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ABSTRACT 

Imposing supersymmetry on a Higgs potential constrains the parameters that 
define the potential. In supersymmetric extensions to the standard model con­
taining only Higgs SU(2)i doublets there exist Higgs boson mass sum rules and 
bounds on the Higgs masses at tree level. The prescription for renormalizing 
these sum rules is derived. An explicit calculation is performed in the minimal 
supersymmetric extension to the standard model (MSSM). In this model at tree 
level the mass sum rule is MJj + M* = JlfJ + A/|. The results indicate that large 
corrections to the sum rules may arise from heavy matter fields, e.g. a heavy top 
quark. Squarks significantly heavier than their fermionic partners contribute large 
contributions when mixing occurs in the squark sector. These largo corrections 
result from squark-Higgs couplings that become large in this limit. Contributions 
to individual Higgs boson masses that are quadratic in the squark masses cancel 
in the sum rule. Thus the naturalness constraint on Higgs boson masses is hidden 
in the combination of Higgs boson masses that comprise the sum rule. 
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I. I N T R O D U C T I O N 

One °r the roost important problems facing pari i rk physicists today fa our 

lack of knowledge about the merhanism of spontaneous elert.rowcak symmetry 

breaking in the standard model. The neutral and charged eiirrent interactions 

of the standard model have been convincingly verified in many experiments. 

In Uie future it will be important to test the non-abelimi nature of the theory 

and undersl-and the mechanism that is responsible for the symmetry breaking 

SV(2)L * V{1)Y — # ( ! )*«• There Is certainly new physics to be understood 

in lh« symmetry breaking sector because we know that the symmetry breaking 

takes place. Unfortunately the effects of eleclroweak symmetry breaking sector 

are rsotorinusly difficult to detect. The elementary Htggs bosons or the bound 

sUitrw o* a strongly interacting symmetry breaking sector might be too massive 

to oIiscrvR directly, and there virtual effects are screened in electroweak radiative 

rorrcctioii!i. 

Most of the model1? that have been proposed toexplatn the symmetry break­

ing have employed gauge theories, and with good reason as they have been so 

successful in their application to the standard model. Dynamical symmetry 

breaking is perhaps the moat conservative solution to the symmetry breaking 

puzzle beyond the elementary scalar Higgs. This form of symmetry breaking 

has already been seen in the QCD sector of the standard model. A bit more 

daring is super-symmetry, in which the symmetry of sparHime transformations is 

extended to include transformations between fcrmions and bosons. No evidence 

for Ktipersymmetry exists in nature, but physicists have for a long time been in 
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the business nfinvrriliiiR nr-w symmetries, 

Farnl wtlh a lack <*f rxprrtmrntal information ahntii the clfrtroweak sym­

metry breaking srrfnr «>f Hir standard model, theorists have invented tlirre own 

constraints as a guide for further research and progress. Of these the hierarchy 

problem has probably rrrrived the moat attention. Physicists hope to one day 

unify all of physics at some large energy scale. The hierarchy problem is just the 

question of why the elcctroweak scale and the proposed unification scale around 

the Planck mass are so divergent. 

Closely related to the hierarchy problem » ihe problem of naturalness. As­

suming that a hierarchy is generated at tree Ieve*(p how is the hierarchy preserved 

once radiative corrections are introduced? Since the new physics is still unknown, 

the best we can do is take the view that the theories of today are effective the­

ories bcloiv the scale or this new scale, and apply a cutofT A to divergent loop 

diagrams which embodies the unknown physics. However, the masses of fun­

damental scalar particles are subject to quadratic divergences. So if the cutoff 

parameter A is of the order of the Planck mass, then it is hard to understand 

why the Iftggs bosons remain light. 

In technicolor elementary scalar bosons are done away with entirely, and a 

confining gauge theory like QCD is employed. The fundamental states of techni­

color are fermions and gauge bosons, and fermion-antifermion condensates lead 

to breaking of the elcctroweak symmetry. In supersymmetry scalar bosons are 

kept in the theory, but the new symmetries that exist ensure that the (|uadrntic 

divergences cancel leaving only the milder and tolerable logarithmic divergences. 

The price to be paid for introducing supersymmetry is the introduction of many 
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new states » each bosonic field must have a fcrmionic field that are connected 

by the supersymmetry transformations. It is the combined contribution of the 

bosons and their fermkuuc partners that give the vanishing quadratic divergence. 

Superaynimetry must be broken. Exact •upersymmetry would require that 

tlie MipersymnieUk partners have exactly the same mass. Since no such states 

have been observed, we must devise some means of breaking supersymmetry 

and boosting the masses of the supersymmetric particles to values alwve the 

range of present observation. The requirement of naturalites* now presents itself 

as a limit on the amount of supersymmetry breaking that can be present. If 

Ibe sui>ersyminetrk partners are sufficiently different in mass, then we have the 

naturalness problem all over again. The quadratic divergences may sLill cancel, 

but corrections to Iliggs masses thai are quadratic in Ute mass of tlte massive 

supersyinineLrk partner will remain. Thus the supersymmetric partners must 

be Iwavy enough to have escaped detection while not so heavy to reintroduce 

the problem of naturalness. 

A good place to look for the radiative effects of tlie surrey mnie trie particles 

is in tlie Iliggs masses themselves. Indeed the naturalne*& constraint is usually 

discussed in ttte context of the Iliggs masses, lligga bosons couple to all mas­

sive particles and is therefore sensitive to radiative effects from all sectors of the 

theory. In addition lligga masses are particularly vulnerable to radiaLive correc­

tions due toa heavy top quark (or a fourth generation) a» tin- Higgs-quark-quark 

coupling is proportional to the quark mays. 

At the moment supersymmetry is tlie only known way to reconcile the 

vast difference between the electroweak and GUT scatty while still retaining 



scalar* as fundamental fields. We shall refer to the two-lliggs model as the 

minimal aupersynimelry extension to the standard model (MSSM). In this tiros 

we calculate radiative corrections from quark and aquark loops to lliggs boson 

mass relations that arise in the MSSM. Radiative corrections to lliggs masses 

in the MSSM were first calculated in Reference [1] using the effective potential 

formalism. However a heavy top quark was not fashionable at that time. Tlie 

radiative corrections arising from loops containing neutralinos and cliarginos to 

the Higgs boson mass sum rules have been considered in Reference [2]. No large 

corrections to the mass relations were found unless a dimensionless coupling 

constant becomes large. We find that large correctiona can occur for quark and 

squark loops if the squark-squark-Higgs couplings are large. We also find that a 

large quark mass can yield large radiative corrections to the mass sum rules. In 

addition we develop a formalism for calculating radiative corrections to lliggs 

mass relations in a supersy mmetric extension with an arbitrary number of lliggs 

doublets. 

In tlie standard model, a single lliggs SU(2) doublet suffices to break the 

electroweak symmetry. In supersymmetric extensions of ttie standard model, 

at least two doublets are required to cancel anomalies (the Ifiggs bosons have 

fLTinkmic superpartners) and to give the up and down quarks a mass[3). The 

empirical fact that p = 1 suggests a custodial symmetry in the lliggs sector. At 

tree-level there is tin: well known rusult['l): 

' = T^R ( * 
The index i runs over the lliggs representations. T is the weak isospin, Y is the 



tiyiKTrhanje awl c = 1(|) for complex (real) representations. Assuming p — 1 

does n»l result from timing the vacuum expectation vnlura v„ we obtain the 

requirement 

<2Ti + i) 3-3>', a = i. (12) 

This custodial symmetry can be realized by taking a Higgs sector that contains 

weak SU{%) doublets {T = J. Y = ±1) and singlets (T = 0, V = 0). Otlier repre­

sentations are possible, but these have large dimensionalities and appear rather 

ad hoc. TIte standard model contains just one complex Higgs doublet. Three of 

if iese four degrees of freedom are eaten by the W and Z gauge bosons, leaving a 

single physical Higgs boson. In this paper we are primarily concerned with exten­

sions of lite standard model that have two Higgs doublets only. The two-Hî gs 

doublet model has eigM degrees of freedom in tlie Higgs sector which become 

three neutral Higgs boaon»(H,h,A), two charged Higgs bosons(//+,//"), and 

the usual three Goldstone bosons(G, G*, G~) that are eaten by the W and the 

2. Ii and h are CP-even eigenstates while A is €P-odd. We follow the usual 

practice of calling these atalars and pseudoscalara respectively to indicate the 

form of their couplings to fermions. The general two-lliggs doublet extension of 

the standard model therefore has a much richer phenomenology than does the 

simple standard model. The general two doublet model (withqut superrymme-

try) has quite a bit of arbitrariness in the masses and couplings of the physical 

lliggs bosons. 

Wc will consider the supersymmctric version of the two-IIiggs do iblct ex­

tension to Hie standard model[3]. The restrictions imposed by supcrsymmetry 

constrain the couplings in the Higgs sector and lead to mass relations for the 
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physical Iliggs bosons. In addition, at tree level the lighted neutral Iltggs A 

inml be lighter limit Ilie Z, the heaviest neutral Higgs // must be heavier than 

the Z and the charge*! Iliggs H* must be heavier than the W, In fact tlie 

first two inequalities remain true for supersymmetric extensions of tlte standard 

model containing an arbitrary number of Iliggs doublets (containing no Ifiggs 

singlets or other representations)^] though the charged Higgs does not have to 

be lighter than tlra W in these eases. 

In this model, there exist the tree level mass sum rules 

Af?, + Mh

2 = Atf + Ml (1.3) 

and 
Mfe=M2

A + M&. (1.4) 

We explicitly calculate the 0[a) corrections to the relation (1.3) arising from the 

quark and lepton sectors. The corrections to (1.3) and (1.4) will all be O[o) for 

the one-loop calculation since in auperaymmetric models the cubic and quartic 

couplings in the Iligga potential are related to the gauge couplings 9 and jr*. 

There is no arbitrary coupling in supereymmetric extensions of tlie standard 

model such as the qnartic coupling A in the standard model. The philosophy is 

therefore slightly different in the renormalization of the mass relation in (1.3) of 

the MSSM. The sum rule in (1.3) involves physically measurable masses, without 

any reference to couplings. So we can take these masses as the parameters that 

define the Iliggs sector, and find radiative corr ions to (1.3) :n terms of these 

parameters. We find that large corrections to the mass relation in (1.3) can arise 

from matter loops but only if the significant mixing occurs between the squark 
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fields, or if there u a heavy quark. 

Large corrections (0(e»£^-) where m, is a quark mass) to the lliggs boson 

masses arise as they do in the standard model. The squark q corrections to lliggs 

misses that are O(om|) are quadratic in the supersyinmrlry breaking scale. If 

lliey hecome large, they destroy the stability of the eleclrowcak scale to radiative 

corrections, necessitating Urge subtractions that require unnatural fine-tuning 

order by order in perturbation theory. We find that these contributions can­

cel exactly in the renormaliation of the sum rale. Therefore the naturalness 

constraint it "hidden* in the sum rule. Mixing between left and right handed 

(quark* occun in general. If the off-diagonal entries in the left-right squark 

quark mau matrix are large, then large aquark-Higgs couplings can arise and 

result in large corrections to the mass relation. 

In Section 11 we review the aspects of the MSSM that are needed for this 

work. In Section 111 we explain in detail the formalism for renormalizing the 

Higgs sector of the MSSM. We discuss the results of an actual calculation we 

have performed in the MSSM in Section IV. Since the physical masses of the 

Iliggs bosons(//, h, A) and the Z are measurable, the 0(i%) corrections to the 

mass relation in (1.3) is a physically measurable quantity. In Appendix A we 

display some Feynman vertices that are needed to calculate the lliggs self-energy 

diagrams in the MSSM. In Appendix B we display the full result for the cor­

rection to (1.3) arising from the up-type quark and up-lype ^uark loo]*s. This 

result is easily generalized to all contributions from other liio|iy involving quarks, 

leptous anil their auperayimnefric partners. In Appendix C wit show that the 

tatljiole contributions cancel in tlie MSSM. Finally in /tp|H.'ndix 1) we discuss 
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how lite formalism developed in Section 111 can be generalized to models with 

more than two lliggs doublets. 

Other work on radiative corrections to Higga boson mass sum rules in the 

MSSM has also appeared[2,7,8]. The calculation in Reference [6] is a com­

plete one-loop calculation of the radiative corrections from the fermion-sfermion 

sector. The propagating squark fields are the mass eigenstatea, and the renor-

malized masses are the physical masses defined as the pole of tlie renormalized 

propagator. The only approximation is that flavor mixing is neglected. This is 

easily reincorporated into the result. 
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II. THE MINIMAL SUPERSYMMETIUC EXTENSION 

O F THE S T A N D A R D MODEL 

We shall follow the notation of Gunion and HaUrf*)] with the one exception 

that they refer to the neutral Iliggs bosons / / , ht A, and G as i/f t 11°t //", and 

G° respectively. Throughout this paper any mass without a suliscript will be 

a fhysical mass(e g. MJJ, Mh, etc.). Any subscript on a mass parameter (e.g. 

(Afri)t. (A/H)r, etc) indicates that this parameter is in general different from 

the physical mass. The definitions of these mass parameters will be given when 

they arise. Our review will be brief, and the interested reader is urged to consult 

References [3,5,9] for more details about the MSSM. 

Supersymmetry requires that there be at least two Iliggs doub'eU. The 

MSSM is minimal because it contain* only these two Iliggs doublets and the 

minima] particle content necessary to explain known phenomenology. Since it 

is the amplest viable supersymmetric mode}, it is the natural place to begin an 

investigation of radiative corrections in the Iliggs sector. Call tlte two complex 

doublet scalar fields 4>i and fa. The Iliggs potential develops an asymmetric 

minimum, giving rise to spontaneous symmetry breaking. Then <6i gives mass 

to the d-tyjie quarks and squarks, and 4>2 gives mass to the u-type quarks and 

squarks. 

The MSSM can be obtained as the low-energy limit of a supergravjty the­

ory. The renormalization group equations are used to run the values of the 

parameters in the supergravity theory that obey certain boundary conditions at 

the unification scale. In this way constraints are placed on the parameters that 
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define the MSSM. We shall ignore these constraints which can be imposed at 

any time. Implying Ihese constraints restricts ourselves to just this model, and 

weak-scale effective supersymmetry can arise in a more genera) way[10]. 

Siipcrsymmetry must rains the otherwise independent qiiartic couplings in 

the MSSM to be combinations of the gauge couplings g and g'. Tins implies 

that the lliggs sector of the MSSM is weakly coupled as the coupling constants 

g and gf are certainly perturbative. We are allowed terms up to cubic order in 

tlie auperuvlds in the stiperpotential by renormalizability, and it must of course 

be gauge invariant. The most general superpotential that conserves R parity 

contains the following pieces: 

w = tijUiiiiui + fn\Uh+fxH\Qtb+ftfiqiQ) (2.1) 

where Q and L are the weak 51/(2) doublet quark and lepton supcrfields, 0 

and D are the weak SU{2) singlet quark euperfields, and Ft is the SU{2) sin­

glet lepton supcrhcld. On|y the first term in (2.1) contributes to the lliggs 

potential. The other terms contribute to the full scalar potential. / , j \ and 

/ t are the Yukawa couplings that yietd the fermion masses and the masses of 

their supersymmetric partners. We can relax the constraint that the superpo­

tential conserve R parity. An interesting discussion of some alternative models 

of low-energy sunersyinmetry can be found in Reference [11]. 

The scalar potential receives contributions from the so-called D terms and 

F terms. These are 

V = \[DaDa + {&)2] + F;Fi (2.2) 



D° = j 9 A r < j *i. 

o = •• \g'viA:A, 

F - d W 

•K, 

where 

(2.3a) 

(2.36) 

(2.3c) 

Here At denotes a generic scalar fidd appearing in llie siiperpolential. £ is the 

Fayet-lliopoulos term[12] that may arise for U(l) gauge groups. The hyper-

charge aasignrnaiis of the two lliggs doublets are yi = - I and yj = 1, ensuring 

fanoii^ly cancelation. Therefore, one lliggs doublet gives ma-*a to llie up-type 

quarks, while the other gives masses to (lie down-type quarks, so the MSSM by 

const, ̂ t ion eliminates the unacceptable flavor-changing neutral currents. 

In general we add all possible •oft. supersyminetry breaking terms[13] that 

can contribute to the scalar potential. These terms break sujiersymmetry but in 

such a way that no quadratic divergences appear. This allows tlie supcrsyinmetry 

to be broken ea is necessitated by phenomenology while preserving one of the 

major motivations for BUpersymmetry. The soil supersymmelry breaking tenrq 

must be of dimension three or leas in tlte fields. The lliggs potential is tlien 

g:ven by (we assume that the Fayet-Iftnpoulns term associated with U(l)y is 

small and neglect it) 

y=5ff 2lM^#i-4^fcl a+Y(*!*i-4fc) a+M 
<2-4a) 

which can be rewritten 

v = \ ? [4|Hi-Hj| J - 2( / i j ' i / j ) («; - / / j ) + wiitf f (w/iitf] 
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+5^ a </i?Hi - «! '«!)* + M W « S + i4*Hj) + V«, / t (2.46) 

where 

V»j! = *»;//;"//; + mill? Hi - (ml2tijllU4+bc) (2.4c) 

the lliggs potential arises from three sources: (1) the terms proportional to g and 

gf that come form the D terms, (2) the term proportional to |/i| 2 that comes front 

the F terms and (3) the soft supersymmeixy breaking contributions in (2.4<). 

We are using the notation^] 

4>Ui = /f j ' f / j <2.4d) 

4*2 = « 5 ^ 2 (2-4e) 

4&~<*i«M'l- (2.4/) 

In Uiu.notation H\ and//J arelhe neutral componentofi/i and// 3 respectively, 

white 1/f aid JfJ * r e ^ charged components. The quantities mi, rn-z, and mi2 

are arbitrary mass parameters, and those terms in (2.4b) that depend on jji|2 

can be absorbed into the soft supersymmelry breaking terms of (2.4c). ;n luw-

energy supergravity models niu is projiortionai to/i, but we will consider aniorr* 

general MSSM and let run take any value that produces an acceptable vacuum 

(see below). Of course ft still has consequences on phenomenology; it appesira in 

the squark mixing inatrko for example. See Section IV below. 

A troubling aspect of the MSSM is the very existence of the parameter 

ft. When the MSSM is viewed in the context of supergravity or graml-mulied 

nioilrla, it is hard to understand why /i does nut have a value of order the 

Planck or the GUT scaS. Thu hierarchy problem can be cured by imposing an 
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additional symmetry. It is necessary to remove ft aa a fundamental scale in the 

tlwory. Two ways this can be accomplished are by Roing to a supcrxlring modi-l 

for which lite Iliggs mixing term is generated when a singlet ia present or by 

expandii'3 the II parity to be a continuous symmetry [H]. 

This Iliggs potential haa a minimum away from ll\ = Hi = 0 BO sponta­

neous symmetry breaking occurs. It ia possible through a dioice of phase to 

dioose the vacuum expectation values to be real and non-negative. We are as­

suming no CP violation arising in the Iliggs poUnii?J. We define vt and V2 to 

be the vacuum expectation values of H% and 7/2 respectively so that 

( " ' > = ( o ) » * - ( ; ) • < 2 5 ) 

To obtain the correct tree levd mam A#£, = \g2v7, we require vj + v\ = v*. 

The Higga masses arise from the quadratic parts of the Higgs potential. 

Define the scalar and paeudoscalar parts of the charge-neutral Iliggs boson fields 

by 

W { = v . + ^ ( 5 i + t P , ) (2.6o) 

H} = v2 + ~^S2 + iP2). (266) 

/ / and h are linear combinations of Si and S? while A and G are linear com-

binalions of Pi and P2. The factor of \/2 is included so the kinetic energy 

terms for the physical Iliggs boson fields will have the canonical form. The soft 

supersyuimcLry breaking terms include 

mf H\'Hi + mini* ^ - ( m ? 2 ( y / / ; / / j + /i.e.), (2.7) 



which contains the charge-neutral terms 

ii«J(Sf + /'?) + in,I(Sj + P\) - mJ3(S,S2 - PXP2). (2.8) 

The F-temis contribute 

|,i|2(//j-/f| + /tf/Y<) (2.9) 

which we absorb into the eoft superaymmetry breaking contribution. In order 

to break SU(2)t, x V{ I )y the lliggs potential must have a minimum away from 

Hx = Hi = 0, so that 

mjmf < mj 2 . (2.10) 

Notice in Equation (2.4) that in the direction ^i = 2̂ the quartic terms in the 

Higgs potential vanish. Tlierefore we lequire 

m! + ml>2mf 3 (2.11) 

to prevent the Higgs potential from being unbounded from below in this direc­

tion. Collecting the quadratic parts arising in the D-ierms 

\(<? + A[H'iH\ ~ Hl'Htf, (2.12) 

g(»' + •'MO'? -»l) + ^ ( « | S | - «*$,) + I(S? - S| + P? - Pi)?, (2.13) 

g<92 + «'')[("? - "I)(S? -Sl-i-P?- Pi) + 2»;S» + 2«\S\\, (2.H) 

the mass matrix in the scalar sector is given by 

A f l _ f »•?+ }<»' +9*)P»?-»i> -">l2+J(j ,+9' ,)t'."2 ^ , , . . , 
s ~ V ->"» + i<92 + »''H»J >"! + }(9 J + S'S)(3"! - » ? ) , / • ' ' 

while the mass matrix in the p9eudc»calar sector is given by 

M"-{ m 1 5 ml+Jb'+•>?-»?) J' ( 2 ' 6 ) 
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Taking traces we obtain the sum rule in (1.3). The crucial point to notice is 

that the soft-supersynimelry breaking terms contribute equally to both bides of 

the sum rule. In other words, the sum rule is a result of the supersymmetric 

btruciure of the D-terms only since gauge invariance requires that contributions 

from both the F-terms and eoft-supersymnietry breaking terms cancel. 

Two parameters in the mass matrices above are determined by the others 

via the minimization condition. So we can solve for mi and rnj in terms of t«j2, 

i»i, and t^: 

m? = m ? 2 - - X-Ml co32/?, (2.17) 
i»i 2 

m| = in?,— + ^Af2cos2/?, (2.18) 
" i»2 2 

where we have defined tan 0 = Jj1. Then the mass matrices can be written 

S V-m ! 2 +lM3 S in/»ca*/J m j , ^ + il/| ! iiii»/J ) ' l " ' 

and 

w ? B ( - f e S -J«» V (2.20) 
V m « m 12S / 

The pseudoscalar mass matrix has a zero eigenvalue which corresponds to the 

neutral Goldsloiie boson. The eigenvalues of the mass matrices M'£ and Mp are 

related by 

Mil* = 5 \M\ + M2

Z ± y/[M% + M\f -4WjAiJc«*2(il]. (2.21) 

Therefore A/b < A/2 and KtH > Ai^ at tree level. These results generalize to 

the case of 2N Uiggs doublet models[0]. See also Aj'peudix D. 

hi a iton-supersyminetric two doublet model the lliggs moat** A/«, A/j, 

and MA and the mixing angles are independent quantities. Supersy mine try, by 
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constraining the quarto couplings, reduces the number of parameters needed to 

complete!} describe the Higgs sector at tree level to just two. Quantum correc­

tions introduce dependence on the other masses and couplings in the theory. 

When the MSSM is obtained from low-energy supergravky models, tan/3 > 

1 is preferred. In these models a heavy top quark is required to drive the renor-

mal&ation group evolution and obtain the requisite electroweak symmetry break­

ing. Therefore v^ larger than vi is favored. 

The existence at tree level of a lliggs boson lighter than the Z boson has 

been of much interest recently as a Z factory has become available. If Mr, < Mz* 

then the decay Z -* Z*h is kinematically possible. This processes is suppressed 

by a mixing factor relative to the same process in the standard model. If the 

pseudoscatar Higgs A is also light {which is not & required condition in the 

MSSM), then the decay Z -* Ah may also be possible. Experiments at LEP 

have used these processes to rule out regions of parameter space of the M5SM[15-

16]. A discussion of the current status of these experiments from a theoretical 

perspective can be found in Reference [17,18]. 

Of course radiative corrections are important as well. Several recent calcu­

lations indicated that indeed at one-loop the lightest lliggs boson can be much 

heavier than the Z boson[19-22]. The necessary ingredient in these v-alcidations 

is a large fermion mass (specifically the top quark mass). A heavy Lop quark 

mass is an important correction ever for the sum rules[6]. 

If a singlet superhVld N exists in the theory new terms can be included in the 

superpoteutial, an example of which is \t,ijII\tl%N. In B$ stiperstring inspired 

models the two lliggs doublets are accompanied by a singlet[2^1]. The new terms 
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in the superpotential can give rise to qnartic terms in the Higgs potential, in 

addition there is no guarantee that X is small, so strong coupling is a possibility 

in asupcrsymmctrk model with an Si'(2) singlet. 

The masses of the iliggs bosons can be obtained from (2.4) using the vacuum 

expectation values in (2.5). The mass matrices must be diagonalizcd to obtain 

Mff, M*t and M\. In the MSSM there is the tree level mass relation given in 

(1.3) where Mh < Mz and MH > Mz- Beyond tree level tin's relation is no 

longer exact but receives 0(a) corrections. To implement the renormalization 

procedure, we fix MH, MA.and Mz to be the physical masses which can in 

principle be measured by experiment. Then the physical mass of the other 

neutral lliggs boson n is given by a relation 

Ml = Ml + Af| - Mft + A (2.22) 

where A is a correction that is 0(a). There are two free parameters that charac­

terize the tree-level masses in the Higgs sector if Mz is fixed at its experimentally 

measnred value. We shall take MH and MA to be the two parameters that de­

fine the theory. Then (2.22) provides a prediction for the light Higgs boson mass 

Mh. We can choose any two unknown masses we like and predict the mass of 

the third. 
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I I I . F O R M A L I S M F O R R A D I A T I V E C O R R E C T I O N S 

We adopt a reiioritmltzation scheme is which external lines are evaluated 

with momenta on-sliril. The physical mass is defined as the position of the pole 

in the priipiiKntor. Tin* ultimate results of this section are the relations (3.-41) 

and (3.-W) below. Thrse equations indicate that at the one-loop level the wave-

function renormalization factors do not enter, and the corrections tu the mass 

sum rules are given entirely by combinations of lliggs'boson and vector boson 

self-energies. 

Before developing the formalism for calculating radiative corrections, we 

wish to discuss the applicability of the one-loop effective potential to determining 

physical lliggs masses. The effective potential cannot be used to calculate the 

poles of Higgs propagators exactly. It may be used to find an approximate result 

for the physical masses of the lliggs bosons in the MSSM. The calculation of 

the effective potential entails the summation of diagrams with external Higgs 

boson momenta set equal to zero. In the on-shell scheme, the external lines 

a e put on-shell instead. The curvature of the scalar potential a t its minimum 

is the physical mass or the lliggs only at tree level. The renormalized lliggs 

mass found using the renormaEized one-loop effective potential is finite but is 

not necessarily equal to the physical lliggs mass (defined as the position of the 

pole in the Higgs propagator). There is no elementary method to relate these 

two quantities[24] without calculating the lliggs propagator to find the pole. 

However if the mass is sufficiently small, the difference between the Higgs self-

CIHT;-.J ., ith external momenta on-shell and with external momenta set to zero 
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in small. Then the effective potential is a useful too) for calculating the physical 

fliggs mass. In fact, the Coieinan-Weinberg mass[25} is the physical mass since 

wetting external momenta to zero is the same to one-loop as setting them cm-shell 

for ttiia case. The calculation presented here goes beyond the eJfcctive potential 

in thai lite physical masses of the Higgs bosons are the quantities that enter into 

tlie formulae. In the MSSM we know that Mu > Mz a t tree level, so setting 

tlie external legs lo zero momenta is not necessarily a good approximation. 

In litis section, we denote all bare fields and parameters by the subscript 

b. Absence of Uii* subscript indicjOes a renormaloed Held or a reuomialized 

parameter. For example, Hi denotes tlie bare heavy-IIigg* field, while H denotes 

the reuormalized field. 

lit ttie multi-Higgs doublet models, renornializatioji is complicated by mix­

ing of lite physical Uiggs bosons necai&ilating rediagonul nation at each order. 

This is analogous to the mixing of tlie Z and the photon in the renoruialization 

of the standard modeI[2u]. Here we follow tlie method of Aoki et al [27] for 

ou-shell renormalization of fields when mixing is present. 

tltica!! tlte definition of the scalar and pseuduscakur components of the 

charge-neutral iligg* boson fields: 

i/{=u, + -USi+ti ' ,) (3.U) 

| | | = U 2 + - ^ ( 5 a + i l M . (3.16) 

H and A are linear combinations of Si and S-j while A and (• arc linear combi­

nations of Pi and P?. The factor of v 2 is included so the kinetic uiirrgy Urina 

for the physical Iliggs boson fields will have the canonical fur in. 
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Itcnornialization proceeds in the standard way. (Jegin with a true level La-

graiigiau £ t ( / i , / z , .--;pi,P2,~.* which cont^na certain fields / , and parameters 

Pj. To calculate at one-loop, reiiormalized fields and parameters are required. 

This is accomplished by breaking up the tree level Lagrangian into a piece con­

taining renonnalized fields and parameters and * counterterni piece. The fields 

and parameters in the tree level Lagrangian are now not physical quantities, 

contain infinities, and are called bare quantities. The counterterms Lagrangian 

is generated by shifting the parameters pj* —* pj> + 6pj end introducing wave-

function renorinalizalions Zjt. The wave-function renormalizatioits are of the 

form Zit = I + 6Zjt where t i# 6Zjt are in general divergent and of higlier 

order in perturbation theory. Zj% = i + 6ZjA ia a matrix equation if there is 

•nixing. The renormalized Lagrangian has tlie same functional form as ilie tree 

Lagrangian but is expressed in terms of renormalized quantities. 

CbUik,hi, -,p\t,P2i.,•••) 

= £ r ( / l r . / 2 r , - i P l r , | > a r , - . ) + £ a ( / l r ( / 2 r , - . ; p l r » | ^ r . » ; i P l , - - ; 2 > . . » ) -

(32) 

Feymiiaii rules are derived using the renormalized Lcgr&ngian and tlie coun-

terlerm I Hgraugian, ;uni the nihilities present in one-loop graphs are absorbed 

in the com iter term Lugrangian. The values cf the reuormalized parameters are 

fixed by experiulent. 

When tree-level imMiig occurs, wave-function reiiuniializutioti tak^s a ma­

trix form. Ik-line the matrices 

iia y\%) («-) 
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and 

ami 

In llic ban* Lagranginn wr denote all paramrlm and IN*MR wilh the sulwrripl. 

6. In parLirtilar the Uiggs potential in (2.4) is r»*writ.t**ii in trrms of hare fields 

anil masses by attaching a mifocript 6 to all quantities. Then tlie wavo-function 

rmorma1i7.atton of the Higgs fields can he expressed as 

( : ) . - * • ( : ) 

The matrices in (3.3) are not in general symmetric. There are four independent 

parameters for each matrix. We have that Zj s= / + 0[a) so that z)tft = 

1 + O ( o ) , Zl£ = ! +0(a), Z)H = 0(a), and Z]/t) = 0(a). The kinetic energy 

terms for the charge neutral pieces are 

iff-( « *)v'JYzl/X( * )+!*• (c /.)(zj/'f 4"^(* ). 
(3.5) 

Now we proceed to investigate the mass terms. In the usual way we shift 

the parameters that occur in the Higgs mass terms as follows 

(mj) t = m j + « m ; (3.6a) 

( m | ) t = m | + «m5 (3.6b) 

(mjjjj = mjj + <mf j (3.6c) 
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[M%)b = M% + f>M% (3.<»0 

(l»l)fc = «l+fiU| (-Tfir) 

M b = V2 + bv2. (3.fi/) 

Thp HigRA potential in (2 4) depends on five parameters, so we can choose five 

paramrtrrs in (3.fi) to drtrrmine the potential. The parameters we use to define 

the theory are the physiral masses MH, Mh, MA And Mz as well as the coupling 

g (or a). The quantities in (3.6) are related to these five in a complicated way 

determined by the Higgs potential in (2.4) as was demonstrated in Section II. 

Other parameters audi as |JJ| 2 and its associated counterterm are determined in 

terms of the five parameters and counterterms in (3.6). The dependence of/i on 

the other parameters Li given in Equation (3.25) of Reference [9], 

The shifts in vj and u? reflect the fact that the location of the minimum 

of the Higgs potential receives O(a) corrections. This is a generalization of the 

same statement in the standard model, where the tree level vacuum expectation 

value v receives O[o) corrections. In the tree level Lagrangian vt and vz are 

determined by finding the minimum of the Higgs potential. Therefore v\ and 

»2 are specified hy the parameters in the Higgs potential, m? + | / i | 3 , m% + |« | 2 , 

m i 2 i Mz, etc. The constraints were given in Section II by (2.17) and (2.18). At 

one-bop these parameters are renormalized, and the same functional forms Tor 

ui and v2 in terms of the renormalized parameters are no longer correct. 

One approach is to define tadpole counterterms TH and 7j, so that they 

exactly cancel the one-loop tadpole diagrams. This would impose two constraint*) 

on the countertermn. Wn will show below and in Appendix C that it is in fact 



23 

of no consequence bow die tadpole divergences are handled ad they are exactly 

cancelled in the radiative corrections to Lite sum rules. See also Itelereuce [2U]. 

Our goal then is to formulate renormalizalion conditions for Ute physical 

inat&c* without any reference to the unmeaaureaule parameters that occur in 

(3-6). The basic idea, ia lite following. The Iliggs masses depend on hiz and two 

mixing angles, usually called a and 0 (fi was introduced in Section 11). To obtain 

the one-loop corrected masses requires these angles to be renormalized. However 

in die sum rule we are interested only in die traces of the mass matrices, and if 

die rotation angles a and 0 that diagonalize the mass matrices are renormalized 

is of no consequence. We shall go through the detailed procedure of the renor-

malizatton procedure below. A more general argument valid for modes with an 

arbitrary number of Higgs doublets (including the two doublet case) is given in 

Appendix D. 

The Higgs mass terms arise in die potential given by (2.4). Tiie parameters 

n>i, m 3 , and m l 3 are undetermined due to die arbitrariness of the soft uupersyjii-

ineLry breaking terms. The mass constraints arise because the quartic couplings 

hi (2.4) are determined in terms of die gauge couplings by supersyiiiiuelry and 

gauge iiivariaitce. Then the mass terms that arise are of the form 

*<•*>.('. s).tt). 
where 

Ab = K) f c + \(Ml)b l-i-^r ) (:».»..) 
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analized by ttie real ortliogonaJ matrix diaracterized by 

_ / cos Q — sin a \ , „ „ . 
O 0 = ( . <3.9a) 

i sin a cos a / 

Thia mass matrix is diagonalized by ttie real ortliogonaJ matrix diaracterized by 

the angle a: 

where 

tan On, — 

IA-CW 
tan 2a = 2 g * . (3.96) 

Witli a redefinition of fields given by 

the inasa matrix is diagoualized to give 

where 

lized to give 

°~{A, s ) * - ( ? A). »"•' 
(Mji)i = ^ [<*» + C») + » / ( * - C , ) » + 4 B ; | (3.1U) 

(«»>» = £ [ ( * + ft) - >/(*» - ft)2 + 4itf]. (3.11c) 

The shifts in the parameters introduced in (3-6) generate shifts in tlie pa­

rameters At, Ut,, and C't, that appear in the unrcnorniuliml mass matrix tlirough 

ihe definitions in (3.8). We define the reiionnaJized values or these parameters 

and the associated cuimU-rLenus as A^ — A+6A, lit = B+6H, and Q, = C+bC 

where A, U, and C are defined just as the hare quantities are defined in (3.8) but 

hi term* of the reiiomiulizcd quantities. It is unnecessary to retain terms second 

order in the couulerterms because these are higher order in perturbation theory. 
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Thr iiivrrsp p r o p y l or is » matrix dim to the mixing «Mln* lliggfl bosons, and 

we denote1 it by: 

\ i ih i iO 1 ) <r h h (p') y 

Then we have 

iVsiv7) = ( 4 ' 2 ) T 4 ' V - ( 4 / 2 ) T ( « J ) n ^ / 3 - * « s P - l 3 « ) 

where 

and 

—(a is) 
The subscript D in (3.13b) indicated that the renormalJzed mass matrix (with 

subscripts r) is diagonal. In obtaining (3.13) we have dropped terms that are 

second order in perturbation theory, used (3.11a), and defined 

6M}f = 6 /4c« J a + 6Bstn 2a + e5Csin2 a (3.14a) 

6MJi = SAam7 a - f l B s i n 2a + £Ccos 7 ft (3146) 

6Mflh = «Afj?„ = (6C - 6A)s\n a cos a + 6B cos 2a. (3.14c) 

We have neglected the pieces of the counterterms coming from 6a (in a —* a+6n) 

that in fa:t exactly cancel (3.14c). The off-diagonal terrm are irrelevant in the 

renormaTrcation of the sum rules. The inverse propagator matrix in (3.12) is 

symmetric as it should be. We have also defined the quantities 

(Af?,)r = \ [{A +C) + yfiA-07+4lp] (3.15u) 
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<*tf)r = \ [{A + O - J(A-C]*+Alp\ (3.IS6) 

Ai this pninl Hie rciinrin.-ilizcd parameters (Mft)r and (Mjj) r are not the physical 

iiia<wrs Mjf and A/,'. The rnniirrt.inn hcfwwn these quantities mast br specified 

by rcnormnlizntinn roiidii-ioiia. 

Wr have express™! |.lir inverse propagator tfsfp 2) in terms of the wave-

funrtion renormalizalinn parameters defined in (3.3) and the countcrterms de­

fined in (3.6). The expression is rather complicated, but fortunately we will 

only need to know the linear combination 6A + SC to calculate the radiative 

corrections to the mass relation (1.3). Notice that 6Mft + 6M% = 6A + W?: i-e. 

the trace of the mass matrix is invariant under the orthogonal transformation. 

We have that SA + 6C = 8m\ + 6m\ + 5Af| so that we arrive at the conclusion: 

6Mf, + 6M£ = 6m\+6m\ + 6M%. (3.16) 

We now repeat the analysis for the pseudoacalar sector in exactly the same 

way as we did the analysis for the scalar sector in Equations (3.7) to (3.16). 

Define Pj = -fitm{H\) and P2 ~ V2fm(// |) . Tlie mass terms are 

where 

'> = < " • ! > » + ^ ( f ^ f ) , P'Sa) 

BJ = -(">?3)» <3-I») 

«=H)»+5^H(^)|. (3.18C) 
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1*hw mam matrix is diagonalized by aii orthogonal transformation just aa before. 

The real rotation matrix i* characterized by Mw angle /i; 

\wu & cm p J 

wfiere 

U n ^ = ( F T ^ - < 3 i 3 & > 
We oUaln the maw eigenstates defined by 

0 diagonalized to give The mate matrix iii (3.17) li diagonalized to give 

where 

(«c)» = £ [(4 + Ct) + ^/(4 - CJp + -IB?] = 0 (3-21t) 

(A**)* = | [(»i + <% - JW-CQ*+4U^. (3.21c) 

fi1ie Goldstotie buaoa is exactly maadaa in the Landau gat^e so the mats* matrix 

has a zero eigenvalue. 

The parameters defined by Equations (3-18) generate ruiiiilei-tefiiis with the 

M '= 6 ' " ' +H (frl)+N* GJt 1) (3 -^ 
»«' = -im"f2 !3.'»<>) 



We define the inverse propagator Tor the paeiulaacalara ill tlie bailie way as 

we did for tlie ncalars: 

l F ( P ) i^a(pJ) tfW)J { 3 2 3 ) 

bo that 

***>=<#Vzj/y+<4'afo-,( £ J J * * S ) < ^ -
(3.24) 

The lasi term can be expanded again to obtain; 

,I>(p 2) « i z W f Z 1 / * ? + (2J / 2 ) T (Ai^)i>4 / a + Ufe (3.25a) 

where 

and 

Ma, *) 
We have defined 

6A/g = M W 0 + *i*'«in 2 0 * $ C W & (3.2Ga) 

6Ml = M'siti 2 fi-61?sin 2 # * $ C W £ (3.206) 
6Af£„ = bhl'iu = (t>C - &A')mx p 0*0 + 61?con 2p (3.26c) 

untl (A/^),. b> defined just as (A/jj()t »» defined in (3.21) but in terms of (he 

rcnurmalizcd iiutuiuuLers (i.e. witltoul the subscripts 6 on lite uaraineU'R* u[>-

pearing on Lite HHS). As before we neglect 6/i corrections to tlte olf-diagonal 

terms. (Ata)r = 0 since (A/£)t = 0- '11* ".variance of Lbe trace give* 
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f>M%4- Mf J = M' 4- tC. From (3.22) we have lliai ft/1' 4- fiC = 6m\ + <Sm*, so 

we obtain 

m%+SMl =AraJ+«inJ. (3 27) 

Making »sr of (3.1G) wc finally obtain the result: 

6M}f + &Mi = 6M% + 6MI + SAf^. (3.2S) 

We define the Belf-enfrgws of the oculars and the vector bosons as shown 

in Figure 1 with external legs amputated. The vacuum expectation values vt 

and V2 are in general renormaltzed, and tadpole diagrams must be taken into 

account. We will argue below that the tadpole contributions to the final remit 

A are zero with the renormalization conditions we choose. This will be shown 

explicitly in Appendix C. The renormalised inverse iropagator 

includes the expression in (3.13) and the eelT-enerjrv contributions shown in Fig­

ure 1. The inverse propagator matrix in (3.29) is symmetric. We have 

tr«,lO' 5) = (Zim + Z„„)p> - (MJ,)rZHH - WbrZhH 

-*MS + n„„(p') (3.30a) 

i i W ) = (ZM, + Z„h)p> - (M^)rZ^ - (M},)rZ,„, 

-iMl + I W P 2 ) (3.306) 
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-Wb*z)£z\£-**<},*. + n„ft(p!). (3..mr) 

In thr on-s!irll srhniip we adopt the renormalizatkm rondition.i[27): 

'fim(M?,) = 0 (3.31a) 

•fH,(M^) = 0 (3.316) 

>fin,(M?,) = if„,,(M2) = 0 (3.31c) 

«THH(MS) = 1 (3.3ld) 

*?!*{*«) = 1 (3-31e) 

where if'(p z) is the derivative of if (p2). 

We choose as an additional renonnalization condition that (Afjf)r be set 

equal to the physical mass Mtt of the //[28]. Then from (3.30) and (3.31) we 

conclude that 

fiAf?, = n H H ( A # ) . (3.32) 

The pEKudoscalar sector can be treated in the same way. The tenormalized 

inverse propagator for the pseudancalani is 

which Li 

• i W p 2 ) = (ZCB + ZAO)P> - (Ml)rZAa 
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-bSll + l lcc lp' ) (3 34u) 

i f M t f ) = (Z** + Z C A )p J - (M 2,)^ 2,,, 

-*Atf + IU,(p 2) (3.341.) 

»f<M(pa) = if*G(p 2) = (2&Z& + Z ^ z Y c V 

-iMjArZ^jS ~ *MCA + nCA(p5). (3 34c) 

'11K renormalintion conditions are 

ifcc(0) = 0 (3.35u) 

itMMl) = 0 (3.354) 

if<5 (̂0) = ifO4(Mj) = 0 (3.35c) 

«'fco(0) = > (3 35J) 

if,AAlMl) = l (3.35c) 

In Uiia case we define (MA)T to be *lw physical ma*s A/4 uf the J4 and reijuire 

that Lhe Goldstoue boson G have zero mas* at the cue-loop level in the Landau 

gauge, i.e. (Ma)r — A/Q = 0- The mabslessiitiis uf the CiohlsLoue booon at 

one-loop fullows from the Ward identities. Then we uhlam 

b\l\ = UAA{M'A) (3.aii) 

6M& = H<M(0) . (3.37) 
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The remaining condition is obtained from (2.21) and (3.31b). This is 

fiAf3 = l l M ( A ^ ) + A. (3.3H) 

where we have used the fact that (Af£)r + (Mf l , = (MjJ)r + <A*z)r Similarly 

it can be shown that 

bMl = -A2-dMl) (3.39) 

where Azz{p2) is deliued an the real part of the coefficient of g?" in tlie vacuum 

polarization tensor 

»!Tz(P2) = ^ z z ( P 2 h r + B M I P V P " (3 40a) 

AZz = « e Azz (3-406) 

defined au in Figure 1. Then using and Equation* (3.28), (3.32) and (3.36)-(3.39) 

we find that 

A = -XhmiMlt) - I W A f *) + nAA(Ml) + I1 G G (0) - AZZ{MZ). (3.41) 

So the calculation of A involves the determination of tlie Uiggs and Z self-

energies in (3.41). The final result for A must be finite even though lite in­

dividual self-energies will not be. The expression in (3.41) depends only on 

self-energies. This is a sumetvhat unique result for a radiative correction Ut a 

physically measurable (juanlily. Usually one is required to calculate vertex cor­

rections as well to do a precise comparison to experiment. Here supersyuimclry 

and gauge iuvariance have conspired to produce a sum rule whose renormaliza-

tiuu dues not depend on Lhe r^uonualizution of tlie gauge couplings y and g' to 

one-loop. At two-loo|ts and beyond the situation becomes more complicated, as 
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wr rjtprrt til** K:^SP coupling tennrtnnlizations In rnU-r as writ as wavA-ftinrtton 

rpii(irniali7ati«iis. 

The rnmliltmi that ihe Ooldslmir hmon mass IH* wm at nun-loop rnsurrs 

thnl the indpf'ir <-«nlrihnlions will he wro. This is a rnnsequrnre of a Ward 

identity. A dismission of this result in the context oft lie standard model is given 

in Sc^crrnrai pB-31J. The Goldstone srif-enrrgy at zero momenLum is related 

to the i--»<lpole diagrams of the H and h field* as 

fl(TG<0) = - ~ [eos(£ - a)T» +«m(0 - aftfe]. (3.42) 

The fotmtrrtfirm Lagrangian contains the terms 

-[BM^ + TuH + iHh] (3.43) 

in which the coefficients satisfy 

6M$ = - ^ - c o s ( ^ - o ) T » - f BinO-o)f?». (3.44) 

So we conclude that (3.37) is equivalent to taking ( T w + Tit) cos(0 - o) + (T f t + 

Th) Mn(ff-n) = 0. Hie advantage in calculating l lcc(0) rather than the tadpole 

diagrams %j rnd 7X » t h a t the cancelation of divergences is more obvious in 

the former ciw-. In terms of the Feynman rules, calculating the Goldstone 

boson self-energy is on an equal footing with calculating the lliggs boeon self-

energies in the Landau gauge. We have shown explicitly in Appendix C that 

in the context of the MSSM the tadpole contributions to A in (3.41) vanish 

identically. This result can be proved generally. In References [2,7] the tadpoles 

are evaluated instead of the Goldstone boson self-energy. This gives the same 

answer as (3.42) can be verified by direct calculation. As mentioned previously 



this is a grnrralizal.it m of a similar statement in the standard model. In the 

standard iiind'*) thr f InMstonc limon srlf-enprgy is related to the Iliggs tadpole 

(there w only onr smh latlpnlr in the standard model) 

"^(0) = -^-J,,. (3.45) 

There is an rlrmmtary way to gain insight into the relationship between 

GoMstnne boson connlrrtrrm and the tadpole counterterm. In any inulLi-IIiggs 

model it is always pnssihle to find a linear combination of Higgs ficlth whene 

vacuum expectation values is v, and all orthogonal components have zero vevs. 

In other words, in Htggs field space this linear combination is in the direction 

from the symmetry point to the asymmetric minimum. In the two doublet model 

we know that this direction is % = 5i cos/7-f-^sin/?. Define the orthogonal 

combination H± = —Si sin 0 + 5 j cos 0. We have 

(")-*-(£) (346) 

and the counlerlerms in (3.43) become 

-[«M^.G 2 +W[cos(/J-o)r„+«in(0-ft)7),]+7<i[-«in(^-o)D,+cM(j9-a)ij ,]] 

13.47) 

The Goldstone self-energy is related to the tadpole counterterms of the Higgs 

field combination % that lies in the direction of the asymmetric minimum. In 

the standard model thin combination is just the physical Higgs field. 

The tadpoles cancel in the Higgs mass sum rules and this requires the 

supemyrc metric structure of the Higgs self-couplings. It is the constraints placed 

on these couplings by siipcrsymmctry and gauge invariance that gives rise to the 

sum rules aa well as the tadpole cancellation. 

http://grnrralizal.it
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Anotfter mass relation that liolds at tree level in the MSSM Was given in 

(1.4). It, can be shown {in a method analogous to llie jirttediug treatment of 

lite nia» relation in (1-3)) that tike radiative corrections defined by 

JW#i*=Mi-Mf£, + A (348) 

are given by 

A " -nu±H±(Ml±)-natGt(OHnAA(Ml)-rllGG[0)'-Aww(Mir) (349). 

Again ttie tadpole contributions are exactly aero (nee Appendix C). 

We note that the result in (3.41) continued to liold when a lliggs singlet 

N is present in certain important cases. The criterion is that N not mix with 

the oilier Migg* bosons (// , h, A, G). Reference [9] discusses these cases. If ttte 

singlet mixes with the lliggs doublet then the mass relation (1-3) id destroyed 

even at tree level, and tlie tree-level constraints A/A < Mz and AfH > Afjj also 

disappear. Tlie mass relation (1.4) may be destroyed even if the singtel does not 

mix wit!: the other fields. 
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IV. RADIATIVE CORRECTIONS 

In this section we will discuss the contribution to A from quark and uquark 

loops in the MSSM. It is necessary to know the Feynman rules for lliggs bosons 

in the MSSM to calculate the self-energy diagrams for tlie lliggs field?. Many of 

tliese have been derived previously in the literature[319,32-34]. We have derived 

tome others in Reference [li] that appear in Appendix A. 

The calculations involved are somewhat lengthy. Each individual diagram is 

divergent, and tliese divergences cancel only when loops involving the fermiuis 

and loops involving their superpartnem are included. Tlie divergent integrals 

are evaluated using dimensional regutarization with the prescription for 7& given 

by Clianowitz et al.[35]. Since the TV* always occur in pairs in the amplitudes 

considered, this prescription guarantees tlie correct Ward identities. The calcu­

lation is straightforward, so we display only the final result in Appendix B. Tlie 

diagrams evaluated are shown in Figure 3. 

We have ignored the mixing between generations for simplicity, i.e. we 

approximate the CKM matrix and tlie super-CKM matrix as unit matrices. It 

is not dillicult to adapt the answer to the general case. Tliere is a contribution 

from each generation, and the contribution to A from the top quark is lite same 

as that for the up quark with the appropriate mass substitutions. Of course llie 

formulae are unly relevant lur quarks heavy compared to tlie hadruuic scale. The 

L-akulaLimi of the digrams involving squark loops is complicated by the mixing 

in the squark senior. 

We aild soli supeisyiiimetry breaking terms to the scalar potential. The 
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iri-'.:« in tin1 fj-.il;ir pnfrat.ia] involving fa|iiark» arr[H] 

V = V r + l ' „ + »'.„/„ (4.l.i) 

whi'r.~ 

VF = (,.•//;• +hQi-V-)Wli + f1QiU) + U''HY + flQ"fnU'lli+ /,&») 

+/fl<oH;Q*l'+/II<iiWjO ,'|2+(/i«{*6*-/3l/?f/*)(/,H{D-A//;D). (4.16) 

Vo = gs3[4|ffr<?f +4|H'-(?f - 2(Q"Q')[H!*;/{ + Hj'ifJJ + (Q'V?)'] 

+i 9"[ffj'H} - fffHj + i.^'-cj' + n.l/'O + vab'b]7, (4.1c) 

V„ / g = M^Q"Qi + M^J/"i/ + MjD'D 

+mtt'Hf,AdHlQ*D- f2AuH'2Q>d + n c ) . (4.1d) 

|hj, |u and y f are the hypercharge quantum numbers oTthe corresponding fields. 

The conventional squark notation for the fields appearing in (2.1) and (4.1) is 

Q<=(U.LY U'=SR, .D' = d„. (4.2) 

The man terms Tor the up aquatics, for example, are 

-(**)(£ S)U) 
where 

•A* = MQ + A*|co3 20[- - e„sin20„,) + mj (4.36) 

B„ = m„(y»um« + »icot /?) (4.3c) 

C„ = Afg + M|cos2/?(e u sin*0„)+mJ. (4.3rf) 
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Aimfi» A'y. a "d Ma :\rr additional soft, siipcrsymmetry breaking parameter* 

that rutrr into the purl or the sralar potential that involves sqiiarkt. We awiime 

/t„nid is rrnl, whirl) miH, l»r approximately the case to avoid unwanted CI* vio­

lation. Nntirr thai llif IfTl-nRlit mixing term Pu is proportional to the fcrmiou 

mass mtl. The mass riftrnst-alj^ qi and <ji can be defined as a mixture of llicse 

firlds a** 

UMt) 
where 0# , are defined as in (3.8a). The mixing angles 0n appear m the Feynman 

rules involving the squnrks. 

We note here that the soft Bupersymmetry breaking terms in (4.Id) do 

not include the so-called "mixed" trilinear contributions mentioned by Hall and 

Randall[10]. These terms are not present in the low-energy supergravity model 

but could be present in a more general model of Tveak-scale aiipersymmetry. 

These contributions are similar to those in (4. Id) in that they contribute to the 

olT-diagonal elements of the squark muting matrix and provide another source of 

coupling between the lliggs bosons and the squarks. In particular we have the 

terms 

M{fxAr

tiHi^Qib-f3A§

uff['QiU^h.c.). (4.5) 

This give; the additional contributions to the squark mass matrix oiT-diagonal 

entry P„ of m^A'^M cot. fl. Additional aquark-squark-Higgs couplings arise. We 

expect these soil supcrsymmelry breaking terms to contribute to A in a similar 

way to the terms already in (4.1d). 

The coupling of the squarks to the Iliggs bosons cor/ie from three places 

in the scalar potential. F«rst the D-terms contain contributions to the squark 



3if 

masses-and to the aquark-lliggs coupling thai are of 0(t/Mz). The r'-terms con­

tain the Yukawa pieces that contribute a mass to the squarks equal to the quark 

mass (m 4 ) , and terms of 0(gmq) to the squark-Higgs coupling. The F-lerina 

also contain the parameter | i which contributes to the olf diagonal entries in the 

mass matrix (See Equation (4.3c)) aa well as to the couplings. Finally the tuft, 

superaymmetry breaking terms contain the parameter* -4„»ie thai contribute to 

U»e ofl* diagonal terms in the mats matrix and in the couplings. Tlie soft super-

symmetry breaking parameters Siq and My above in (4.3) do not contribute to 

Lite couplings. 

The soft supersymmetty breaking parameters Mqt My and Aum§ are ad­

justed so that the ^quarks are sufficiently massive to have escaped detection 

while not so massive to destroy the stability of the electroweak scale to radiative 

corrections (i.e. the naturalness motivation for uupersyumtet-ry). The parame­

ters M^ and M'tj show up in radiative corrections to Higgs masses in diagrams 

like that sltown in Figure 4. In the renormalizalion of the mass sum rule, the 

combination of these diagrams that arises is shown in Figure 5. These diagrams 

sum exactly to zero. So while there are large corrections arising from A/Q and 

My to the mass of each lliggs boson, these contributions t itiiccl in the sum rule. 

The sum rule is therefore insensitive lo these paruiiu.-L<„.*> when they become 

large. 

On the other hand, the supersymmelry breakmg parameter A^ut^ as well as 

the parameter p contribute:! to the coupling* of the sqiiark to the Higgs bosons. 

11' this: parameter becomes large, substantial corrections can arise to the sum rule. 

It also generates mixing between the squark eigensliiles. There are constraints 
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oil Aqm$ f.-om other consideration!). When Aqm^ becomes large, it usually 

produces large corrections !o the rho parameter (although these contributions 

can be made to cancel against one «nother)[8]. In addition AHtne is bounded 

by the requirement that the correct vacuum is obtained. Specifically if A^nts 

id too large, the true vacuum breaks S(J(3) color which ia of course ruled out 

phenomeneiogicaliy. 

The expression for A in Appendix B is computed of three parts, A = 

A**f Aa-l*Ao- A n ** 0(&fp~) where m represents a mass parameter such-as the 

up quark maw or a parameter involving tb/j squawk sector such as Aum^f JI, Rip. 

of iris j . We leave A tti terms of the mixing anglai a, fit and 99 for convenience. 

Tlie expressions for these angles in terms of physical masses are tengUiy and not 

very illuminating. Expressions for a and 0 are given in Appendix A of Inference 

[36]. 

The terms in A« give tlte largest contribution to A fc* large quark and 

squark masses. The terms involving the off-diagonal entries in the squark mass 

matrix (Au»*6 &"d ft) give large contributions provided thesquark mixing angle 

0„ is not small. A3 contain* term* that are 0 (am£) , but these terms go to zero 

as the squark ma&i becomes large. This is a manifestation of the catiutlutiou of 

the diagrams in Figure 5. The terms in Aj of 0(a iu£) come from the Z vacuum 

jtularizution only. Ao is 0{t"^\ and la for our present purpura a negligible 

corrt-cLion to the mass lelaLiuu. 

We will illustrate the result in Appendix U by considering the tonU iLutioii 

from the tup quark and the top squark. I'our parameters characterize thesqtiark 

muss uiaLrix in (4.It). We can take these to be 111 ,̂ m^ , 0t aud ji. Then At»tQ 
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i . determine*!: 
On? -?n?)s in 20t 

Atm* = '' '» /i *»l 0. (-1 <*») 

First consider tlic raw in wlrirh ihrre is no sqnark mixing, i.e. 0t = 0. This 

is experts to be approximately the case for nil sqnark s|wars except possibly 

the top nqnartc. Wltrn Bt = 0°, the terms involving A,mCt and ;i Rive only a 

mrtall contribution to A. In thin event the Aims and /i trnns in the nquark maw 

matrix Are cnnrcling one another. See (4.3). If the top quark and top squark are 

very massive (mt,mi» Af»v, Mi/.M^.Afi,), we can neglect the other masses. 

Then we obtain 

So we have large corrections to the man relation just as there are large correc­

tions ( 0 ( m 4 ) ) in the Iliggs sector of the standard mode1[37]. One factor of mj 

arises in the integration over the quark loop, white the Yufcawa couplings at tlte 

vertices gives the other factor of mJ. We hare plotted the correction A in Figure 

6. We have chosen the parameters mt = lOOGeV, a = -48*. /? = 30° and /i = 0. 

For these parameters the tree level Iliggs boson masses are MH = 140 GcV, 

Mh = 40CeV and MA - 110 GeV and M/, + MJ = 2 x 10 4 GeV 2 , so that each 

side of Equation (1.3) is equal to 2x 10'GeV7 at tree level. So for A = TOOGeV3, 

the correction is only one percent. We have plotted A. for the case where 0t =: 0° 

in Figure 6a. The dependence on the squark masses is roughly logarithmic. 

The expression in (4.7) diverges when sin 3 0 approaches zero. This reflects 

the fact that the Yukawa coupling giving the top quark a mass must diverge 

in this limit. The Yukawa coupling giving the bottom quark its mans diverges 

when cos 2/? approaches zero. The non-decoupling of heavy quarks is just the 
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standard evasion of tlir decoupling thcorcm[38] that arises when a coupling con­

stant bemmcs largi\ Winn the snperaymmctric limit is taken and the external 

mnmrnla are set equal In zero rather than put on shell, the expression for A in 

Appendix H is zero. WIIHI the external legs are put on mass shell to obtain the 

physical masses, there are finite threshold effects that are in general non-zero 

even in the SUSY limit.. 

ir there is significant mixing of the scalar quarks, large corrections can arise 

when there are large mass splittings between the sqiiarks. In Figure 6b we have 

taken Ot = 20°. Notice that the corrections are again small when m^ & m^. 

If the sqiiarks have significantly different masses, then there is a large negative 

A. These large corrections arise from large squark-Higgs couplings that arise 

because Atm^ is very large. 

The results displayed in Figure 6 are typical. Other choices of the param­

eters mtt a, 0 and ft give similar results. If 9t ft* 0, then corrections tend to 

be small (i.e. the same order as the contribution of a t quark with mass mt in 

the standard model). If 0t is significant, then large negative contributions arise 

when |m? —m* | becomes significant. Negative values for A imply that the sum 

of the scalar Iliggs boson masses squared Af j* + M£ is suppressed relative to tlie 

pseudcecalar boson mass square.' Mjj. 

We note that large contributions to the mass sum rule are possible from a 

fourth generation as well, even when squark mixing is absent. As in the standard 

model the leading contribution for a heavy fermion (m/ » Mw) goes like 

Ti7sM37]. So a priori if a heavy fermion exists, we can expect large corrections to 

the masses in the Iliggs sector just as in the standard model. The results given 
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here, however, are valid for any femnoii mans, and it is only if mj » Mw that 

A4 can become very large. In Figure 7 we have held the squark masse* fixed 

and plotted A as a function of the top quark mast. The values for a, j3 and 

ft are tlte saute as in Figure 6. Notice that the correction A is positive as long 

as mt < RV,»m,v Thin k consistent with the radiative corrections to the light 

Higga mass in lleference [21]. 

The contribution for ft new top I' fa given as in (4.7) while the new bottom 

V will contribute (for Qy — 0) 

n2m* N /»«?. "'?, \ 

These contributions have tlie same aign. Tlus differs from tlie reiiormalbation 

of die p parameter In that the p parameter is protected by a custodial sym­

metry which is not broken by equal-mans feniiion doublets. The electa of a 

inau&hdegcnerate heavy doublet has been discussed before in the context of tlie 

standard niodel[3'j]. 
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V. CONCLUSION 

We have formulated the procedure for computing corrections to the lliggs 

mass relations in nupersymmetric extensions to the standard model containing 

doublets. An explicit calculation in Uie case with just two doublets (llie MSSM) 

was given. It was necessary to calculate self-energies of Higgs bosons and vacuum 

polarization tensors as shown in (3-41) and (3.49). Coupling constant and wave-

function renormalizations are not necessary at one-loop. Tadpole contributions 

cancel exactly. The results in (3.41) and (3.49) are not destroyed in tlie presence 

of other Higga representations (singlets, triplets, etc.) provided that no mixing 

between tliese fields and tlie lliggs doublets takes place. If mixing occurs, the 

tree-level mass relations (1.3) and (1.4) themselves will be destroyed as is easily 

understood in terms of tlte derivation of tlie mass sum rules in Section II. If 

a singlet or other state mixes with the Iligga fields, tlie relationship between 

the traces of tlte lliggs mass matrices will be destroyed. Tliese results were 

generalized to the supersymmetric extensions to the standard model with more 

than two lliggs doublets (Appendix D). 

We have performed an explicit computation of the radiative corrections to 

(1.3) from matter loops. We have found large corrections to tlie mass relation 

provided that the two complex squark liclds mix. This results from large sqtiark-

lliggs couplings. The puLciitiully large contributions of t>(<mi£) or 0(i\vij) to 

"'K&s particle mua.-*̂  from a heavy smiurk and slepton scclur in supersynuneln': 

tliuuriis is bidden in the sum rule, i.e. cancels between tin: l-:iins appt-aritig i>i 

the sum rule. Provided lliul squark mixing is negligible, :t is i>uss*' \a in i::iag>uc 
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extremely i^rpjr sfjuark rnwn without inriuring LII-RC radiative rorrerlionfl lo 

the mini rulf. 

/ 
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APPENDIX A 

Foynman Utiles 

In lhi<< appaidix we display some Fcynman rules that are needed in (he 

calculation of Higgs twsm self-energies in the MSSM. Other Feynman rules for 

the MSSM npjvar in IMrrrnres (3,9,32-34]. In Figure 8 we show the couplings 

of the Goldstone to tli«* sqiiarlts. We have left the srnmrks in the weak interaction 

eigercstates for simplirity. In Figure 9 we show the trilinear couplings between 

the Goldstone bosons and the physical Higgs bosons. CP conservation demands 

that only an even number of pseudceealars can emanate from a vertex. 
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APPENDIX D 

The Correction to the Maas Relation 

Tlte 0(a) corrections A can be divided into pieces 

A = A 4 + A 3 + Ao ( i l l ) 

where £» is the part of A where the nib power of the up quark maas or param­

eters in the up »;uark maw matrii (Buch as Aume, ft or the up squark masses 

themselves) occur. The results of the calculation are as follows: 
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W. sin2 nfFfnii,, ma„ A/,,) + FJmij.mo,, Mu) * KwHI$,sm*ft 

-3F(m„,m„,A/„)) 

+ cas;!o(F(ini,,nii1,A/k) + F(mi„mi„Af),) 

-SFJniu.niu.MkM 
+ cm' 0Fbnu, m,., MA) + sin2/?F(m„, m„, 0) 

. g?m^eMw»*6sin ft-t-/»ctie Qrlsin 2flu 

I6ir2MS,ain20 

x[sinct(F(mi 1,mi, iMH)- FJnii,, ma,, M«))J 

g 3 | ? lw^cf^w t n6 g o a <* — i*sin ft] am 2fl„ 
16T>M,\,IUI ,/> 

x J cos o(F(infi,, mi„ Aft,) - F(mi„ mo,, Afk))j 

r 
~61ir2M, 

,,,2' ' i a 2F(iHi,,ma,, M,0[A.m6COs 0- / is in 0f 
'M{vmrp\>-

+'2F(nif i,,»i i j,0)[ilo»n6sin 0+ttcm pf] 

- sin2 20„ I (F(ni,-„, nia,, A/(j)+ Ffnii,, ma,, Af|i))[/l„m« sin a +(j cos a ] 2 

('"('"a,, '"a,, AJi,)+Ftnii,, nii,, Ai/,))[/tums cus 0—/isiii a ] 2 | 

-cos 2 20 u 2F(nii1,mu,lAiii)[j4um6sin a + ficos a ] 2 



+<2F{mal,mat, Afh)[i4 l ttn«ens a—fts\n «t] 4 («.2<i) 



A 2 = [<os2 0„(T3 - e„ sin2 ft,,) + sin2 «„(«„ sin2»„)] 
8n2cos39„sin /J 

xlsin nros(n+ /()/'("«,,mi1 PAfH)-cos osin(o + /3)f(mjiI,nii1,Aft>)l 

+[sin2 0„(7O - e„sin2 «„) + cos2 C„(eu sin2 9.,)] 

x sin ocoela + ̂ JFtmfi^mij.MHj-cojasinfar + ^JFtmiij.niaj.Af),)] 

3j2m;iVt [ s i n J o A # ? C K | ^ M ) 
l6»2A/g,sin2^l " 

+«os2 aMlG(mu, m„, M/,) - cos2 fiM\G(mu, m„, M*)] 

J2"!8,*,: , 3 g V A 
— - — ' " K - -. 32»2co92ffu, floVam'flg, 

g'm„Nccoe(a + 0) . . . . . , • 
+ , . i „ . q si" 2fl„ /l„mesin a + (i cos oj 

x [cos 2 e u (T 3 -f u sin 2 0„) + «n2tf„(euBinJfl«,)]F(miil,mo,lMu) 

- [sin29u(T3 - e„sin2<L) + cos'0u(cusin ,e«,)lF(inaJ,maJ, M„) 

-cos 2flu(7b - 2e„sin20„)F(mo1,nii„AfH) 

n2nill/tf,sin(n- + fl) . -n . . , 
_»—!!_£—!—-L-i-sm 20„Mum6coe a-jisin o] 

IC»2cuszffu,sii.0 "' M J 

x|[cos2e11(7-i-eusin20„)+sin2ff„(e„sin2:'a,)JF(miiI,mu1,Mi, ,Mk) 



- l an 2 0„(T 3 - «„sin 3 «„) + cos 2 «„(*„ sill 2 fl.,)] *'(m,„, >"•;„ AfA) 

- c o s 2* 0 (T 3 - 2 t l i s in 3 e« , )F(mo 1 ,m i j , J» , . ) 

8» 3 COB ; 
! ^ - [ c a i ' M - l i + ^ a n ' M ' + « " i J « u ( « u 8 i » S 0 » ) 2 U ' ( n « , . i n i l , 0 ) 

I c o 6 3 e u ( - T 3 + tu i» i i , M+«<n , f l u ( e u « in , f l„ ) ] F ( m S | I i n B „ « z ) 

- - a i n 3 flu co» s S„H(nii„ me, , Mz) I 

9'm; 
"8i Ico» Jff, 

^ - 1 [Bin s f l u ( -T 3 + e„BinJ »„) 3 + CUB2 flu(e„6in2»„):,]F(iiii:„ nw.,0) 

[ « n 2 0 u ( - T 3 + cu sin 3 B„) + COB3 »u(e„Bir>3 «„,)] F(nia„ mo„ Af z ) 

- - s i n 3 » u COB* 0„H(ino,, ma,, Mz) (fl.2fc) 
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A 0 = d«i«t I cos2 »„fii - £U sin2 ft»)+sin2 8„(eu «in2 »«,)] !O*2ca620„, 

x [ cos2 (a + /J)F(ni,-„, ma,, MM) + sin !(o + fi)F{mn, , m*., A/*)] 

+ [ sin2 tf„(T3 - e„ sin2 0„) + coa2 «„(«„ «ina 0,,)] 

x f «o82(o + /*)F(rna„ mo„ Ma) + «o s(« + ^ ( m a , , me,, Aft,)] 

+i sin'2M^-2 e„«n 2e„) , 

x [ cos2(a + fflFfina, , ma,, MH) + sin2(o +• fi)F(mnl, ma,, itf„)] 

- T |^^^ | [a» 8 e u ( -T3+«ui«n 2 #„)+8in J » u (« u «n l «„) ] J 2G(m a i .m i l „M z ) 

+ fsin2 »„(-TD + «u sin' «„) + a » 2 «„(«„ Bin* »«,)] 2G(m«,, ina,, *fe) 

+ Bin2 e„ COB2 OuC(ma,, nv„ Afz) 

- H [ ( - T 3 + ^ w ' * . ) ' + (e„8in2#„)a]G(ro„,iH1,Mz) , (fl.2c) 

where Wc = 3 colors and 

> [ i . f *"'l + P ~ *)"'! ~ *P ~ *) m 3l m i l 
F(in,, 1112,1113)= I d i / n l — ! — ! —J 1. (H-3) 

0 

r; \ - \ , . A \ • "•• ' *"*' + P ~ *>" ' ' ~ * P ~ *>'"* 6(»l|,m 2 l inn) = / i/x x( 1 - *)ln 2 
u 

//(in,, 1112,1113) = / i / i i in[—*— ! '-i—s — ] . 

, (B-4) 

(u.s) 
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T3 is the weak tropin (which is +\ for left-handed uj>-lype qt.arkfi). 

The term —^r^sj~ ' n ^2 arises in the w ' r fn^rgy graphs with a quark 

in the loop. The contribution of each graph de|>rn<U on the external mninrn-

tum p 2 of tlic graph which is art equal to the physical Higgs mass when the 

rcnormalizatton conditions are applied: 

-J2?"**' = ^ ^ f ™ 3 o M j + a » a o i l l 2 - « « 8 W j l . (0.G) 
9Gir2co82PM( 9 6 * 2 A ^ « n 2 / ? l " h A* K ' 

This is an equality to this order in perturbation theory because there is the tree 

level relation 

•in 2 aMJ, + ct*7aM£ = ta*0M\ + s in 2 0Jtf|. (R7) 

If the external momentum of the graphs is set to zero ratlter that put on shell, 

then tlte term (B.6) vanishes. 

The expression for A in (B.2) should be independent of the renormalization 

point fi0. We have checked that this is indeed the case in both the analytic 

expression and in our computer program for calculating A, which provides a 

partial clieck of our answer (equivalent to the cancelation of divergences). We 

have also verified that (3.42) b satisfied which is a check on the value or the 

Goldstone aelfcnergy that enters in (3.41). 

The ronlrib-jtion Tor down quarks and down squarks is easily obtained from 

this result. The substitutions are shown below: 

0U — 0dt (tf.8«) 

TTlu —* H i d , (0.86) 
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""fii. . — "•<(,.,. ( f l 8 c ) 

e„ — ed, (B.8rf) 

sin 0 — cos ft (D.8/) 

cos/?— sin ft (fl-8j) 

cos a —* Bin a, {D.8h) 

sin a —• cos a C-80 

The last four equations imply sin(a+0) —. sin(a+/7) and cos(a+/}} —• — cos(a+ 

/?). To obtain the proi>cr result requires the further substitutions 

sin(a+/J) —-ein(c + /3), (fl.8j) 

cos(a+/3)-»-cos(c» + 0). (J3.81-) 

For example, the first two terms in Aj for the down quark and sqtiarks should 

be 

5 ^ g ^ [ c o s ^ < i ( T 3 - . J » n » 9 „ ) + ain='«d(e<lsin'fl„)J 

x [cos acos(ar + /?)F( r aj lim

<j tAfoJ+sin asin(<k4-^)F(mj ,mj ,Mh)] 

+[sins OJJ3 - edaiiis 9.,) + cos* ffd(edsin3 »„)] 

x Jcos occ«(i«+/3)/''(nijj,m<ji,A*H)+8in asin(a + P\F(mjt, m^, Mi,)]. 

(B.9) 

The contributions for the lepton and slcpton loops are given in terms of 

the contributions for the up and down quark loops. The electron and selection 
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contribution is obtained from the expression for the down quarks with tire ap­

propriate mam arid S(/(2) x (J(l) quantum number replacements. Similarly the 

contributions from the neutrino and Ute sneutrino are given by an expression 

Bimilar to that for the up quark with the appropriate mass and £1/(2) x t/(l) 

quantum number substitutions. 
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A P P E N D I X C 

Tadpole Contributions 

In this appendix we demonstrate explicitly that the tadpole contribution 

to A in (3.41) and to A in (3.49) vanish in the MSSM. l i t e result can be ami 

explicitly by examining the Feynman ruks tliat arc present in the MSSM. In 

the two doublet model there are two non-zero tadpoles shown in Figure 2. We 

display the vertices that are needed for the calculation of the tadpole diagrams 

in Figure 10. The contribution to the wim in (3.41) from the tadpole diagrams 

in Figure 11 are now easily Been to vanish uaing the couplings in Figure 10. We 

also display the vertices needed for the tadpole diagram* contributing to (3.49) 

in Figure 12. Tlie combination of tadpole diagrams in Figure 13 vanishes. 

These results generalize to the IN Iligga doublet models discussed in Ap­

pendix D The ll's in (D.16) and (D.1B) therefore include all contributions to 

lliggs self-energies besides tadpole diagrams. Similarly, tadpoles are nut to he 

included in tlte contribuiioiia from tlie vacuum polarization tensor either, hi tlte 

2N Uiggs doublet model there are many more non-zero tadpole diagrams. 
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A P P E N l / I X D 

Generalization lo2/V lliggs Doiilili'l.1; 

Model1! with more than two lliggs doublets have mass relations analogous tG 

(1.3) and (1.4). In an extension of the standard model with 2N lliggs doublets, 

there are 8N lliggs degrees of freedom. After spontaneous symmetry breaking 

three of tliese are GoMstone bosons, leaving AN -2 charged lliggs bosons H* 

and AN — 1 neutral Higgs boson. We shall denote the neutral scalar lliggs by 

lh and the neutral pseudoacalar lliggs by Ai. In the supcrsymmetric version of 

(lie 2N doublet model, the couplings and masses in the lliggs aectcr are again 

constrained. The mass relations that arise are[5] 

7N 1N-1 

JW-I a«_i 

E **?,*= E*'i+** < f t 2 > 
i-i ' i=l 

whidi generalize (1.3) and (1.4). 

The lliggs potential for the model in the extension with 2N doublets is[5] 

aw sw . aw 
V = ^mjrf* - 5>«W*i +*I<M + V £ l(-ir+Vj*|' 

+ J I I X : D - ' I , H * H • (o,3) 
This equation is tlte 2iV doublet analog of (2.4) where arbitrary soft su|iersyn.-

metry breaking terms have been included. There are |H*aib|e terms that are 

$tij4>i4>i that can be absorbed in the aofi-supersymmrtry breaking terms as in 

tlte two doublet case. 
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There are directions in lliggs field space where the quartte couplings vanish. 

For example, in the four doublet model the quartic coupling? vanish wlien 0 i =r 

02 a«d 03 = fa as well as when fa — fa and 03 = 02-

Tlirre is now a vacuum expectation value t/j for each of tlie 2/tf doublets 

0,. We can eliininntt- the rri* in favor of the veva v.. The neutral scalar and 

neutral psrudoHcalar mass matrices are 2JV x 2N matrices. The neutral scalar 

mass matrix Af2 is giv*n by 

while the neutral pseudoscalar mass matrix M12 k given by 

Ma has a zero eigenvalue corresponding to a neutral Gohbtone ineott. Since 

both A/ 2 and M" are real and symmetric, they can be diagonalized by or­

thogonal transformations that preserve their traces, i.e. E f Mfti — E» Mft and 

E i M% = E i *'« "»'"« (D.I) and (D.5), one can obtain (D.l) and (D.2). 

The rcnOrmalization of the mass relations in (D.l) and (D.2) is a generaliza­

tion of the arguments in Section III. The wave-function renormalization matrices 

Z'J* and Z,'/ 2 become 2W x 2/V matrices. The is matrices (D.4) and (D.5) 

pre symmetric and arc diagonalized by 

(Af?)„ = Oj'Af2Os, (M].)D = Op,MaOp (0.6) 
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where Os and Op are orthogonal matrices. (AiJ)u and (A(p)D are diagonal 

matrices whose nonzero entries are the masses Ki]tt and M\t respectively. Wc 

shift parameters as in (3.6): 
I 

(».?)» = ml + JSmJ. (* * J). C 7»> 

(*()» = •»* + <«(. (OJt) 

(M|), = Ml+*Mf. (D.7c) 

Tiie imrenonnatized propagators are given by formulas analogous to (3J2): 

irs(j»s) = ( Z y , ) T 4 V - ( Z y , ) T ( M | ) t . z y 2 ~ « A » I . (D8) 

,TP(p') = (Z'r'Yz'J'p1 - (zJ/'ftMrJoZi/" - «*'p (D-9) 

where <M| = Oj'*M l O s and *Mp = OpliMnOP. Ml* and 8Af* are analo­

gous tu the niatrica constructed in the two lliggs doublet case. Since the trace 

of the matrices is invariant under orthogonal transformations we have 

Tr«Ml = TrM«*. (O.10) 

TrtMJ,=Tr6Mn. (DM) 

From tlte expressions for tlte mass relations in (D.4) anil (1X5) we have 

Tr6M* = Tr6M" + tMl (0.12) 

so that 

Tr«AJJ = Tr6Mp + «AlJ. (D.I3) 

The rcliormaiization conditions analogous to those in (3.*2l)j are[27| 

•f«(«.(*/«,)= 0 (no«urii), (£M4u) 



GO 

•f«.«,(»'«.) = ifH. H j («g,) = 0 (no.um). (B.lJfc) 

I | - II.II.(*'H.) = 1 (no«uni). (O.llr) 

If we define the radiative corrections to (D.l) as 

2N 2N-1 

E *'i. = E M i + A ' I + A < a i 5 > 
»=i •=! 

we obtain the result 
is IN 

A = - £niit,j.<M?f()+£iUjA,(M2.) - *«(*!> (o.w) 

wltere the sum over tlie pseudoscalar Higgs i4j self-energies includes the neutral 

Goldstone boson self-energy HGG(O)- U can be shown that the tadpoles cancel 

just as in tlie MSSM. Similarly it can be shown that the correction A to (D.2) 

defined as 
2N-I 2N-I 

E "I* = E " 1 + u * + * <°-"> 
is given by 

A =-E n «?»? ( M k ) + £ n w M * ,> - j w M « '> (D.i8) 
where the sum over tlie pscudoscalar lliggs Aj self-energies includes the neutral 

Goldstone boson self-energy IIGG(II), and tlie sum over the charged Uiggs bosons 

//* self-energies includes the charged Goldstone boson self-energy 11G±G*(U)-
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F igure Cap t ions 

Figure 1: Self-energy diagrams - The self-energy diagrams are defined as 

shown willi the external legs amputated. X,Y = H,htAtG, In the on-shcll 

scheme the external trgs are put on shell. 

Figure 2: Tadpoles - The two kinds of tadpoles thai exist in I he MSSM. 

Figure 3: One-bop Corrections - The diagranv calculated in tlie MSSM. 

There are the following number of nonvantshing diagrams of each type: (a) 4, 

(b)12,(c)8,(d)l,(e)3,(f)2. 

Figure 4: Quadratic SUSY Breaking Corrections - Contributions to lliggs 

boson masses that are quadratic in a scalar mass arise from diagrams of this 

topology. 

Figure 5: Cancellation of Quadratic Corrections - Tito corrections to tlie 

mass sum rule thai are {jimdratic in ilia squark mass cancel in the above di­

agrams. The restriction on naturalness from corrections to the lliggs boson 

masses is therefore hidden in the sum rule. 

Figure G; Ajm ( |) - We have plotted the correction A using the full expres­

sion given in Appendix II. The parameters used are given in the text. Tite squark 

mixing angle is 0t - 0" and 20v in Figures 6a and 6b respectively. The curves 
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in \Uv figurm rrj.rcsciit in,-, = (a) 100 GeV, <b)4tH) GcV, (c)700 GeV, («l)IU0O 

(7rV, (c)1300 Gr.V. Large corrections occur when 0t ~f- 0, anil the s*|ii;irks / ( 

and t2 have different masses. This occurs when the coupling parameter /1(«>6 

IKTOIUCS large. 

Figure 7: A(m*) - We have plotted A as a function of the top quark mass 

for five values of the squark masses: trif, = m^ == (a)t00 GeV, (b)400 CeV, 

(c)700 GtV, (d)1000 GeV, (e)1300 GeV. The radiative corrections behave like 

amt fM\ for large mt. The contribution can be of either sign depending on tlie 

relative abes of the top quark man and the top squark masses. 

Figure 8: Feynman Rules - Feynman rules involving Goldstone bosons and 

•quarks. We have written these in the ux - fin basis for simplicity. These can be 

converted into Feynman rules in the mass eigenstates basis vi - 02 by a rotation 

in the squark fields. 

Figure 9: Trilinear I iggs Couplings - Tritinear Iliggs couplings involving 

Goldstone bosons. 

Figure-10: Trilinear Tadpole Couplings I - Trilinear couplings relevant to 

tadpole contributions to (3.41). 

Figure 11: Tadpole Sum I - These diagrams contribute to the sum in 

(3.41). The couplings in Figure 10 show that this contribution is zero when the 

diagrams are summed with the appropriate signs. 
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Figure 12: IVilinrar Tadpole Couplings II -IVilincar couplings relevant to 

tadpole contributions ID (3.4!)). 

Fij;iim 13: Tadpole Sum II - These diagrams contribute to the sum in 

(3.4P). The couplings in Figure 12 show that this contribution is zero when the 

diagrams are smium-il with the appropriate signs. 
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