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ABSTRACT

Imposing supersymmetry on a Higgs potential constrains the parameters that
define the potential. In supersymmetric extensions to the standard model con-
taining only Higgs SU(2), doublets there exist Higgs boson mass sum rules and
bounds on the Higgs masses at tree level. The prescription for renormalizing
these sum rules is derived. An explicit calculation is performed in the minimal
supersymmetric extension to the standard model (MSSM). In this model at tree
level the mass sum rule is M3 + M? = M3 + M}. The results indicate that large
corrections to the sum rules may arise from heavy matter fields, e.g. a heavy top
quark. Squarks significantly heavier than their fermionic partners contribute large
contributions when mixing oceurs in the squark sector. These large corrections
result from squark-Higgs couplings that become large in this limit. Contributions
to individual Higgs boson masses that are quadratic in the squark masses cancel
in the sum rule. Thus the naturalness constraint on Higgs boson masses is hidden
in the combination of Higgs boson masses that comprise the sum rule.
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L INTRODUCTION

Qne nf the most important problems facing particle physicists torday is our
lack of knowledge abont. the mechanism of spontancous clectraweak symmetry
Lreaking in Lhe standard model. The neutral and charged current interactions
of the standard mode) have been convincingly verified in many experiments.

1n the future it will be important to test the non-abelian nature of the theory

and understantd the mechanism that is ible for the sy y breaki

¥ Y B

SU(2)1. x U(1)y — U(d)ea. These is certainly new physics to be understood

in the syminetry breaking sector because we know that the symmetry breaking

takes place. Unfortunately the effects of el k symmetry breaking sector
are netariously difficult to detect. The elementary Higgs bosons or the bound
slites of a strongly interacting symmetry breaking sector might be too massive
to oh=erve directly, ancd there virtual effects are screened in electsoweak radiative

corrections.

Most of tle models that have been proposed to cxplain the symmetry break-
ing have employed gange theories, and with good reason as they have been so
successful in their application to the standard model. Dynamical symmetry
breaking ia perhiaps the most conservative solulion to the symmetry breaking
puzzle beyond the elementary scalar Higgs. This form of symmetry breaking
has already been scen in the QCD sector of the standard model. A bit more
daring is supersymmetty, in which the symmetry of spacelinie transformations is
extended fo include transformatinns between fermions and hosons. No evidenre

for supersyminetry exists in nature, bul physicista have for a long time been in



the businesss of inventing new symmetries.

(";\rrd} with a lack of exprrimental information ahout the clectroweak sym-
metry breaking seetor of the standard mordel, theorists have invented there own
constraints as a guide for further research and progress. OF these the hicrarchy
probiem has probahly seccived the moat attention. Physicists hope to one day
unify alt of physics at some large energy scale. ‘The hierarchy problem is juel the
question of why the electroweak scale and the proposed unification scale around

the Planck mass are so divergent.

Closely related ta the hierarchy problem is ihe problem of natural As

suming that a hierarchy is generated al tree leve}, how is the hierarchy preserved
once radiative correctinns are introduced? Since the new physics is still unknown,
the best we ean do is take the view that the theories of today are effective the-
ories below the scale of this new scale, and apply a cutoff A to divergent loop
diagrams which embodies the unknown physics. However, the masses of fun-
damental scalar particles are subject to quadratic divergences. So if the cutoll
parameter A is of the order of the Planck mass, then it is hard to understand

why the Wiggs bosons remain light.

In technicolor elementary scalar hasons are done away with entirely, and a
confining gauge theory like QCD is employed. The fundamental states of techni-

color are fermions and gauge bosons, and fermion-antifermion condensates lead

to breaking of the electroweak sy 1y. In supersy try scalar bosons are
kept in the theory, but the new symmetries that exist ensure that the quadratic
divergences cancel leaving only the milder and tolerable logarithmic divesgences.

The price to be paid lor introducing supersymmetry is the introduction of many
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new slates as each bosonic field must have a fermionic field that are connecled
by the

ry transi Li It i@ the combined contribution of the

boeons and their fermionic partners that give the vanishing quadralic divergence.

Supersymimetry mnust be broken. Exact supersymmelry would require that
the supersymmielric parlners hisve exaclly the same mass. Since no such slates
have been obeerved, we must deviae some means of breaking supersymmetry
and boowting the mames of the supersymmetric particles to values above the

range of present obeervation. The requi of Iness now to itsell

P

as a linit on the of try breaking that can be present. If

PETY

the supersyminetric pactners are sufficiently different in riasy, then we have the
natusslness problem all over again. The quadratic divergences may still cancel,
but corrections Lo Higge mass=s Lhat are quadratic in the mass of the massive
supersyminetsic partoer will zemain. Thus the supersytumietric partners must
be heavy enough to have eacaped detection while nat 50 heavy to reintroduce
the problem of naturalness.

A good place o look for the radiative effecta of the supersymmetric particles

i in the lliggs maseey th | Indeed the natural constraint is usually
discussed in the context of the lliggs masses. 1liggs busons couple to all mas-
sive particles and is therefore sensitive to radiative eflvcls from all sectors of the
theory. In addition Jiggs masses are particularly vulierable to radiative correc-
tions due to a heavy 1op quark (or & fourth generation) as the Higgs-quark-quark

coupling is proportional Lo the quark mnass.

At the moment supersyminetry is the only known way to reconcile the

vast dilference between the electroweak and GUT scales while still retaining



scalars as fundamenta) ficlds. We shall refer to the two-Higga model as the

persymmetry extension to the standard model (MSSM). In this thesis
we calculate eadiative corrections from quark and squark loops to Higgs bason
mass relations that arise iﬁ the MSSM. Radiative corrections to Higgs masss
in the MS5M were first calculated in Reference [1] using the effective polential
formalism. Iowever a heavy top quark was not fashionable at that time. The
radiative corcections arising from loops containing neutralinos and charginos to
the Higgs boson mass sum rules have been considered in Reference [2]. No large
corrections to the mass relations were found unless a dimensionless coupling
constant becomes large. We find that large corrections can occur for quark and
squark loops if the squark-squark-lliggs couplings are large. We also find that a
large quark mass can yield large radiative corrections to the mas sum rules. In
addition we develop a formalism for calculating radiative corrections to Higgs
mass relations in a supersy ric extension with an arbitrary ber of Higgs

doublets.

In the standard model, a single Higgs SU(2) doublet suffices to break the

elec |

y y. In supersy i jons of the standard model,

at least two d are

quired to cancel lics (the Miggs bosons have
fermionic superpartnery) aud to give the up and down quarks a mass3). The
empirical fact that p = 1 suggests a custodial symmetry in the Higgs sector. At
tree-level there is the well-known result{4):

> (ATAT: —Y)ie,
p= L-(“-()":-.;)[} UI?Y. Jojei (1)

‘The inddex i runs over the Higys representations. T'is the weak isospin, Y is the
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hypercharge and ¢ = ]{%) for complex {real) represenlations. A ing p= 1
does not result from tuning the vacunn expectation values v,, we obtain the

requiremient

Eh+1P -3 =1 (1.2)

This custodial symmetry can be realized by taking a Iliggs sector that contains
wiak SU(2) doublets (T = L,Y = £1) andsinglets (T = 0,Y = 0). Other sepre-
senlzlions are possibie, but Lhese have large dimensionalities and appear rather
ad noc. The standard model containa just one complex Higgs doublet. Three of
Lhese four degrees of freedor are ealen by the W and Z gauge basons, leaving a
single physical Higgs baron. In this paper we ate primarily concerned with exten-
sions of the standard model that have two Higgs doublets only. The two-Hizgs
doubict motde] has eight degrees of freedom in the Iliggs sector which become
there neutral Higgs bosons(H, b, A), two chasged Higgs bosons(iit, H™), and
the usual three Goldstone bosons(G, G, G ) that are caten by the W and the
Z. H and A are CP-even eigenstales while A is CP-odd. We follow the usual
practice of calling these acalars and peeudoscalars respectively to indicate the
form of their

plings Lo fermi The g ] two-1liggs doublet extension of
the standard model therefore has a much richer pher:omenology than does the
simple standarzd model. ‘The general two doublet model (without supercymme-
try) has quite a bit of arbitrariness in the masses and conplings of the physical
1liggs bosons.

We will consider the supersymmelric version of the two-lliggs doiblet ex-
tension to the standard model(3]. The restrictions imposed by supersymmetry

constrain the couplings in the Higgs sector and lead Lo mass relations for the
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physicat Higgs bosons. In addition, st tsce level the lightest meutral Higgs h
musl be lighter thag the Z, the heaviest neutral Migga / must be heavier than
the Z and the chasged fliggs #+ must be heavier than the W. In fact the

first two inequalities remain true for supersymmetric extensions of the standard

model containing an arbitrary ber of Higgs doublets (containing no Higes
singleta or other representations){s) though the charged Higgs does not have to

be lighter than the W in these cases.

In this model, there exist the tree level mase sum rules
MP 4+ ME = M3 + M2 1.3)
and
Mis = M3+ My (1.4)

We explicitly calculate the O(a) cotrections to the relation (1.3) arising from the
quark and lepton sectors. The corrections to (1.3) and (1.4) will ali be O(a) for

the one-loop calculation since in ic models the cubic and quartic

couplings in the Higgs potential are related to the gauge couplings ¢ and g'.

There is no atbitrary coupling in supersy ic extensions of the standard

mode) such as the quartic coupling X in the standard mode). ‘The philosophy is
therefore slightly dilferent in the renormalization of the mam relation in (1.3) of
the MSSM. The suin rule in (1.3) involves physically measurable masses, without
any reference to couplings. So we can take these masses as the parameters that
define the Ihiggs sector, and find radiative core- ions to (1.3) in terms of these
parameters. We find that large corrections to the mass relation in (1.3) can arise

from matter loops but only if the significant mixing occurs between the squark
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fields, or if there in a heavy quark.

Large corrections (O(a“'—;';-) where mg is a quark mass) Lo the Higgs boson

masses arise as they do in the standard model. The squark § corrections to Higgs

masses that are Ofam3) are quadratic in the supersy try breaking scale. If
they become large, they destroy the stability of the electroweak scale Lo radiative
corrections, necessitating large subtractions that require unnatural fine-tuning
order by order in perturbation theory. We find that these contributions can-
cel exactly in the renormalization of the sum rule. Therefore the naturalness
conetraint is “hidden” in the sum rule. Mixing between lelt and right handed
squarks occurs in general. [If the off-diagonal entries in the left-right squark
quark mass matrix are large, then large squark-fliggs couplings can asise and

resuit in large corrections (o the mam relation.

In Section 11 we review the aspects of the MSSM that are needed for this
work. In Section ]11 we explain in detail the [ lism for lizing the

Higgs sector of the MSSM. We discuse the results of an actual calculation we
have performed in the MSSM in Section IV. Since the physical mawses of the
Niggs basons(H, h, A) and the Z are measurable, the O{n) corrections to the

mass relation in (1.3) is & physicall b tity. In A dix A we

Y { L2

display some Feyninan vertices that are needed to calculate the lliggs sel-energy
diagrams in the MSSM. In Appendix B we display the full result for the cor-
rection Lo (£.3) arising from the up-type quark and up-type s-ark loops, ‘This

result is easily generalized Lo all contributions from other loopy involving yuarks,

} and their sup ric partners. In Appendix C we show that the

tadpole contributions cance) in the MSSM. Finally in Appendix D we discuss
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how the formalism developed in Section 1H can be generalized to models with
more than two Hliggs doublets.

Other work on radiative corrections to Higgs boson mass sum rules in the
MSSM has also appeared{2,7,8]. The calculation in Reference [6] is a com-
plete one-loop calculation of the radiative corrections from the fermion-sfermion
sector. The propagating squark fields are the mass eigenstates, and the renor-
malized masses are the physical masses defined aa the pole of the renormalized

The only approximation is that flavor mixing is neglected. This is

eauily reincorporated into the cesult.



Il. THE MINIMAL SUPERSYMMETRIC EXTENSION
OF THE STANDARD MODEL

e shall follow the notation of Gunion and Haber[9] with the one exception
that they refer to the neutral Higgs bosons H, h, A, and G as 1Y, 113, 113, and
G respectively. Throughout this paper any mass without a subscript will be

2 physical mass(e 5. My, My, etc.). Any subscript on a mass parameter (e.g.

(Mu)s, (Mh)r, etc) indicates that this p is in g | different from
the physical mass. The definitions of these maas parameters will be given when
they asise. Our review will be brief, and the interested reader is urged to consult
References [3,5,9] for more detzils about the MSSM.

Supersymmetry requires that there be at least two Higgs doublels. The
MSSM i minimal because it contains only these two Higgs douhlets and the

p content y to explain known ph logy. Since it

is the simplest viable supersy tric model, it is the natural place to begin an
investigation of radiative corrections in the Iliggs sector. Call the two complex
doublet scalar ficlds ¢, and ¢;. The Higgs potential develops an asymmetric
minimum, giving rise to spontaneous symmetry breaking. Then ¢, gives mass
to the d-type quarks and squarks, and ¢z gives mass (o the u-type quarks and

squarks.

The MSSM can be obtained as the low-energy limit of a supergravity the-
ory. “The renormalization group equations are used to run the values of the
parainelers in the supergravity theory that obey certain boundary conditions at

the unification scale. In this way constraints are placed on the parameters that
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define the MSSM. We shall ignore these constraints which can be imposcd at
any time. hnpusing Hise constraints restricts ourselves to just this model, and
weak-scale effective supersymmetry can arise in 8 move general way[10].

Supersymmictry constrains the otherwise independent quartic coupl in

L&

the MSSM to be conibinations of the gauge couplings g and ¢’. This implies
that the Higga sector of the MSSM is weakly coupled as the coupling constanls
g and ¢’ are cerlainly perturbative. We are allowed terma up to cubic order in
the superficlds in the superpotential by renormalizability, and it must of course
be g'auge invariant. The most general superpotential that conserves R parity

containa the following pieces:
W = s (il + SR P R+ K HIQ D+ LHIGD) @1

where Q and I are the weak SU(2) doublet quark and lepton superfields, [
and D are the weak SU(2) singlet quark superfields, and R is the SU(2) sin-
glet lejiton superficld. Onjy the first term in (2.1) contributes to the Higgs
polential. The other terms contribute to the full scalar pocential. f, f; and
J2 are the Yukawa couplings that yield the fermion massea and the masses of
their supersymmetric partners. We can relax the condtraint that the superpo-
tential conserve R parity. An interesting discussion of some alternative models
of low-energy sunersymmetry can be found in Reference {11].

‘The scalar potential receives contributions from the so-called D terms and

F terins. These are

V= JID°D° 4 (D] + FF: @2)



where
! 4ea .
D= EgA‘aiJAJ" (2.3a)
i . .
D = sduMA+E, @:30)
aw v
Fi= A, (2.3¢)

Here A; denotes a genetic scalar field appearing in the superpotential. £ is the
Fayet-lliopoulos term[12] that may arise for U(1) gauge groups. The hyper-
charge awignrzzite of the two Niggs doublets are yy = —1 and 33 = 1, ensuring
anon.aly cancelation. Therefore, cne Iliggs doublet gives maces Lo he up-type
quarks, while the other gives masses to the down-type quarks, so the MSSM by

const;uction eliminates the unacceptable flavor-changing neutral cusrents.

In general we add all possible soft y breaking terms{13] that

can contribute Lo the scalar potential. These terms break supersymmetry but in
such a way that no quadratic divergences appear. This allows the supersymmetry
to be broken s is necessitated by phenomenology while preserving one of the
major motivations for supersymmetry. The soft supersyinmetry breaking tenes
must be of dimension three or Jess in the fields. The liggs potential is then
gven by (we assume that the Fayet-lii~pouloa term awociated with U(l)y is

small and neglect it)

3 2
v =322 oleton—slatéal+ L (ohor - sl el ol +Vaus
uz=l
(2.4a)

which can be rewrilten

= Eg’ [abirie 152 — 2000 13) (005 1B3) + (11} 13)* + (03 1))
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+—sg'°(n;-u; w BRI + pPULHE + B HE) + Viope (2.4)

where
Viogs = i 3 Hi + m3 113 H — (m¥ei5 451 + h.c.). (24¢)

the Higgs potential arises from three sources: {1) the Lesms proportional to g and

&' that come ferm the D terms, (2) the term proportional to [f? that comes from

the F terms and (3) the soft y breaki ibutions in (2.4¢).

We are using the notation|0]

{o = Hi*Hj 2.4d)
o162 = HirHj (24¢)
olda = i, ©@a))

In this notation i} and H7 are the neutral component of 7}, ard Hj respectively,
whils HY and H)} are the chasged components. The quantities m;, mg, and m);
are arbitrary mass parameters, and those lenms in (2.4b) that depend on f?
can be absorbed into the soft supersymmetry breaking terms of (£.4¢). It fuw-
energy supergravity mudels 1n, is proportional to p, but we will consider a mor=
genera) MSSM and let 2 take any value that produces an acceptable vacuum

h

(see below). OF course p still hag

q ony logy; it apy in
the squark mixing matrices for example. See Section 1V below.

A troubling aspect of the MSSM is the very existence of the pasareter
p. When the MS5M iy viewed in the conlext of supergravity or grand-usidfied

models, it is hard to understand why. # does not have a value of order the

Planck or the GUT sca'e. This hierarchy problem can be cured by impasing an
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additional symmetry. IL is necessary Lo remove g a9 a fundamental scale in the
theory. Two ways this can be accomplished are by going Lo a superstring model
for which the lliggs mixing term is generated when a singlet is present or by

expandir 1 the R parity Lo be a coniinuous symmetry(14].

This Higgs potential has a minimum away from 1y = iz = 0 so sponta-
neous symmetry breaking occurs. It is possible through a choice of phase to
choose the vacuuin cipectation values to be real and non-negative. We are as-
suming no CP violation arising in the Iliggs potentiz). We define v; and v to

be the vacuum expectation values of Hy and /{3 respectively 80 that

(H-)=('|']‘). (Hz)=(°). (25)
v

To obtain the correct tree level mass M3, = 1970%, we require v} + v =02
The Higgs masses arise from the quadratic parts of the Higgs potential.

Define the scalar and pseudoscalar pasts of the charge-neutral Iliggs boeon fields

by

4

H =y + S +iP) (2.6a)
Hizv+ —‘ﬁ.(sﬁm). (260)

H and h are jinear combinations of S, and S, while A and G are lineas com-
binations of P; and P,. The factor of /2 is included so the kinctic encrgy
terms for the physical lliggs boson fields will have the cananical form. The soft

supersymmelry breaking terms include

mPH{ HY + m31ii B — (mbei; 110 + hcl), (X))



which contains the charge-neutral terms
1 1
3 wd(S? + P?) + Em;(s; + P}~ mi(5,5: - P P). 2.8)
The F-terms contribute
WP 0T + M H) (29

which we ahsorb into the soft try breaking contribution. In order

PETsY

to break SU(2)L x U(l)y the Higgs potential must have a minimum away from
I = Hy =0, 80 that

mimj < mi,. (210
Notice in Equation (2.4) that in the direction ¢y = ¢3 the quartic terms in the
iggs potential vanish. Therefore we sequire

m} +m} > 2m}, 1)
to prevent the Higgs potential from being unbounded from below in this direc-
tion. Collecting the quadratic parts arising in the D-terms

§(6° + M H] ~ HEHEP, @1
2+ 70 - D)+ VB ~S) + 35 - S+ PE- IR, (219)
Lo o6l DS - S R P s s Q1)

the mass matrix in the scalar sector is given by

2 mi+ 307+ %)l —v])  —miz+ L+ )mwe
Mg = V(o2 4 o' 24 1(o2 s otz oz ) (219)
-z + (7 + 9 v mi+1(9% +97)(30F ~ o)
while the mass matrix in the pseudoscalar sector is given by

o [ mie i el - o) iz
Mi= ( (] ™2 mi+ L(g® +¢)vE - v?) (2.16)
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‘Taking traces we obtain the sum rule in (1.3). The crucial point to notice is
that the soft-supersynumetry breaking terms contribute equally to both sides of
the sum sule. In other words, the sum rule is a result of the supersymmetric

structure of the D-Lerms only since gauge invariance requires that contributions

from both the F-terms and soft-sup:

Y ty breaking terms cancel.
Two parameters in the mass matrices above are determined by the others

via the minimization condition. So we can solve for my and mz in ters of 2,

vy, and vy:
md=mi, 3 - -‘—MZ cos 2P, @nm
| =Mz z g -
v 2
v 1
mi = mf,;’l +5 M cos26, (218)

where we have defined tanf = . Then the mass matrices can be written
M= mip 2+ MZcoe?f  —myz+ LMZsinfeosf (2.19)
TN —muat dMBsinAcs . mbLl + MZsin?g )’ )
and
2
Mi= ( Wiz 2 ) . (2:20)

mz m?z'.‘t
‘The pscudoscalar mass matrix has a zero eigenvalue which cosresponds to the
neutral Goldstone boson. The eigenvalues of the mass matrices M2 and M2 ace

related by

M = 3[M3 + M3+ fi0r3 + MR —amEngestas].  @21)
‘Therefore My, < Mz and My > Mz au tree level. These results generalize to
the case of 2N Higgs doublet models{5). See also Appendix D.

In a non-supersyminetric two doublet model the Wiggs musses My, My,

and M, and the mixing angles are independent quantitics. Supersymmetry, by
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constraining the quartic couplings, reduces the number of parameters necded to
completely describe the Miggs sector at tree level to just two. Quantum correc-
tions introduce dependence on the other masses and couplings in the theory.
When the M55M is obtained from low-energy supergravity models, tan 5 >
1 is preferred. In these models a heavy top quark is required to drive the renor-
malization group evolution and ablain the requisite electroweak symmetry break-

ing. Therefore v, larger than v is favored.

The existence at tree level of a liggs boson lighter than the Z bason has
been of much interest recently as a Z factory has become available. If My < Mz,
then the decay Z — Z*h is kinematically possible. This processes is suppressed
by a mixing factor relative to the same process in the standard model. If the
pseudoscalar Higgs A is also light {which is not a required condition in the
MSSM), then the decay Z — Ah may also be passible. Experiments at LEP

have used these processes to rule out regions of parameter space of the MSSM[15-

16]. A discussion of the current status of these iments from a theoretical

perspective can be found in Reference (17,18).

Of course radiative corrections are inportant as well. Several recent caleu-
lations indicated that indved at one-loop the lightest Miggs boson can be much
heavier than the Z boson[19-22]. The necessary ingredient in these calculations
is a large feriion nass (speeifically the top quark mass). A heavy top quark
mass i3 an important correction ever for the sum rulesf6].

If a singlet superficld NV exists in the theory new terms can be included in the
superpotential, an example of which is X:.-jllfll‘;N. In Eg superstring inspired

models the two Higgs doublets are accompanied by a singlet[23]. The new terms
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in the superpotential can give rise to quartic terms in the Higgs potential. in
addition there is no guarantee that A is sinall, so stronyg coupling is a possibility
in a supersymmetric mocel with an SU(2) singlet.

The masses of the Higgs bosons can be obtained from {2.4) using the vacuum
expeclalion values in (2.5). The mass matrices must be diagonalized to obtain
Atd, M2, and M3, In the MSSM there is the tree level niass relation given in
(1.3) where M), < Mz and My > Mz. Beyond tree level this relation is no

longer exact but receives O(a) correcticns. To imp the renormalization

procedure, we fix My, Ma,and Mz to be the physical masses which can in
principle be mensured by experiment. Then the physical mass of the other

neutral Higgs boson 4 is given by a relation
Mi=Mi+M3-ML+A 2.22)

where A is a correction that is O(a). There are two free parameters that charac-
terize the tree-level masses in the Higgs sector if Mz is fixed at its experimentally
measured value. We shall take AM); and M. to be the two parameters thal de-
fine the theory. Then (2.22) provides a prediction for the light Higgs boson mass
My. We can choose any two unknown masses we like and predict the mass of

the third.



HI. FORMALISM FOR RADIATIVE CORRECTIONS

We adopt a renormalization scheme is which external lines are evaluated
with momenta on-shell. ‘Fhe physical mass is defined as the position of the pole
in the propagator. ‘Tl ulli'm:-lc resulis of this section are the relations (3.41)
and {3.49) below. These equations indicate that at the one-loop level the wave-
funclion renornalization factors do not enter, and the corrections b the mass
sum rules are given entircly by combinations of Higgs-boson and vector bason

self-energies.

Before developing the formalism for calculating radiative corrections, we
wish Lo discuss the applicability of the one-loop effective potential to determining
physical Miggs masses. The effective potential cannot be used to calculate the
poles of Higgs propagators exactly. It may be used to find an approximate resuit
for the physical masses of the Higgs bosons in the MSSM. The calculation of
the eflective potenial entails the summation of diagrams with external liggs
boson momenta. set equal to zero. In the on-shell scheme, the external lines
a-e put on-shell instead. The curvature of the scalar potentiat at its minimum
is the physical mass of the Higgs only at tree level. The renormalized Higgs
mass found using the renoninalized one-loop effective potential is finite but is
not necessarily equal to the physical Higgs mass (defined as the position of the
pole in the Wiggs propagalor). There is no elementary method (o refate these
two quantities[24] without calculating the Higgs propagator o find the pole.
Hlawever if the mass is sufficiently small, the difference between the Higgs self-

eneryy with external momenta on-shell and with external momenta set o zero
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is siall. Then the elfective potential i3 a uscful ool for caleulating the physical
Higgs mass. In fact, the Coleman-Weinberg mass{25] ss the physical masy since
welting extennal momenta to zero is the same 1o olie-loops as setting thein on-shell
for this case. The calculation presented here goes beyond the elfective potential
in that the physical maases of the 1ligge bosons are the quintitis that enter into
the formulae. In the M5SM we know that My > Mz al tree keve), so selling
the external legs Lo zero moments @ not necessarily a good approximation.

In this section, we denole gl bare fields and paramiciers by the subscript
b. Absence of this subscript indicites a renormalized fivld or a renonnalized
p . For ple, ) d the bare heavy-Higes field, while H denotes
the renormalized field.

Ins the multi-lliggs doublet models, renormalization is complicated by mix-
ing of the physicel lliggs bosons necessitating rediagonalization at each order.
‘This i analogows 1o the mixing of the Z and the photon in the renonmalization
of the standard model[26]. Here we follow the method of Aoki et al.[27] for
oi-shell renormalization of fields when mixing is present.

Recall the definition of the scalar and pseudoscidur components of the

chissge-neutral Higgs bason fields:

H=vu+ ~\;—§(S, +id4) (3.14)
I .
H%:uZ+‘-\7§(Sz+ll'-,). (3.18)

H and b are linear combinations of Sy and S while A and G are linear combi-
uations of Py and Fy. The fuctor of /2 is included s0 the Kanetic energy terng

for the physical iggs boson fields will have the canonical form.
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Renormalization proceeds in the standard way. Begin with a troe level La-

grangian L(fy, Ja, .- Py, pa, ---) which contzins eertain fields f; and parameters

p;- To calculate at one-loop, renc lized fields and p: ure

This is accomplished by Lreaking up the tree level Lagrangian into a picce con-
taining renormalized ficlds and p ters and & term piece. The fields

and parameters in the tree level Lagrangian are now not physical quantities,
contain infinities, and are called bare quantities. The counterterms Lagrangian
is generated by shifting the parametess pj, — pjr + 8p; end introducing wave-
function renonnalizations Z;,. The wave-function renormalizations are of the
form Zg, = 1+ 624, where tie 82y, are in general divergent 2nd of higher
osder in perturbation theory. 25, = I+ 462, ia a matrix equation if there is
mixing. The renormalized Lagrangian has the same functional form as *he tree

L ian but is

p d in terms of renormalized quantities,
LolJiv Sauy i Pray Pavy )

= Lelfirs J2rs i Paes Pars - L alfrer Jars i Paes Pars - 800y -3 230 )

62

Feyuman rules ase derived using the renormalized Lograngian and the coun-

tertenm ¥ agrangian, and the infinities present in one-loop graphs are absorbed

in the countertern Lagrangian. The values ef the renormalized parameters are
fixed by experiment.

When tree-level mising vecurs, wave-function rem tion takes a ma-

trix form. bBefine the satrices

gz g ,
Z;/z - ( Zl]l/l; llllhl {3.3q)
LYY
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and

A2l
z;,/’=( e T ) (3.3h)
za 2

in ihe bare Lagranpian we denote all parameters and fields with the subseript
b. In particular the 1liggs potential in (2.4) is rewritten in terms of batre ficlda
aml masses hy attaching a subacript b to all quantities. Then the wave-function

renosmalization of the Jliggs fickls can be expressed as

(":) =z;”(;') (3.4a)

1]

((j) = ;,"(‘j). (3.4b)
1]

‘The mattices in (3.3) are not in general symmetric. There are four independent
parameters for each matrix. We have that Z_;/ ? = I+ 0(o) o that Z}J3 =
1+0(0), 2% =1+ 0(a), Z}}2 = O(o), and 2}? = O(a). The kinelic energy
terms for the charge neutral pieces are

1 12,7 12 H 1 VT /2 G
s (1 h )@z, . |43 (6 a)@al, .
(3.5)
Now we proceed to investigate the mass terms. In the usual way we shilt

the parameters that occur in the Higgs mass terms as follows
(mihs = mi + bm} (3.6a)

(m)s = m} + 6m} {3.65)

{mis)s = mi, + émd, (3.6c)
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(M2)s = M3 +6M3 (3.64)
(M =uv + 8y (3.6r)
(v2)s = vz + bua. 36

The Migga potential in (2.4) depends on five parameters, so we can choose five
paramrlers in (3.6) to determine the potential. The parameters we use {o define
the theory are the physiral masses My, My, Ma and Mz as well as the coupling
9 (or a). The quantities in (3.6) are related to these five in & complicated way

determined by the Higgs potential in (2.4) a8 was demonstrated in Section 11.

> abard terk, q:

are determined in

Other parameters such as [u]? and its

terms of the five paraincters and counterterms in (3.6). The dependence of s on
the other parameters is given in Equation (3.25) of Reference [9].
The sbifts in v; and vg reflect the lact that the location of the minimum

of the Higgs potential receives O(a) correcti This is a g lization of the

same statement. in the standard model, where the tree level vacuum expectation
valite v receives O(a) corrections. In the tree level Lagrangian vy and v, are
determined by finding the minimum of the Higgs potential. Therefore vy and
vz are specified by the parameters in the Higgs potential, m} + |2, m3 + |p)?,
my2, Mz, etc. The constraints were given in Section 11 by (2.17) and (2.18). At
one-loop these paramcters are renormalized, and the eame functional forms for
v; and v; in terms of the renormalized parameters are no longer correct.

One approach is to define tadpole counterterms vy and m, so that they
exactly cancel the one-loop tadpole diagrams. This would impose two constraints

on the counterterms. Wn will show below and in Appendix C that it is in fact
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of no conxquence how the tadpole divergences are handied as they are exactly
cancelled in the radialive cotrections to the sum rules. Sve also Reference [20].

Our goal then is to formulate renormalization conditions for the physical

masses without any ref to the ble parameters that occur in

(3.6). The basic idea i@ the following. The Higgs massas depend on Mz and two
mixing angles, usually called o and g (8 waa introduced in Section 11). To obtain
the one-Joop corrected masses requires these angles Lo be renormalized. 1lowever
in the sum rule we are interested only in the traces of the masa matsices, and if
the rotation angles o and § that diagonalize the mase matrices are renormalized
8 of no convequence. We shall go through the detailed procedure of the renor-
malization procedure below. A more general argument valid for modes with an
arbitrary number of Higgs doubleta (including the two doublet case) is given in
Appendix D.

The Higgs mass terms arise in the potentia) given by (2.4). The parameters
m;, my, and my3 sre undetermined due Lo the arhitrariness of the soft supersym-

metry breaking terms. The mass consiraints arise because the quartic couplings

in (2.4) are determined in tesma of the gauge couplings by

ry and

gauge invasiance. Then the mass terms that arise are of Uhie form

1. AN ]
2(s Sz)b(u C)b(""‘)u @)
whiere
.h' — v
A= (it ] (nu).( i ,) (350)

By=~(ml)s + zwz). (-"+'U ) (3.80)
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Co= (i)t 1(M:‘) (3::; - v} 3.8¢
* el A W T o (&)
‘This mass matrix is diagonalized by the real orthogonal matrix characterized by
the angle a:
o..=(°f“’ "“‘"’) (394)
sine co8a
where !
2B,

tan 20 = X 3.98
@-c (3.98)

With a redefinition of fields given by

()alt), o

the mas matrix is diagonalized to give

A B ML 0
O-. Oy= H 3.11
(n c). ( o M ) K

where
(Mip)e = % [(A. +G) + \/(A. -G+ w‘:] (3.115)
(M) = % [(Au +C) - ‘/(A. -G+ wz]. (3.11¢)
The shifts in the y introduced in (3.6) g Le shifts in the pa-

rameters Ap, By, and Cp, that appear in the unrenormalized mass matrix through
the definitions i (3.8). We duline the renormalized values of these paratneters
and the associated countertenns a3 Ay = A+64, Iy = D+68, and Gy = C+46C
wliere A, 8, aud € are difined just as the bare quantities are defined in (3.8) but
in terins of the renonmalized quantities. It i3 unnecessary to retain tenns second

order in the counterterms Lecause these are higher order in perturbation theory.
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The inverse propagator is & matsix dur to the mixing of the Hliggs bosons, and
we denote i hy:
iTpu(p?) iTenip®
iTs(p?) = i -nn(l'?) i m.(f;) ) @12)
iTaufp®)  iCanlp’)

Then we have

iTs(?) = (2T 2Y?p - (22 (M2)pZY* — bits (3.130)
where
MHp= ( (M::')’ ( ‘:’z)r ) (3.13)
and
Ms = ( :RAZ:, 6:5,'3" ) (3.13¢)

The subscript D in (3.13b) indicated that the renormalized mass matrix (with
subscripts r) is diagonal. In oblaining (3.13) we have dropped terms that are
second order in perturbation theory, used (3.11a), and defined

SM7, = 5Acos® a 4 8Bsin 2a+ 6Crin® a (3.14a)
S§M? = §Asin? a — 6Bein 2a + 6Ccos’ o (3.148)
§M%,, = 5Mf2, ipr = (6C — 8A)sin a cos o + 6B cos 2a. (3.14c)

We have neglected the picces of the counterterms coming from $a (in o — o+-80)
that in fa L exactly cancel (3.14¢). The ofl-diagonal terms are irrelevant in the

renormalization of the sum rules. The inverse propagator matrix in (3.12) is

symmetric as it should be. We have also defined the quantitics

M7 = .]3 [(A +CO)+(A-CF + 41;7] (3.154)
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), =3[ +0) - IA-CF T @155

At this point the rennrmalized parameters (M7), and (M2), are not the physical
masses A7 and A2, The connection hetween these quantities must be sperified

by renormalization conditions.

We have expressed the inverse propagator il's(p?) in terma of the wave-

function renormalization par defined in (3.3) and the counterterms de-
fined in (3.6). The expression is rather complicated, but fortunately we will
only need to know the linear combination 5A + &C to calculate the radiative
corrections to the mass relation (1.3). Notice that M3 + 6M2 = 5A 4+ 5C. ie.
the trace of the mass matrix is invariant under the orthogonal transformation.

We have that §A + 8C = 5mj + 6mj + 5M3 so that we arrive at the conclusion:

M} + EM7 = bm? +6m3 4 SM3. (3.16)

We now repeat the analysis for the pseudoacalar sector in exactly the same
way as we did the analysis for the scalar sector in Equations (3.7) to (3.16).
Define Py = V2Im(H]) and P; = +/2Im(H3). The mass terms ate

1 &\ (r
(A P’)a(B’ C’).(Pz). @1

where
= (m)s + (Mz)s (:‘ - ::) (2.180)
B, = —(m};) {3.18b)

—pd
ci=(mlho + 3030 (5 =1k (3.18)
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This muss matrix i diagonalized by an orthogonal transfornation just as before.

The real rotulion matrix is characterized by the angle ¢:

0p= ( cos B —sin p ) (3.192)

gn g owf

where
2B;
(A'=-C)

We ohtain the mass eigenstates defined by

LR

‘The masw matrix in (3.17) is diagonalized to give

' 0o
_ = .2
o"(B’ c’).o" (u M3 ).. (3210)

(MZ) = %{(Ai +C)+ \/(A; -G+ w:*] =0 (3:211)
(M3 = %[(AL +C}) ~ \/(A‘ -CY)? 4u;¢]. (3:28¢)

The Goldslonie buson is exactly masshes in the Landau garge so the misy matrix

tan 20 = (3.180)

where

has a zejo cigenvajue,

The parameters defined by Equations (3.18) generste counterlerms with the

BA = bt + bM "——“i + e (M2 (3.220)
! o) T\ -
W = —binly {3.220)

. : 1 o
o =6l + 2AM’ (—T) i“‘” (3.420)
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We define the inverse propag; for the pseud

alars in the sane way as
we did for the scalary:

. .. [ Teolr®) iTealr?)
-rp(p’)~( T ;,) @23
so that

To(p? x/: TZ!/Z 2 Zl[ﬂf " A+ 54 B +65 1/2
iTe(p’) = (Zp7) +(Zg7) 0.5 B 468 (Y4807 023,

(3.24)
The last tesm can be expanded again to obtain:
itele®) = (2 2% + (2 (M2 + 6Mp  (3250)
whe.re
- o o
Mip= 3.258
(Me)o (o (M})r) (3.25%)
and
_[ M2 &mZ, .
SMp= ( M3, oM (3.25¢)
We have defined
SME = 8A' cos® B+ 5 win 28+ 6C sin® B (3.26a)
BM2 = A sin® B— 0 sin 20 4 8C s {3.208)
dMEL = SME, = (DL ~ 6A )xin H cous § 4 8B cou 23 (3.26¢2)

and (M2), is defioed just as (M3)y i defined in (3.21) bt in Lerms of the
renormalized patameters (e, withoul the subscripts b on the parameters ap-
pearing an Uie RHS). As before we noglect 3P corrections to the off-diagonal

teems,  (M2), = 0 since (ME) = 0. The invariance of Lhe trace gives



29

SM2 4 6M2 = BA' 4+ 5C". From (3.22) we have that 54 + &€ = bmi +6m3, =0
we obtain

SMZ 4 5M3 = smi 4 dmd. (3.27)

Making use of (3.16) we finally obtain the resull:
EMP 4+ SM32 = SME 4 BM32 4 SA12. 3:29)

We define the self-energies of the ascalars and ke vector bosons as shown
in Figure 1 with external legs amputated. The vacunm expectation values v;

aid 2 are in general renormalized, and tadpole diag must be taken into
account. We will argue below that the tadpole contributions to the final result

A are zeto with the renormalization conditions we choose. This will be shown

explicitly in Appendix C. The lized inverse g.ropagat
= oy [ iTuae®) iTan(p®)
""“”“( i) iFante?) ) @

includes the expression in (3.13) and the eelf-energy contributions shown in Fig-

ure 1. The inverse propagator mattix in (3.20) is symmetric. We have

T (?) = @n + Zon)p* — (M3)-Zr1t — (M2)-Zomr

~6M + Ny (p?) (3.30a)

Tanlp?) = (Znn + Zin)p? — (M2, ZR, — (ME)eZin

—8M3 + Man(p?) (3.308)
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Ty = iCun?) = IR ZH + 22200 - (i 2l 2l

— (M), ZM2 M3 _ MR+ Wi (PP). (3.300)

Tn the on-shell seheme we adopt the renormalization conditions{27}:

iTun(ME} =0 (3.31a)
ita(M2) =0 (3.310)
Py (M) = iFun(MZ) = 0 (3.31¢)
(M3 =1 (3.31d)
(M3 =1 (3.31¢)

where iT(p?) is the derivative of il (p?).
We choose as an additiona! renormalization condition that (My). be set

equal to the physical mas My of the H[28]. Then from (3.30) and (3.31) we
conclude that

M}, = Myn(M3). 332

The pacudoscalar sector can be trested in the same way. The renormalized

inverse | gator for the pseudoacalars is

= o [ iTac?) iTca(p®)

Telr) = ( iFacls?) -'fM(p’)) @3
which is

iTaalp?) = (Zoe + ZacW® — (M3)e Zac
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—ME + lica(p?) (3.34a)

Taalp?) = (Zan + ZoalP — (M3)-Zha

—5M3 + (%) (3.34b)

ifoalp?) = iTacl®) = (2323 + 2 2. 00°

—(M3): 23200 — M4 + NGalk®). (3:31)

“The renormalization conditions are

(D) =0 (3.95q)
iFaa(M3) =0 (3.350)
ifca(0) = iFGa(M3) =0 (3.350)
i%e{0) =1 (3-354)

i (M) =1 (3.35¢)

In this case we define (My), to be the physical muss Ay of the A and require
that the Goldstone boson G have zero tiass at the one-loop level in the Landan

gauge, ie. (M) = Mg = 0. The masl af the Gokdst boson at

one-toop fullows froim the Ward identities. Then we obtin
BAME = Naa(M2) (3.36)

SME = Mg(0). (3.37)
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The remaining condition is obtained from (2.21) and (3.31b). ‘This is
AM? = I{ME) + A. (3.38)
where we have used the fact that (M2), + (M3), = (M3)- + (M3),. Siniilarly
it can be shown that
M3 = —Az:(M3) (3.39)
where Azz(p?) is delined as the real part of the coefficient of g in the vacuum
polarization tensor
W52 ") = Azz(8)g"” + Bzz(P)p's" (340a)
Azz = Re Azz (3-408)
defined as in Figure 1. Then using and Equations (3.28), (3.32) and {3.36)-(3.39)
we find that
A = —Wyy(ME) - Man(MZ) + Maa(M3) 4+ Neg(D) — Azz(M3Z).  (3.41)

So the calculation of A involves the determination of the Niggs and Z self-
energies in (3.41). The final result for & must be finite even though the in-
dividual scif-energies will not be. The expression in (3.41) depends only on
self-energien. This is a somewhiat unique result for a radiative correction W a
physically mcasurable quantity. Usually one iz required to caleulate vertex cor-

rections as well to do a precise comparison Lo expen Here netry

and gauge iavariance liave conspired to produce a sum rule whose renormaliza-
tion dues not depend on the eenormalization of the gauge couplings g and g o

ond-loop. AL two-luops and beyoud ahie situation becomes more complicated, as
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we expect. 1he gaupe conpling senormakizations Io enter as well as wave-fanrtion
renormalizations.

The condilion that the Goldstone boson mass be voro al. one-loop ensurms
that. the tadpeie contributions will be zeto. This is a consequence of a Waed
identity. A disrussion of this result in the context of the standard moslet is given
in References [20-31]. The Goldatone sell-enczgy at zero momentum is related

to the tadpole diagtams of the H and h fields as
N66(0) = ——- [co[8 — 0)Tis +6in(A - )T3]. (3.42)
Vv
The counlerterm Lagrangian oontains the terma
~[SM2G? + v H + nH) (313
in which the coefficients satinly
1
: LN - in? —
ML= 7 con(f - o)1y + sinlB — o)n,. (3.49)

So we conclude that (3.37) is equivalent to taking (Tiy + i) cos(f — o) + (T +
,)8in(@~n) = 0. The advantage in calculating Il (0) rather than the tadpole
dingrams T3y rud T;, is that the cancelation of divergences is r=ore obvious in
the former car-. In terms of the Feynman rules, calculating the Goldstone
boson sell-enetgy is on an equal footing with calculating the Higgs hason self-
energies in the Landau gauge. We have shown explicitly in Appendix C that
in the conlext of the MSSM the tadpole contributions to A in (3.41) vanish
identically. This result can be proved generally. In References (2,7] the tadpoles

are evaluated instead of the Gold boson self-encrgy. This gives the same

answer as (3.42) can be verified by direct calculation. As mentioned previously
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this is a generalizalion of a similar statement in the atandard model. In the
standasd mode] the Goldstone hoson self-energy is related to the Higgs tadpole

(there is only one such tadpaole in the standard model)

NGa(0) = —ﬁ

There is an clementary way to gain insight into the relationship between

Tn- (3.45)

Goldstone boson countesterm and the tadpole counterterm. In any multi-liggs
model it is always possible to find a linear combination of Higgs fickls whose
vactium expectation values is v, and all orthogonal components have zero vevs.
In other words, in Higgs ficld space this linear combination is in the direction
from the symmetty point to the asymmetric minimum. In the two doublet mode!
we know that this direction is H = 5) cos f + Sz2sinB. Define the orthogonal

combination H3 = —5; sin @ + Scon §. We have

H N
( i )=o,_.,( "y ) (3.46)

and the counterterms in (3.43) become

- [M2G> + Hlcon(—a)ru +ein(8~a)m+ M. [~ sin(Fa)rs + cos(f—alni]

347
The Goldstone self-energy is related to the tadpole counterterms of the Higgs
field combination 7 that lies in the direction of the trie mini In

the standard madel this combination is just the physical Higgs field.

The tadpoles cancel in the Higgs mass sum rules and this requires the
superaym.aetric atructure of the Higgs self-couplings. 1t is the constraints placed
on these couplings by snpersymmetry and gauge invariance that gives risc to the

sum enles as well as the tadpole cancellation.
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Another maws relation that holds at tree Jevel in Uie MSSM way given in
{14). I can be shown {in & method analogous to U preceding treatment of

e mass relation in {1.3)) Lhat the radiative corrections dufined by
My = MA+MG +4 3.4%)
are given by
A = —Hys e (Mys) - Norge(0) +MaalM3) + Ugo(0) ~ Aww (ME ) (3.49).

Again the Ladpole conlributions are exactly zero (see Appendix C).

We note that the result in (3.41) continues to hold when a Iliggs singlet
N is prevent in certain important cases. ‘The criterion is that N not mix with
the other Higgs bosone (H, b, A, G). Reference (9] discussis these cases. If the
singlet mixes with the Higgs doublet then the masy relution (1.3) is destroyed
even at tree level, and the tree-level constraints My, < Az and My > Mz abo
disappear. The mass relation (1.4) may be destroyed even if the singlet dows not

mix Witk the other fields.



IV. RADIATIVE CORRECTIONS

In tais section we will discuss the contsibution to A from quark and squark
loops in the MSSM. It is necessary to know the Feyaman rules for Higgs bosons
in the MSSM Lo calculate the self-energy diagrams for the Wiggs fields, Many of
these have been derived previously in the literature{3,9,32-34). We have derived
wome others in Reference [6] that appear in Appendix A.

The caleulati involved are by | hy. Eachindividual i is

LY L

divergent, and Lhese divergences cancel only when loops involving the fermions

and loops involving their supespart ase included. The divergent inteyrals

a€ 2wl 1

using nal regularization with the prescription for 75 given

are
by Chianowitz et al.[35). Since Lhe 75’ always occur in pairs in the amplitudes
contsidered, this prescription guarantees the corract Ward identitics. “The caleu-
lation is straightforward, so we display only the final result in Appendix B. The

diagrams evaluated are shown in Figure 3.

We have ignored the mixing bet & jon for simplicily, i.e. we
approximate the CKM matrix and the super-CKM matrix as unit matrices. It
is not difficult to adapt the answer to the general case. ‘There is a contribution
from each generation, and the contribution to A from the top quark s the saime
as that for the up quark with the appropriate miass substitutiony. OF course the
formlaus ase anly selevant for quarks heavy compased to the hindronie scale. ‘I'he
caleulation of e diagrams involving squack loops is complicated by the mixing

in the squark scctor.

We add soft supersymnnetry breakisig terins to the sealoe potential. The
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et in the sealar potential involving squarks are[0]
V = Vr 4+ Vip + Vg, .1a)
where
Ve = (5" 15 + QG 0°)ull + @0) + "l + 1@ D7)t + 1,0 D)
+fles HiQ P+ Bl Hi@ P+ B D = 105 07) f i D- [ 13D). (4.18)
Vo = 3o [AHI Q' + AHEQ — 2Q @By + 15 8] + (@40
4o [HE H~ B HE 40, 3°@ + w00 4D D] . (@19)

Viope = HZQ°Q° + M20°0 + M3D'D

+mac! (L AHIP D — LAHIPT + hc). (1.14)
Yu, i and y, are the hypercharge quantum bets of the ¢ ponding fields.
‘The conventional equatk nolation for the fields appearing in (2.1) and (4.1) ia
&= ( i ) 0" =n, D* =dn. (42
dr °

The mass terms for the up squarks, for example, are
e e Ay B oL
( ap Gf ( B C ) ( in ) (4.3a)

- 1
Ay = M3+ M3 cos (5~ en sin? 0,) + m? (4.35)

where

By = my(Aums + prcot g) (4.3¢)

C. = M2 + M2 cos 20(eunin®0,) 4+ m2. (13d
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Ayme, Iflq, and ATy are additional soft supersymmetry breaking paramelors
that enter into the parl of the scalas potential that involves squarks. We asume
Aumg is real, which nuist be approximately the case to avoid anwanted CP vio-
lation. Notice that. the lefi-right mixing term B, is proportional to the fermion

mas my,. The mass cigenstates gy and §; can be defined as a.mixture of these

q \_ )
(£)a(s)

where Oa, are defined as in (3.8a). The mixing angles 8, appear in the Feynman

fichls as

rules involving the squarks.

We note here that the soft supersymmetry breaking terms in (4.1d) do
not include the so-called “mixed” trilinear contributions mentioned by Hall and
Randall{10]. These terms are not present in the low-energy supergravity model
but could be present in a more general model of weak-scale supersymmetry.
‘These contributions are similar to thoee in (4.1d) in that they contribute to the
ofl-diagonal elements of the squark mixing matrix and provide another source of
coupling between the 1liggs bosons and the squarks. In particular we have the
terms

MBS D - LAHEQT 4 ko). (4.5)
This gives the additional eontribulions to the squark mass matrix ofl-diagonal
entry B, of my A, M cot. 8. Additional squark-squark-Higgs couplings arise. We
expect these soft supersymmetry breaking terma to contribute to A in a similar
way to the terms already in (4.1d).

Tie coupling of the squarks to the Higgs borons cotae from three places

in the scalar potential. First the D-tetms contain contributions to the squark
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masses and Lo the squark-Higys coupling that are of G(yAlz). The ¥-ternns con-
tain thie Yukawa pieces Lhat contribute a8 mase Lo the squarks equal to Lhie quark
mass (mg), and terms of O(gmy) Lo the squark-Higgs couplings. The F-terms
also contain Lhe p 4 which contsib to ihe ofl diagonal entries i the

maw matrix (See Equation (4.3c)) a8 well as to the couplings. Finally the soft
supersymmetry breaking terins contain the parameters A g that contribute to
the off diagonal terms in the mass matrix and in the couplings. The soft super-

y y & § ﬁa and M3 bove in (4.3) do not contribute to

the couplings.

Tlhe soft supersy y breaking p £ };la.l\),'_‘,andd.,nqareuk
Jjusted so that the squarka are sufficiently mamssive to have escaped detection
while not g0 mamive to destroy the stability of the el k scale Lo radiati

corrections (i.e. the natural ivation for

y ry). The paramne-
ters AT and M} show up in radiative comections to Miggs masses in diagrams

like that shown in Figure 4. In the renormalization of thie mass sum rule, the

bination of these diag) that arbses i shown is Figure 5. These disgrams
suin exactly to zero. So while there are large corrections arisityg from A-Ié and
A-l}, 10 Uie suass of each ipgs boson, these contributions cancel in Uie suin rule,
The sum rule is therefore insensitive w0 these paramete.s when they become

Jarge,

QO the other hand, Wie supersynunetry breaking parancter Agmg as welf as
the parameter p contributes Lo tie conplings of the syuarh W Wie Jliggs bosons.
1f thia parameter becomes large, subsLantial corrections can arise 1 the sum e,

1L also gencrates mixing between the squark eigenstates. 'Thiere are constraints



10

on Aging £-om other considerations. When Agmg becomes large, it wsually
producs large corcections o the tho parameter (although these contributiona
can be made to cancel against one another)(8). In addition A,ing is bourded
by the requirement that the correct vacuum is oblained. Specifically if Agmg
is too large, the true vacuum breaks SU(3} colar which is of course ruled out

phenom:enologically.
The expression for A in Appendix B is pased of three parts, A =
DatAg+ 8. A..~0(nﬁ*-"5)whueﬁ- P »masp such as the

up quark mass or a parameter involving Liv: squack sector such as Aumg, p1, ™,
or mg,. We leave A in termo of the mixing angles a, g, and 9, for convenience.
The expressions for Uiese angles in terma of physical masees are leng.iy and not

. very illuminating. Expressions for ar and 8 are given in Appendix A of Reference
(6]

The terms in Ay give he Jargesl contribution to A for large quark and
squark masses. The terms involving the off-diagonal entries in the squark mass
matrix (Aymg and p) give large contiibutions provided the squark mixing wigle
8, is not smadl. Az contains terma that are O{am3), but thee Lerms go to zero

ay the squark mass becomes large. This is a ifestation of the cancelation of

thie diagrans in Figure 5. ‘Tiie tenus in A of O(and j cone frons the 2 vacuum
polarization only. A is OA2Y and is for our present purposes a negligible
correction to the miass yelation.

We will illustrie the result in Appendix B by considering the contrilution
from the Lop quark and the Lp squuck, Four parametens chiaracterice the squark

mass malrix in (4.3). We can Lake tiese to be m'fl, m?’, 0; and p. Then Ayng
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i, determinad:
(m? — m? )sin 20,

Amg= —1——2 —— —jical 1. {4.6)
2y

First consider the case in which there is no squark mixing, i.e. 8, =0. This
is expected to be approximately the case for all aquatk spreies except possibly
the top squark. When 6 = 0°, the terms involving A;mg and g1 give only a
smiall contribution to A. In this event the A;mg and it terma in the squark mass
matrix are canceling one another. See (4.3). §f the top quark and top squark are
very masive (mg, m; >> Mw, My, Ma, M), we can neglect the other masses.
Then we obtain

7m‘ Ne my m;"

_...___[ ..__.A 4.7)
A= Mg antp ( my “n
So we have Iarge ¢ tions to the mam relation just as there are large correc-

tiona (O(m{)) in the Higgs sector of the standard model[37]. One factor of m}
arises in the integration over the quark loop, while the Yukawa couplings at the
verlices gives the other factor of m3. We have plotted the correction A in Figure
6. We liave chosen the parameters m; = 100GeV, a = —18°, f§ = 30° and p = 0.
For these parametems the tree level Higgs boson mnsses are My = 140 GeV,
My =40GeV and Ms = 110GeV and M}, + M2 = 23 10" GeV2, so that each
side of Equation (1.3) is equal to 2x 10°GeV? at tree level. Sofor A = 200GeV?,
the correction is only one percent. We have plotted A for the cave where 6; = 0°
in Figure 6a. The dependence on the squark masses is roughly logarithmic.
The expression in (4.7) diverges when sin® # approaches zero. This reflecta
the fact that the Yukawa coupling giving the top quark a mass must diverge
in this limit. The Yukawa coupling giving the bottom quark its mass diverges
when cos? 3 approaches zero. The non-decoupling of heavy quarks is just the
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standard evasion of the decoupling theorem[38] that arises when a coupling con-
stant beromes large. When the superymmetric limit is taken and the external
motnenta are sot equal fo 7ero rather than put on shell, the expression for A in
Appendix Bis zero. When Lhe external fegs are put on mass shell to obtain the
physical masses, there are finite threshold effects that are in general non-zero

even in the SUSY limit..

I there ia significant mixing of the scalar quarks, large corrections can arise
when there are large mass splittings belween the squarks. In Figure 6b we have
taken 6; = 20°. Nolice that the corrections are again ewall when m;, ~ m;,.
If the squarks have significantly different masses, then there is a large negative
A. These large cotrections arise from large squack-Higgs couplings that arise
because Agmg is very large.

The results displayed in Figure 6 are typical. Other choices of the param-
eters m,, a, @ and g give similar results. If 6; & 0, then comections tend to
be small (i.e. the same order as the contribution of a ¢ quark with mass m, in
the standard model). If 0, is significant, then large negative conttibutions arise
when [m? —m? | becomes significant. Negative values for A imply that the sum
of the scalar Higgs boson masses squared M7 + M7 is suppressed relative to the
pseudoscalar boson mnss square:i M3.

We note that large contributions to the mass sum rule are possikle from a
fourth generation as well, even when squark mixing is absent. Asin the standard
model the leading contribution for & heavy fermion (my >> Mw) goes like
:—',"t‘[ST]. So a priori if a heavy fermion exiats, we can expect large corrections to

the masses in the Higgs sector just as in the standard model. The results given
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here, however, ate valid for any fenmion miass, and it is only il my >> Mw that
Ay can become very large. In Figure 7 we have held tie squark masss fixed
and plotted A as a funclion of the top quark mass. The values fur o, § and
p are the sane as in Figure 6. Nolice that the cotrection A b pasitive as long

as m; < mg,,m;,. This i consistent with the radialive corrections to the fight

Higgs mass in Iteference [21].
The coatribution for & new top ¢’ ia given as in (4.7) while the new bottom
¥ will contribute (for 0y = 0)
2 2
a= 16197:1"5 Nl‘;z ﬂ'" (1"_‘;555“") 8
Thewe contributions have the same sign. This differs from the renonmalization
of Lhe p parameter in thal the p parameler iv protecled by a custodial sym-
metry which is not broken by equal-mass fermion doublets. The elfects of a
wasg-degenerate heavy doublet has been discussed before in the context of the
standard model[39].



44

V. CONCLUSION

We have formulated the procedure for

puting correctious Lo the Higgs
mass relations in uupa§ymmelric extensions to the standard mnodel coniaining
doublets. An explicit calculation in the case with just two doublets (the MSSM)
was given. It was necessary to calculate self-energies of Higgs basouns and vacuum

polarization tensors as shown in (3.41) and (3.49). Coupling constant and wave-

function lizations are not 'y at one-loop. Tudpole contributions
cancel exactly. ‘The results in (3.41) and (3.49) are not destroyed in the presence

of other Higgs rep jons (singlets, tripkts, etc.) provided that no mixing

between these fields and the Higgs doublets takes place. If mixing occurs, the
tree-level mass relations (1.3) and (1.4) th lves will be d

| as is easily

understood in terns of the derivation of the mass sum rules in Section I If
a singlet or other state mixes with the Higgs fields, the relationship between
the traces of the Niggs mass matrices will be destroyed. Thexe results were

I J to the supersynunetric ions (o the standard model with more

than two Higgs doublets (Appendix D).

We have performed an explicit computation of the radiative coreections to
(1.3) from matter loops. We have found large corrections to the miss relation
provided that the two complex squark liclds mix. Fhis results from large squark-
Higgs conplings. “The potentially lusge contributions of O(umg) or ()(nm'lt') to
Hipgs parttcle musss from a heavy squack and sleplon scclur in supersynitietric
theories is hidden in the suin rule, e, cancels between the terms appeasing ia

the sum sule. Providud that squark mixing is negligite, it is pes® ke do nagine



extremely large squark masses without induring large radiative corrertions 1o

the s rule.
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APPENDIX A

Feynman Rules

In this appendix we display some Feynman rules ihat are needed in the
cateulation of Higes boson self-cnergics in the MSSM. Other Feynman rules for
the MSSM appear in References (3,9,32.34). In Figure 8 we show the couplings
of the Goldstone to the squarks, We have left the squarks in the weak interaction
eigenstates for simplicity. In Figure @ we show the trilinear couplings between
the Goldstone bosans and the physical Higgs bosons. CP conservation demands

that only an even number of pseudoscalars can emanate from a vertex.
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APPENDIX B
The Correction to the Mass Relation
‘The O corrections A can be divided into piecea
A=A84+A3+ 80 (B.1)

where &y, is the part of A where the nth power of the up quark mass or parain-
eters in the up s uark mass matrix (such as Aumg, i or the up squark masses

thenselves) occur. The resulis of the caleulation are as lollows:
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gmiN;
16x2MZ, sin? g

=3F(my, my, Mi))

= [sinz a(F(mg,, mg,, My)+ F(mg,,ma,, M)
+ cm’a(F(m;,,, Ma,, A’h) + F("I.‘.‘, ma,, My)
=3F{m,, m,, Mp))

+ena? ﬂp(m..,m...M4)+sin’ﬂF(m...m...0)]

@I [Aumssin o + pcos alsin 20,
i 16x2M2, sin? §

x[sin a(F(mg,, ma,, Mu) ~ F(m.-.,.m-...Mn))]

PN fAumg co8 a ~ psin afsin 2,
v 1653 M3, sin’ §

x [cus a(F(ing,, ma,, Mp) — F(ma,, mg,, Mh))l

_Gdz—fls%h [[2[-‘(":.;, Mgy, MA)[Ayms coa f — psin A
+2F(mg, , mg,, 0)[Aamssin B+ pcos ﬂ]’]
= i 20, [(F (i, i3y, M)+ F (i, g, Mar))| Aumissin o+ cos off
(F(ma,, ma,, Mu)+ F(ma,, ma,, Mu))[Aaing cos a — psin a]’]

—cea? 20, [21"(11:.-., ,Ma,, Mi)lAumssin a + preos o
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+2F (g, ,ma,, Mp)[A,mg con a - psin n]'l] ,

{B.2q)



g*miN. 2 in2 s 2p s 2
Az= F g 1 e [cos? 0u(Ts — ey 5in? 6,,) + 8in? Bu{eusin’6,,)]

x [siu acos( + ) F(mg,,ma,, My) ~ cos asin(a + ﬁ)F(m.;‘,m,-.,,Mp.)]
Hsin? 0,(Th — ey 85in? 8, + cos® B, (e, 8in? 6,)}

x [sin acos(a + B)F(mg,, mg,, Mu) — cos asin{a + B)F(mg,, m;,, Mr-)]]

39°m? N,
168202, sin® 8

+ 007  MEG (I, M, M) = co8 BM3 G, s, M)

[sin’om,’,c(m... my, My)

g’m?,N, b3 g’m?‘Ne
J2ntcm?0y Ho = 967 con® R

g*m, N, cos(a + B)

Toxtcos?dusin g " 20,[Aumigsin o + pcos a)

x [[coszo.,('ﬁ — e, 5in28,) + 6in? 0, (e, 8in® 0.,)] F(mg,,ma,, My)
- [sin= 0,(Ts — €45in?0,) + c08? B (e, sin? o.,)] F(mg,, ma,, M)

—cos 20,{15 — 26, sin® 0,) F(mg, ,mg,, M,,)]

- sin 20, [Aumig cos a — usin
Tor? conZl, mim " elAuma usin o]

x [[cm2 04 (T ~ €,5in0,) +5in® Oy (e, sin? Z-‘.,)] F(mga,, mg,, Mp)



- [sinzﬂ..(ﬁ ~ eu5in?8,) + cos? O (e, 5in? 0.,)] Flma,, Mz, My)

—co8 204(Ts — 2e,8in? B, )F(my, ,ma,, M:.)]

g*m3 Ne 2 Qg 34 L2 in?0.32) F
e [ con® BT + e sin? B ) + sin® e s 0] Bl 13, 0)

| cos? Bul=Ts + cusin?0u) + sin? u eusin?0,)] Flm, s, M2)

-—-; in? 6, cos® 6, H(mg,,ma,, Mz)]

g’m?,!N.: . . 3 VRS
T 82 c0e?0, ["‘“2 Bu(~Ts + e, 8in? 6,,)® + con? O (eu sin 0,,)‘] F(mng,, ma,,0)
-

- [oin?0u(Ts + cuin® 0 + o Bt sin80)] Flma, i, M)

-%ﬂinzouﬂ"auﬂ('“&..ma.-Mz)], (B2
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2292
g MIN: Py . . 5 . 2
T T Z oo [[cm'ﬂu(.‘: - £,807 8,) + 8in 0..(euﬂn’0.,)]

x [ cos?(a + B)F(ma,, ma,, Ma) +sin®(a + B)F(mg,, mg,, Mh)}
+ [sinz 0,(T3 — eysin® 0,,) + coa® 9, (e, sin? o..,)] !
x| cos(ar+ B) Fimi,, iy, M) + 6500 + D)y, mss M)
+_Iz 5in® 20,(Ts — 2eu ain6,)?
x| cos?(ar + BYF (an,, i, Mir) +6in%(a + A)F (i, by, M,.)]]

2MZN, . - . 2
‘#ﬁf_o; [[ms= Bu(~Ta+esin? 0,) +oin? O, (e, sin® o.,)] 2C{ma, ,ma,, Mz)

2
+[si0® u(~To + e 8in 00) + cos® bufeu sin® &) 26(me,, mz,, M12)
+6in? 9, cs? 0,G{mg,, my,, Mz)

v [(-'1;. +eusin?Bu) + (e ain'o..)=]a(n...,n..., uz)] ) (B20)

where Ne = 3 colurs and

f 2 22 — 2[1 = 2lid

F(n, ma, mys) = [d: l"[zm, +Q 1)’;:5 2(1 3)'":]. (83)
°
f xmd + (1 — ) — (1l — 7)m}
Gy, mz,m) = ]:l; (1l — z)ln[ i ’l_g 4 l' (B.4)
1

f zm? + (1 — 2)md — z(1 — )}

H{my, g, 1) = [(l: .tln[ L Fg "]. (1.5)

L]



Tj is the weak isapin (which is +} for iol-handed up-type quarks).

‘The term _%"{E in Az arises in the |7 riergy graphs with a quark
in the loop. The contribution of each graph depends ou the external momen-
tum g2 of the graph which is sct equal to the physical Higgs mass when the
renormalization conditions are applied:

ﬂ:m?.N: - g’m?‘N‘
96x2con?l,,  96x?MZ sin?§

[nin’ a3, +cos? o M3 —cos? /m?.] . (B6)

Thia is an equality to this order in perturbation theory because tiere ia the tree
level relation
sin? aM}, + cos? aM? = cos? M} +sin® AM3. (B3)

If the external momentum of the graphs is set to zero rather that put on shell,
then the term (B.6) vanishes.

The expression for A in (B.2) should be independent of the renormali

point p,. We have checked that this is indeed the case in both the analytic
expression and in our computer program for calculating A, which provides a
partial check of our answer (equivalent to the lation of diverg ). We

4

have also verified that (3.42) is satisfied which is a check on the value of the
Goldstone self-cnergy that enters in (3.41).

The contribution for down quarks and down squarks is easily obtained from

this result. The substitutions are shown below:
By — 04, {B.8a)

My — my, (D.8b)
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Ming = MM, 50 (B.8c)

ey —ea, (B.8d)
H= % - -%, (B.8¢)
sin # — cos B, (B8N
cos f§ —sin f, (B.89)
o8 @ —+sin a, (B.8h)
sin & —co8 o (B.8i)

The last four equations imply sin(a+f) — sin(a+A) and coa{a+-A) — —cas{a+
£). To obtain the proper result requires the further substitutions

sin(a + ) — —sin(a + ), (B.8))

cos(a + f) — —cos(a + B). (B.8k)

For example, the first two terms in A; for the down quark and squarks should

be
g*miN.
8x2 cos? 0y, cos [

[cos? 04(Ta — eqsin? 0,) + sin? Os(easin® 8,,))
x [rm acos(a + B)F(m;,, ms,, Mu) + sin asin(a+ B)F(m;,, mg,. Mp,)]
Hsin? 04(T — eqsin® 8,) + cos® 84(eqsin? 0,,)}
x [cos avcos(w + BYF(mg,, my,, M) +sin asin(a + AF(my ,m; , M)} .
(B9)
The contributions for the lepton and slepton loops are given in tenns of

the contributions for the up and down quask loops. The electron and selectron
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contribution is obilained from the expression for the down quarks with the ap-
propriate mass and SU{2) x U(1) quantum nuinber replacenents. Similarly the
contsibulions from the neutrino and the aneutnino are given Ly an expression
similar 1o that for the up quark with the appropriate mass and SU(2) x U(1)

quantum number substitutions.



APPENDIX C -
Tadpole Contributions

In this appendix we demwonatrate explicilly that the tadpole contribution
to A in (3.41) and Lo A in (3.49) vanish in the MSSM. The result can be seen
explicitly by examining the Feynman vules that ure pregent in the MSSM. In
the two doublet model there are two not-zero tadpoles shown in Figure 2. We
display the vertices that are needed for the calculation of the tadpole diagrama
in Figure 10. The contribution to the sum in (3.41) from the tadpole diagrams

in Figure 11 are now easily seen to vanish using the couplings in Figure 10. We

also display Lhe vertices needed for the tadpole di tributing to (3.49)
in Figure 12. The combination of tadpole diagrama in Figure 13 vanishes.
These resulta generalize to the 2N Higgs doublet models discussed in Ap-
pendix D. The s in (D.16) and (D.18) therefore include all contributions to
Miggs sell-energies besides tadpole diagrame. Similacly, tadpoles are st to he
included in the contributions from the vaciium polarization Lensor either. n the

2N Higys doublet mode! there are many more non-zeto tadpole disgrama.
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APPENLIX D
Generalization to 2N Higgs Doublets

Models with more than two Higgs doublels have miss relations analogous te
(1.3) and {1.4). In an exiension of the standard model with 2N Higgs doublets,
there are BN ligge degrees of freedom. After spontancous symmetey breaking
three of these are Goldstone bosons, leaving 4N ~ 2 charged Higgs bosons W
and 4N — 1 ncutral Higgs bosons. We shall denole the nieutral scalar Higgs by
1 and the neutral pseudascalar 1liggs by A.. In the supersymmelric version of
the 2N doublet model, the couplings and masses in the Higgs secler are again

constrained. The mass relations that arise aref5)

aAN--1
ZM,, =Y M3 +M3 DY)
wh (5]
N~} aN-1
Yo Mis= 3 MA M (D2
[t3} =1

which generalize (1.3) and (1.4).
The Higgs potential for the model in the extension with 2N doublels is[5]

V= zm’qﬁ":ﬁ. Zm (¢'¢,+¢"¢.)+ "Zu el

=} J<i i=1

9’2|2(~l)'“¢' s

(D3)

This enuation is the 2N doublet analog of (2.4) where arbilrary soll supersymi-
metry breaking terms have been included. There are possible terms that are
,si_.,-¢!¢,~ that can be absorbed in the soft

persy try br g tenms as in

Uie two doublel case.
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There arc"e’ direclions in 1Tiggs field epace where the quartic couplings vanish:.
For example, in the fonr doublet model the quartic couplings vanish when ¢y =
¢2 anl ¢y = P4 as well as when ¢y = ¢4 and ¢y = ¢3.

There is now a vacuum expectation value v; for each of the 2N doublets
¢, We can cliiinate the wmy; in favor of the vevs v;. The neutral scalar and
neutral pscudascalar mass matrices are 2N x 2N matrices. The neutral scalar
mass matrix M? is given by

M= Zm’ % + ( 2+ g%)? (no sum on 4), {D4a)
I

M3 # 3) = ~m 4+ (P26 + ey (04%)

while the neutral pseudoscalar mass matrix M2 s given by

ME= Zm:,;:— (D5a)
i
M3 # j)=m} (D.5b)
AM” has a zero eigenval ponding to a neutral Goldstone bason. Since

both Af? and A" are rea) and symmetric, they can be diagonalized by or-
thogonal transformations that preserve their Lraces, ie. 3, M7, =T, M3 and
i M3, =3, M2, Using (D.4) and (D.5), one can obtain (D.1) and (D.2).

The renermalization of the tnass relations in (D.1) and (D.2) is a gencraliza-

tion of the arguments in Section 11, The function renc lization matrices
;/z and Z‘/ ? become 2N x 2N matrices. The e matrices {D.4) and (D.5)

are sy ic and ace diagonalized by

(M3)p = 05' M?0s, (ME)p = O05'M70p (D6)
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where Os and Op are orthogonal matrices. (MZ)p, and (A2)p are diagonal
matrices whase nonzero enlries are the asses Mjy and M3 respectively. We

shift parameters as in (3.6):

Gnd)p=m; + 8mZ, (i £ 3), (D.7a)
(vh = v + by, (D7)
(M2), = M3+ 6M3. (D70

The unrenormalized propagators are given by formulas analogous to (3.12):
its?) = (YT 2% - @Y MYz ~ M2, (DB)
Tolp?) = (2 2 - (2 MBozy* ~ M2 (D)

where M2 = 05 5MDs and M} = O 8MDp. 5M? and 5M™ arc analo-

gous to the matrices constructed in the two Higgs doublet case. Since the trace
of the matrices is invariant under orthogonal transformations we have

TréM2 = TriA?, (D.10)
Tr &M = Tr 5M7, {D.11)

From the expressions for the mass relations in (1).4) wul (1).5) we have
TréM? = Tr6M” + 6M3 {D.12)

su thal
TréM3=TroM3 + M2, (D13)

The renormalizalion conditions analogous Lo those in {3.20) aref27)

ilya,(ME,) = 0 (nosum), (D.14a)
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a0, (M) = iFpr, e, (MF)) = 0 (nosum), {D.14b)
i, (M3) =1 (nosum). (D-14¢)

1 we define the radiative corrections to (D.1) as

2 IN-)
Youi =Y MLeME+a (D.15)
= =1
we obtain the result
N
A==y T Mi)+ Z Ma;a,(M3,) - Azz(M3) (D-16)

i=)

where the sum over the pseudoscalar Higga A; self-energies includes the peutral
Goldstone boson eelf-cnergy Ngg(0). It can be shown that the tadpoles cancel
just as in the MSSM. Similarly it can be shown that the correction A to (D.2)

defined as
2N-1 2N-1

2 M= Z My +Mp+8 (D.17)
i=l
is given by
~ aN -+
A=— Z ""t"t(M"g) + Z “4,4,(“},) Aww(My) (D18)
izl J=t

where the sum over the pscudoscalar liggs A; self-energies includes the neutral
Goldstone boson self-cnergy Mgg(0), and the sum over the charged ligga basons
ll."t sell-energies inchudes the charged Goldstone boson self-vuesgy I ga(0).
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Figure Captions

Figurc 1: Sell-encrgy diagrams ~ The sell-encrgy diagrams are defined as
shown with the external legs amputated. X,V = Ii. h,A,G. In the on-shell
scheme Lhe external lrgs are pul on shell.

Figure 2: Tadpoles - The two kinds of tadpoles that exist in the MSSM.

Figure 3: One-loop Corrections - The diagrams calculated in the MSSM.

There are the following ber of ishing diag; of each type: (a) 4,
(b) 12, (c) 8, (d) 1, (e) 3, (D) 2.

Figure 4: Quadratic SUSY Breaking C iona — Contributions to Higgs

boson masses Lhat are quadeatic in a scalar masm arise from diagrama of thia

topology.

Figare 5: Cancellation of Quadratic Corrections — The corrections to the
sy sum rule that are quadratic in the squark mass cancel in the above di-

agrams. The restriction on

from corrections to the Higgs boson

masses iy therefore hidden in the sum rule.

Figure G: A(my; ) - We have plolted the correction A using the full expres-
sion given in Appendix B. ‘Vhe parameters used are given in the text. ‘e squark

mixing angle is 0; = 0° and 20° in Figures 6a and Gb respectively. The cusves



in the fipures sepresent an;, = (a)100 GeV, (b)I00 GeV, (c)700 GeV, (d)1000
GeV, ()10 GeV. Large correclions occur when 0; # 0, ani the squasks 1
and {7 have diflerent masses. This occurs when the coupling parameter Agng

becotnes large.

Figure 7: A(m,) - We have plotted A as a function of the top quark mass
for five values of the squark mase: m;, = m;, = (a)l00 GeV, (b)400 GeV,
(<)700 GeV, (d)1000 GeV, {€)1300 GeV. The radialive corrections behave like
am, [M3 for Jarge m,. The contribution can be of either sign dei)emling on the
relative sizes of the top guark mass and the top squark masses.

Figure B: Fey Rules — Fey rules involving Gold: bosons and
squarks. We have written these in the iig — &ip basis for sinplicity. ‘These can be
converled into Feynman zules in the mass eigenstates basis @& —iiz by s rotation
in the squark fields.

Figure 8: Trilinear ¥iggs Couplings ~ Trilinear Higgs couplings involving
Goldstone bosons.

Figurz 10: Trilinear Tadpole Couplings I - Trilincar couplings relevant to
tadpole contributions to {3.41).

Figwre 11: Tadpole Sum I - These diagrams contribute to the sum in

(3.41). The couplings in Figure 10 show that this contribution is zero when the

diags are ) with the iate signs.

PPTOJ
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Figure 12: Bilinear Tadpole Couplings 11 - Prilincar couplings relevant Lo
tadpole contributions to (3.49).

Figure 13: Tadpole Sum 1} ~ These diagrams contribute to the sum in
(3.40). The couplings in Figure 12 show that this contribution is zero when the

diagramas are sumincd with the appropriate signs.
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