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ABSTRACT

The stability and evolution of ISX-B-like plasmas are numerically
studied using a reduced set of resistive magnetohydrodynamic (MHD)
equations. For a sequence of equilibria stable to ideal modes, the
n = 1 mode chénges from a tearing branch to a pressure-driven branch as
Bp is increased. When this mode is unstable at low beta, it 1is just
the (m = 1;n = 1) tearing mode. Higher n modes also become linearly
unstable with increasing Bp; they are essentially pressure driven and
have a ballooning character. For low values of beta the instability is
best described as a Bp distortion of the (m = 1;n = 1) tearing mode.
This mode drives many other helicities through toroidal and nonlinear
couplings. As Bp is increased, the growth of the m = 1 1island slows
down in time, going from exponential to linear before reconnection

occurs. If is 1large enough, the island saturates without

B

P
reconnection. A broad spectrum of other modes, driven by the
{(m = 1;n = 1) instability, is produced. These results agree with some

observed features of MHD activity in ISX-B.



1.  INTRODUCTION

The (m = 1;n = 1) tearing mode is believed to be responsible for
the sawtqoth oscillations! observed in ohmically heated tokamak
discharges.2 Recent experimental results from the neutral-beam-heated
tokamak ISX-B >show strong dependence of the magnetohydrodynamic (MHD)-
activity upon injection power.3 For ohmic discharges the classical
sawtooth behavior! is observed in soft X-ray signals., Very low beam
powers (Pb < Poh) affect the instability by enhancing the amplitude and
period of this c¢lassical behavior, and a very weak coincident B is
observed at the Mirnov coils. As the beam power 1is increased
(Pb 2 Poh), the instability signals are altered by a lengthening of the
interval of.m = 1 activity before internal disruption and by the
simultaneous appearance of stronger E at the same frequency aé the
m = 1, Further increases in beam power generally leaq first to longer
lived, even steadily running, precursors and thgn to increasing
ampliﬁude ‘modulation . of these signals. For discharges in. which
Py Z'Poh the x-ray and B signals are locked in frequency and amplitude.
The large x-ray signals are from within q R 1 and are due to a large
m'= 1 mode there. The E at ‘the Mirnov coils is strong, often exceeding
E/B = 1%, and is dominated by the m/n = 2/1 mode symmetry. Despite the
large. 2/1 E. there is no distinctive xfray signal from near q = 2 and
thus no iarge m = 2'island structure.

In order to understand the pattern of these results, we have
numerically studied the effect of increasing beta on the stability and
nonlinear evolution of the (m = 1:n = 1) mode, The equations and

numerical methods wused for this study are discussed in Sect. 2; the



equilibria we have considered are described 1in  Sect, 3. With
increasing Bp the n= 1 mode changes from a tearing mode to a
pressure-driven mode (Sect. 4). As described in Sect. 5 this change in
the linear eigenmode induces a change in the nonlinear behavior of this

mode, In Sect., 6 we state our conclusions,
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2. EQUATIONS AND NUMERICAL METHODS

The resistive MHD equations are

LRSI PN -

— V o v = - N
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where v is the fluid velocity, o is the mass density, p is the

m
> > >
pressure, B 1is the magnetic field, J is the current density, E is the

electric field, n is the resistivity, and Yo is the vacuum magnetic
permeability. In order to close this system of equations, it is
necessary to specify an equation of state and equations for the
resistivity and mass density. In this paper, the mass density is
assunmed to be constant iﬁ space and time and the resistivity to be

constant in time. The equation of state is assumed to be
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where T is the ratio of specific heats of the plasma.



A high-beta large aspect ratio tokamak ordering

(B ~¢ = a/Ro << 1) allows the reduction of the resistive MHD equations
to a set of three partial differential equations in three
unknowns.u Here, RO is the plasma major radius and a is an average

plasma minor radius given by

R | .

a2 = _ % [ g2 , (6)
212 v

where the integration -extends over the entire plasma volume. This

ordering allows the toroidal component of the fluid velocity to be

neglected and implies that the fluid is incompressible,

The reduced set of equations in dimensionless form is
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and
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Jg = AVY =R Vl . (;E VlW) , (11)

where R 1is the major radius coordinate divided by R is the

o+ Bo

toroidal beta at the magnetic axis, and ¢ is a unit vector in the



toroidal direction. All 1lengths are normalized to the generalized
minor radius a, the resistivity to N, (its value at the magnetic axis),
the time to the resistive diffusion time t_ = azuo/no, the magnetic

r

field to BCo (the unperturbed vacuum toroidal field at major radius
Ro), the velocity to a/t,., and the pressure to p, (its value at the
magnetic axis). The functions ¥ and ¢ are the poloidal ‘flux and

2g and a°B

velocity stream functions, normalized to a zo CO/Tr,

respectively. They are related to the dimensionless magnetic field and

fluid velocity by

> e;\ > A~
B:Ech‘!’+g (12)

and

> ~ .
Vl: vé x ¢ , (13)

where the subscript 1 indicates perpendicularity to z. The toroidal

current density is JC/R and is normalized to B and U 1is the

go/“oRo'
toroidal component of the vorticity. The parameter S is the ratio of
the two time scales involved in this problem: S = Tr/Thp' where Thp is
the poloidal Alfvén time, Thp = Ro(uopm)1/2/BCo. A conducting wall
boundary condition is assumed along with zero pressure at the plasma
edge.

Equations (7)-(9) are numerically advanced in time using the
three-dimensional nonlinear initial value resistive MHD code RST.

Axisymmetric toroidal numerical -equilibrium solutions are calculated

using the RSTEQ equilibrium code.? Even though Eqs. (7)-(9) keep



dynamical terms only to 1lowest order in ¢, the solution of the

Grad-Shafranov equation (exact to all orders in ¢),

: B
a*y = - % g2dp _ 1 pdF

1
— (14)
0]
2¢2 dvy g2 dv
where F = RBC' is an equilibrium solution for the n + 0 limit of these
equations., Assuming zero velocity at equilibrium, Eq. (9) becomes

identically zero, and Eq. (8) can be shown to be zero from force

balance,
> > >
J xB=_—-Vp , (15)

by operating on both sides of Eq. (15) with the operator L defined by
PN > 2
L(f) = ¢ « (V x Rf).

The equations are solved in a generalized nonorthogonal flux
coordinate system (p, O, §)6'7 determined by the equilibrium, In this
system p (0 < p € 1) is an equilibrium flux surface variable which
behaves as a generalized minor radius, © (0 € © € 27) is a generalized
poloidal angle variable, and ¢ is the toroidal angle. The particular

choice of coordinates employed in this work is determined by setting

the Jacobian such that

|

, 7 . o7\ a=
p =) (881382 1X3n"" _ g2 (16)
3p p 90 p 90 3p

where X (R - 1)/e and 2Z are horizontal and vertical dimensionless

minor radius coordinates, respectively. Expressing each dynamical



quantity f in terms of an equilibrium contribution feq and a’

~

>
perturbation contribution f and. noting that Vleq = Qeq = Ueq = 0,

Eqs. (7)-(9) in the generalized coordinate system become
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The linear operator A* in this coordinate system is

] pp af p0® 1 af
_— + -
(g pa—p Pg > 36

i<gep L, g0 1 f—f) . (20)

The quantities gPP, ng = g%, and g®° are the metric elements of the

generalized coordinate system expressed in terms of toroidal (X,9,2)

coordinates:
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Equations (17)-(19) make use of the fact that weq and Paq are functions'
of p only.

The above equations are solved by using a finite difference
representation in the radial coordinate p and Fourier series expansion
in the angle variables © and ;.8 In terms of this representation,

quantities dependent upon the equilibrium are written

o0

foql0.0) = mEO [fgqm(p)cos mo + fgqm(p)sin mo] (24)

whereas perturbation quantities are written

~ i o o: o .
1(p,9,z) = I mi_m[fmn(p)cos(mu + ng)

+ fo (p)sin(mo + ng)] . (25)
Although RST adllows both sine and cosine terms, we restrict our study
to equilibria having up-down symmetry (cosine terms only), Then, 1in
cases where only the cosine terms in ¥ are initialized, the sine terms
in v, JC' and p and the cosine terms in % and U remain zero. In order
to simplify the presentation, only this 1latter situation will be

~discussed, and the superscripts ¢ and s will be dropped. In practice



the series in Eqgs. (24)-(25) must be truncated at a finite number of
modes. The resistivity n is taken to be a function of p only and 1is
defined by ”<Jceq> = Ecw' where Ecw is assumed to be constant and the
< > means average over equilibrium flux surfaces. With this choice of
resistivity the equilibrium is an approximate resistive equilibrium.

Equations (17)-(19)  explicitly exhibit the linear and nonlinear
terms in the moderate-beta reduced equations. By omitting or including
the nonlinear terms the RST code can be used either for the study of
linear stability or as a full nonlinear initial value code. Both modes
of operation are used in this work.

Most of the numerical techniques used in this work are derived
from the RSF code.8 However, two differences between RST and RSF
should be mentioned. The first 1is the addition 6f the pressure
convective equation (19) in RST. In order to numerically advance this
equation 1in the nonlinear regime, a small diffusion term XA*ﬁ is added
to the right-hand side. Numerical schemes involving noncentered
spatial derivatives, which are wusually applied to the solution of
convective equations, are difficult to implemen£ in the mixed
Fourier-finite difference representation .used here, The diffusién
coefficient y is small enough to have no effect on the 1linear growth
rate of the modes under study. A second difference is in the form of
the matrices required to calculate the inversion of U = Ai@ and the
implicit diffusion terms due to nA*W in Eq. (17) and XA*ﬁ, which is
added into Eq. (19). Becaﬁse the -equilibria for RST 1lack poloidal
symmetry, Fourier components having a given toroidal mocde number n but
different poloidal mode nunbers m are 1linearly coupled through the

equilibrium quantities. Using a three-point second-order radial
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difference scheme, a block tridiagonal matrix having MJ rows of blocks
(MJ being the number of radial grid points) with each block of size
M(n) x M(n), where M(n) 1is the number of poloidal components of
toroidal mode number n in the calculation, must be inverﬁed for each
toroidal mode number n in each of the three operations alluded to
above. In addition to adding complexity to the matrix structure for
the A* and related operators, these geometric couplings necessitate the
inclusion of a greater number of Fourier components in order to
represent the modes. This has the effect of shortening the time step

size used by RST as can be seen from the formula

2

m
S M -
ax|n q(p)l

At £

~

’ (26)

which results from a 3simplified von Neumann 3tability analysis of
Eqs. (17)-(18). Here, q(p) is the equilibrium safety factor q profile.

In RST the block tridiagonal matrix solutions require more
computer time than any other part of the code, Because of the large
number of Fourier components, the shortness of the time step, and the
dominance of the matrix equations in computer time, it is essential to
use efficient software fdr their solution. RST solves the matrix

equations using the block tridiagonal matrix package BT/BTMS.9
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3. EQUILIBRIA

The equilibria used in this stddy are numerical solutions of the
toroidal axisymmetric Grad-Shafranov equation 14y, They are
calculated in a flux conserving manner with a pressure profile

Peq « qu(p) and a safety factor profile parameterized as

u]1/2. We have studied several such sequences of

q = q°[1 + (p/pgy)
equilibria. The detailed parameters for one of those sequences are
given in Table 1. In the 1low-beta cylindrical 1limit for this
particular q profile only, the (m = 1;n = 1) tearing mode is unstable.

Since a Qetailed simulation of the ISX-B experiment has not been
attempted at this point, equilibria which accurately match the
experimental parameters have not been sought. The flux conserving
sequence of eduilibria shown‘ in Table 1 was chosen to allow a
systematic study of the 1linear and nonlinear behavior of the
(m = 1;n = 1) tearing mode as a function of beta. The systematics of
this behavior can be compared with those of the ISX-B experiment
described in the Introduction. Other equilibrium sequences (Table 2)
are used to study the effects of changing Qg and qo.' We have not
studied the effects of varying the pressure profile but have maintained
peq « qu throughout these calculations.

As beta is increased in a flux conserving manner, the equilibrium
geometry becomes distorted away from circularity except at the
boundary. The toroidal current distribution and equilibrium flux
surfaces shift outward in major radius as seen in Fig. 1. The beak of

the current density shifts relative to the magnetic axis. This

modifies the current gradient at the q = 1 surface (see Fig. 2 and
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Table 1) in a way which tends to stabilize the tearing mode. This
behavior ié a consequence of the flux conserving method, which is
probably optimal for stability of tearing modes. Although the RST code
allows the study of plasmas of more general cross section, the
equilibria considered here are for circular cross-section plaémas. The
effects of noncircularity on the stability of high~beta plasmas are

under study at present,
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4, LINEAR PROPERTIES OF THE n = 1 EIGENMODE

A linear study of the n = 1 eigenmode was carried out for the flux
conserving sequence of equilibria described in Table 1. The survey was
conducted at S = 105, as were all calculations in this paper, unless
otherwise noted. In order to separate the beta effects of the
dynamical pressure driving term in Eq. (18) from those induced by the
equilibrium, linear calculations were carried out in  two
ways: (1) wusing linearized versions of the full equations and
(2) using the same -equations with the dynamical pressure term in
Eq. (18) turned off, In the first method pressure-driven and
current~driven effects are included, whereas in the second method only
current-driven effects are allowed. Beta effects observed using .the
second method of calculation are caused by the distortion of the
equilibrium geometry, whereas the first method also includes the -
dynamicél effects of the‘pressure terms.

| The n = 1 linear growtﬁ rate is plottea as a function of Bp for
both methods in Fig. 3. The dashed curve, which was calculated without
dynamical pressure effects, illustrates the effect of beta induced by
the equilibrium upon the stability of the current-driven mode. As
described in Sect. 3, the shift of the peak of the toroidal current
relative to the magnetic axis decreases the current gradient at the
q = 1 surface, It aiso increases the coupling to other modes, which
are stable; both effects tend to stabilize the mode., The solid curve
was calculated uéing the full linearized equations, and it therefore
includes pressure-driven dynamical effects in addition to those of the

other curve. For 1low values of Bp the pressure terms produce an
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interchange stabilization of the n = 1 mode similar to that predicted
by Glasser et al.,10 but as Bp increases, the character of the mode
changes, becoming mainly pressure driven with an 1increasingly large
growth rate.

The effects of beta upon the n = 1 mode when dynamical pressure
effects are included are illustrated in Fig. 4 (which shows the m = 1
Fourier components of ¥, p, and ¢ at Bp = 0.19, 0.59, 1.00, and 1.94,
respectively). The similarity between the p and ¢ components 1is

expected from the linearized form of the dynamical pressure equation;

- dp
[t} eq
anmn = - ‘p’ mn ""'d"p ] (27)

where Yn is the 1inear.growth rate.

The relative magnitudes of Ppn @and ¢y, are consistent with this
expression., For Bp = 0.19 the ¢4 component is dominant and has the
typical kink mode structure obtained in the low-beta limit, indicating
that the n = 1 eigenmode 1is mainly a current-driven mode. At
Bp = 1.94, the n =1 mode is mainly pressure driven and ifs Fourier
components are 1localized near the q = 1 singular surface. This
particular equilibrium is stable to the n = 1 mode when the Bg/¢ term is
removed from Eq. (18), as indicated by the dashed curve of Fig, 3., For
Bp = 0.59 and 1.00, Fig. 4 shows the transition from current- to
pressure-driven dominance.

A large number of Fourier components is necessary to correctly
describe an eigenmode when the beta effects are included. We have

found that the coordinate system we use is optimal in minimizing the

number of components, However, about ten poloidal components are
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required to calculate the linear growth rates accurately to within a
few percent. In Fig. 5 we show the different poloidal components of V¥
used in calculating the linear n = 1 eigenmode for two values of Bp,
Qp = 0.19 (Fig. 5a) and Bp = 1.94 (Fig. 5b). For the lower value of
Bp, all modes show a global character which is normally associated with
kink modes. The m = 2 component 1is the largest of the driven
components, and its structure 1is quite different from a 1linearly
unstable (m = 2;n = 1) tearing mode. This component peaks near the
q = 1 singular surface and has hardly any structure near the q = 2
surface. The obéerved structure carries over in the nonlinear regime
with important observable consequences as we will show in the next
section, At the highest value of Bp (Fig. 5b), the §tructure of the
components 1is considerably different, as already seen for the

(m= 1;n= 1) in Fig. 4. All components are highly localized near the

SO
n

1 surface, and the m = 1 component is no longer dominant; both the
m= 0 and m = 2 components have larger amplitudes than the m = 1.
To estimate the relative amplitudes of ‘different Fourier

components, we define for each component a magnetic energy norm

1 ] 9¥mn\2 ™mn\ 2
(EM)pp = > Io p dp [( Bp) + ( 5 . (28)

and a pressure norm

:
(Epdpn = J_ 0 do Bpy - (29) -

The ratio of the magnetic energies in the m = 2 and h = 3 components to
that in the m = 1 component is shown as a function of Bp in Fig. 6 for

cases both with (solid curves) and without (dashed curves) dynamical
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pressure effects. when dynamical pressure effécts are excluded, the
change in strength of the current-driven componeﬁts, which 1is due to
the incfeasing deformation of the current profile relative to the flux
surfaces, is gradual and continuous. For cases Qith dynamical pressure
effeéts included, the relative strengths of the high m components
increase more rapidly as the mode shifts from current to pressure
driven. A saturation of the relative m = 2 and m = 3 magnetic energies
occurs after the mode is eséentially in the pressure-driven regime.
Figure Ta 1illustrates this discussion for a whole range of componénts
by plotting the ratio of the (m;1) and (1;1) magnetic energies for

values of & v.0f, U.1Y, U.38, 0., and 1.00. The similarity

p =
between the Bp = 0.59 énd 1.00 magnetic energy spectra shows the
saturation effect mentioned above., This figure also illustrates that
for the coordinate system used the number of poloidal components
necessary to acpurately represent an eigenfunction is not a strong
function of Bp.

The results presented so far illustrate Bp effects on the
stability of the n = 1 mode for a particular flux conserving sequence
of equilibria. 1In order to assess the effects of modifying the q
profile, linear stability calculations were made for the flux
conserving sequences described in Table 2. For each of the flux
conserving sequences considered, two regimes emerged: a low Bp regime
in which the current-driven effects dominate and a high Bp regime in
which pressure-driven effects dominate. Ip the low Bp regime the n = 1
mode is essentially a tearing mode modified by Bp effects. The

structure and growth of the mode in this regime are determined mainly

by the equilibrium current, with the pressure driving terms enhancing
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the couplings and providing some degree of stabilization. 1In the high
Bp regime the effects of the q profile diminish as the' mode becomes
mainly pressure driven. This is illustrated in Fig. 8! which plots the
n = 1 linear growth rates as functions of Bo and Bp for the three
equilibrium sequences considered. At high Bp' where pressure driving'
effects dominate, the growth rates are seen to be nearly independent of
the q profile. This is not true for the B, plot, so that the growth
rate in the high-beta regime can be expressed better as a function of
Bp than g,. However, at low Bp the growth rates are stronger functions
of the q profile, Noting that the (m = 1;n = 1) tearing mode in the
low-beta 1limit 1is driven by the shear at the q = 1 surface, it i$
interesting that%%g 41 * 0+38, 0.39, and 0.72 for the q = 0.9 > 2.3,
q= 0.9 + 3.3, and q = 0.8 » 2.3 profiles, respectively. This explains
tﬁe enhancement of the growth rate at low Bp for the 1latter profile,
The transition region from current- to pressure-driven dominance is q
profile erendent, with current driving effects lingering to higher Bp
for profiles having greater shear.

The difference between the growth rates of the q = 0.9 +» 2.3 and
' q= 0.9 » 3.3 profiles at low Bp is at 1least partially due to the
relative stability of the driven (m = 2;n = 1) and (m = 3;n = 1) modes
for these cases. For the latter profile the m = 3 is resonant and the
m= 2 1is unstaﬁle in the low Bp limit, whereas for the former profile
the m = 3 is nonresonant and the m = 2 is stable. This is illustrated
in Fig. 7 where, comparing the Bp = 1.00 magnetic energy distribution
in 7a with that for Bp = 1.02 in 7b, the enhancement of the magnetic

energy of the m = 3 component is obvious for the q = 0.9 » 3.3 profile,

for which the (m =z 3:n = 1) component is resonant in the plasma.
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Higher n modes, which are stable at 1low beta, become 1linearly
unstable with increasing beta.11 They are essentially pressure driven,
and their linear growth rate increases strongly with beta (Fig. 9).
The 1linear growth rate (at high values of beta) increases with n, and
the Structure of the eigenfunctions has ballooning character.

In summary, Bp modifications to the n = 1v mode are induced by
distortion of the equilibrium current profile, which changes the growth
rate and couples components having different m values, and by the
transition from current to pressure as the driving term of the

instability.
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5. NONLINEAR RESULTS

Nonlinear calculations of the plasma evolution were carried out
for the flux conserving equilibrium sequence shown in Table 1, up to
the Bp = 1 case. These cases cover the range in which the n = 1 linear
eigenmode changes from a classical tearing mode to a more complex mode
structure for which the pressure driving terms are important (Fig. 4).
Approximately 50 Fourier components having toroidal mode numbers in the
rangen=0, . . . , 7 were included in these calculations. For higher
values of sp, the 1large n modes are linearly unstable, with growth
rates increasing with n (Fig. 9). This makes nonlinear numerical
calculations based on Fourier expansions difficult. 1In such cases, it
is necessary to include terms in the equations that simulate effects,
such as finite Larmor radius corrections, which 1limit the range of
unstable n values and allow a correct evaluation of these modes.
However, even taking such effects into account, the computations are
slow and very lengthy. We have not yet obtained reliable results for
these high Bp equilibria,

The main results of the nonlinear studies can be summarized as
follows:

(1) For the equilibrium sequence in Table 1 and 8 < 0.5, the

)
nonlinear growth of the m = 1/n = 1 magnetic island slows down
with increasing Bp, going from exponential to linear prior to
reconnection.

(2) vFor higher valueg of Bp, the m = 1/n = 1 magnetic island saturates

and remains at a finite amplitude. This transition from
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reconnection to saturation happens when the mode  becomes

dominantly pressure driven.

(3) The (m = 1;n = 1) mode drives many modes through toroidal and
nonlinear coupling. The largest driven mode for this equilibrium
‘sequence is the (m = 2;n = 1) mode. This mode, as discussed in
Sect. 4, 1is mainly 1localized near the q = 1 surface, and the
induced m = 2/n = 1 magnetic island is small, However, the
(m = 2;n = 1) mode produces a 1large poloidal magnetic field
perturbation at the plasma surface.

(4) A broad spectrum of other driven modes 1is produced. These
generate a Qériety of magnetic islands that in many cases overlap
and break the magnetic surfaces.

The first two results are shown in detail in Fig. 10, In this
figure we have plotted the time evolution of the m = 1/n = 1 magnefic
island width (top) and the (m = 2;n = 1) component of the poloidal
magnetic field at the plasma edge for the different equilibria we have
considered. The dashed curve shows the result for the low-beta
cylindrical equilibrium with the same q profile., 1In this limit the
m= 1/n = 1 magnetic island grows exponentially with time, flattening
the current and q profiles. The magnetic field line topology flips,
with the center of the island becoming the new magnetic axis, and after
magnetic field line reconnection, the cylindrical symmetry is recovered
with @ > 1 in the whole plasma volume. This nonlinear process was

12 and studied numerically in

theoretically anticipated by Kadomtsev
detail in Refs. 13-15. As already mentioned, an effect of 1increasing
beta wupon the nonlinear evolution is to 1lengthen the time until

magnetic field line reconnection., This stretching out of the nonlinear
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evolution of the m = 1/n = 1 island width is due to a period of linear,
rather than exponential, growth in time. This is quite evident in the
case of Bp = 0.38 (Fig. 10). This behavior is similar to that of the

16

m > 1 tearing modes in cylindrical geometry and is probably induced

0.59,

by the strong coupling of fhe m=1tom?> 1 modes. For Bp
Fig. 10 shows that the m = 1/n = 1 magnetic island saturates at a width
W e O.ia. The  saturation of the (m= 1;n = 1) mode in high
temperature, 1low-beta cylindrical plasmas has been predicted by
Biskamp,17 who 1included diamagnetic drifts, ion viscosity, plasma
diffusion, and resistivity in a single helicity calculation. In his
calculations saturation occurs when the (m = 1;n = 1) linear growth
rate is exgeeded by the diamagnetic drift frequency wy. For high-beta
plasmas this effect could be important in modifying the threshold of
the saturétion of the (m = 1;n = 1) mode.

Let us now consider the nonlinear evolution in detail,. We will
describe first a case in which the m = 1/n = 1 island induces full
rgconnection of magnetic field lines and second a case in which the
m= 1/n = 1 island saturates. Figures 11-13 show magnetic field line
plots, pressure profiles, and pressure contour plots, respectively, at
several times for a case. in which there 1is full reconnection of
magnetic field lines (Bp = 0.38). The field line plots in Fig..11 show
the evolution of the m= 1/n = 1 island toward reconnection. At
t = 1398Thp the m =-1/n = 1 island width has reached nearly 20% of the
plasma minor radius. Other modes are driven by the (m= 1;n= 1)

‘through toroidal andlnonlinear‘coupling. These modes generate magnetic

islands of different. helicities, as can be seen in the figure.
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At the later times two interestiné features are observed: (1) the
1/1 1island grows, squeezing the original magnetic axis into a small
region to the left of the island (a hot spot), and (2) the interaction
between modes becomes sufficiently large that many driven magnetic
islands overlap, causing the magnetic field lines to become stochastic
in certain regions of the plasma.

The pressure profile flattens inside the 1/1 island (Figs. 12-13).
As the 1/1 grows, the region of flat pressure increases wifh the size
of the 1island. At t = 4967thp, a local pressure peak (hot spot)
remains to the left of the island at the present location of the
magnetic axis, but the bulk of the plasma center, which is occupied by
the 1/1 island; displays a flat pressure profile.

For higher values of Bp the m= 1/n = 1 island saturates. In
particular, for Bp = 0.59, the (m=z= 1;n= 1) mode couples to other
modes which generate several magnetic islands, but the instability
saturates when them = 1/n = 1 island has a width W ~ 0,1a (Fig. 14).
In this case, all the n > 1 modes used in the calculation are linearly
unstable. Therefore, some of the magnetic 1islands present in the
plasma are not driven by this mode. The effect of these high n
pressure-driven modes wupon the 1low n evolution for Bp < 1 cases
considered in this sequence is small. These high n modes are observed
to saturate at small amplitudes for realistic values of S (S 2 106).

If the value of S is unrealistically low (S ~ 104), the high n
modes evolve very fast and generate a singularity ' in the pressure,
Since we are below the threshold of the ideal instability, increasing S
reduces the instability, and, for S ? 105. the modes saturate without

presenting this singular behavior,
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The value of S also affects the evolution of the low n modes
(Fig. 15). For a reconnection case, as S increases the growth of the
1/1 island is significantly stretched out in time. In 1ISX-B the
poloidal Alfvén time and magnetic Reynolds number are Thp * 0.4 us and

S ~ 107, respectively. Assuming a power law dependence of 1 the

recon’

time for the evolution of the (m = 1;n = 1) mode to reconnection, upon

S, and then the extrapolation of Trecon in Fig., 15 (for the Bp = 9.19
case in Table 1) indicates that t,...,, 2'10’000Thp for S = 107. This

corresponds to a (m= 1;n= 1) mode evolution time of several
milliseconds for such a case in ISX-B, which is in good qualitative
agreement with the observed duration of m = 1 precursors for low bean
power ISX-B cases.

Hence, the effects of increasing Bp on the evolution of them = 1
mode for a flux conserving sequence of equilibria 1lead to an
interpretation consistgnt with ISX-B observations.3 Associating the
nonlinear evolution of the (m = 1;n = 1) mode with the observed MHD
activity, both the calculations and the experiment observe with
increasing Bp the slowing down of the classical sawtooth oscillation,
the transition to a 1long or steadily running precursor signal
(saturated 1/1 island), and the occurrence of sizeable m= 2 E/B
signa}s at the plasma edge with at most a small associated 2/1 magnetic
island. Also, extrapolation of the time scales of the reconnection
process in the calculations to ISX-B parameters is consistent with
experimental observations,

As with linear stability, the effects of modifying the q profile
have important conseduenoes for Bp ¢ 1 in the nonlinear ;egime.

Increasing BT for fixed plasma current, density, and beam power P, in
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ISX-B leads to an increase in Q. In this process Bp is observed to
remain constant while the behavior of the m= 1 returns to the
"classical" sawtooth with a speeding up of the nonlinear evolution and
a reduction of coupling to the driven modes, as evidenced by a reduced
E/B-signal. This behavior is observed in our calculations, as shown in
Fig. 16 where two equilibria, from Tables 1 and 2, having comparable Bp
but different q, are seen to have markedly different reconnection
times, The case with q; = 3.3 undergoes field line reconnection much
more ‘rapidly than the q, = 2.3 case. The plots of the (m = 2;n = 1)
poloidal magnetic perturbation at the plasma edge reveal a much larger
signal for the Qg = 2.3 case than for the ag = 3.3 case, indicating
that the (m = 2;n = 1) mode is driven less by the (m =z 1;n = 1) in the
latter case than in the former,

Increasing the shear at the q = 1 surface by decreasing q, can
also affect the nonlinear evolution, as can be seen in Fig. 17. Here
again, for two <cases from Tables 1 and ? with comparahle Bp but
different q,, the island widths and (m = 2;n = 1) poloidal magnetic
perturbations at the plasma edge are plotted as functions of time. The
higher shear case with q, = 0.8 undergnes fairly rapid magnetic ficld
line reconnection, whereas the qq = 0.9 case displays a saturated
(m = 1/n = 1) island, Hence, the evolution of the (m = 13n = 1) mode
in a moderate-beta plasma can be quite sensitive to changes in the q

profile.
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6. CONCLUSIONS

The stability and nonlinear evolutions of the {(m = 1;n = 1) mode
in high—beta plasmas have been studied as functions of Bp for several
flux conserving sequences of ideal MHD stable equilibria. A linear
stability study of this mode for a flux conserving sequence of
equilibria displays a transition from a mainly current-driven teaﬁing
mode at low Bp to a mainly pressure-driven mode at high Bp. As Bp is
increased, the current-driven n = 1 mode 1is at first stabilized by
equi}ibrium Bp and interchange stabilization. effects in which the
dominant (m = 1;n = 1) component 1is coupled to more stable m
components, In - this regime the structure of the n = 1 mode is
essentially that of a modified low-beta (m = 1;n = 1) tearing mode. As
Bp is increased further, the n=1 mode becomes mainly a
pressure—driven' mode. The transition regionl from current- to
pressure-driven dominance is sensitive to the q profile. Higher n
modes, which are all stable at very low Bp, are 1linearly destabilized

when increases, having growth rates which increase with both Bp and

Bp
n.
.Nonlinear calculations thus far have been carried out for Bp up to
about 1. As Bp is increased, the "classical" field line reconnection
of the (m = 1:n = 1) mode becomes stretched out in time, and a period
of 1linear magnetic island growth emerges prior to reconnection. For

the higher values of B8 considered here, the m= 1/n = 1 1island

p

saturates. The equilibrium-induced couplings of the (m = 1;n = 1)
drive other m components which give substantial B/B values at the

plasma edge. As B_. enters the pressure-driven regime higher n modes

p
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become linearly unstable and generate many sméll islands, some of which
can overlap and cauée certain regions of the plasma to become
stochastic. 1Increasing qQ, tends to speed up this evolution and
decouple the driven modes from the (m = 1;n = 1), causing the return to
the "classical" (m = 13n = 1) behavior. .Decreasing q, tends to
increase the shear at the q = 1 surface, which also speeds up the
nonlinear evolUtipn.

It is clear that these results can explain some of the observed
MHD behavior 1in the ISX-B tokamak as described in the Introduction,
These results are subject to the condition that q, < 1, and the details
of the evolution for any particular case are sensitive to the choice of
equilibrium q profile. A detailed discussion of the MHD activity in
ISX-B and its interpretation in terms of these calculations is

f‘orthcoming.3
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Table 1, Detailed equilibrium parameters for a flux
conserving sequence characterized by

e=0.25  p= [¥oulp)/¢gq(0)]? qy = 0.9 g = 2.3

Magnetic axis 3J50

Bp Bo(%) <B>(%) skift ( - )q=1

0.07 0.3 0.09 0.06a 4,01

0.19 1.0 0.25 0.07a 3.95

0.38 2.0 0.53 0.09a 3.86

0.59 3.1 0.84 0.12a 3.77

1.00 5.6 1.51 0.172 3.56

1.49 8.7 2,41 . 0.23a 3.29

1.94 12.1 3.40 0.28a 3.03

8¢



Table 2, Equilibrium parameters for the three flux
conserving sequences used in this paper

e = 0.25 P = [¥eq(p)/¥eq(0)]° a=0q, /1 + (p/p)"
Bo( %) q, = 0.9 g, = 2.3 q = 0.9 q, = 3.3 Qo = 0.8 qy = 2.3
Magnetic Magnetic Magnetic
Bp axis shift Bp axis shift Bp axis shift
0.3 0.07 0.06a 0.12 0.07a 0.06 . 0.05a.
1.0 0.19 0.07a 0.34 0.09a 0.18 0.07a
2.0 0.38 0.09a 0.68 . 0.13a 0.37 0.09a
3.1 0.59 0.12a 1.02 0.16a 0.57 0.11a
5.6 1.00 0.17a : 1.67 0.23a 0.98 0.16a
8.7 1.49 0.23a 2.33 0.30a 1.44 0.21a

12.1 1.94 0.28a 2.90 0.36a 1.87 0.26a

62
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FIGURE CAPTIONS

Fig. 1. Poloidal flux function, ¥, and toroidal current density

contours for the Bp = 0.59, 1.00, 1.49, and 1.94 equilibria described

in Table 1.

Fig. 2. Toroidal current density profiles for the Bp = 0.59,
1.00, 1.49, and 1.94 equilibria described in Table 1. The dashed lines

show the position of the q = 1 singular surface.

Fig. 3. n = 1 linear growth rate (~TB;) Vs Bp for the flux
conserving sequénce of equilibria described in Table 1. The dashed
curve includes only the current-driven part of the mode, whereas the

solid curve includes the full dynamical effects of the pressure driving

terms.

Fig. 4. m = 1 components of ¥, p, and ® for the n = 1 eigenmode
for the Bp = 0.19, 0.59, 1.00, and 1.94 equilibria described in Table
1.

Fig. 5. m= =2, . . . , T components of ¥ for the n = 1 eigenmode

for (a) the Bp = 0.19 and (b) Bp = 1.94 equilibria described in

Table 1.

Fig. 6. Magnetic energy ratio (Ey),,/(Ey)4q for m = 2 and 3. The
dashed curves include only the effect of the deformed equilibrium on
the current-driven part of the mode, whereas the solid curves also

include the full dynamical effects of the pressuré driving terms.
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Fig. 7. Magnetic _.energy ratios (EM)m1/(EM)11 form= -2, ...,
7 for (a) the Bp = 0.07, 0.19, 0.38, 0.59, and 1.00 equilibria
described in Table 1 and (b) the Bp,z 0.12, 1.02, and 2.90 equilibria

having qy = 0.9 and qy = 3.3 described in Table 2.

Fig. 8. n = 1 linear growth rate (~ Thp-1) vs B8, and vs Bp ‘for
the flux conserving sequences of equilibria considered here. The solid
curve is for 4, = 0.9 and qy = 2.3; the long dashed curve 1is for
Qy = 0.9 and qj = 3.33 anq the short dashed curve is for q, = 0.8 and

qa = 2.3.

-1y vs g for

Fig. 9. n =1, 3, and 6 linear growth rates (~ Thp p

the flux conserving sequence of equilibria described in Table 1. The
value of magnetic Reynolds number S = 104 was used in the calculation

for this figure.

Fig., 10, m= 1/n = 1 magnetic island width (top) and
(m = 23n = 1) poloidal magnetic field fluctuation amplitude at the
plasma edge (bottom) vs time for the Bp = 0.07, 0.19, 0.38, and 0.59

equilibria described in Table 1,

Fig. 11. Magnetic field line plots at t/rhp = 1398, 1896, 1936,

and 1967 for the Bp = 0.38 case,
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Fig. 12. Horizontal and vertical pressdre profiles at t/rhp = 0,

1398, 1896, 1936, and 1967 for the Bp = 0.38 case,

Fig. 13. Constant pressure contours at t/rhp = 1398, 1896, 1936,

and 1967 for the Bp = 0.38 case.

Fig, 14, m = 1/n = 1 1island width vs t/rhp together with
horizontal toroidal current density profile and magnetic field line

plot of the saturated state for the Bp = 0.59 case,

Fig. 15. m = 1/n = 1 magnetic island width vs t/rhp for S = 10“.

105, and 106 for the Bp = 0.19 case.

Fig. 16. m = 1/n = 1 magnetiec island widthi (top) and
‘(m = 2;n = 1) poloidal magnetic field fluctuation amplitude at the

plasina edge (bottom) vs time for the Bp = 0.38 (qQ = 0.9, Qg = 2.3) and

Bp = 0.34 (g5 = 0.9, q; = 3.3) equilibria described in Tables 1 and 2.
Fig. 17. m = 1/n = 1 magnetic island width (top) and
(m = 2;n = 1) poloidal magnetic field fluctuation amplitude at the

plasma edge (bottom) vs time for the Bp = 0.59 (q, = 0.9, q, = 2.3) and

Bp = 0.57 (g4 = 0.8, q5 = 2.3) equilibria described in Tables 1 and 2.
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