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A number of models that predict the impulse generated in
solid targets by short high-intensity radiation loads are
described. It is shown that the impulse is insensitive to
the details of the energy deposition and interaction
processes. Thus with the proper nondimensionalization and
normalization, all the models are shown to be very nearly
equivalent.

1. INTRODUCTION

Over the past 30 years a number simple analytic models have
been developed to predict the impulse generated in solid targets
by short, high-intensity radiation sources. They have gone
under names such as Whitener, BBAY, and Modified BBAY.
Historically, they evolved in successive attempts to better
match experimental observations for which the earlier versions
had appeared inadequate. A good summary description of these
models, including a number of variations that we will not
consider here, has been given by Newlander et al.l We will
examine just these three, but will consider two different energy
deposition schemes for each. These models are all
one-dimensional and share a number of common features: a
threshold energy fluence; a peak impulse coupling coefficient;
and at high fluences, a square-root dependence of impulse on
fluence. With these similarities a reasonable question is thus:
do they differ significantly? If they do, what are the
differences? To answer these duestions we first show in a
general way that the impulse is insensitive to the details of
the energy deposition and blowoff phenomena. This provides the
fundamental basis for our major conclusion, which states that,
with the proper choice of dimensionless variables and an
appropriate normalization, all three models are essentially
equivalent.

* Supported by the U.S. DOE under contract DE-AC04-76DP00789.
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DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency
thereof.
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2. IMPULSE INSENSITIVITY

To show the sensitivity of the impulse to the specifics of
the energy deposition and blowoff processes we conduct a
"thought" experiment that was originally suggested by R. S.
Dingus. 2 The blowoff mass that generates the recoil momentum
or impulse in the target is first assumed to be broken into two
arbitrary portions, as indicated in Figure 1. For a total
blowoff mass of M = m; + my, we let

mp =fM and my = (1 - £f) M.

In a similar manner we let the total blowoff kinetic energy E =
e1 + e be partitioned between the two masses according to

e1 = g E ~ and ey = (1 -g) E .
The respective velocities are then simply

vy = [2e3/m;]% = [2gE/fM]% ,
(1)
vy = [2e5/mp1% = [2(1-g)E/(1-£)M]% ,

so that the total impulse, I = mjv; + myvy, becomes
I = H(f,g) [2ME]% ,

where
H(f,9) = [£9]% + [(1-£)(1-9)]% .

Since 0 < f,g < 1, the impulse function H(f,g) falls within the
same limits, i.e., 0 < H(f,g) < 1. We also note that [2ME]%
is the maximum possible impulse. To achieve this maximum we
must have H(f,g) = 1, which occurs when f = g, and from Eg (1),
leads to v; = vj. Now by varying g we alter the manner in
which the kinetic energy is partitioned between the two parts of
the blowoff mass. This is analogous to a variation in the
energy deposition profile. Similarly, a variation in f changes
the mass distribution. In a less direct way the latter
corresponds to a change in the blowoff process.

Hence, to examine the sensitivity of the impulse to changes
in the energy deposition and blowoff processes we can look at
the behavior of H(f,g). Figure 2 is a three~dimensional plot of
this impulse function where both f and g range from zero to
one. As anticipated, H(f,g) is a maximum, equal to one, along
the diagonal. However, the more important result is that H(f,qg)
stays relatively large except at points far out on the "wings."
In fact for 0.2 < f,g £ 0.8 we have H(f,g) 2 0.8. Similarly,
even for 0.1 £ f£,9 £ 0.9, H(f,g) =z 0.6. Note that the heavy
contours drawn on the H(f,g) surface show the boundaries for
these two conditions. We thus see that it takes relatively
large changes in f and g to shift H(f,g) appreciably from its
maximum, In generalizing this, we conclude that the amount of
recoil momentum generated in the target is quite insensitive to
the details of either the energy deposition profile or the
blowoff process.



3. SPECIFIC IMPULSE MODELS

Most investigators currently studying impulse generation
from pulsed radiation loads employ one or more of the three
models we will describe here. The first formulation we are
considering, the Whitener model, generally gives the impulse I
as

Xo
I = /2 J [e(X) - €o]% R ax , (2)
0

where €¢(x) is the energy deposition profile, and €p is a
reference energy (often the vaporization energy of the target
material). The material density is R, and X, 1is determined
from €(xp) = €, i.e., it is the blowoff depth. The second
formulation, the BBAY model, is named for its original
developers, Hans Bethe, William Bade, John Averell, and Jerrold
Yos. It is usually written as

ooz ]|

where 1 < a £ /2, and the other parameters are as above.
Finally, the modified BBAY or MBBAY model takes the form

I=ay/ U

where again 1 < a < /2. 1In both the BBAY and MBBAY models ¢q,
has frequently been taken as the target melt energy, although in
the present study the exact definition is not important; it is
simply a reference energy. The detailed derivation of these
expressions is beyond the scope of this paper, however, they are
described concisely by Newlander et al,l who also provide much
of the history of their development and evolution.

To actually use these expressions we must specify the energy
deposition e€(x). For this study we will look at two common
forms, an exponential profile, and a uniform or square profile.
The former is

Xo ;2
{e(x) - €} R%Z X dx] ’ (3)
(0]

Xo €(x)

' 5
{e(x) - €o(1 + 1n }} R?2 x dx] ’ (4)

0 €o

€(x) = p Fo exp[-uRx] , (5)

where Fo is the incident fluence (energy per unit area) and pu
is a mass absorption coefficient characteristic of the target
material. The blowoff depth xo follows by solving €(xgy) =
€0, yielding

1 €o
in — .
4 R uFo

x°=



The uniform deposition profile can be written

6(X)=FO/RXO, OSXSXO,

(6)

=0’ X>Xo.

The two profiles can be related by identifying xo in Egq (6)
with the standard mean free path associated with the absorption
coefficient pu, i.e., %o = 1/uR, so that e€(x) = puFg for x <
Xg - Both profiles are illustrated in Figure 3, where the
shaded areas generally represent the energies available for
generating impulse. With the above identification of X,
these two energies differ only by that in the tail (beyond xg)
of the exponential profile. This will be important only at low
to medium fluences, where the energy required for material:
vaporization is a significant portion of the total delivered
energy.

We can further emphasize the similarities among the models
by nondimensionalizing the principal variables, impulse I, and
energy fluence Fy, as

I* = ul/es” , and Fo* = uwFo/€q - (7)

Now if we assume a constant reference energy €, and a constant
absorption coefficient u, then each combination of Egs (2), (3),
and (4) with either Eq (5) or Eg (6) can be 1ntegrated to give a
relatively simple expre551on for the 1mpulse I* in terms of
the fluence Fg*. The six possibilities, in dimensionless
form, are summarized in Table I. To obtain specific results
only the material properties R, €5, and u are required. Note
that occasional problems may require an additional integration
over i to account for a variable absorption coefficient; in
principle however, a constant or "effective" wvalue that will
give reasonable results can generally be chosen.

All six of these formulations exhibit a number of features
in common. Specifically, they all have the same threshold
energy fluence for impulse productlon. As can be seen from any
of the equations, it occurs when FO = 1, or from Eq (7),

Fth = €o/4 .

Additionally, we can show that all of these formulations exhibit
peak 1mpulse coupllng coefficients, defined as
(I1*/Fo*)max, occurring at intermediate fluences ranging
from 2 to 3 Fg¢p for the uniform deposition models to 6 to 10
Fyh for the exponential cases. Finally, for all models, the
high-fluence impulse scaling can be represented by

* . (Fo¥)% , Fo* >> 1 .



4, MODEL COMPARISONS

By choosing the conventionally accepted value, a = 1.2, in
the BBAY and MBBAY models, all six expressions in Table I can be
plotted, as has been done 1in Figure 4. Two of the features
mentioned above are clearly evident. In particular, all the
curves exhibit the same threshold fluence, Fg* = 1, or
equivalently, F¢h = €q/l. Since the curves are plotted
logarithmically, it is easy to see that for high fluences, the
impulses scale with the square root of the fluence. Once this
asymptotic behavior is achieved, the various impulses differ by
at most a constant. This suggests that we could bring the
models into even better agreement by renormalizing the
expressions given in the table. To accomplish this we simply
adjust the leading constants in all six equations to yield the
same asymptotic values for impulse. Alterations of this sort
. are. reasonable because two of the three models, the BBAY and
MBBAY, already contain «a, which is itself somewhat arbitrary.

The results of this "equivalent normalization" are shown in
Figure 5. As expected, all of the curves coalesce as the
fluence becomes large. We see that the Whitener and BBAY
uniform deposition models collapse onto a single curve, and,
along with the MBBAY uniform deposition case, group together at
the highest level of impulse. Similarly, the three exponential
deposition cases group very closely together at a somewhat lower
impulse level. The fact that the three exponential cases are
all lower than the the others is easily explained by noting from
Figure 3 that the former loose a portion of the incident energy
to deposition beyond the blowoff depth. This is not true for
the uniform deposition cases. This extra loss mechanism reduces
the impulse, but is important mainly at low and intermediate
fluences, where the amount of energy consumed in material
decomposition is a major part of the incident energy. At high
fluences the form of the deposition profile is clearly
unimportant.

The basic conclusion that we draw from this figure is that
with a specific class of energy deposition profile, the three
impulse models give results that are very nearly the same. The
small differences that do exist are 1likely to be smaller than
the scatter in typical sets of experimental measurements. Thus
experiments are probably not going to be able to suggest which
of the models most closely predicts the real situation. Hence,
we conclude that with the proper parameter definition and with
equivalent normalization, the Whitener, BBAY, and MBBAY models
all give results that are, in all practical situations,
equivalent.



5.  CLOSURE ‘

The equivalence of these formulations was not appreciated as
~the models were being developed because most of the data against
which they were being compared were all at fluences in the
vicinity of or below the knees of the impulse curves. Perceived
agreement with theory was thus strongly dependent on relatively
small errors in material parameters such as the reference energy
€o and the absorption coefficient u. Further, one of the
parameters, €5, was interpreted differently in one of the
models. Specifically, in the MBBAY model €, was generally
defined as the target material melt energy, whereas in the
others it was taken as the vaporization energy, typically at
least a factor of five greater. These differences in the
reference energy would tend to bring the MBBAY model into better
alignment with the others in the low to medium fluence regime,
where the former shows somewhat 1less curvature. In addition,
most of these early comparisons with experiment were based on
nuclear test data, where the experimental environments and
conditions were subject to rather large uncertainties. With
these considerations it is not surprising that the similarities
among the models were not recognized.

We have shown that the recoil momentum or impulse generated
by the vaporization induced by pulsed radiation loads is
relatively insensitive to the details of both the energy
deposition and the blowoff processes. We have also shown that
the three classic descriptions of this phenomenon, the Whitener,
BBAY, and MBBAY models, are for all practical purposes,
equivalent. Due to the forgiving nature of these formulations
and the interactions they represent, there are a number of other
applications for which the same general modeling approach is
appropriate. We close by citing several examples to illustrate
this point. ;

The three models were originally developed to describe the
interaction of low-energy pulsed x rays with solid targets. For
this situation there are no significant loss mechanisms other
than those incorporated in the deposition function e(x), and the
impulse is independent of the radiation pulse width. In making
the logical extension of this analysis to include pulsed lasers
operating at IR or UV wavelengths, we find that neither of these
observations apply. Consequently, we modify the fluence by

Fo ===3> Fo(l - r) ’
where r is an integrated loss due to both reflection and
radiation. To include a dependence on pulse width, which is

manifested as thermal diffusion, we modify the absorption
coefficient to

Ho

1+ ug R (ar)* ’



where 7 is the pulse width, o is the thermal diffusivity of the
target, and ug 1is the true absorption coefficient. The
success of these simple modifications for treating laser
interactions has been demonstrated in cases where the blowoff is
untamped3® (free to expand into a vacuum), and where it is
fully tamped4 (expansion is restricted). In one final
example, we have even used this modeling approach to describe
the enhanced momentum transfer that occurs when hypervelocity
particles impact with sufficient kinetic energy to vaporize many
times their own mass of ' the solid target. Undoubtedly the
future will bring other applications for this type of modeling.
Hopefully, they will be as successful as the examples given
here.
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Table I
SUMMARY OF: IMPULSE MODELS

Exponential Deposition Uniform Deposition

Whitener Model
I* = 2/2((Fo*-1)% - tan~1(Fo*-1)%)
I* = J2(Fo*-1)%
BBAY Model‘
I* = a/2(Fo* - [1 + 1n Fo* + 1/2 (1n Fo*)21)%
I* = a(Fo*-1)%

MBBAY Model

I* = a/2{Fo* - [1 + 1n Fo* + 1/2 (1n Fg*)2 + 1/6 (1ln Fo*)31)%

I* = a(Fo* - [1 + 1In Fo*1)%

FIGURE CAPTIONS
Figure 1. Schematic for momentum partitioning.
Figure 2. Impulse function H(f,g).

Figure 3. Energy deposition functions for a) exponential, and
b) uniform profiles.

Figure 4. Impulse calculations with original normalization.

Figure 5. Impulse calculations with equivalent normalization.
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