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ABSTRACT 

The s t a b i l i t y  a n d  e v o l u t i o n  o f  ISX-B-like p l a s m a s  a r e  n u m e r i c a l l y  

s t u d i e d  u s i n g  a  r e d u c e d  se t  o f  r e s i s t i v e  m a g n e t o h y d r o d y n a m i c  (MHD) 

e q u a t i o n s .  F o r  a  s e q u e n c e  o f  e q u i l i b r i a  s t a b l e  t o  i d e a l  m o d e s ,  t h e  

n  = 1  mode c h a n g e s  f rom a  t e a r i n g  b r a n c h  t o  a  p r e s s u r e - d r i v e n  b r a n c h  a s  

Bp  i s  i n c r e a s e d .  When t h i s  mode i s  u n s t a b l e  a t  l o w  b e t a ,  i t  i s  j u s t  

t h e  (m = 1 ; n  = 1 )  t e a r i n g  mode. H i g h e r  n  modes  a l s o  become l i n e a r l y  

u n s t a b l e  w i t h  i n c r e a s i n g  t h e y  a r e  e s s e n t i a l l y  p r e s s u r e  d r i v e n  and P; 
h a v e  a  b a l l o o n i n g  c h a r a c t e r .  F o r  l o w  v a l u e s  o f  b e t a  t h e  i n s t a b i l i t y  i s  

b e s t  d e s c r i b e d  a s  a  6  d i s t o r t i o n  o f  t h e  (m = 1 ; n  = 1 )  t e a r i n g  mode. P  
T h i s  mode d r i v e s  many o t h e r  h e l i c i t i e s  t h r o u g h  t o r o i d a l  and n o n l i n e a r  

c o u p l i n g s .  A s  6  i s  i n c r e a s e d ,  t h e  g r o w t h  o f  t h e  m = 1  i s l a n d  s l o w s  P  
down i n  time, g o i n g  f rom e x p o n e n t i a l  t o  l i n e a r  b e f o r e  r e c o n n e c t i o n  

o c c u r s .  I f  B p  i s  l a r g e  e n o u g h ,  t h e  i s l a n d  s a t u r a t e s  w i t h o u t  

r e c o n n e c t i o n .  A b r o a d  s p e c t r u m  o f  o t h e r  modes ,  d r i v e n  b y  t h e  

(m = 1 ; n  = 1 )  i n s t a b i l i t y ,  i s  p r o d u c e d .  T h e s e  r e s u l t s  a g r e e  w i t h  some 

o b s e r v e d  f e a t u r e s  o f  MHD a c t i v i t y  i n  ISX-B. 



1. INTRODUCTION 

The (m = 1  ; n  = 1 )  t e a r i n g  mode i s  b e l i e v e d  t o  b e  r e s p o n s i b l e  f o r  

t h e  s a w t o o t h  o s c i l l a t i o n s 1  o b s e r v e d  i n  o h m i c a l l y  h e a t e d  tokamak 

d i s c h a r g e s . 2  R e c e n t  e x p e r i m e n t a l  r e s u l t s  f rom t h e  n e u t r a l - b e a m - h e a t e d  

tokamak ISX-B show s t r o n g  d e p e n d e n c e  o f  t h e  magne t o h y d r o d  y n a m i c  ( MHD) 

a c t i v i t y  upon i n j e c t i o n  ~ o w e r  .3 F o r  ohmic  d i s c h a r g e s  t h e  c l a s s i c a l  

s a w t o o t h  b e h a v i o r 1  i s  o b s e r v e d  i n  sof t  x- ray  s i g n a l s .  V e r y  l o w  beam 

p o w e r s  ( P b  < Poh) a f f e c t  t h e  i n s t a b i l i t y  b y  e n h a n c i n g  t h e  a m p l i t u d e  and - 
p e r i o d  o f  t h i s  c l a s s i c a l  b e h a v i o r ,  a n d  a  v e r y  weak c o i n c i d e n t  B  i s  

o b s e r v e d  a t  t h e  Mirnov  c o i l s .  A s  t h e  beam power is i n c r e a s e d  

( P b  2 P o h ) ,  t h e  i n s t a b i l i t y  s i g n a l s  a r e  a l t e r e d  by  a  l e n g t h e n i n g  o f  t h e  

i n t e r v a l  o f  m = 1  a c t i v i t y  b e f o r e  i n t e r n a l  d i s r u p t i o n  and by t h e  
& 

s i m u l t a n e o u s  a p p e a r a n c e  o f  s t r o n g e r  B  a t  t h e  same f r e q u e n c y  a s  t h e  

m = 1 .  F u r t h e r  i n c r e a s e s  i n  beam power g e n e r a l l y  l e a d  f i r s t  t o  l o n g e r  

l i v e d ,  e v e n  s t e a d i l y  r u n n i n g ,  p r e c u r s o r s  and  t h e n  t o  i n c r e a s i n g  

a m p l i t u d e  m o d u l a t i o n .  o f  t h e s e  s i g n a l s .  F o r  d i s c h a r g e s  i n  w h i c h  
& 

Pb Poh t h e  x - ray  and  B  s i g n a l s  a r e  l o c k e d  i n  f r e q u e n c y  a n d  a m p l i t u d e .  

The l a r g e  x - r a y  s i g n a l s  a r e  f rom w i t h i n  q  2 1 a n d  a r e  d u e  t o  a  l a r g e  - 
m = 1  mode t h e r e .  The B  a t  ' t h e  Mirnov c o i l s  i s  s t r o n g ,  o f t e n  e x c e e d i n g  - 
B/B = I % ,  and  i s  d o m i n a t e d  b y  t h e  m/n = 2 / 1  mode symmet ry .  D e s p i t e  t h e  - 
l a r g e  2/1  B ,  t h e r e  i s  n o  d i s t i n c t i v e  x - r a y  s i g n a l  f rom n e a r  q = 2  a n d  

t h u 3  no l a r g e  m = 2 i s l a n d  s t r u o t u r e .  

I n  o r d e r  t o  u n d e r s t a n d  t h e  p a t t e r n  o f  t h e s e  r e s u l t s ,  we h a v e  

n u m e r i c a l l y  s t u d i e d  t h e  e f f e c t  o f  i n c r e a s i n g  b e t a  o n  t h e  s t a b i l i t y  and  

n o n l i n e a r  e v o l u t i o n  of  t h e  ( m =  l : n =  1)  mode, The e q u a t i o n s  a n d  

n u m e r i c a l  m e t h o d s  u s e d  f o r  t h i s  s t u d y  a r e  d i s c u s s e d  i n  S e c t .  2 ;  t h e  



e q u i l i b r i a  we have considered a re  described i n  Sect .  3. With 

increas ing Bp t h e  n  = 1 mode changes from a  tear ing mode t o  a  

pressure-driven mode (Sec t .  4 ) .  As described in Sect .  5 t h i s  change i n  

the  l i n e a r  eigenmode induces a  change i n  the nonlinear behavior of t h i s  

mode. In Sect. 6 we s t a t e  our con~ lus ions .  



and 

2. EQUATIONS AND NUMERICAL METHODS 

The r e s i s t i v e  MHD e q u a t i o n s  a r e  

+ 
where  v  i s  t h e  f l u i d  v e l o c i t y ,  pm i s  t h e  mass  d e n s i t y ,  p  i s  t h e  

+ + + 
p r e s s u r e ,  B i s  t h e  m a g n e t i c  f i e l d ,  J i s  t h e  c u r r e n t  d e n s i t y ,  E i s  t h e  

e lec t r ic  f i e l d ,  q i s  t h e  r e s i s t i v i t y ,  and po i s  t h e  vacuunl m a g n e t i c  ' 

p e r m e a b i l i t y .  I n  o r d e r  t o  c l o s e  t h i s  sys t em o f  e q u a t i o n s ,  i t  i s  

n e c e s s a r y  t o  s p e c i f y  a n  e q u a t i o n  o f  s t a t e  and e q u a t i o n s  f o r  t h e  

r e s i s t i v i t y  and mass  d e n s i t y .  I n  t h i s  p a p e r ,  t h e  mass  d e n s i t y  i s  

assumed t o  b e  c o n s t a n t  i n  s p a c e  and time and t h e  r e s i s t i v i t y  t o  b e  

c o n s t a n t  i n  time. The e q u a t i o n  o f  s t a t e  is a s s u n e d  t o  b e  

where  r i s  t h e  r a t i o  o f  s p e c i f i c  h e a t s  o f  t h e  p lasma.  



A h i g h - b e t a  l a r g e  a s p e c t  r a t i o  tokamak o r d e r i n g  

( 6  - E E a/Ro << 1 )  a l l o w s  t h e  r e d u c t i o n  o f  t h e  r e s i s t i v e  MHD e q u a t i o n s  

t o  a  s e t  o f  t h r e e  p a r t i a l  d i f f e r e n t i a l  e q u a t i o n s  i n  t h r e e  

 unknown^.^ Here ,  Ro i s  t h e  plasma m a j o r  r a d i u s  and a  i s  an  a v e r a g e  

p lasma minor  r a d i u s  g i v e n  by 

where  t h e  i n t e g r a t i o n  * e x t e n d s  o v e r  t h e  e n t i r e  plasma volume. T h i s  

o r d e r i n g  a l l o w s  t h e  t o r o i d a l  component o f  t h e  f l u i d  v e l o c i t y  t o  b e  

n e g l e c t e d  and i m p l i e s  t h a t  t h e  f l u i d  i s  i n c o m p r e s s i b l e .  

The r e d u c e d  set o f  e q u a t i o n s  i n  d i m e n s i o n l e s s  form i s  

w i t h  

and 

where  R i s  t h e  m a j o r  r a d i u s  c o o r d i n a t e  d i v i d e d  by R o ,  6, i s  t h e  
A 

t o r o i d a l  b e t a  a t  t h e  m a g n e t i c  a x i s ,  and 5 is  a  u n i t  v e c t o r  i n  t h e  



t o r o i d a l  d i r e c t i o n .  A l l  l e n g t h s  a r e  n o r m a l i z e d  t o  t h e  g e n e r a l i z e d  

minor  r a d i u s  a ,  t h e  r e s i s t i v i t y  t o  rlo ( i t s  v a l u e  a t  t h e  m a g n e t i c  a x i s ) ,  

2  t h e  time t o  t h e  r e s i s t i v e  d i f f u s i o n  t i m e  .rr = a  po/q0, t h e  m a g n e t i c  

f i e l d  t o  Bco ( t h e  u n p e r t u r b e d  vacuum t o r o i d a l  f i e l d  a t  m a j o r  r a d i u s  

R , t h e  v e l o c i t y  t o  a / ~ ,  , and t h e  p r e s s u r e  t o  po ( i t s  v a l u e  a t  t h e  

m a g n e t i c  a x i s )  . The f u n c t i o n s  Y and Q a r e  t h e  p o l o i d a l  f l u x  and 

2  2  v e l o c i t y  s t r e a m  f u n c t i o n s ,  n o r m a l i z e d  t o  a BSo and a  BSo/.rr, 

r e s p e c t i v e l y .  They a r e  r e l a t e d  t o  t h e  d i m e n s i o n l e s s  m a g n e t i c  f i e l d  and 

f l u i d  v e l o c i t y  by 

and 

A 

where  t h e  s u b s c r i p t  1 i n d i c a t e s  p e r p e n d i c u l a r i t y  t o  5.  The t o r o i d a l  

c u r r e n t  d e n s i t y  i s  J /R and i s  n o r m a l i z e d  t o  BSo/bRo , and U i s  t h e  S  

t o r o i d a l  component  o f  t h e  v o r t i c i t y .  The p a r a m e t e r  S  i s  t h e  r a t i o  o f  

t h e  two time s c a l e s  i n v o l v e d  i n  t h i s  problem: S = .r,/.rhp, where  .rh is P  

t h e  p o l o i d a l  A l fv6n  time, .rhp = Ro(poPm) 1 / 2  /Bc0. A c o n d u c t i n g  w a l l  - 

bounda ry  c o n d i t i o n  i s  assumed a l o n g  w i t h  z e r o  p r e s s u r e  a t  t h e  plasma 

edge .  

E q u a t i o n s  ( 7 ) - ( 9 )  a r e  n u n e r i c a l l y  advanced  i n  time u s i n g  t h e  

t h r e e - d i m e n s i o n a l  n o n l i n e a r  i n i t i a l  v a l u e  r e s i s t i v e  MHD c o d e  RST. 

Axisymmetr ic  t o r o i d a l  n u n e r i c a l  e q u i l i b r i u m  s o l u t i o n s  a r e  c a l c u l a t e d  

u s i n g  t h e  RSTEQ e q u i l i b r i u m  code.5 Even though  Eqs.  ( 7 ) - ( 9 )  k e e p  



d y n a m i c a l  terms o n l y  t o  l o w e s t  o r d e r  i n  E ,  t h e  s o l u t i o n  o f  t h e  

Grad-Shafranov e q u a t i o n  ( e x a c t  t o  a l l  o r d e r s  i n  E ) ,  

where  F = RB i s  a n  e q u i l i b r i u m  s o l u t i o n  f o r  t h e  q + 0  l i m i t  o f  t h e s e  
5  * 

e q u a t i o n s .  Assuming z e r o  v e l o c i t y  a t  e q u i l i b r i u m ,  Eq. ( 9 )  becomes 

i d e n t i c a l l y  z e r o ,  and  Eq. ( 8 )  c a n  b e  shown t o  b e  z e r o  from f o r c e  

b a l a n c e ,  

by o p e r a t i n g  on b o t h  s i d e s  o f  Eq. ( 1 5 )  w i t h  t h e  o p e r a t o r  L d e f i n e d  by 

The e q u a t i o n s  a r e  s o l v e d  i n  a  g e n e r a l i z e d  n ~ n ~ r t h ~ g ~ n a l  f l u x  

c o o r d i n a t e  sys tem ( p ,  0 ,  516e7 d e t e r m i n e d  by t h e  e q u i l i b r i u m .  I n  t h i s  

s y s t e m  p  ( 0  < p < 1) is  a n  e q u i l i b r i u m  f l u x  s u r f a c e  v a r i a b l e  which 

b e h a v e s  a s  a  g e n e r a l i z e d  minor  r a d l u s ,  0 ( 0  < 0 < 27~) i s  a  g e n e r a l i z e d  

p o l o i d a l  a n g l e  v a r i a b l e ,  and 5 i s  t h e  t o r o i d a l  a n g l e .  The p a r t i c u l a r  

c h o i c e  o f  c o o r d i n a t e s  employed i n  t h i s  work i$ d e t e r m i n e d  by setting 

t h e  J a c o b i a n  such  t h a t  

where  X = ( R  - I ) / E  and Z a r e  h o r i z o n t a l  and v e r t i c a l  d i m e n s i o n l e s s  

m i n o r  r a d i u s  c o o r d i n a t e s ,  r e s p e c t i v e l y .  E x p r e s s i n g  e a c h  dynamica l  



quan t i t y  f  i n  terms o f  an equi l ibr ium con t r ibu t ion  feq and a  - + 
pe r tu rba t ion  c o n t r i b u t i o n  f  and not ing t h a t  vleq = Qeq = U e q  = 0 ,  

Eqs. ( 7 ) - ( 9 )  i n  t h e  genera l ized  coord ina te  system become 

and 

* 
The l i n e a r  ope ra to r  A i n  t h i s  coord ina te  system i s  

The q u a n t i t i e s  gpp, gPo = g0pt and goo a r e  t h e  me t r i c  e lements  o f  t h e  

genera l ized  coord ina te  system expressed i n  terms of  t o r o i d a l  (X , 4 , Z) 

coordina tes :  



a n d  

E q u a t i o n s  (17 ) - (19)  make u s e  of t h e  f a c t  t h a t  Y a n d  p  a r e  f u n c t i o n s  
erl eq 

of p o n l y .  

The a b o v e  e q u a t i o n s  a r e  s o l v e d  by  u s i n g  a  f i n i t e  d i f f e r e n c e  

r e p r e s e n t a t i o n  i n  t h e  r a d i a l  c o o r d i n a t e  p and F o u r i e r  ser ies  e x p a n s i o n  

i n  t h e  a n g l e  v a r i a b l e s  0 and 5.8 I n  terms o f  t h i s  r e p r e s e n t a t i o n ,  

q u a n t i t i e s  d e p e n d e n t  upon  t h e  e q u i l i b r i u m  a r e  w r i t t e n  

w h e r e a s  p e r t u r b a t i o n  q u a n t i t i e s  a r e  w r i t t e n  

A l t h o u g h  RST a ' l l o w s  b o t h  s i n e  and  c o s i n e  terms, we r e s t r i c t  o u r  s t u d y  

t o  e q u i l i b r i a  h a v i n g  u p d o w n  symmet ry  ( c o s i n e  terms o n l y ) .  T h e n ,  i n  

c a s e s  w h e r e  o n l y  t h e  c o s i n e  terms i n  Y a r e  i n i t i a l i z e d ,  t h e  s i n e  terms 

i n  Y ,  J 5 ,  a n d  p  a n d  t h e  c o s i n e  terms i n  @ and U r e m a i n  z e r o .  I n  o r d e r  

t o  s i m p l i f y  t h e  p r e s e n t a t i o n ,  o n l y  t h i s  l a t t e r  s i t u a t i o n  w i l l  b e  

d i s c u s s e d ,  a n d  t h e  s u p e r s c r i p t s  c  and  s w i l l  b e  d r o p p e d .  I n  p r a c t i c e  



t h e  s e r i e s  i n  Eqs .  ( 2 4 ) - ( 2 5 )  m u s t  b e  t r u n c a t e d  a t  a  f i n i t e  number o f  

modes.  The  r e s i s t i v i t y  q  is t a k e n  t o  be a  f u n c t i o n  o f  p o n l y  and i s  

d e f i n e d  by  n<Jgeq> = Egw, w h e r e  ECw i s  assumed t o  b e  c o n s t a n t  a n d  t h e  

< > m e a n s  a v e r a g e  o v e r  e q u i l i b r i u m  f l u x  s u r f a c e s .  W i t h  t h i s  c h o i c e  o f  

r e s i s t i v i t y  t h e  e q u i l i b r i u m  i s  a n  a p p r o x i m a t e  r e s i s t i v . e  e q u i l i b r i u n .  

E q u a t i o n s  ( 1 7 ) - ( 1 9 )  e x p l i c i t l y  e x h i b i t  t h e  l i n e a r  and n o n l i n e a r  

terms i n  t h e  m o d e r a t e - b e t a  r e d u c e d  e q u a t i o n s .  By o m i t t i n g  or i n c l u d i n g  

t h e  n o n l i n e a r  terms t h e  RST c o d e  c a n  be u s e d  e i t h e r  f o r  t h e  s t u d y  o f  

l i n e a r  s t a b i l i t y  o r  a s  a  f u l l  n o n l i n e a r  i n i t i a l  v a l u e  c o d e .  B o t h  m o d e s  

o f  o p e r a t i o n  a r e  u s e d  i n  t h i s  work.  

Most o f  t h e  n u m e r i c a l  t e c h n i q u e s  u s e d  i n  t h i s  work a r e  d e r i v e d  

f r o m  t h e  RSF c o d e . 8  However ,  two d i f f e r e n c e s  b e t w e e n  RST a n d  RSF 

s h o u l d  b e  m e n t i o n e d .  The f i r s t  i s  t h e  a d d i t i o n  o f  t h e  p r e s s u r e  

c o n v e c t i v e  e q u a t i o n  ( 1 9 )  i n  RST. I n  o r d e r  t o  n u m e r i c a l l y  a d v a n c e  t h i s  

e q u a t i o n  i n  t h e  n o n l i n e a r  r e g i m e ,  a  s m a l l  d i f f u s i o n  term X ~ * b  i s  a d d e d  

t o  t h e  r i g h t - h a n d  s i d e .  N u m e r i c a l  s c h e m e s  i n v o l v i n g  n o n c e n t e r e d  

s p a t i a l  d e r i v a t i v e s ,  w h i c h  a r e  u s u a l l y  a p p l i e d  t o  t h e  s o l u t i o n  o f  

c o n v e c t i v e  e q u a t i o n s ,  a r e  d i f f i c u l t  t o  i m p l e m e n t  i n  t h e  mixed  

F o u r  i e r - f i n i t e  d i f f e r e n c e  r e p r e s e n t a t i o n  . u s e d  h e r e .  The d i f f u s i o n  

c o e f f i c i e n t  x i s  s m a l l  enough  t o  h a v e  n o  e f f e c t  o n  t h e  l i n e a r  g r o w t h  

r a t e  o f  t h e  modes  u n d e r  s t u d y .  A s e c o n d  d i f f e r e n c e  i s  i n  t h e  fo rm o f  

2  
t h e  m a t r i c e s  r e q u i r e d  t o  c a l c u l a t e  t h e  i n v e r s i o n  o f  U = A I @  a n d  t h e  

* 
i m p l i c i t  d i f f u s i o n  terms d u e  t o  q b  I i n  Eq. ( 1 7 )  and  X ~ * a ,  w h i c h  i s  

a d d e d  into E q .  ( 1 9 ) .  B e c a u s e  t h e  e q u i l i b r i a  for RST l a c k  p o l o i d a l  

s y m m e t r y ,  F o u r i e r  c o m p o n e n t s  h a v i n g  a  g i v e n  t o r o i d a l  mode number n  b u t  

d i f f e r e n t  p o l o i d a l  mode n u n b e r s  m a r e  l i n e a r l y  c o u p l e d  t h r o u g h  t h e  

e q u i l i b r i u m  q u a n t i t i e s .  U s i n g  a  t h r e e - p o i n t  s e c o n d - o r d e r  r a d i a l  



d i f f e r e n c e  scheme,  a  b l o c k  t r i d i a g o n a l  m a t r i x  hav ing  MJ rows o f  b l o c k s  

(MJ b e i n g  t h e  number o f  r a d i a l  g r i d  p o i n t s )  w i t h  e a c h  b l o c k  o f  s i z e  

M(n) x M(n) , where  M(n) i s  t h e  nunber  o f  p o l o i d a l  components  o f  

t o r o i d a l  mode number n  i n  t h e  c a l c u l a t i o n ,  mus t  be  i n v e r t e d  f o r  e a c h  

t o r o i d a l  mode number n  i n  e a c h  o f  t h e  t h r e e  o p e r a t i o n s  a l l u d e d  t o  

above .  I n  a d d i t i o n  t o  a d d i n g  c o m p l e x i t y  t o  t h e  m a t r i x  s t r u c t u r e  f o r  

* 
t h e  A and r e l a t e d  o p e r a t o r s ,  t h e s e  g e o m e t r i c  c o u p l i n g s  n e c e s s i t a t e  t h e  

i n c l u s i o n  o f  a  g r e a t e r  number o f  F o u r i e r  components  i n  o r d e r  t o  

r e p r e s e n t  t h e  modes. T h i s  h a s  t h e  e f f e c t  o f  s h o r t e n i n g  t h e  time s t e p  

s i z e  used  by  RST a s  c a n  b e  s e e n  from t h e  fo rmula  

which  r e s u l t s  from a  s i m p l i f i e d  von Neumann s t a b i l i t y  a n a l y s i s  o f  

Eqs .  ( 17)-( 18 ) .  Here. q ( p )  i s  t h e  e q u i l i b r i u m  s a f e t y  f a c t o r  q  p r o f i l e .  

I n  RST t h e  b l o c k  t r i d i a g o n a l  m a t r i x  s o l u t i o n s  r e q u i r e  more 

compute r  t i m e  t h a n  any  o t h e r  p a r t  o f  t h e  code .  Because o f  t h e  l a r g e  

number o f  F o u r i e r  components ,  t h e  s h o r t n e s s  o f  t h e  time s t e p ,  and t h e  

dominance  o f  t h e  m a t r i x  e q u a t i o n s  i n  computer  time, it i s  e s s e n t i a l  t o  

u s e  e f f i c i e n t  s o f t w a r e  f o r  t h e i r  s o l u t i o n .  RST s o l v e s  t h e  m a t r i x  

e q u a t i o n s  u s i n g  t h e  b l o c k  t r i d i a g o n a l  m a t r i x  package  B T / B T M S . ~  



3. EQUILIBRIA 

The e q u i l i b r i a  u s e d  i n  t h i s  s t u d y  a r e  n u m e r i c a l  s o l u t i o n s  o f  t h e  

t o r o i d a l  a x i s y m m e t r i c  G r a d - S h a f r a n o v  e q u a t i o n  ( 1 4 )  . They  a r e  

c a l c u l a t e d  i n  a  f l u x  c o n s e r v i n g  manner  w i t h  a  p r e s s u r e  p r o f i l e  

Peq a ~ : ~ ( ~ )  a n d  a  s a f e t y  f a c t o r  p r o f i l e  p a r a m e t e r i z e d  a s  

q  = qo[ 1 + ( p / p o ) 4 1  'I2. We h a v e  s t u d i e d  s e v e r a l  s u c h  s e q u e n c e s  o f  

e q u i l i b r i a .  The d e t a i l e d  p a r a m e t e r s  f o r  o n e  o f  t h o s e  s e q u e n c e s  a r e  

g i v e n  i n  T a b l e  1 .  I n  t h e  low-be ta  c y l i n d r i c a l  l i m i t  f o r  t h i s  

p a r t i c u l a r  q  p r o f i l e  o n l y ,  t h e  (m = 1  ; n  = 1 )  t e a r i n g  mode i s  u n s t a b l e .  

S i n c e  a  d e t a i l e d  s i m u l a t i o n  o f  t h e  ISX-B e x p e r i m e n t  h a s  n o t  b e e n  

a t t e m p t e d  a t  t h i s  p o i n t ,  e q u i l i b r i a  w h i c h  a c c u r a t e l y  m a t c h  t h e  

e x p e r i m e n t a l  p a r a m e t e r s  h a v e  n o t  b e e n  s o u g h t .  The f l u x  c o n s e r v i n g  

s e q u e n c e  o f  e q u i l i b r i a  shown i n  T a b l e  1  w a s  c h o s e n  t o  a l l o w  a  

s y s t e m a t i c  s t u d y  o f  t h e  l i n e a r  a n d  n o n l i n e a r  b e h a v i o r  o f  t h e  

(m = 1  ; n  = 1 )  t e a r i n g  mode a s  a  f u n c t i o n  o f  b e t a .  The s y s t e m a t i c s  o f  

t h i s  b e h a v i o r  c a n  b e  compared  w i t h  t h o s e  o f  t h e  ISX-B e x p e r i m e n t  

d e s c r i b e d  i n  t h e  I n t r o d u c t i o n .  O t h e r  e q u i l i b r i u m  s e q u e n c e s  ( T a b l e  2) 

a r e  u s e d  t o  s t u d y  t h e  e f f e c t s  o f  c h a n g i n g  qa and  qo. We h a v e  n o t  

s t u d i e d  t h e  e f f e c t s  o f  v a r y i n g  t h e  p r e s s u r e  p r o f i l e  b u t  h a v e  m a i n t a i n e d  

2  
peq a Ye., t h r o u g h o u t  t h e s e  c a l c u l a t i o n s .  

As b e t a  i s  i n c r e a s e d  i n  a  f l u x  c o n s e r v i n g  m a n n e r ,  t h e  e q u i l i b r i u m  

g e o m e t r y  b e c o m e s  d i s t o r t e d  away f r o m  c i r c u l a r i t y  e x c e p t  a t  t h e  

b o u n d a r y .  The t o r o i d a l  c u r r e n t  d i s t r i b u t i o n  and  e q u i l i b r i u m  f l u x  

s u r f a c e s  s h i f t  o u t w a r d  i n  m a j o r  r a d i u s  a s  s e e n  i n  F i g .  1 .  The p e a k  o f  

t h e  c u r r e n t  d e n s i t y  s h i f t s  r e l a t i v e  t o  t h e  m a g n e t i c  a x i s .  T h i s  

m o d i f i e s  t h e  c u r r e n t  g r a d i e n t  a t  t h e  q  = 1 s u r f a c e  ( s e e  F i g .  2 a n d  



T a b l e  1) i n  a way which t e n d s  t o  s t a b i l i z e  t h e  t e a r i n g  mode. T h i s  

b e h a v i o r  i s  a consequence  o f  t h e  f l u x  c o n s e r v i n g  method, which i s  

p r o b a b l y  o p t i m a l  f o r  s t a b i l i t y  o f  t e a r i n g  modes. Although t h e  RST code  

a l l o w s  t h e  s t u d y  o f  p lasmas o f  more g e n e r a l  c r o s s  s e c t i o n ,  t h e  

e q u i l i b r i a  c o n s i d e r e d  h e r e  a r e  f o r  c i r c u l a r  c r o s s - s e c t i o n  plasmas.  The 

e f f e c t s  o f  n o n c i r c u l a r i t y  on t h e  s t a b i l i t y  o f  h igh-beta  p lasmas a r e  

under s t u d y  a t  p r e s e n t .  



4 .  LINEAR PROPERTIES OF THE n  = 1  EIGENMODE 

A l i n e a r  s t u d y  o f  t h e  n  = 1  e i g e n m o d e  was c a r r i e d  o u t  for t h e  f l u x  

c o n s e r v i n g  s e q u e n c e  o f  e q u i l i b r i a  d e s c r i b e d  i n  T a b l e  1 .  The  s u r v e y  was 

c o n d u c t e d  a t  S = l o 5 ,  a s  w e r e  a l l  c a l c u l a t i o n s  i n  t h i s  p a p e r ,  u n l e s s  

o t h e r w i s e  n o t e d .  I n  o r d e r  t o  s e p a r a t e  t h e  b e t a  e f fec ts  o f  t h e  

d y n a m i c a l  p r e s s u r e  d r i v i n g  term i n  Eq. ( 1 8 )  f r o m  t h o s e  i n d u c e d  by  t h e  

e q u i l i b r i u m ,  l i n e a r  c a l c u l a t i o n s  w e r e  c a r r i e d  o u t  i n  two 

ways: ( 1 )  u s i n g  l i n e a r i z e d  v e r s i o n s  o f  t h e  f u l l  e q u a t i o n s  and 

(2) u s i n g  t h e  same e q u a t i o n s  w i t h  t h e  d y n a m i c a l  p r e s s u r e  term i n  

Eq. ( 1 8 )  t u r n e d  o f f .  I n  t h e  f i r s t  method  p r e s s u r e - d r i v e n  and 

c u r r e n l d r i v e n  effects  a r e  i n c l u d e d ,  w h e r e a s  i n  t h e  s e c o n d  method  o n l y  

c u r r e n t - d r i v e n  e f f e c t s  a r e  a l l o w e d .  B e t a  e f f e c t s  o b s e r v e d  u s i n g  . t h e  

s e c o n d  ,method  o f  c a l c u l a t i o n  a r e  c a u s e d  by  t h e  d i s t o r t i o n  o f  t h e  

e q u i l i b r i u m  g e o m e t r y ,  w h e r e a s  t h e  f i r s t  method  a l s o  i n c l u d e s  t h e  

d y n a r n i c a l  e f fec ts  o f  t h e  p r e s s u r e  terms. 

The n  = 1 l i n e a r  g r o w t h  r a t e  i s  p l o t t e d  a s  a f u n c t i o n  o f  f3 f o r  
P  

b o t h  m e t h o d s  i n  F i g .  3. The d a s h e d  c u r v e ,  w h i c h  was c a l c u l a t e d  w i t h o u t  

d y n a m i c a l  p r e s s u r e  e f f e c t s ,  i l l u s t r a t e s  t h e  e f f ec t  o f  b e t a  i n d u c e d  by  

t h e  e q u i l i b r i u m  upon  t h e  s t a b i l i t y  o f  t h e  c u r r e n t - d r i v e n  mode. As 

d e s c r i b e d  i n  S e c t .  3 ,  t h e  s h i f t  o f  t h e  p e a k  o f  t h e  t o r o i d a l  c u r r e n t  

r e l a t i v e  t o  t h e  m a g n e t i c  a x i s  d e c r e a s e s  t h e  c u r r e n t  g r a d i e n t  a t  t h e  

q =  1  s u r f a c e .  It a l s o  i n c r e a s e s  t h e  c o u p l i n g  t o  o t h e r  m o d e s ,  w h i c h  

a r e  s t a b l e ;  b o t h  e f f e c t s  t e n d  t o  s t a b i l i z e  t h e  mode. The s o l i d  c u r v e  

was c a l c u l a t e d  u s i n g  t h e  f u l l  l i n e a r i z e d  e q u a t i o n s ,  a n d  i t  t h e r e f o r e  

i n c l u d e s  p r e s s u r e - d r  i v e n  d y n a m i c a l  e f f e c t s  i n  a d d i t i o n  t o  t h o s e  o f  t h e  

o t h e r  c u r v e .  F o r  l o w  v a l u e s  o f  R p  t h e  p r e s s u r e  terms p r o d u c e  a n  



i n t e r c h a n g e  s t a b i l i z a t i o n  o f  t h e  n  = 1  mode s i m i l a r  t o  t h a t  p r e d i c t e d  

by G l a s s e r  e t  a1.  , I 0  b u t  a s  B p  i n c r e a s e s ,  t h e  c h a r a c t e r  o f  t h e  mode 

c h a n g e s ,  becoming m a i n l y  p r e s s u r e  d r i v e n  w i t h  an  i n c r e a s i n g l y  l a r g e  

g r o w t h  r a t e .  

The e f f e c t s  o f  b e t a  upon t h e  n  = 1 mode when dynamical  p r e s s u r e  

e f f e c t s  a r e  i n c l u d e d  a r e  i l l u s t r a t e d  i n  F i g .  4  (which shows t h e  m = 1  

F o u r i e r  components o f  Y ,  p ,  and (O a t  $ - 0.19, 0 .59,  1.00,  and 1 .94,  
P  - 

r e s p e c t i v e l y ) .  The s i m i l a r i t y  between t h e  p  and (O components i s  

e x p e c t e d  from t h e  l i n e a r i z e d  form o f  t h e  dynamical  p r e s s u r e  e q u a t i o n :  

where yn i s  t h e  l i n e a r  g rowth  r a t e .  

The r e l a t i v e  m a g n i t u d e s  o f  pmn and $,, a r e  c o n s i s t e n t  wi th  t h i s  

e x p r e s s i o n .  For f3 - 0.19 t h e  component is  dominant and h a s  t h e  
P  - 

t y p i c a l  k i n k  mode s t r u c t u r e  o b t a i n e d  i n  t h e  low-beta l i m i t ,  i n d i c a t i n g  

t h a t  t h e  n  = 1  eigenmode is main ly  a  c u r r e n t - d r i v e n  mode. A t  

B p  = 1.94. t h e  n = 1  mode i s  main ly  p r e s s u r e  d r i v e n  and i t.s F n ~ ~ r i e r  

components a r e  l o c a l i z e d  n e a r  t h e  q = 1  s i n g u l a r  s u r f a c e .  T h i s  

p a r t i c u l a r  e q u i l i b r i u m  is  s t a b l e  t o  t h e  n  = 1  mode when t h e  B/E  term is 

removed from E q .  ( 18)  , a s  i n d i c a t e d  by t h e  dashed c u r v e  o f  F ig .  3. For 

= 0.59 and 1.00,  Fig .  4  shows t h e  t r a n s i t i o n  from c u r r e n t -  t o  

p r e s s u r e - d r i v e n  dominance. 

A l a r g e  nunber o f  F o u r i e r  components i s  n e c e s s a r y  t o  c o r r e ' c t l y  

d e s c r i b e  an eigenmode when t h e  b e t a  e f f e c t s  a r e  inc luded .  We have 

found t h a t  t h e  c o o r d i n a t e  system we u s e  i s  o p t i m a l  i n  minimizing t h e  

nunber  o f  components. However, a b o u t  t e n  p o l o i d a l  components a r e  



r e q u i r e d  t o  c a l c u l a t e  t h e  l i n e a r  g r o w t h  r a t e s  a c c u r a t e l y  t o  w i t h i n  a  

few p e r c e n t .  I n  F i g .  5  we show t h e  d i f f e r e n t  p o l o i d a l  components  o f  Y 

used  i n  c a l c u l a t i n g  t h e  l i n e a r  n  = 1 e igenmode f o r  two v a l u e s  o f  B ~ ,  

B p  = 0.19  ( F i g .  5 a )  and B p =  1.94 ( F i g .  5 b ) .  For t h e  l o w e r  v a l u e  o f  

B p ,  a l l  modes show a  g l o b a l  c h a r a c t e r  which  i s  n o r m a l l y  a s s o c i a t e d  w i t h  

k i n k  modes. The m = 2  component  i s  t h e  l a r g e s t  o f  t h e  d r i v e n  

componen t s ,  and i t s  s t r u c t u r e  i s  q u i t e  d i f f e r e n t  from a  l i n e a r l y  

u n s t a b l e  (m = 2 ; n  = 1 )  t e a r i n g  mode. T h i s  component  p e a k s  n e a r  t h e  

q  = 1  s i n g u l a r  s u r f a c e  and h a s  h a r d l y  a n y  s t r u c t u r e  n e a r  t h e  q  = 2  

s u r f a c e .  The o b s e r v e d  s t r u c t u r e  c a r r i e s  o v e r  i n  t h e  n o n l i n e a r  r e g i m e  

w i t h  i m p o r t a n t  o b s e r v a b l e  c o n s e q u e n c e s  a s  we w i l l  show i n  t h e  n e x t  

s e c t i o n .  A t  t h e  h i g h e s t  v a l u e  o f  f3 ( F i g .  5b )  , t h e  s t r u c t u r e  o f  t h e  
P  

components  i s  c o n s i d e r a b l y  d i f f e r e n t ,  a s  a l r e a d y  s e e n  f o r  t h e  

(m = 1  ; n  = 1 )  i n  F i g .  4. A l l  components  a r e  h i g h l y  l o c a l i z e d  n e a r  t h e  

q  = 1 s u r f a c e ,  and t h e  m = 1  component  i s  no l o n g e r  dominan t ;  b o t h  t h e  

m = 0  and m = 2  components  h a v e  l a r g e r  a m p l i t u d e s  t h a n  , t h e  m = 1 .  

To e s t i m a t e  t h e  r e l a t i v e  a m p l i t u d e s  o f  d i f f e r e n t  F o u r i e r  

componen t s ,  we d e f i n e  f o r  e a c h  component  a  m a g n e t i c  e n e r g y  norm 

and a  p r e s s u r e  norm 

1  
(Ep)mn = Ju p dp h n  

The  r a t i o  o f  t h e  m a g n e t i c  e n e r g i e s  i n  t h e  m = 2  a n d  m = 3 componen t s  t o  

t h a t  i n  t h e  m = 1  component  i s  shown a s  a  f u n c t i o n  o f  R p  i n  F i g .  6 f o r  

c a s e s  b o t h  w i t h  ( s o l i d  c u r v e s )  and w i t h o u t  ( d a s h e d  c u r v e s )  d y n a m i c a l  



p r e s s u r e  e f f e c t s .  When dynamical  p r e s s u r e  e f f e c t s  a r e  exc luded ,  t h e  

change  i n  s t r e n g t h  o f  t h e  c u r r e n t - d r i v e n  components,  which i s  due t o  

t h e  i n c r e a s i n g  d e f o r m a t i o n  o f  t h e  c u r r e n t  p r o f i l e  r e l a t i v e  t o  t h e  f l u x  

s u r f a c e s ,  i s  g r a d u a l  and c o n t i n u o u s .  For c a s e s  w i t h  dynamical  p r e s s u r e  

e f f e c t s  i n c l u d e d ,  t h e  r e l a t i v e  s t r e n g t h s  o f  t h e  h i g h  m components 

i n c r e a s e  more r a p i d l y  a s  t h e  mode s h i f t s  from c u r r e n t  t o  p r e s s u r e  

d r i v e n .  A s a t u r a t i o n  o f  t h e  r e l a t i v e  m = 2 and m = 3 magne t i c  e n e r g i e s  

o c c u r s  a f t e r  t h e  mode - i s  e s s e n t i a l l y  i n  t h e  p ressure -d r iven  regime.  

F i g u r e  7 a  i l l u s t r a t e s  t h i s  d i s c u s s i o n  f o r  a  whole r a n g e  o f  compontints 

by p l o t t i n g  t h e  r a t i o  o f  t h e  ( m ;  1) and ( 1 ; 1) magnet ic  e n e r g i e s  f o r  

v a l u e s  of  v p  = U . U ' ( ,  U.19, U.38, U.59, and 1.00. The s i m i l a r i t y  

between t h e  B - 0.59 and 1.00 magne t i c  energy s p e c t r a  shows t h e  P  - 
s a t u r a t i o n  e f f e c t  ment ioned above. T h i s  f i g u r e  a l s o  i l l u s t r a t e s  t h a t  

f o r  t h e  c o o r d i n a t e  sys tem used t h e  number o f  p o l o i d a l  components 

n e c e s s a r y  t o  a c c u r a t e l y  r e p r e s e n t  an  e i g e n f u n c t i o n  is  n o t  a  s t r o n g  

f u n c t i o n  o f  p 
P' 

The r e s u l t s  p r e s e n t e d  s o  f a r  i l l u s t r a t e  B p  e f f e c t s  on t h e  

s t a b i l i t y  o f  t h e  n  = 1 mode f o r  a  p a r t i c u l a r  f l u x  c o n s e r v i n g  sequence 

o f  e q u i l i b r i a .  I n  o r d e r  t o  a s s e s s  t h e  e f f e c t s  o f  modi fy ing  t h e  q  

p r o f i l e ,  l i n e a r  s t a b i l i t y  c a l c u l a t i o n s  were made f o r  t h e  f l u x  

c o n s e r v i n g  sequences  d e s c r i b e d  i n  T a b l e  2. For e a c h  o f  t h e  f l u x  

c o n s e r v i n g  sequences  c o n s i d e r e d ,  two reg imes  emerged: a  low B regime 
P  

i n  which t h e  c u r r e n t - d r i v e n  e f f e c t s  dominate  and a  h i g h  f?, regime i n  
P  

which p r e s s u r e - d r i v e n  e f f e c t s  dominate .  In  t h e  low B regime t h e  n  = 1  
P  

mode i s  e s s e n t i a l l y  a  t e a r i n g  mode modi f i ed  by B p  e f f e c t s .  The 

s t r u c t u r e  and growth o f  t h e  mode i n  t h i s  regime a re .  de te rmined  main ly  

by t h e  e q u i l i b r i u m  c u r r e n t ,  w i t h  t h e  p r e s s u r e  d r i v i n g  t e rms  enhanc ing  



t h e  c o u p l i n g s  and p r o v i d i n g  some d e g r e e  o f  s t a b i l i z a t i o n .  In  t h e  h i g h  

f3 r eg ime  t h e  e f f e c t s  o f  t h e  q  p r o f i l e  d i m i n i s h  a s  t h e  mode becomes 
P  

m a i n l y  p r e s s u r e  d r i v e n .  T h i s  i s  i l l u s t r a t e d  i n  F i g .  8 ,  which p l o t s  t h e  

n  = 1  l i n e a r  g rowth  r a t e s  a s  f u n c t i o n s  o f  Bo and pp f o r  t h e  t h r e e  

e q u i l i b r i u m  s e q u e n c e s  c o n s i d e r e d .  A t  h i g h  f3 where p r e s s u r e  d r i v i n g  
P* 

e f f e c t s  d o m i n a t e ,  t h e  g rowth  r a t e s  a r e  s e e n  t o  b e  n e a r l y  i n d e p e n d e n t  o f  

t h e  q  p r o f i l e .  T h i s  i s  n o t  t r u e  f o r  t h e  Bo p l o t ,  s o  t h a t  t h e  g rowth  

r a t e  i n  t h e  h igh -be ta  r eg ime  c a n  b e  e x p r e s s e d  b e t t e r  a s  a  f u n c t i o n  o f  

B p  t h a n  Po. However, a t  low B p  t h e  g rowth  r a t e s  a r e  s t r o n g e r  f u n c t i o n s  

o f  t h e  q  p r o f i l e .  Noting t h a t  t h e  (m = 1  ;n  = 1 )  t e a r i n g  mode i n  t h e  

low-beta l i m i t  i s  d r i v e n  by t h e  s h e a r  a t  t h e  q  = 1  s u r f a c e ,  it is 

P d q l  = 0 . 3 8 , 0 . 3 9 , a n d 0 . 7 2 f o r t h e q = 0 . 9 + 2 . 3 *  i n t e r e s t i n g  t h a t  - - 
q  dp q=1 

q  = 0.9 + 3.3', and q  = 0 .8  + 2.3  p r o f i l e s ,  r e s p e c t i v e l y .  T h i s  e x p l a i n s  

t h e  enhancement  o f  t h e  g rowth  r a t e  a t  low B f o r  t h e  l a t t e r  p r o f i l e .  
P  

The t r a n s i t i o n  r e g i o n  from c u r r e n t -  t o  p r e s s u r e - d r i v e n  dominance  is q  

p r o f i l e  d e p e n d e n t ,  w i t h  c u r r e n t  d r i v i n g  e f f e c t s  l i n g e r i n g  t o  h i g h e r  P 

f o r  p r o f i l e s  h a v i n g  g r e a t e r  s h e a r .  

The d i f f e r e n c e  be tween t h e  g r o w t h  r a t e s  o f  t h e  q  = 0.9  + 2.3 and 

q  = 0.9 -, 3.3 p r o f i l e s  a t  ].ow B i s  a t  l e a s t  p a r t i a l l y  d u e  t o  t h e  
P 

r e l a t i v e  s t a b i l i t y  o f  t h e  d r i v e n  (m = 2 ; n  = 1)  and (m = 3 ; n  = 1 )  modes 

f o r  t h e s e  c a s e s .  For t h e  l a t t e r  p r o f i l e  t h e  m = 3 i s  r e s o n a n t  and t h e  

s = 2 i s  u n s t a b l e  i n  t h e  low B p  l i m i t ,  whe reas  f o r  t h e  former  p r o f i l e  

t h e  m = 3 i s  n o n r e s o n a n t  and t h e  m = 2 i s  s t a b l e .  T h i s  i s  i l l u s t r a t e d  

i n  F i g .  7 where ,  compar ing  t h e  f3 1.00 m a g n e t i c  e n e r g y  d i s t r i b u t i o n  P = 

i n  7 a  w i t h  t h a t  f o r  B - 1.02  i n  7 b ,  t h e  enhancement o f  t h e  m a g n e t i c  
P  - 

e n e r g y  o f  t h e  m = 3 component i s  o b v i o u s  f o r  t h e  q  = 0.9 + 3.3 p r o f i l e ,  

f o r  which t h e  (m = 3 ; n  = 1 )  component  i s  r e s o n a n t  i n  t h e  plasma.  



Higher  n  modes, which a r e  s t a b l e  a t  low b e t a ,  become l i n e a r l y  

u n s t a b l e  w i t h  i n c r e a s i n g  b e t a .  l '  They a r e  e s s e n t i a l l y  p r e s s u r e  d r i v e n ,  

and t h e i r  l i n e a r  g rowth  r a t e  i n c r e a s e s  s t r o n g l y  wi th  b e t a  ( F i g .  9 ) .  

The l i n e a r  g rowth  r a t e  ( a t  h i g h  va1ue.s o f  b e t a )  i n c r e a s e s  w i t h  n ,  and 

t h e  s t r u c t u r e  o f  t h e  e i g e n f u n c t i o n s  h a s  b a l l o o n i n g  c h a r a c t e r .  

In  summary, B p  m o d i f i c a t i o n s  t o  t h e  n  = 1 mode a r e  induced by 

d i s t o r t i o n  o f  t h e  e q u i l i b r i u m  c u r r e n t  p r o f i l e ,  which changes  t h e  growth 

r a t e  and c o u p l e s  components hav ing  d i f f e r e n t  m v a l u e s ,  and by t h e  

t r a n s i t i o n  from c u r r e n t  t o  p r e s s u r e  a s  t h e  d r i v i n g  term o f  t h e  

i n s t a b i l i t y .  



5. NONLINEAR RESULTS 

N o n l i n e a r  c a l c u l a t i o n s  o f  t h e  p lasma e v o l u t i o n  were  c a r r i e d  o u t  

f o r  t h e  f l u x  c o n s e r v i n g  e q u i l i b r i u m  s e q u e n c e  shown i n  T a b l e  1 ,  up t o  

t h e  B p  = 1  c a s e .  These  c a s e s  c o v e r  t h e  r a n g e  i n  which t h e  n  = 1  l i n e a r  

e igenmode c h a n g e s  from a  c l a s s i c a l  t e a r i n g  mode t o  a  more complex mode 

s t r u c t u r e  f o r  which  t h e  p r e s s u r e  d r i v i n g  t e r m s  a r e  i m p o r t a n t  ( F i g .  4) . 
Approx ima te ly  5 0  F o u r i e r  components  h a v i n g  t o r o i d a l  mode numbers  i n  t h e  

r a n g e  n  = 0 ,  . . . , 7 were  i n c l u d e d  i n  t h e s e  c a l c u l a t i o n s .  For  h i g h e r  

v a l u e s  o f  B p ,  t h e  l a r g e  n  modes a r e  l i n e a r l y  u n s t a b l e ,  w i t h  g rowth  

r a t e s  i n c r e a s i n g  w i t h  n  ( F i g .  9 )  . T h i s  makes  n o n l i n e a r  n u m e r i c a l  

c a l c u l a t i o n s  b a s e d  o n  F o u r i e r  e x p a n s i o n s  d i f f i c u l t .  I n  s u c h  c a s e s ,  i t  

is  n e c e s s a r y  t o  i n c l u d e  terms i n  t h e  e q u a t i o n s  t h a t  s i m u l a t e  e f f e c t s ,  

s u c h  a s  f i n i t e  Larmor r a d i u s  c o r r e c t i o n s ,  which  l i m i t  t h e  r a n g e  o f  

u n s t a b l e  n  v a l u e s  and a l l o w  a  c o r r e c t  e v a l u a t i o n  o f  t h e s e  modes. 

However, even  t a k i n g  s u c h  e f f e c t s  i n t o  a c c o u n t ,  t h e  c o m p u t a t i o n s  a r e  

s l o w  and v e r y  l e n g t h y .  We have  n o t  y e t  o b t a i n e d  r e l i a b l e  r e s u l t s  f o r  

t h e s e  h i g h  R p  e q u i l i b r i a .  

The main r e s u l t s  o f  t h e  n o n l i n e a r  s t u d i e s  c a n  b e  summarized a s  

f o l l o w s  : 

( 1 )  For  t h e  e q u i l i b r i u n  s e q u e n c e  i n  T a b l e  1  and B p  0 . 5 ,  t h e  

n o n l i n e a r  g r o w t h  o f  t h e  m = l / n  1  m a g n e t i c  i s l a n d  s l o w s  down 

w i t h  i n c r e a s i n g  f3 g o i n g  from e x p o n e n t i a l  t o  l i n e a r  p r i o r  t o  
F" 

r e c o n n e c t i o n .  

( 2 )  For  h i g h e r  v a l u e s  o f  f3 t h e  m = l / n  = 1  m a g n e t i c  i s l a n d  s a t u r a t e s  
P  ' 

and r e m a i n s  a t  a  f i n i t e  a m p l i t u d e .  T h i s  t r a n s i t i o n  from 



r e c o n n e c t i o n  t o  s a t u r a t i o n  happens  when t h e  mode. becomes 

d o m i n a n t l y  p r e s s u r e  d r i v e n .  

( 3 )  The  (m = 1 ; n  = 1 )  mode d r i v e s  many modes t h r o u g h  t o r o i d a l  and 

n o n l i n e a r  c o u p l i n g .  The l a r g e s t  d r i v e n  mode f o r  t h i s  e q u i l i b r i u m  

s e q u e n c e  is t h e  (m = 2 ; n  = 1)  mode. T h i s  mode, a s  d i s c u s s e d  i n  

S e c t .  4 ,  i s  m a i n l y  l o c a l i z e d  n e a r  t h e  q  = 1  s u r f a c e ,  and t h e  

i n d u c e d  m = 2 / n  = 1  m a g n e t i c  i s l a n d  is  s m a l l .  However. t h e  

(m = 2 ; n  = 1 )  mode p r o d u c e s  a  l a r g e  p o l o i d a l  m a g n e t i c  f i e l d  

p e r t u r b a t i o n  a t  t h e  p lasma s u r f a c e .  

( 4 )  A b r o a d  s p e c t r u m  o f  o t h e r  d r i v e n  modes i s  produced.  These  

g e n e r a t e  a  v a r i e t y  o f  m a g n e t i c  i s l a n d s  t h a t  i n  many c a s e s  o v e r l a p  

and b r e a k  t h e  m a g n e t i c  s u r f a c e s .  

The f i r s t  two r e s u l t s  a r e  shown i n  d e t a i l  i n  F i g .  10. In  t h i s  

f i g u r e  we have  p l o t t e d  t h e  t i m e  e v o l u t i o n  of  the m = l / n  ; 1  magnet.ic: 

i s l a n d  w i d t h  ( t o p )  and t h e  (m = 2 ; n  = 1 )  component  o f  t h e  p o l o i d a l  

m a g n e t i c  f i e l d  a t  t h e  plasma edge  f o r  t h e  d i f f e r e n t  e q u i l i b r i a  we have  

c o n s i d e r e d .  The dashed  c u r v e  shows t h e  r e s u l t  f o r  t h e  low-beta 

c y l i n d r i c a l  e q u i l i b r i u m  w i t h  t h e  same q  p r o f i l e .  In  t h i s  l i m i t  t h e  

m = l / n  = 1  m a g n e t i c  i s l a n d  g rows  e x p o n e n t i a l l y  w i t h  time, f l a t t e n i n g  

t h e  c u r r e n t  and q  p r o f i l e s .  The m a g n e t i c  f i e l d  l i n e  t o p o l o g y  f l i p s ,  

w i t h  t h e  c e n t e r  o f  t h e  i s l a n d  becoming t h e  new m a g n e t i c  a x i s ,  and a f t e r  

m a g n e t i c  f i e l d  l i n e  r e c o n n e c t i o n ,  t h e  c y l i n d r i c a l  symmetry i s  r e c o v e r e d  

w i t h  q  > 1  i n  t h e  whole plasma volume. T h i s  n o n l i n e a r  p r o c e s s  was 

t h e o r e t i c a l l y  a n t i c i p a t e d  by  ~ a d o m t s e v l ~  and s t u d i e d  n u m e r i c a l l y  i n  

d e t a i l  i n  Refs. 13-15. A s  a l r e a d y  m e n t i o n e d ,  a n  e f fec t  o f  i n c r e a s i n g  

b e t a  upon t h e  n o n l i n e a r  e v o l u t i o n  is t o  l e n g t h e n  t h e  t i m e  u n t i l  

m a g n e t i c  f i e l d  l i n e  r e c o n n e c t i o n .  T h i s  s t r e t c h i n g  o u t  o f  t h e  n o n l i n e a r  



e v o l u t i o n  o f  t h e  m = l / n  = 1 i s l a n d  w i d t h  is  d u e  t o  a  p e r i o d  o f  l i n e a r ,  

r a t h e r  t h a n  e x p o n e n t i a l ,  g r o w t h  i n  time. T h i s  i s  q u i t e  e v i d e n t  i n  t h e  

c a s e  o f  B p  = 0.38  ( F i g .  1 0 ) .  l 'h is  b e h a v i o r  is s i m i l a r  t o  t h a t  o f  t h e  

rn > 1 t e a r i n g  modes i n  c y l i n d r i c a l  geometry16 and is p r o b a b l y  i n d u c e d  

by t h e  s t r o n g  c o u p l i n g  o f  t h e  m = 1 t o  m > 1 modes. For  B p  = 0 .59 ,  

F ig .  10  shows t h a t  t h e  m = l / n  = 1 m a g n e t i c  i s l a n d  s a t u r a t e s  a t  a  w i d t h  

W .I O.la .  The s a t u r a t i o n  o f  t h e  ( m  = 1 ; n  = 1 )  mode i n  h i g h  

t e m p e r a t u r e ,  low-beta  c y l  i n d r i c a l  p l a smas  h a s  been  p r e d i c t e d  by 

~ i s k a m ~ ,  l 7  who i n c l u d e d  d i a m a g n e t i c  d r i f t s ,  i o n  v i s c o s i t y ,  plasma 

d i f f u s i o n ,  and  r e s i s t i v i t y  i n  a  s i n g l e  h e l i c i t y  c a l c u l a t i o n .  I n  h i s  

c a l c u l a t i o n s  s a t u r a t i o n  o c c u r s  when t h e  (m = 1 ; n  = 1 )  l i n e a r  g r o w t h  

r a t e  i s  exceeded  by t h e  d i a m a g n e t i c  d r i f t  f r e q u e n c y  w+. For h igh -be t a  

p l a smas  t h i s  e f f e c t  c o u l d  b e  i m p o r t a n t  i n  m o d i f y i n g  t h e  t h r e s h o l d  o f  

t h e  s a t u r a t i o n  o f  t h e  (m = 1 ; n  = 1 )  mode. 

L e t  u s  now c o n s i d e r  t h e  n o n l i n e a r  e v o l u t i o n  i n  d e t a i l .  We w i l l  

d e s c r i b e  f i r s t  a c a s e  i n  which  t h e  m = l / n  = 1 i s l a n d  i n d u c e s  f u l l  

r e c o n n e c t i o n  o f  m a g n e t i c  f i e l d  l i n e s  and second a  c a s e  i n  which t h e  

m = l / n  = 1 i s l a n d  s a t u r a t e s .  F i g u r e s  11-13 show m a g n e t i c  f i e l d  l i n e  

p l o t s ,  p r e s s u r e  p r o f i l e s ,  and p r e s s u r e  c o n t o u r  p l o t s ,  r e s p e c t i v e l y ,  a t  

s e v e r a l  t i m e s  f o r  a  c a s e  i n  which  t h e r e  i s  f u l l  r e c o n n e c t i o n  o f  

m a g n e t i c  f i e l d  l i n e s  ( B p  = 0 . 3 8 ) .  The f i e l d  l i n e  p l o t s  i n  F i g .  11 show 

t h e  e v o l u t i o n  o f  t h e  m = l / n  = 1 i s l a n d  toward  r e c o n n e c t i o n .  A t  

t = 1 3 9 8 ~ ~ ~  t h e  m = l / n  = 1 i s l a n d  w i d t h  h a s  r e a c h e d  n e a r l y  20% o f  t h e  

plasma minor  r a d i u s .  O t h e r  modes a r e  d r i v e n  by t h e  (m = 1 ;n = 1 )  

t h r o u g h  t o r o i d a l  and n o n l i n e a r  c o u p l i n g .  These  modes g e n e r a t e  m a g n e t i c  

i s l a n d s  o f  d i f f e r e n t  helicjties, a s  c a n  b e  s e e n  i n  t h e  f i g u r e .  



A t  t h e  l a t e r  times two i n t e r e s t i n g  f e a t u r e s  a r e  o b s e r v e d :  ( 1 )  t h e  

1 /1  i s l a n d  g rows ,  s q u e e z i n g  t h e  o r i g i n a l  m a g n e t i c  a x i s  i n t o  a  s m a l l  

r e g i o n  t o  t h e  l e f t  o f  t h e  i s l a n d  ( a  h o t  s p o t ) ,  and (2 )  t h e  i n t e r a c t i o n  

be tween  modes becomes s u f f i c i e n t l y  l a r g e  t h a t  many d r i v e n  m a g n e t i c  

i s l a n d s  o v e r l a p ,  c a u s i n g  t h e  m a g n e t i c  f i e l d  l i n e s  t o  become s t o c h a s t i c  

i n  c e r t a i n  r e g i o n s  o f  t h e  plasma.  

The p r e s s u r e  p r o f i l e  f l a t t e n s  i n s i d e  t h e  1/1 i s l a n d  ( F i g s .  12-13).  

A s  t h e  1 /1  g rows ,  t h e  r e g i o n  o f  f l a t  p r e s s u r e  i n c r e a s e s  w i t h  t h e  s i z e  

o f  t h e  i s l a n d .  A t  t = =1967rhp,  a  l o c a l  p r e s s u r e  peak  ( h o t  s p o t )  

r e m a i n s  t o  t h e  l e f t  o f  t h e  i s l a n d  a t  t h e  p r e s e n t  l o c a t i o n  o f  t h e  

m a g n e t i c  a x i s ,  b u t  t h e  b u l k  o f  t h e  plasma c e n t e r ,  which i s  o c c u p i e d  by 

t h e  1/1 i s l a n d ,  d i s p l a y s  a  f l a t  p r e s s u r e  p r o f i l e .  

For h i g h e r  v a l u e s  o f  f3 t h e  m = l / n  = 1  i s l a n d  s a t u r a t e s .  In  
P  

p a r t i c u l a r ,  f o r  
f3 P 

= 0.59 ,  t h e  (m = 1 ; n  = 1 )  mode c o u p l e s  t o  o t h e r  

modes  which  g e n e r a t e  s e v e r a l  m a g n e t i c  i s l a n d s ,  b u t  t h e  i n s t a b i l i t y  

s a t u r a t e s  when t h e  m = l / n  = 1  i s l a n d  h a s  a  w i d t h  W 2 0 .  l a  ( F i g .  14)  . 
I n  t h i s  c a s e ,  a l l  t h e  n  > 1  modes used i n  t h e  c a l c u l a t i o n  a r e  l i n e a r l y  

u n s t a b l e .  T h e r e f o r e ,  some o f  t h e  m a g n e t i c  i s l a n d s  p r e s e n t  i n  t h e  

p lasma a r e  n o t  d r i v e n  by t h i s  mode. The e f f e c t  o f  t h e s e  h i g h  n  

p r e s s u r e - d r i v e n  modes upon t h e  low n  e v o l u t i o n  f o r  B p  < 1  c a s e s  

c o n s i d e r e d  i n  t h i s  s e q u e n c e  i s  s m a l l .  These  h i g h  n  modes a r e  o b s e r v e d  

t o  s a t u r a t e  a t  s m a l l  a m p l i t u d e s  f o r  r e a l i s t i c  v a l u e s  o f  S  ( S  ) l o 6 ) .  

I f  t h e  v a l u e  o f  S i s  u n r e a l i s t i c a l l y  low ( S  - l o 4 )  , t h e  h i g h  n  

modes e v o l v e  v e r y  f a s t  and g e n e r a t e  a  s i n g u l a r i t y  i n  t h e  p r e s s u r e .  

S i n c e  we a r e  be low t h e  t h r e s h o l d  o f  t h e  i d e a l  i n s t a b i l i t y ,  i n c r e a s i n g  S  

r e d u c e s  t h e  i n s t a b i l i t y ,  a n d ,  f o r  S  ) l o 5 ,  t h e  modes s a t u r a t e  w i t h o u t  

p r e s e n t i n g  t h i s  s i n g u l a r  b e h a v i o r .  



The va lue  of  S  a l s o  a f f e c t s  t h e  evo lu t ion  o f  t h e  low n  modes 

(F ig .  15 ) .  For a  reconnect ion case ,  a s  S  i n c r e a s e s  t h e  growth of  t h e  

1/1 i s l a n d  i s  s i g n i f i c a n t l y  s t re tched .  ou t  i n  time. In ISX-B t h e  

polo ida l  Alfven time and magnetic Reynolds number a r e  r h p  = 0.4 u s  and 

S  107, r e s p e c t i v e l y .  Assuming a  power law dependence o f  r recon,  t h e  

time fo r  t h e  evolu t ion  o f  t h e  (m = 1 ;n = 1) mode t o  reconnect ion ,  upon 

S,  and then the  ex t r apo la t ion  of  rreCon i n  Fig. 15 ( f o r  t h e  p p =  0.19 

c a s e  i n  Table 1)  i n d i c a t e s  t h a t  rrecon ~ 1 0 . 0 0 0 ~ ~ ~  f o r  S  = lo7. This  

corresponds t o  a  (m = l ; n  = 1) mode evolu t ion  time o f  s eve ra l  

mi l l i s econds  fo r  such a  case  i n  ISX-B, which i s  i n  good q u a l i t a t i v e  

agreement with t h e  observed du ra t ion  of  m = 1 p recu r so r s  f o r  low beam 

power ISX-B cases .  

Hence, t h e  e f f e c t s  o f  i nc reas ing  p on t h e  evolu t ion  of  t h e  m = 1 
P  

mode for  a  f lux  conserving sequence of  e q u i l i b r i a  lead t o  an 

i n t e r p r e t a t i o n  c o n s i s t e n t  with ISX-B observa t ions .3  Associat ing the  

nonl inear  evolutj.nn of t h e  ( m  = 1 ;n = 1) mode with the  observed MHD 

a c t i v i t y ,  both t h e  c a l c u l a t i o n s  and t h e  experiment observe with 

inc reas ing  6 t h e  slowing down of t h e  c l a s s i c a l  sawtooth o s c i l l a t i o n ,  P 

t he  t r a n s i t i o n  t o  a long or s t e a d i l y  running precursor  s i g n a l  

( s a t u r a t e d  1 /1  i s l a n d )  , and t h e  occurrence o f  s i z e a b l e  m = 2 B / B  

s i g n a l s  a t  t h e  plasma edge with a t  most a  small  a s soc i a t ed  2/1 magnetic 

i s l and .  Also, e x t r a p o l a t i o n  o f  t h e  time s c a l e s  o f  t h e  reconnect ion 

process  i n  t he  c a l c u l a t i o n s  t o  ISX-B parameters i s  c o n s i s t e n t  with 

exper imental  observa t ions .  

A s  wi th l i n e a r  s t a b i l i t y ,  t h e  e f f e c t s  of  modifying t h e  q  p r o f i l e  

have important  consequenaes for p p  5 1 i n  t h e  nonl-inear regime. 

Increas ing  BT f o r  f ixed  plasma c u r r e n t ,  d e n s i t y ,  and beam power Pb i n  



ISX-B l e a d s  t o  an  i n c r e a s e  i n  qa. I n  t h i s  p r o c e s s  fl i s  o b s e r v e d  t o  
P  

r e m a i n  c o n s t a n t  w h i l e  t h e  b e h a v i o r  o f  t h e  m = 1  r e t u r n s  t o  t h e  

l l c l a s s i c a l l l  s a w t o o t h  w i t h  a  s p e e d i n g  up o f  t h e  n o n l i n e a r  e v o l u t i o n  and 

a  r e d u c t i o n  o f  c o u p l i n g  t o  t h e  d r i v e n  modes,  a s  ev idenced  by a  r e d u c e d  
A 

B/B s i g n a l .  T h i s  b e h a v i o r  i s  o b s e r v e d  i n  o u r  c a l c u l a t i o n s ,  a s  shown i n  

F i g .  1 6  where  two e q u i l i b r i a ,  from T a b l e s  1  and 2 ,  h a v i n g  comparab le  B 
P  

b u t  d i f f e r e n t  qa a r e  s e e n  t o  have  marked ly  d i f f e r e n t  r e c o n n e c t i o n  

times. The case w i t h  qa = 3.3 u n d e r g o e s  f i e l d  l i n e  r e c o n n e c t i o n  much 

more r a p i d l y  t h a n  t h e  qa = 2.3 c a s e .  The p l o t s  o f  t h e  (m = 2 ; n  = 1 )  

p o l o i d a l  m a g n e t i c  p e r t u r b a t i o n  a t  t h e  plasma e d g e  r e v e a l  a  much l a r g e r  

s i g n a l  f o r  t h e  qa = 2.3 c a s e  t h a n  f o r  t h e  qa = 3.3 c a s e ,  i n d i c a t i n g  

t h a t  t h e  (m = 2 ; n  = 1 )  mode is  d r i v e n  l e ss  by t h e  (m = 1 ; n  = 1)  i n  t h e  

l a t t e r  c a s e  t h a n  i n  t h e  f o r m e r .  

I n c r e a s i n g  t h e  s h e a r  a t  t h e  q  = 1  s u r f a c e  by d e c r e a s i n g  qo c a n  

a l s o  a f f e c t  t h e  n o n l i n e a r  e v o l u t i o n ,  a s  c a n  be  s e e n  i n  F i g .  17. Here 

a g a i n ,  f o r  two c a s e s  from Tables 1  and 7 wit.h c n m p a r a b l c  0 b u t  P 

d i f f e r e n t  qo ,  t h e  i s l a n d  w i d t h s  and (m = 2 ; n  = 1 )  p o l o i d a l  m a g n e t i c  

p e r t u r b a t i o n s  a t  t h e  p lasma e d g e  a r e  p l o t t e d  a s  f u n c t i o n s  o f  time. The 

h i g h e r  s h e a r  case with q, ; 0.8 11ndergne.s f a i r l y  r a p i d  m a g n e t i o  f i c l d  

l i n e  r e c o n n e c t i o n ,  w h e r e a s  t h e  qo = 0.9 c a s e  d i s p l a y s  a  s a t u r a t e d  

4 

( m  = l / n  = 1 )  i s l a n d .  Hence,  t h e  e v o l u t i o n  o f  t h e  (m = 1 ; n  = 1 )  mode 

i n  a m o d e r a t e - b e t a  plasma c a n  b e  q u i t e  s e n s i t i v e  t o  c h a n g e s  i n  t h e  q  

p r o f i l e .  



The s t a b i l i t y  and n o n l i n e a r  e v o l u . t i o n s  o f  t h e  (m = 1  ; n  = 1)  mode 

i n  h igh -be ta  p l a smas  h a v e  been  s t u d i e d  a s  f u n c t i o n s  o f  B f o r  s e v e r a l  
P  

f l u x  c o n s e r v i n g  s e q u e n c e s  o f  i d e a l  MHD s t a b l e  e q u i l i b r i a .  A l i n e a r  

s t a b i l i t y  s t u d y  o f  t h i s  mode f o r  a  f l u x  c o n s e r v i n g  s e q u e n c e  o f  

e q u i l i b r i a  d i s p l a y s  a  t r a n s i t i o n  from a  m a i n l y  c u r r e n t - d r i v e n  t e a r i n g  

mode a t  low B t o  a  m a i n l y  p r e s s u r e - d r i v e n  mode a t  h i g h  e A s  f i p  i s  
P  P  ' 

i n c r e a s e d ,  t h e  c u r r e n t - d r i v e n  n  = 1  mode i s  a t  f i r s t  s t a b i l i z e d  by  

e q u i l i b r i u m  B p  and i n t e r c h a n g e  s t a b i l i z a t i o n .  e f f e c t s  i n  which  t h e  

dominan t  (m = 1 ; n  = 1 )  component  is  c o u p l e d  t o  more s t a b l e  m 

components .  In  . t h i s  r eg ime  t h e  s t r u c t u r e  o f  t h e  n  = 1  mode i s  

e s s e n t i a l l y  t h a t  o f  a  m o d i f i e d  low-beta (m = 1  ; n  = 1)  t e a r i n g  mode. A s  

B p  i s  i n c r e a s e d  f u r t h e r ,  t h e  n =  1  mode becomes m a i n l y  a  

p r e s s u r e - d r i v e n  mode. The t r a n s i t i o n  r e g i o n  from c u r r e n t -  t o  

p r e s s u r e - d r i v e n  dominance i s  s e n s i t i v e  t o  t h e  q  p r o f i l e .  H ighe r  n  

modes, which a r e  a l l  s t a b l e  a t  v e r y  low B a r e  l i n e a r l y  d e s t a b i l i z e d  P  * 

when P p  i n c r e a s e s ,  h a v i n g  g rowth  r a t e s  which i n c r e a s e  w i t h  b o t h  B and P  

n. 

. N o n l i n e a r  c a l c u l a t i o n s  t h u s  f a r  have  been  c a r r i e d  o u t  f o r  fl up  t o  
P  

a b o u t  1. A s  B p  i s  i n c r e a s e d ,  t h e  l l c l a s s i c a l l l  f i e l d  l i n e  r e c o n n e c t i o n  

o f  t h e  (m = 1 ; n  = 1 )  mode becomes s t r e t c h e d  o u t  i n  t i m e ,  and a  p e r i o d  

o f  l i n e a r  m a g n e t i c  i s l a n d  growth  emerges  p r i o r  t o  r e c o n n e c t i o n .  For 

t h e  h i g h e r  v a l u e s  o f  B p  c o n s i d e r e d  h e r e ,  t h e  m = l / n  = 1  i s l a n d  

s a t u r a t e s .  The e q u i l i b r i u m - i n d u c e d  c o u p l i n g s  o f  t h e  (m = 1 ; n  = 1 )  - 
d r i v e  o t h e r  m components  which g i v e  s u b s t a n t i a l  B / B  v a l u e s  a t  t h e  

plasma edge .  A s  B e n t e r s  t h e  p r e s s u r e - d r i v e n  r eg ime  h i g h e r  n  modes P  



become l i n e a r l y  u n s t a b l e  and g e n e r a t e  many s m a l l  i s l a n d s ,  some o f  which 

c a n  o v e r l a p  and c a u s e  c e r t a i n  r e g i o n s  o f  t h e  plasma t o  become 

s t o c h a s t i c .  I n c r e a s i n g  qa t e n d s  t o  speed  up t h i s  e v o l u t i o n  and 

d e c o u p l e  t h e  d r i v e n  modes  from t h e  (m = 1  ; n  = 1) , c a u s i n g  t h e  r e t u r n  t o  

t h e  v c l a s s i c a l l l  (m = 1  ; n  = 1 )  b e h a v i o r .  D e c r e a s i n g  qo t e n d s  t o  

i n c r e a s e  t h e  s h e a r  a t  t h e  q  = 1 s u r f a c e ,  which a l s o  s p e e d s  up t h e  

n o n l i n e a r  e v o l u t i o n .  

It i s  c l e a r  t h a t  t h e s e  r e s u l t s  c a n  e x p l a i n  some o f  t h e  o b s e r v e d  

MHD b e h a v i o r  i n  t h e  ISX-B tokamak a s  d e s c r i b e d  i n  t h e  I n t r o d u c t i o n .  

T h e s e  r e s u l t s  a r e  s u b j e c t  t o  t h e  c o n d i t i o n  t h a t  q, < 1 ,  and t h e  d e t a i l s  

o f  t h e  e v o l u t i o n  f o r  a n y  p a r t i c u l a r  c a s e  a r e  s e n s i t i v e  t o  t h e  c h o i c e  o f  

e q u i l i b r i u m  q  p r o f i l e .  A d e t a i l e d  d i s c u s s i o n  o f  t h e  MHD a c t i v i t y  i n  

ISX-B and  i t s  i n t e r p r e t a t i o n  i n  terms o f  t h e s e  c a l c u l a t i o n s  i s  

f o r t h c o m i n g  .3 
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Table 1.  Detailed equilibrium parameters for a flux 
conserving sequence characterized by 

Magnetic ax i s  

P B o ( % )  <B>(g> ski f t  (q) q= 1 



Table  2. E q u i l i b r i l m  paramete r s  f o r  t h e  t h r e e  f l u x  
conse rv ing  sequences  used i n  t h i s  paper 

Magnetic Magnetic Magnetic 

@P 
a x i s  s h i f t  P a x i s  s h i f t  P a x i s  s h i f t  
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FIGURE CAPTIONS 

F i g .  1 .  P o l o i d a l  f l u x  f u n c t i o n ,  Y ,  and t o r o i d a l  c u r r e n t  d e n s i t y  

c o n t o u r s  f o r  t h e  6 0 .59 ,  1 .00 ,  1 .49 ,  and 1.94 e q u i l i b r i a  d e s c r i b e d  P = 

i n  T a b l e  1. 

F i g .  2. T o r o i d a l  c u r r e n t  d e n s i t y  p r o f i l e s  f o r  t h e  B p  = 0.59 ,  

1 .00 ,  1 .49 ,  and 1 .94  e q u i l i b r i a  d e s c r i b e d  i n  T a b l e  1. The dashed  l i n e s  

show t h e  p o s i t i o n  o f  t h e  q  = 1 s i n g u l a r  s u r f a c e .  

F i g .  3. n  = 1 l i n e a r  g rowth  r a t e  (-rib) vs B p  f o r  t h e  f l u x  

c o n s e r v i n g  s e q u e n c e  o f  e q u i l i b r i a  d e s c r i b e d  i n  T a b l e  1. The dashed  

c u r v e  i n c l u d e s  o n l y  t h e  c u r r e n t - d r i v e n  p a r t  o f  t h e  mode, whereas  t h e  

s o l i d  c u r v e  i n c l u d e s  t h e  f u l l  dynamica l  e f f e c t s  o f  t h e  p r e s s u r e  d r i v i n g  

terms. 

Fig .  4 .  rn = 1 components  o f  Y , p ,  and Q for t t i e  n  = 1 e igenmode 

- 0 . 1 9 ,  0 . 5 9 ,  1 .00 ,  and 1.94 e q u i l i b r i a  d e s c r i b e d  i n  T a b l e  f o r  t h e  Bp  - 

F i g .  5. m = -2, . . . , 7 components  o f  Y f o r  t h e  n  = 1 e igenmode 

f o r  ( a )  t h e  B1, = 0.19 and ( b )  B p  = 1.94 e q u i l i b r i a  d e s c r i b e d  i n  

T a b l e  1.  

F i g .  6. Magne t i c  e n e r g y  r a t i o  ( E M I m l / ( ~ M )  11 f o r  m = 2 and 3. The 

d a s h e d  c u r v e s  i n c l u d e  o n l y  t h e  e f f e c t  o f  t h e  deformed e q u i l i b r i u m  on  

t h e  c u r r e n t - d r i v e n  p a r t  of  t h e  mode, whereas  t h e  s o l i d  c u r v e s  a l s o  

i n c l u d e  t h e  f u l l  dynamica l  e f f e c t s  o f  t h e  p r e s s u r e  d r i v i n g  terms. 



Fig.  7 .  Magnetic .energy r a t i o s  (EM)ml/(EM)l l  f o r  m = -2, . . . , 
7 f o r  ( a )  t h e  B p  = 0.07. 0.19. 0.38, 0.59, and 1  .OO e q u i l i b r i a  

d e s c r i b e d  i n  T a b l e  1  and ( b )  t h e  B p . =  0.12. 1.02. and 2.90 e q u i l i b r i a  

having qo = 0.9 and qa = 3.3 d e s c r i b e d  i n  T a b l e  2. 

Fig.  8 .  n  = 1 l i n e a r  growth r a t e  ( -  rhp-') v s  Po and v s  B p  ' f o r  

t h e  f lux  c o n s e r v i n g  sequences  o f  e q u i l i b r i a  c o n s i d e r e d  here .  The s o l i d  

c u r v e  is f o r  qo = 0.9 and qa = 2.3; t h e  l o n g  dashed c u r v e  i s  f o r  

qo = 0.9 and qa = 3.3; and t h e  s h o r t  dashed c u r v e  is f o r  qo = 0.8 and 

qa = 2.3. 

- 1 Fig .  9 .  n  = 1 ,  3,  and 6  l i n e a r  growth r a t e s  ( -  r h p  ) v s  R p  f o r  

t h e  f l u x  conserv ing  sequence of e q u i l i b r i a  d e s c r i b e d  i n  T a b l e  1. The 

4 v a l u e  o f  magnet ic  Reynolds nunber S = 10 was used i n  t h e  c a l c u l a t i o n  

f o r  t h i s  f i g u r e .  

Fig .  10. m = l / n  = 1 magnet ic  i s l a n d  width  ( t o p )  and 

( m  = 2;n  = 1)  p o l o i d a l  magnet ic  f i e l d  f l u c t u a t i o n  ampl i tude  a t  t h e  

plasma edge (bot tom) vs  t ime  f o r  t h e  B p  = 0.07. 0.19. 0.38,  and 0.59 

e q u i l i b r i a  d e s c r i b e d  i n  T a b l e  1. 

Fig.  11. Magnetic f i e l d  l i n e  p l o t s  a t  t / ~ ~ ~ =  1398. 1896, 1936, 

and 1967 f o r  t h e  B p  = 0.38 case. 



Fig .  12. H o r i z o n t a l  and v e r t i c a l  p r e s s u r e  p r o f i l e s  a t  t / r hp  = 0 ,  

1398 ,  1896,  1936,  and 1967 f o r  t h e  B p  = 0.38 c a s e .  

F ig .  13. C o n s t a n t  p r e s s u r e  c o n t o u r s  a t  t / ~ ~ ~  = 1398, 1896, 1936, 

and 1967 f o r  t h e  B p  = 0.38 c a s e .  

Fig .  14. m =  1 / n =  1  i s l a n d  wid th  v s  t / rhp  t o g e t h e r  w i t h  

h o r i z o n t a l  t o r o i d a l  c u r r e n t  d e n s i t y  p r o f i l e  and magnet ic  f i e l d  l i n e  

p l o t  o f  t h e  s a t u r a t e d  s t a t e  for  the f3 - 0,59 case. P  - 

Fig .  15. m = 1/n = 1 magne t i c  i s l a n d  wid th  v s  t / rhp  f o r  S = l o 4 ,  

l o 5 ,  and l o 6  f o r  t h e  B - 0.19 c a s e .  P  - 

Fig .  16. m = l / n  = 1 magnetair! ioacrnd w i d t h  (top5 and 

(m = 2 ;n  = 1) p o l o i d a l  magne t i c  f i e l d  f l u c t u a t i o n  a m p l i t u d e  a t  t h e  

p las i~ia  edge ( b o t t o m )  v s  time f o r  t h e  B p  = 0.38 (q, = 0.9 ,  g, = 2.7) and 

P = 0.34 (q, = 0.9 ,  qa = 3.3) e q u i l i b r i a  d e s c r i b e d  i n  T a b l e s  1 and 2. 

F i g .  17. m =  l / n =  1  n ~ a g n e t i c  i s l a n d  wid th  ( t o p )  and 

( m  = 2 ; n  = 1) p o l o i d a l  magne t i c  f i e l d  f l u c t u a t i o n  a m p l i t u d e  a t  t h e  

plasma edge (bo t tom)  v s  t i m e  f o r  t h e  pp  = 0.59 (q, = 0.9 ,  q, = 2.3) and 

R~ = 0.57 ( q o  = 0 . 8 ,  qa = 2.3)  e q u i l i b r i a  d e s c r i b e d  i n  T a b l e s  1 and 2. 
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