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A number of models that predict the impulse generated in 
solid targets by short high-intensity radiation loads are 
described. It is shown that the impulse is insensitive to 
the details of the energy deposition and interaction 
processes. Thus with the proper nondimensionalization and 
normalization, all the models are shown to be very nearly 
equivalent.

1. INTRODUCTION
Over the past 30 years a number simple analytic models have 

been developed to predict the impulse generated in solid targets 
by short, high-intensity radiation sources. They have gone 
under names such as Whitener, BBAY, and Modified EBAY. 
Historically, they evolved in successive attempts to better 
match experimental observations for which the earlier versions 
had appeared inadequate. A good summary description of these 
models, including a number of variations that we will not 
consider here, has been given by Newlander et al.1 We will 
examine just these three, but will consider two different energy 
deposition schemes for each. These models are all 
one-dimensional and share a number of common features: a 
threshold energy fluence; a peak impulse coupling coefficient; 
and at high fluences, a square-root dependence of impulse on 
fluence. With these similarities a reasonable question is thus: 
do they differ significantly? If they do, what are the 
differences? To answer these questions we first show in a 
general way that the impulse is insensitive to the details of 
the energy deposition and blowoff phenomena. This provides the 
fundamental basis for our major conclusion, which states that, 
with the proper choice of dimensionless variables and an 
appropriate normalization, all three models are essentially 
equivalent.

* Supported by the U.S. DOE under contract DE-AC04-76DP00789.
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2. IMPULSE INSENSITIVITY
To show the sensitivity of the impulse to the specifics of 

the energy deposition and blowoff processes we conduct a 
"thought” experiment that was originally suggested by R. S. Dingus.2 The blowoff mass that generates the recoil momentum 
or impulse in the target is first assumed to be broken into two 
arbitrary portions, as indicated in Figure 1. For a total 
blowoff mass of M = mi + m2, we let

mi = f M and m2 = (1 - f) M .
In a similar manner we let the total blowoff kinetic energy E = 
ei + ©2 be partitioned between the two masses according to

©i = g E and ©2 = (1 “ g) E .
The respective velocities are then simply

vi = [2e1/m1]h = [2gE/fM]^ ,
v2 = [2e2/m2]3§ = [2(l-g)E/(1-f)M]% ,

so that the total impulse, I = mivi + m2V2, becomes
I = H(f,g) [2UE]k ,

where
H(f,g) == [fgj^ + t(i-f)d-g)]^ •

Since 0 < f,g < 1, the impulse function H(f,g) falls within the same limits, i.e., 0 < H(f,g) < 1. We also note that [2ME]h 
is the maximum possible impulse. To achieve this maximum we 
must have H(f,g) = 1, which occurs when f = g, and from Eg (1), 
leads to Vi = V2. Now by varying g we alter the manner in 
which the kinetic energy is partitioned between the two parts of 
the blowoff mass. This is analogous to a variation in the 
energy deposition profile. Similarly, a variation in f changes 
the mass distribution. In a less direct way the latter 
corresponds to a change in the blowoff process.

Hence, to examine the sensitivity of the impulse to changes 
in the energy deposition and blowoff processes we can look at 
the behavior of H(f,g). Figure 2 is a three-dimensional plot of 
this impulse function where both f and g range from zero to 
one. As anticipated, H(f,g) is a maximum, equal to one, along 
the diagonal. However, the more important result is that H(f,g) 
stays relatively large except at points far out on the "wings.” 
In fact for 0.2 < f,g < 0.8 we have H(f,g) > 0.8. Similarly, 
even for 0.1 < f,g < 0.9, H(f,g) > 0.6. Note that the heavy 
contours drawn on the H(f,g) surface show the boundaries for 
these two conditions. We thus see that it takes relatively 
large changes in f and g to shift H(f,g) appreciably from its 
maximum. In generalizing this, we conclude that the amount of 
recoil momentum generated in the target is quite insensitive to 
the details of either the energy deposition profile or the 
blowoff process.



3. SPECIFIC IMPULSE MODELS
Most investigators currently studying impulse generation 

from pulsed radiation loads employ one or more of the three 
models we will describe here. The first formulation we are 
considering, the Whitener model, generally gives the impulse I 
as

I 72
'Xo

[e(x)
0

e0]^ R dx (2)

where e (x) is the energy deposition profile, and e0 is a 
reference energy (often the vaporization energy of the target 
material) . The material density is R, and xQ is determined 
from e(x0) = e0, i.e., it is the blowoff depth. The second 
formulation, the BBAY model, is named for its original 
developers, Hans Bethe, William Bade, John Averell, and Jerrold 
Yos. It is usually written as

I a
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where 1 < a < 72, and the other parameters are as above.
Finally, the modified BBAY or MBBAY model takes the form

I a (e(x)
e(x)

e0(l + In ---- )} R2
£o

%
x dx (4)

where again 1 < a < J2. In both the BBAY and MBBAY models e0 
has frequently been taken as the target melt energy, although in 
the present study the exact definition is not important; it is 
simply a reference energy. The detailed derivation of these 
expressions is beyond the scope of this paper, however, they are described concisely by Newlander et al,l who also provide much 
of the history of their development and evolution.

To actually use these expressions we must specify the energy 
deposition e(x). For this study we will look at two common 
forms, an exponential profile, and a uniform or square profile. 
The former is

e(x) = pt F0 exp[-AiRx] , (5)
where F0 is the incident fluence (energy per unit area) and (j, 
is a mass absorption coefficient characteristic of the target 
material. The blowoff depth x0 follows by solving e(x0) =
e0, yielding

1 eoxQ = -----  In --- .
At R AtF0



The uniform deposition profile can be written
e(x) = F0/Rx0 , 0 < x < x0 ,

(6)
0 X > Xc .

The two profiles can be related by identifying x0 in Eq (6) 
with the standard mean free path associated with the absorption 
coefficient ju, i.e., xQ = 1/nR, so that e(x) = /iF0 for x < 
x0. Both profiles are illustrated in Figure 3, where the 
shaded areas generally represent the energies available for 
generating impulse. With the above identification of x0, 
these two energies differ only by that in the tail (beyond x0) 
of the exponential profile. This will be important only at low 
to medium fluences, where the energy required for material 
vaporization is a significant portion of the total delivered 
energy.

We can further emphasize the similarities among the models 
by nondimensiona1izing the principal variables, impulse I, and 
energy fluence F0, as

I* = Atl/e0^ F0* = JiF0/e0 . (7)and
Now if we assume a constant reference energy e0 and a constant 
absorption coefficient fi, then each combination of Eqs (2), (3), 
and (4) with either Eq (5) or Eq (6) can be integrated to give a relatively simple expression for the impulse I* in terms of 
the fluence F0*. The six possibilities, in dimensionless 
form, are summarized m Table I. To obtain specific results 
only the material properties R, e0, and n are required. Note 
that occasional problems may require an additional integration 
over fx to account for a variable absorption coefficient; in 
principle however, a constant or "effective" value that will 
give reasonable results can generally be chosen.

All six of these formulations exhibit a number of features 
in common. Specifically, they all have the same threshold 
energy fluence for impulse production. As can be seen from any 
of the equations, it occurs when F0* = 1, or from Eq (7),

Fth ” eo/M •
Additionally, we can show that all of these formulations exhibit 
peak impulse coupling coefficients, defined a s 
(I*/F0*)max, occurring at intermediate fluences ranging 
from 2 to 3 Fth for the uniform deposition models to 6 to 10 
Fth f°r the exponential cases. Finally, for all models, the 
high-fluence impulse scaling can be represented by

I* - (Fo*)* F0* » 1 .f



4. MODEL COMPARISONS
By choosing the conventionally accepted value, a = 1.2, in 

the BBAY and MBBAY models, all six expressions in Table I can be 
plotted, as has been done in Figure 4. Two of the features 
mentioned above are clearly evident. In particular, all the 
curves exhibit the same threshold f luence, F0* = 1, or
equivalently, Fth = eo/P• Since the curves are plotted 
logarithmically, it is easy to see that for high fluences, the 
impulses scale with the square root of the fluence. Once this 
asymptotic behavior is achieved, the various impulses differ by 
at most a constant. This suggests that we could bring the 
models into even better agreement by renormalizing the 
expressions given in the table. To accomplish this we simply 
adjust the leading constants in all six equations to yield the 
same asymptotic values for impulse. Alterations of this sort 
are reasonable because two of the three models, the BBAY and 
MBBAY, already contain a, which is itself somewhat arbitrary.

The results of this "equivalent normalization" are shown in 
Figure 5. As expected, all of the curves coalesce as the 
fluence becomes large. We see that the Whitener and BBAY 
uniform deposition models collapse onto a single curve, and, 
along with the MBBAY uniform deposition case, group together at 
the highest level of impulse. Similarly, the three exponential 
deposition cases group very closely together at a somewhat lower 
impulse level. The fact that the three exponential cases are 
all lower than the the others is easily explained by noting from 
Figure 3 that the former loose a portion of the incident energy 
to deposition beyond the blowoff depth. This is not true for 
the uniform deposition cases. This extra loss mechanism reduces 
the impulse, but is important mainly at low and intermediate 
fluences, where the amount of energy consumed in material 
decomposition is a major part of the incident energy. At high 
fluences the form of the deposition profile is clearly 
unimportant.

The basic conclusion that we draw from this figure is that 
with a specific class of energy deposition profile, the three 
impulse models give results that are very nearly the same. The 
small differences that do exist are likely to be smaller than 
the scatter in typical sets of experimental measurements. Thus 
experiments are probably not going to be able to suggest which 
of the models most closely predicts the real situation. Hence, 
we conclude that with the proper parameter definition and with 
equivalent normalization, the Whitener, BBAY, and MBBAY models 
all give results that are, in all practical situations, 
equivalent.



5. CLOSURE
The equivalence of these formulations was not appreciated as 

the models were being developed because most of the data against 
which they were being compared were all at fluences in the 
vicinity of or below the knees of the impulse curves. Perceived 
agreement with theory was thus strongly dependent on relatively 
small errors in material parameters such as the reference energy 
e0 and the absorption coefficient n. Further, one of the 
parameters, e0, was interpreted differently in one of the 
models. Specifically, in the MBBAY model e0 was generally 
defined as the target material melt energy, whereas in the 
others it was taken as the vaporization energy, typically at 
least a factor of five greater. These differences in the 
reference energy would tend to bring the MBBAY model into better 
alignment with the others in the low to medium fluence regime, 
where the former shows somewhat less curvature. In addition, 
most of these early comparisons with experiment were based on 
nuclear test data, where the experimental environments and 
conditions were subject to rather large uncertainties. With 
these considerations it is not surprising that the similarities 
among the models were not recognized.

We have shown that the recoil momentum or impulse generated 
by the vaporization induced by pulsed radiation loads is 
relatively insensitive to the details of both the energy 
deposition and the blowoff processes. We have also shown that 
the three classic descriptions of this phenomenon, the Whitener, 
BBAY, and MBBAY models, are for all practical purposes, 
equivalent. Due to the forgiving nature of these formulations 
and the interactions they represent, there are a number of other 
applications for which the same general modeling approach is 
appropriate. We close by citing several examples to illustrate 
this point.

The three models were originally developed to describe the 
interaction of low-energy pulsed x rays with solid targets. For 
this situation there are no significant loss mechanisms other 
than those incorporated in the deposition function e(x), and the 
impulse is independent of the radiation pulse width. In making 
the logical extension of this analysis to include pulsed lasers 
operating at IR or UV wavelengths, we find that neither of these 
observations apply. Consequently, we modify the fluence by

F0 ==> F0(1 - r) ,
where r is an integrated loss due to both reflection and 
radiation. To include a dependence on pulse width, which is 
manifested as thermal diffusion, we modify the absorption 
coefficient to

t*
Mo

1 + Mo R (<*T)h•>



where r is the pulse width, a is the thermal diffusivity of the 
target, and u0 is the true absorption coefficient. The 
success of these simple modifications for treating laser 
interactions has been demonstrated in cases where the blowoff is 
untamped3 (free to expand into a vacuum) , and where it is 
fully tamped4 (expansion is restricted). In one final 
example, we have even used this modeling approach to describe 
the enhanced momentum transfer that occurs when hypervelocity 
particles impact with sufficient kinetic energy to vaporize many 
times their own mass of the solid target.^ Undoubtedly the 
future will bring other applications for this type of modeling. 
Hopefully, they will be as successful as the examples given 
here.
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Table I
SUMMARY OF IMPULSE MODELS

Exponential Deposition Uniform Deposition

Whitener Model
I* = 2j2({FQ*-l)h - tan-ifFo*-!)3*}

I* = J2(F0*-I)h
BBAY.Model
I* = ay2{F0* - [l + In F0* + 1/2 (In F0*)2]}h

I* = cc(F0*-i)h
MBBAY Model
I* = a/2{F0* - [1 + In F0* + 1/2 (In F0*)2 + 1/6 (In F0*)3]}^

I* = a(Fo* - [1 + In F0*l)h

FIGURE CAPTIONS
Figure 1. 
Figure 2. 
Figure 3.

Figure 4. 
Figure 5.

Schematic for momentum partitioning.
Impulse function H(f,g).
Energy deposition functions for a) exponential, and 
b) uniform profiles.
Impulse calculations with original normalization. 
Impulse calculations with equivalent normalization.
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