This technical report has been made
electronically available on
the World Wide Web
through a contribution from

Charles Fursgth

Office of Scientific and Technical Information
Office of Science

U.S. Department of Energy

May, 2009

fﬁ% U.S. DEPARTMENT OF r Office of ‘;X\OSTLQOV

W ENERGY ~d Science

S OMSTR

UCID-19293 \

/

DELTA;#/PROTOCOL SPECIFICATION

Richard Y. Hdatson

: o December 4, 1981

This is an informal report intended primarily for internal or limited external distribution. The
opinions and conclusions stated are those of the author and may or may not be those of the
Laboratory.

Work performed under the auspices of the U.S. Department of Energy by the Lawrence
» Livermore Laboratory under Contract W-7405-Eng-48.

P
Lxm!";: Duli

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.

UCID--19293

DE82 010601

Delta-t PROTOCOL SPECIFICATION
(Working Draft)

R. W. Watson
Lawrence Livermore National Laboratory
December 4, 1981

Table of Contents

Introduction
Delta-t Services and Mechanisms
2.1 Introauction
Aadressing
Delta-t Assotiation
Protection
Assurance
2.5.1 Introduction
2.5.2 Lost Packets
2.5.3 Duplicate Packets
2.5.4 Missequenced Packets
Synchronization Including Connection Management
Resource Management
2.7.1 Segmentation
2.7.2 Flow Control
2.7.3 Window Management
Diagnostics and Measurement
Services Not in Delta-t
Future Services
vices Required of the Network Layer
Data Objects and Addressing
Protection
Assurance
Resource Management
Synchronization Including Connection Management
Control Information
of the Delta-t Environment
Environment Model
Event Handling
ta-t Use of DeltaGram Header Fields
Introduction
Data Packets
Ack Packets
Direct Control Packets
Nak Packets
ta-t Operation
Introduction
Connection Record Definition and Management
6.2.1 Introduction

NNNN
U WwWN

NN

0 ®
)

e

H

g\N\N\N\N\AUmNNN
8.0\\}1«!-\\Nl\)0—‘
b

. .
=N

e

b

e

o puUuUVULUVOE PR
N W R

6.2.2 Sender Initialization
6.2.3 Receiver Initialization
6.2.4 Allocation and Deallocation of State
6.2.5 Connection Record Definition
6.3 The Delta-t Module Global Declaration Environment
6.4 Timer Event Handling and Retransmission Procedures
6.4.1 DtTimeout
6.4.2 Handling Retransmission
6.4.3 Send Timer Expiration
6.5 User Interface Events
6.5.1 Receive or Ack Generation Events
6.5.2 Data or Rendezvous Packet Send

DISCLAIMER

This book was prepared as an account of work sponsored by an agency of the United States Government
Nerther the United States Government nor any agency thereof nor any of ther employees makes any
es any legal lability or responsibility for the accuracy

s
necessarily state or reflect those of the United States Government or any agency thereof

DISTRIBUTIO: Ge 1o

‘

N
'S UMLITED |

\

=

.2.1 DtStartData and DtFinishData
.2.2 Sending a Data Packet

.2.3 Sending a Rendezvous Packet
Received Event

.1 DtPktRcvd

.2 Receipt of a Data Packet

3 Receipt of an Ack Packet

i Receipt of a Rendezvous Packet
.5

.6

6.5
6.5
6.5
6.6 Packet
6.6
6
6
6

c
.6
.6
.6
6.6 Receipt of a Nak Packet

6.6 Sending a Nak Packet

Acknowledgment

References

Appendix A - Notes on Timer Values and Rules

Appendix B - EIM Interface State Record Definition and IPC User Interface

Operations

1. Introduction

This document is one of a series describing protocols associated with the
Livermore Interactive Network Communication System (LINCS) hierarchical
architecture [4,15,18]. At the heart of LINCS is its basic interprocess
communication (LINCS IPC) service [21]. LINCS-IPC defines a reliable, flow
controlled, full duplex, uninterpreted, labeled bit stream communication
service. LINCS-IPC is level 4 in the LINCS architecture. Level 3 of LINCS is
the Network layer defining an internetwork datagram type service [19].
LINCS-IPC interfaces to User processes that utilize higher level syntactic and
semantic conventions for process interaction [20]. The transport service
provided by the Delta-t protocol can be considered a sublayer of the LINCS-IPC
layer. Delta-t augments the Network level service as required to support
LINCS-IPC. This document specifies the services provided by the Delta-t
protocol to support LINCS-IPC, the operation of Delta-t, and the services
Delta-t requires of the Network level.

This document was written to be self-contained but the reader will find
it useful to have available for reference the LINCS-IPC and LINCS DeltaGram
Network layer protocol specifications [19,21].

Implementations are underway in Pascal for the PDP-11 running under RT11
and RX11, in BLISS for the VAX running under VMS, in MODEL for the CRAY-1 and
CDCT7600 running under NLTSS and LTSS, and for the SEL 32/75 running under
PORT.

2. Delta-t Services and Mechanisms

2.1 Introduction

Delta-t logically supports a permanent, reliable, flow controlled, full
duplex, labeled bit stream connection between two ports. There is no extra
packet exchange overhead to reliably manage connection state as in other
stream oriented protocols [3,10,12]. Therefore Delta-t can support an
efficient, low delay, minimum packet exchange, reliable transaction oriented
service as well as high stream throughput.

The Delta-t protocol, as defined here, assumes the services of a datagram
protocol, the DeltaGram protocol [19]. The decomposition of services between
Delta-t and DeltaGram was made by determining which services required
intermediate routing node support and those that must be performed end-to-end
or could be most efficiently handled at these points.

Below we outline and discuss both the user services visible at the next
higher level interface to Delta-t and the internal protocol mechanisms used to
support these. Appendix B outlines the logical functionality of an interface
to the LINCS-IPC service supported by Delta-t [21]. The next higher level
interface used in this specification is a lower level interface internal to
the LINCS-IPC layer.

2.2 Adaressing

Communication within the LINCS architecture takes place between ports.
Ports are icentified by 64 bit LINCS addresses. Ports are bound to
processes. Port to process binding is a higher level issue of no concern to
Delta-t. Actual data movement between ports is supported by the Network layer
(DeltaGram) protocol. Therefore no additional addressing structure is
provided by Delta-t.

2.3 Delta-t Association

An unordered port pair defines a full-duplex data channel called an
association. Delta-t detects and recovers from lost, duplicated, and
missequenced data. Damaged data is detected and discarded (lost) by the
Network layer. Delta-t labels data bits with a protection level and
optionally also with B and/or E synchronization marks (see Section 2.6).
Internally Delta-t also labels bits with a sequence number, version, lifetime,
and other control information. Data transfer on an association is flow
controlled.

The state information at each end necessary to provide these services
logically always exists for all possible associations (permanent
connections). After appropriate timeouts, the state information is reset to
default values. When this state information has a default value it can be
deallocated and does not need to be maintained by the implementation.
Management of this state (connection management) is under timer control and
does not regquire user interface primitives or special opening and closing
?acﬁet exchanges [14,16]. The state at each end is kept in connection records

CR).

Delta-t's assurance, flow control, and connection management mechanisms

are outlined in the appropriate following sections.

",

2.4 Protection

The protection level of Delta-t data is passed through to the Network
layer which enforces an appropriate protection policy [5,19]. Encryption, if
required to convert untrusted links (or subnetworks) connecting trusted nodes
into trusted links, is assumed to take place at the Link level of the LINCS
architecture. Receiver buffer space is protected by association identifier
outsice Delta-t within LINCS-IPC (see Appendix B). Additional access control
services are defined at higher levels of the architecture.

2.5 Assurance

2.5.1 Introduction

Delta-t guarantees data will not be lost, duplicated or misseguenced.
The Network layer provides optional damage detection and discard on a per
packet basis. If packet segmentation is not required, then this protection is
end-to-end. Whenever segmentation occurs, the Network layer provides
hop-by-hop protection with no unprotected gaps. It is assumed that the next
higher level interface will maintain (or allow the user to determine) the
sequence of data sent and received on a given association.

Delta-t provides for data assurance through data sequence numbers (SNs)
on bits, a positive-acknowledgment/retransmission mechanism, and bounds on
packet lifetime. The mechanisms used to detect and recover from lost,
missequenced, and duplicate packets are identical to those used in many other
transport protocols [11,13]. Delta-t's timer based connection management is,
however, unique [6,16]. A negative acknowledgment (Nak) is also provided as
an efficiency and diagnostic aid, although it is not essential to correct
protocol operation. The Delta-t assurance mechanisms are now outlined.

2.5.2 Lost Packets

Delta-t detects and recovers from lost packets by positive acknowledgment
and retransmission. The origin transmits a packet and then waits an interval
for a positive acknowledgment (Ack). This interval is usually slightly longer
than the average round trip time for a packet and its Ack to be generated and
traverse the network. If an Ack is not forthcoming in that interval, the
unacknowledged packet is retransmitted. If no positive acknowledgment is
received after attempting some number of retransmissions (giveup time), an
error is reportea to the user with an indication of the successfully Acked
data and of data transmitted but not Acked. A giveup timeout can result
through failure of data to be delivered or failure of Acks to be returned.
Delta-t level information cannot aetermine which case occurred. Either case
could occur from an end-node computer crash or serious network problem such as
a partition. A higher-level recovery mechanism, using conventions on the B/E
marks or higher-level delimiters, is required if the ambiguity needs to be
removed. Delta-t has been designed to limit the cases where this ambiguity
can occur to situations such as end-node system crashes and serious network
faults which are outside of its ability to detect and recover.

The choice of retransmission interval is an important factor affecting
average packet delay and network efficiency. If the interval is too long,
large average delays can result. If the interval is too short, average delay
may be less, but network efficiency is decreased due to the possibility that

packets may pbe retransmitted unnecessarily. This choice is complicated in an
environment wnere average delay is quite route dependent.

If a packet is cetected as damaged, if its lifetime expires, or if
another delivery problem exists within the routing network or at the
destination, a Nak packet is returned to the origin. This information may be
used to trigger retransmission and may be recorded as a hint for diagnostic
purposes.

An acknowledgment mechanism is based on being able to identify the units
acknowledged. In Delta-t bits are numbered sequentially with a segquence
number. An Ack indicates the SN of the next bit the receiver expects to
receive. The acknowledged SN (ASN) implies acknowledgment of all previous
SNs. Therefore, if an Ack is lost, Acks of succeeding bits acknowledge
preceding bits. Similarly, dupllcatlon of Acks will cause no difficulty
because they just confirm what is already known.

The size of the field chosen to represent SNs is finite and therefore SN
arithmetic is performed modulo 2", where n is the number of bits in the SN
field. In Delta-t n = 32. Because SNs wrap around, care must be taken to
avoid having two different bits or their Acks with the same SN in the network
at once. Because Naks are used strictly as an efficiency or diagnostic hint
Nak ambiguity is not an assurance problem. If we define the term MPL to stand
for either the longest time a packet can exist, or is estimated to exist or is
desired to exist in the network (max1mum-packet lifetime), R as the maximum
time a sender will keep retransmitting a packet, A as the maximum time a
receiver will wait before sending an Ack, and T as the maximum new SN
generation rate (often maximum transm1551on rate), then, assuming new bits are
transmitted at the maximum rate even while retransm1551on takes place, the
following inequality must be satisfied to meet the above unigue SN condition:

2N>(2*MPL + R + A)T.

This inequality assures that a sender generating SNs at the maximum rate will
not reuse an SN until it is guaranteed that an SN and any Acks of it have
arrived or no longer exist in the network.

2.5.3 Duplicate Packets

SNs are also used for duplicate detection. At any point in time the
receiver knows what SN it is expecting next. We call this SN the
left-window-edge (LWE), because at any point in time, for assurance and flow
control reasons, the receiver is only willing to accept bits with SNs within a
particular range called the acceptance window. SNs less than the LWE are
duplicates [17]. Duplicates are discarded and become lost. The mechanism of
the previous section is used for recovery.

2.5.4 Missequenced (out-of-order) Packets

A missequenced bit is one with an SN not equal to the LWE but within the
acceptance window. Two implementation choices exist for handling a
missequenced bit:

(1) it can be held (its lifetime continues counting down) until its

predecessors arrive, on the assumption they will follow shortly and
all can be Acked before the sender's retransmission interval

elapses, thus increasing efficiency, or

(2) it can be discarded, with retransmissions providing for correct
ordering thus simplifying the implementation.

The model of Section 6 assumes the latter.

2.6 Synchronization Including Connection Management

Delta-t's synchronization services support bits being labeled with B and
E marks (B-bit and E-bit respectively) and a guarantee of sequenced data
delivery. Use of B- and E-bits is determined by higher level convention. The
purpose of the B-bit is to label the beginning of a higher level data unit,
such as a message [20]. It provides a synchronization mark in the data stream
where parsing or other operation can safely begin. This function is provided
in other transport protocols by explicit connection opening packet exchanges.
The purpose of the E-bit is twofold, to label the end of a higher level data
unit and to indicate a required higher level wakeup point.

Internally Delta-t supports sequenced data delivery using SNs. Delta-t
provides reliable management and synchronization of the state at each end by a
timer mechanism. Reliable connection management is a subtle area discussed in
detail in references {1,7,14,16] and Appendix A. Here we briefly outline the
simple timer mechanism used by Delta-t for connection management.

Conceptually, there are three main phases in connection management
(explicit phase separation is not required in Delta-t): (1) initializing
(opening) the connection records at each end to nondefault values, (2)
evolving the state during ongoing data transfer, and (3) resetting or
terminating (closing) state information when no further data needs to be
transferred. During the reliable opening of a transport protocol assurance
connection, the main problem is establishing initial SNs meeting the following
opening conditions:

0l: If no connection state exists or it is in the default state,
(connection closed) and the receiver is willing to receive, then no packets
from a previous connection should cause a connection to be initialized and
auplicate data to be accepted.

02: If a connection exists, then no packets from a previous connection
should be acceptable within the current connection.

In order to avoid ambiguity about the state of data sent, connections
should be closed in a way allowing each side to know that the other side has
received any data sent (a graceful close). This implies two closing
conditions:

Cl: A receiving side must not close until it has received all of a
sender's possible retransmissions and can unambiguously respond to them, and

C2: A sending side must not close until it has received an Ack for all
its transmitted data or allowed time for an Ack of its final retransmission to
return before reporting a giveup failure.

Delta~-t's timer-based approach meets the connection management conditions
above by having both sender and receiver maintain connection records long

enough to guarantee that all duplicates have died out, information flow is
smooth (all bits sent that could be acceptable are accepted), and all
transmissions, retransmissions, and Acks have arrived at their destination, if
they are ever going to arrive. The connection records at each end of an '
association are under control of a receive-timer (Rtimer) and send-timer
(Stimer) respectively. No synchronization between timers is required, other
than that provided by the sending and receiving of packets, but it is assumed
that the timers at each end run approximately at the same rate; that is, over
an interval of 3at (see below for At definition) there is no significant
drift. For reasonable At intervals (less than 1 to 2 minutes) this
assumption is easily satisfied with current clock specifications. The Rtimer
interval guarantees that the receiver maintains its connection record long
enough to (1) detect all duplicates and (2) guarantee that acceptable SN's
will reach the receiver. While Rtimer > O the receiver will only accept
packets with SNs in its acceptance window. The Stimer interval must be such
tnat (1) the sender's connection record be maintained as long or longer than
the receiver's, in order for the sender to be sure to generate acceptable SNs,
(2) it is long enough to recognize all Acks that it may receive and (3) it
will not reuse a SN until all previous data packets and their Acks using that
SN have died.

The rules for timer intervals, control of the timers, setting of packet
header control flags, SN selection, and packet acceptance are developed in [6]
and Appendix A. They are quite simple. We define the quantity,

At = MPL + R + A, where MPL is a worst case estimate of the time for
traversing the network and R and A are as defined earlier.

Safe values for use in initializing the timers are:

receive-time = 2%*At
send-time = 3*At.

R.1) Stimer is refreshed whenever a new SN (i.e. a new data bit or
Rendezvous packet) or reliable-Ack is sent (see Section 2.7.3 for
discussion of rendezvous and reliable-Acks).

R.2) Once a bit bj has had its maximum retransmission time (or
equivalently maximum number of retransmissions) no new bits can be
transmitted until bj has been Acked; bits bj,i which had
prev1ously been transmitted can contlnue belng retransmitted until
their maximum retransmission time.

R.3) Rtimer is refreshed whenever a new SN is accepted or data overflow
OCCUTS.

R.4) When Rtimer expires, the receive state is reset to its default
values.

R.5) Once a bit or Rendezvous or reliable-Ack is initially transmitted
its lifetime is set equal to At and starts counting down.

R.6) At the point an SN is tested for acceptance, the lifetime of any
Ack packet generated is set equal to At and begins counting down.

R.7) When Stimer expires (giveup timeout) the send state is reset to its
default values, any initial SN can be used when new data needs
sending, and if unAcked SNs exist a giveup error is reported.

Delta-t packet headers label their first bits with a Data-Run-Flag
(Parf), set 1 in packets sent when all previously sent SNs have been
acknowledged, allowing receivers to detect missequenced packets before it has
initialized its state [6]. When the Rtimer is nonzero only packets with SNs
in the acceptance window can be accepted and the Pdrf value can be 0 or 1.
When the Rtimer is zero only a packet with Pdrf=1 is acceptable. If the
Stimer is nonzero, then the next contiguous SN to that contained in the
connection record must be used when a new bit is to be sent. If the Stimer is
zero, then any initial SN can be used because no packets for the association
exist in the network.

With the above mechanism no exchanges of packets are required to reliably
open or close connections. A sender's connectionrecord is "opened"
automatically, i.e., holds nondefault state, when SNs are sent. A receiver's
connection record is "opened" automatically when acceptable SNs are received.
Each record is returned to its default state when sending and receiving
activity cease or pause because Stimer and Rtimer go to zero. Therefore,
connection records are automatically maintained only when needed. Also no
problems exist when both ends of an association simultaneously begin sending.
Figure 2.1 illustrates two common cases of packet exchange and CR management.

Sender Receiver

CR in default CR in default

I |
state | Data: SN, Pdrf=1, m bits data | state
Set Stimer | | ____Set Rtimermer
+ | T —
| | Ack: SN+m I
| |
CR in non- | (SN can be any value) | CR in non-
default state | | default state
(for 34at) | | 1| (for 2at)
| | ¥ Rtimer expires
| I [CR in default
Stimer v i state
expires | I
I |
CR in default | time | time
state ¥ ¥
(a) Single Data Packet and Ack Exchange
Sender Receiver
CR in default | | CR in default
state | | state
I Data: SN1, Pdrf=1l, % bits data |
Set Stimer] | Set Rtimer
| |
| Data: SN1+&, Pdrf=0, m bits data I
Set Stimer |] Set Rtimer
| Ack: SNI+2+m |
| |
CR in non-] | CR in non-
default state | Data: SNl+&+m, Pdrf=l, n bits data | default state
| |
Set Stimer | | Set Rtimer
4 | Ack: SNl+%+m+n | 4
| : ; |
36t | (SN1 can be any value) | 24t
| I |
% | v Rtimer expires
|
Stimer expires | |
| | CR in default
| | state
CR in default | I
state v time v+ time

(b) Example Multiple Data Packet Exchange

Figure 2.1. Example Packet Exchanges and CR State (for simplicity data
exchange in only one direction shown.)

2.7 Resource Management

2.7.1 Segmentation

Delta-t supports a bit stream service. The bit stream at the user
interface may be segmented into buffers in an actual implementation.
Segmentation of the bit stream into packets is an internal Delta-t
implementation issue. If packets need further segmentation during packet
transport that is handled by the DeltaGram protocol.

2.7.2 Flow Control

There are still many questions needing answers in the flow control area,
particularly related to how flow control interacts with buffer management,
retransmission, and other protocol and implementation mechanisms [8].
Throughput is dependent on the interaction of these issues. Flow control
mechanism design problems arise from the desire for a mechanism and choice of
identifiable flow control unit(s) that reflect the nature of the several
resources being protected (e.g., user and system buffers, CPU cycles,
interface access) and yet allows efficient transmission on an association,
independent of the widely varying implementation choices possible. Until we
feel we understand the issues better we have chosen for this version of
Delta-t the simple window or credit flow control mechanism. It works as
follows.

Each Ack packet contains a window (credit) field indicating the
additional number of bits of data, relative to the ASN, that the receiver can
accept. In effect, the quantity (ASN + window - 1) indicates the highest SN
the receiver is willing to accept. In Delta-t this information is advisory
only. Receivers may renege on window promises, or senders can send more.
Overflow of the receiver's window will result in the overflow data being
discarded. Sender or receiver strategies that result in frequent overflow
will cause inefficient use of resources. Therefore, sending and receiving
strategies should be such that this is an infrequent event.

2.7.3. Window Management

The receiver must implement a policy for determing what window to
advertise. The policy chosen can be a function of user or system buffer space
available for an association, based on statistical management of a buffer
pool, etc. Similarly a sender must implement a transmission policy relative
to the receiver's advertised window, and as information is sent, adjust its
estimate of the receiver's window. A range of policies are possible in each
of these areas. The optimum policy is dependent on receiver operation and
buffer management strategy, normally unknown to the sender.

Choice of these policies as well as protocol mechanisms supporting
reliable window exchange is called window management. While choice of these
policies and their interaction can significantly affect performance our level
of understanding is such that this specification cannot provide much in the
way of explicit guidance, except as follows. First sending policy.

The sender must update its estimate (output window) of the receiver's
available input window according to the following rule: As each bit is sent
decrement by one the output window, unless the bit is labeled with an E,
delimiting a higher level data unit. In the latter case the sender should

assume the available output window goes to zero. The returning Ack of the
E-bit will update this appropriately. (Note: The send window remains zero
until the E-bit is Acked.) The motivation for this rule is to cover the case
where the receiver may be implementing a block buffer strategy (first bit
address and count) and complete a buffer once an E-bit is placed in it, thus
invalidating any previously advertised window.

Higher level LINCS conventions restrict use of message boundaries to only
define wakeup points in the data stream. In a LINCS control stream this is a
point where an action, and normally a reply, is expected and, therefore,
pipelining of control messages is not required. Data is transferred as
specified in a control message, in a single data message. Data message
pipelining is not expected. Therefore, the pause in data sending resulting
from assuming a zero window when an E-bit is sent will not cause a performance
degradation.

The discussion to follow contains more motivation than that for other
mechanisms because the issues are not documented elsewhere. A question that
sending policy must answer is the following. When the state record at the
sender indicates that the receiver has less space than it has data to send
(particularly a zero length output window) and all data sent has been Acked,
how long should it wait before attempting to send? The answer must consider
the problem resulting from the possibility of missequenced or lost Ack packets
[7] and that the receiver may be using small buffers and the window may remain
small. If a receiver sends an Ack packet advertising a window, then sends
another packet advertising a larger window, and the latter arrives first, the
sender's state will indicate that a window renege has taken place and thus the
sender may not send while it awaits a new larger window indication. A similar
problem results if the Ack packet indicating an increased window gets lost.
The receiver may also have a long delay before a window increases.

We consider two cases sending into a small but positive window and
sending into a zero window; first the positive window case. We assume that
receiver action is indicated by an E-bit, therefore, a sender must always send
as much data as the output window allows when there is an E-bit to send or a
maximum size packet can be filled. Once data has been sent it will be
retransmitted until an Ack is received, thus providing for reliable window
update. The sender might also have a timer (not modeled in this
specification) to force sending into a smaller positive window than desired
for packet handling efficiency.

Now consider the problem of a zero window. When the sender receives an
Ack indicating a zero window there are two cases, either the sender has more
data to send or it does not. In the latter case, expected to be common in a
distributed operating system or transaction environment, no more packet
exchange need take place. Each end's state records will timeout and be
discarded. When the sender again has more to send, it will do so. In the
former case the sender wants to wait for the receiver to reliably indicate
that the window has opened. What is desired is a mechanism to assure a
reliable window opening without the inefficiency of the sender polling the
receiver [12] or the receiver constantly sending Acks on inactive connections
[3,10].The sender must indicate once to the receiver that it should reliably
signal window opening when it occurs.

The mechanism is the following and is illustrated in Figure 2.2. When
the sender's state indicates that all data sent have been Acked, there is data
to send, and a zero window exists, it sends what is called a Rendezvous packet
indicating that it wants to be informed (rendezvous-at-the-sender) when the
window goes positive (which might be immediately). The Rendezvous packet

-10-

contains a field that consumes SN space protecting it against duplication or
missequencing. Since it is only sent when all previous data have been Acked,
none of the usual difficulties that can result from including control
information in SN space exist [7]. The Rendezvous packet is retransmitted
until Acked (or its retransmission interval expires), thus protecting it
against loss. When the receiver's input window opens and it is in the
rendezvous-at-sender state, it will send a specially labeled Ack packet and at
retry intervals retransmit this packet until it receives an acceptable Data
packet (which in effect "Acks" it), thus protecting the "window opening" Ack
(reliable-Ack) against loss. Duplication or missequencing of these Acks at
most cause extra packet exchanges and are not assurance hazards. We now
discuss issues associatea with window overrun.

Senager Receiver

I
p bits to
send p<m Send m bits of data in assumed window n(m<n)

-

accept m bits
all buffers used
window zero

Ack m bits, report zero window

Send Rendezvous Packet

I
| |
| |
| |
I I
| I
| |
I |
| |
| I
| |
| | receiver remembers
| | sender wants
| | reliable-Ack when
(CR could | | window opens.
expire) | f (CR could expire)
I
| | additional buffer
| } space allocated.
|
| |
| I
I |
| |
| I
| |
I |
| |
I |

reliable-Ack reports new window = k

send up to k bits of data (also Acks
reliable-Ack)

Ack k bits of data

Figure 2.2. Rendezvous-at-sender Packet Exchange without Overflow.

Window overrun can occur because (1) the receiver reneged on an
advertised window due, for example, to buffer withdrawal or because it was
advertising windows based on a statistical buffer management strategy, or (2)
the sender sent more than the advertised window. The sender might be able to
detect window overflow if it receives an Ack with (ASN + window) less than the
highest SN sent. Then it could stop transmitting new and retransmitting data

-11-

outside the window. If the sender just blindly kept transmitting and
retransmitting before the receiver allocated buffer space, there would be the
possibility both of unnecessary traffic and that the giveup interval on some
data might expire. If unAcked bits were outstanding at giveup time (because
they were simply discarded by the receiver due to window overflow) then an
unnecessary ambiguity exists for the user when the giveup is reported. The
sending user does not know whether or not these bits were delivered, when in
fact the receiving protocol module knew they were not. The user may then
unnecessarily enter an expensive higher level error recovery procedure to
resolve the ambiguity. Because the input window opening delay could be much
longer than At if the window advertised is based on user space and the user
is subject to long scheduling delays, unnecessary ambiguous situations could
be frequent.

One Delta-t design goal, as stated earlier, has been to minimize the
number of these ambiguous situations to those outside its control (network
partitions and end node crashes). To deal reliably with the above problem two
approaches are possible: (1) to make it illegal to renege or overrrun an
advertised window (common in many protocols) or (2) to provide mechanism to
reliably allow renege or overrun. Delta-t supports the latter. If overrun
actually occurs, the receiver explicitly reports this fact in an Ack packet
with a window-overflow-flag (Pwof) set. The outstanding unAcked overflow bits
are then logically treated by the sender as if they were never sent, in effect
extending their lifetime. Extending the lifetime of an overflow bit does not
introduce any duplication hazard in a timer-based protocol if the
rendezvous-at-the-sender procedure described above is used. It could
introduce a hazard if polling were used, but the mechanism below would remove
it also.

Duplicates of the overflow bits can cause a hazard, however, with the
rendezvous-at-sender procedure described above if they are accepted by the
receiver just after the window opens because they will "Ack" any reliable-Ack
that may have been sent (stopping retransmission) and if that reliable-Ack and
the Ack of the duplicate data just accepted both are lost, the sender will
never learn the window has opened. To avoid this problem, Delta-t uses the
following mechanism illustrated in Figure 2.3 to assure that duplicates of
overflow bits are unacceptable.

When the receiver detects overflow it generates an Ack packet indicating
overflow and a zero window and enters a state where it will not accept further
Data packets until it receives an acceptable Rendezvous packet. When the
sender receives an Ack indicating overflow has occured it (1) resets the state
of the overflow bits as if they were never sent and (2) generates a Rendezvous
packet (since all data sent has now been Acked) that contains the ASN in the
Ack indicating overflow (so the receiver will accept it) and an SN offset to
be added to it that will yield an SN larger than any overflow SN sent. The
receiver then translates its input window SNs by the offset and reenters the
Data packet acceptance state.

-12-

Sender Receiver
|Data: SN, m bits into assumed window n (m<n) | window k<m
| I
I | enter don't-
|Ack: SN+k, indicate overflow and zeroc window | accept data state

reset over-
flow bits as

if never sent| Rendezvous: SN+k, consume m-k SN's

enter
wait for accept-data-state
window to Ack: SN+m, zero window
open
(CR could window opens
expire)
time and CR
return to default
state)

Data: send up to n bits (Acks reliable-Ack)

Ack: data

———— — ——p—— — — ———— —— s . e S s, S e, S .

I
I
I
|
I
I
|
|
|
I
|
reliable-Ack: window n | (could be long
|
|
|
I
I
|
I
I
I
|
|
|

Figure 2.3. Rendezvous-at-sender with Overflow.

The question yet remains of what strategy the receiver should use in
deciding what size input window to advertise. This is a very implementation
dependent issue. Some suggestions are given in Appendix B.

2.8. Diagnostics and Measurement

The only aiagnostic and measurement service offered by this version of
Delta-t is the generation of Nak packets when a packet's lifetime has expired
and optionally when out-of-sequence packets are rejected. Trace and timestamp
routing services are offered by DeltaGram.

2.9 Services Not in Delta-t

Many transport protocols support two channels per association, a normal
data channel and a second channel called variously an expedited, out-of-band,
or interrupt channel. When a need for the latter type of channel is required
by a LINCS application, a separate association is used.

Delta-t requires no Reset, Purge, or Clear type packets, nor are user
interface primitives required to assist Delta-t in management of its
connection records.

-13-

No priority field for data is provided.

The above features are not required because of the advantages of timer ‘
pbased connection management [16].

2.10 Future Services

The Delta-t bit stream is labelea with a Delta-t version number to
provide for future evolution.

~14-

3. Services Required of the Network Layer

Delta-t as defined here is assumed to operate on top of a Network layer
providing the services below.

3.1 Data Objects and Addressing

Delta-t assumes that the Network layer provides a full duplex
uninterpreted data channel between two ports, each identified by 64 bit
addresses.

3.2 Protection

Delta-t labels bits with a protection level passed on to the Network
layer where a routing level protection policy is assumed enforced [5,19].

3.3 Assurance

Delta-t assumes that the Network layer is detecting and discarding
damagea packets with a mechanism leaving no gaps in the protection.

Delta-t assumes that packet lifetime is bounded, that it.can specify this
bound, and that the receiving Delta-t end can obtain the assumed initial bound
set by the sending end.

3.4 Resource Management

Flow Control
Network layer flow control service is not required.

Segmentation

Delta-t assumes that the Network protocol will segment packets
containing Delta-t SNs used as packet identifiers and maintain correct
bit labeling.

3.5 Synchronization

The only synchronization service required is to know where Delta-t
packets begin and end and the ability to support the carrying of Delta-t B and
E bit labels.

3.6. Control Information

Certain control information used by Delta-t such as initial packet
lifetime, may also be used by the Network Layer. It is assumed that this
information can be conveyed in either direction across the interface.

-15-

4. Model of the Delta-t Environment

4.1 Ehvironment Model

Delta-t supports the LINCS-IPC or related services [21]. All IPC
services are on an association basis.

Figure 4 illustrates the flow of information between remote user
processes on an association. If the communicating processes were local then
layers l-4a would be replaced with a local transport mechanism.

Intermediate
Origin Node DeltaGram Nodes Destination Node
| | I |
| IPC-User |5 | IPC-User |5
i 4
¥ l
B |) |
| LINCS-IPC End l4b | LINCS-IPC End |4b
| Functions | | Functions |
| I | |
| | I I
| | | |
| Delta-t Level End | | Delta-t Level End |
| Functions |4a | Functions l4a
| Y
v I
| Network Level |] Network Level 1 | Network Level |
| DeltaGram Packet | | DeltaGram Packet i | DeltaGram Packet |
| Transport Functions |3 | Transport Functions | 3 | Transport Functions |3
| + | +
v I v I
1 | ! 1 i I
| Link Level |2 | Link Level | 2 | Link Level |2
| + | +
¥ | ¥ I
I Channel I I Channel 1 1 Channel I
| Level |1 Level | 1 | Level | 1

Figure 4-1. Information Flow Between Remote User Processes

A specification requires a model of the environment in which the protocol
is to operate and of the structure of the protocol module itself. This

_l6-

specification is based on a programming language procedure model. The
procedures embody the desired response to external events (next higher level
interface, timer, next lower level interface packet receipt) in terms of state
transitions (changes to state variables) and output events (packets or signals
generated and timers set). The programming language notation used is Pascal
[22] with an exponentiation operator (**). Pascal was chosen because it is
widely read and has most of the notation needed.

For the purposes of this specification we view the Delta-t environment as
logically consisting of three asynchronously running processes which we call:

(1) User,
(2) IPC (embodying Delta-t) and
(3) Link.)

The Network (DeltaGram) level is embodied as procedures in both the IPC and
Link processes. We use the term process simply to indicate a locus of
concurrent activity. The three processes could be quite different kinds of
entities in a given environment. In many implementations these entities might
Jjust be sets of co-routines within the same module. In other environments
there might be many User processes, several Link processes, and a single IPC
process multiplexing many associations for one or more of these Users. These
are implementation details outside this specification. Unambiguous behavior
can be specified in terms of single User, IPC, and Link Protocol processes.

The three processes communicate via shared data structures and wakeup
signals, the latter undefinea here. The data structure shared between the
User and IPC processes is the Interface-State-Record (ISR) defined in Appendix
B. The ISR consists of logical Send and Receive queues containing data to be
sent or empty buffers for receiving data and other state. The buffers could
be in User space or in system space. The data structure shared between the
IPC and Link protocol processes consists of packet queues, and a Routing
Table. The organization of the processes is shown in Figure 4.2.

~17-

[[
| 0S services |

IPC |
Process| Signal

I

User Process I EIM I Link Process
| | | -—-signal--| |-~signal---| | C |
| Uuser- | User- | | | | LPM | I |-channel-

| Applic.| System | TTI T | I I | M
| | |=e=| S |===]| I | | |
| R | I ! | | | DGM | PBM|
| Delta-t |PMB|DGM| | | I

| I | I | :

| TRoutingl I

|--] Table |---—-- I

!
I
I
| 1
I
I

| e IfPacket Queues |---
I

Figure 4.2 Model of a Delta-t Environment

Logically the User process consists of two sets of procedures, the
User-application procedures, and the User-system procedures. The User-system
procedures implement the LINCS-IPC interface primitives (see Appendix B and
reference {21]). These procedures could be library routines or usually,
because of protection, efficiency, and system integrity reasons are service
procedures accessed via operating system service calls or the equivalent. The
User-system procedures update the ISR and signal the IPC process.

Logically, the Link process consists of four sets of procedures and three
levels of protocol:

0 The channel interface module (CIM) that interfaces to a lower level
channel protocol,

0 The Link Protocol Module (LPM) that implements the Link protocol
proper,

o The DeltaGram Module (DGM) that implements the DeltaGram (Network
level) service, and

0 The Packet Buffer Management module (PBM) that manages a pool of
packet buffers and the Packet Queues.

The latter two sets of procedures are shared with the IPC process, which
contains two levels of protocol, DeltaGram and Delta-t. DeltaGram service has ‘

-18-

not been separated as a separate process because packet format knowledge is
needed within the Link process so that packet lifetimes can be updated to
reflect time spent on packet queues (see reference 19 for the DgAdjustLifetime
procedure). The Link process signals the IPC process when it places a packet
on its packet Queue. i

The IPC process consists of two other sets of procedures, besides the DGM

and PBM:

0 The environment interface module (EIM) that isolates Delta-t from the
details of a specific LINCS-IPC user interface, buffer management,
synchronization mechanism, operating system, and lower level protocol
environment.

o The Delta-t module providing end-to-end services between remote IPC
USers. :

The IPC process determines if the transfer is local or remote and
utilizes the appropriate data movement mechanisms in each case. The
discussion in this specification assumes network communication, but the
LINCS-IPC service is supported between processes on the same (local) system as
well as between processes on different (remote) systems. Local and remote
communication probably use separate data transfer mechanisms for efficiency.
The IPC process signals the Link process when packets need sending, and it
signals the User process when Sends or Receives complete.

4.2 Event Handling

There are three sets of asynchronous events that affect Delta-t operation
(1) IPC user interface (Sends, Receives, Aborts), (2) Timer, and (3) Receipt
of packets. Choice of mechanism for synchronizing or a strategy for
scheduling these events is very much dependent on the operating system
design. Therefore, we assume that the EIM receives event signals, determines
their type, schedules their handling and calls Delta-t with the appropriate
primitive as needed. The EIM to Delta-t interface consists of five procedures
defined in Section 6. Calls to these procedures represent events, their
execution performs appropriate state transitions and output functions, and
their returns represent output. Their correspondence with events is as
follows:
User Interface Events:
Procedures DtStartData and DtFinishData report IPC user interface data
sending events or the reguirement to Ack a reliable-Ack.
Procedure DtAck reports IPC user interface buffer allocation events,
or the need to Ack a received Data or Rendezvous packet.

Timer:
Procedure DtTimeout reports the expiration of a Delta-t timer.

Packet Receipt:
Procedure DtPktRcvd reports the receipt of a packet.

The reporting of expiration of Delta-t's Rtimer and packet receipt have time
dependency. If there is too long a delay between the occurrence of Rtimer
expiration or packet receipt and notification of Delta-t, some data sent by
the other end may be unnecessarily rejected.

-19-

The parameters of these procedures define the association, offsets for
controlling the logical queue pointers of the ISR (see Appendix B), receiving
and sending control flags, and pointers to packet buffers (passed in both
directions). The only assumption made here on logical packet buffer structure
is that the first buffer in any structure is large enought to contain a
DeltaGram header. Any remaining structure (e.g., creation of packet buffers
from chained buffers) is known only to the Packet Buffer Management and EIM
procedures.

There are two main buffer strategy issues: (1) whether the EIM should
buffer data in its own buffers or maintain a pointer structure to buffers
directly within user-application space and (2) what structure of buffers are
logically supported: circular or block (square), fixed or variable length,
etc. The EIM isolates the Delta-t primitives from which choices are made. We
also want to isolate the details of how Receive-anys and Receive-specifics
interrelate (see Appendix B), and the details of EIM implementation
generally.

Besides a procedure to obtain a packet buffer (defined in Section 6),
Delta-t needs two timer procedures supplied by the EIM, one to obtain the
current dateTime and the other to set or cancel an alarm.

function EIMtime (

{Arguments -~ none}

{Results}
datetime: DateTime);

begin
{returns dateTime as an integer in appropriate units relative
to some start point}

end {EIMtime}.

rocedure EIMalarm (
{Arguments}
assoc:AR; {association for which the timer is being set.}
cdt: DateTime; {dateTime when a DtTimeout call should be
issued}
rcFlg, {request (true)/cancel (false) flag indicating whether an
alarm should be set or canceled}
presenceflg:Boolean; {This flag is valid only if rcFlg is true and
is returned to the EIM by the alarm server and indicates that
the ISR should be in memory before calling DtTimeout as the
ISR may need updating or be used as indicted in return
parameters. }
{Results: none;});
begin
{update the alarm server's database}.
eng {EIMalarm}.

-20-

5. Delta-t Use of DeltaGram Packet Header Fields

The Delta-t protocol, as specified here, is assumed to use the DeltaGram
protocol [19]. Delta-t does not need explicit packet header space of its own
because it can utilize services provided by DeltaGram.

Graphically a DeltaGram packet has the following format when laid out in
32 bit blocks.

o-1 2-3 4-6 7 8-15 16-19 20-23 24-31

[Pver| Ptype| Presl|Pdn| PhdrChksum {Pprtctlev] PAtexp | Plife@imel 0

I I | [- I I I I 1

{ PdestAddr : 2

: PdestAddr - continued : 3

: PoriginAddr ; 4

: PoriginAddr - continued : 5

: Ptdf - (packet type dependent field) I 6

{ Ptdf - continued : 7

E Ptdf - continued Data packets only - contains user data {variable

The meaning of the fields is the following.
Pver: 2 bit DeltaGram version number (see DeltaGram specification for usage).
bit packet type.

Data packet.

Ptype: 2
8}
1 Reverse Control (Delta-t Ack).
2
3

Direct Control (Delta-t Rendezvous).
Nak.

Presl: 3 bits reserved.

Pdn: 1 bit, do not Nak if undeliverable flag.

PhdrChksum: 8 bit header checksum - see DeltaGram specification for
algorithm.

PprtctLev: 4 bit protection level.
Potexp: 4 bits for determining tick size used_to _decrement Plifetime and to

determine initial Plifetime. tick = 2%*PAtexp seconds.
256

-21-

Plifetime: 8 bits remaining packet lifetime, in tick units.
Pid: 32 bit packet identifier (Delta-t SN).
PdestAddr: 64 bit destination port identifer.

PoriginAddr: 64 bit origin port identifer.

Ptdf: 64 bit packet-type-dependent-field defined below (may exceed 64
bits for Data packets).

A packet interface between Delta-t and DeltaGram is assumed here; that
is, Delta-t makes up a complete DeltaGram packet header and receives a
complete packet. The EIM places or removes data from a packet. How Delta-t
utilizes or sets each header field for the four DeltaGram packet types is now
defined. For all the packet types the following field settings apply.

Pver: Set to appropriate DeltaGram version.

Presl: Set 0.

PhdrChksum: Calculated and set as appropriate.

Patexp: Set from global association or connection record state,
as required by packet type.

Plifetime: Set as appropriate to Delta-t operation.

PdestAddr: Set to the appropriate destination address.

PoriginAddr: Set to the appropriate origin address.

The remaining header fields are set dependent on packet type.

5.2 Data Packets

Ptype: Set to 0, Data.

Pdn: Set 0, Nak if undeliverable.

PprtctlLev: Set to the protection level of the data contained.

Pida: Set to the SN of the first bit in the packet or that of

the next bit to be sent if no data is contained.

Ptaf: The Ptdf field for a DeltaGram Data packet has the
following format. The formats of the DeltaGram Pfbl,
Plbl, and Pabl fields can be defined by Delta-t for its
bit labeling use.

-22-

0 15 16 23 24 31

5.3

| | Pfbl f Plbl I
| PaataChksum I i | | 6
| 2 4 11 12|Pres2 |Pb| Pdrf |Pres3 | Pe |
R [I I
[Pas|Pt| | | Pabl | Pdl | 7
[I Presa | | |
| || |PAtver | {
|
| PuserData |variable
PdataChksum: Set to checksum of PuserData (see DeltaGram
specification for algorithm).
Pfbl:

Pres2: 6 bits reserved, set O.
Pb: The B mark, set as appropriate for labeling the first data bit in
the packet.
Pdrf: The data-run-flag, labels first bit.
1 All previously sent bits have been Acked,
0 There are outstanding unAcked bits.

Plbl
Pres3: 7 bits reserved, set O.
Pe: The E mark, set as appropriate for labeling the last data bit in
the packet.

Pds: Set 0, can segment if necessary.

Pt: Set 0, no trace or timestamp diagnostics.
Pabl
Pres4: 8 bits (6 bits in Pabl and 2 additional) reserved, set O.
Patver: 2 bit Delta-t version number. The four versions have
similar meaning as for DeltaGram, although the version
numbers may be different.

Pal: Set to the number of bits in the PuserData field.

PuserData: Variable, O or more data bits.

Ack Packets (Reverse Control)

DeltaGram Reverse Control packets are used for Delta-t Acknowledgment.
Ptype: Set to 1, Reverse-Control.

Pdn: Set 1, Do not Nak if undeliverable.

PprtctlLev: Dependent on protection policy enforced.

23~

Pid: Set to the Ack sequence number, the SN of the next expected bit
(the receiver's left-window-edge).

pPtdf
o 28 29 31
i | |
| Pres5 | Ack Flags |
| P P P |
[fplwlro |
I lulola |
| 10 11 12 | fI F | F I
| | I
| Presé |Patver | Pwindow |
| |

Pres5 29 bits reserved, set O.

Ppuf, Pid undefined flag.
1 if Pid undefined. Pid is only defined when Rtimer >0. This bit
is set 1 when only a relative window is being reported. A Delta-t
Ack packet can be used to just report an input window and not Ack
any data.
0 if Pid definea, possibly Acking an SN.

Pwof: Window overflow flag.
1 if overflow,
0 if no overflow.

Praf: Reliable Ack flag.
1 if this Ack will be retransmitted until its sender receives an
acceptable Data packet.
0 if normal Ack (sent one time only).
Presé6: 10 bits reserved, set O.
PAtver: 2 bit Delta-t version number.
Pwindow: 20 bit flow control window.

5.4 Direct Control Packets

The direct control packet is used by Delta-t to convey various control
information. So far only one control subtype has been defined. It is for use
in window management (see Section 2.7.3). The general format of the Ptdf
field of this type packet is the following.

Y

31

{

Subtype aependent (Std)|
|

[[I
|

I

—]~

Std | PAtver | Std
| |

Psubtype: defines the control subtype.

0
i
: Psubtype
I
|
|

Patver: 2 bit Delta-t version number.
Subtype dependent: defined for each subtype.

Psubtype = 1: Rendezvous packet. Packet header fields for a Rendezvous
packet are the following.

Ptype: Set 2, Direct-control.
Pdn: Set 0, do not Nak.
PprtctLev: Depends on protection policy enforced.

Pid: Seguence number of next data bit receiver is currently known to

expect.

Ptdf
0 7 8 23 24 31
| | | P I
|1 | Pres7 | d | Pres8 |
| | | t | |
| | 10 11 12 | £ | I
| I | l
| Pres8 continued|Patver | Psno |
| I

Pres7: 15 bits reserved, set O.

Pdrf: (see Pdrf for Data packets).
Pres8: 18 bits reserved, set O.
Patver: 2 bit Delta-t version number.

Psno: SN offset used by receiver to readjust its next expected SN.

-25-

5.5 Nak Packets

0 3
i I
| PnakReason | PnakRes
| | 11 12
I !
= PnakRes | Pdl
|

—_————~

No special Delta-t format.

Ptype: Set 3, Nak.

Pdn: Set 1, do not Nak if undeliverable.
PprtctlLev: Depends on protection policy enforced.
Pid: That of packet being Nacked.

Ptaf:

The "reason for Nak" code space from 128 to 255 is reserved for the next
higher level. For Delta-t:

128

arbitrary refusal.

129 = out-of-sequence.

-26-

6. Delta-t Operation

6.1 Introduction

This section specifies Delta-t service and operation in terms of a Pascal
based procedure model for an association specified as an argument to the
Delta-t interface procedures. Sections 6.1 and 6.2 in conjunction with
preceding sections should be sufficient to give the reader an overview of
Delta-t operation. Sections 6.3 to 6.7 present the model in detail. The
model is not intended to imply a required implementation. It is intended to
unambiguously specify functionality. Any algorithm with equivalent
functionality can be used.

The mocdel presented here assumes operation within the environment (EIM)
defined in Section 4. Until two or more communicating implementations exist,
this specification should be assumed to contain bugs. Please contact the
author if questions arise.

The Delta-t model is a finite state machine. A Delta-t input event is
represented by a procedure call. Input events are scheduled within the EIM
according to implementation dependent resource management priorities. State
is represented in a Connection Record (CR) defined in Section 6.2. Variables
beginning with capital R or S are CR receive and send variables respectively.
The procedures of the model embody the correct state transition rules. Output
events are represented either as parameters returned in the Delta-t interface
procedures (packets to be sent and updates to EIM state) or procedure calls
issued by Delta-t to set or cancel timers. Before calling Delta-t the EIM
obtains a buffer large enough to hold a packet header.

The three classes of input events and their effect are now outlined.

Timer Events: Timers are set by Delta-t calling the procedure EIMalarm. When
a timer expires, the EIM issues a DtTimeout call. DtTimeout determines
which,if any, of the following three events has occurred, performs state
update, and generates required output.

Rtimer -+ O.

Rtimer is the only timer that could cause potential problems if it ran
longer than it was set for. 1In this case packets might be rejected that could
be accepted, leading to possible unnecessary retransmissions and ambiguity if
acceptance did not occur. Therefore, this event should have high priority for
input to Delta-t.

0 All CR receive state variables are reset to or become default values.

o There is no output function.

Stimer =+ O.
This event is handled in the procedure StimerExpired.
0 All CR state send variables are reset to or become default values.
o If all packets sent have not been Acked, a giveup timeout has
occurred. Data in doubt is identified and an error code is output.

Retrytimer -+ O.
A packet's retry timer has expired (checked in function shouldRetry).
0 Packet retransmission is handled in the procedure sendRetry. If the
lifetime of the packet to be retransmitted has not expired, parameters
are returned as output. Data retransmission takes place by Delta-t

-27-

indicating to the EIM the data to be retransmitted in the return from
DtTimeout. The EIM then recalls the Delta-t procedures DtStartData
and DtFinishData to prepare the Data packet for retransmission.
Delta-t prepares Ack or Rendezvous packets to be retransmitted and
returns a pointer to the packet buffer.

0 A Retrytimer may be set as an output function.

o The state of the retry data structure is updated.

After having checked for the above events, if any, and having performed
the appropriate state transitions an EIM data sending condition (see function
tryData) is checked and a return variable is set. (If an initialization wait
interval has expired, packet sending can proceed. If a Data packet has
exceeded its maximum retransmission interval new Data packet sending is
blocked.)

The CR is then checked to see if it's in its default state (Rtimer and

Stimer both expired). The CR can be deallocated if it is in its default state.

Data Receiving and Sending: Packet formation and state update takes place in
procedures with names of the form sendX ,where X is Data, Ack, Rendezvous, or
Nak.

Receive or Receive Abort

When a Receive or Receive-Abort call is issued by the IPC user, or

Delta-t has indicated in a return from DtPktRcvd that an Ack is required,

the EIM updates its state and issues a DtAck call to Delta-t.

0 The receive window (Riwre) is updated.

0 The Stimer and retry data structure are updated if a reliable-Ack is
generated because a zero receive window is opening.

) An Ack packet is output and send state is updated.

0 The timestamp (Stimestamp) used to initialize the Ack's lifetime is
reset.

Send

When a Send call is issued by the IPC user, the EIM updates its state

and issues a DtStartData call when its state indicates Delta-t may be

able to send a Data packet. If data can be sent this call is followed by

a DtFinishData call (to compute header and data checksums). The EIM will

also issue a DtStartData call even if no data is available if Delta-t has

indicated in a return from a DtPktRcvd call that a Data packet is

required to Ack a reliable-Ack.

0 Delta-t checks a Data packet sending condition (see function
shouldData) to see if a Data packet can or should be sent. If a
Data packet cannot be sent a Rendezvous packet sending condition is
checked (see function shouldRendezvous) to see if a Rendezvous
packet should be sent. If a Data packet is sent, the packet header
is prepared by Delta-t and a pointer to a packet buffer and a count
of the amount of data to be sent are returned in DtStartData. The
data is then placed in the packet buffer by the EIM and DtFinishData
is called. If a Rendezvous packet is to be sent, Delta-t prepares
it and returns a pointer to it.

0 The Stimer will be set when a new data or Rendezvous packet is sent.

o) Send state variables reflecting the number of SNs consumed by data
or Rendezvous packet are updated. The output window is reset to
zero if an E-bit is sent.

-28=~

o

An EIM data sending condition (see tryData) is checked to determine
if data sending can continue and a return parameter is set.

An abort of a Send by the IPC user only affects state in the EIM and is
not an event of interest.to Delta-t.

Packet Received from the Next Lower Level:

When a packet is received the EIM issues a DtPktRcvd call passing Delta-t
a pointer to the packet.

0

Delta-t tests each packet received for acceptability. The rules for
packet acceptance are contained in procedures or functions with
names of the form acceptX, where X is as defined above. Packets are
discarded if unacceptable. A Nak packet is returned for two cases
of unacceptable Data packets (Lifetime expired, or optionally if
out-of-sequence packets are rejected). If the received packet is a
Rendezvous (packet accepted or not) or Data (when accepted or
rejected and when a Nak is not sent) packet an Ack flag is set in
the return from DtPktRcvd. The EIM will schedule a DtAck call which
will generate an Ack with the latest receive window. The lifetime
of the Ack packet begins at the point a packet requiring an Ack is
tested for acceptance. Accepted packets are processed in procedures
with names of the form processX, where X is as defined above. The
handling of accepted packets 1s now outlined.

Data Packets:

o If data is accepted or overflows, Rtimer is set. In the latter
case the variable RovflwInd is also set. The
input-window-left-edge (Riwle) is adjusted for data accepted.
The retry data structure is updated if a reliable-Ack is Acked
by this Data packet.

o Delta-t returns an offset within the received packet and count
of the amount of data to accept, its protection level, and
whether or not the first and last bits accepted are respectively
labeled with a B or E mark.

0 An Ack flag is returned. An Ack packet will be generated when
the EIM schedules and issues a DtAck call.

o The IPC user is signaled by the EIM if a Receive that it issued
completes.

Rendezvous Packets:

0 Rtimer is set.

0 The acceptance window (Riwle, Riwre) is adjusted.

o If the receive window is zero a return parameter is output to
the EIM ingicating that it should remember that the
correspondent end wants to be reliably informed when the receive
window opens.

0 An Ack flag is returned. An Ack packet will be generated when
the EIM schedules and issues a DtAck call.

Ack Packets:

o Delta-t send state is updated (what data has been Acked, the
output window, whether or not waiting for the output window to
open, and Nak state).

-29-

0 State parameters required by the EIM are returned (what data
have been Acked, the new output window, and if overflow has
occurred and, what data has overflowed and needs resending).

0 A code is returned to the EIM indicating that a DtStartData call
is required to cause a Data or Rendezvous packet to be generated
to Ack a reliable-Ack even if there is no data available for
sending, that EIM sending can proceed when data is available or
that sending is blocked.

0o A data sending condition is checked to determine if EIM sending
can proceed (see .function tryData) and the EIM is informed of
the result.

o The IPC user is signaled by the EIM if a Send has completed.

Nak Packets:
0 State is updated possibly resulting in optional suspension of
new data sending, or in immediate retransmission.
o The Nak is optionally recorded in a history file.

For reference in the sections below the meaning of the first letter of
variable names is the following:
A - association variable.
field of a packet Record, defined in Section 5.
field of a Connection Record, primarily affecting receiving, defined
in the next section.
field of a Connection Record, primarily affecting sending, defined in
the next section.
s - local send variable.
T - local receive variable.
any other Tetter - local variable used only in the procedure it is
declared or argument or return.

P
R
S

6.2 Connection Record Definition and Management

6.2.1 Introduction

Delta-t operates on control information carried in Delta-t packet headers
and state information maintained by each end. Delta-t packet header
information was defined in Section 5. We now define the state information
maintained at each end. Logically, state information is always being
maintained by each end for all possible associations with which Delta-t might
be involved (permanent connections). In fact, however, state information must
only be explicitly maintained for a subset of associations. For all cother
associations, the state information values are standard defaults. State
records containing default values can be reclaimed.

The nondefault state information required by Delta-t is maintained under
timer control. While nondefault state information (either Rtimer or Stimer
nonzero) is being maintained for an association an active connection is said
to exist. This state information is maintained in a connection-record (CR).

The variables collected together in the CR exist on a per association
basis. They are the variables that must be maintained across calls toc the
Delta-t. Some of these state variables are required in any model or
implementation, others are dependent on the details of the model or
implementation. Other send and receive variables are local to Delta-t
procedures.

-30-

Stimer

StimeStamp

Sou

Sowle

Sowre

SrendSenderInd

Sovflwlnd

SeSentInd

SretrylInd

SseriousNakInd

|
| Rtimer
[
| SNakReason

Ratexp

| Riwle SinPtr

SoutPtr

RovflwInd SendPtr

1
| Riwre
|
l

a) Receive State b) Send State

Figure 6.1 Receive and Send CR State Information per Association (not the comp
lete CR)

The CR Receive and Send state information is shown in Figure 6.1 1In
addition other CR parameters for an association are required. These are
prefixed with the letter A, and are defined in Section 6.2.5.

An important aspect in the design of any assurance and flow control
protocol is the synchronization and evolution of the state information in
connection records in the face of arbitrary transmission delays, errors, and
end-nogde crashes and deadstarts. This process is called connection
management. Connection records in Delta-t are managed, invisible to the next
higher level, based on two timers at each end of an association, the Stimer
for sending and the Rtimer for receiving. CR's exist when either Rtimer or
Stimer is nonzero. Each timer interval provides assurance and smooth data
flow services (see Appendix A). The rules for timer managment were outlined
in Section 2.6.

During normal but bursty data flow, with bits being Acked in a timely
manner, active CRs come into play and may later be reclaimed with no
interactions required with the next higher level. When Stimer = 0 while
unAcked SNs are outstanding, the EIM, and in turn the IPC user, is informed

-3]-

that an error exists and what data if any have been sent but not yet Acked.
The IPC user must then decide how to continue. This situation can only happen
if the network is partitioned or the receiver crashes.

Half open connections are handled by a wait interval after
initialization, discussed below.

6.2.2 Sender Initialization

Deadstart or crash recovery requires that all state records (or just
those for damaged associations) be reset to their default values. An interval
30t must expire on a damaged association (crash with loss of memory) before
sending any type of packet (see Appendix A). No Ack or Nak packet should be
accepted before data has been sent. This assures that the destination's
Rtimer will time out (removing half open connections) and that all data
packets sent before the crash ana their Acks or Naks have been destroyed.
This condition is enforced in the model by checking this interval during the
function tryData and the procedures processAck and processNak.

(There is the implied requirement that senders must know what value of
Puatexp they were using before a crash, modeled here as an association
constant AAtexp (see Section 6.2.5).)

6.2.3 Receiver Initialization

Receivers must wait at least At after an initialization before
accepting any Rendezvous or Data packets to protect against duplicates (see
Appendix A). The At used is the sender's and, with loss of memory, the
receiver will not know it until a packet arrives. Therefore, the receive wait
interval is computed from PAtexp in the packet header relative to the Aidt
field in the CR (see Section 6.2.5). This condition is checked in the
procedure acceptData and the function acceptRendezvous and guarantees that all
packets sent before the crash will have been destroyed, before receiving
begins again.

6.2.4 Connection Record Definition

The Connection Record defined below is not meant to imply that a given
implementation would require exactly the same variables. More or less
variabnles may be needed depending on its algorithms. All variables are
initialized to default values when the CR is created.

CR = {Connection Record} record
Aassoc:AR; {association record defined in Section 6.3}

AmaxPktSize, {max packet size for this
association, set from global state when the CR is created.}

Altexp, {parameter set from global state to be used to compute the
initial value of the packet Plifetime field, placed in the packet
PAtexp fields, and used to derive the value for Stimer. A given
implementation chooses AAtexp to create an appropriate At. At
is the sum, &t = R + MPL + A, where
R= time sender normally expects to keep retransmiting (this time
would usually be n average-round trip times).

-32-

MPL = an estimate of worst case acceptable network-travel-time. It
should be a value assuming queuing and processing in the longest
expected chain of intermediate store and forward nodes.

A= Maximum expected time until the receiver will Ack an SN. The
value is a function of receiver's implementation or some
reasonable worst case estimate such as a few seconds. A
standard upper bound on A will be established.}

Aretrytime:integer; {time between retransmissions when "Acks"
are not received; a number related to average round trip time set
from global state.}

Aidt:DateTime; {The dateTime of the last initialization of
the environment for this association.}

{Send variables set to default values when the CR is initialized}

Stimer,

{Purpose: Stimer serves two functions, assurance and smooth data

flow. The assurance function of the Stimer is also twofold: (1) to

assure that the CR is maintained until all Acks will be received if

they are ever going to arrive (graceful close, only a remote end crash

or network partition would prevent their timely arrival), (2) to

assure that no SN is reused with new data until all packets containing

it have died.

The smooth data flow function guarantees that the sender's CR is

active longer than the peer's CR so that acceptable SNs are generated.

No harm results if Stimer is allowed to run beyond its expiration

time. Its purpose could be compromised if it is allowed to expire

early.

When Stimer expires and SoufSowle an error condition exists (see

below).

Default: = 0.

When changed: Stimer is set when a new sequence number (SN) is sent
in Data (see procedure sendData) or Rendezvous packets
(see procedure sendRendezvous), or a reliable-Ack
packet is sent requiring a Data packet as an "Ack" (see
procedure sendAck). It is set to the dateTime it is to
expire. The Stimer interval is 3*2**AAtexp. Stimer
is reset to 0 when it expires (see procedure
StimerExpired).}

StimeStamp:DateTime;
{Purpose: StimeStamp is the dateTime of receipt of a Data or
Rendezvous packet requiring an Ack packet. This is a model dependent
variable required here because an Ack is not necessarily generated
immediately when Data or Rendezvous packets are tested for
acceptance. The EIM must schedule a DtAck call to cause Delta-t to
update the receive window (Riwre-Riwle) and generate the Ack. If no
delay were assumed between the return from a DtPktRcvd call and the
issuing of the DtAck, this variable would not be needed. The
requirement that must be met for correct Delta-t operation is that
there must be no gap between the timing of the lifetimes of the latest

33—

SN and its Ack. The condition to be met is that the combined lifetime
of the latest SN received in a Data or Rendezvous packet and its Ack
must not exceed 2*2**PAtexp (2At) (see Appendix A). Exactly where

a given implementation chooses to end the timing of the lifetime of a
received SN and begin the lifetime timing of its Ack is an
implementation choice. In this model StimeStamp is used to compute

the interval between acceptance testing of the most recently arrived

SN and its Ack. The Rtimer (see receive state below) is to be

refreshed at the point the lifetime timing of each incoming SN stops.

Default: = 0.

When changed: StimeStamp is set to the current dateTime during the
procedures processData or processRendezvous and reset
when an Ack packet is sent (see procedure sendAck)}

{Now we define a send SN space, a series of SNs that correspond in SN
space to the pointers in the ISR logical send queue (see Appendix B).}

Sou,
{Purpose: SN of the oldest unAcked SN. If Sou = Sowle then all Data
or Rendezvous packets sent have been Acked.
Default: = arbitrary.
When changea: Sou is updated during the procedure processAck as data
or Rendezvous packets sent are Acked.

Sowle,
{Purpose: SN of the next bit or Rendezvous packet to be sent
(output-window-left-edge).
Default: = Sou.
When changed: Sowle is changed in the procedures sendData and
sendRendezvous when a Data or Rendezvous packet is
created.

Sowre:SN;

{Purpose: SN + 1 of "largest SN" the receiver can accept
(output-window-right-edge). That is, the receiver has
advertised willingness to receive SN's up to but not
including Sowre.

Sowre is used to determine if Data packets containing data
can be sent (see function shouldData), or a Rendezvous
packet should be sent (see function shouldRendezvous).

Default: = Sowle + n, where n is a network or association default.

When changed: Sowre is updated to Sou + Pwindow in the procedure

processAck, to Sowle in the procedure sendData when a
E-bit is sent (output window goes zero), and to Sowle
plus an offset provided by the EIM in procedure
DtStartData.

{all arithmetic and inequalities with SNs must be performed correctly
modulo 2**32. The relationship Sou < Sowle < Sowre must always hold}

SrendSenderind,
{Purpose: Indicates that a Rendezvous packet has been sent and the
sender is waiting for its output window to open
(Sowre > Sowle).

3l

Default: false.
When changed: Set during the procedure sendRendezvous and reset

during the procedure processAck, when the window
opens . }

Sovflwlnd,

{Purpose: A model dependent flag recording that data sent have
overflowed. This will result in a Rendezvous packet being
sent when DtStartData is called.

Default: false.

When changed: SovflwInd is set in the procedure processAck when

overflow occurs and is reset in sendRendezvous when
the SN's of the overflow data have been skipped.}

SeSentInd,

{Purpose: A model dependent flag indicating that an E-bit has been
sent, but has not yet been Acked. While SeSentInd is true

the output window (Sowre-Sowle should remain zero.
Default: false.

When changed: SeSentInd is set in the procedure sendData when an
E-bit is sent and is reset in the procedure
processAck . }

SretryInd,

{Purpose: A model dependent variable that records that the

next DtStartData is for retry data.
Default: false.

When changed: It is set during the procedure sendRetry. It is
reset during the procedure sendData.

SseriousNakInd:Boolean;

{Purpose: Records that a Nak has been received indicating there is
some problem serious enough to suspend sending new data
packets (not required for correct operation, only for
efficiency). Retrys should be continued for the normal
cycle just in case the Nak was caused by a transient
malfunction or ambiguous Nak exists (see Section 6.6.1).

Default: false.

When changed: During the procedure processNak, and reset during

the procedures StimerExpired and processAck}

SnakReason: integer;

{Purpose: Location for keeping the latest PnakReason. This code is
reported as a problem hint to the EIM if a giveup timeout
error occurs. It is advisory information only.

Default: 0, means have not received any Nak reason.

When changed: Set during processNak and reset in procedures
processAck and, StimerExpired (when the CR is reset
to default values) (when all data or. packets sent
have been Acked).}

35~

SinPtr, SoutPtr, SendPtr = 4RetryRecord (see below);
{Purpose:

These pointers point to RetryRecords in a Retry Queue. (How
retry is handled is model or implementation dependent. A
particular retry algorithm is included here for completeness of
the model.) SinPtr is nil or points to the first Retry Record
in the queue. SoutPtr is nil or points to the oldest
RetryRecord in the queue with an active retry timer. SendPtr is

nil or points to the end (last) record in the queue. The
entries in the closed interval between SinPtr and SoutPtr will

be retransmitted when their retry timers expire, if packet
lifetime has not expired. The entries in the interval between
SoutPtr but not including the entry at SoutPtr, and SendPtr
including the entry at SendPtr have had their maximum number of
retries and are waiting for acknowledgement.

The oldest entry that can be retried is at SoutPtr and the
youngest will be added in front of the entry at SinPtr. The
entries are thus ordered by age.

The condition SoutPtr 4 SendPtr is important as it indicates SNs
exist that have had their maximum retrys and no new data should
be sent (see Appendix A).

RetryRecord = record

rrtype: (Data, Ack, Rendezvous); {type of
packet}

rrEntrytime, {time placed in queue}

rrRetryTimer, {time when next retry can take
place}

rrLifetime: DateTime; {time when packet lifetime
expires}

rrPID: SN; {SN in packet Pid field}

IrTSNO: integer; {for Data packets this is Pdl, for
Ack packets its Pwindow, for Rendezvous
packets its Psno}

rrBlink, {back link to previous entry}

rrFlink = 4 RetryRecord; {forward link to next
entry}

end {RetryRecord}.

Default: SinPtr = SoutPtr = SendPtr = nil.

wWhen changed: These pointers are manipulated during the various
retry procedures (see Section 6.4.2), and are reset
in the procedure StimerExpired when the CR is
returned to its default state.}

{Receive related variables}

-36-

Rtimer: Datetime;

{Purpose: Rtimer provides assurance and smooth data flow services
(see Appendix A). The assurance service of the Rtimer is
to provide protection from duplicate packets. The smooth
data flow service of the Rtimer is to guarantee that any
packet sent with Pdrf = false that arrives at the receiver
after a predecessor packet sent with Pdrf = true, will be
acceptable. Pdrf is used for detecting missequenced
packets [6].

Default: = 0.

When changed: Rtimer is set when a new SN is accepted (new data or
Rendezvous packet), or there is a receive window
overflow even if no data is accepted. When Rtimer = O,
then Data or Rendezvous packets will only be accepted
that have Pdrf = true, any other packet is considered
out-of-sequence. Such a packet may be held at the
implementer's option but its lifetime must continue to
count down until it is in sequence. While Rtimer > O
packets are accepted when insequence with no regard to
the value of Pdrf.

Ritexp: integer;

{Purpose: This quantity is used to compute the value of the Rtimer
interval, to compute the Plifetime field in Ack packets,
is used as the PAtexp field in Ack packets, and to
determine if the receive initialization wait interval has
expired.

Default: = undefined.

When changed: It is set during the procedures processRendezvous and
processData when the first packet is accepted for a
given CR. The value is initialized from the PAtexp
field in the received packet that caused Rtimer to be
first set.}

{Receive SN space variables, logical receive queue SNs}
Riwle,

{Purpose: Next expected and acceptable SN (input-window-left-edge).
Used to protect against lost, dupllcate, and missequenced
packets. The procedures, as wrltten in this
specification, assume that packets are processed in
sequence. Logically, we assume that out-of-sequence
packets, if not discarded, are recognized and buffered
until they can be processed in sequence. Their Plifetime
fields must continue to count down.

Default: Undefined for assurance purposes, however, the interval
Riwre-Riwle may be meaningful for flow control.

When changed: Riwle is adjusted during the procedures processData and

processRendezvous, as SNs are accepted.}
Riwre:SN;

{Purpose: SN of the next bit beyond where there is currently
available buffer space (input-window-right-edge). That
is, the receiver can accept SN's up to but not including
lere. The interval between Riwle and Riwre defines the
number of SNs that can be accepted and the value of
Pwindow sent in Ack packets. This window is advisory only.

-37-

Default: undefined.
When changed: Riwre is adjusted in procedures DtAck, processbData,
processRendezvous. It represents user interface
Receive events.}
RovflwInd:Boolean;
{Purpose: A flag indicating that the receiver's buffers were overrun
and that Data packets should not be accepted until a
Rendezvous packet is accepted and Riwle has been adjusted

to protect against duplicates of the overflow bits.
Default: false.

When changed: 1t is set during the procedure processData when
overflow occurs, and is reset during the procedure

processRendezvous and DtTimeout.}
end {CR}.

6.2.5 Allocation and Deallocation of State

The CR is created and destroyed by the following procedures.

The procedure getCR returns the CR for a given association and, if
necessary, creates one.

procedure getCR (assoc:AR; var crPtr:CRpointer). {AR and CR are
association and connection records}.
begin
{CRs are kept in an implementation dependent data structure where
they can be retrieved efficiently by association. If no CR exists
for the association, one is created in the default state and is
placed in the CR structure. If there is no CR space available then
crPtr returns nil and the Delta-t procedure will fail. More
sophistication is certainly possible but not modeled here.}
if (EIMtime-Aidt) <3*2**AAtexp then
with crPtr+ do EIMalarm (assoc, Aidt + 3*2**pAtexp, true,
true) {This will generate a DtTlmeout call later and allow
sending to proceed after an initialization wait interval}
end {getCR}.

The procedure defaultCR checks whether or not the CR is in its default
state. If it is, the CR is reclaimed. In the model, the procedure defaultCR
cannot be reached while Ack, Nak, or Rendezvous packets should be sent or Data
packets should be resent. Thus implicit in the CR default condition is the
requirement that all packets needing sending for control purposes have been
sent. New data never having been sent, but not sent because of a zero output
window may, however, exist.

procedure defaultCR (crPtr:CRpointer);
begin
w1th crPtr+ do

~ 1f (Stimer = 0) and (Rtimer = 0) then dispose (crPtr)
end {defaultCR}.

-38-

6.3 The Delta-t Module Global Environment

The Delta-t procedures reside in the following declaration environment.

const
Data = 0;
Ack = 1;
Dentr: = 2 {Rendezvous};
Nak: = 3;
type
SN = 0..2%%32-1;
PKT = record {Pascal record of the packet structure
defined in Section 51;
Address = array [0..63] of Bit;
CR = {Connection Record} record {defined above};
AR = {association} record destAddr, originAddr:Address
end;
dateTime = iﬁfééer;

CRpointer = 4CR;
PKTpointer = 4PKT;
RetryPointer = 4RetryRecord;

procedure getCr (Assoc:?Rixgg crPtr:CRpointer); {defined in Section
6.2.4

procedure setTimer (crPtr:CRpointer; timer,interval:DateTime;
presenceflg:Boolean);
{This procedure sets the timer in the CR pointed to by crPtr and
calls the EIM alarm service to generate a signal when the timer
expires. The presenceflg is an efficiency hint for the EIM; when true
it indicates that on a timer expiration the ISR (see Appendix B)
should be in memory before calling DtTimeout as the ISR may need
updating.}
begin
EIMalarm (assoc, timer, false, presencefFlg); {cancels alarm for
previous expiration of timer.}
timer := EIMtime + interval; {time when timer is to expire.}
EIMalarm (assoc, timer, true, presenceFlg) {sets alarm}
end {setTimer};

procedure DGagjustLifetime (timestamp:Datetime; offset:integer;

ptr:PKTpointer4PKT; var remaininglLifetime:integer); {defined in
DeltaGram specification [19].

begin
This primitive adjusts the lifetime of the packet pointed to by ptr
and remainingLifetime returns a value < 0 if the lifetime has
expired else returns a value > 0.}

end {DGadjustLifetime},

procedure EIMtime {defined in Section 41});

rocedure EIMalarm ({defined in Section 4});

rocedure DtTimeout ({defined in Section 6.41});
procedure DtAck ({defined in Section 6.5.1});
procedure DtStartData ({defined in Section 6.5.2});
procedure DtFinishData ({defined in Section 6.5.21});
procedure DtPktRcvd ({defined in Section 6.61});
procedure dataChecksum ({defined in Section 6.5.2});

392

procedure headerChecksum ({defined in Section 6.5.2});

procedure addRetryEntry ({defined in Section 6.4.21});

procedure deleteAckedEntries ({defined in Section 6.4.2});

procedure deleteRetryEntry ({defined in Section 6.4.21});

procedure sendAck ({defined in Section 6.5.1});

procedure sendRendezvous ({defined in Section 6.5.2.1});

function min (al,a2,a3:integer):integer {returns minimum of 3
arguments};

function tryData ({defined in Section 6.5.2});

6.4 Timer Event Handling and Retransmission Procedures

6.4.1 DtTimeout

Timer events are reported to Delta-t by calling the procedure DtTimeout.
This procedure represents Delta-t's rules for handling timer expiration. It
checks whether or not Rtimer, Stimer, a retrytimer, and send initialization
wait intervals have expired. It performs the appropriate state update and
output actions. It checks to see if the CR is in a default state. It also
determines whether or not EIM sending can proceed.

DtTimeout (
{args!
assoc:AR; {association record for association with timer
expiration.}
sPkt:PKTpointer {Packet header for possible Ack or Rendezvous
packet needing retransmission.}
ireturns}
var retryFlg, {if true then the next DtStartData call should be for
count retry data bits starting at offset relative to
ouPtr (reason and sPkt are meaningless)’
sPktFlg, {if true an Ack or Rendezvous packet needing retransmission
was formed. }
giveupFlg:Boolean; {if giveupFlg is true then a packet(s) (Data or
Rendezvous) with offset bits relative to ouPtr have been sent and
not Acked and reason indicates hint at reason for failure.}
var sendCode, {0O-means EIM data sending is blocked, do not issue
DtStartData calls.
l-means even if output window is smaller
than desired, e.g. zero, issue a DtStartData call at least when
an E-bit needs sending to enter Rendezvous-at-sender procedure.
Other codes not relevant for this return.}

offset, {defined abovel
count, {defined above}
reason: integer; {defined abovel);

var crPtr:CRpointer; {pointer to the CR for assoc.}
procedure sendRetry (crPtr:CRpointer; var retryFlg:Boolean; var offset,
count:integer; sPkt:PKTpointer); {defined in Section

6.4.2}
procedure Stimerexpired (crPtr:CRpointer); {defined in Section
6.4.3}

procedure defaultCR (crPtr:CRpointer); {defined in Section 6.2.4}
function shouldRetry (crPtr:CRpointer):Boolean; {defined in Section
6.4.2}

40—

begin
. getCR (assoc, crPtr);
if crPtr # nil then {DtTimeout should never have been called when
— there was not a CR}

begin
with crPtr+ do
begin
iinitialize returns}
sendCode:= 1;
retryFlg:= false;
sPktFlg:= false;
giveupFlg:= false;
offset:= 0;
count:= O;
reason:= 0;
{test for Rtimer + 0 event}
if (Rtlmer >0) and ((EIMtime - Rtimer) > 0) then
begin {Rtimer has expired}
all CR receive variables are reset to or become
default values.}
Rtimer:= 0;
Rovflwind:= false
end; -
{test for retrytimer - O event}
if shouldRetry (crPtr) then sendRetry (crPtr, sPkt,
sPktFlg, retryFlg, offset, count);
{test for Stimer -+ 0 event}
if (Stimer > 0) and ((EIMtime - Stimer) > O) then
T StimerExpired (crPtr, offset, reason, giveupFlg);
{check to see if send initialization wait interval has
expired or some packet has had its maximum
retransmission time.}
if tryData(crPtr) then sendCode:= 1 else sendCode:=0;
{check to see if CR is in default state and can be
deallocated}
defaultCR (crPtr)
end
end

end {DtTimeout}.

6.4.2 Handling Retransmission

The details of how retransmission is handled is an implementation issue
outside the protocol. There are two requirements that must be met however.
One requirement is that the retransmission interval R (see Appendix A) for
each bit or packet be bounded. The number of retransmissions during this

41~

interval is an implementation decision. The upper bound is the lifetime
interval for a bit or packet, but in practice it will be less than this to
assure that the last retransmission can reach the receiver with Plifetime >
0 and thus be accepted.

A second requirement is that when data or a Rendezvous packet exists that
has had its maximum number of retransmissions, new transmissions must be
stopped as required by the derivation of timer intervals in Appendix A
(represented here by SoutPtr # SendPtr).

Because we assume retransmission is unlikely, with properly adjusted
retry timers, a simple retransmission model is presented that seems adequate.
An entire packet (all data in a Data packet) must be Acked before a packet is
removed from the Retry Queue. A packet is the unit of retransmission.

On the assumption that retry is caused by congestion it may be reasonable
to stop new transmissions until everything sent has been Acked. This is not
done here however.

Within this section we define all procedures involving retransmission
even though only some of them are used when DtTimeout is called.

The retry data structure (a queue of RetryRecords) was defined in Section
6.2.5 during the CR definition. Here we give the procedures and functions
that operate on this structure. The initial condition of SinPtr = SoutPtr =
SendPtr = nil is assumed.

To add a description of a packets Ptr to the Retry Queue in the CR
pointea to by crPtr the following procedure is called.

procedure addRetryEntry ({args} crPtr:CRpointer; sPtr:PKTpointer{no
returns});
var retryPtr = tRetryRecord;
begin
with sPtrt, retryPtrt do
begin
new (retryPtr);
{fill in RetryRecord}
rrType := Ptype;
rreEntryTime := EIMtime;
rrLifetime := Plifetime;
rrPID := Pid;
rrBlink := nil;
case Ptype of
Data:rrSNO := Pdl;
Ack:TTSNO := Pwindow;
Dentrl:rrSNO := Psno
end;
setTimer (crPtr, rrRetryTimer, AretryTime,true);
rrFlink := SinPtr;
if SinPtr = nil then

begin
SoutPtr := retryPtr;
SendPtr := retryPtr
end

else rrFlinkt.rrBlink := retryPtr;
SinPtr := retryPtr
end
end {adoRetryEntry}.

42~

The next procedure deletes the retry entry pointed at by retryPtr.

procedure deleteRetryEntry ({args}crPtr:CRpointer;
retryPtr:RetryPointer {no returns});
begin
with crPtr4, retryPtrt do

begin
if rrBlink = nil {head of queue} then SinPtr = rrfFlink

‘else rrBlinkf.TrFlink := rrFlink;
it rrflink = nil {tail of queue} then SendPtr = rrBlink

else rrflinkt.TrBlink := rrBlink;
1f retryPtr = SoutPtr then SoutPtr := rrBlink;
aispose (retryPtr)
eng
end {deleteRetryEntry}.

The next proceagure searches the Retry Queue and deletes all the Acked
entries. If typeFlg = true all Ack packet entries are to be deleted else

delete all Data and Rendezvous packets with Pid + rrSNO < sn}

procedure deleteAckedEntries ({args} crPtr:CRpointer;
sn:SN;typeFlg:Boolean; {no returns});
var tempPtr, retryPtr:RetryPointer;
b:Boolean;
begin
retryPtr := crPtr.SinPtr;
while retryPtr # nil do

~ begin
with crPtrt, retryPtrt do

begln
= (typefFlg and (rrType = Ack)) or (not typeFlg and
"((rrType # Ack) and ((rrPID + rTSNO) < sn)));

tempPtr:= rrflink
if b then

begin
EIMalarm (assoc,rrRetryTimer, false, false);
icancel alarm}
deleteRetryEntry (retryPtr)
end;
retryPtr tempPtr

end

end
end {dgeleteAckedEntries}.
The following function checks the retry timer of the entry at SoutPtr to
see if its retry timer has expired.

function shouldRetry (crPtr:CRpointer):Boolean;

egin
with crPtr+t, SoutPtr+ do
shouldRetry = (EIMtIme - rrRetryTimer) > O

end {shouldRetry}.

—43-

The next proceaure generates the DtTimeout returns required when a packet ‘
retry is requirea.

proceaure sendRetry ({args} crPtr:CRpointer; sPkt:PKTpointer;
{returns} var sPktFlg, retryFlg:Boolean; var offset,count:integer);
begin
retryFlg:=false;
offset:=0;
count:=0;
sPkt: _nll
with chtr+ SoutPtrt do
begln
rrLifetime := rrLifetime - (EIMtime - rrEntryTime); {update
retry packet's lifetime}
if rrLifetime > O then
begin {send retry}
case rrType of
Data: begin
SretryInd:= true; {sets retry flag in
CR indicating next DtStartData call is
for retry datal
{set return parameters}
retryFlg:=true;
offset:= rrPid - Sou;
count:= rrSNO
{Retry entry left at SoutPtr.}
end;
Ack: TﬁEherate an Ack retry packet}
begin
sendAck (crPtr, true, false, sPkt);
sPktFlg:= true;
deleteRetryEntry (SoutPtr)
end;
Rendezvous {generate a Rendezvous retry packet}
begin
sendRendezvous (crPtr, true, sPkt);
sPktFlg:= true;
delete RetTyEntry (SoutPtr)
end
end {case}
end
else lentry has had max retries}
case rrType of
T Ack: deleteRetryEntry (SoutPtr);

Rendezvous, Data:
begin {leave on Retry Queue in case never Acked so
error can be reported}
rrLifetime := O;
rrRetryTimer := 0;
SoutPtr := SoutPtr+.Blink
end

end
end
end {sendRetry;.

~4ly-

6.4.3 Send Timer Expiration

When Stimer expires either of the following two cases could exist:

(1) all bits and packets sent have been Acked.

(2) there are outstanding unAcked bits or an unAcked Rendezvous packet.
UnAcked reliable-Acks are removed from the retry structure when they have had
their maximum retransmissions. The rules for handling CR state in these cases
are imbedded in the following procedure which prepares returns for DtTimeout.

%rocedure StimerExpired ({args} crPtr:CRpointer; {returns} var
offset, reason:integer, giveupFlg:Boolean); {parameters defined earlier for

DtTimeout. }
var tempPtr,retryPtr:RetryPointer;
begin
with crPtr+ do

begin

(Sou = Sowle) then {case 1, no-op}
—Tée if (SinPtr £ nil) then {case 2, there is unAcked
data or an unAcked Rendezvous packet}

begin
{Output Function}
giveupFlg:=true;

if SrendSenderind then offset:= O {unAcked Rendezvous
packet} else offset:= Sowle-Sou; {reports offset
bits ambiguous}
reason:= SnakReason {possible reason for problem};
{reinitialize CR send variables to default values or
they are default already}
SrendSenderInd:= false;
SseriousNakInd := false;
retryPtr:= SinPtr
while retryPtr # nil do
~ begin
tempPtr:= rrflink;
dispose (retryPtr);
retryPtr:= tempPtr

end;
SlnPtr :=nil;
SoutPtr := nil
SendPtr := nil
end;
Stimer: =0;

SeSentInd:= false;

SnakReason := O;

SovflwInd:= false

{other send variables are in default state.}

end
end {StimerExpired}.

45~

6.5 User Interface Events

6.5.1 Receive or Ack Generation Events

The procedure DtAck and included procedures represent Delta-t's rules for
Ack formation and state update. DtAck is called whenever an Ack is required.
An Ack is required when (1) an event occurs within the EIM (due to IPC-user
Receive or Receive-Aborts or implementation dependent events) affecting the
receive window that should be advertised to the other end or (2) when Delta-t
indicates with the AckFlg in the return from DtPktRcvd that DtAck should be
called in order to provide Delta-t with the current window state so it can
generate an Ack packet (caused by receipt of a Data or Rendezvous packet).
The receive window to be reported to Delta-t is the amount of Receive-specific
buffer available for the association when an ISR has been allocated, otherwise
a default window is reported (see Appendix B).

The EIM indicates a reliable Ack is required whenever the input window
goes from zero to nonzero and the ISR variable RSind is true (see Appendix B).

The EIM can schedule the issuing of the DtAck call as appropriate (and
thus one Ack can acknowledge one or more received packets) subject to the
constraint that it is understood that when Delta-t indicates an Ack should be
issued its lifetime is counting down.

If a CR does not exist and space for a CR cannot be obtained the
procedure fails.

procedure DtAck (
iargs }

assoc:AR; {association record}
rWindow: integer; {inumber of bits of receive buffer space
available for the association}
rsfFlg:Boolean; {if true the other end needs to be rellably notified
in a reliable-Ack packet that a zero window is opening.}
sPkt:PKTpointer; {pointer to a packet buffer for an Ack packet.}
ireturns}
var errorflg:Boolean;{true if no CR space is available});

var crPtr:CRpointer;
begin

getCR (assoc, crPtr);
if CR = nil then errorflg:= true

else
begin
with crPtr+ do
begin
Riwre:= Riwle + rWindow;
errorflg:= false;
sendAck (crPtr, sPkt, false, rsFlg)
end T
end

end {DtAck}

The following procedure represents correct CR send state update for Ack packet
sending and calls procedure createAck to generate an Ack packet.

46—

procedure sendAck ({args}crPtr:CRpointer; sPkt:PKTpointer;
. , retryFlg,rsFlg:Boolean); {retryFlg indicates Ack is a
retry, rsFlg indicates reliable-Ack should be sent for
rendezvous-at-sender, sPtr is a pointer to a packet buffer to
contain the Ack.}

procedure createAck ({args} crPtr:CRpointer;sPkt:PKTpointer
{also return}; retryFlg, rsFlg:Boolean); {defined below}

be%in
wilth crPtrt do

begin
createAck (crPtr, sPkt, retryFlg, rsFlg);
StimeStamp:=0;
if Praf then
begin
addRetryEntry (crPtr, sPkt);
if not retryFlg then setTimer (crPtr, Stimer,
3*2%#pptexp, true) {resetting Stimer because a
packet needing an Ack is being sent}
end;
end
end {sendAck}.

The following procedure specifies correct formation of an Ack packet. This
procedure will fill the packet buffer pointed to by sPkt as an Ack packet.
retryFlg indicates whether or not this is a new (false) or retry (true)
packet. rsFlg indicates whether (true) or not (false) a reliable-Ack should
be generated.

procedure createAck ({args} crPtr:CRpointer, sPkt:PKTpointer;
{also return}, retryFlg, rsFlg:Boolean);
begin
with crPtrt, sPkttdo
" begin
Pver := {DeltaGram version number as appropriate};
Ptype := Ack;
Presl:= Q;
Pdn:= true;
Pprtctlev := {as appropriate for protection policy.};
if Rtimer > O then PAtexp := RAtexp else
PAtexp:=AAtexp;
Pid := Riwle;
Pdestaddr := Aassoc.destAddr;
Poriginaddr := Aassoc.originAadr;
Pwof:= RovfiwlInd;
Ppuf:= (Rtimer=0);
Pres5:=0;
Presé6:=0;
PAtver:= {Delta-t version number as appropriate}

-47-

if retryFlg then
begin
Praf := true {wouldn't be on retry list if
reliable delivery not desired}
Pwingow:=SoutPtr+4.rrSNO;
Plifetime := SoutPtrt.rrlifetime
end
else
~ begin
Pwindow:=Riwre-Riwle;
Praf := ((Pwindow > 0) and rsfFlg);
if Rtimer = 0 then Plifetime := 255
else
if StimeStamp > O then
Plifetime := 2**RAtexp-(EIMtime-StimeStamp)
else Plifetime := 2**RAtexp
ed
headerChecksum (sPkt)
end
end {createAck}.

6.5.2 Data or Rendezvous Packet Sending Event

6.5.2.1 DtStartData and DtFinishData

The procedures DtStartData and DtFinishData are called consecutively to
send data for the first time, to send retry data, or to cause a header only
data packet to be sent to Ack a reliable-Ack. DtStartData may also result in
a Rendezvous packet being generated, in which case DtFinishData does not need
to be called.

DtStartData is called by the EIM either when (1) there is data to send
and the sendCode in the ISR is 1 (e.g. should try to send even if the output
window is zero so that a Rendezvous packet will be sent) or (2) when the
sendCode returned from the DtPktRcvd procedure is 2 indicating that a Data
packet (even if header-only) is required to Ack a reliable-Ack. Data is sent
in the sequence issued by the IPC user. DtFinishData should be called to
complete a data packet header and after the EIM has placed count2 bits of data
in the packet.

procedure DtStartData (
{args}
assoc:AR; {association record}
Bflg,
g£flg:Boolean; {Bflg indicates that the first data bit is to
be labeled by a B mark and Eflg indicates that
the last data bit as specified by countl is to be
labeled by an E mark.}
prtctLev, {protection level of the data}l
owreOffset, {EIM's view of the output window. Same value as
returned to EIM in DtPktRcvd as owreOffset or
standard default}.
countl:integer; {number of bits of data potentially
available for a packet.}
sPkt:PKTpointer; {pointer to packet header buffer.}

48—

{returns}
var count2, {count of the number of bits of data that are to

’ _ be placed in this packet. For a retry, as modeled
here, count2 must be the number returned in
DtTimeout. }

sendCode: integer; {0 - means EIM data sending is blocked,
do not issue DtStartData calls even if nonzero output
window.
1 - means even if output window is smaller than desired
issue a DtStartData call with nonzero data count when new
data needs sending (e.g. to enter Rendezvous-at-sender
procedure.
Other codes not relevant for this return.}
var typefFlg, {true if Data packet being formed, false if
Rendezvous packet.}
errorfFlg:Boolean {error flag set true if no CR space
available. });

var crPtr:CRpointer;

procedure sendData ({defined below});
function shouldData ({defined below});
function shouldRendezvous ({defined below});

begin
count2:= 0;
errorflg:= false;
sendCode:= 1;
getCR (assoc, crPtr);
if crPtr = nil then errorFlg:= true
else
with crPtr4, SoutPtr+ do
begin
Sowre:= Sou+owreOffset;
if (SretryInd or shouldData(crPtr,countl) then
{Data packet should be sent}
begin
typeFlg:= true;
sendData
(crPtr,sPkt,countl,prtctiev,Bflg,Eflg,count2)

end
else if shouldRendezvous (crPtr, countl) then

——

Begin
typeFlg:= false;
sendRendezvous (crPtr, sPkt, false)

end; —

if tryData (crPtr) then sendCode: = 1 else
sendCode:= 0
end
end {DtStartDatal.

The following procedure is called after DtStartData, if typeFlg = true
(Data packet) is returned by DtStartData.

49—

DtFinishData (sPkt:PKTpointer {full packet buffer});
procedure dataChecksum (sPtr:PKTpointer);
begin
idata checksum algorithm as defined in DelatGram Specification
(1914
end idataChecksum};
begin
dataChecksum (sPkt);
headerChecksum (sPkt)
end {DtFinishData}.

rocedure headerChecksum; (sPkt:PKTpointer);
begin
{hea?er checksum algorithm as defined in DeltaGram Specification
[19]
end {headerChecksum}.

6.5.2.2 Sending a Data Packet

There are a set of conditions (1) that indicate a Data packet should not
be sent for correct protocol operation and (2) a set that indicate that for
efficiency one should not be sent (possibly dependent on the implementation).
We only indicate one type 2 condition here.

The Boolean function tryData is a function of the subset of these
conditions that determines if the EIM should issue DtStartData calls to try
and send data. The tryData conditions and others affecting the decision to
actually send a Data packet are incorporated in the function shouldData. The
function tryData is required because of the EIM to Delta-t interface presented
here. Note that it is possible for tryData to be true and the output window
to be zero. This results because, as modeled here, Delta-t does not
automatically enter the rendezvous-at-sender procedure when it receives a zero
input window in an Ack but instead waits until an attempt is made to send Data
(by a DtStartData call being issued with a nonzero data count) causing enter
to the rendezvous-at-sender mechanism. Therefore, if sendCode in the EIM's
ISR is 1 it should issue a DtStartData call when it has data to send (an
E-bit) even if the output window is zero (see Appendix B). The value of
senaCode returned by DtStartData will then indicate no further DtStartData
calls should be made until the window opens.

A different model of the EIM to Delta-t interface could, for example,
allow the EIM to indicate to Delta-t that it should automatically enter the
rendezvous-at-sender procedure when a zero output window exists.

function tryData (crPtr:CRpointer):Boolean;
begin
tryData:= ((EIMtime-Aidt) > 3*2**AAtexp){l the
initialization wait interval is expired})
and ~
T (SoutPtr = SendPtr) {1, no packets
exist that have had their maximum number of
retries}

-50-

and
not SrendSenderInd {1, not in rendezvous-at-sender

‘state}
and
not SseriousNakInd{2}

end {tryDatal.

The following function determines whether or not Delta-t should send a
Data packet. Only send a Data packet if the tryData conditions are satisfied
and overflow has not occurred (a Rendezvous packet must be sent) and either
the output window is nonzero or a header-only data packet needs sending.

function shouldData (crPtr:CRpointer; count:integer):Boolean;
begin

shouldData:= tryData(crPtr) and not SovflwInd {1} and ((Sowre
> Sowle {2}) or (count = 0){11)

end {shouldData}.

The following procedure determines, based on the maximum packet size for the
association and output window size, how much data should be sent (count2),
whether or not Pe should be set in the Data packet header and shows correct CR

state update when a Data packet is sent.

procedure sendData ({argst crPtr:CRpointer;
sPkt:PKTpointer {pointer to a Data packet header buffer to be filled

in};countl {number of bits of ocata available for sending},
prtctiLev:integer;Bflg,Eflg:Boolean{data labels}; {returns
var} count2:integer {number of bits of data that EIM is to

place in packet.});

var efFlg:Boolean;
procedure startDataHeader ({defined below});

begin
eFlg:= false;
with crPtr+ do

begin
{set up parameters required for procedure
startDataHeader and update send state.}

if SretrylInd then

begin {retTy}
count2:= SoutPtr.rrSNO;

eFlg:= Eflg
end
else {not a retry}
" begin
count2:= min (AmaxPktSize, countl, Sowre - Sowle);

{number of bits that can be placed in a packet
is min of max packet size for assoc, bits
available, ana output window}

eflg:= (count2 = countl) and Eflg;

-51-

Sowle:= Sowle + count2; {update by number of bits
being sent.}
if eFlg then
begin
Sowre:= Sowle; {close window, no data is
sent after an E-bit until it is Acked.}
SeSentInd:= true
end;
if (count2 > 0) then SetTimer (crPtr,)
Stimer, 3*2**Aptexp, true)

end;
startDataHeader (crPtr, sPkt, count2, prtctlLev,
’ Bflg, eflg);
if (count2 > Q) then addRetryentry(crPtr, sPkt) {only
neea to retry if data sent.}
end
end {DtStartData}

The following procedure specifies the rules for correct Data packet header
formation.

procedure startDataHeader ({args} crPtr:CRpointer; sPkt:PKTpointer;
count:integer; prtctlLev:integer; b,e:Boolean);
begin
with crPtr4, sPkt4 do
Begin

Pver := {DeltaGram version number as appropriate};
Ptype := Data;
Presl:= O;
Pdn:= false;
PprtctLev :=prtctLev;
Patexp := Abtexp;
Pdestaddr := Aassoc.destAddr;
Poriginaddr := Aassoc.originAddr;

Pt := false;
Pds:= false;
Pb := b;
Pe:= e;

Pres2:= O;
Pal:= count;
Pres3:= 0;
Pres4:= 0;
Patver:= {Delta-t version number as appropriate};
if SretrylInd then
begin
Plifetime := SoutPtrt.rrLifetime;
Pid := SoutPtr4.rrpid;
Pdrf := (Pid < Sou); {everything sent previously
has been Acked}
SretryInd:= false;
deleteRetryEntry (SouPtr)
end

-52 -

else
5egin
Plifetime := 2¥*AlAtexp;
Pid := Sowle;
Pdrf := (Sou = Sowle) -
end
{The PhdrChksum and PdataChksum fields are set in the
procedure DtFinishData.}
end
end {startDataHeader}.

6.5.2.3 Sending a Rendezvous Packet

The following function specifies the rule for sending a Rendezvous
packet. A Rendezvous packet should be sent if not already in the
rendezvous-at-sender state and (overflow has occurred or (there are bits to
send and no output window and all data previously sent has been Acked).

function shouldRendezvous (crPtr:CRpointer;countl:integer):Boolean;
— begin
with crPtr+ do
begin
shouldRendezvous := (not SrendSenderInd)
tnot in rendezvous-at-Sender state}
and
~ (SovflwInd or ((countl > 0) and (Sowle = Sowre) and
(Sou = Sowle)))
end
end {ishouldRendezvous}.

The following procedure calls procedure createRendezvous and performs correct
state update when a Rendezvous packet is to be sent.

procedure sendRendezvous ({args} crPtr:CRpointer; sPkt:PKTpointer;
retryFlg:Boolean);

procedure createRendezvous ({args} crPtr:CRpointer;
sPkt:PKTpointer;
retryFlg:Boolean); {defined below}
begin
with crPtrt, do
begin
createRendezvous (crPtr, sPkt, retryfFlg);
addRetryEntry (crPtr, sPkt);
if not retryFlg then
begin
setTimer (crPtr, Stimer, 3*2%*pAtexp);
SovflwInd:= false;
SrendSenderInd:= true
end; o
end
end {sendRendezvous}

-53_

The following procedure specifies the rules for Rendezvous packet formation. ‘

rocedure createRendezvous ({args} crPtr:CRpointer; sPkt:PKTpointer
iand return}; retryFlg:Boolean);
const n = {> 0, implementation convenient value used in Psno};

begin
with crPtrt, sPktt do
begin
Pver := {DeltaGram version as appropriate};
Ptype := Dcntrl;
Presl:= 0;
Pan := true;
PrtctLev := {as required by protection policy{;
Patexp := Adtexp;
Pdestaddr := AdestAddr;
Poriginaddr := AoriginAddr;
Psubtype := 0;
Pdrf := true;
Pres7 := 0;
Pres8 := 0;
Patver:= {Delta-t version number as appropriate}
if retryFlg then
begin ~
Psno := SoutPtr+.rrSNO;
Plifetime := SoutPtr+.rrLifetime;
Pid := SoutPtr+.rrPID
end
else
begin
1f Sowle £ Sou then Psno := Sowle - Sou;
{Rendezvous sent due to overflow}
else
begin {Rendezvous sent due to just zero
window}
Psno := n;iconsume SN space for assurance}
Sowle := Sowle + n;
Sowre := Sowre + n
end;
Plifetime := 2%*AAtexp;
Pid := Sou
end;
headerChksum (sPkt)
end

end {createRendezvous}.

6.6 Packet Received Event

6.6.1 DtPktRcvd

DtPktRcvd and included procedures specify Delta-t's rules for packet
acceptance testing and processing. DtPktRcvd is called when the EIM receives
a packet from the next lower level. The return parameters are dependent on

-5l

the type of packet received. If the packet received is a Data (and a Nak is
not generated) or Rendezvous packet the call to this procedure is followed
eventually by a DtAck call to update the input window and generate an Ack. If
the packet received is a reliable-Ack the call to this procedure is followed
eventually by DtStartUata and DtFinishData calls to cause a Data packet,
possibly header-only, to be sent. DtPktRevd should have high enough priority
solthat packet lifetimes are unlikely to expire due to long packet queuing
delays.

rocedure DtPktRcvd (
{args’

assoc:AR; {association record}
tPkt, = {pointer to header buffer for the received packet.
The size of the packet can be determined from the packet type and,
if a Data packet, the Pdl field.}
sPkt:PKT; {packet header buffer for possible Nak packet}
timeStamp:dateTime; {time packet was received}
rWindow: integer; {number of bits of potential buffer space
available for association.}

{returns}

var type:integer; {packet type or value indicating ignore other
returns.}

var ackFlg:Boolean; {If true the EIM should issue a DtAck call at a

conveniTnt point to cause an Ack packet to be sent with latest receive

window.

{Data packet!
var offset, {offset relative to start of packet at which to
obtain first data bit}

count, {number of bits to accept}

prtctLev:integer; {protection level of the data}

var Bflg,

Eflg {flags inaicating respectively whether first accepted
bit is labeled by a B mark and the last acepted bit is
labeled by an E mark.}

nakFlg, {true if Nak formed}

{Ack packet}
var ovflwFlg:Boolean; {flag if true all data bits at queue
position auPtT + ackOffset and beyond have
overflowed and should be reset as if never
sent and be sent again.}
var ackOffset, {SN offset relative to ouPtr in ISR for the
number of data bits Acked}
sendCode, {(Also returned for Nak packets) 0 - means data
sending is blocked, do not issue DtStartData calls.
1 - means even if owreOffset is smaller than desired
(including zero), issue a DtStartData call when
data needs sending to enter rendezvous-at-sender
procedure.
2 - means issue a DtStartData call, even if there is
no data needing sending to cause a Data packet to
be sent to Ack a reliable-Ack.}

-55-

owreOffset:integer; {The output window. This information is
passed to the EIM for possible saving in its
ISR and subsequent return to Delta-t as an .
efficiency aid and when the CR is reclaimed.
How owreOffset and sendCode can be used by the
EIM in its policy for issuing DtStartData
calls is discussed in Appendix B.}

{Rendezvous packet}

var rsFlg:Boolean; {This returned flag indicates that the other
end wants to be reliably informed when the
input window opens.})

{Nak packet}
1{The parameter sendCode above is also returned for received Nak

packets;;

const n = {value indicating ignore other returns};
var crPtr:CRpointer;

remainingLifetime: integer;
procedure processData ({defined in Section 6.6.2});
procedure processAck ({defined in Section 6.6.3});
procedure processRendezvous ({defined in Section 6.6.4});
procedure processNak ({defined in Section 6.6.51});
procedure sendNak ({defined in Section 6.6.6});

begin
type:= n;
getCR (assoc, crPtr);
if crPtr £ nil then {if crPtr = nil packet will be discarded and

" become "Iost"f

begin
ackFlg:= false;
nakFlg:= false;
offset:= 0;
count:= 0;

prtctLev:= 0; {or should it be highest level?}

Bflg:= false;

Eflg:= false;

ackOffset:= 0;

owreOffset:= 0}

ovflwFlg:= false;

sendCode:= 1;

rsFlg:= false;

DGadjustLifetime (EIMtime-timeStamp, O, rPkt,remainingLifetime)
iadjusts lifetime for time spent on Delta-t queue and
checks to see if lifetime has expired. If lifetime has
expired remainingLifetime returns < 0.};

if remainingLifetime < O then with rPkttdo
if (Ptype = Data) Then

begin T
nakFlg:= true;
type:= Data;

56—

sendNak (crPtr, rPtr, sPkt, 3,{lifetime
expired}remaininglLifetime)
end
{Sending the Nak is optional.}
else
begin
type:= Ptype;
icode for switch to appropriate version routines would
go here}
case type of
Data: processData (crPtr, rPkt, sPkt, rWindow,
offset, count, prtctLev, ackFlg, Bflg, Eflg,
nakFlg);
Ack: processAck (crPtr, rPkt, ackOffset, ovflwFlg,
owreOffset, sendCode);
Nak: processNak (crPtr, rPkt, sendCode);
Dentrl: if rPkt.Psubtype = 1 then processRendezvous
(crPtr, rPkt, rWindow, ackFlg, rsfFlg);
end
end
end
end {DtPktRcvd}.

6.6.2 Receipt of a Data Packet

Data packets serve two functions in this protocol, the main one is to
carry data, the secondary one, as part of window management, is to "Ack" a
reliable-Ack that is reporting the opening of a zero window, completing the
rendezvous-at-the-sender procedure. In order for a Data packet to be accepted
there must have been sufficient time since the Delta-t environment was
initialized and the SN of at least one bit in the packet, or the Pid (in the
case of dataless Data packets) must equal Riwle. If a bit is accepted or
overflow occurs Rtimer is updated.

The procedure processData checks the Data packet for acceptance by
calling acceptData, specifies correct update of the CR, determines what data
to accept, and returns parameters to the EIM which then copies the accepted
data to puffers it manages. The EIM will signal the user if a Receive
completes. When an Ack is required, the EIM will call DtAck to report its
current window and an Ack will be generated.

procedure processbData ({args} crPtr:CRpointer; rPkt,
sPkt:PKTpointer; rWindow, {returns} var offset, count,
prtctlLev:integer;var ackFlg,Bflg, Eflg,nakFlg:Boolean);

const n = {large number};

var temp:integer; b:Boolean;

procedure acceptData (crPtr:CRpointer; rPkt sPkt:PKTpointer; var
ackFlg, nakFlg, b:Boolean); {defined below};

-57-

begin
with crPtr+ do

begin
acceptData (crPtr, rPkt, sPkt, ackFlg, nakFlg, b,);

if b then

begin {packet accepted}
deleteAckedentries (crPtr, true, 0); {see discussion
of retry in Section 6.4.2. This procedure deletes any
Acks from the retry structure}
if Rtimer = O then
begin {update CR receive variables}
Riwle := Pid;
Ratexp := PAtexp
end;
prtctlLev:= PprtctlLev;
temp:= Pdl-(Riwle-Pid); {number of data bits at and to
right of Riwle}
offset:= 256 + (Riwle-Pid); {offset in packet to begin
accepting data, assumes bits in header run 0-255}
Bflg:= (Pb and (offset = 256));
Riwre:= Riwle + rWindow;
count:= min (temp, Riwre-Riwle,n); {number of bits that
can be accepted}
Eflg:= (Pe and (count = temp));{last accepted bit is
labeled E}
if (count > 0) then setTimer (crPtr, Rtimer,
2%2#*RAtexp, false);
Rovflwind:= (count # temp);
Riwle:= Riwle + count;
end
end
end {processData}.

The following procedure and associated functions specify the rules for
Data packet acceptance. To be accepted there must have been enough time since
the environment was initialized, the receiver is not in the overflow state,
the packet must contain data insequence, and there must be at least one SN on
the input-window-left-edge. Note that if Rtimer > 0 then Pdrf is ignored in
the function SNonWindowEdge. The procedure acceptData alsc determines if an
Ack or Nak packet should be generated and starts the lifetime of the Ack
counting down.

procedure acceptData ({args} crPtr:CRpointer, rPkt, sPkt:PKTpointer
ireturns) var ackFlg, nakfFlg, b:Boolean);

var temp:dateTime;

function outOfSequence (crPtr:CRpointer; rPkt:PKTpointer); {see
below};

function SNonWindowEdge (crPtr:CRpointer; rPkt:PKTpointer); {see
belowt;

-58-

procedure handleOutOfSequence (rPkt, sPkt:PKTpointer); {see below};

begin
with crPtrt, rPktt do
" begin
ackFlg:= true; {initialize to generate Ack whether accepted
or not
b := false; tinitialized to reject packet}
temp:= StimeStamp; {save in case a Nak generated so can be
restored}
StimeStan:= EIMtime; {The lifetime of the Ack begins
here.
if ((EIMtime -Aidt) > 2**PAtexp) and not RovflwInd) then
begin {interval since initialization long enough and not
in overflow state}
if SNonWindowEdge (crPtr, rPkt) then b:= true
else if outOfSequence (crPtr, rPkt) then
begin

handleOutOfSequence (crPtr,rPkt,sPkt,nakFlg);

ackFlg:= false;

StimeStamp:= temp {Nak is generated
immediately so uses PAtexp in packet
being Naked. An Ack may be generated from
an earlier packet receipt and need to keep
its lifetime aging.}

end
end
end

end {acceptData}.

The following function tests for aduplicate data. Duplicate zero length data
packets might be accepted, but cause no harm. Acceptance is independent of
whether or not a window exists large enough to hold any data.}

function SNonwindowEdge (crPtr:CRpointer; rPkt:PKTpointer):Boolean;
begin

with crPtr4, rPktt do

SNonWindowEdge := ((Rtimer = 0) and Pdrf) or ((Rtimer > 0) and
((Pdl > 0) and (Pid < Riwle) and (Riwle < Pid + Pdl-1)) or
((Pdl = 0) and (Pid = Riwle))); {when Rtimer = 0 and Pdrf any
SN is acceptable otherwise at least one bit is at Riwle or Pid
Riwle when Pdl = 0}

end {SNonWindowEdge}.

The following function tests for out of sequence data.

function outOfSequence (crPtr:CRpointer; rPtr = 4PKT):Boolean;
begin
with crPtr+, rPktt do
outOfSequence := ((Rtimer = 0) and
(not Pdrf)) or ((Rtimer > 0) and (Riwle < Pid))
end {outOfSequencel.

-59-

The following procedure handles out of sequence data. Whether or not
out-of-sequence Data packets are accepted is an implementation option. If
they are accepted they would be queued until they are insequence. This queue
would be examinea periodically; for example, after each data packet with data
was processed. The queue would be cleared when overflow occurred. Plifetime
must continue counting down. Here we just generate a Nak

procedure handleOutOfSequence (crPtr:CRpointer; rPkt, sPkt:PKTpointer; var
nakFlg:Boolean);
begin {}
sendNak (rPkt, sPkt,129 {out of sequencel,0);
nakFlg: = true
end {handleOutOfSequence}.

6.6.3 Receipt of an Ack Packet

Missequenced, lost, or duplicate Ack packets can cause no assurance
harm, although such occurrences may lead to the exchange of extra packets, as
discussed under window management in Section 2.7.3.

The procedure processAck specifies the rule for Ack packet acceptance and
correct state update when an Ack packet is accepted. It calls acceptAck to
test an Ack packet for acceptance. Some duplicate or missequenced Acks are
rejected, but not all. Duplicate or missequenced Acks with Pid=Sowle or that
have Ppuf set true are not detectable.

The procedure must handle two main cases (1) data or a Rendezvous packet
may be Acked or data overflow has occurred, or (2) only a relative flow
control window is being reported. It must also recognize when a reliable-Ack
is received.

roceagure processAck ({args} crPtr:CRpointer; rPkt:PKTpointer;
{Teturns} var ackOffset, owreOffset,sendCode:integer; var
ovflwFlg:Boolean);

function acceptAck (crPtr:CRpointer; rPkt:PKTpointer):Boolean;
{defined
below}

begin
with crPtr4, rPktt do
begin
if acceptAck (crPtr, rPkt) then
begin
if (not Ppuf and (Stimer > Q)) then
begin {State update and output functions when Data
bits or Rendezvous packet may be Acked or data
overflow has occurred}
if SrendSenderInd then ackOffset:= O
{Ack is for Rendezvous packet; No data is sent
while SrendSenderInd = true}
else ackOffset:= Pid - Sou; {Ack is for data and
this is the number of bits Acked}
Sou:= Pid; {update Sou for SNs Acked}

-60-

if Sou = Sowle then
begin {Everything sent has been Acked}
SeSentInd:= false;
SseriousNakind:= false;
SnakReason:= O
end;
owreOffset:= Pwindow;
if Pwof then
begin y {window overflow has occurred; state in
EIM ana Retry Queue must be reset as if
overflow bits were never sent. Rendezvous
packet must be sent eventually.}
ovflwFlg:= true;
Sovflwind:= true,
deleteAckedEntries (crPtr, false, Sowle)
{delete Acked and overflow data from
Retry Queue. }
end
T else deleteAckedEntries (crPtr, false, Sou)
{delete only Acked Data or Rendezvous
packets from Retry Queue}
end
{State update and output function for all accepted Ack
packets}
if not SeSentInd then Sowre:= Sowle + Pwindow; {update
window whether Ack acks anything or not}
if Sowre > Sowle) then SrendSenderind := false;
{an out of sequence or old dupllcate Ack could cause
SrendSenderInd to be reset and data to be sent which
would overflow and entry to the Rendezvous-at-sender
cycle to be repeated. No harm results}
if Praf then sendCode:= 2 else if tryData(crPtr)
then sendCode:= 1 else ‘sendCode:= 0
end
end {with}
end {processAck }

The following function specifies the rule for Ack packet acceptance. Stimer
> 0 implicitly indicates adequate time since environment initialization has
occurred. This is also true for Nak packets. Duplicate or missequenced Acks
Just reporting a window change cause no harm, other than causing possible

extra packets being sent. Accept Ack is written to reject duplicate Acks when
unAcked SNs exist.

function acceptAck (crPtr:CRpointer; rPkt:PKTpointer):Boolean;
begin
with crPtr+, rPkt+ do

acceptAck := ((Praf and (Pwindow > 0)) or not Praf) {Praf is
only used to reliably report a window opening.}

-61-

and
(Ppuf
or (Stimer = 0) {relative input window being reported
when Riwle, or Sou ana Sowle undefined}
oT
((Stimer > 0) and
(((Sou < Pid) and (Pid < Sowle)) {Acks data or
Rendezvous packet}

or
((Sou=Sowle) 'and (Pid=Sowle)){just reports input
window changel)))
end {acceptAck}.

6.6.4 Receipt of a Rendezvous Packet

The purpose currently envisioned for the control called the Rendezvous
packet is to indicate to the receiver that it should translate its SN space
and turn off RovflwInd and begin accepting Data packets again and that the
sender state shows a zero window (with or without overflow), there is more
data to send, and that the sender will wait for a reliable-Ack to arrive
indicating the window has opened (rendezvous-at-the-sender). The Rendezvous
packet with Pdrf = true performs the above.

As currently used, Pdrf is always set true.

Rendezvous-at-the-sender has to be done in a reliable way. The
Rendezvous packet needs acknowledgment and the window opening control needs
acknowledgment. Rendezvous packets consume SN space and are therefore
protected against loss, duplication, or missequencing. Reliable-Ack packets
(packets with Praf = true) indicating a nonzero window are "acked" by an
acceptable Data packet. Reliable-Ack packets are retransmitted until Acked.
This protects against lost packets. Duplication or missequencing of Acks are
not a problem as the mechanism will at most cause extra packets to be sent as
a result of these hazards, but no improper acceptance of data or sender being
blocked permanently can take place.

Rendezvous packets might also be used, in general, to force the receiver
to return its state to the sender or adjust its expected SN, but no need for
such purposes currently exists.

The following procedure specifies the rule for Rendezvous acceptance
testing in function acceptRendezvous and correct state update. An Ack packet
will be generated.

procedure processRendezvous ({args} crPtr:CRpointer; rPkt:PKTpointer;
TWindow: integer; {returns} var rsFlg,ackFlg:Boolean);

function acceptRendezvous (crPtr:CRpointer; rPkt:PKTpointer):Boolean;
{defined below}

begin

with crPtrt do
begin

62~

if acceptRendezvous (crPtr, rPkt) then
begin
deleteAckedEntries (crPtr, true, 0) {deletes’
any Acks from Retry Queue
if Rtimer = 0 then
begin
Riwle:= Pid;
Ratexp:= PAtexp
end;
setTlmer (crPtr, Rtimer, 2*2**RAtexp, false){a new
SN was accepted}
RovflwInd := false;
Riwle := Riwle + Psno;
Riwre:= Riwle + rWindow;
rsFlg:= Riwre = Riwle
end
ackFlg:= true; {an Ack is to be sent whether or not packet
accepted.]

end
end {processRendezvous}.

The following function specifies the Rendezvous packet acceptance
condition: enough time has elapsed since the environment was initialized and
SN space is consumed and Pdrf is true if Rtimer = O or the Pid is on the left
window edge if Rtime > O.

function acceptRendezvous (crPtr:CRpointer; rPkt:PKTpointer): Boolean;
~ begin
with crPtr4, rPtrt do
acceptRendezvous := ((EIMtime - Aidt) > 2**PAtexp)
and (Psno > 0)
and ((Pdrf and (Rtimer = 0))
~ or ((Pid = Riwle) and (Rtimer > 0)))
end {acceptRendezvous}.

6.6.5 Receipt of a Nak Packet

Nak packets are not essential to the correct operation of Delta-t.
They have been included to allow for possible earlier retransmission of Naked
data and to provide diagnostic information. It is important that an error not
be reported to the IPC user until Stimer has expired as there may have been a
duplicate of the Naked packet that succeeded and an Ack may yet be received.
This situation is likely to be rare in the class called possiblyFatal below.
This situation could result from a failure of the headger checksum to detect an
error or in a network partition or crash. We believe an implementation should
generate Naks, in case partners are using them for diagnostic or earlier
retransmittsion purposes but it could choose to ignore them on receiving.

The following procedure represents an example handling of a Nak packet.

procedure processNak ({args} crPtr:CRpointer; rPkt:PKTpointer
ireturns} var sendCode:integer);

-63=

type possiblyFatal = (1,2,5,128); {cannot reach destination, no
such destAddr, improper protection level, refuse to accept}

canImmediatelyRetry = (129,4,3); {out of sequence, data checksum
error, lifetime explred}

function acceptNak (crPtr:CRpointer; rPkt:PKTpointer):Boolean;
{defined below}

begin
with crPtr+, rPkt+ do

b_qu;,
if acceptNak (crPtr, rPtr) then
begin
SnakReason := PnakReason;
case PnakReason of
~ possiblyFatal:SseriousNakInd := true; {This will
prevent new data belng 'sent on the
assumption that the problem will presist,
although allowed to continue on the chance
that the problem is temporary or the Nak is
ambiguous.}
canlmmediatelyRetry: {all bits reported by this
Nak could be immediately retransmitted at
implementation option and the retry timers
updated};
end;
i{setup error record and call procedure
errorStatistic here.}

if tryData then sendCode:= 1 else sendCode:= O
end
end

end {processNak}.

The following function represents the Nak packet acceptance condition. A
Nak is only for outstanding data.

function acceptNak (crPtr:CRpointer; rPkt:PKTpointer):Boolean;
begin

with crPtr+, rPktt do

acceptNak = (Stimer > 0) and ((Sou < Pid + Pdl) and
(Pid + Pdl < Sowle))
end {acceptNak}.

procedure errorStatistic (error RecPtr = 4Error Record);

begin
{Updates counters, event records keeping diagnostic statistics}
end {errorStatistic}.

64—

6.6.6 Sending a Nak

Nak packets may be sent as a result of a packet's lifetime having
expired (see Section 6.6.1) or as the result of a Data packet having been
rejected as out-of-sequence (see Section 6.6.2).

The Nak packet header fields are generated from the header of the
packet being Naked and the argument nakReason.

rocedure sendNak ({argslcrPtr:CRpointer; rPkt, sPkt:PKTpointer;
nakReason,remaininglifetime:integer);
{rPkt is pointer to packet being Naked and sPkt is

buffer for Nak packet being formed}

begin Several of the fields in the packet header are left alone}
sPkt.Pver:= rPkt.ver;
sPkt.Presl:= 0;
sPkt.Ptype:= Nak;
sPkt.Pdn:= true;
sPkt.Pprtctlev:= rPkt.PprictlLev;
sPkt.PAtexp:= rPkt.PAtexp;
sPkt.Plifetime:= 2**rPkt.PAtexp + remainingLifetime {assume

remainingLifetime < 0};

sPkt.Pid:= rPkt.Pid;
sPkt.Pdestaddr:= rPkt.Poriginaddr;
sPkt.Poriginaddr := rPkt.Pdestaddr;
sPkt.PnakRes := 0;
sPkt.PnakReason := nakReason;
sPkt.Pdl:= rPkt.Pdl;
Pheaderchecksum (sPkt);

end {sendNak}.

65~

Acknowledgment

Delta-t was designed with John Fletcher. Jed Donnelley played an
important role in motivating the need for a reliable transaction oriented
protocol, the sender and receiver not having to agree on the values for the
components of a common at, and for rendezvous-at-the-sender. Dan Nessett,

Bob Judd, and Lansing Sloan made many helpful suggestions. The design
benefited significantly from interactions with members of the ARPA TCP
protocol design community, particularly Jon Postel. Valuable discussions with
Ann Duenki and Peter Schicker of the former EIN community influenced several
decisions.

~66-

[
.

10.

11.

12'

13.

14,

References
D. Belsnes, "Single-Message Communication," IEEE Transaction on
Communications COM-24, No. 2 (1976).

S. R. Bunch, J. D. Day, "Control Structure Overhead in TCP," Proc. Trends
and Applications: 1980 Computer Network Protocols, IEEE Cal. No. 80 CH

1525-7C, May 1980, pp. 121-128.

J. Burruss, et al, "Specification of the Transport Protocol," NBS Report
ICST/HLNP-81-1, Feb. 1981.

J. G. Fletcher, R. W. LWatson, "An Overview of the LINCS Architecture,"
LLNL wWorking Document, July 9, 198l.

J. G. Fletcher, "LINCS Security Policy," LLNL Woirking Document, July 15,
1981.

J. G. Fletcher, R. W. Watson, "Mechanisms for a Reliable Timer-Based
Protocol," Computer Networks, No. 4/5, September/October, pp. 271-290.
Also in Proceedings Computer Network Protocols Symposium, Liege, Belgium,
February 1978, p. C5-1/C5-17.

L. Garlick, R. Rom, and J. Postel, "Reliable Host to Host Protocols:
Problems and Techniques," Proceedings 5th Data Communications Symposium,
IEEE/ACM, September 1977.

J. L. Grange, M. Gien, eds., Flow Control in Computer Networks, IFIP,
North-Holland Publishing Co., 1979.

J. F. Haverty, R. D. Rettberg, "Inter-process Communication for a Server
in UNIX," Proceedings Compcon 78, September 1978, pp. 312-315.

IS0, "Draft Connection-oriented Basic Transport Protocol Specification,"
June 1981.

J. M. McQuillan, V. G. Cerf, Tutorial: A Practical View of Computer
Communications Protocols, IEEE Catalog No. EHO 137-0, 1978.

J. B. Postel, "Specification of Internetwork Transmission Control
Protocol," TCP Version 4, Jan. 1980, available through Defense Advanced
Research Projects Agency, IPTO.

L. Pouzin and H. Zimmermann, "A Tutorial on Protocols," Proceedings IEEE,
Vol. 66, No. 11, November 1978, pp. 1346-1370.

C. A. Sunshine and Y. K. Dalal, "Connection Management in Transport
Protocols," Computer Networks, Vol. 2, No. 6, 1978, pp. 454-473.

67~

15.

l6.

17.

18.

19.

20.

21.

22.

R. W. Watson ana J. G. Fletcher, "An Architecture for Support of Network .
Operating System Services," Proceedings 4th Berkeley Conference on

Distributed Data Management and Computer Networks, August 1979. (Also in

Computer Networks, Vol. 4, No. 1, pp. 33-49, February 1980. °

R. W, Watson, "Timer-based Mechanisms in Reliable Transport Protocol
Connection Management" Proc. Computer Network Protocols, sponsored by NBS
and IEEE, Gaithersburg, Maryland, 29 May 1980. (Also in Computer
Networks 5 (1981) 47-56.

R. W. watson, "Interprocess Communication: Interface and End-to-End
(Transport) Protocol Design Issues," Distributed Systems Architecture
and Implementation: An Advanced Course, Springer-Verlag, Berlin, NY,
1981.

R. W. Watson, "Distributed System Architecture Model," Distributed
Systems, Architecture and Implementation: An Advanced Course,
Springer-Verlag, Berlin, NY, 1981.

R. W. Watson, "DeltaGram Protocol Specification," LLNL Working Document,
Aug. 15, 1981.

R. W. Watson, "Service Support Level Protocol Specification," LLNL
Working Document, Aug. 15, 198l.

R. W. watson, "LINCS Interprocess Communication (Transport) Service
Specification," LLNL Working Document, Aug. 15, 1981.

N. Wirth, K. Jensen, PASCAL User Manual and Report; Springer-lVerlag,
N.Y., Berlin, 1978.

-68-

APPENDIX A

Notes on Timer Values and Rules

The purpose of this appendix is to outline the arguments leading to the
requirements that the Stimer run 3At and that the Rtimer run 2At. The
value of At used can be different for each direction of data movement on an
association. The conditions that the timer intervals must satisfy are the
following.

A. Rtimer Conditions

1) (Assurance) No duplicates can be accepted.

2) (Smooth flow) Guarantee that any packet sent with Pdrf = false that
arrives at the receiver after a predecessor packet sent with Pdrf =
true w%%l be acceptable (will arrive before the receiver's Rtimer has
Tun out).

B. Stimer Conditions

1) (Assurance)
a) Allow a graceful close (do not close until all data or packets
sent needing Acks can be acknowledged).
b) Assure that no SN will be reused until all previous packets or
their Acks or Naks using the SN have died. This condition is not
necessary for Naks (see Section 6.6.1)

2. (Smooth flow) Run equal to or longer than Rtimer to guarantee
acceptable SN's are generated.

The timer rules given in Section 2.6 satisfy the above conditions on
assumption that the sender initializes the Lifetime for an element (bit) to
At. The term At has a different meaning in this specification than it did
in the original paper [6]. The term At, as used here, is the sum of three
estimates on the sender's part, no one of which needs bounding individually if
their sum is bounded:

R = time the sender would normally expect to retransmit.
MPL = maximum packet lifetime or a worst case estimate of network
travel time.
A = time for receiver to generate an acknowledgment.
4t = R+ MWL + A,

Timer Rules

Condition A-1 needs Rtime > At

Conaition A-1 is satisfied by the interval At because the receiver sets
its timer whenever it accepts an SN. No bit can live longer than At by R.5
(see Section 2.6). (Note: the receiver cannot just set its Rtimer from the
value in the Plifetime field of the accepted packet because the rule for
counting it down requires at least one tick for each link and node a packet
traverses even if the time spent on that link or in that node is
infinitesimal. Therefore, two identical packets going by different routes
could live different times relative to R timer and cause a duplicate to be
accepted.)

~69-

Condition A-2 needs Rtime > 24t
The timer rules R.1 through R.6 assure that Condition A-2 is satisfied by ‘
the interval 24t. The following worst case scenario requires this interval.
1) A packet Pj with Parf = true is emitted by the sender and arrives
instantly at the receiver. The receiver sets Rtimer.
2) Because of lost Acks requiring packet retransmission or delayed Acks,
no Ack to Pj has arrived at the sender at At-x (where x is a very
small number).
3) The instant 4t-x is the last moment when a packet containing new
elements can be emitted by the sender because of rule R.2. This
packet will have Parf = false because Pj was unAcked at the time it
was sent.
4) In the worst case it could arrive at the receiver at 2At-x since
the Rtimer was set in step 1. For a packet with Pdrf = false to be
accepted, Rtimer > 0, therefore yielding the need for Rtimer to run
2At.

Condition B-1 needs Stime > 2At
1) A Packet can live at most At by rule R.5. A Data packet and its
Ack packet can live at most 2At, with no gap in the timing of their
lifetimes.
2) For the same reason above, if an Ack is ever going to be received, it
will be received within 24At.

Condition B-2 needs Stime > 3At

A Data packet can take a maximum of At to reach the receiver which will
set its Rtimer to 24t at that instant. Therefore, in the worst case the
Rtimer can run at most 34t relative to the time of setting of Stimer.

Crash with Loss of Memory

Sender Sender must wait 3At. The sender wants to be able to choose

any initial seguence number and be assured that:

1) it will be accepted, implying that Rtimer must have gone to
zero (the At being discussed is the At used by the sender
before the crash).

2) any Data packets sent prior to the crash or their Acks that
might have the same SN have died.

Condition 1 above requires 3At because a packet emitted just before the
crash could take At to reach the receiver. The Rtimer would then run 2At
from that point.

Condition 2 above would be satisfied by 2At as discussed earlier.

Receiver Receiver must wait At.

The receiver wants to be assured that it does not accept any duplicate of
any SN accepted before the crash. Waiting At before accepting Data or
Rendezvous packets is sufficient for this need. Ack or Nak packets must only
provide information on data sent after deadstart and waiting the 3At
interval above assumes no old Acks will still exist. Given the way the
algorithm of Section 6 is written Naks might exist longer but no harm

-70-

results. (Note: If we changed the rule that says "senders keep
retransmitting when an element has had its maximum retransmission interval" to
"not retransmitting and freezing the Lifetime," the wait after a crash would

increase to 24t. All other timer values would be the same, but the
gerivation would be as per reference [7].)

-71-

APPENDIX B
EIM Interface State Record Definition
and IPC User Interface Operations

Interface State Record

This appendix contains a logical view of the data structure
maintained for each association by the EIM. We call this an Interface
State Record (ISR). The full duplex bit streams for an association and
the interface to the next higher level can be abstractly represented by
four queues and a set of associated state variables. There is one queue
at each end of the association for each direction of data flow. A queue
element consists of a bit labeled with appropriate attributes (B, E,
protection level). The association queues are shown in Figure B.l.
Figure B.2 illustrates the ISR necessary to represent the queues, as well
as the associated state variables. Additional state information may be
necessary depending on the implementation and the internal interface to

Delta-t (e.g., a flag may be necessary to remember that a DtAck call
should be issued).

received | empty elements |
elements iwlePtr iwrePtr

(a) Receive Queue

1 [[| |
| | || | Optional |
| bit | B | E | PrtctLev | Wakeup l
| | P | Params I
| | || I |
filled in by (Supplied by User)

transport level

(b) Receive Queue Element

|Elements sent but
| not yet Acked
|

ouPtr

Elements not yet sent

— . —

owlePtr owrePtr

(c) Send Queue

-72-

|
|
E | PrtctLev
|
|

I
I
|
|
I

Optional
Wakeup
Params

Figure B.l.

Figure 2.

ISR Definition
Receive State

iwlePtr
Purpose:

Default:
When changed:

iwreOffset
Purpose:

Default:
When changed:

(d) Send Queue Element

Association Queues

iwlePtr

iwreOffset

Receive State

RSind

ouPtr

owleOf fset

owreQffset

Send State

se0ffset

sendCode

giveupError

The input-window-left-edge pointer.

Interface State Record

Pointer to the next empty

element in which to place a labeled bit of data. It is valid

only if iwreOffset>0.
0 (heaa of queue)

Incremented by the EIM as a bit is taken from an accepted Data

packet.

An offset relative to iwlePtr defining the number of available

empty elements, the input window.

iwreOffset.
0

iwrePtr = iwlePtr +

Updated by the User Receive or Receive-Abort procedures and

decremented by the EIM when a bit is received.

=73~

RSind
Purpose:

Default:

When changed:

Send State

guPtr
Purpose:

Default:

When changed:

owleOffset
Purpose:

Default:

When changed:

owreOffset
Purpose:

Default:

When changed:

seOffset
Purpose:

Default:

When changea:

sendCode
Purpose:

A flag set true when rsFlg returned from DtPktRcvd is true
indicating that the correspondent sending port desires to send
on this association and to be reliably informed when empty
receive queue elements are available.

false.

Set true by the EIM when rsFlg returned true from DtPktRcvd.
Reset when DtAck called with rsFlg indicating nonzero window
exists (empty elements added to receive queue).

Pointer to the oldest unacked element.
(lowest numbered) element sent but not yet acknowledged.
is an element to be Acked only if owleOffset>0.

0 (heaa of queue)

Incremented by EIM as each bit sent is Acked (ackOffset
returned in DtPktRcvd).

A pointer to the oldest
There

An offset (output-window-left-edge) relative to ouPtr defining
owlePtr, a pointer to the next element to be sent for the first
time. There is an element to be acked only if>Q0.

D.

Incremented by the EIM whenever a bit is sent for the first
time. Decremented by EIM as each bit sent is Acked.

An optional variable in the interface. An offset
(output-window-right-edge) relative to ouPtr defining owrePtr,
pointing one queue position beyond the highest numbered element
that the receiver could accept. This variable should not be
used to determine when to issue DtStartSend calls. It is only
of value to reinitialize the Sowre variable in the CR if the
ISR persists longer than the CR.

n (some default, receivers are initially willing to accept.)
Updated by EIM from owreOffset returned by the DtPktRcvd.

An offset relative to ouPtr defining sePtr (send-end), the next
queue position to add an element for sending.

0 (head of queue)

Incremented or decremented by the User Send and Abort
procedures and by the EIM as bits are Acked.

Code indicating whether or not a DtStartData call can or

should be issued.
0= do not issue DtStartData call even if nonzero output window

exists as some protocol condition is blocking data sending.

i 7

1l =

giveupError
Purpose:

Default:
When changed:

issue DtStartData call when there is data available for
sending even if a zero output window exists. The EIM's
sending (calling DtStartData) strategy when sendCode = 1
must recognize the following possibilities. When the
output window, represented by (owreOffset-owleOffset),
is less than desired, including zero, an Ack reporting a
larger window could have gotten lost. Therefore, as a
minimum, when there is an E-bit in the send queue (an
implied wakeup for higher level action) or after some
EIM time interval a DtStartData call should be issued.
If the output window is zero Delta-t will enter a
reliable rendezvous-at-sender procedure and sendCode
will return O and polling will not be required. If the
output window is positive Delta-t will send as much data
as will fill the output window (and keep retransmitting
until an Ack is received) and the resulting Ack will
report the latest window.

An error code set when LINCS-IPC gives up trying to send
data on an association. The value of the code indicates
the giveup reason (to the best of LINCS-IPC ability).

0.

When giveup occurs or the ISR is reset.

SQE = send-gqueue-element
(all fields in SQE set by User)
bit - 0 or 1;
B - B mark as defined earlier.
E - E mark as defined earlier
prtctlev - protection level
wakeup - optional implementation dependent parameters to be used
by the interface wakeup algorithm.

RQE = receive-queue-element
(fields set by LINCS-IPC when a bit is received)
bit -0or 1l
B - B mark as defined earlier
E - £ mark as defined earlier
prtctLev - protection level
(field set by User)
wakeup - as defined for SQE.

User Operations on an Association

The abstract User primitives below are viewed as being implemented within

the LINCS-IPC layer.

These are separate from the Delta-t primitives of

Section 6, although they are reflected to the Delta-t primitives. The IPC
User manipulates the ISR by calls to these primitives. The primitives below
only define needed functionality. Reference [21] discusses issues associated

-75-

with creating a practical IPC-User interface. We assume that the interface
module implementing the primitives handles synchronization between the two
asynchronously running User and LINCS-IPC layers by some appropriate
mechanism, such as a monitor.

User Primitives

All the procedures except Wait use the appropriate ISR for the indicated
association.

Assoc = record {unordered pair of LINCS addresses}
addressl,
aadress2: {LINCS address}
end.

procedure Receive (a:Assoc; e:RQE);{Places an empty element on the Receive
Queue}

begin
{Places e on the Receive Queue};
iwreOffset:= iwreOffset + 1

end {Receive}

proceaure Send (a:Assoc; e:SQE); {Placis an element to be sent on the Send
Queue
begin
{Places e on the Send Queue};
seQffset:= seOffset + 1
end {Send}

procedure Sendebort (a:Assoc); {removes an element from the indicated send
queue

begin
{remove a SQE and decrement seOffset. Only elements
not yet sent can be removed}

end {Send Abort}

procedure ReceiveAbort (a:Assoc); {removes an element from the indicated
receive queuel

begin
{remove a RQE and decrement iwreOffset. Only elements not
yet filled by LINCS-IPC can be removed}

end {ReceiveAbort}.

procedure Wait
begin

iThe caller is blocked until a wakeup condition for any of its
associations becomes true. The wakeup conditions are implementation
dependent, but are assumed to follow the guidelines of Section 2.6.
The wait/wakeup mechanism is assumed to handle correctly any close
call conditions resulting from asynchronously running User and
LINCS-IPC modules. When a Wait is issued, wakeup may be immediate as
a result of the current state of the ISR and queue elements.}

end {Wait}

=76-

procedure Status (a:Assoc; var SR:ISR);

egin
{The fields of ISR are copied into SR. If the giveupError field is

nonzero the ISR send state is reset to default values.}
end {Status}

Managing the Interface-State-Record

The abstract IPC service specified above is defined in terms of permanent
associations. That is, it is assumed that each node supported a permanent ISR
for all possible associations with which it could be involved. This is
clearly not practical. One would like to only maintain ISR's for active
associations, i.e., those involved in a "conversation". Further, it is often
the case that the identifiers of one or both ends of an association are not
known at the point when an ISR must be allocated. This is common in the case
of Server processes, since the address of a Customer port that may request
service cannot be known ahead of time, yet state and buffer resources must be
allocated to receive the requests.

To deal with these issues the notion is introduced of allowing the User
to specify that an ISR can only be used for receiving with either a specific
association (specific-ISR) or can be used with any of an indicated set of
associations (any-ISR). A specific-ISR has both ports of the association with
which it can be used completely defined as two full 64 bit LINCS addresses.
The any-ISR has one or both ports incompletely defined. We define a new
primitive for this purpose.

procedure Allocate (ag, aj:Address; var flg:Boolean);

egin
lag and aj define the ends of the association(s) that can
utilize the allocated ISR. If gy and a; are fully specified
then we call it an Allocate-specific. If either ajy or aj are
incompletely specified then we call it an Allocate-any, where "any"
refers to any association that matches the specified parts of a
and aj. flg returns false if an ISR could not be allocated. It
an ISR already exists for the (specific) association, Allocate does
nothing. }

end {Allocate}

When any of the primitives of the previous section are issued, a check
is first made of all specific-ISRs for the local port. If one is found, its
state controls the transfer, otherwise an error exists. When data is received
at a port a check is made of the specific-ISRs. If one is found, it controls
the receipt of the data. If one is not found, then the any-ISRs are examined
and the first one that can be used with (matches) the desired association is
made specific. If none are found, the sender is flow control blocked.

NOTE - In an actual implementation the function of the Allocate

primitive could be combined with the Send or Receive primitives as is done in
Appendix A of reference [21].

-77-

Rllocate, as defined here, has no end-to-end significance. It only
allocates a local ISR. The "Open", "Call Establishment" or other such ‘
primitives defined in many other transport interfaces often do have end-to-end
significance as well as cause an ISR to be allocated [3,10,12]. They are used

for the User level synchronization function that the B mark provides in the

LINCS service, supported by Delta-t. They are also used to indicate when to

establish transport protocol connection records and connection management

packet exchanges and may have other purposes not needed in Delta-t.]

Having allocated an ISR one then needs to define when and how it is
deallocated.

procedure Deallocate (a5, aj:Address);
begin
The system searches for a specific-ISR or any-ISR that matches
the a5, a) pair ana deallocates it.}
end

The Deallocate primitive has ho end-to-end significance. The
end-to-end synchronization User level significance of "Close", "Disconnect" or
other such primitives found in some transport services is provided in LINCS
with higher level conventions in the data. Delta-t does not require hints
from the User interface or end-to-end control communication in regard to when
to discard its state.

The Deallocate primitive's functionality can be combined with other
primitives such as Abort. The Send and Receive Interface state can also be
separately allocated and deallocated. For example, the receive state could be
deallocated if all available buffer space were Aborted or if an E-bit
arrived.

Queue Structure

The IPC service specified above was defined in terms of queues of
individually labeled bits. It is unlikely in practice to be implemented in
such an abstract form. A more likely implementation will create the logical
queues by use of chained block buffers (first bit address and count), where
all the bits in a buffer are labeled with the same security level and only the
first bit in the buffer may be labeled with a B mark and only the last bit may
be labeled with an E mark. Wakeup conditions are also likely to involve
buffer boundaries or completions. An example block buffer based interface is
given in Appendix A of reference [21].

Window Advertisement

The window advertised in Delta-t Ack packets is logically the number of
available elements in the receive queue of the specific-ISR for an
association. If no specific-ISR is available for an association a default
window should be advertised. When a specific-ISR is deallocated an Ack packet
advertising the default window should be sent.

-78-

