution to the pion wave-
function in the standard frame in the form

-l
1 "%k
It]l,.([’"" =L,F = 0-'-)) = ‘.\;h/ VTl -z 2(23.-;-3“’93(:&&1131)

57
x bt(Ivkli“l)‘ﬁ(] - :l',—k_[_,—ll) '0) ( )

+Y f Yagdldlat 0) + ...

Thus with this construction T"_L [Pe) = ‘E._L, and P+ |¥,) = 1|Ws) . The
cigenvalue problem for the pion in QCD is then

P~ W) = m|¥s) . (58)

which in the Fock basis reduces to the problem of diagonalizing the Heisenberg
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mairix:
3" (mlHcln) (n]¥s) = m] (m|¥,) . (59)

The eigensolutions then determine the complete Fock representation of the pion
light-cone wavefunction,

Given the pion eigensolution in the standard frame, we can immediately con-
struct the pion wavefunction at any total three-momentum @ = (Q*,Q ) since
the boost operators K3, B}y, and B3 can all be construcied from the free quark
and gluon fields. The boost operators have the action

e-inaP+eiuKa = e"'P"' , (60)
and
— -
Ve BAP, P 4+ PtV . (61)

Thus we define the boost operator

vQ*t, @)= o . (62)
so that
U@, @ btz B WUYQY, QL) = i(=Q, B +2@1,2),  (63)

etc, Thus the pion wavefunciion in a general frame is
—
UA(Q* QL) = U@ TU¥Q* = 1,0, =Ty, (64)

since ZL(I: it Q 1) = Q 1.and 37, 7:QF = @+, Since U is only a function of the
Iree fields, the result is the Fock expansion of Eq. (4). Thus, as emphasized nbow:,
the light-cone wavefunctions ¥n{T;, k1;, i) and its relative coordinates z; and ¥,

are independent of the total momenta Q¥, Q 1+ The actual particle momenta are

with plus mementum &% = z;Q%, transverse momentum k;; + zea 1 and spin
projection Jy = A;. The spinors and polarization vectors for such particles are
given explicitly in the proceeding section.
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Spin on the Light-Cone’’

If a theory is rotational invariant, then each eigenstate of the Hamiltonian
which describes a state of nonzero mass can be classified in its rest frame by its
spin eigenvalues

J? p°=M,T='=F>=s(a+1) P°=M,T>'=F> \ (65)
and
J,,P":M,T”=T)’>=a, P°=M.'F=_o'> . (66)

This procedure is more complicated in the light-cone scheme since the angular
momentum operator does not commute with e, Nevertheless, one can construct

light-cone operzitt.ors.‘.l TI=Ji+ Jf_ and J3 where
Js = Ja+ € B1iPy /P, (67)

and

1 —
JJ. = Hflf(sj_tp+ - BJ_[P - KsPJ_l -+ JaelmPJ.III) L] (68)

which, in principle, could be applied to an eigenstate |P"‘, P _._> to obtain the rest
frame spin quantum numbers. This is straightforward for J3 since it is kinematical;
in fact, J3 = Ji in a frame with P L= 0 1. However, J) is dynamical and depends
on the interaclions. Thus it is generally difficult to explicitly compute the toial
spin of a state using light-cone quantization. Neverthelesa, this is not a probiem in
practice since, given the spectrum of the light-cone Hamiltonian, one can identify
the rest-frame spin of each eigenstate simply by counting the number of degenerate
levels appearing at each value of J3.
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Discrete Light-Cone Symmeiries

The QCD Hamiltonian has a number of global symmetries which are also char-
acteristic of its eigensolutions. It is thus useful to pre-diagonalize the Light-Cone
Fock state basis with respect to all of the operators which commute with Hye
and then diagonalize H ¢ within each super-selection sector. The most important
global symmetiries are’

Light-Cone Parity,

IEC = e hpp (69)
where
I}I;c‘bﬁ(:‘! k.Lh k_l..ﬁs '\l) = %?(3, —k.].h k_Lz' —“I) i (70)
Light-Cone Time-Reversal,
HC = e ™hply (T1)
where
TEC (e, ELA) = wiglm, =L, ) 5 (72)

and Light-Cone Charge-Conjugalion:
ISz, k1, 0, h) = =gl — =, K1, 00, M) (73)

By pre-diagonelizing in the eigensectors of these symmetries, one reduces the ma-
Lrix size of the representations of Hyc by a factor of two for each symmetry.

Renormalization and Ultra-Violet Regulation of
Light-Cone-Quantized Gauge Theory

An important element in the light-cone Hamiltonian formulation of quantum
field theories is the regulation of the ultraviolet region. In order to define a renor-
malizable theory, a covariant and gauge invariant procedure is required to elim-
inate states of high virtuality. The physics beyond the scale A is contained in
the normalization of the mass m{A) and coupling constant g{A) parameters of the
theory, modulo negligible corrections of order 1/A® from the effective Lagrangian.
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The logarithmic dependence of these input parameters is determined by the renor-
malization group equations. In Lagrangian field theories the ultraviolet cut-off is
usually introduced via a spectrum of Pauli-Villars particles or dimensional regula-
tion. Another interesting possibility is to work with a super-symmetric extension
of theory which is finite, and then introduce soft symmetry breaking to give the
super-partners large mass of order A.

An analogous ultraviolet regularization must also can also be followed in the
case of quanlization in the light-cone Hamiltonian framework. For example, one
can construct the ultraviolet regulated Hamiltonian H{ for QED(3+1) directly
from the Lagrangian using Pauli-Villars regulation for both the ultraviolet and
infrared regions. The Pauli-Villars speciral conditions must be chosen to eliminate
both logarithmic and potentially quadratic divergences.

As an example of this procedure, we have shown in Ref. 28 Lhat the lepton
mass renormalization counterterms computed in LCPTH using discretization is
identical to that of the Lagrangian perturbation theory in the conlinuum limit.
It was also verified pumerically (to 12 significant figures) that this procedure js
also consistent within the context of ithe non-perturbative diagonalization of the
light-cone Hamiltonian for the eleciron state within a truncated Fock space basis
le) ' "37) '

The Pauli-Villars regulation allows a complete implementation of time-ordered
Hamiltonian perturbation theory at P — oo, in a form which is essentially equiv-
alent to LCPTH.?' The renormalized amplitudes can be explicitly constructed
in each order in perturbation theory simply by subtracting local mass vertex and
wavefunction renormalization counterterms defined using the “alternating denom-
inators” method. (See Fig. 4). In addition, it is shown in Ref. 51 that Z-graphs
or instantaneous fermion exchange contributions can be automatically included
leading to a numerator factor from each time ordering identical to the numerator
of the corresponding Feynman amplitude. These methods have been successfully
applied to the calculation of the electron magnetic moment to two and three loop
order. More recently, Langnau " has extended the g — 2 calculations in LCPTH
using dimensional regulation for the transverse momentum integrations in both
Feynman and light-cone gauge.

The above method for ultraviolet regulation is not sufficient for non-perturbative
problems, such as the diagonalization of the light-cone Hamiltonian. In the previ-
ous sections we have discussed the discretization of the light-cone Fock basis using
DLCQ. n such methods, one needs to provide a priori some type of truncation
of the Fock state basis. Since wavefunctions and Green's functions decrease with
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virtuality, one expects Lthat staies very far off the light-cone energy shell will have
no physical effect on a system, except for renormalization of the coupling constant
and mass parameters, Thus it is natural to introduce a “global” cut-off such that
a Fock state |} ia retained only if

£2. 4 2

ZM-M*<A’. (74)
- Iy

n
Here M is the mass of the system in the case of the bound state problem, or the
total invariant mass /s of the initial state in scattering theory. One can also limit
the growth of the Fock state basis by intraducing a “local” cutoff on each matrix
element (n)Hc|m) by requiring that the change in invariant mass squared

E2; + m? k3 + m?
i i 1F 4 2
3 S Yy <At (75)

ien itm

Similarly, one can use a lower cutoff on the invariant mass difference to regulate

the infrared regit:m.'lr 3

The global and local cutoff methods were used in Rel. 4 to derive factor-
ization theorems for exclusive and inclusive processes at large momentum trans-
fer in QCD. In particular, the global cut-off defines the Fock-state wavefunctions
Pi(z, E 1. A) and distribution amplitude ¢(z,A), the non-perturbative input for
computing hadronic scattering amplitudes. The renormalization group proper-
ties of the light-cone wavelunctions and the resulting evolution equations for the
structure functions and distribution amplitudes are also discussed in Ref. 4. The
calculated anomalous dimensions 7, for the moments of these quantities agree with
results obtained using the operator product expamxim:.7 !

The global cut-off conveniently truncates the ultraviolet and infrared regions
of the Fock space basis, and it is easily implemented in practice. However, there
several complicating features if this method is used as the sole nltraviolel cut-off
of the field theary:

o Gauge-invariance is obviously destroyed by the implementation of a strict
cut-off in momentum space. In fact, this problem can be largely avoided by
using the following “gauge principle":“ the matrix element of an instan-
taneous gluon exchange four-point interaction is nonzerc only if the corre-
sponding three-point gluon exchange inleractions are allowed by the Fock
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space cutofl. Similarly, instantaneous fermion exchange matrix elements are
non-zero only if the corresponding propagating fermion interaclions are per-
mitted. One can easily check that this principle retains gauge invariance
in tree diagrams in gauge theory and preserves the boost invariance of the
light-cone Hamiltonian theory.

¢ Use of the global cut-off alone implies that 1he cut-off of a scli-energy insertion
counterterm for any particle depend« on the invariant mass of the entire Fock
state. Tlis implies that the renormalization counterterms for a given particle
depends on the kinematics of the spectators appearing in that Fock state>
Formally, this dependence is power-law suppressed by at leasl a power of
1/A?, bul in practice, it is advantageous to keep A? of reasonable size. The
spectalor problem is avoided if one uses the local cut-off.

» I[n gencral, light-cone quantization using the global or local cutoff can lead
to terms in ch of the form Jmtl-}-‘%;.-gl'. Although such a term is invariant
unider the Jarge class of lighi-cone Lorentz transformations, it is not totally
invariant. For example, such terms arise in order g% as a result of normal-
ordering of the four-point interaction terms. (Note thai this complication
does not occur in a sirictly covariant regulation procedure such as Pauli-
Villars.) Thus in this cut-off procedure one has to allow for an extra mass
counterterm insertions in the numerator matrix elements of the light-cone
interaction Hamiltonian. Burkardt and Langnau 2 have suggesied that the
extra counterterms can be fixed by a posteriori imposing rotational symmetry
on the bound slate solutions, so that all Lorentz symmetries are restored.

Each of the proposed cut-offs thus have advantages and disadvantages fcr the
DLCQ program. A global cut-off is necessary to Jimit the size of the Fock space
for the numerical diagonalization of the lighi-cone Hamiltonian or to truncate it to
a finite set of equations of motion. However, for the purpose of renormalization,
it is possibly advaniageous to simultaneously implement other regulators, such as
the local cut-off, a Pauli-\ * - s spectrum, supersymmetric partners, etc,

Ideally, one can apply all of this to QCD(3+1). Once one has defined the reg-
ulated light-cone Hamiltonian, solved for its spectrum, as in the DLC(Q} procedure,
the mass m{A) and coupling constant g(A) parameters can be fitted by normal-
izing the output mass and charge radius of the proton state, say, to experiment.
Non-perturbative QCD would then be tesied by comparison with the remaining
hadron and nuclear spectrum and wavefunctions. We discuss the beginning of
the application of this program to three-space one-time theories in the following

sections.
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Discretized Light-Cone Quantization: Applications to QCD(141)

As we have seen in the proceeding seclions, QCD dynamics takes a rather
simple form when quantized al equal light-cone “time” 7 =t 4 z/c. In light-cone
gauge AT = A% 4+ A* = 0, the QCD light-cone Hamiltonian

Hqop = Ho + gHy + ¢* Ha (76)

contains the usual 3-point and 4-point inierar tions plus induced terms from in-
stantaneous gluon exchange and instantaneous quark exchange diagrams. The
perturbalive vacuum serves as the lowesl state in constructing a complete basis
set of color-singlet Fock states of Hy in momentum space. Solving QCD is then
equivalent to solving the eigenvalue problem:

Hqep|¥ >= M2D > (77)

as a matrix equation on the frec Fock basis. The set of cigenvalues {M?} repre-
sents the spectrum of the color-singlet states in QCD. The Fock projections of the
eigenfunction corresponding to each hadron eigenvalue gives the quark and gluon
Fock state wavefunctions 1, (x;, k1, Ai) required to compute structure functions,
distribution amplitudes, decay amplitudes, etc. For example, the e*e™ annihila-
tion cross section into a given J = 1 hadronic channel can be computed directly
from its g5 Fock stale wavefunction.

The basic quesiion is whether one can actually solve the light-cone Hamiltonian
cigenvalue problem, even numerically. This is the goal of the DLCQ method?' We
first observe that the light-cone momentum space Fock basis becomes discrele
and amenable to computer representation if one chooses (anti-)periodic boundary
conditions for the quark and gluon fields along the z~ = 2 — ¢t and z; directions,
In the case of renormalizable theories, a covariant uitraviolet cutoff A is introduced
which limits the maximum invariant mass of the particles in any Fock state. One
thus obtains a finite matrix representation of Hggo which has a straighiforward
continuum limit. The entire analysis is frame independent, and fermions present
no special difficulties.
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Consatruction of the Discrete LC Fock Basis

The key step in obtaining a discrete representation of the light-cone Hamil-
tonian in a form amenable to numerical diagonalization, is the construction of a
complete, countable, Fock siatle basis,

Y i) nf=1. (78)

This can be explicitly done in QCD by constructing a complete set of color-singlet
eigenstates of the [ree Hamiltonian as products of representations of free yuar!, and
glion fields. The stales are cliosen as eigenstates of the constants of the motion,
Pt P 1+ Jz, and the conserved charges. In addition, one can pre-diagonalize ithe
Fock represeniation by classifying the states according to their discrete symmetries,
as described in the previous section. This step alone reduces the size of the matrix
represeniations by as much as a facior of 16.

The light-cone Fock representation can be made discrete by choosing periodic
{or, in the case of fermions, anti-periodic) boundary conditions on the fields:

Ylz7)=xy(z" - L), {79)
Ylzy) =Plzy - Ly) (BD)
Thus in each Fock state,
2%
+ _ 2T R 1
Pr==K, (81}
and each constituent
9
it = %n; : (82)

where Lhe positive integers ny satisly
Zni =N. (83)
i

Similarly
-~ T -
k_]_g= =N (84)

- .
where Lhe vectar integers sum 1o 0 ) in the standard frame.
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The paositive integer K is called the “harmonic resolution.” Notice that for any
choice of K, there are only a finite number of partitions of the plus momenta, and
thus only a finite set of rational values of z; = kff /P*+ = ny/K appear:

2 -1
=y g TR (85)

Thus eigensolutions obleined by diagonalizing Hic on this basis determine the
deep inelastic structure functions Fy(z) only at the sel of rational discrete points
z;. The continuum limit thus requires extrapolation to K — . Note that the value
of L is irrelevant, since it can always be scaled away by a Lorentz boost. Since
Hie, P*, P 1, and the conserved charges all commute, H1¢ is block diagonal.

The DLCQ program becomes especially simple for gauge theory in one-space
one-time dimensions because of the absence of transverse momenta but also be-
cause there are no gluon degrees of freedom. In addition, for a given value of the
harmenic resolution K the Fock basis becomes restricted to finite dimensional rep-
resentations. The dimension of the representation corresponds to the number of
partitions of the integer K as a sum of posilive integera n. The eigenvalue problem
thus reduces to the diagonalization of a finite Hermitian matrix. The continuum
limit i: clearly K — oo.

Since conlinuum scatlering states as well as single hadron color-singlet hadrenic
wavelunclions are obtained by the diagonalization of Hyc, one can also calculate
scattering ampliludes as well as decay rates from overlap matrix elements of the
interaction Hamiltonian for the weak or electromagnetic interactions. In principle,
all higher Fock amplitudes, including spectator gluons, can be kept in the light-
cone quantization approach; such contributions cannot generally be neglected in
decay amplitudes involving light quarks.

One of the first applical.inns22 of DLCQ to lacal gauge theory was to QED in
one-space and one-time dimensions. Since A* = 0 is a physical gauge, there are no
photon degrees of freedom. Explicit forms for the matrix representation of Hggp
are given in Rel. 22, The QED results agree with thie Schwinger solution at zero
fermion mass, or equivalently, infinite coupling strength.

More recently DLCQ'™ has been used to obtain the complete color-singlet
gpectrum of QCD in one space and one time dimension for Np = 2,3,4.75 The
hadronic spectra are oblained as a function of quark mass and QCD coupling
constant (see Fig. 14).
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Where they are available, the spectra agree with results obtained earlier; in
particular, the lowest meson mass in SU(2) agrees within errors with lattice Hamil-
tonian results”® The meson mass at Nc = 4 is close to the value predicted by
't Hooft™ in the large Ng limit. The DLCQ method also provides the first re-
sults for the baryon spectrum in a non-Abelian gauge theory. The lowest baryon
mass is shown in Fig. 14 as a function of coupling constant. The ratio of meson
to baryon mass as a function of N¢ also agrees at strong coupling with results
obtained by Frishman and Sonnenschein. Precise vaiues for the mass eigenvalue
can be obtained by exirapolation to large K by fitting to forms with the correct
functional dependence in 1/K'.
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QCD(1+41) in the m/g ~ 0 Limit

It is interesting to see how one QCD(1+1) and QED(1+1) become equivalent
to theories of non-interacting hadrons theories in the Schwinger zero quark mass
limit. The emergence of massless hadrons at zero quark mass in the non-Abelian
theory may be understood 18 by studying ihe momentum space transforms of the
SU(N) currents (at z+ = 0)

Ve =

L
f dz=e~VEE jHo(2m) (85)
)

which satisfly [lr;;',V,"] =1 j""Vk'fH + %16""6“,,0. The currents j*° are defined
by point splitting along x~; however for A% = D, the path- ordered exponential
included to ensure gauge invariance reduces {o one. The algebra may be extended
to include the U(1) current jt = (%}% : !I:}l!,bg : . The transformed operator
Vi mmmut- with the other SU(N) elements, and the related operator a, =

(1:) ¢(k)V; satisfies the free boson commutation relations {a;, “k] LTS

The interacting part of the Hamiltonian is greatly simplified when expressed
in terms of ihese operators:

L
Pr=-L .{ e dy e~ y L)) (55)
becomes
Lg% = 1
zwor 2 @Y (%)

Because VJ' = @7, the contribution at k£ = 0 is proportional to the total charge
Q%(° and so may be discarded.

The V; are color-singlet bi-linear aperators in t/g, and 30 may be used to create
mesonic-like states with momentum P+ = liﬁ In the limit where m/g is zero,

the entire Hamiltonian is given by Eq. (86). Because the V; commute with the V¢

54



which appear in £,
w10 = ZEp vy =o. (85)

Not only is the state created by acting with ¥ on the vacuum an exactly massless
cigenstate in this limit, but states formed by repeated applications are also exactly
massless. Furthermore, acting with Vi on an ejgenstate of non-zero mass produces
a degenerate state of opposite parity. This argument is independent of the value
aof the numerical momentum A" and so gives an exact conlinuum result.

If the gauge group is U{N) rather than SU(N), the additional term associated
with the extra /(1),

[L]

L g e 1 t
Frar kZ: pad LT (85)
=1

appears in P~. The ay satisly free bosonic commulation relations, and this addi-
tional interaction is therefore the discrete light-cone Hamiltonian for free bosons
of mass squared g*/2r. Thesc formerly massless states created by the a{ are pro-
moted 1o the free massive bosons found in the Schwinger modet and are discussed
in Refs. 78 and 22, The quark wavefunctions for Lthese states at infinite coupling
or zero fermion mass are constant in r, reflecting their point-like character.

Structure Functions for QCD{1+1) 18

As we have emphasized, when the light-conc Hamiltonian is diagonalized at a
finite resolution A, ane gets a complete set of eigenvalues corresponding to the to-
tal dimension of the Fack state basis. A representative example of the spectrum is
shown in Fig. 15 for baryon states (B = 1) as a funciion of the dimensionless vari-
able A = 1/(1 + ™m?/¢%). Notice thal spectrum antomatically includes continuum
stales with B=1 .

The structure functions for the lowest meson and baryon stales in SU(3} at two
different coupling strengths m/g = 1.6 and mfg = 0.1 are shown in Figs. 16 and 17.
Higher Fock states have a very small probability; representative contributions to
the baryon structure functions are shown in Figs. 18 and 19. For comparison, the
valence wavefunction of a higher mass state which can be identified as a composite
of meson pairs (analogous to a nucleus) is shown in Fig. 20. The interactions
of the quarks in the pair state produce Fermi motion beyond r = 0.5. Although
these results are {or one-1ime one-space theory they do suggest that the sca quark
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Figure 16. The meson quark momentum distribution in QCD[1+1] computed using
picQ.”

distributions in physical hadrons may be highly structured. We will discuss this
possibility further in the next section.

The Heavy Quark Content of the Proton
The DLCQ results for sea quark distributions in QCD(1+1) may have implica-
tions for the heavy quark content of physical hadrons. One of the most intriguing

unknowns in nucleon structure is the strange and charm quark structure of the
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Figure 18, Cantribution to the baryon quark momentum distribution from ¢gq7d
states for QCD[1+1),"°

nucleon wavefunction.® The EMC spin crisis measurements indicate a significant
s3 cantent of the prolon, with the strange quark spin strongly anti-coreelated with

the proton spin. Just as striking, the EMC measurements — of the charm struc-

ture function of Lthe Fe nucleus at large x;3; ~ 0.4 appear to be considerably larger
than that predicted by the conventional photon-gluon fusion model, indicating an
anomalous charm content of the nucleon at large values of z. The probability of

intrinsic charm has been estimated® to be 0.3%.
As emphasized in the previous sections, the physical content of a hadron in
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Figure 20. Comparison of the meson quark distributions in the ¢g7§ Fock state
with that of a continuum meson pair state. The structure in the former may be due to

the fact that these four-particle wavefunctions are orthogonal.‘ “

tefms of its quark and gluon constituents, including sea-quark distributions, is
represenied by its light-cone wavefunctions gn(zi, p.14, Ai), which the projections
of the hadron wavefunciion on ithe complete set of Fock states defined at fixed
light-cone time v = + z/t:.19 Here z; = (E; 4+ pr;)/(E + p), with }_;z:i =1, is
the fractional (light-cone) momenium carried by parton t. The determination of
the light-cone wavefunctions requires diagonalizing the light-cone Hamiltonian on
the free Fock basis. As we have discussed, this has, in fact, been done for QCD in

. . P
one-space and one-time dimension.
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In Fig. 21 we show recent results obtained by Hornbostel® for the structure
functions of the loweat mass meson in QCD(141) wavefunctions for No = 3 and
two quark flavors. As seen in the figure, the heavy quark distribution arising from
the ¢gQ@Q Fock component has a two-hump character. The second maximum is
expected since Lhe constituents in a bound state tend 1o have equal velocities. The
result is insensitive to the value of the @? of the deep inelastic probe. Thus intrinsic
charm is a feature of exact solutions to QCD(1+1). Note that the integrated
probability for the Fock states cantaining heavy quarka falls nominally as g?/m},
in this super-renormalizable theory, compared io g’/m% dependence expected in
renarmalizable theories.

3 T  — T LI Bt et { T
- Momentum Distibutiongq Q3

2 - ' :
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a

1 = —

(b} my fMg= 1
0 ) | ! 1
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Figure 2]. The hieavy quack stracture function @(r) = Ggm{z) of Lhe lightest
meson in QCD{1+1) with ¥: = 3 and g/m, = 10. Two llavors are assumed with (a)
mg/m, = 10D and (b) mg/m, = 5. The cutves arc normalized to unit area. The
probability of the g§Q@Q state is 8.56 x 10~? and 0.11 x 10~4, respectively. The DLCQ
meLhod for diagonalizing Lhe light-cone Hamiltonian is used with anti-periodic boundary
conditions. The harmonic resolulion is taken at K = 10/2. (From Ref. 81. )

In the case of QCD(3+ 1), we also expect a two-component structure for heavy-
quark structure functions of the light badrons. The low rr enhancement reflects
the fact that the gluon-splitting matrix clements of heavy gquark production favor
low z. On the other hand, the QQqg wavefunclion also favors equal velocity
of the constituents in order to minimize the off-shell light-cone energy and ihe
invariant mass of the Fock stale constituents. In addition, the non-Abelian effective
Lagrangian analysis discussed above atlows a heavy quark fluctuation in the bound

59



state wavefunction to draw momentum from all of the hadron's valence quarks
at order I/mzq. This implies a significant contribution to heavy quark structure
functions at medium io large momentum fraction z. The EMC measurements of
the charm structure function of the nucleon appear to support this pict.ure.a 0

N is thus useful to distinguish ezirinsic and initrinsic contributions to struc-
ture functions. The extrinsic contributions are associated with the substructure of
a single quark and gluon of the hadron. Such contributions lead to the logarithmic
evolution of the styucture functions and depend on the momentum transfer scale
of the probe. The intrinsic contributions involve at least two constiluents and are
asaociated with (he bound state dynamics independent of the probe. (See Fig.
22.) The intrinsic gluon distributions'" are closely related to the retarded mass-
dependent part of the bound-state potential of the valence quarks.w In addition,
because of asymptotic freedom, the hadron wavefunction has only an inverse power
M2 suppression for high mass fluctuations, whether heavy quark pairs or light
quark pairs at high invariant mass M. This “intrinsic hardness” of QCD wavefunc-
tions leads to a number of interesting phenomena, including a possible explanation
for “cumulative praduction,” high momentum components of the nuclear fragments
in nuclear collisions. This is discussed in detail in Ref. 82,

Calculation of the ¢*¢~ Annihilation Cross Section

An important advantage of the free LC Fock basis is that the electroweak
currenis have a simple representation. Thus once anc diagonalizes the light-cone
Hlamiltonian, one can immediately compuie current matrix elements, such as the
proion-anti-proton Lime-like form factors (8] 5#(0} Ir,b)ﬁ, (s) or any given hadronic
final state contribution to the total annihilation crass seclion o 4.-(s). This pro-
gram has recently been carried oul explicitly using the DLCQ method and Lanczos
tri-diagonalization by Hiller for QED(1+41). A typical result is shown in Fig. 23.
It would be interesting to tepeat this non-perturbative calculation for a renormal-
izable theory like the Gross-Neveu model in (1+1) dimensions, and analyze how
the channel-by-channel calculation merges into the asymptotic freedom result.

Applications of DLCQ to Gauge Theories in 341 Dimensions
The diagonalization of the light-cone Hamiltonian
Hele) = MP 1) (87)
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Figure 22. Nlustrations of (a) extrinsic (leading twist) and (b) intrinsic (higher twist
O(u?/m?)) QTD cantributions to the charm structure function of the proton Gop(z).
The magnitude of the intrinsic contribution is controlled by the multi-gluon corre{ntion
parnmeter y in the proton wavefunction. The intrinsic cantribution dominates Goyp(x)

at large r.
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Figure 23. Calculation of R +.-(s) in QED(141) using the DLCQ method. The
results are shown for different coupling constants. For display purposes, the plot is
clipped at R = 5. In addition, in order to give finite widths to what would have been
s—functions, the infinitesimal ¢ was set to 0.01 (from Ref. 13).

provides not only the eigenvalues M} but also the relativistic boost-invariant eigen-
functions |}, In the following sections we will discuss specific implementations of
the DLCQ method for quantum electrodynamics and QCD in 3 + 1 dimensions.
Although the QED spectrum is well understood from Bethe Salpeter and other
approaches, it is important and interesting to study this system at strong cou-
pling strength for possible clues to confinement and hadronization mechanisms in
QCD. % Furthermore at moderate o we can make contact with the precision QED
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results of Yennie,u 3 Lepage, Bodwin, and others, and possibly understand the va-
lidity of standard perturbative expansions in QED. However, most important for
our purpases, positronium serves as a crucial system to validate the DLCQ meth-
ods. In addition to the work discussed here, Kaluza™ has recently used a DLCQ
diagonalization approach lo obtain the lepton structure function in positronium.

In the complete formulation of DLCQ, one constructs a complete discretized
light-cone Fock basis in momentum space. The LC Hamiltonian can then be visu-
alized as a matrix with a finite number of rows and columns assuming an invariani
ultraviolet cut-off. Next, one formulates all necessary model assumptions, in accord
wilh covariance and gauge-invariance, thus obtaining a discrete representation of
the quantum filed theory. At any stage, one can go to the continuum limit, convert
the matrix equation to an integral equalion, and solve it with suitably optimal-
ized numerical methods. One should emphasize, that the regularization scheme of
DLCQ * explicitly allows for such a procedure, since the regularization scales are
equal both for discrelization and the continuum, contrary to latlice gauge theory,
for example.

Testing Discretized Light Cone Quantization with Positronium

In the simplified DLCQ model ™ we shall discuss here, we will consider only
the charge zero sector of QED(3+1) and include only the J; = 0 electron-positron
(e€) and the electron-positron-photon (e€+v) Fock states, denoted collectively by |eg)
and |e&y), respectively. In effect we have analyzed the muonium system gte™ at
equal lepton mass to avoid camplications from the annihilation kernels. Even when
one restricts Lhe Fock states Lo one dynamical photon, one is considering a complex
non-perturbative problem, similar to ladder approximation in the Bethe-Salpeter
formalism. The light-cone approach has the advantage that one obtains the Dirac-
Coulomb equation in the heavy muon limit. (In the Bethe-Salpeter approach, one
must include all crossed graph irreducible kernels to derive the Dirac equation.)
However, it should be emphasized that in any formalism the physics of the Lamb
Shift and vertex corrections to the hyperfine inleraction cannot occur until one
includes the contributions of at least two dynamical photons “in Hight."

It is convenient to introduce the pmojectors P4+Q = 1, with P = 3 |(€€);) {(e€)il
and @ = 3. )(e&y)i) ((e€y)i]. The index i runs over all discrete light-cone momenta
and helicities of the partons (electron e, positron € and photon ) subject to fixed
total momenia and to covariant regularization by a sharp momentum cut-off?
The Hamiltonian Eq. (87) can then be understood as a block matrix. There are a
number of restrictions and simplifications due needed to maintain gauge invariance
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when the Fock space is limited in momentum space. The structure of these blocks
in terms of matrix elements needs to be discussed in some detail. For example, the
matrix elements as depicted in Fig. 24 for the Q-space contain either an instan-
taneous boson or an instanianeous fermion line. According to the general gauge
principleza'“ for DLCQ, one shauld include the instantaneous graphs only if ihe
‘instantaneous parton' will be accompanied by a real ‘dynamic parton’ with the
same space-like momentum and in the same Fock space configuration. Otherwise
gauge invariance of the scattering amplitudes is violated already on the tree level.
Thus, diagram (a) has to be excluded, since there are no |egyy} Fock states in
the madel, as well as diagram (b) since the two photon states are absent. Actu-
ally, only diagram (d) survives the gauge cut-off in the Q-space. Similarly in the
P-space, only diagram (a) of Fig. 25 survives.

=00
%{Eﬁ}

EA3RAT7

Figure 24. The instantancous interactions in the Q-space. — Graph (a) and (h):
The instantaneous boson interactions .5‘(':_,'? and 82.,__“.. teapeclively. Geaph (<} and

{d): The instantancovs fermion interactions .Sf.,'.." rad Sf,,_.,,, respeclively.

{IZI%{)ZZ(}

—X K 33 1‘* K )
(2] (2} {b) 6II3A28

Figure 25. The ofl-diagonal matrix clements in P-space. - (a): the instantancous
bosan graph .S'( G (b): the iterated graph W = VGV, - The figure displays also
the space-like momcnlum nssignment of the fcrmmna those of *he boson are fixed by
momentum donservation. Graph (b) holds for £ > z', Lthe corresponding one for z < 2’
is not shown,
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As part of the model, one additional simplification has been made, namely to
omit diagram (d) of Fig. 24, i.e.

Ss:-)—'g =0in Q‘-spm- (88)

One has no good reason to do so except mathematical aimpl‘iﬁcation since the Q-
space matrix is now !endercd dsagonal An equivalent assumption has been made
in all of the preceding work

By inverting the matrix (M} — Hic) = (w — Hic) in the @-space, i.c.

Qi) =Q——F— QHLcP i}, {89)

Eq. (87) can be identically rewritten as
Heg(w) li(w)) = ME(w) (Vilw)) (90)

the ‘effective Hamiltonian' acting only in P-space, i.c.
1
Heglw) = PHicP + PH|cQ ——— QHcP. (91)
w~ Mo

Once [¢i{w)} = P |} is known, one can calculate the @-space wave function from
Eq. (89) by quadrature.

Despite acting only in P-space, Eq. (90) is not simpler to solve than the full
problem, Eq. (87). Bul il can be approximated casier. Since the §)-space matrix
is diagonal by construction, w — Hic can be inverted trivially. Characterizing the
electron by its Lagrangian mass mp, its longitudinal momentum fraclion z, its
transverse momentum K, , and by ils spin projection 81, and correspoudingly the
positron as displayed in Fig. 25, the effective [lamiltonian

k2 E? ’
Hat) = BEE b orsew =T L s vt @)
contains thus the free part, the diagonal contraction terms C in the P-space, the

scagull interaction S = G’::L qi in the P-space, and the iterated vertex interaction

Ww)= V;—QW—V. The latter connects the P-space with the @-space through
= Me#y

the vertex interaction V = V,_,; with the ‘encrgy’ denominator w — Mfﬂr Note,
that the effective potential Vg is strictly proportional to a.
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In general w should be chosen as the eigenvalue M2, To correct for Lhe violation
of gange invariance by Eq. (B8) approximately, however, one replaces the eigenvalue
w with a function of (z,£L), i.e. with the symmetrized mass {squared)

w=w' =

; (m';'- + k2 mi+ f_,'_') . (93)
2 z(l—x) (1 -2')

This (second ad-hoc) assumption restores the gauge-invariance of the eF-scattering
amplitude in the P-sector, at least. This completes the model.

The projection technique of deriving an effective Hamiltonian is fairly stan-
dard in mauny-body I.heor;.',‘s % and has been applied to light-cone formulation be-
fore!™  Since we have truncated the Fock states, the model can be regarded as a
light-cone gauge theory analogne of the Tamm-Dancoff n.pproat'.h.lr used in equal-
time theory. A similar approach was applied recently 8887 10 a scalar ficld model
in light-cone coordinates.

The Light-Cone Tamm-Dancoff Equation

In the continuum, the matrix equation (91) becomes an integral equalion

s R LEY WS
{J‘(]—.‘I‘] ﬂf. 'oil('rrk_bshs-) (94)

+ Z ./d;r'dzi:_l_' (r, Ep s 91, 52| Viple) ,1", ic._l_';s'],s'g)w.'{z', EJ_',s'l,s'z) =4q.

5.9 D

. . . . N |
The finite domain of integration I is set by covariant Fock space regularization,

i f’; < A% 44k, (95)
with given cut-off scale A. Combined with Eq. (93), we shall speak of this equation
as the ‘Light-cone Tamm-Danceff’ equation.

The cffective interaction Vg, which is also displayed diagrammatically in Figs.
25 and 26, appears ta have two kinds of singularitics, namely a ‘Coulomb singular-
ity" at (z = ¢’ and K = EJ_'), and a ‘colinear singularity” at (z = z' and & # i:._l_’]
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Figure 26. The dlgnnal matrix elements in P-space. - (a); the instantaneous con-
traclion lerms, (b): the iterated graph IV = VGV (seli-mass diagram).

The lalier is caused by the instantancous interaction

- - o 2
(3, k;;-'i:.-izl S]-‘f',kf;s;.sg) = -éﬁmﬁsm;&,,ﬂ; .

but it will be cancciled by a corresponding term in the iteraled vertex interaction
W(w). Strictly speaking, onc should treal the diagonal interaclion matrix element
for 2 = z' and I‘c:!_ = E_ﬂ' differently from the off-diagonal elements (r, E) # (¢, i:_l_'),
which is always possible going back 1o the discretized case. The diagonal matrix
element C + W(w) is displayed in Fig. 26 and vanishes strictly for w = w* due
to mass renormalization®’ One might expecl a diagonal contribution from the
instantaneous interaction S, but its matrix element vanishes for ¢ = ' in DLCQ.'

As an example, consider the off-diagonal matrix element of the iterated vertex
inleraction (z, i::,_; T,l[lf[’(u) f:'. i:_,_’; T, 1) for r > z'. Straightforward inseriion of
the matrix elements (See Tables 2a-d) gives

-k F . ky — &' &'
W) = gy & (R - %) - (R4 15)

25 EJ- — x':J.l -: =+ & L.L I':.L
* Py A (- 1) ar- ( —o oy Y.
The denominator D(z,z';w) = —(z —2') (w— M, :1) is introduced for convenience.
The polarization sums can be expressed in terms of the transverse scalar and

vector products, k. - l? and I'L'_L A E! respcctively One obtains straightforwardly
2(&(1)- k_l_)(c (1) & ') =k - &'~ ik A k'. The calincar singularities in

"1 " -
W(w) = 21r'*' ‘D(z Tiw) [(:r —:.c')z( z(1 - x) ) + (z —x‘)z(l + :::: - :')))

(= - z']'-' r'r (1 -2 -2)
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cancel against those of §, and the effective interaction becomea finally for w = w*

k. i 1 1 1
ky; ' ch ' lik '; ' = _"'"a_' T 2(— TP —
(:.-, 13 T | Ver (w ]Im i T l) 572 Dlz. 27) [mp(:':’ + T _I))
B R RCE -EAR RCR+iE AR
(1 —z) (1 -2') z'z (1-2')(1-1z)

(96)
with D(r,r') = D(r,2';w*). The effective potential has no uitraviolet or infrared
singularities. Only the usual integrable ‘Coulomb singularity’ in D(z, 2’} remains.

The Light-Cone Coulomb Schradinger Equation

At this stage, the original matrix equation (87) has been approximated by the
Tamm-Dancoff Equation, Eq. (94). For orientation, it is useful to consider the
non-relativistic limit (kf* <« mi and (z - ~)2 < 1). In this imit the TDE,
and parlicularly Eq. (96) are easily converted” into the ‘Light-Cone Schrodinger

equation’

dr ,d-:‘- ! 8"'—% 1‘!’(1:'1 -:_j_') = M2 Ql'(.’l‘ E_L)
t!mz(.r—:r’)z-i—(-"-'‘:)2 T
F L T AL

x(l -

D

(97)

One should note however, that this equaijon is kind of a hybrid since the non-

relativistic limit is taken only in the potential energy. Therefore, it cannot and

daes not ™ preciscly yield Bohr spectrum. When the non-relativistic limit is taken

consistenlly by replacing the longitudinal momentum fraction with a ‘parallel mo-

mentum’ &y = 2mp(r — %), collecting the momenta into a J-vector k = (ky, k),

substituting the kin::l.ic energy (m} + Ef)/:c(l —z) by 4m? + 4k, and using the

definition M} = dm} + 4mpE, onc arrives straightforwardly at the usual Coulomb
Schrédinger equation in momentum space, i.e.

0 , I
S !d‘(x_ V() = E (k) (98)

including the carrect reduced mass my = my /2. Fock space regularization converts
itself into a 3-momentum cut-off, i.e. the domain of integration D is given hy

k2 < A%/4,



Solving the Integral Equations

As one sees from the above discussion, even at the level of only one dynamical
pholon, there are available a whole sequence of approximations: DLCQ-Matrix
equation == Tamm-Dancofl Equation =% Light-Cone Schradinger equation =%
Coulomb Schrodinger equation. Each of these approximation equations have been
recently investigated by numerical means. "™ the numerical effort turns out to be

remarkably small, provided the numerical methods are optimized to the particular
problem.

Implementing the Symmetries

A particularly important optimization for numerical solutions is the utilization
of the light-cone symmetries. Some approaches to gauge field theory do not respect
the elementary symmeiries of the Lagrangian, by nature of their construction.
However, the exact Lagrangian symmetries need nol be violated hy DLCQ or
its approximations. For example, the Lagrangian is invariant under an arbitrary
rotation of ithe coordinale system in the z - y-plane, corresponding to conservation
of the projection of the total angular momentum J;. Introducing the coordinates
(EL): = k) cosyp and [i:_i_), = k) sinp, one can Fourier transform the continuum
version of the Tamm-Dancofl Fq. (94), and in particular the effective potential
Verr = Vp(w®) according to

r 2r
1 . Spt ¢
E ‘/d‘FE"'LzP [d'F'f.HL“’ (Ii k.l_‘l ¥ 31, 32' Veﬂ' lz,l kia ‘P’; 3![ ] 3'2)
1] (1]

(99)

={z, k1, Lz; 31, 52| 17.,“ lz', K, L.; s, 3'2) .

In this way, one replaces the azimuthal angle by the projection of the orbital
angular momentum L, = 0,%1,... as a variable, although neither L, nor §; =
81 + 32 are individually a good quantum number. The explicit expressions for the
matrix clements of F’cf;, are derived straightforwardly from those in Tables 2a-d.
For the case J,; = 0, they are compiled in Tables 3 and 4.
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Table 3: The matrix elements of the effective interaction for J, =0 and = > z'.

Lz k1, Jz, 81,8 v,n-(w'] |:r', ki, J:, 8], s',) Helicity factors
""'Fil zfj;:l—:‘)_: A 6—-:.:5 6-:.-; b, -3
_mF':_';‘gl H B +k l—z A 5,,',5 6'1.'5 6. —g1,8%
+sz'x"l 1-"' B "‘ki =5 A 5.,.;, an.—-; 's—a:.l,
+m["i_)'(_)'l-:' IS B -I-k_l_; A Bazmtl sy sl By sl
+mF'l—='Iiil—xi"1 Fl: B + kJ'.E:’ A 6 2,—8) ‘531.35 6::,:;
% [N
—_ A wlm% (% + P ]l_:, ) + i~z + ;.T*_?;} 6”.,; 6’:-"1 631;*:
t.t'(l—rl (1—2' k-’-ki 553.#5 63:.!: 681.8{
+B {35 + =t borey  Omp—sy 0sys
+B (55 + raey ) mg ™ brsey sy Oasy
Abbreviations:
v Beilieen):

2

a=“($—"1")2%z(?{?+ﬁ-_¥'lﬂmf) - (kf-’-kf)

He- (- 2) + R (2 - %))
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Table 4: The matrix elements of the effective interaction for J, = 0 and z < 2'.

(2, ky, Ja 81, 32| Vig(w*) |2, K}, Joa 8. 85) Helicity factors

ml" 1 :f:' 1-z)s A v 83,8) 6‘:-'{ 6'1.""5
tmet{ g B tat A]

8
b —82,8) 64:..1 511.1}
+mpm3] Ilf B + ki% A () é

—83,8) 6-:.—-1 1,2

—mrﬁs: f— B +k_L*l,_—’- J.z.,; 5_,,',; 5,"._,;
+m|"??3| F B + ki =% Sors; Onpap by -a
—-A {"‘r(n' + (1~:)(1—:q) + :(l-—z] + Fﬁ‘-?i} bssty  Omasf Oans
- A sy ek by Onsy  Bnsg
+B ';1;;' + D_W,T_—;? 5,,',; 5,,._4 5,,.,;
+ B (5 + =t )i el bty Onwy  Oual

Abbreviations:

A=\/—#W; B=%(I+OA);

o =~ ~ P (3 + o) % - (24 40)
@ - S (- )+ 5 (- )}
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The Lagrangian is also invariant under the operation of charge conjugation C,
perity P, and time reversal T, Neither P nor 7, however, is an explicit symmetry
of the light-cone Hamiltonian, because P and 7 do not leave the z+ = 0 plane
invariant. (Parity interchanges z+ and z~,) However, exp{—ixJ3)PT, for exam-
ple, or exp (—ixJ;)P are exact symmetries. 183088 |y the numerical work®* quoted
below the combined symmetry PT with eigenvalues £1 will be used.

When including both the rotational and the combined PT symmetry, Eq. (94)
can be rewritten in terms of W(z,ky;J;) = #jdxpe“’"‘dl(:.&;s;,ag], i.e. the
Fourier-transformed wavefunctions. The “coordinate” J; will be dropped in the
sequel for notational simplicity. Since J; is an exact symmetry, the matrix elements
(e Vi |J!) with different J, vanish strictly in the present representation.

Solving the Light-Cone Tamm-Dancoff Equation

How does one solve an equation like (94) in practice? — As a rule, one can
evaluate the integrals by Gaussian quadratures, mapping the integral equation
onto anolher matrix equation. By canverting the integration over the longitudinal
rmomentum z inlo a Gaussian sum with weights w!m, the Tamm-Dancofl Equation
(94) becomes

mp + &.
{1,'([; _ xl B’fz}‘l'(-tn k.].) - ,-le[N) d (:.l,'h L.LI Véﬂ' |$J1 L_L)q'(l'., k.L)

+Cec(zi, ki )W (i, by ) + Zu”‘” dki? (zi, ke | Var (5, K ) W(=;, k) = 0.

i=1
(100)
(The domain of summation and inlegration is the same as in the Tamm-Dancoff
Equation as given by Eq. (95).) In this expression two terms which sum to zero
are included, i.e. Cec(z, E_L)t,b(m, f_L) —Coi(z, i.‘l)‘l,b(.‘l‘.‘,j;_]_). With the continuum part
defined by

Coclirky) = f d2'dk? (2, b | Vg |2 LY (101)
n

one easily identifics its discretized partner Ceq in Eq. (100). Their snm thus van-
ishes in the conlinuum limit.

The reason for introducing the ‘Coulomb counter terms’ is the {oliowing. The
kernel of the Tamm-Dancofl Equation is singular, as can be seen explicitly in the
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approximate Egs. (97) and (98). Despite being inlegrable, this singularity is 2 nu-
merical nighimare, and is present whenever one deals with a Coulomb-like problem
in a momenturm-space representation. For example, it is close to impossible to get
numerically stabie solutions as function of the number of integralion points (and
resolution) N. However, when the Coulomb terms are added, the singularity in
the kernel and in the (discrete) counter term tend 1o cancel in the vicinity of the
singularity, since by construction, they have the same residue. What retnains is
a amooth function which can be approximated easier. The continuum part of the
counterterm restores the original equation. ldeally it should be calculated analyt-
ically, or if this turns out too difficult, it can be evaluated numerically with nltra
high resolution.

Insiead of z,k; (and ) one can use *spherical momenium ceordinates’ r,8
ad defined by &y = 1/A2+4m§.sin6 and r = } 4+ rcosf. The variables r
and cos @ are discretized in the intervals {0, W ey A’A-a-imi.] and [—1, 1] with w; as the

Gaussian weights. In order to gel an eigenvalue problem with a symmetric matrix
the wavefunction ¥ is substituted by ¥(r;,cosf;) = 1'(1-,-,1:080_,']/1'.“/@;. The
actual matrix elements are Lherefore {r;, cos 9] Vg |ri, 1) A* v}, fgwjwgir. For
convenience the same number of integration poinis N in r and cos@ will be used
in the sequel. Further delails are given in Ref. 84.

The spectrum of the Tamm-Dancoff Equatien obtained using the above method
is displayed in Fig. 27 as a function of the resolution. It is remarkable how fast the
lowest two eigenvalues approach a limiting value. These two states are identified
as the singlet and the triplet state of positronium, as verified by the fact that
their wave function has the correct symmetries. It is not surprising to see the
comparatively slow convergence of the higher excited states. Although their wave
functions in momentum space are also localized near z = % and k) = 0, they
have more nodal struciures. Consequently, more integration points are needed {o
resolve their structure.

We should emphasize two points. First, the numerical methods are cbviously
very efficient. For example, only a 25 x 25 matrix (for N = 5) is needed to
render the singlet and the triplet state reasonably stable as function of N. This
corresponds Lo only two transverse momentum states. Second, one hay established
that the longitudinal and iransverse continuum limit of DLCQ exists. One should
emphasize thal the light-cone approach is well-defined, covariant, and numerically
very economical. Most of the results have been generated by diagonalizing matrices
ol dimension as small as 225x225. A parlicularly important role for achieving this
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Figure 7. The invariant mass squared cigenvalues of the Tamm-Dancoll equation
versus the number of integration points N. — Note the good convergence with V, and
the appencance of the hyperfine splitting. Calculstions are done for J, = 0, A = m
and a = 0.3. The nuinerically integrated Coulomb counter term for the Tamm-Danct
equation is included.

result is played by the Coulomb counter terms. In general they are quite necessary
for investigating numerically Coulomb-like problems in momentum representation.
The: methods applied are not only efficient but also precise, The calculation have
been done for two vastly different values of the fine structure constant, namely
a = 0.3 and o = 1/137. In order to extract the hyperfine shift the latier requires
a numerical stability within ten significant figures (107191),

On can also examine the convergence of the low lying spectrum as a function
of scale A and make quantitative comparisons with analytical results. In Table 5
the binding coefficient of the singlet mass (B, = (4(2— M,)/a?) and the singlet to
triplet mass difference in the form of the hyperfine coefficient (Cyr = (M;—~ M,)/a?)
are tabulated for five values of A and iwo values of a. The extrapolation to A — co
is made by a Padé approximation. One should emphasize, that the deviation of
the calculated mass squared eigenvalues from the free value is extremely small jor

a = l—13—f A reliable extraction of the data in Table 5 thus requires numerical
accuracy io ten significant figures. The fact that the calculations do not become

numerically unstable as a Tunction of A is laken as a final and overall indicator
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Table 5: The singlet binding and the hyperfine coefficient for the Light-cone Tamm-
Dancoffl Equation as function of A and a. - Calculations are done N = 15 inte-
gration points, and extrapolated to A — oo with a Padé-Approximand f(A) =
(e1 + e2/A)f(1 + €3/ A) using the values A = 1.0, 3.0, and 5.0.

a= 135 a= -l-;ll—.,

A B, Cht A B, Chr
1.0 1.4503 Q.1348 i.0 0.9345 0.1023
20 | 1.1834 0.2888 2.0 0.9922 0.1955
30 { 1.2390 0.3857 3.0 1.0053 0.2366
1.0 1.2723 0.4533 4.0 1.0127 0.2581
5.0 1.2960 0.5037 3.0 1.0211 0.2667
oo | 1.4025 0.8317 00 1.0459 0.3140

that one can master the numerical aspects of the problem.

Whal should one expect analytically? In an expansion up to order o, the
gsinglet and the triplet mass of positronium (excluding annihilation) is given I:n_-,rs9

M,=2- %az(l + %nz) and My =2--0?(1 — —a?), (102)

respectively, where here (and in the following) masses are given in units of the phys-
ical electron mass. The hyperfine coefficient is then the Fermi value (Cyr) Fermi = %

Bodwin et ol have summarized the analytical work for the higher order correc-
tions to the hyperfine shift in positronium:

20y @ 16 S 9. 1 o0 a3
C],f—-z[a (+2) n(ln2+9)+12a ]na+11n + K'a”]. (103)

The term % is set in parentheses since it originates in the photon annihilation term.
The impact of the coefficient K is small; its numerical value® is K = +0.427. A
complete calculation is not yet available for K", except thal is contains a Ine
term; it is set zero. Eq. (103) predicts thercfore the values Ciy = 0,333 for o = 1_;'1"

and Cy; = 0.257 for o = 0.3. I should be noted that part of the higher order
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carrections come from coantributions in which two dynamical photons are in flight;
thus a strict correspondence with the spectrum of light-cone model is not expected.

The numbers in Table 5 agree with the analytical predictions only to first ap-
proximation. In particular, they are not as accurate as the recent results of Koniuk
et al’™ for a corresponding model using equal time quantization. Although the
present hyperfine shift for o = T;T is reasonably in between the Fermi and the
Bodwin e al.values, the singlet state is slightly over-bound by four percent — in
view of the numerical accuracy a small but significant deviation. For a = } the
discrepancy is even more accentuated. Instead of B, = 1.118 one geis 1.403, which
shows that the a! coefficient is overrated by about a factor 3. The hyperfine shift
points to the same direction, it is larger than the analytical value by roughly a
factor 3.

One must conclude that the Tamm-Dancoff Equation overdoes the relativistic
effects. We conjecture that the right correction will come when the ad-hoc as-
sumption, Eq. (88), will be rclaxed and the restriction to one dynamical photon is
removed.

Summary and Discussion of the Tamm-Dancoff Equation Results

The numerical tesis of Lhe light-cone Tamm Dancoff approach in positron-
ium provide some confidence that one can use light-cone Fock methods to solve
relativistic bound state problems in gauge theory. The Tamm-Dancofl Equation
reproduces the expected Bohr spectrum M, ~ 2m(1— B, 9‘:] almast quantitatively,
as well a the typical relativistic deviations like the hyperfine shift » = o'Cy¢(a).
The binding coefficients B, ~ ;;'-; are reproduced with small but significant devia-
iions, one percent by order of magnitude. They are much smaller for the physical
value @ = 1/137 than for the very large value a = 0.3. Similarly, the hyperfine
coefficient for a = 1/137 is close to Lthe correct value Ciyy ~ %, butfora =03 it is
almost twice as large.

But the Tamm-Dancofl Equation does not solve the original physical problem.
1t mistreats it by a so far uncertain approximation, stated in Eq. (88). It is however
possible to relax this constraint Iq. (88) and generate the full resolvent without
uncontrolled approximations: Quite in general, the full resolvent G{w) in the Q-
space can be expanded in terms of the free resolvent Gp(w) and of the instantaneous
annihilation interaction 8§18, i.c. G(w) = Go(w) + Go(w)S@G(w). With W(w) =
VG(w)V! the next-to-leading order becomes W(2)(w) = VGp(w)S)Go(w) V1. The
superscript indicates the power of a. Figure 28 collects essentially all possible
graphs classified according to whether the iwo vertices sit on the same or on a
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Figure 2B. Some typical graphs to order a? which begin and end with a vertex
interaction V. (x). The instantaneous interaction s&,_,, is sandwiched in between
them. In diagram (&} and {a’} the vertices are ane different, else they are on the same

lines.

different fermion line. Considering the same case as in section 3, graphs 28(a) and
28(a’) turn out 1o vanish, strictly. Graphs 28(b) and 28(b’) must be absorbed into
mass renormalization, only graphs 28(c) and 28(¢’) need to be considered. As it
turns out they can be re-summed explicitly to all orders, with the exacl result

W(w) = Z W (w) = ——wm(w)

n=2

Both a and W{?! diverge logarithmically with the scale A. For sufficiently large
values one gets by order of magnitude a ~ alnA/mg and W) ~ o®InAfmyF.
The re-summed interaction W therefore is proportional to o instead of to o2,
and independent of A it is probably able to account for the small but significant
devialions in the binding coefficients and Lthe hyperfine shift.

The Lanczos Method for DLCQ

The most serious practical difficulty for implementing DLCQ matrix diagonal-
ization for physical theories in 3 + 1 dimensions, is the rapidly growing size of
the matrix representation as one increases the size of the Fock basis. Fortunately,
the matrix representations of Hyc in the free Fock basis are extremely sparse, and
one can lake advantage of efficient algorithms for diagonalizing such tnatrices. An
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important example of such an algorithm is the Lanczos method, which has been
used for DLCQ problems in papers by I-Iiller,l 3 Knluia,a " and Hollenberg, et al®®
For example, let £ be an N x N Hermetian matrix. Apply H Lo a test slate vector
{v1}. The result is

Hlv) =ay|vr) + Bi|va) (104)

where [va} is orthonormal to Jvy). Applying H to the new state vector gives:
H |v) = B |vg) + o2 |v2) + B2 |va). . (105)

where |va) is orthonormal to {v;) and |vs) . However, if we apply H lo |v3) one only
gets three non-zero terms:

Hlvs) =0|v) + Ba|v2) + az{va) + Ba|ve) . (106)

Thus, by construction, {v;| f |v;) is tri-diagonal, and the eigenvalues of its first
P x P submatrix of this matrix converges rapidly to the lowest P eigenvalues of
H. The computer time for obtaining these cigenvalues grows like fN? where f is
a measure of the sparscness of /. This is much less than the time required for
diagonalizing H itself, which grows like N3. In the work of Hollenberg ¢! al. one
can handle matrices of sizes approaching N = 10°,

First Applications of DLCQ to QCD(3+1)

The application of the DLCQ method to QCD{341) will inevitably be dif-
ficuit since meaningful numerical results will require Fock states containing two
or more glions. At the least, asymptotic freedom cannol appear in the coupling
constant renormalization unless one allows for two or more gluons “in flight.” A
consistent renormalization program for the non-Abelian theory has not been com-
pletely worked out within the non-perturbative framework. However, as an initial
exercise 1o test the power of Lthe Lanczos method, Hollenberg et al, have diagonal-
ized the unrenormalized light cone Hamiltonian for QCD(3+1) within the meson

"Fock classes |¢) and |qqg) only. Figure 29 shows the result for the lowesl me-
son cigenvalue M? as a function of QCD bare coupling g for several values of
the quark mass, The Fock space was limited by taking the harmonic resolution
K = 6; in addition, the ultraviolet cut-off used in this work limited the square of
the Fock state invariani mass to 24 GeV2. The maximum transverse momentum
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at @, = Eﬁ'- =1 GeV, with N transverse points. The facl that the mass-squared
spectrum Lurns negative at large coupling may possibly be cured by a consisient
light-cone Hamiltonian renorma]:zatmn procedure or the use of the Coulomb singu-

larity trick used for pos:trcmmm Another possibility is that negative eigenvalues

of the P~ aclually represents a cross-over with a negative P+ eipect.rum.9 2
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Figure 28. First computation of the low-lying meson spectrum of QCD(3 + 1)
computed using Lanczos diagonalization. Only the Jowest Lwo Fock elasses are retained,
See Ref. 29,

The Light-Cone Vacuum

In the introduction we discussed the remarkable feature that the perturba-
tive vacuum in light-cone perturbation theory can also be an eigeustate of the full
Hamiltonian. Let us review Lhe arguments: By definition, the perturbative vacuum
is annihilated by the free Hamiltonian: HFC|0) = 0. In gauge theory the inter-
action terms in Hyc are three-and four-point intera.ctions, for example, in QED,
the application on the vacuum of the interaction HfC = [ dzey - A results
in a sum of terms b‘(k,}a'( _a)d'( k3)10). Just as in the discussion of LCPTH, P*
conservation requires 2:-:1 = 0. However £} = 0, is incompatible with finite
energy for the massive fermmns. Thus the total light-cone Hamiltonian also an-
nihilates the perturbative vacuum: K€ |0) = 0. In contrast, the state H[0) is a
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highly complex composite of pair fluctuations in equal-time quantization.

The apparent simplicity of the vacuum in light-cone quantization is in scvere
contradiction to normal expectations for the structure of the lowest mass eigen-
state of QCD. In the instant form, the QCD vacuum is believed to be a highly
structured quark-gluon condensate, which in turn is believed to be connected to
color confinement, chiral symmetry breaking, the Goldstone pion, etc? In the
standard model, the W* and Z basons acquire their mass through the spontaneaus
symmetry breaking of the scalar Higgs potential. Thus an immediate question is
how one can oblain non-trivial vacuum properties in a light-cone formulation of
gauge field t.heory.g' * This problemn has recently been attacked from several direc-
tions, [n the analyses of Hornbostel and Lenz et al., one can trace the fate of the
equal time vacuum as one approaches the P, — co or equivalenily rotate & — = /2
as the evolution parameter 7 = { cos & + Z sin # approaches time on the light-cone.
As shown in Refs. 23 and 94, one finds that for theories that allow spontaneously
symmetry breaking, there is a degeneracy of light-cone vacua, and the true vacuum
state can differ from the perturbalive vacuum through the addition of zero mode
quanta with k* =k~ =k&; = 0.

An illuminating analysis of the influence of zero modes in QED{1+1) has been
given by Werner, Heinzl and Krusche” They show that although it is correct to
impose the gauge condition AT = 0 on the particle sector of the Fock space, one
must aflow for At # 0if k* = 0. Allowing for this degree of freedom, one obtains a
series of tapological @ vacua on the light-cone which reproduce the known features
of the massless Schwinger model including a pon-zero chiral condensate. However,
the effect of the infrared zero mode quanta decouples from the physics of zero charge
bound states, so that the physical spectrum in one-space one-time gauge theories
is independent of the choice of vacuium. The freedom in having a non-zero value for
At at k+ = 0 can also be understood by using the gauge 8t At ~ kAt = 0.%

It is thus anticipated that zero mode quanta are importani for understanding
the light-cone vacuum for QCD in physical space-lime. [n particular, the non-
Abelian four-point interaction term

HiC =-1g° f d*zTr{[A*, A"][A", A"]} (107)

plays & unique and an essential role, since H§C |0} # 0 as long as oue allows for
zero mode gluon fields in the Fack space. Thus the true light-cone vacuum ()
is nol necessarily identical to the perturbative vacuum |0). In fact the zero mode

79



excitations of ,LC produce a color-singlet gluon condensate {)|G,,.G*|S1) # 0 of
the type postulated in the QCD sum rule analyses. The effect of such condensates
will be to introduce “soft” insertions into the quark and gluon propagators and
their effective masses m(p?), and to modify the perturbative interactions at large
distances. (See Fig. 30). Thus unlike the one-space one-time theory, the zero-mode
gluon excitations do affect the color-singlet bound states. On the other hand, such
zerg mode corrections to vacuum cannot appear in Abelian QED(3+1) as long as
a non-zero fermion mass appears in the free Hamiltanian.

N SR

Figuve 30. Effect of s zero-motle gluon candensnte on quark and gluon propagutor.

Advantages of Discretized Light-Cone Quantization

As we have discussed in these leclures, the methad of discretized Jight-cone
quantization provides a relativistic, frame-independent discrete representation of
quantum field theory amenable to computer simulation. In principle, ithe method
reduces the light-cone Hamiltonian to diagonal form and has the remarkable feature
of generating the complete specirum of the theory: bound states and continuum
states alike. DLCQ is also useful for studying relativistic many-body problems in
relativistic nuclear and atomic physics. In the nonrelativistic limit the theory js
equivalent to the many-body Schrédinger theory. As we have reviewed in these
lectures, DLCQ has been successfully applied to a number of field theories in one-
space and one-time dimension, providing not only the bound-state spectrum of
these theories, but also the light-cone wavefunctions needed to compute structure
functions, intrinsic sea-quark distributions, and the «*e= annihilation cross section.

Although our primary has been to apply light-cone methods to non-perturbative
problems in QCD in physical space-time, il is important lo first validate these
techniques- particularly the renormalization program-in the much simpler Abelian
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theory of QED. In the proceeding sections we have quantized quantuin electrody-
namics on the light-cone in a discretized form which in principle allows practical
numerical solutions for obtaining its spectrum and wavefunctions at arbitrary cou-
pling strength e. We also have discuss a frame-independent and approximately
gange-invariant particle number truncation of the Fock basis which is useful both
for computational purposes and physical approximations. In this method™® ul-
traviolet and infrared regularizations are kept independent of the discretization
procedure, and are idenlical to Lhat of Lhe continnum theory. One thus obtains a
finite discrete representation of the gauge theory which is faithiul to the continuum
theory and is complelely independent of the choice of Lorentz frame. Hopefully,
these techniques will be applicable Lo non-Abelian gauge theories, including quan-
tum chromodynamics in physical space-time,

The recent applications of DLCQ to the positronium specteum are encouraging,
but they also show formidable numerical diffcullies as the number of Fock slates
and level of discreteness grows. Whether QCD can be solved using such methods
— considering its large number of degrees of freedom is unclear.

Nevertheless, DLCQ has Lhe potential for solving impurtant non-perturbative
problems in gauge theories. It has a number of intrinsic advantages:

¢ The formalism is independent of the Lorentz frame - only relative momentum

coardinates appear. The computer does not know the Lorentz frame!

o Fermions and derivatives are treated exactly; there is no fermion doubling

problem.

¢ The ultraviolet and infrared regulators are introduced in DLCQ as Lorentz
invariant momentum space cut-offs of the continuum theory. They are thus
independent of the discretization.

s The field theoretic and renormalization properties of the discretized theory
are faithful to the continuum theory. No non-linear terms are introduced by
the discretization.

e One can use the exact global symmetries of the continuum Lagrangian to
pre-diagonalize the Fock sectors.

s The discretization is denumerable; there is no over-counting. The minimum
number of physical degrees of freedom are used because of the light-cone
gaunge. No Gupta-Bleuler or Faddeev-Popov ghosts occur and unitarity is
explicil.

e Gauge invariance is lost in a Hamillonian theory. However, the truncation
can be introduced in such a way as to minimize explicit breaking of the gauge
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symmeiries.
s The outpul is the [l color-singlet spectrum of the theory, both bound states
and continuum, together with their respective light-cone wavefunctions.

There are, however, a number of difficulties that need to be resolved:

o The number of degrees of freedom in the representation of the light-cone
Hamiltonian increases rapidly with the maximum number of particles in the
Fock state, Although heavy quark bound states probably only involve a
minimal number of gluons in flight, this is probably not true for light hadrons.

¢ Some problems of ultraviolet and infrared regulation remain. Although Pauli-
Villars ghost states and finite photon mass can be used to regulate Abelian
theories, it is not suitable method in non-Abelian theories.”® This problem
may possibly be avoided by working with fnite but broken, super-symmetric
theories. A cutoff in the invariant mass of the Fock state introduces extra
renormalization terms compatible with the light-cone Lorentz syminetries.

e The renormalizalion procedure is not completely understood in the conlext
of non-perturbative problems. However, a non-perturbative recursive repre-
sentation for electron mass renorinalization has been successiully tested in
QED(3+1).

o The Coulomb singularity in the eflective gluon-exchange potential is poorly
approximated in the discrete form. An analytic trick must be used to speed
convergence. Such a method has been tested successfully in the case of the
positrontum spectrum in QED(3+1).

» The light-cone gauge introduces extra divergences at &% — 0 which in prin-
ciple cancel between instantaneous gluon exchange and gluon propagation.
However, this cancellation requires relating instantaneous potential terms to
higher gluon number Fock states.

e The vacuum in QCD is not likely to be trivial since the four-point interaction
term in g’Gﬁ, can introduce new zero-mode color-singlel states which mix
with the free vacuum state. Thus a special treatment of the QCD vacuum
is required. In the case of zero mass quarks, there may be additional mixing
of the perturbative vacuum with fermion zero-modes. Since the zero-mode
kP? = 0 states have no spatial structure, the light-cone vacuum is evidently
much simpler than that of the equal-time theory. In the case of massless
fermions, chiral symmetry could be spontaneous broken by fermion pair zero-
modes which form a chiral condensate.
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