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1. Introduction 

This document is one of a series describing protocols associated with the 
Uvermore interactive Network Communication System (LINCS) hierarchical 
architecture [4,15,18]. At the heart of LINCS is its basic interprocess 
communication (LINCS-IPC) service [21]. LINCS-IPC defines a reliable, flow 
controlled, full duplex, uninterpreted, labeled bit stream communication 
service. LINCS-IPC is level 4 in the LINCS architecture. Level 3 of LINCS is 
the Network layer defining an internetwork datagram type service [19]. 
LINCS-IPC interfaces to User processes that utilize higher level syntactic and 
semantic conventions for process interaction [20]. The transport service 
provided by the Delta-t protocol can be considered a sublayer of the LINCS-IPC 
layer. Delta-t augments the Network level service as required to support 
LINCS-IPC. This document specifies the services provided by the Delta-t 
protocol to support LINCS-IPC, the operation of Delta-t, and the services 
Delta-t requires of the Network level. 

This document was written to be self-contained but the reader will find 
it useful to have available for reference the LINCS-IPC and LINCS DeltaGram 
Network layer protocol specifications [19,21]. 

Implementations are underway in Pascal for the PDP-11 running under RTll 
and RXll, in BLISS for the VAX running under VMS, in MODEL for the CRAY-1 and 
CDC 7600 running under NLTSS and LTSS, and for the SEL 32/75 running under 
PORT. 



2. Delta-t Services and Mechanisms 

2.1 Introduction 

Delta-t logically supports a permanent, reliable, flow controlled, full 
duplex, labeled bit stream connection between two ports. There is no extra 
packet exchange overhead to reliably manage connection state as in other 
stream oriented protocols [3,10,12]. Therefore Delta-t can support an 
efficient, low delay, minimum packet exchange, reliable transaction oriented 
service as well as high stream throughput. 

The Delta-t protocol, as defined here, assumes the services of a datagram 
protocol, the DeltaGram protocol [19]. The decomposition of services between 
Delta-t and DeltaGram was made by determining which services required 
intermediate routing node support and those that must be performed end-to-end 
or could be most efficiently handled at these points. 

Below we outline and discuss both the user services visible at the next 
higher level interface to Delta-t and the internal protocol mechanisms used to 
support these. Appendix B outlines the logical functionality of an interface 
to the LINCS-IPC service supported by Delta-t [21]. The next higher level 
interface used in this specification is a lower level interface internal to 
the LINCS-IPC layer. 

2.2 Adoressing 

Communication within the LINCS architecture takes place between ports. 
Ports are iaentified by 64 bit LIICS addresses. Ports are bound to 
processes. Port to process binding is a higher level issue of no concern to 
Delta-t. Actual data movement between ports is supported by the Network layer 
(DeltaGram) protocol. Therefore no additional addressing structure is 
provided by Delta-t. 

2.3 Delta-t Association 

An unordered port pair defines a full-duplex data channel called an 
association. Delta-t detects and recovers from lost, duplicated, and 
missequenced data. Damaged data is detected and discarded (lost) by the 
Network layer. Delta-t labels data bits with a protection level and 
optionally also with B and/or E synchronization marks (see Section 2.6). 
Internally Delta-t also labels bits with a sequence number, version, lifetime, 
and other control information. Data transfer on an association is flow 
controlled. 

The state information at each end necessary to provide these services 
logically always exists for all possible associations (permanent 
connections). After appropriate timeouts, the state information is reset to 
default values. When this state information has a default value it can be 
deallocated and does not need to be maintained by the implementation. 
Management of this state (connection management) is under timer control and 
does not require user interface primitives or special opening and closing 
packet exchanges [14,16]. The state at each end is kept in connection records 
(CR). 

Delta-t's assurance, flow control, and connection management mechanisms 
are outlined in the appropriate following sections. 
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2.4 Protection 

The protection level of Delta-t data is passed through to the Network 
layer which enforces an appropriate protection policy [5,19]. Encryption, if 
required to convert untrusted links (or subnetworks) connecting trusted nodes 
into trusted links, is assumed to take place at the Link level of the LINCS 
architecture. Receiver buffer space is protected by association identifier 
outsioe Delta-t within LINCS-IPC (see Appendix B). Additional access control 
services are defined at higher levels of the architecture. 

2.5 Assurance 

2.5.1 Introduction 

Delta-t guarantees data will not be lost, duplicated or missequenced. 
The Network layer provides optional damage detection and discard on a per 
packet basis. If packet segmentation is not required, then this protection is 
end-to-end. Whenever segmentation occurs, the Network layer provides 
hop-by-hop protection with no unprotected gaps. It is assumed that the next 
higher level interface will maintain (or allow the user to determine) the 
sequence of data sent and received on a given association. 

Delta-t provides for data assurance through data sequence numbers (SNs) 
on bits, a positive-acknowledgment/retransmission mechanism, and bounds on 
packet lifetime. The mechanisms used to detect and recover from lost, 
missequenced, and duplicate packets are identical to those used in many other 
transport protocols [11,13]. Delta-t's timer based connection management is, 
however, unique [6,16]. A negative acknowledgment (Nak) is also provided as 
an efficiency and diagnostic aid, although it is not essential to correct 
protocol operation. The Delta-t assurance mechanisms are now outlined. 

2.5.2 Lost Packets 

Delta-t detects and recovers from lost packets by positive acknowledgment 
and retransmission. The origin transmits a packet and then waits an interval 
for a positive acknowledgment (Ack). This interval is usually slightly longer 
than the average round trip time for a packet and its Ack to be generated and 
traverse the network. If an Ack is not forthcoming in that interval, the 
unacknowledgeo packet is retransmitted. If no positive acknowledgment is 
received after attempting some number of retransmissions (giveup time), an 
error is reporteo to the user with an indication of the successfully Acked 
data and of data transmitted but not Acked. A giveup timeout can result 
through failure of data to be delivered or failure of Acks to be returned. 
Delta-t level information cannot Determine which case occurred. Either case 
could occur from an end-node computer crash or serious network problem such as 
a partition. A higher-level recovery mechanism, using conventions on the B/E 
marks or higher-level delimiters, is required if the ambiguity needs to be 
removed. Delta-t has been designed to limit the cases where this ambiguity 
can occur to situations such as end-node system crashes and serious network 
faults which are outside of its ability to detect and recover. 

The choice of retransmission interval is an important factor affecting 
average packet delay and network efficiency. If the interval is too long, 
large average delays can result. If the interval is too short, average delay 
may be less, but network efficiency is decreased due to the possibility that 
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packets may be retransmitted unnecessarily. This choice is complicated in an 
environment wnere average delay is quite route dependent. 

If a packet is Detected as damaged, if its lifetime expires, or if 
another delivery problem exists within the routing network or at the 
destination, a Nak packet is returned to the origin. This information may be 
used to trigger retransmission and may be recorded as a hint for diagnostic 
purposes. 

An acknowledgment mechanism is based on being able to identify the units 
acknowledged. In Delta-t bits are numbered sequentially with a sequence 
number. An Ack indicates the SN of the next bit the receiver expects to 
receive. The acknowledged SN (ASN) implies acknowledgment of all previous 
SNs. Therefore, if an Ack is lost, Acks of succeeding bits acknowledge 
preceding bits. Similarly, duplication of Acks will cause no difficulty 
because they just confirm what is already known. 

The size of the field chosen to represent SNs is finite and therefore SN 
arithmetic is performed modulo 2"̂ , where n is the number of bits in the SN 
field. In Delta-t n = 32. Because SNs wrap around, care must be taken to 
avoid having two different bits or their Acks with the same SN in the network 
at once. Because Naks are used strictly as an efficiency or diagnostic hint 
Nak ambiguity is not an assurance problem. If we define the term MPL to stand 
for either the longest time a packet can exist, or is estimated to exist or is 
desired to exist in the network (maximum-packet-lifetime), R as the maximum 
time a sender will keep retransmitting a packet, A as the maximum time a 
receiver will wait before sending an Ack, and T as the maximum new SN 
generation rate (often maximum transmission rate), then, assuming new bits are 
transmitted at the maximum rate even while retransmission takes place, the 
following inequality must be satisfied to meet the above unique SN condition: 

2n>(2*^PL + R + A)T. 

This inequality assures that a sender generating SNs at the maximum rate will 
not reuse an SN until it is guaranteed that an SN and any Acks of it have 
arrived or no longer exist in the network. 

2.5.3 Duplicate Packets 

SNs are also used for duplicate detection. At any point in time the 
receiver knows what SN it is expecting next. We call this SN the 
l_eft-window-jedge (LWE), because at any point in time, for assurance and flow 
control reasons, the receiver is only willing to accept bits with SNs within a 
particular range called the acceptance window. SNs less than the LWE are 
duplicates [17]. Duplicates are discarded and become lost. The mechanism of 
the previous section is used for recovery. 

2.5.4 Missequenced (out-of-order) Packets 

A missequenced bit is one with an SN not equal to the LWE but within the 
acceptance window. Two implementation choices exist for handling a 
missequenced bit: 

(1) it can be held (its lifetime continues counting down) until its 
predecessors arrive, on the assumption they will follow shortly and 
all can be Acked before the sender's retransmission interval 
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elapses, thus increasing efficiency, or 
(2) it can be discarded, with retransmissions providing for correct 

ordering thus simplifying the implementation. 

The model of Section 6 assumes the latter. 

2.6 Synchronization Including Connection Management 

Delta-t's synchronization services support bits being labeled with B and 
E marks (B-bit and E-bit respectively) and a guarantee of sequenced data 
delivery. Use of B- and E-bits is determined by higher level convention., The 
purpose of the B-bit is to label the beginning of a higher level data unit, 
such as a message [20]. It provides a synchronization mark in the data stream 
where parsing or other operation can safely begin. This function is provided 
in other transport protocols by explicit connection opening packet exchanges. 
The purpose of the E-bit is twofold, to label the end of a higher level data 
unit and to indicate a required higher level wakeup point. 

Internally Delta-t supports sequenced data delivery using SNs. Delta-t 
provides reliable management and synchronization of the state at each end by a 
timer mechanism. Reliable connection management is a subtle area discussed in 
detail in references [1,7,14,16] and Appendix A. Here we briefly outline the 
simple timer mechanism used by Delta-t for connection management. 

Conceptually, there are three main phases in connection management 
(explicit phase separation is not required in Delta-t): (1) initializing 
(opening) the connection records at each end to nondefault values, (2) 
evolving the state during ongoing data transfer, and (3) resetting or 
terminating (closing) state information when no further data needs to be 
transferred. During the reliable opening of a transport protocol assurance 
connection, the main problem is establishing initial SNs meeting the following 
opening conditions: 

01: If no connection state exists or it is in the default state, 
(connection closed) and the receiver is willing to receive, then no packets 
from a previous connection should cause a connection to be initialized and 
duplicate data to be accepted. 

02: If a connection exists, then no packets from a previous connection 
should be acceptable within the current connection. 

In order to avoid ambiguity about the state of data sent, connections 
should be closed in a way allowing each side to know that the other side has 
received any data sent (a graceful close). This implies two closing 
conditions: 

CI: A receiving side must not close until it has received all of a 
sender's possible retransmissions and can unambiguously respond to them, and 

C2: A sending side must not close until it has received an Ack for all 
its transmitted data or allowed time for an Ack of its final retransmission to 
return before reporting a giveup failure. 

Delta-t's timer-based approach meets the connection management conditions 
above by having both sender and receiver maintain connection records long 
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enough to guarantee that all duplicates have died out, information flow is 
smooth (all bits sent that could be acceptable are accepted), and all 
transmissions, retransmissions, and Acks have arrived at their destination, if 
they are ever going to arrive. The connection records at each end of an 
association are under control of a receive-timer (Rtimer) and send-timer 
(Stimer) respectively. No synchronization between timers is required, other 
than that provided by the sending and receiving of packets, but it is assumed 
that the timers at each end run approximately at the same rate; that is, over 
an interval of 3At (see below for At definition) there is no significant 
drift. For reasonable At intervals (less than 1 to 2 minutes) this 
assumption is easily satisfied with current clock specifications. The Rtimer 
interval guarantees that the receiver maintains its connection record long 
enough to (1) detect all duplicates and (2) guarantee that acceptable SN's 
will reach the receiver. While Rtimer > 0 the receiver will only accept 
packets with SNs in its acceptance window. The Stimer interval must be such 
tnat (1) the sender's connection record be maintained as long or longer than 
the receiver's, in order for the sender to be sure to generate acceptable SNs, 
(2) it is long enough to recognize all Acks that it may receive and (3) it 
will not reuse a SN until all previous data packets and their Acks using that 
SN have died. 

The rules for timer intervals, control of the timers, setting of packet 
header control flags, SN selection, and packet acceptance are developed in [6] 
and Appendix A. They are quite simple. We define the quantity. 

At = MPL + R + A, where MPL is a worst case estimate of the time for 
traversing the network and R and A are as defined earlier. 

Safe values for use in initializing the timers are: 

receive-time = 2*At 
send-time = 3*At. 

R.l) Stimer is refreshed whenever a new SN (i.e. a new data bit or 
Rendezvous packet) or reliable-Ack is sent (see Section 2.7.3 for 
discussion of rendezvous and reliable-Acks). 

R.2) Once a bit b^ has had its maximum retransmission time (or 
equivalently maximum number of retransmissions) no new bits can be 
transmitted until bi has been Acked; bits b^+k which had 
previously been transmitted can continue being retransmitted until 
their maximum retransmission time. 

R.3) Rtimer is refreshed whenever a new SN is accepted or data overflow 
occurs. 

R.4) When Rtimer expires, the receive state is reset to its default 
values. 

R.5) Once a bit or Rendezvous or reliable-Ack is initially transmitted 
its lifetime is set equal to At and starts counting down. 

R.6) At the point an SN is tested for acceptance, the lifetime of any 
Ack packet generated is set equal to At and begins counting down. 



R.7) When Stimer expires (giveup timeout) the send state is reset to its 
default values, any initial SN can be used when new data needs 
sending, and if unAcked SNs exist a giveup error is reported. 

Delta-t packet headers label their first bits with a Data-Run-Flag 
(Pdrf), set 1 in packets sent when all previously sent SNs have been 
acknowledged, allowing receivers to detect missequenced packets before it has 
initialized its state [6]. When the Rtimer is nonzero only packets with SNs 
in the acceptance window can be accepted and the Pdrf value can be 0 or 1. 
When the Rtimer is zero only a packet with Pdrf=l is acceptable. If the 
Stimer is nonzero, then the next contiguous SN to that contained in the 
connection record must be used when a new bit is to be sent. If the Stimer is 
zero, then any initial SN can be used because no packets for the association 
exist in the network. 

With the above mechanism no exchanges of packets are required to reliably 
open or close connections. A sender's connectionrecord is "opened" 
automatically, i.e., holds nondefault state, when SNs are sent. A receiver's 
connection record is "opened" automatically when acceptable SNs are received. 
Each record is returned to its default state when sending and receiving 
activity cease or pause because Stimer and Rtimer go to zero. Therefore, 
connection records are automatically maintained only when needed. Also no 
problems exist when both ends of an association simultaneously begin sending. 
Figure 2.1 illustrates two common cases of packet exchange and CR management. 
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Sender Receiver 

CR in default 
state 

Set Stimer 

I 

CR in non-
default state 
(for 3At) 

I 
Stimer + 
expires 

CR in default I time 
state 4-

Data: SN, Pdrf=l, m bits data 

Ack: SN+m 

(SN can be any value) 

CR in default 
state 
Set Rtimermer 

CR in non-
default state 

I (for 2At) 
j;̂  Rtimer expires 
CR in default 

state 

time 

(a) Single Data Packet and Ack Exchange 

Sender 
CR in default 

state 

Set Stimer 

Set Stimer 

CR in non-
default state 

Set Stimer 

3At 

Stimer expires 

CR in default 
state 

Receiver 
CR in default 

state 
Data: SNl, Pdrf=l, ii bits data 

Data: SNl+il, Pdrf=0, m bits data 

MT: SNl+£+m 

Data: SNl+Um, Pdrf=l, n bits data 

Ack: SNl+il+m+n 

(SNl can be any value) 

Set Rtimer 

Set Rtimer 

CR in non-
default state 

Set Rtimer 

2At 
I 

4- Rtimer expires 

CR in default 
state 

4- time 4- time 

(b) Example Multiple Data Packet Exchange 

Figure 2.1. Example Packet Exchanges and CR State (for simplicity data 
exchange in only one direction shown.) 
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2.7 Resource Management 

2.7.1 Segmentation 

Delta-t supports a bit stream service. The bit stream at the user 
interface may be segmented into buffers in an actual implementation. 
Segmentation of the bit stream into packets is an internal Delta-t 
implementation issue. If packets need further segmentation during packet 
transport that is handled by the DeltaGram protocol. 

2.7.2 Flow Control 

There are still many questions needing answers in the flow control area, 
particularly related to how flow control interacts with buffer management, 
retransmission, and other protocol and implementation mechanisms [8]. 
Throughput is dependent on the interaction of these issues. Flow control 
mechanism design problems arise from the desire for a mechanism and choice of 
identifiable flow control unit(s) that reflect the nature of the several 
resources being protected (e.g., user and system buffers, CPU cycles, 
interface access) and yet allows efficient transmission on an association, 
independent of the widely varying implementation choices possible. Until we 
feel we understand the issues better we have chosen for this version of 
Delta-t the simple window or credit flow control mechanism. It works as 
follows. 

Each Ack packet contains a window (credit) field indicating the 
additional number of bits of data, relative to the ASN, that the receiver can 
accept. In effect, the quantity (ASN + window - 1) indicates the highest SN 
the receiver is willing to accept. In Delta-t this information is advisory 
only. Receivers may renege on window promises, or senders can send more. 
Overflow of the receiver's window will result in the overflow data being 
discarded. Sender or receiver strategies that result in frequent overflow 
will cause inefficient use of resources. Therefore, sending and receiving 
strategies should be such that this is an infrequent event. 

2.7.3. Window Management 

The receiver must implement a policy for determing what window to 
advertise. The policy chosen can be a function of user or system buffer space 
available for an association, based on statistical management of a buffer 
pool, etc. Similarly a sender must implement a transmission policy relative 
to the receiver's advertised window, and as information is sent, adjust its 
estimate of the receiver's window. A range of policies are possible in each 
of these areas. The optimum policy is dependent on receiver operation and 
buffer management strategy, normally unknown to the sender. 

Choice of these policies as well as protocol mechanisms supporting 
reliable window exchange is called window management. While choice of these 
policies and their interaction can significantly affect performance our level 
of understanding is such that this specification cannot provide much in the 
way of explicit guidance, except as follows. First sending policy. 

The sender must update its estimate (output window) of the receiver's 
available input window according to the following rule: As each bit is sent 
decrement by one the output window, unless the bit is labeled with an E, 
delimiting a higher level data unit. In the latter case the sender should 
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assume the available output window goes to zero. The returning Ack of the 
E-bit will update this appropriately. (Note: The send window remains zero 
until the E-bit is Acked.) The motivation for this rule is to cover the case 
where the receiver may be implementing a block buffer strategy (first bit 
address and count) and complete a buffer once an E-bit is placed in it, thus 
invalidating any previously advertised window. 

Higher level LINCS conventions restrict use of message boundaries to only 
define wakeup points in the data stream. In a LINCS control stream this is a 
point where an action, and normally a reply, is expected and, therefore, 
pipelining of control messages is not required. Data is transferred as 
specified in a control message, in a single data message. Data message 
pipelining is not expected. Therefore, the pause in data sending resulting 
from assuming a zero window when an E-bit is sent will not cause a performance 
degradation. 

The discussion to follow contains more motivation than that for other 
mechanisms because the issues are not documented elsewhere. A question that 
sending policy must answer is the following. When the state record at the 
sender indicates that the receiver has less space than it has data to send 
(particularly a zero length output window) and all data sent has been Acked, 
how long should it wait before attempting to send? The answer must consider 
the problem resulting from the possibility of missequenced or lost Ack packets 
[7] and that the receiver may be using small buffers and the window may remain 
small. If a receiver sends an Ack packet advertising a window, then sends 
another packet advertising a larger window, and the latter arrives first, the 
sender's state will indicate that a window renege has taken place and thus the 
sender may not send while it awaits a new larger window indication. A similar 
problem results if the Ack packet indicating an increased window gets lost. 
The receiver may also have a long delay before a window increases. 

We consider two cases sending into a small but positive window and 
sending into a zero window; first the positive window case. We assume that 
receiver action is indicated by an E-bit, therefore, a sender must always send 
as much data as the output window allows when there is an E-bit to send or a 
maximum size packet can be filled. Once data has been sent it will be 
retransmitted until an Ack is received, thus providing for reliable window 
update. The sender might also have a timer (not modeled in this 
specification) to force sending into a smaller positive window than desired 
for packet handling efficiency. 

Now consider the problem of a zero window. When the sender receives an 
Ack indicating a zero window there are two cases, either the sender has more 
data to send or it does not. In the latter case, expected to be common in a 
distributed operating system or transaction environment, no more packet 
exchange need take place. Each end's state records will timeout and be 
discarded. When the sender again has more to send, it will do so. In the 
former case the sender wants to wait for the receiver to reliably indicate 
that the window has opened. What is desired is a mechanism to assure a 
reliable window opening without the inefficiency of the sender polling the 
receiver [12] or the receiver constantly sending Acks on inactive connections 
[3,10].The sender must indicate once to the receiver that it should reliably 
signal window opening when it occurs. 

The mechanism is the following and is illustrated in Figure 2.2. When 
the sender's state indicates that all data sent have been Acked, there is data 
to send, and a zero window exists, it sends what is called a Rendezvous packet 
indicating that it wants to be informed (rendezvous-at-the-sender) when the 
window goes positive (which might be imnediately). The Rendezvous packet 
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contains a field that consumes SN space protecting it against duplication or 
missequencing. Since it is only sent when all previous data have been Acked, 
none of the usual difficulties that can result from including control 
information in SN space exist [7], The Rendezvous packet is retransmitted 
until Acked (or its retransmission interval expires), thus protecting it 
against loss. When the receiver's input window opens and it is in the 
rendezvous-at-sender state, it will send a specially labeled Ack packet and at 
retry intervals retransmit this packet until it receives an acceptable Data 
packet (which in effect "Acks" it), thus protecting the "window opening" Ack 
(reliable-Ack) against loss. Duplication or missequencing of these Acks at 
most cause extra packet exchanges and are not assurance hazards. We now 
discuss issues associated with window overrun. 

Senoer Receiver 

p bits to 
send p<m 

(CR could 
expire) 

Send m bits of data in assumed window n(m<n) 

Ack m bits, report zero window 

Send Rendezvous Packet 

reliable-Ack reports new window = k 

send up to k bits of data (also Acks 
reliable-Ack) 

Ack k bits of data 

accept m bits 
all buffers used 
window zero 

receiver remembers 
sender wants 
reliable-Ack when 
window opens. 
(CR could expire) 

additional buffer 
space allocated. 

Figure 2.2. Rendezvous-at-sender Packet Exchange without Overflow. 

Window overrun can occur because (1) the receiver reneged on an 
advertised window due, for example, to buffer withdrawal or because it was 
advertising windows based on a statistical buffer management strategy, or (2) 
the sender sent more than the advertised window. The sender might be able to 
detect window overflow if it receives an Ack with (ASN + window) less than the 
highest SN sent. Then it could stop transmitting new and retransmitting data 
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outside the window. If the sender just blindly kept transmitting and 
retransmitting before the receiver allocated buffer space, there would be the 
possibility both of unnecessary traffic and that the giveup interval on some 
data might expire. If unAcked bits were outstanding at giveup time (because 
they were simply discarded by the receiver due to window overflow) then an 
unnecessary ambiguity exists for the user when the giveup is reported. The 
sending user does not know whether or not these bits were delivered, when in 
fact the receiving protocol module knew they were not. The user may then 
unnecessarily enter an expensive higher level error recovery procedure to 
resolve the ambiguity. Because the input window opening delay could be much 
longer than At if the window advertised is based on user space and the user 
is subject to long scheduling delays, unnecessary ambiguous situations could 
be frequent. 

One Delta-t design goal, as stated earlier, has been to minimize the 
number of these ambiguous situations to those outside its control (network 
partitions and end node crashes). To deal reliably with the above problem two 
approaches are possible: (1) to make it illegal to renege or overrrun an 
advertised window (common in many protocols) or (2) to provide mechanism to 
reliably allow renege or overrun. Delta-t supports the latter. If overrun 
actually occurs, the receiver explicitly reports this fact in an Ack packet 
with a window-overflow-flag (Pwof) set. The outstanding unAcked overflow bits 
are then logically treated by the sender as if they were never sent, in effect 
extending their lifetime. Extending the lifetime of an overflow bit does not 
introduce any duplication hazard in a timer-based protocol if the 
rendezvous-at-the-sender procedure described above is used. It could 
introduce a hazard if polling were used, but the mechanism below would remove 
it also. 

Duplicates of the overflow bits can cause a hazard, however, with the 
rendezvous-at-sender procedure described above if they are accepted by the 
receiver just after the window opens because they will "Ack" any reliable-Ack 
that may have been sent (stopping retransmission) and if that reliable-Ack and 
the Ack of the duplicate data just accepted both are lost, the sender will 
never learn the window has opened. To avoid this problem, Delta-t uses the 
following mechanism illustrated in Figure 2.3 to assure that duplicates of 
overflow bits are unacceptable. 

When the receiver detects overflow it generates an Ack packet indicating 
overflow and a zero window and enters a state where it will not accept further 
Data packets until it receives an acceptable Rendezvous packet. When the 
sender receives an Ack indicating overflow has occured it (1) resets the state 
of the overflow bits as if they were never sent and (2) generates a Rendezvous 
packet (since all data sent has now been Acked) that contains the ASN in the 
Ack indicating overflow (so the receiver will accept it) and an SN offset to 
be added to it that will yield an SN larger than any overflow SN sent. The 
receiver then translates its input window SNs by the offset and reenters the 
Data packet acceptance state. 
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Sender Receiver 

reset over­
flow bits as 
if never sent 

wait for 
window to 
open 

(CR could 
expire) 

Data: 

Ack: 

SN, m 

SN+k, 

Rendezvous 

Data: 

Ack: 

bits into assumed window n (m<n) I 

1 
indicate overflow and zero 

: SN+k, consume m-k SN's 

SN+m, zero window 

reliable-Ack: 

send up to n 

Ack: 

• 
• 
• 

window n 

window 1 

bits (Acks reliable-Ack) 1 

1 
data 

window k<m 

enter don't-
accept data state 

enter 
accept-data-state 

window opens 
(could be long 
time and CR 
return to default 
state) 

Figure 2.3. Rendezvous-at-sender with Overflow. 

The question yet remains of what strategy the receiver should use in 
deciding what size input window to advertise. This is a very implementation 
dependent issue. Some suggestions are given in Appendix B. 

2.8. Diagnostics and Measurement 

The only diagnostic and measurement service offered by this version of 
Delta-t is the generation of Nak packets when a packet's lifetime has expired 
and optionally when out-of-sequence packets are rejected. Trace and timestamp 
routing services are offered by DeltaGram. 

2.9 Services Not in Delta-t 

Many transport protocols support two channels per association, a normal 
data channel and a second channel called variously an expedited, out-of-band, 
or interrupt channel. When a need for the latter type of channel is required 
by a LINCS application, a separate association is used. 

Delta-t requires no Reset, Purge, or Clear type packets, nor are user 
interface primitives required to assist Delta-t in management of its 
connection records. 
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No priority field for data is provided. 

The above features are not required because of the advantages of timer 
based connection management [16]. 

2.10 Future Services 

The Delta-t bit stream is labeled with a Delta-t version number to 
provide for future evolution. 
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3. Services Required of the Network Layer 

Delta-t as defined here is assumed to operate on top of a Network layer 
providing the services below. 

3.1 Data Objects and Addressing 

Delta-t assumes that the Network layer provides a full duplex 
uninterpreted data channel between two ports, each identified by 64 bit 
addresses. 

3.2 Protection 

Delta-t labels bits with a protection level passed on to the Network 
layer where a routing level protection policy is assumed enforced [5,19]. 

3.3 Assurance 

Delta-t assumes that the Network layer is detecting and discarding 
damageo packets with a mechanism leaving no gaps in the protection. 

Delta-t assumes that packet lifetime is bounded, that it can specify this 
bound, and that the receiving Delta-t end can obtain the assumed initial bound 
set by the sending end. 

3.4 Resource Management 

Flow Control 
Network layer flow control service is not required. 

Segmentation 
Delta-t assumes that the Network protocol will segment packets 

containing Delta-t SNs used as packet identifiers and maintain correct 
bit labeling. 

3.5 Synchronization 

The only synchronization service required is to know where Delta-t 
packets begin and end and the ability to support the carrying of Delta-t B and 
E bit labels. 

3.6. Control Information 

Certain control information used by Delta-t such as initial packet 
lifetime, may also be used by the Network Layer. It is assumed that this 
information can be conveyed in either direction across the interface. 
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Model of the Delta-t Environment 

4.1 Environment Model 

Delta-t supports the LINCS-IPC or related services [21]. 
services are on an association basis. 

All IPC 

Figure 4 illustrates the flow of information between remote user 
processes on an association. If the communicating processes were local then 
layers l-4a would be replaced with a local transport mechanism. 
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A specification requires a model of the environment in which the protocol 
is to operate and of the structure of the protocol module itself. This 
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specification is based on a programming language procedure model. The 
procedures embody the desired response to external events (next higher level 
interface, timer, next lower level interface packet receipt) in terms of state 
transitions (changes to state variables) and output events (packets or signals 
generated and timers set). The programming language notation used is Pascal 
[22] with an exponentiation operator (**). Pascal was chosen because it is 
widely read and has most of the notation needed. 

For the purposes of this specification we view the Delta-t environment as 
logically consisting of three asynchronously running processes which we call: 

(1) User, 
(2) IPC (embodying Delta-t) and 
(3) Link. 

The Network (DeltaGram) level is embodied as procedures in both the IPC and 
Link processes. We use the term process simply to indicate a locus of 
concurrent activity. The three processes could be quite different kinds of 
entities in a given environment. In many implementations these entities might 
just be sets of co-routines within the same module. In other environments 
there might be many User processes, several Link processes, and a single IPC 
process multiplexing many associations for one or more of these Users. These 
are implementation details outside this specification. Unambiguous behavior 
can be specified in terms of single User, IPC, and Link Protocol processes. 

The three processes communicate via shared data structures and wakeup 
signals, the latter undefined here. The data structure shared between the 
User and IPC processes is the Interface-State-Record (ISR) defined in Appendix 
B. The ISR consists of logical Send and Receive queues containing data to be 
sent or empty buffers for receiving data and other state. The buffers could 
be in User space or in system space. The data structure shared between the 
IPC and Link protocol processes consists of packet queues, and a Routing 
Table. The organization of the processes is shown in Figure 4.2. 
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Figure 4.2 Model of a Delta-t Environment 

Logically the User process consists of two sets of procedures, the 
User-application procedures, and the User-system procedures. The User-system 
procedures implement the LINCS-IPC interface primitives (see Appendix B and 
reference [21]). These procedures could be library routines or usually, 
because of protection, efficiency, and system integrity reasons are service 
procedures accessed via operating system service calls or the equivalent. The 
User-system procedures update the ISR and signal the IPC process. 

Logically, the Link process consists of four sets of procedures and three 
levels of protocol: 

0 The channel interface module (CIM) that interfaces to a lower level 
channel protocol, 

0 The Link Protocol Module (LPM) that implements the Link protocol 
proper, 

0 The DeltaGram Module (DGM) that implements the DeltaGram (Network 
level) service, and 

0 The Packet Buffer Management module (PBM) that manages a pool of 
packet buffers and the Packet Queues. 

The latter two sets of procedures are shared with the IPC process, which 
contains two levels of protocol, DeltaGram and Delta-t. DeltaGram service has 
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not been separated as a separate process because packet format knowledge is 
needed within the Link process so that packet lifetimes can be updated to 
reflect time spent on packet queues (see reference 19 for the DgAdjustLifetime 
procedure). The Link process signals the IPC process when it places a packet 
on its packet Queue. 

The IPC process consists of two other sets of procedures, besides the DGM 
and PBM: 

0 The environment interface module (EIM) that isolates Delta-t from the 
details of a specific LINCS-IPC user interface, buffer management, 
synchronization mechanism, operating system, and lower level protocol 
environment. 

o The Delta-t module providing end-to-end services between remote IPC 
users. 

The IPC process determines if the transfer is local or remote and 
utilizes the appropriate data movement mechanisms in each case. The 
discussion in this specification assumes network communication, but the 
LINCS-IPC service is supported between processes on the same (local) system as 
well as between processes on different (remote) systems. Local and remote 
communication probably use separate data transfer mechanisms for efficiency. 
The IPC process signals the Link process when packets need sending, and it 
signals the User process when Sends or Receives complete. 

4.2 Event Handling 

There are three sets of asynchronous events that affect Delta-t operation 
(1) IPC user interface (Sends, Receives, Aborts), (2) Timer, and (3) Receipt 
of packets. Choice of mechanism for synchronizing or a strategy for 
scheduling these events is very much dependent on the operating system 
design. Therefore, we assume that the EIM receives event signals, determines 
their type, schedules their handling and calls Delta-t with the appropriate 
primitive as needed. The EIM to Delta-t interface consists of five procedures 
defined in Section 6. Calls to these procedures represent events, their 
execution performs appropriate state transitions and output functions, and 
their returns represent output. Their correspondence with events is as 
follows: 

User Interface Events: 
Procedures DtStartData and DtFinishData report IPC user interface data 

sending events or the requirement to Ack a reliable-Ack. 
Procedure DtAck reports IPC user interface buffer allocation events, 

or the need to Ack a received Data or Rendezvous packet. 

Timer: 
Procedure DtTimeout reports the expiration of a Delta-t timer. 

Packet Receipt: 
Procedure DtPktRcvd reports the receipt of a packet. 

The reporting of expiration of Delta-t's Rtimer and packet receipt have time 
dependency. If there is too long a delay between the occurrence of Rtimer 
expiration or packet receipt and notification of Delta-t, some data sent by 
the other end may be unnecessarily rejected. 
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The parameters of these procedures define the association, offsets for 
controlling the logical queue pointers of the ISR (see Appendix B), receiving 
and sending control flags, and pointers to packet buffers (passed in both 
directions). The only assumption made here on logical packet buffer structure 
is that the first buffer in any structure is large enought to contain a 
DeltaGram header. Any remaining structure (e.g., creation of packet buffers 
from chained buffers) is known only to the Packet Buffer Management and EIM 
procedures. 

There are two main buffer strategy issues: (1) whether the EIM should 
buffer data in its own buffers or maintain a pointer structure to buffers 
directly within user-application space and (2) what structure of buffers are 
logically supported: circular or block (square), fixed or variable length, 
etc. The EIM isolates the Delta-t primitives from which choices are made. We 
also want to isolate the details of how Receive-anys and Receive-specifics 
interrelate (see Appendix B), and the details of EIM implementation 
generally. 

Besides a procedure to obtain a packet buffer (defined in Section 6), 
Delta-t needs two timer procedures supplied by the EIM, one to obtain the 
current dateTime and the other to set or cancel an alarm. 

function EIMtime ( 
{Arguments - none} 
{Results} 

datetime: DateTime); 
begin 

{returns dateTime as an integer in appropriate units relative 
to some start point} 

end {EIMtime}. 

procedure EIMalarm ( 
{Arguments} 

assoc:AR; {association for which the timer is being set.} 
cdt: DateTime; {dateTime when a DtTimeout call should be 

issued} 
rcFlg, {request (true)/cancel (false) flag indicating whether an 

alarm should be set or canceled} 
presenceFlg:Boolean; {This flag is valid only if rcFlg is true and 

is returned to the EIM by the alarm server and indicates that 
the ISR should be in memory before calling DtTimeout as the 
ISR may need updating or be used as indicted in return 
parameters.} 

{Results: none;}); 
begin 

{update the alarm server's database}. 
eno {EIMalarm}. 
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5. Delta-t Use of DeltaGram Packet Header Fields 

The Delta-t protocol, as specified here, is assumed to use the DeltaGram 
protocol [19]. Delta-t aoes not need explicit packet header space of its own 
because it can utilize services provided by DeltaGram. 

Graphically a DeltaGram packet has the following format when laid out in 
32 bit blocks. 

O'-l 2-3 A-6 7 8-15 16-19 20-23 24-31 

iPverl Ptypel PresllPdnl PhdrChksum IPprtctLevl PAtexp | Plifetime 
I I I I I ! \ I 

1 Fia 
PdestAddr 

PdestAddr - continued 

PoriginAddr 

PoriginAddr - continued 

Ptdf - (packet type dependent field) 

Ptdf - continued 

Ptdf - continued Data packets only - contains user data 

The meaning of the fields is the following. 

Pver: 2 bit DeltaGram version number (see DeltaGram specification for usage). 

Ptype: 2 bit packet type. 
0 Data packet. 
1 Reverse Control (Delta-t Ack). 
2 Direct Control (Delta-t Rendezvous). 
3 Nak. 

Presl: 3 bits reserved. 

Pdn: 1 bit, do not Nak if undeliverable flag. 

PhdrChksum: 8 bit header checksum - see DeltaGram specification for 
algorithm. 

PprtctLev: 4 bit protection level. 

PAtexp: 4 bits for determining tick size used to decrement Plifetime and to 
determine initial Plifetime. tick = 2**PAtexp seconds. 

256 
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Plifetime: 8 bits remaining packet lifetime, in tick units. 

Pid: 32 bit packet identifier (Delta-t SN). 

PdestAddr: 64 bit destination port identifer. 

PoriginAddr: 64 bit origin port identifer. 

Ptdf: 64 bit packet-type-dependent-field defined below (may exceed 64 
bits for Data packets). 

A packet interface between Delta-t and DeltaGram is assumed here; that 
is, Delta-t makes up a complete DeltaGram packet header and receives a 
complete packet. The EIM places or removes data from a packet. How Delta-t 
utilizes or sets each header field for the four DeltaGram packet types is now 
defined. For all the packet types the following field settings apply. 

Pver: Set to appropriate DeltaGram version. 

Presl: Set 0. 

PhdrChksum: Calculated and set as appropriate. 

PAtexp: Set from global association or connection record state, 
as required by packet type. 

Plifetime: 

PdestAddr: 

PoriginAddr: 

Set as appropriate to Delta-t operation. 

Set to the appropriate destination address. 

Set to the appropriate origin address. 

The remaining header fields are set dependent on packet type. 

5.2 Data Packets 

Set to 0, Data. 

Set 0, Nak if undeliverable. 

Set to the protection level of the data contained. 

Ptype: 

Pdn: 

PprtctLev: 

Pid: 

Ptdf: 

Set to the SN of the first bit in the packet or that of 
the next bit to be sent if no data is contained. 

The Ptdf field for a DeltaGram Data packet has the 
following format. The formats of the DeltaGram Pfbl, 
Plbl, and Pabl fields can be defined by Delta-t for its 
bit labeling use. 
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0 15 16 23 24 31 
1 
1 

2 
1 1 1 

iPdslPtl 1 
1 i 1 
1 1 1 

1 Pfbl 
PoataChksum | | 

4 11 12|Pres2 |Pb| Pdrf 
1 1 
1 Pabl 1 Pdl 
Pres41 1 

iPAtver 1 

1 Plbl 1 
1 1 
|Pres3 1 Pe 1 

1 1 
1 PuserData 1 

PdataChksum: Set to checksum of PuserData (see DeltaGram 
specification for algorithm). 

Pfbl: 
Pres2: 6 bits reserved, set 0. 
Pb: The B mark, set as appropriate for labeling the first data bit in 
the packet. 
Pdrf: The data-run-flag, labels first bit. 

1 All previously sent bits have been Acked, 
0 There are outstanding unAcked bits. 

Plbl 
Pres3: 7 bits reserved, set 0. 
Pe: The E mark, set as appropriate for labeling the last data bit in 

the packet. 

Pds: Set 0, can segment if necessary. 

Pt: Set 0, no trace or timestamp diagnostics. 
Pabl 

Pres4: 8 bits (6 bits in Pabl and 2 additional) reserved, set 0. 
PAtver: 2 bit Delta-t version number. The four versions have 

similar meaning as for DeltaGram, although the version 
numbers may be different. 

Pdl: Set to the number of bits in the PuserData field. 

PuserData: Variable, 0 or more data bits. 

5.3 Ack Packets (Reverse Control) 

DeltaGram Reverse Control packets are used for Delta-t Acknowledgment. 

Ptype: Set to 1, Reverse-Control. 

Pdn: Set 1, Do not Nak if undeliverable. 

PprtctLev: Dependent on protection policy enforced. 
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Pid: Set to the Ack sequence number, the SN of the next expected bit 
(the receiver's left-window-edge). 

Ptdf 

0 

1 Pres5 

1 10 11 12 
1 1 1 
1 Pres6 IPAtver | 
1 1 1 

Pwindow 

28 29 31 
1 1 
i Ack Flags 1 
1 P P P 1 
1 P 1 w 1 r 1 
1 u 1 0 1 a 1 
1 f 1 f 1 f 1 

Pres5 29 bits reserved, set 0. 

Ppuf, Pid undefined flag. 
1 if Pid undefined. Pid is only defined when Rtimer >0. This bit 

is set 1 when only a relative window is being reported. A Delta-t 
Ack packet can be used to just report an input window and not Ack 
any data. 

0 if Pid defined, possibly Acking an SN. 

Pwof: Window overflow flag. 
1 if overflow, 
0 if no overflow. 

Praf: Reliable Ack flag. 
1 if this Ack will be retransmitted until its sender receives an 

acceptable Data packet. 
0 if normal Ack (sent one time only). 

Pres6: 10 bits reserved, set 0. 

PAtver: 2 bit Delta-t version number. 

Pwindow: 20 bit flow control window. 

5.4 Direct Control Packets 

The direct control packet is used by Delta-t to convey various control 
information. So far only one control subtype has been defined. It is for use 
in window management (see Section 2.7.3). The general format of the Ptdf 
field of this type packet is the following. 
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0 7 31 

1 \ 1 
I Psubtype I Subtype Dependent (Std)l 

I \ I 
1 \ \ 1 
I Std I PAtver I Std I 
J \ \ I 

Psubtype: defines the control subtype. 
PAtver: 2 bit Delta-t version number. 
Subtype dependent: defined for each subtype. 
Psubtype = 1: Rendezvous packet. Packet header fields for a Rendezvous 

packet are the following. 

Ptype: Set 2, Direct-control. 

Pdn: Set 0, do not Nak. 

PprtctLev: Depends on protection policy enforced. 

Pid: Sequence number of next data bit receiver is currently known to 
expect. 
Ptdf 

0 78 23 24 31 
1 i m I 
I 1 I Pres7 I d I PresS I 
II I r I I 
I I 10 11 12 I f I I 
I \ \ I 
I Press continuedIPAtver I Psno I 

J I \ I 

Pres7: 15 bits reserved, set 0. 

Pdrf: (see Pdrf for Data packets). 

Pres8: 18 bits reserved, set 0. 

PAtver: 2 bit Delta-t version number. 

Psno: SN offset used by receiver to readjust its next expected SN. 
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5 Nak Packets 

0 

1 PnakReason 

1 PnakRes 

i PnakRes 
1 11 12 

1 
1 Pdl 

1 

31 

No special Delta-t format. 

Ptype: Set 3, Nak. 

Pdn: Set 1, do not Nak if undeliverable. 

PprtctLev: Depends on protection policy enforced. 

Pid: That of packet being Nacked. 

Ptdf: 

The "reason for Nak" code space from 128 to 255 is reserved for the next 
higher level. For Delta-t: 

128 = arbitrary refusal. 

129 = out-of-sequence. 
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6. Delta-t Operation 

6.1 Introduction 

This section specifies Delta-t service and operation in terms of a Pascal 
based procedure model for an association specified as an argument to the 
Delta-t interface procedures. Sections 6.1 and 6.2 in conjunction with 
preceding sections should be sufficient to give the reader an overview of 
Delta-t operation. Sections 6.3 to 6.7 present the model in detail. The 
model is not intended to imply a required implementation. It is intended to 
unambiguously specify functionality. Any algorithm with equivalent 
functionality can be used. 

The model presented here assumes operation within the environment (EIM) 
defined in Section 4. Until two or more communicating implementations exist, 
this specification should be assumed to contain bugs. Please contact the 
author if questions arise. 

The Delta-t model is a finite state machine. A Delta-t input event is 
represented by a procedure call. Input events are scheduled within the EIM 
according to implementation dependent resource management priorities. State 
is represented in a Connection Record (CR) defined in Section 6.2. Variables 
beginning with capital R or S are CR receive and send variables respectively. 
The procedures of the model embody the correct state transition rules. Output 
events are represented either as parameters returned in the Delta-t interface 
procedures (packets to be sent and updates to EIM state) or procedure calls 
issued by Delta-t to set or cancel timers. Before calling Delta-t the EIM 
obtains a buffer large enough to hold a packet header. 

The three classes of input events and their effect are now outlined. 

Timer Events: Timers are set by Delta-t calling the procedure EIMalarm. When 
a timer expires, the EIM issues a DtTimeout call. DtTimeout determines 
which,if any, of the following three events has occurred, performs state 
update, and generates required output. 

Rtimer ->• 0. 
Rtimer is the only timer that could cause potential problems if it ran 

longer than it was set for. In this case packets might be rejected that could 
be accepted, leading to possible unnecessary retransmissions and ambiguity if 
acceptance did not occur. Therefore, this event should have high priority for 
input to Delta-t. 

0 All CR receive state variables are reset to or become default values. 
0 There is no output function. 

Stimer ->• 0. 
This event is handled in the procedure StimerExpired. 

0 All CR state send variables are reset to or become default values. 
0 If all packets sent have not been Acked, a giveup timeout has 

occurred. Data in doubt is identified and an error code is output. 

Retrytimer •*• 0. 
A packet's retry timer has expired (checked in function shouldRetry). 

0 Packet retransmission is handled in the procedure sendRetry. If the 
lifetime of the packet to be retransmitted has not expired, parameters 
are returned as output. Data retransmission takes place by Delta-t 
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indicating to the EIM the data to be retransmitted in the return from 
DtTimeout. The EIM then recalls the Delta-t procedures DtStartData 
and DtFinishData to prepare the Data packet for retransmission. 
Delta-t prepares Ack or Rendezvous packets to be retransmitted and 
returns a pointer to the packet buffer. 

0 A Retrytimer may be set as an output function. 
o The state of the retry data structure is updated. 

After having checked for the above events, if any, and having performed 
the appropriate state transitions an EIM data sending condition (see function 
tryData) is checked and a return variable is set. (If an initialization wait 
interval has expired, packet sending can proceed. If a Data packet has 
exceeded its maximum retransmission interval new Data packet sending is 
blocked.) 

The CR is then checked to see if it's in its default state (Rtimer and 
Stimer both expired). The CR can be deallocated if it is in its default state. 

Data Receiving and Sending: Packet formation and state update takes place in 
procedures with names of the form sendX ,where X is Data, Ack, Rendezvous, or 
Nak. 

Receive or Receive Abort 
When a Receive or Receive-Abort call is issued by the IPC user, or 
Delta-t has indicated in a return from DtPktRcvd that an Ack is required, 
the EIM updates its state and issues a DtAck call to Delta-t. 
0 The receive window (Riwre) is updated. 
0 The Stimer and retry data structure are updated if a reliable-Ack is 

generated because a zero receive window is opening. 
0 An Ack packet is output and send state is updated. 
0 The timestamp (Stimestamp) used to initialize the Ack's lifetime is 

reset. 

Send 
When a Send call is issued by the IPC user, the EIM updates its state 
and issues a DtStartData call when its state indicates Delta-t may be 
able to send a Data packet. If data can be sent this call is followed by 
a DtFinishData call (to compute header and data checksums). The EIM will 
also issue a DtStartData call even if no data is available if Delta-t has 
indicated in a return from a DtPktRcvd call that a Data packet is 
required to Ack a reliable-Ack. 
0 Delta-t checks a Data packet sending condition (see function 

shouldData) to see if a Data packet can or should be sent. If a 
Data packet cannot be sent a Rendezvous packet sending condition is 
checked (see function shouldRendezvous) to see if a Rendezvous 
packet should be sent. If a Data packet is sent, the packet header 
is prepared by Delta-t and a pointer to a packet buffer and a count 
of the amount of data to be sent are returned in DtStartData. The 
data is then placed in the packet buffer by the EIM and DtFinishData 
is called. If a Rendezvous packet is to be sent, Delta-t prepares 
it and returns a pointer to it. 

0 The Stimer will be set when a new data or Rendezvous packet is sent. 
0 Send state variables reflecting the number of SNs consumed by data 

or Rendezvous packet are updated. The output window is reset to 
zero if an £-bit is sent. 

-28-



0 An EIM data sending condition (see tryData) is checked to determine 
if data sending can continue and a return parameter is set. 

An abort of a Send by the IPC user only affects state in the EIM and is 
not an event of interest to Delta-t. 

Packet Received from the Next Lower Level: 

When a packet is received the EIM issues a DtPktRcvd call passing Delta-t 
a pointer to the packet. 

0 Delta-t tests each packet received for acceptability. The rules for 
packet acceptance are contained in procedures or functions with 
names of the form acceptX, where X is as defined above. Packets are 
discarded if unacceptable. A Nak packet is returned for two cases 
of unacceptable Data packets (Lifetime expired, or optionally if 
out-of-sequence packets are rejected). If the received packet is a 
Rendezvous (packet accepted or not) or Data (when accepted or 
rejected and when a Nak is not sent) packet an Ack flag is set in 
the return from DtPktRcvd. The EIM will schedule a DtAck call which 
will generate an Ack with the latest receive window. The lifetime 
of the Ack packet begins at the point a packet requiring an Ack is 
tested for acceptance. Accepted packets are processed in procedures 
with names of the form processX, where X is as defined above. The 
handling of accepted packets is now outlined. 

Data Packets: 
0 If data is accepted or overflows, Rtimer is set. In the latter 

case the variable Rovflwind is also set. The 
input-window-left-edge (Riwle) is adjusted for data accepted. 
The retry data structure is updated if a reliable-Ack is Acked 
by this Data packet. 

0 Delta-t returns an offset within the received packet and count 
of the amount of data to accept, its protection level, and 
whether or not the first and last bits accepted are respectively 
labeled with a B or E mark. 

0 An Ack flag is returned. An Ack packet will be generated when 
the EIM schedules and issues a DtAck call. 

0 The IPC user is signaled by the EIM if a Receive that it issued 
completes. 

Rendezvous Packets: 
0 Rtimer is set. 
0 The acceptance window (Riwle, Riwre) is adjusted. 
0 If the receive window is zero a return parameter is output to 

the EIM indicating that it should remember that the 
correspondent end wants to be reliably informed when the receive 
window opens, 

o An Ack flag is returned. An Ack packet will be generated when 
the EIM schedules and issues a DtAck call. 

Ack Packets: 
0 Delta-t send state is updated (what data has been Acked, the 

output window, whether or not waiting for the output window to 
open, and Nak state). 
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0 State parameters required by the EIM are returned (what data 
have been Acked, the new output window, and if overflow has 
occurred and, what data has overflowed and needs resending). 

o A code is returned to the EIM indicating that a DtStartData call 
is required to cause a Data or Rendezvous packet to be generated 
to Ack a reliable-Ack even if there is no data available for 
sending, that EIM sending can proceed when data is available or 
that sending is blocked. 

0 A data sending condition is checked to determine if EIM sending 
can proceed (see function tryData) and the EIM is informed of 
the result. 

0 The IPC user is signaled by the EIM if a Send has completed. 

Nak Packets: 
0 State is updated possibly resulting in optional suspension of 

new data sending, or in innmediate retransmission. 
0 The Nak is optionally recorded in a history file. 

For reference in the sections below the meaning of the first letter of 
variable names is the following: 

A - association variable. 
P - field of a £acket Record, defined in Section 5. 
R - field of a Connection Record, primarily affecting receiving, defined 

in the next section. 
S - field of a Connection Record, primarily affecting sending, defined in 

the next section, 
s - local _send variable, 
r - local receive variable. 
any other Tetter - local variable used only in the procedure it is 

declared or argument or return. 

6.2 Connection Record Definition and Management 

6.2.1 Introduction 

Delta-t operates on control information carried in Delta-t packet headers 
and state information maintained by each end. Delta-t packet header 
information was defined in Section 5. We now define the state information 
maintained at each end. Logically, state information is always being 
maintained by each end for all possible associations with which Delta-t might 
be involved (permanent connections). In fact, however, state information must 
only be explicitly maintained for a subset of associations. For all other 
associations, the state information values are standard defaults. State 
records containing default values can be reclaimed. 

The nondefault state information required by Delta-t is maintained under 
timer control. While nondefault state information (either Rtimer or Stimer 
nonzero) is being maintained for an association an active connection is said 
to exist. This state information is maintained in a connection-record (CR). 

The variables collected together in the CR exist on a per association 
basis. They are the variables that must be maintained across calls to the 
Delta-t. Some of these state variables are required in any model or 
implementation, others are dependent on the details of the model or 
implementation. Other send and receive variables are local to Delta-t 
procedures. 
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lete CR) 

Receive and Send CR State Information per Association (not the comp 

The CR Receive and Send state information is shown in Figure 6.1 In 
addition other CR parameters for an association are required. These are 
prefixed with the letter A, and are defined in Section 6.2.5. 

An important aspect in the design of any assurance and flow control 
protocol is the synchronization and evolution of the state information in 
connection records in the face of arbitrary transmission delays, errors, and 
end-noae crashes and deadstarts. This process is called connection 
management. Connection records in Delta-t are managed, invisible to the next 
higher level, based on two timers at each end of an association, the Stimer 
for sending and the Rtimer for receiving. CR's exist when either Rtimer or 
Stimer is nonzero. Each timer interval provides assurance and smooth data 
flow services (see Appendix A). The rules for timer managment were outlined 
in Section 2.6. 

During normal but bursty data flow, with bits being Acked in a timely 
manner, active CRs come into play and may later be reclaimed with no 
interactions required with the next higher level. When Stimer = 0 while 
unAcked SNs are outstanding, the EIM, and in turn the IPC user, is informed 
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that an error exists and what data if any have been sent but not yet Acked. 
The IPC user must then decide how to continue. This situation can only happen 
if the network is partitioned or the receiver crashes. 

Half open connections are handled by a wait interval after 
initialization, discussed below. 

6.2.2 Sender Initialization 

Deadstart or crash recovery requires that all state records (or just 
those for damaged associations) be reset to their default values. An interval 
3At must expire on a damaged association (crash with loss of memory) before 
sending any type of packet (see Appendix A). No Ack or Nak packet should be 
accepted before data has been sent. This assures that the destination's 
Rtimer will time out (removing half open connections) and that all data 
packets sent before the crash ana their Acks or Naks have been destroyed. 
This condition is enforced in the model by checking this interval during the 
function tryData and the procedures processAck and processNak. 

(There is the implied requirement that senders must know what value of 
PAtexp they were using before a crash, modeled here as an association 
constant AAtexp (see Section 6.2.5).) 

6.2.3 Receiver Initialization 

Receivers must wait at least At after an initialization before 
accepting any Rendezvous or Data packets to protect against duplicates (see 
Appendix A). The At used is the sender's and, with loss of memory, the 
receiver will not know it until a packet arrives. Therefore, the receive wait 
interval is computed from PAtexp in the packet header relative to the Aidt 
field in the CR (see Section 6.2.5). This condition is checked in the 
procedure acceptData and the function acceptRendezvous and guarantees that all 
packets sent before the crash will have been destroyed, before receiving 
begins again. 

6.2.4 Connection Record Definition 

The Connection Record defined below is not meant to imply that a given 
implementation would require exactly the same variables. More or less 
variaDles may be needed depending on its algorithms. All variables are 
initialized to default values when the CR is created. 

CR = {Connection Record} record 
Aassoc:AR; {association record defined in Section 6.3} 

AmaxPktSize, {max packet size for this 
association, set from global state when the CR is created.} 

AAtexp, {parameter set from global state to be used to compute the 
initial value of the packet Plifetime field, placed in the packet 
PAtexp fields, and used to derive the value for Stimer. A given 
implementation chooses AAtexp to create an appropriate At. At 
is the sum. At = R + MPL + A, where 

R= time sender normally expects to keep retransmiting (this time 
would usually be n average-round trip times). 
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MPL = an estimate of worst case acceptable network-travel-time. It 
should be a value assuming queuing and processing in the longest 
expected chain of intermediate store and forward nodes. 

A= Maximum expected time until the receiver will Ack an SN. The 
value is a function of receiver's implementation or some 
reasonable worst case estimate such as a few seconds. A 
standard upper bound on A will be established.} 

Aretrytime:integer; {time between retransmissions when "Acks" 
are not received; a number related to average round trip time set 
from global state.} 

Aidt:DateTime; {The dateTime of the last initialization of 
the environment for this association.} 

{Send variables set to default values when the CR is initialized} 

Stimer, 
{Purpose: Stimer serves two functions, assurance and smooth data 
flow. The assurance function of the Stimer is also twofold: (1) to 
assure that the CR is maintained until all Acks will be received if 
they are ever going to arrive (graceful close, only a remote end crash 
or network partition would prevent their timely arrival), (2) to 
assure that no SN is reused with new data until all packets containing 
it have died. 
The smooth data flow function guarantees that the sender's CR is 
active longer than the peer's CR so that acceptable SNs are generated. 
No harm results if Stimer is allowed to run beyond its expiration 
time. Its purpose could be compromised if it is allowed to expire 
early. 
When Stimer expires and Sou^Sowle an error condition exists (see 

below). 
Default: = 0. 
When changed: Stimer is set when a new sequence number (SN) is sent 

in Data (see procedure sendData) or Rendezvous packets 
(see procedure sendRendezvous), or a reliable-Ack 
packet is sent requiring a Data packet as an "Ack" (see 
procedure sendAck). It is set to the dateTime it is to 
expire. The Stimer interval is 3*2**AAtexp. Stimer 
is reset to 0 when it expires (see procedure 
StimerExpired).} 

StimeStamp:DateTime; 
{Purpose: StimeStamp is the dateTime of receipt of a Data or 
Rendezvous packet requiring an Ack packet. This is a model dependent 
variable required here because an Ack is not necessarily generated 
immediately when Data or Rendezvous packets are tested for 
acceptance. The EIM must schedule a DtAck call to cause Delta-t to 
update the receive window (Riwre-Riwle) and generate the Ack. If no 
delay were assumed between the return from a DtPktRcvd call and the 
issuing of the DtAck, this variable would not be needed. The 
requirement that must be met for correct Delta-t operation is that 
there must be no gap between the timing of the lifetimes of the latest 
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SN and its Ack. The condition to be met is that the combined lifetime 
of the latest SN received in a Data or Rendezvous packet and its Ack 
must not exceed 2*2**PAtexp (2At) (see Appendix A). Exactly where 
a given implementation chooses to end the timing of the lifetime of a 
received SN and begin the lifetime timing of its Ack is an 
implementation choice. In this model StimeStamp is used to compute 

the interval between acceptance testing of the most recently arrived 
SN and its Ack. The Rtimer (see receive state below) is to be 
refreshed at the point the lifetime timing of each incoming SN stops. 
Default: = 0. 
When changed: StimeStamp is set to the current dateTime during the 

procedures processData or processRendezvous and reset 
when an Ack packet is sent (see procedure sendAck)} 

{Now we define a send SN space, a series of SNs that correspond in SN 
space to the pointers in the ISR logical send queue (see Appendix B).} 

Sou, 
{Purpose: SN of the oldest unAcked SN. If Sou = Sowle then all Data 

or Rendezvous packets sent have been Acked. 
Default: = arbitrary. 
When changeo: Sou is updated during the procedure processAck as data 

or Rendezvous packets sent are Acked. 

Sowle, 
{Purpose: SN of the next bit or Rendezvous packet to be sent 

(output-window-left-£dge). 
Default: = Sou. 
When changed: Sowle is changed in the procedures sendData and 

sendRendezvous when a Data or Rendezvous packet is 
created. 

Sowre:SN; 
{Purpose: SN + 1 of "largest SN" the receiver can accept 

(^utput-window-^ight-^dge). That is, the receiver has 
advertised willingness to receive SN's up to but not 
including Sowre. 
Sowre is used to determine if Data packets containing data 
can be sent (see function shouldData), or a Rendezvous 
packet should be sent (see function shouldRendezvous). 

Default: = Sowle + n, where n is a network or association default. 
When changed: Sowre is updated to Sou + Pwindow in the procedure 

processAck, to Sowle in the procedure sendData when a 
E-bit is sent (output window goes zero), and to Sowle 
plus an offset provided by the EIM in procedure 
DtStartData. 

{all arithmetic and inequalities with SNs must be performed correctly 
modulo 2**32. The relationship Sou £ Sowle < Sowre must always hold} 

SrendSenderInd, 
{Purpose: Indicates that a Rendezvous packet has been sent and the 

sender is waiting for its output window to open 
(Sowre > Sowle). 
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Default: false. 
When changed: Set during the procedure sendRendezvous and reset 

during the procedure processAck, when the window 
opens.} 

Sovflwind, 
{Purpose: A model dependent flag recording that data sent have 

overflowed. This will result in a Rendezvous packet being 
sent when DtStartData is called. 

Default: false. 
When changed: Sovflwind is set in the procedure processAck when 

overflow occurs and is reset in sendRendezvous when 
the SN's of the overflow data have been skipped.} 

SeSentInd, 
{Purpose: A model dependent flag indicating that an E-bit has been 

sent, but has not yet been Acked. While SeSentInd is true 
the output window (Sowre-Sowle should remain zero. 

Default: false. 
When changed: SeSentInd is set in the procedure sendData when an 

E-bit is sent and is reset in the procedure 
processAck.} 

Sretryind, 
{Purpose: A model dependent variable that records that the 

next DtStartData is for retry data. 
Default: false. 
When changed: It is set during the procedure sendRetry. It is 

reset during the procedure sendData. 

SseriousNakInd:Boolean; 
{Purpose: Records that a Nak has been received indicating there is 

some problem serious enough to suspend sending new data 
packets (not required for correct operation, only for 
efficiency). Retrys should be continued for the normal 
cycle just in case the Nak was caused by a transient 
malfunction or ambiguous Nak exists (see Section 6.6.1). 

Default: false. 
When changed: During the procedure processNak, and reset during 

the procedures StimerExpired and processAck} 

SnakReason: integer; 
{Purpose: Location for keeping the latest PnakReason. This code is 

reported as a problem hint to the EIM if a giveup timeout 
error occurs. It is advisory information only. 

Default: 0, means have not received any Nak reason. 
When changed: Set during processNak and reset in procedures 

processAck and, StimerExpired (when the CR is reset 
to default values) (when all data or, packets sent 
have been Acked).} 
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SinPtr, SoutPtr, SendPtr = fRetryRecord (see below); 
{Purpose: 

These pointers point to RetryRecords in a Retry Queue. (How 
retry is handled is model or implementation dependent. A 
particular retry algorithm is included here for completeness of 
the model.) SinPtr is nil or points to the first Retry Record 
in the queue. SoutPtr is nil or points to the oldest 
RetryRecord in the queue with an active retry timer. SendPtr is 
nil or points to the end (last) record in the queue. The 
errTries in the closed interval between SinPtr and SoutPtr will 
be retransmitted when their retry timers expire, if packet 
lifetime has not expired. The entries in the interval between 
SoutPtr but not including the entry at SoutPtr, and SendPtr 
including the entry at SendPtr have had their maximum number of 
retries and are waiting for acknowledgement. 
The oldest entry that can be retried is at SoutPtr and the 
youngest will be added in front of the entry at SinPtr. The 
entries are thus ordered by age. 
The condition SoutPtr h SendPtr is important as it indicates SNs 
exist that have had their maximum retrys and no new data should 
be sent (see Appendix A). 

RetryRecord = recoro 
rrtype: (Data, Ack, Rendezvous); {type of 

packet} 
rrEntrytime, {time placed in queue} 
rrRetryTimer, {time when next retry can take 

place} 
rrLifetime: DateTime; {time when packet lifetime 

expires} 
rrPID: SN; {SN in packet Pid field} 
rrSNO: integer; {for Data packets this is Pdl, for 

Ack packets its Pwindow, for Rendezvous 
packets its Psno} 

rrBlink, {back link to previous entry} 
rrFlink = \ RetryRecord; {forward link to next 

entry} 
end {RetryRecord}. 

Default: SinPtr = SoutPtr = SencPtr = nil. 
When changed: These pointers are manipulated during the various 

retry procedures (see Section 6.4.2), and are reset 
in the procedure StimerExpired when the CR is 
returned to its default state.} 

{Receive related variables} 
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Rtimer: Datetime; 
{Purpose: Rtimer provides assurance and smooth data flow services 

(see Appendix A). The assurance service of the Rtimer is 
to provide protection from duplicate packets. The smooth 
data flow service of the Rtimer is to guarantee that any 
packet sent with Pdrf = false that arrives at the receiver 
after a predecessor packet sent with Pdrf = true, will be 
acceptable. Pdrf is used for detecting misseguenced 
packets [6]. 

Default: = 0. 
When changed: Rtimer is set when a new SN is accepted (new data or 

Rendezvous packet), or there is a receive window 
overflow even if no data is accepted. When Rtimer = 0, 
then Data or Rendezvous packets will only be accepted 
that have Pdrf = true, any other packet is considered 
out-of-sequence. Such a packet may be held at the 
implementer's option but its lifetime must continue to 
count down until it is in sequence. While Rtimer > 0 
packets are accepted when insequence with no regard to 
the value of Pdrf. 

RAtexp: integer; 
{Purpose: This quantity is used to compute the value of the Rtimer 

interval, to compute the Plifetime field in Ack packets, 
is used as the PAtexp field in Ack packets, and to 
determine if the receive initialization wait interval has 
expired. 

Default: = undefined. 
When changed: It is set during the procedures processRendezvous and 

processData when the first packet is accepted for a 
given CR. The value is initialized from the PAtexp 
field in the received packet that caused Rtimer to be 
first set.} 

IReceive SN space variables, logical receive queue SNs} 
Riwle, 

{Purpose: Next expected and acceptable SN (_input-window-^eft-^dge). 
Used to protect against lost, duplicate, and misseguenced 
packets. The procedures, as written in this 
specification, assume that packets are processed in 
sequence. Logically, we assume that out-of-sequence 
packets, if not discarded, are recognized and buffered 
until they can be processed in sequence. Their Plifetime 
fields must continue to count down. 

Default: Undefined for assurance purposes, however, the interval 
Riwre-Riwle may be meaningful for flow control. 

When changed: Riwle is adjusted during the procedures processData and 
processRendezvous, as SNs are accepted.} 

Riwre:SN; 
{Purpose: SN of the next bit beyond where there is currently 

available buffer space (J-nput-window-j^ight-^dge). That 
is, the receiver can accept SN's up to but not including 
Riwre. The interval between Riwle and Riwre defines the 
number of SNs that can be accepted and the value of 
Pwindow sent in Ack packets. This window is advisory only. 
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Default: undefined. 
When changed: Riwre is adjusted in procedures DtAck, processData, 

processRendezvous. It represents user interface 
Receive events.} 

Rov fIwind:Boolean; 
{Purpose: A flag indicating that the receiver's buffers were overrun 

and that Data packets should not be accepted until a 
Rendezvous packet is accepted and Riwle has been adjusted 
to protect against duplicates of the overflow bits. 

Default: false. 
When changed: It is set during the procedure processData when 

overflow occurs, and is reset during the procedure 
processRendezvous and DtTimeout.} 

end {CR}. 

6.2.5 Allocation and Deallocation of State 

The CR is created and destroyed by the following procedures. 

The procedure getCR returns the CR for a given association and, if 
necessary, creates one. 

procedure getCR (assoc:AR; var crPtr:CRpointer). {AR and CR are 
association and connection records}. 

begin 
{CRs are kept in an implementation dependent data structure where 
they can be retrieved efficiently by association. If no CR exists 
for the association, one is created in the default state and is 
placed in the CR structure. If there is no CR space available then 
crPtr returns nil and the Delta-t procedure will fail. More 
sophistication is certainly possible but not modeled here.} 
if (EIMtime-Aidt) <3*2**AAtexp then 

with crPtrt do EIMalarm (assoc, Aidt + 3*2**AAtexp, true, 
true) {This will generate a DtTimeout call later and allow 
sending to proceed after an initialization wait interval} 

end {getCR}. 

The procedure defaultCR checks whether or not the CR is in its default 
state. If it is, the CR is reclaimed. In the model, the procedure defaultCR 
cannot be reached while Ack, Nak, or Rendezvous packets should be sent or Data 
packets should be resent. Thus implicit in the CR default condition is the 
requirement that all packets needing sending for control purposes have been 
sent. New data never having been sent, but not sent because of a zero output 
window may, however, exist. 

procedure defaultCR (crPtr:CRpointer); 
begin 

with crPtr+ do_ 
If (Stimer = 0) and (Rtimer = 0) then dispose (crPtr) 

end {defaultCR}. 
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The Delta-t Module Global Environment 

The Delta-t procedures reside in the following declaration environment. 
const 

Data = 0; 
Ack = 1; 
Dcntr: = 2 {Rendezvous}; 
Nak: = 3; 

type 
SN = 0..2**32-1; 
PKT = record {Pascal record of the packet structure 

defined in Section 5}; 
Address = array [0..63] of Bit; 
CR = {Connection Record} record {defined above}; 
AR = {association} record destAddr, originAddr:Address 

endj 
dateTime = integer; 
CRpointer = CR; 
PKTpointer = -fPKT; 

RetryPointer = RetryRecord; 

procedure getCr (Assoc:AR;var crPtr:CRpointer); {defined in Section 
6.2.4} 

procedure setTimer (crPtr:CRpointer; timer,interval:DateTime; 
presenceFlg:Boolean); 

{This procedure sets the timer in the CR pointed to by crPtr and 
calls the EIM alarm service to generate a signal when the timer 
expires. The presenceFlg is an efficiency hint for the EIM; when true 
it indicates that on a timer expiration the ISR (see Appendix B) 
should be in memory before calling DtTimeout as the ISR may need 
updating.} 
begin 

EIMalarm (assoc, timer, false, presenceFlg); {cancels alarm for 
previous expiration of timer.} 

timer := EIMtime + interval; {time when timer is to expire.} 
EIMalarm (assoc, timer, true, presenceFlg) {sets alarm} 

end {setTimer}; 

procedure DGaajustLifetime (timestamp:Datetime; offset:integer; 
ptr:PKTpointer-fPKT; var remainingLifetime: integer); {defined in 
DeltaGram specification [19]. 

begin 
This primitive adjusts the lifetime of the packet pointed to by ptr 
and remainingLifetime returns a value £ 0 if the lifetime has 
expired else returns a value > 0.} 

end {DGadjustLifetime}, 

procedure EIMtime {defined in Section 4}); 
procedure EIMalarm ({defined in Section 4}); 
procedure DtTimeout ({defined in Section 6.4}); 
procedure DtAck ({defined in Section 6.5.1}); 
procedure DtStartData ({defined in Section 6.5.2}); 
procedure DtFinishData ({defined in Section 6.5.2}); 
procedure DtPktRcvd ({defined in Section 6.6}); 
procedure dataChecksum ({defined in Section 6.5.2}); 
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procedure headerChecksum ({defined in Section 6.5.2}); 
procedure addRetryEntry ({defined in Section 6.4.2}); 
procedure deleteAckedEntries ({defined in Section 6.4.2}); 
procedure deleteRetryEntry ({defined in Section 6.4.2}); 
procedure sendAck ({defined in Section 6.5.1}); 
procedure sendRendezvous ({defined in Section 6.5.2.1}); 
function min (al,a2,a3:integer):integer {returns minimum of 3 

arguments}; 
function tryData ({defined in Section 6.5.2}); 

6.4 Timer Event Handling and Retransmission Procedures 

6.4.1 DtTimeout 

Timer events are reported to Delta-t by calling the procedure DtTimeout. 
This procedure represents Delta-t's rules for handling timer expiration. It 
checks whether or not Rtimer, Stimer, a retrytimer, and send initialization 
wait intervals have expired. It performs the appropriate state update and 
output actions. It checks to see if the CR is in a default state. It also 
determines whether or not EIM sending can proceed. 

DtTimeout ( 
{args} 
assoc:AR; {association record for association with timer 

expiration.} 
sPkt:PKTpointer {Packet header for possible Ack or Rendezvous 

packet needing retransmission.} 
{returns} 
var retryFlg, {if true then the next DtStartData call should be for 

count retry data bits starting at offset relative to 
ouPtr (reason and sPkt are meaningless)} 

sPktFlg, {if true an Ack or Rendezvous packet needing retransmission 
was formedT] 

giveupFlg:Boolean; {if giveupFlg is true then a packet(s) (Data or 
Rendezvous) with offset bits relative to ouPtr have been sent and 
not Acked and reason indicates hint at reason for failure.} 

var sendCode, {0-means EIM data sending is blocked, do not issue 
DtStartData calls. 

1-means even if output window is smaller 
than desired, e.g. zero, issue a DtStartData call at least when 
an E-bit needs sending to enter Rendezvous-at-sender procedure. 
Other codes not relevant for this return.} 

offset, {defined above} 
count, {defined above} 
reason:integer; {defined above}); 

var crPtr:CRpointer; {pointer to the CR for assoc.} 
procedure sendRetry (crPtr:CRpointer; var retryFlg:Boolean; var offset, 

count:integer; sPkt:PKTpointer); {defined in Section 
6.4.2} 

procedure StimerExpired (crPtr:CRpointer); {defined in Section 
6.4.3} 

procedure defaultCR (crPtr:CRpointer); {defined in Section 6.2.4} 
function shouldRetry (crPtr:CRpointer):Boolean; {defined in Section 

6.4.2} 
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begin 
getCR (assoc, crPtr); 
if crPtr ^ nil then {DtTimeout should never have been called when 

there was not a CR} 
begin 

with crPtrf do 
begin 

{initialize returns} 
sendCode:= 1; 
retryFlg:= false; 
sPktFlg:= false; 
giveupFlg:= false; 
offset:= 0; 
count:= 0; 
reason:= 0; 

{test for Rtimer -> 0 event} 
if (Rtimer > 0) and ((EIMtime - Rtimer) > 0) then 

begin {Rtimer has expired} 
{all CR receive variables are reset to or become 

default values.} 
Rtimer:= 0; 
Rovflwind:= false 

end; 

{test for retrytimer -*• 0 event} 
if ShouldRetry (crPtr) then sendRetry (crPtr, sPkt, 

sPktFlg, retryFlg, offset, count); 

{test for Stimer -»• 0 event} 
if (Stimer > 0) and ((EIMtime - Stimer) _> 0) then 

StimerExpired (crPtr, offset, reason, giveupFlg); 

{check to see if send initialization wait interval has 
expired or some packet has had its maximum 
retransmission time.} 

if tryData(crPtr) then sendCode:= 1 else sendCode:=0; 

{check to see if CR is in default state and can be 
deallocated} 

defaultCR (crPtr) 
end 

end 
end {DtTimeout}. 

6.4.2 Handling Retransmission 

The details of how retransmission is handled is an implementation issue 
outside the protocol. There are two requirements that must be met however. 
One requirement is that the retransmission interval R (see Appendix A) for 
each bit or packet be bounded. The number of retransmissions during this 
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interval is an implementation decision. The upper bound is the lifetime 
interval for a bit or packet, but in practice it will be less than this to 
assure that the last retransmission can reach the receiver with Plifetime > 
0 and thus be accepted. 

A second requirement is that when data or a Rendezvous packet exists that 
has had its maximum number of retransmissions, new transmissions must be 
stopped as required by the derivation of timer intervals in Appendix A 
(represented here by SoutPtr ^ SendPtr). 

Because we assume retransmission is unlikely, with properly adjusted 
retry timers, a simple retransmission model is presented that seems adequate. 
An entire packet (all data in a Data packet) must be Acked before a packet is 
removed from the Retry Queue. A packet is the unit of retransmission. 

On the assumption that retry is caused by congestion it may be reasonable 
to stop new transmissions until everything sent has been Acked. This is not 
done here however. 

Within this section we define all procedures involving retransmission 
even though only some of them are used when DtTimeout is called. 

The retry data structure (a queue of RetryRecords) was defined in Section 
6.2.5 during the CR definition. Here we give the procedures and functions 
that operate on this structure. The initial condition of SinPtr = SoutPtr = 
SendPtr = nil is assumed. 

To add a description of a packets Ptr to the Retry Queue in the CR 
pointea to by crPtr the following procedure is called. 

procedure addRetryEntry ({args} crPtr:CRpointer; sPtr:PKTpointer{no 
returns}); 
var retryPtr = ^RetryRecord; 
begin 
with sPtrt, retryPtrf do 

begin 
new (retryPtr); 
{fill in RetryRecord} 
rrType := Ptype; 
rrEntryTime := EIMtime; 
rrLifetime := Plifetime; 
rrPID := Pid; 
rrBlink := nil; 
case Ptype of 

Data:rrSNO := Pdl; 
Ack:rrSNO := Pwindow; 
Dcntrl:rrSNO := Psno 
end; 

setTimer (crPtr, rrRetryTimer, AretryTime,true); 
rrFlink := SinPtr; 
if SinPtr = nil then 

begin 
SoutPtr := retryPtr; 
SendPtr := retryPtr 

end 
else rrFlink^.rrBlink := retryPtr; 
SinPtr := retryPtr 

end 
end {adaRetryEntry}. 
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The next procedure deletes the retry entry pointed at by retryPtr. 

procedure deleteRetryEntry ({args}crPtr:CRpointer; 
retryPtr:RetryPointer {no returns}); 

begin 
with crPtrf, retryPtrt do 

begin 
if rrBlink = nil {head of queue} then SinPtr = rrFlink 
else rrBlink-t.rrFlink := rrFlink; 
if rrFlink = nil {tail of queue} then SendPtr = rrBlink 
eTse rrFlinkt.rrBlink := rrBlink; 
if retryPtr = SoutPtr then SoutPtr := rrBlink; 
Dispose (retryPtr) 

ena 
end {deleteRetryEntry}. 

The next proceoure searches the Retry Queue and deletes all the Acked 
entries. Lf typeFlg = true all Ack packet entries are to be deleted else 
delete all Data and Rendezvous packets with Pid + rrSNO < sn} 

procedure deleteAckedEntries ({args} crPtr:CRpointer; 
sn:SN;typeFlg:Boolean; {no returns}); 

var tempPtr, retryPtr:RetryPointer; 
b:Boolean; 

begin 
retryPtr := crPtr.SinPtr; 
while retryPtr 4 nil do 

begin 
with crPtr+, retryPtrf do 

begin 
b := (typeFlg and (rrType = Ack)) ̂ I (not typeFlg and 

((rrType ^ Ack) and_ ((rrPID + rrSN07~£ sn))); 
tempPtr:= rrFlink 
rf b then 

begin 
EIMalarm (assoc,rrRetryTimer, false, false); 

{cancel alarm} 
deleteRetryEntry (retryPtr) 

end; 
retryPtr:= tempPtr 

end 
end 

end {deleteAckedEntries}. 

The following function checks the retry timer of the entry at SoutPtr to 
see if its retry timer has expired. 

function shouldRetry (crPtr:CRpointer):Boolean; 
begin 

with crPtr+, SoutPtrf do 
ShouldRetry := (EIMTTme - rrRetryTimer) >_0 

end {shouldRetry}. 
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The next proceoure generates the DtTimeout returns required when a packet 
retry is required. 

proceoure sendRetry ({args} crPtr:CRpointer; sPkt:PKTpointer; 
{returns} var sPktFlg, retryFlg:Boolean; var offset,count:integer); 
begin 

retryFlg:=false; 
offset:=0; 
count:=0; 
sPkt:=nil; 
with crPtr+j SoutPtrf do 

begin 
rrLifetime := rrLifetime - (EIMtime - rrEntryTime); {update 

retry packet's lifetime} 
if rrLifetime > 0 then 

begin {send retry} 
case rrType of 

Data: begin 
Sretryind:= true; {sets retry flag in 
CR indicating next DtStartData call is 

for retry data} 
{set return parameters} 
retryFlg:=true; 
offset:= rrPid - Sou; 
count:= rrSNO 
{Retry entry left at SoutPtr.} 

end; 
Ack: {generate an Ack retry packet} 

begin 
sendAck (crPtr, true, false, sPkt); 
sPktFlg:= true; 
deleteRetryEntry (SoutPtr) 

end; 
Rendezvous: {generate a Rendezvous retry packet} 

begin 
sendRendezvous (crPtr, true, sPkt); 
sPktFlg:= true; 
delete RetryEntry (SoutPtr) 

end 
end {case} 

end 
else {entry has had max retries} 

case rrType _of 

Ack: deleteRetryEntry (SoutPtr); 

Rendezvous, Data: 
begin {leave on Retry Queue in case never Acked so 

error can be reported} 
rrLifetime := 0; 
rrRetryTimer := 0; 
SoutPtr := SoutPtrf.Blink 

end 
end 

end 
end {senoRetryi. 
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6.A.3 Send Timer Expiration 

When Stimer expires either of the following two cases could exist: 
(1) all bits and packets sent have been Acked. 
(2) there are outstanding unAcked bits or an unAcked Rendezvous packet. 

UnAcked reliable-Acks are removed from the retry structure when they have had 
their maximum retransmissions. The rules for handling CR state in these cases 
are imbedded in the following procedure which prepares returns for DtTimeout. 

procedure StimerExpired ({args} crPtr:CRpointer; {returns} var 
offset, reason:integer, giveupFlg:Boolean); {parameters defined earlier for 
DtTimeout.} 

var tempPtr,retryPtr:RetryPointer; 
begin 

with crPtrf do 
begin 

1? (Sou = Sowle) then {case 1, no-op} 
else if (SinPtr ̂  nil) then {case 2, there is unAcked 
data or an unAcked Rendezvous packet} 

begin 
{Output Function} 
giveupFlg:=true; 
if SrendSenderInd then offset;= 0 {unAcked Rendezvous 

packet} else offset:= Sowle-Sou; {reports offset 
bits ambiguous} 

reason:= SnakReason {possible reason for problem}; 
{reinitialize CR send variables to default values or 

they are default already} 
SrendSenderInd:= false; 
SseriousNakInd := false; 
retryPtr:= SinPtr 
while retryPtr ^ nil do 

begin 
tempPtr:= rrFlink; 
dispose (retryPtr); 
retryPtr:= tempPtr 

end; 
SinPtr := nil; 
SoutPtr := nil; 
SendPtr := nil; 

end; 
Stimer:=0; 
SeSentInd:= false; 
SnakReason := 0; 
SovflwInd:= false 

{other send variables are in default state.} 
end 

end {StimerExpired}. 
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6.5 User Interface Events 

6.5.1 Receive or Ack Generation Events 

The proceoure DtAck and included procedures represent Delta-t's rules for 
Ack formation and state update. DtAck is called whenever an Ack is required. 
An Ack is requireo when (1) an event occurs within the EIM (due to IPC-user 
Receive or Receive-Aborts or implementation dependent events) affecting the 
receive window that should be advertised to the other end or (2) when Delta-t 
indicates with the AckFlg in the return from DtPktRcvd that DtAck should be 
called in order to provide Delta-t with the current window state so it can 
generate an Ack packet (caused by receipt of a Data or Rendezvous packet). 
The receive window to be reported to Delta-t is the amount of Receive-specific 
buffer available for the association when an ISR has been allocated, otherwise 
a default window is reported (see Appendix B). 

The EIM indicates a reliable Ack is required whenever the input window 
goes from zero to nonzero and the ISR variable RSind is true (see Appendix B). 

The EIM can schedule the issuing of the DtAck call as appropriate (and 
thus one Ack can acknowledge one or more received packets) subject to the 
constraint that it is understood that when Delta-t indicates an Ack should be 
issued its lifetime is counting down. 

If a CR does not exist and space for a CR cannot be obtained the 
procedure fails. 

procedure DtAck ( 
{args} 
assoc:AR; {association record} 
rWindow:integer; {number of bits of receive buffer space 

available for the association} 
rsFlg:Boolean; {if true the other end needs to be reliably notified 

in a reliable-Ack packet that a zero window is opening.} 
sPkt:PKTpointer;{pointer to a packet buffer for an Ack packet.} 
ireturns} 
var errorFlg:Boolean;{true if no CR space is available}); 

var crPtr:CRpointer; 

begin 
getCR (assoc, crPtr); 
if CR = nil then errorFlg:= true 
else 

begin 
with crPtr+ do 

begin 
Riwre:= Riwle + rWindow; 
errorFlg:= false; 
sendAck (crPtr, sPkt, false, rsFlg) 

end 
end 

end {DtAck} 

The following procedure represents correct CR send state update for Ack packet 
sending and calls procedure createAck to generate an Ack packet. 
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procedure sendAck ({args}crPtr:CRpointer; sPkt:PKTpointer; 
retryFlg,rsFlg:Boolean); {retryFlg indicates Ack is a 
retry, rsFlg indicates reliable-Ack should be sent for 
rendezvous-at-sender, sPtr is a pointer to a packet buffer to 
contain the Ack.} 

procedure createAck ({args} crPtr:CRpointer;sPkt:PKTpointer 
{also return}; retryFlg, rsFlg:Boolean); {defined below} 

begin Deg, 
H^ crPtr+ _do 
'Eegin 

createAck (crPtr, sPkt, retryFlg, rsFlg); 
StimeStamp:=0; 
if_Praf then 

begin 
aaoRetryEntry (crPtr, sPkt); 
if not retryFlg then setTimer (crPtr, Stimer, 

3*2**AAtexp, true) {resetting Stimer because a 
packet needing an Ack is being sent} 

end; 
end 

end {sendAck}. 

The following procedure specifies correct formation of an Ack packet. This 
procedure will fill the packet buffer pointed to by sPkt as an Ack packet. 
retryFlg Indicates whether or not this is a new (false) or retry (true) 
packet. rsFlg indicates whether (true) or not (false) a reliable-Ack should 
be generated. 

procedure createAck ({args} crPtr:CRpointer, sPkt:PKTpointer; 
{also return}, retryFlg, rsFlg:Boolean); 

begin 
with crPtrf, sPkt+do 

begin 
Pver := {DeltaGram version number as appropriate}; 
Ptype := Ack; 
Presl:= 0; 
Pdn:= true; 
PprtctLev := {as appropriate for protection policy.}; 
if Rtimer > 0 then PAtexp := RAtexp else 

PAtexp:=AAtexp; 
Pid := Riwle; 
Pdestaddr := Aassoc.destAodr; 
Poriginaddr := AassocoriginAcdr; 
Pwof:= Rovflwind; 
Ppuf:= (Rtimer=0); 
Pres5:=0; 
Pres6:=0; 
PAtver:= {Delta-t version number as appropriate} 
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if retryFlg then 
begin 

Praf := true {wouldn't be on retry list if 
reliable delivery not desired} 

Pwinaow:=SoutPtr+.rrSNO; 
Plifetime := SoutPtrf.rrlifetime 

end 
else 

begin 
Pwindow:=Riwre-Riwle; 
Praf := ((Pwindow > 0) and rsFlg); 
if Rtimer = 0 then Plifetime := 255 
else 

if StimeStamp > 0 then 
Plifetime := 2**RAtexp-(EIMtime-StimeStamp) 

else Plifetime := 2**RAtexp 
end 

headerChecksum (sPkt) 
end 

end {createAck}. 

6.5.2 Data or Rendezvous Packet Sending Event 

6.5.2.1 DtStartData and DtFinishData 

The procedures DtStartData and DtFinishData are called consecutively to 
send data for the first time, to send retry data, or to cause a header only 
data packet to be sent to Ack a reliable-Ack. DtStartData may also result in 
a Rendezvous packet being generated, in which case DtFinishData does not need 
to be called. 

DtStartData is called by the EIM either when (1) there is data to send 
ana the sendCode in the ISR is 1 (e.g. should try to send even if the output 
window is zero so that a Rendezvous packet will be sent) or (2) when the 
sendCode returned from the DtPktRcvd procedure is 2 indicating that a Data 
packet (even if header-only) is required to Ack a reliable-Ack. Data is sent 
in the sequence issued by the IPC user. DtFinishData should be called to 
complete a data packet header and after the EIM has placed count2 bits of data 
in the packet. 

procedure DtStartData ( 
{args} 
assoc:AR; {association record} 
Bflg, 
Efig:Boolean; {Bflg indicates that the first data bit is to 

tDe labeled by a B mark and Eflg indicates that 
the last data bit as specified by countl is to be 
labeled by an E mark.} 

prtctLev, {protection level of the data} 
owreOffset, {EIM's view of the output window. Same value as 

returned to EIM in DtPktRcvd as owreOffset or 
standard default}, 

countl:integer; {number of bits of data potentially 
available for a packet.} 

sPkt:PKTpointer; {pointer to packet header buffer.} 
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{returns} 
var count2, {count of the number of bits of data that are to 

be placed in this packet. For a retry, as modeled 
here, count2 must be the number returned in 
DtTimeout.} 

sendCode:integer; {0 - means EIM data sending is blocked, 
do not issue DtStartData calls even if nonzero output 
window. 
1 - means even if output window is smaller than desired 
issue a DtStartData call with nonzero data count when new 
data needs sending (e.g. to enter Rendezvous-at-sender 
procedure. 
Other codes not relevant for this return.} 

var typeFlg, {true if Data packet being formed, false if 
Rendezvous packet.} 

errorFlg:Boolean {error flag set true if no CR space 
available.}); 

var crPtr:CRpointer; 
procedure sendData ({defined below}); 
function shouldData ({defined below}); 
function shouldRendezvous ({defined below}); 

begin 
count2:= 0; 
errorFlg:= false; 
sendCode:= 1; 
getCR (assoc, crPtr); 
if crPtr = nil then errorFlg:= true 
eTse 

with crPtrf, SoutPtr+ do 
begin 

Sowre:= Sou+owreOffset; 
if (Sretryind or shouldData(crPtr,countl) then 

{Data packet should be sent} 
begin 

typeFlg:= true; 
sendData 

(crPtr,sPkt,countl,prtctLev,Bflg,EfIg,count2) 
end 

else if ShouldRendezvous (crPtr, countl) then 
begTn 

typeFlg:= false; 
sendRendezvous (crPtr, sPkt, false) 

end; 
if tryData (crPtr) then sendCode: = 1 else 

sendCode:= 0 
end 

end {DtStartData}. 

The following procedure is called after DtStartData, if typeFlg = true 
(Data packet) is returned by DtStartData. 
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DtFinishData (sPkt:PKTpointer {full packet buffer}); 
procedure dataChecksum (sPtr:PKTpointer); 

begin 
idata checksum algorithm as defined in DelatGram Specification 
[19]} 

end {dataChecksumi; 
begin 

aataChecksum (sPkt); 
headerChecksum (sPkt) 

end iDtFinishData}. 

procedure headerChecksum; (sPkt:PKTpointer); 
begin 

{header checksum algorithm as defined in DeltaGram Specification 
[19]} 

end {headerChecksum}. 

6.5.2.2 Sending a Data Packet 

There are a set of conditions (1) that indicate a Data packet should not 
be sent for correct protocol operation and (2) a set that indicate that for 
efficiency one should not be sent (possibly dependent on the implementation). 
We only indicate one type 2 condition here. 

The Boolean function tryData is a function of the subset of these 
conditions that determines if the EIM should issue DtStartData calls to try 
and send data. The tryData conditions and others affecting the decision to 
actually send a Data packet are incorporated in the function shouldData. The 
function tryData is required because of the EIM to Delta-t interface presented 
here. Note that it is possible for tryData to be true and the output window 
to be zero. This results because, as modeled here, Delta-t does not 
automatically enter the rendezvous-at-sender procedure when it receives a zero 
input window in an Ack but instead waits until an attempt is made to send Data 
(by a DtStartData call being issued with a nonzero data count) causing enter 
to the rendezvous-at-sender mechanism. Therefore, if sendCode in the EIM's 
ISR is 1 it should issue a DtStartData call when it has data to send (an 
E-bit) even if the output window is zero (see Appendix B). The value of 
senoCode returned by DtStartData will then indicate no further DtStartData 
calls should be made until the window opens. 

A different model of the EIM to Delta-t interface could, for example, 
allow the EIM to indicate to Delta-t that it should automatically enter the 
rendezvous-at-sender procedure when a zero output window exists. 

function tryData (crPtr:CRpointer):Boolean; 
begin 

tryData:= ((EIMtime-Aidt) > 3*2**AAtexp){l the 
initialization wait interval is expired}) 

and 
(SoutPtr = SendPtr) {1, no packets 
exist that have had their maximum number of 
retries} 
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and 
not SrendSenderInd {1, not in rendezvous-at-sender 
state} 

and 
not SseriousNakInd{2} 

end {tryData}. 

The following function determines whether or not Delta-t should send a 
Data packet. Only send a Data packet if the tryData conditions are satisfied 
and overflow has not occurred (a Rendezvous packet must be sent) and either 
the output window is nonzero or a header-only data packet needs sending. 

function shouldData (crPtr:CRpointer; count:integer):Boolean; 
begin 

shouldData:= tryData(crPtr) and not Sovflwind {1} and ((Sowre 
> Sowle {2}) or (count = 0)TlT)~ 

end {shouldData}. 

The following procedure determines, based on the maximum packet size for the 
association and output window size, how much data should be sent (count2), 
whether or not Pe should be set in the Data packet header and shows correct CR 
state update when a Data packet is sent. 

procedure sendData ({args} crPtr:CRpointer; 
sPkt:PKTpointer (pointer to a Data packet header buffer to be filled 

in};countl {number of bits of data available for sending}, 
prtctLev:integer;Bflg,Eflg:Boolean{data labels};{returns 
var} count2:integer {number of bits of data that EIM is to 
place in packet.}); 

var eFlg:Boolean; 
procedure startDataHeader ({defined below}); 

begin 
eFlg:= false; 
with crPEFf~d£ 

begin 
Tset up parameters required for procedure 

StartDataHeader and update send state.} 
if Sretryind then 

begin {retry} 
count2:= SoutPtr.rrSNO; 
eFlg:= Eflg 

end 
else {not a retry} 

begin 
count2:= min (AmaxPktSize, countl, Sowre - Sowle); 

{number of bits that can be placed in a packet 
is min of max packet size for assoc, bits 
available, and output window} 

eflg:= (count2 = countl) and Eflg; 
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Sowle:= Sowle + count2; {update by number of bits 
being sent.} 

if eFlg then 
begin 

Sowre:= Sowle; {close window, no data is 
sent after an E-bit until it is Acked.} 

SeSentInd:= true 
end; 

if (count2 > 0) then SetTimer (crPtr, 
Stimer, 3*2**AAtexp, true) 

end; 
startDataHeader (crPtr, sPkt, count2, prtctLev, 

Bflg, eflg); 
if (count2 > 0) then addRetryEntry(crPtr, sPkt) {only 

need to retry if data sent.} 
end 

end {DtStartData} 

The following procedure specifies the rules for correct Data packet header 
formation. 

procedure startDataHeader ({args} crPtr:CRpointer; sPkt:PKTpointer; 
count:integer; prtctLev:integer; b,e:Boolean); 

begin 
with crPtrf, sPkt+ do 

Pver := {DeltaGram version number as appropriate}; 
Ptype := Data; 
Presl:= 0; 
Pdn:= false; 
PprtctLev :=prtctLev; 
P/\texp := AAtexp; 
Pdestaddr := Aassoc.destAddr; 
Poriginaddr := Aassoc.originAddr; 
Pt := false; 
Pds:= false; 
Pb := b; 
Pe:= e; 
Pres2:= 0; 
Pdl:= count; 
Pres3:= 0; 
Pres4:= 0; 

PAtver:= {Delta-t version number as appropriate}; 
if Sretryind then 

begin 
Plifetime := SoutPtrf.rrLifetime; 
Pid := SoutPtr-h.rrpid; 
Pdrf := (Pid £Sou); {everything sent previously 

has been Acked} 
Sretryind:= false; 
deleteRetryEntry(SouPtr) 

end 
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else 
Begin 

Plifetime := 2**AAtexp; 
Pid := Sowle; 
Pdrf := (Sou = Sowle) 

end 
{The PhdrChksum and PdataChksum fields are set in the 

procedure DtFinishData.} 
end 

end {startDataHeader}. 

6.5.2.3 Sending a Rendezvous Packet 

The following function specifies the rule for sending a Rendezvous 
packet. A Rendezvous packet should be sent if not already in the 
rendezvous-at-sender state and (overflow has occurred _or (there are bits to 
send and no output window and all data previously sent has been Acked). 

function shouldRendezvous (crPtr:CRpointer;countl:integer):Boolean; 
begin 

with crPtr-h do 
begin 

shouldRendezvous := (not SrendSenderInd) 
inot in rendezvous-at-Sender state} 

and 
(Sovflwind or ((countl > 0) and (Sowle = Sowre) and 

(Sou = Sowle))) 
end 

end {ShouldRendezvous}. 

The following procedure calls procedure createRendezvous and performs correct 
state update when a Rendezvous packet is to be sent. 

procedure sendRendezvous ({args} crPtr:CRpointer; sPkt:PKTpointer; 
retryFlg:Boolean); 

procedure createRendezvous ({args} crPtr:CRpointer; 
sPkt:PKTpointer; 
retryFlg:Boolean); {defined below} 

begin 
with crPtrf, do 

begin 
createRendezvous (crPtr, sPkt, retryFlg); 
addRetryEntry (crPtr, sPkt); 
if not retryFlg then 

begin 
setTimer (crPtr, Stimer, 3*2**AAtexp); 
Sovflwind:= false; 
SrendSenderInd:= true 

end; 
end 

end {sendRendezvous} 
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The following procedure specifies the rules for Rendezvous packet formation. 

procedure createRendezvous ({args} crPtr:CRpointer; sPkt:PKTpointer 
{and return}; retryFlg:Boolean); 

const n = {> 0, implementation convenient value used in Psno}; 
begin 

with crPtrf, sPktt do 
begin 

Pver := {DeltaGram version as appropriate}; 
Ptype := Dcntrl; 
Presl:= 0; 
Pdn := true; 
PrtctLev := {as required by protection policy{; 
Pntexp := AAtexp; 
Pdestaddr := AdestAddr; 
Poriginaddr := AoriginAddr; 
Psubtype := 0; 
Pdrf := true; 
Pres7 := 0; 
Press := 0; 
PAtver:= {Delta-t version number as appropriate} 
if retryFlg then 

begin 
Psno := SoutPtr+.rrSNO; 
Plifetime := SoutPtr-h.rrLifetime; 
Pid := SoutPtr+.rrPID 

end 
else 

begin 
if Sowle h Sou then Psno := Sowle - Sou; 

{Rendezvous sent due to overflow} 
else 

begin {Rendezvous sent due to just zero 
window} 
Psno := n;{consume SN space for assurance} 
Sowle := Sowle + n; 
Sowre := Sowre + n 

end; 
Plifetime := 2**AAtexp; 
Pid := Sou 

end; 
headerChksum (sPkt) 

end 
end icreateRendezvous}. 

6.6 Packet Received Event 

6.6.1 DtPktRcvd 

DtPktRcvd and included procedures specify Delta-t's rules for packet 
acceptance testing and processing. DtPktRcvd is called when the EIM receives 
a packet from the next lower level. The return parameters are dependent on 
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the type of packet received. If the packet received is a Data (and a Nak is 
not generated) or Rendezvous packet the call to this procedure is followed 
eventually by a DtAck call to update the input window and generate an Ack. If 
the packet received is a reliable-Ack the call to this procedure is followed 
eventually by DtStartData and DtFinishData calls to cause a Data packet, 
possibly header-only, to be sent. DtPktRcvd should have high enough priority 
so that packet lifetimes are unlikely to expire due to long packet queuing 
delays. 

procedure DtPktRcvd ( 
{args} 
assoc:AR; {association record} 
rPkt, = {pointer to header buffer for the received packet. 

The size of the packet can be determined from the packet type and, 
if a Data packet, the Pdl field.} 

sPkt:PKT; {packet header buffer for possible Nak packet} 
timeStamp:dateTime; {time packet was received} 
rWindow:integer; {number of bits of potential buffer space 

available for association.} 

{returns} 
var type:integer; {packet type or value indicating ignore other 

returns.} 
var ackFlg:Boolean; {If true the EIM should issue a DtAck call at a 
convenient point to cause an Ack packet to be sent with latest receive 
window.} 

IData packet} 
var offset, {offset relative to start of packet at which to 

obtain first data bit} 
count, {number of bits to accept} 
prtctLev:integer; {protection level of the data} 

var Bflg, 
Eflg {flags indicating respectively whether first accepted 

bit is labeled by a B mark and the last acepted bit is 
labeled by an E mark.} 

nakFlg, {true if Nak formed} 

{Ack packet} 
var ovflwFlg:Boolean; {flag if true all data bits at queue 

position ouPtr + ackOffset and beyond have 
overflowed and should be reset as if never 
sent and be sent again.} 

var ackOffset, {SN offset relative to ouPtr in ISR for the 
number of data bits Acked} 

sendCode, {(Also returned for Nak packets) 0 - means data 
sending is blocked, do not issue DtStartData calls. 

1 - means even if owreOffset is smaller than desired 
(including zero), issue a DtStartData call when 
data needs sending to enter rendezvous-at-sender 
procedure. 

2 - means issue a DtStartData call, even if there is 
no data needing sending to cause a Data packet to 
be sent to Ack a reliable-Ack.} 
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owreOffset:integer; {The output window. This information is 
passed to the EIM for possible saving in its 
ISR and subsequent return to Delta-t as an 
efficiency aid and when the CR is reclaimed. 
How owreOffset and sendCode can be used,by the 
EIM in its policy for issuing DtStartData 
calls is discussed in Appendix B.} 

{Rendezvous packet} 
var rsFlg:Boolean; {This returned flag indicates that the other 

end wants to be reliably informed when the 
input window opens.}) 

{Nak packet} 
{The parameter sendCode above is also returned for received Nak 

packetsi; 

const n = {value indicating ignore other returns}; 
var crPtr:CRpointer; 

remainingLifetime:integer; 
procedure processData ({defined in Section 6.6.2}); 
procedure processAck ({defined in Section 6.6.3}); 
procedure processRendezvous ({defined in Section 6.6.4}); 
procedure processNak ({defined in Section 6.6.5}); 
procedure sendNak ({defined in Section 6.6.6}); 

begin 
type:= n; 
getCR (assoc, crPtr); 
if crPtr A nil then {if crPtr = nil packet will be discarded and 

become "lost"''! 
begin 

ackFlg:= false; 
nakFlg:= false; 
offset:= 0; 
count:= 0; 
prtctLev:= 0; {or should it be highest level?} 
Bflg:= false; 
Eflg:= false; 
ackOffset:= 0; 
owreOffset:= 0; 
ovflwFlg:= false; 
sendCode:= II 
rsFlg:= false; 
DGadjustLifetime (EIMtime-timeStamp, 0, rPkt,remainingLifetime) 

iadjusts lifetime for time spent on Delta-t queue and 
checks to see if lifetime has expired. If lifetime has 
expired remainingLifetime returns £0.}; 

if remainingLifetime <_ 0 then with rPkt̂ -do 
if (Ptype = Data) then 

begin 
nakFlg:= true; 
type:= Data; 
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sendNak (crPtr, rPtr, sPkt, 3,{lifetime 
expired}remainingLifetime) 

end 
{Sending the Nak is optional.} 

else 
begin 

type:= Ptype; 
{code for switch to appropriate version routines would 

go here} 
case type o£ 

Data: processData (crPtr, rPkt, sPkt, rWindow, 
offset, count, prtctLev, ackFlg, Bflg, Eflg, 
nakFlg); 

Ack: processAck (crPtr, rPkt, ackOffset, ovflwFlg, 
owreOffset, sendCode); 

Nak: processNak (crPtr, rPkt, sendCode); 
Dcntrl: if rPkt.Psubtype = 1 then processRendezvous 

(crPtr, rPkt, rWindow, ackFlg, rsFlg); 
end 

end 
end 

end {DtPktRcvd}. 

6.6.2 Receipt of a Data Packet 

Data packets serve two functions in this protocol, the main one is to 
carry data, the secondary one, as part of window management, is to "Ack" a 
reliable-Ack that is reporting the opening of a zero window, completing the 
rendezvous-at-the-sender procedure. In order for a Data packet to be accepted 
there must have been sufficient time since the Delta-t environment was 
initialized ana the SN of at least one bit in the packet, or the Pid (in the 
case of dataless Data packets) must equal Riwle. If a bit is accepted jor 
overflow occurs Rtimer is updated. 

The procedure processData checks the Data packet for acceptance by 
calling acceptData, specifies correct update of the CR, determines what data 
to accept, and returns parameters to the EIM which then copies the accepted 
data to buffers it manages. The EIM will signal the user if a Receive 
completes. When an Ack is required, the EIM will call DtAck to report its 
current window and an Ack will be generated. 

procedure processData ({args} crPtr:CRpointer; rPkt, 
sPkt:PKTpointer; rWindow, {returns} var offset, count, 
prtctLev:integer;var ackFlg,Bflg, Eflg,nakFlg:Boolean); 

const n = {large number}; 
var temp:integer; b:Boolean; 
procedure acceptData (crPtr:CRpointer; rPkt sPkt:PKTpointer; var 

ackFlg, nakFlg, b:Boolean); {defined below}; 
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begin 
with crPtrf do 

begin 
acceptData (crPtr, rPkt, sPkt, ackFlg, nakFlg, b,); 

if b then 

begin {packet accepted} 
deleteAckedEntries (crPtr, true, 0); {see discussion 

of retry in Section 6.4.2. This procedure deletes any 
Acks from the retry structure} 

if Rtimer = 0 then 
begin {update CR receive variables} 

Riwle := Pid; 
RAtexp := PAtexp 

end; 
prtctLev:= PprtctLev; 
temp:= Pdl-(Riwle-Pid); {number of data bits at and to 

right of Riwle} 
offset:= 256 + (Riwle-Pid); {offset in packet to begin 

accepting data, assumes bits in header run 0-255} 
8flg:= (Pb and (offset = 256)); 
Riwre:= Riwle + rWinoow; 
count:= min (temp, Riwre-Riwle,n); {number of bits that 

can be accepted} 
Eflg:= (Pe and (count = temp));{last accepted bit is 

labeled W 
if (count > 0) then setTimer (crPtr, Rtimer, 

2*2**RAtexp ,~7aTse); 
RovflwInd:= (count A temp); 
Riwle:= Riwle + count; 
end 

end 
end {processData}. 

The following procedure and associated functions specify the rules for 
Data packet acceptance. To be accepted there must have been enough time since 
the environment was initialized, the receiver is not in the overflow state, 
the packet must contain data insequence, and there must be at least one SN on 
the input-window-left-edge. Note that if Rtimer > 0 then Pdrf is ignored in 
the function SNonWindowEdge. The procedure acceptData also determines if an 
Ack or Nak packet should be generated and starts the lifetime of the Ack 
counting down. 

procedure acceptData ({args} crPtr:CRpointer, rPkt, sPkt:PKTpointer 
ireturns> var ackFlg, nakFlg, b:Boolean); 

var temp:dateTime; 
function outOfSequence (crPtr:CRpointer; rPkt:PKTpointer); {see 

below}; 
function SNonWindowEdge (crPtr:CRpointer; rPkt:PKTpointer); {see 

below}; 
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procedure handleOutOfSequence (rPkt, sPkt:PKTpointer); {see below}; 

begin 
with crPtrf, rPkt+ do 

begin 
ackFlg:= true; {initialize to generate Ack whether accepted 

or not! 
b := false; iinitialized to reject packet} 
temp:= StimeStamp; {save in case a Nak generated so can be 

restored} 
StimeStamp:= EIMtime; {The lifetime of the Ack begins 

here.} 
if ((EIMtime -Aidt) > 2**PAtexp) and not Rovflwind) then 

begin {interval since initialization long enough and not 
in overflow state} 

if SNonWindowEdge (crPtr, rPkt) then b:= true 
else if outOfSequence (crPtr, rPkt) then 

begin 
handleOutOfSequence (crPtr,rPkt,sPkt,nakFlg); 
ackFlg:= false; 
StimeStamp:= temp {Nak is generated 

immediately so uses PAtexp in packet 
being Naked. An Ack may be generated from 
an earlier packet receipt and need to keep 
its lifetime aging.} 

end 
end 

end 
end {acceptData}. 

The following function tests for duplicate data. Duplicate zero length data 
packets might be accepted, but cause no harm. Acceptance is independent of 
whether or not a window exists large enough to hold any data.} 

function SNonWindowEdge (crPtr:CRpointer; rPkt:PKTpointer):Boolean; 
begin 

with crPtrf, rPktf do 
SNonWindowEdge := ((Rtimer = 0) and Pdrf) or ((Rtimer > 0) and 
((Pdl > 0) and_ (Pid < Riwle) and~TRiwle < Pid + Pdl-1)) or_ 
((Pdl = 0) and (Pid = Riwle))TP{When Rtimer = 0 and Pdrf any 
SN is acceptable otherwise at least one bit is at Riwle or Pid = 
Riwle when Pdl = 0} 

end {SNdnWindowEdge}. 

The following function tests for out of sequence data. 

function outOfSequence (crPtr:CRpointer; rPtr = +PKT):Boolean; 
begin 

with crPtr+, rPkt+ do 
outOfSequence :=~T(Rtimer = 0) and 
(not Pdrf)) or ((Rtimer > 0) andTRiwle < Pid)) 

end {outOfSequenceT* 
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The following procedure handles out of sequence data. Whether or not 
out-of-sequence Data packets are accepted is an implementation option. If 
they are accepted they would be queued until they are insequence. This queue 
would be examined periddically; for example, after each data packet with data 
was processed. The queue would be cleared when overflow occurred. Plifetime 
must continue counting down. Here we just generate a Nak 

procedure handleOutOfSequence (crPtr:CRpointer; rPkt, sPkt:PKTpointer; var 
nakFlg:Boolean); 

begin {} 
sendNak (rPkt, sPkt,129 {out of sequence},0); 
nakFlg: = true 

end {handleOutOfSequence}. 

6.6.3 Receipt of an Ack Packet 

Missequenced, lost, or duplicate Ack packets can cause no assurance 
harm, although such occurrences may lead to the exchange of extra packets, as 
discussed under window management in Section 2.7.3. 

The procedure processAck specifies the rule for Ack packet acceptance and 
correct state update when an Ack packet is accepted. It calls acceptAck to 
test an Ack packet for acceptance. Some duplicate or missequenced Acks are 
rejected, but net all. Duplicate or missequenced Acks with Pid=Sowle or that 
have Ppuf set true are not detectable. 

The procedure must handle two main cases (1) data or a Rendezvous packet 
may be Acked or data overflow has occurred, or (2) only a relative flow 
control window is being reported. It must also recognize when a reliable-Ack 
is received. 

prdcedure processAck ({args} crPtr:CRpointer; rPkt:PKTpointer; 
{returns} var ackOffset, owreOffset,sendCode:integer; var 
ov fIwFlg:Boolean); 

function acceptAck (crPtr:CRpointer; rPkt:PKTpointer):Boolean; 
{defined 

below} 

begin 
with crPtr+, rPktf do 

begin 
if acceptAck (crPtr, rPkt) then 

begin 
if (not Ppuf and (Stimer > 0)) then 

begin {State update and output functions when Data 
bits or Rendezvous packet may be Acked or data 
overflow has occurred} 

if SrendSenderInd then ackOffset:= 0 
{Ack is for Rendezvous packet; No data is sent 
while SrendSenderInd = true} 

else ackOffset:= Pid - Sou; {Ack is for data and 
this is the number of bits Acked} 

Sou:= Pid; {update Sou for SNs Acked} 
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if Sou = Sowle then 
begin {Everything sent has been Acked} 

SeSentInd:= false; 
SseriousNakInd:= false; 
SnakReason:= 0 

end; 
owreOffset:= Pwindow; 
rfPwof then 

begin {window overflow has occurred; state in 
EIM and Retry Queue must be reset as if 
overflow bits were never sent. Rendezvous 
packet must be sent eventually.} 

ovflwFlg:= true; 
SovflwInd:= true; 
deleteAckedEntries (crPtr, false, Sowle) 

{delete Acked and overflow data from 
Retry Queue.} 

end 
else deleteAckedEntries (crPtr, false, Sou) 

Tdelete only Acked Data or Rendezvous 
packets from Retry Queue} 

end 
{State update and output function for all accepted Ack 

packets} 
if not SeSentInd then Sowre:= Sowle + Pwindow; {update 

window whether Ack acks anything or not} 
if Sowre > Sowle) then SrendSenderInd := false; 

{an out of sequence or old duplicate Ack could cause 
SrendSenderInd to be reset and data to be sent which 
would overflow and entry to the Rendezvous-at-sender 
cycle to be repeated. No harm results} 

if Praf then sendCode:= 2 else if tryData(crPtr) 
then sendCode:= 1 else sendCode:= 0 

end 
end {with} 

end {processAck} 

The following function specifies the rule for Ack packet acceptance. Stimer 
> 0 implicitly indicates adequate time since environment initialization has 
occurred. This is also true for Nak packets. Duplicate or missequenced Acks 
just reporting a window change cause no harm, other than causing possible 
extra packets being sent. Accept Ack is written to reject duplicate Acks when 
unAcked SNs exist. 

function acceptAck (crPtr:CRpointer; rPkt:PKTpointer):Boolean; 
begin 

with crPtr+, rPktf do 

acceptAck := ((Praf and (Pwindow > 0)) or not Praf) {Praf is 
only used to reliably repor'F'a window opening.} 
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and 
(Ppuf 
or (Stimer = 0) {relative input window being reported 
when Riwle, or Sou and Sowle undefined} 
or 
((Stimer > 0) and 
(((Sou < Pid) and (Pid _< Sowle)) {Acks data or 
Rendezvous packet} 

or 
TTSou=Sowle)'and (Pid=Sowle)){just reports input 

window change}))) 
end {acceptAck}. 

6.6.4 Receipt of a Rendezvous Packet 

The purpose currently envisioned for the control called the Rendezvous 
packet is to indicate to the receiver that it should translate its SN space 
and turn off Rovflwind and begin accepting Data packets again and that the 
sender state shows a zero window (with or without overflow), there is more 
data to send, and that the sender will wait for a reliable-Ack to arrive 
indicating the window has opened (rendezvous-at-the-sender). The Rendezvous 
packet with Pdrf = true performs the above. 

As currently used, Pdrf is always set true. 
Rendezvous-at-the-sender has to be done in a reliable way. The 

Rendezvous packet needs acknowledgment and the window opening control needs 
acknowledgment. Rendezvous packets consume SN space and are therefore 
protected against loss, duplication, or missequencing. Reliable-Ack packets 
(packets with Praf = true) indicating a nonzero window are "acked" by an 
acceptable Data packet. Reliable-Ack packets are retransmitted until Acked. 
This protects against lost packets. Duplication or missequencing of Acks are 
not a problem as the mechanism will at most cause extra packets to be sent as 
a result of these hazards, but no improper acceptance of data or sender being 
blocked permanently can take place. 

Rendezvous packets might also be used, in general, to force the receiver 
to return its state to the sender or adjust its expected SN, but no need for 
such purposes currently exists. 

The following procedure specifies the rule for Rendezvous acceptance 
testing in function acceptRendezvous and correct state update. An Ack packet 
will be generated. 

procedure processRendezvous ({args} crPtr:CRpointer; rPkt:PKTpointer; 
rWindow:integer; {returns} var rsFlg,ackFlg:Boolean); 

function acceptRendezvous (crPtr:CRpointer; rPkt:PKTpointer):Boolean; 
{defined below} 

begin 
with crPtr+ do 

begin 
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rf acceptRendezvous (crPtr, rPkt) then 
begin 

deleteAckedEntries (crPtr, true, 0) {deletes' 
any Acks from Retry Queu"eJ 

if Rtimer = 0 then 
begin 

Riwle:= Pid; 
RAtexp:= PAtexp 

end; 
setTimer (crPtr, Rtimer, 2*2**RAtexp, false){a new 

SN was accepted} 
Rovflwind := false; 
Riwle := Riwle + Psno; 
Riwre:= Riwle + rWindow; 
rsFlg:= Riwre = Riwle 

end 
ackFlg:= true; {an Ack is to be sent whether or not packet 

accepted.} 
end 

end {processRendezvous}. 

The following function specifies the Rendezvous packet acceptance 
condition: enough time has elapsed since the environment was initialized and 
SN space is consumed and Pdrf is true if Rtimer = 0 or the Pid is on the left 
window edge if Rtime > 0. 

function acceptRendezvous (crPtr:CRpointer; rPkt:PKTpointer): Boolean; 
begin 

with crPtr̂ -, rPtr+ do 
acceptRendezvous := ((EIMtime - Aidt) >^2**PAtexp) 

and (Psno > 0) 
and ((Pdrf and (Rtimer = 0)) 

or ((Pid = Riwle) and_ (Rtimer > 0))) 
end {acceptRendezvous}. 

6.6.5 Receipt of a Nak Packet 

Nak packets are not essential to the correct operation of Delta-t. 
They have been included to allow for possible earlier retransmission of Naked 
data and to provide diagnostic information. It is important that an error not 
be reported to the IPC user until Stimer has expired as there may have been a 
duplicate of the Naked packet that succeeded and an Ack may yet be received. 
This situation is likely to be rare in the class called possiblyFatal below. 
This situation could result from a failure of the header checksum to detect an 
error or in a network partition or crash. We believe an implementation should 
generate Naks, in case partners are using them for diagnostic or earlier 
retransmittsion purposes but it could choose to ignore them on receiving. 

The following procedure represents an example handling of a Nak packet. 

procedure processNak ({args} crPtr:CRpointer; rPkt:PKTpointer 
{returns} var sendCode:integer); 
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type possiblyFatal = (1,2,5,128); {cannot reach destination, no 
such destAddr, improper protection level, refuse to accept} 

canlmmediatelyRetry = (129,4,3); {out of sequence, data checksum 
error, lifetime expired} 

function acceptNak (crPtr:CRpointer; rPkt:PKTpointer):Boolean; 
{defined below} 

begin 
with crPtrf, rPkt+ do 

begin 
^Z acceptNak (crPtr, rPtr Y then 

begin 
SnakReason := PnakReason; 
case PnakReason of 

possiblyFatal:SseriousNakInd := true; {This will 
prevent new data being sent on the 
assumption that the problem will presist, 
although allowed to continue on the chance 
that the problem is temporary or the Nak is 
ambiguous.} 

canlmmediatelyRetry: {all bits reported by this 
Nak could be immediately retransmitted at 
implementation option and the retry timers 
updated}; 

end; 
{setup error record and call procedure 
errorStatistic here.} 
if tryData then sendCode:= 1 else sendCode:= 0 

end 
end 

end {processNak}. 

The following function represents the Nak packet acceptance condition. A 
Nak is only for outstanding data. 

function acceptNak (crPtr:CRpointer; rPkt:PKTpointer):Boolean; 
begin 

with crPtrf, rPktt do 
acceptNak := (Stimer > 0) and ((Sou < Pid + Pdl) and 

(Pid + Pdl < Sowle)) 
end {acceptNak}. 

procedure errorStatistic (error RecPtr = +Error Record); 
begin 

UJpdates counters, event records keeping diagnostic statistics} 
end {errorStatistic}. 
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6.6.6 Sending a Nak 

Nak packets may be sent as a result of a packet's lifetime having 
expired (see Section 6.6.1) or as the result of a Data packet having been 
rejected as out-of-sequence (see Section 6.6.2). 

The Nak packet header fields are generated from the header of the 
packet being Naked and the argument nakReason. 

procedure sendNak (targs}crPtr:CRpointer; rPkt, sPkt:PKTpointer; 
naRReason,remainingLifetime:integer); 
{rPkt is pointer to packet being Naked and sPkt is 
buffer for Nak packet being formed} 

begin iSeveral of the fields in the packet header are left alone} 
sPkt.Pver:= rPkt.ver; 
sPkt.Presl:= 0; 
sPkt.Ptype:= Nak; 
sPkt.Pdn:= true; 
sPkt.PprtctLev:= rPkt.PprtctLev; 
sPkt.PAtexp:= rPkt.PAtexp; 
sPkt .P l i fe t ime:= 2**rPkt.PAtexp + remainingLifetime {assume 

remainingLifetime £ 0 } ; 
sPkt.Pid:= rPk t .P id ; 
sPkt.Pdestaddr:= rPkt.Poriginaddr; 
sPkt.Poriginaddr := rPkt.Pdestaddr; 
sPkt.PnakRes := 0; 
sPkt.PnakReason := nakReason; 
sPkt.Pdl:= rPkt.Pdl; 
P headerChecksum (sPkt) ; 

end {sendNak}. 
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APPENDIX A 

Notes on Timer Values and Rules 

The purpose of this appendix is to outline the arguments leading to the 
requirements that the Stimer run 3At and that the Rtimer run 2At. The 
value of At used can be different for each direction of data movement on an 
association. The conditions that the timer intervals must satisfy are the 
following. 

A. Rtimer Conditions 

1) (Assurance) No duplicates can be accepted. 
2) (Smooth flow) Guarantee that any packet sent with Pdrf = false that 

arrives at the receiver after a predecessor packet sent with Pdrf = 
true will be acceptable (will arrive before the receiver's Rtimer has 
run out). 

B. Stimer Conditions 

1) (Assurance) 
a) Allow a graceful close (do not close until all data or packets 

sent needing Acks can be acknowledged). 
b) Assure that no SN will be reused until all previous packets or 

their Acks or Naks using the SN have died. This condition is not 
necessary for Naks (see Section 6.6.1) 

2. (Smooth flow) Run equal to or longer than Rtimer to guarantee 
acceptable SN's are generated. 

The timer rules given in Section 2.6 satisfy the above conditions on 
assumption that the sender initializes the Lifetime for an element (bit) to 
At. The term At has a different meaning in this specification than it did 
in the original paper [6]. The term At, as used here, is the sum of three 
estimates on the sender's part, no one of which needs bounding individually if 
their sum is bounded: 

R = time the sender would normally expect to retransmit. 
MPL = maximum packet lifetime or a worst case estimate of network 

travel time. 
A = time for receiver to generate an acknowledgment. 
At = R + MPL + A. 

Timer Rules 

Condition A-1 needs Rtime > At 
Condition A-1 is satisfied by the interval At because the receiver sets 

its timer whenever it accepts an SN. No bit can live longer than At by R.5 
(see Section 2.6). (Note: the receiver cannot just set its Rtimer from the 
value in the Plifetime field of the accepted packet because the rule for 
counting it down requires at least one tick for each link and node a packet 
traverses even if the time spent on that link or in that node is 
infinitesimal. Therefore, two identical packets going by different routes 
could live different times relative to R timer and cause a duplicate to be 
accepted.) 
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Condition A-2 needs Rtime > 2At 
The timer rules R.l through R.6 assure that Condition A-2 is satisfied by 

the interval 2At. The following worst case scenario requires this interval. 
1) A packet Pĵ  with Pdrf = true is emitted by the sender and arrives 

instantly at the receiver. The receiver sets Rtimer. 
2) Because of lost Acks requiring packet retransmission or delayed Acks, 

no Ack to Pi has arrived at the sender at At-x (where x is a very 
small number). 

3) The instant At-x is the last moment when a packet containing new 
elements can be emitted by the sender because of rule R.2. This 
packet will have Parf = false because P^ was unAcked at the time it 
was sent. 

4) In the worst case it could arrive at the receiver at 2At-x since 
the Rtimer was set in step 1. For a packet with Pdrf = false to be 
accepted, Rtimer > 0, therefore yielding the need for Rtimer to run 
2At. 

Condition B-1 needs Stime > 2At 
n A Packet can live at most At by rule R.5. A Data packet and its 

Ack packet can live at most 2At, with no gap in the timing of their 
lifetimes. 

2) For the same reason above, if an Ack is ever going to be received, it 
will be received within 2At. 

Condition B-2 needs Stime > 3At 
A Data packet can take a maximum of At to reach the receiver which will 

set its Rtimer to 2At at that instant. Therefore, in the worst case the 
Rtimer can run at most 3At relative to the time of setting of Stimer. 

Crash with Loss of Memory 

Sender Sender must wait 3At. The sender wants to be able to choose 
any initial sequence number and be assured that: 
1) it will be accepted, implying that Rtimer must have gone to 

zero (the At being discussed is the At used by the sender 
before the crash). 

2) any Data packets sent prior to the crash or their Acks that 
might have the same SN have died. 

Condition 1 above requires 3At because a packet emitted just before the 
crash coula take At to reach the receiver. The Rtimer would then run 2At 
from that point. 

Condition 2 above would be satisfied by 2At as discussed earlier. 

Receiver Receiver must wait At. 
The receiver wants to be assured that it does not accept any duplicate of 

any SN accepted before the crash. Waiting At before accepting Data or 
Rendezvous packets is sufficient for this need. Ack or Nak packets must only 
provide information on data sent after deadstart and waiting the 3At 
interval above assumes no old Acks will still exist. Given the way the 
algorithm of Section 6 is written Naks might exist longer but no harm 
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results. (Note: If we changed the rule that says "senders keep 
retransmitting when an element has had its maximum retransmission interval" to 
"not retransmitting and freezing the Lifetime," the wait after a crash would 
increase to 2At. All other timer values would be the same, but the 
aerivation would be as per reference [7].) 
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APPENDIX B 
EIM Interface State Record Definition 

and IPC User Interface Operations 

Interface State Record 
This appendix contains a logical view of the data structure 

maintained for each association by the EIM. We call this an Interface 
State Record (ISR). The full duplex bit streams for an association and 
the interface to the next higher level can be abstractly represented by 
four queues and a set of associated state variables. There is one queue 
at each end of the association for each direction of data flow. A queue 
element consists of a bit labeled with appropriate attributes (B, E, 
protection level). The association queues are shown in Figure B.l. 
Figure B.2 illustrates the ISR necessary to represent the queues, as well 
as the associated state variables. Additional state information may be 
necessary depending on the implementation and the internal interface to 
Delta-t (e.g., a flag may be necessary to remember that a DtAck call 
should be issued). 

I I 
received 
elements 

I 
iwlePtr 

empty elements 
iwrePtr 

(a) Receive Queue 

bit I B 
I 

PrtctLev 
Optional 
Wakeup 
Params 

filled in by 
transport level 

(b) Receive Queue Element 

(Supplied by User) 

I 
T 
I Elements sent but 
I not yet Acked 
I 

ouPtr 

I 

Elements not yet sent 

sePtr 
owlePtr owrePtr 

(c) Send Queue 
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Dit B PrtctLev 
Optional 
Wakeup 
Params 

(d) Send Queue Element 

Figure B.l. Association Queues 

1 iwlePtr 1 
1 iwreOffset 1 Receive State 1 

RSind 1 1 
1 ouPtr 1 1 
1 owleOffset 1 1 
1 owreOffset I Send State 1 
1 seOffset 1 1 
1 sendCode 1 1 
1 giveupError | I 

Figure 2. Interface State Record 

ISR Definition 
Receive State 

iwlePtr 
Purpose: 

Default: 
When changed: 

iwreOffset 
Purpose: 

Default: 
When changed: 

The input-window-left-edge pointer. Pointer to the next empty 
element in which to place a labeled bit of data. It is valid 
only if iwreOffset>0. 
0 (head of queue) 
Incremented by the EIM as a bit is taken from an accepted Data 
packet. 

An offset relative to iwlePtr defining the number of available 
empty elements, the input window. iwrePtr = iwlePtr + 
iwreOffset. 
0. 
Updated by the User Receive or Receive-Abort procedures and 
decremented by the EIM when a bit is received. 
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RSind 
Purpose: 

Defaul t : 
When changed: 

Seng State 

ouPtr 
Purpose: 

Defaul t : 
When changed: 

owleOffset 
Purpose: 

Defaul t : 
When changed: 

owreOffset 
Purpose: 

Defaul t : 
When changed: 

seOffset 
Purpose: 

Defaul t : 
When changeo: 

sendCode 

A flag set true when rsFlg returned from DtPktRcvd is true 
indicating that the correspondent sending port desires to send 
on this association and to be reliably informed when empty 
receive queue elements are available. 
false. 
Set true by the EIM when rsFlg returned true from DtPktRcvd. 
Reset when DtAck called with rsFlg indicating nonzero window 
exists (empty elements added to receive queue). 

Pointer to the oldest unacked element. A pointer to the oldest 
(lowest numbered) element sent but not yet acknowledged. There 
is an element to be Acked only if owleOffset>0. 
0 (heaa of queue) 
Incremented by EIM as each bit sent is Acked (ackOffset 
returned in DtPktRcvd). 

An offset (output-window-left-edge) relative to ouPtr defining 
owlePtr, a pointer to the next element to be sent for the first 
time. There is an element to be acked only if>0. 
0. 
Incremented by the EIM whenever a bit is sent for the first 
time. Decremented by EIM as each bit sent is Acked. 

An optional variable in the interface. An offset 
(output-window-right-edge) relative to ouPtr defining owrePtr, 
pointing one queue position beyond the highest numbered element 
that the receiver could accept. This variable should not be 
used to determine when to issue DtStartSend calls. It is only 
of value to reinitialize the Sowre variable in the CR if the 
ISR persists longer than the CR. 
n (some default, receivers are initially willing to accept.) 
Updated by EIM from owreOffset returned by the DtPktRcvd. 

An offset relative to ouPtr defining sePtr (send-end), the next 
queue position to add an element for sending. 
0 (head of queue) 
Incremented or decremented by the User Send and Abort 
procedures and by the EIM as bits are Acked. 

Purpose: Code indicating whether or not a DtStartData call can or 
should be issued. 
0 = do not issue DtStartData call even if nonzero output window 

exists as some protocol condition is blocking data sending. 
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1 = issue DtStartData call when there is data available for 
sending even if a zero output window exists. The EIM's 
sending (calling DtStartData) strategy when sendCode = 1 
must recognize the following possibilities. When the 
output window, represented by (owreOffset-owleOffset), 
is less than desired, including zero, an Ack reporting a 
larger window could have gotten lost. Therefore, as a 
minimum, when there is an E-bit in the send queue (an 
implied wakeup for higher level action) or after some 
EIM time interval a DtStartData call should be issued. 
If the output window is zero Delta-t will enter a 
reliable rendezvous-at-sender procedure and sendCode 
will return 0 and polling will not be required. If the 
output window is positive Delta-t will send as much data 
as will fill the output window (and keep retransmitting 
until an Ack is received) and the resulting Ack will 
report the latest window. 

giveupError 
Purpose: An error code set when LINCS-IPC gives up trying to send 

data on an association. The value of the code indicates 
the giveup reason (to the best of LINCS-IPC ability). 

Default: 0. 
When changed: When giveup occurs or the ISR is reset. 

SQE = send-queue-element 
(all fields in SQE set by User) 
bit - 0 or 1; 
B - B mark as defined earlier. 
E - E mark as defined earlier 
prtctLev - protection level 
wakeup - optional implementation dependent parameters to be used 
by the interface wakeup algorithm. 

RQE = receive-queue-element 
(fields set by LINCS-IPC when a bit is received) 
bit - 0 or 1 
B - B mark as defined earlier 
E - E mark as defined earlier 
prtctLev - protection level 
(field set by User) 
wakeup - as defined for SQE. 

User Operations on an Association 

The abstract User primitives below are viewed as being implemented within 
the LINCS-IPC layer. These are separate from the Delta-t primitives of 
Section 6, although they are reflected to the Delta-t primitives. The IPC 
User manipulates the ISR by calls to these primitives. The primitives below 
only define needed functionality. Reference [21] discusses issues associated 
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with creating a practical IPC-User interface. We assume that the interface 
module implementing the primitives handles synchronization between the two 
asynchronously running User and LINCS-IPC layers by some appropriate 
mechanism, such as a monitor. 

User Primitives 

All the procedures except Wait use the appropriate ISR for the indicated 
association. 

Assoc = record {unordered pair of LINCS addresses} 
addressl, 
aadress2: {LINCS address} 
end. 

procedure Receive (a:Assoc; e:RQE);{Places an empty element on the Receive 
Queue} 

begin 
{Places e on the Receive Queue}; 
iwreOffset:= iwreOffset + 1 

eno IReceivei 

proceoure Send (a:Assoc; e:SQE); {Places an element to be sent on the Send 
Queue} 

begin 
{Places e on the Send Queue}; 
seOffset:= seOffset + 1 

end {Send} 

procedure SendAbort (a:Assoc); {removes an element from the indicated send 
queue} 

begin 
{"remove a SQE and decrement seOffset. Only elements 

not yet sent can be removed} 
end {Send Abort} 

procedure ReceiveAbort (a:Assoc); {removes an element from the indicated 
receive queue} 

begin 
{remove a RQE and decrement iwreOffset. Only elements not 

yet filled by LINCS-IPC can be removed} 
end {ReceiveAbort}. 

procedure Wait 
begin 

iThe caller is blocked until a wakeup condition for any of its 
associations becomes true. The wakeup conditions are implementation 
dependent, but are assumed to follow the guidelines of Section 2.6. 
The wait/wakeup mechanism is assumed to handle correctly any close 
call conditions resulting from asynchronously running User and 
LINCS-IPC modules. When a Wait is issued, wakeup may be immediate as 
a result of the current state of the ISR and queue elements.} 

end {Wait} 
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procedure Status (a:Assoc; var SR:ISR); 
l̂ sgin 

{The fields of ISR are copied into SR. If the giveupError field is 
nonzero the ISR send state is reset to default values.} 

end {Status} 

Managing the Interface-State-Record 

The abstract IPC service specified above is defined in terms of permanent 
associations. That is, it is assumed that each node supported a permanent ISR 
for all possible associations with which it could be involved. This is 
clearly not practical'. One would like to only maintain ISR's for active 
associations, i.e., those involved in a "conversation". Further, it is often 
the case that the identifiers of one or both ends of an association are not 
known at the point when an ISR must be allocated. This is common in the case 
of Server processes, since the address of a Customer port that may request 
service cannot be known ahead of time, yet state and buffer resources must be 
allocated to receive the requests. 

To deal with these issues the notion is introduced of allowing the User 
to specify that an ISR can only be used for receiving with either a specific 
association (specific-ISR) or can be used with any of an indicated set of 
associations (any-ISR7! A specific-ISR has both ports of the association with 
which it can be used completely defined as two full 64 bit LINCS addresses. 
The any-ISR has one or both ports incompletely defined. We define a new 
primitive for this purpose. 

procedure Allocate (ag, ai:Address; var fig:Boolean); 
Begin 

{ag and ai define the ends of the association(s) that can 
utilize the allocated ISR. If a^ and a^ are fully specified 
then we call it an Allocate-specific. If either QQ or aĵ  are 
incompletely specified then we call it an Allocate-any, where "any" 
refers to any association that matches the specified parts of ag 
and a^. fig returns false if an ISR could not be allocated. If 
an ISR already exists for the (specific) association. Allocate does 
nothing.i 

end {Allocate} 

When any of the primitives of the previous section are issued, a check 
is first made of all specific-ISRs for the local port. If one is found, its 
state controls the transfer, otherwise an error exists. When data is received 
at a port a check is made of the specific-ISRs. If one is found, it controls 
the receipt of the data. If one is not found, then the any-ISRs are examined 
and the first one that can be used with (matches) the desired association is 
made specific. If none are found, the sender is flow control blocked. 

NOTE - In an actual implementation the function of the Allocate 
primitive could be combined with the Send or Receive primitives as is done in 
Appendix A of reference [21]. 
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Allocate, as defined here, has no end-to-end significance. It only 
allocates a local ISR. The "Open", "Call Establishment" or other such 
primitives defined in many other transport interfaces often do have end-to-end 
significance as well as cause an ISR to be allocated [3,10,12]. They are used 
for the User level synchronization function that the B mark provides in the 
LINCS service, supported by Delta-t. They are also used to indicate when to 
establish transport protocol connection records and connection management 
packet exchanges and may have other purposes not needed in Delta-t. 

Having allocated an ISR one then needs to define when and how it is 
deallocated. 

procedure Deallocate (ag, a^:Address); 
begin 

{The system searches for a specific-ISR or any-ISR that matches 
the ag, ai pair ana deallocates it.} 

end 

The Deallocate primitive has JTO end-to-end significance. The 
end-to-end synchronization User level significance of "Close", "Disconnect" or 
other such primitives found in some transport services is provided in LINCS 
with higher level conventions in the data. Delta-t does not require hints 
from the User interface or eno-to-end control communication in regard to when 
to discard its state. 

The Deallocate primitive's functionality can be combined with other 
primitives such as Abort. The Send and Receive Interface state can also be 
separately allocated and deallocated. For example, the receive state could be 
deallocated if all available buffer space were Aborted or if an E-bit 
arrived. 

Queue Structure 

The IPC service specified above was defined in terms of queues of 
individually labeled bits. It is unlikely in practice to be implemented in 
such an abstract form. A more likely implementation will create the logical 
queues by use of chained block buffers (first bit address and count), where 
all the bits in a buffer are labeled with the same security level and only the 
first bit in the buffer may be labeled with a B mark and only the last bit may 
be labeled with an E mark. Wakeup conditions are also likely to involve 
buffer boundaries or completions. An example block buffer based interface is 
given in Appendix A of reference [21]. 

Window Advertisement 

The window advertised in Delta-t Ack packets is logically the number of 
available elements in the receive queue of the specific-ISR for an 
association. If no specific-ISR is available for an association a default 
window should be advertised. When a specific-ISR is deallocated an Ack packet 
advertising the default window should be sent. 
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