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Abstract

A message-passing version of the PAGOSA shock-wave physics code has
been developed at Sandia National Laboratories for multiple-instruction,
multiple-data stream (MIMD) computers. PAGOSA is an explicit, Eulerian
code for modeling the three-dimensional, high-speed hydrodynamic flow
of fluids and the dynamic deformation of solids under high rates of strain.
It was originally developed at Los Alamos National Laboratory for the sin-
gle-instruction, multiple-data (SIMD) Connection Machine parallel com-
puters. The performance of Sandia’s message-passing version of PAGOSA
has been measured on two MIMD machines, the nCUBE 2 and the Intel
Paragon XP/S. No special efforts were made to optimize the code for ei-
ther machine. The measured scaled speedup (computational time for a sin-
gle computational node divided by the computational time per node for
fixed computational load) and grind time (computational time per cell per
time step) show that the MIMD PAGOSA code scales linearly with the
number of computational nodes used on a variety of problems, including
the simulation of shaped-charge jets perforating an oil well casing. Scaled
parallel efficiencies for MIMD PAGOSA are greater than (.70 when the
available memory per node is filled (or nearly filled) on hundreds to a thou-
sand or more computational nodes on these two machines, indicating that
the code scales very well. Thus good parallel performance can be achieved
for complex and realistic applications when they are first implemented on
MIMD parallel computers.
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The Development and Performance of a Message-
Passing Version of the PAGOSA Shock-Wave
Physics Code

Introduction

An important class of shock-wave physics problems is characterized by large material
deformations. These problems involve penetration, perforation, fragmentation, high-
explosive initiation and detonation, and hypervelocity impact. These phenomena arise, for
example, in armor/antiarmor research and development, the design of impact shielding for
spacecraft, the modeling of lithotripsy for the disintegration of kidney stones using high-
frequency sound waves, and hypervelocity impact problems. The most important of such
problems are intrinsically three-dimensional and involve complex interactions of exotic
materials, including alloys, ceramics and glasses, geological materials (e.g., rock, sand, or
soil), and energetic materials (e.g., chemical high explosives).

Multidimensional computer codes with sophisticated material models are required to
model this class of shock-wave physics problems realistically. The codes must model the
multiphase (solid-liquid-vapor), strength, fracture, and high-explosive detonation
properties of materials. Three-dimensional simulations may require millions of
computational cells to adequately model the physical phenomena and the interactions of
complex systems of components. Many scientists and engineers currently use Eulerian
shock physics codes such as Sandia National Laboratories” CTH code [15][18] or Los
Alamos National Laboratory’s MESA [17] codes to model such problems [3].

CTH and MESA are serial codes which run on Cray vector supercomputers and on
workstations. Owing to the expense of high-speed memory, vector supercomputers do not
have enough memory to model problems which require more than a few million
computational cells. Many problems of interest require tens of millions of cells. Even
these inadequately resolved problems often require tens or hundreds of CPU hours to
complete. Traditional serial vector supercomputers are t0o slow and have too little
memory to calculate many important weapon safety problems, or to calculate complex
design problems, such as the effects of materials selection and design parameters on the
performance of modern armor.

Parallel shock physics codes running on current-generation massively parallel
computers are beginning to provide the high resolution and short turnaround time required
for these shock-wave physics problems. Several years ago, work at Sandia demonstrated
that massively parallel computers running paralle] versions of the CTH and MESA codes
were highly competitive with serial vector supercomputers such as a Cray Y-MP [10][11]
[12] [19]. Current-generation paraliel computers, such as the Paragon XP/S, are
demonstrating even better performance, both in terms of problem size and speed [8].




In this report we describe the development of a three-dimensional, multimaterial
version of the PAGOSA shock-wave physics code for multiple-instruction, multiple-data
(MIMD) parallel computers, and present the measured performance of the code on two
different parallel computers, the nCUBE 2 and the Intel Paragon XP/S. The nCUBE 2 is
a distributed-memory MIMD parallel computer with a hypercube communications
topology. The Paragon XP/S is a distributed-memory MIMD parallel computer with a
two-dimensional mesh communications topology.

The original data-parallel PAGOSA code was developed at Los Alamos National
Laboratory in CM Fortran for the Connection Machine-2 (CM-2) and the Connection
Machine-5 (CM-5)[16].

In earlier work we developed a three-dimensional, single-material, ideal-gas version of
PAGOSA for MIMD parallel computers (specifically, the Cray Y-MP, the nCUBE 2, the
Intel iPSC/ 860, and the CM-5) by translating it to Fortran 77 and adding routines for
domain decomposition and interprocessor communication [9]. The excellent performance
of this code [10][11] and the parallel CTH code (PCTH) [7][8][12][13][19] on a variety of
MIMD parallel computers spurred the continuing development of parallel shock-wave
physics codes, and, in particular, an MIMD version of the three-dimensional,
multimaterial PAGOSA code.

By reporting the performance of a single applications code on a variety of parallel
machines, we can provide an indication of the performance that may be attained on
current-generation parallel computers. The performance results presented here are
indicative of what one might achieve in first implementing a complex application code on
a distributed-memory, message-passing parallel computer. We have made no attempt to
optimize the code for any particular machine; all the machines are running essentially the
same code. The performance results reported here are lower bounds for each architecture,
because, given sufficient resources, most codes can be optimized for a given architecture.

The performance data we present in this report represent only one aspect of the
performance of each computer. While the data address fundamental issues of
computational speeds, other issues must also be considered when evaluating parallel
computers, including the ease of sharing the machine among multiple users, the
functionality of the operating system, the availability of graphical output devices and the
ease of their use, and the machine acquisition and maintenance costs. Neither of the
machines examined in this report should be accepted or rejected solely on the basis of the
data presented in this report.

In the remainder of this report we discuss issues in parallel computing and measuring
the performance of parallel computer codes. We then discuss the development of the
MIMD PAGOSA code. We describe the test problems and the conditions used in our study
and then present the performance results. Finally we compare the performance of MIMD
PAGOSA on the two MIMD computers and present our conclusions.
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Issues in Parallel Computing

In this section we discuss some of the issues involved in parallel computing. We define
data-parallel computing and message-passing computing, and general features of how
these computing paradigms are implemented on the computers used in this study. Then we
review what has been learned prior to this study about the performance of shock-wave
physics codes on parallel computers.

Historically, two parallel computing architectures have been popular: the Single-
Instruction, Multiple-Data, or SIMD, architecture, and the Multiple-Instruction, Multiple-
Data, or MIMD, architecture. These architectures are visible to the user as a data-parallel
programming paradigm or a message-passing paradigm, respectively. Often terms used to
describe the architectures and the programming paradigms are used interchangeably.

In the SIMD architecture, a large number (usually thousands) of small processors
perform operations on data under the control of a master processor. Each processor
executes the same instruction simultaneously on the data to which it has access. SIMD
computers may be thought of as large array processors. The SIMD approach is more
general than it might first seem, because the result of the operation executed on the data in
a processor may depend on the data itself through local flag variables. An example of an
SIMD machine was the Connection Machine-2, manufactured by Thinking Machines
Corporation. The SIMD programming paradigm focuses on and exploits parallelism in the
data, but not in the instructions executed by the processors.

In the MIMD architecture, a large number (usually tens or hundreds) of more
sophisticated processors (which we will refer to as nodes') execute the same or different
instructions on the data to which they have access. For distributed memory computers, the
work performed by the nodes is coordinated via explicit passing of messages from one
node to another. In shared memory computers, the work performed by the nodes may also
be coordinated through the shared memory. Each node has its own operating system and
its own copy of the instruction set. Although each node may be executing the same
instruction at the same time, the more common mode of operation is for each node to
execute instructions independently of the others, and then synchronize its execution with
other nodes at various times via the passing of messages, such as the global determination
of a time step. This latter mode of operation is called loosely synchronous. It is common
for each node in an MIMD computer partition to be executing the same program in loosely
synchronous mode, but more generally the nodes can be executing entirely different

1. Some MIMD processing elements are composed of more than one processor. For example, the computa-
tional processor in the Paragon XP/S is composed of an i860 XP RISC processor for computation and an
additional i860 XP processor for communication. In most circumstances we will refer to a processing ele-
ment in a parallel computer as a processor or a node. In those circumstances where it is important to distin-
guish between an a processing element and the processors which comprise it, we will refer to the former
strictly as a node.
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programs. For example, in an eight-node partition, four nodes might be devoted to
performing an armor penetration simulation, while the other four might be devoted to
forming graphical images of the simulation in parallel with the computation. Examples of
MIMD computers are the nCUBE 2, manufactured by nCUBE Corporation, the Intel
Paragon XP/S, and the Cray T3D. The message-passing programming paradigm
exploits parallelism in both the data and the instructions executed by the nodes.

Both SIMD and MIMD computers often employ a front-end host to communicate
information (instructions and data) to the parallel assembly of processors, and to collect
data from the processors for transmission to the user. In the SIMD architecture, the host
acts as a master processor to the slave processors. The host issues all the instructions,
while the processors execute those instructions synchronously.

In the MIMD architecture, the nodes can function much more independently of the
host, and the division of labor between the host and the nodes can vary widely. In
particular, the work allocated to the front-end host can vary from minimal to a significant
amount, depending on the application. Minimal work includes allocating and opening the
requested assembly of nodes (e.g., a hypercube in a computer with a hypercube
communication topology), broadcasting the appropriate instruction set to each node, and
closing and deallocating the assembly of nodes at the completion of the job. In addition,
the host might broadcast the user input to the nodes or postprocess some of the data from
the nodes for transmission to the user. In general, at least two distinct instruction sets are
required, one for the host, and one (or more) for the nodes. In the case where the host
performs more than the minimal work required, this programming model is termed the
host-node model; such a model is explicitly required on the Cray Y-MP (when run as a
distributed-memory message-passing computer).

On many MIMD computers it is possible to put processing that might be performed on
the host on one or more of the nodes, allowing the host to perform only the minimal work
required. On these machines the manufacturer may supply a generic host code which
performs the minimal work and relieves the user of the burden of maintaining both a host
code and a node code. The generic host code is called xnc on the nCUBE 2. A script
called pexec that functions as a generic host code is commonly used on the Intel
Paragon; pexec allocates a collection of nodes, loads and runs the application code(s),
and finally deallocates the nodes. This programming model is termed the node-only
model.

In general, SIMD computers are easier to program than MIMD computers because the
interprocessor communication in SIMD computers is hidden from the programmer by the
operating system and hardware. SIMD computers can often run applications that are
strongly data-parallel faster than MIMD computers. In general, however, MIMD
computers provide a more flexible computing environment, because different nodes can
work on different subtasks simultaneously. Even on MIMD machines, much of the inter-
node communication in MIMD comiputers may be hidden from the programmer by the




operating system and by the use of data-parallel languages such as Fortran 90. Overall,
an MIMD computer is a more general-purpose computer than an SIMD computer.2

Earlier work at Sandia and at Los Alamos National Laboratory demonstrated that both
SIMD and MIMD computers can be programmed effectively for shock wave physics
calculations [12][16][19]. Our previous work with a single-material, ideal-gas version of
PAGOSA demonstrated that MIMD computers consistently outperformed SIMD
computers on large problems for machines of comparable cost [10]{11]. Currently all
major parallel computer manufacturers have adopted the MIMD architecture, which we
interpret as evidence that the MIMD architecture is more suitable for general applications
than the SIMD architecture. ’

Parallel Code Performance Measurements

In this section we discuss issues in measuring the performance of codes on parallel
computers. We consider computational rate, memory size, and scalability as three
essential metrics of parallel computer performance.

The performance of parallel computers is commonly measured using several metrics.
The peak theoretical speed is often cited. The results from the LINPACK benchmarks [6]
or the NAS Parallel benchmarks [1] are more indicative of the performance which may be
achieved by applications codes.

The LINPACK benchmark codes perform a factorization of a dense matrix A into a
lower triangular matrix L and an upper triangular matrix U, such that A = LU. This
factorization, called an LU factorization, is used in solving dense linear systems of
equations of the form Ax = b. The benchmark uses standard LINPACK [5] routines in full-
precision (64-bit) arithmetic in a Fortran 77 environment (there is also a set of benchmarks
for the C programming language) to perform an LU factorization. The benchmark consists
of several tests. The first is for a matrix of order 100 using a prescribed Fortran 77
program. The second test is for a matrix of order 1000 using any algorithm, but with a
prescribed driver to set up the problem to be solved and to ensure consistent solution
accuracy. The third test is to factor the matrix of largest possible order using any code on a
parallel computer. The full LINPACK benchmark resuits for a computer consist of the
time required to complete each test and also include the theoretical peak speed of the
computer, the upper bound on machine performance. The most commonly cited
LINPACK benchmark results provide an achievable upper bound for speed on problems
involving the solution of dense linear systems by LU factorization; achieving the
benchmark results often requires the use of special machine configurations and highly

2. The CM-5 does not fit neatly into the framework of the discussion in this paragraph because, while its un-
derlying architecture is MIMD, the user can employ either a data-parallel or message-passing programming
paradigm for applications. The CM-5 demonstrates that the programming paradigm can be independent of
the underlying computer architecture.
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optimized assembly code or other resources not normally available to the engineering
analyst.

The NAS Parallel benchmark set is a collection of eight problems designed to indicate
the performance of parallel supercomputers. They consist of five kernels, each
emphasizing a particular type of numerical computation (e.g., fast Fourier transforms),

“and three simulated computational fluid dynamics applications. The benchmarks are
specified functionally, independent of the details of implementation, with specified
operation counts. While the times required to complete the NAS Parallel benchmark tests
provide a more realistic assessment of the performance of a parallel computer, the tests are
still highly idealized compared to real applications codes.

Computational rate and problem size are distinct though related aspects of computer
performance. Analysts usually want to perform simulations as quickly as possible; for
example, when conducting a parameter study. If a problem is sufficiently large, a parallel
computer may be able to run it faster than the fastest vector supercomputers even though
the parallel computer has slower processors [10][11]. Vector supercomputers must use
expensive high-speed memory to achieve high computational rates, and the cost of that
memory places a practical limit on the memory size of the computer, and hence on the size
of the simulations which can be performed with it. Distributed-memory parallel computers .
use slower, less expensive memory, and hence, for the same cost as a vector
supercomputer, a parallel computer with much larger total memory can be acquired. Thus

it is practical for a distributed-memory parallel computer to run much larger simulations
than can be performed on existing vector supercomputers. From this point of view, the
issue is not so much computational rate as memory size: if a computer does not have
enough memory to perform the simulation, it does not matter how fast it is. Both
computational rate and memory size should be considered when measuring the
performance of a computer.

Elsewhere [8] we have demonstrated that while an MIMD parallel computer may
provide a higher computational rate than a vector supercomputer, it must also have
sufficient memory capacity to provide equal or greater resolution. A simulation with less
resolution obtained more quickly may not be as useful to the analyst as a simulation with
greater resolution. We have also demonstrated that when a parallel computer has enough
memory, simulations of greater resolution can be obtained in less time than with a serial
vector supercomputer.

- In order to achieve a high execution rate on a parallel computer, both the parallel
computer and the application code must also be scalable. By scalability of the computer,
we mean that the time to send a zero-length message across the largest dimension of the
computer increases no more than linearly with the number of nodes. By “largest
dimension” we mean the maximum over all the nodes of the number of nodes a message
must pass through in order to travel from one node to another while taking the shortest
permissible path, including the sending and receiving nodes. For example, a hypercube




with 2% nodes has dimension N. A Paragon with a mesh of 6 columns of 16 nodes has
dimension 21, since messages are passed along a row and then down a column.

By scalability of the application code we mean that the execution speed of the code
running a specific problem on a scalable parallel computer increases linearly with the
number of nodes when the computational load per node is fixed [14]. Both the parallel
computer (hardware and operating system) and the application code must be scalable in
order to achieve high execution rates.

Three performance metrics are commonly used for application codes on parallel
computers: fixed-size speedup, scaled speedup and parallel scaled efficiency. If the scaled
speedup, or, equivalently, the parallel efficiency, varies linearly with the number of nodes,
then the application code is scalable.

We first define the speedup, S(P,N) to be the ratio of the time to solve a problem of size
N on one node, T7(N), to the time required to solve the same problem on P nodes, Tp(N):

S(P,N) = T(N)/Tp(N)

This defines a surface in three dimensions; an example is shown in Figure 1.

Scaled Speedup

Fixed-Size Speedup

(N‘d)S

Figure 1. lllustration of the speedup surface, the fixed-size speedup curve, and the
scaled speedup curve.
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The fixed-size speedup Sris the ratio of the time required to solve a problem on a single
node to the time required to solve the same problem on P nodes, when the problem size N
is fixed. If the problem size is fixed, the locus of points on the speedup surface generated
as the number of processors is varied is the fixed-size speedup curve. A fixed-size speedup
curve is marked on the speedup surface (Figure 2). If we are interested in solving very
large problems which will not fit on a single node (as is often the case), then fixed-size
_-speedup is not a good measure of performance. However, engineers are often interested in -
solving a problem of fixed size as quickly as possible, and hence in the maximum of the
fixed-size speedup curve. In this circumstance the fixed-size speedup is a useful measure
of performance.

In contrast to the fixed-size speedup, the scaled speedup S is the ratio of the time
required to solve a problem of size PN on a single node, T(PN), to the time required to
solve the problem of size PN on P nodes with a subproblem of size N on each node,
Tp(PN), when the work per node is fixed [14]. Thus the problem size increases with the
number of computational nodes. The scaled speedup can be calculated directly, as long as
the problem of size PN will fit on a single node, from

T,(PN)
To(PN)’

The locus of points on the speedup surface generated as the number of processors is varied
and the problem size is increased in proportion to the number of processors is the scaled
speedup curve. A typical scaled speedup curve is marked on the speedup surface (Figure
1). The projections of the fixed-size and scaled speedup curves on the P-S plane are shown
in Figure 2 to illustrate the difference between them.

S,P) = S(P,PN) =

When the problem of size PN will no longer fit on a single node, 71(PN) must be
estimated. One way to estimate the time 7';(PN) is to extrapolate it from the behavior of
T1(PN) on a single node as PN increases [9]. For large problems, this may require
extrapolation over several orders of magnitude, which introduces uncertainty into the
validity of the resultant speedup. In this report we estimate the time 77(PN) by PT(N).
This represents the time required by a single node to perform the necessary calculations on
each subdomain serially, assuming that no time is required to swap the subdomains in
memory and assuming sufficient memory to hold all the subdomains. It is thus the shortest
time that a single node could perform the same calculation as the parallel computer.
Making this estimate is straightforward for an explicit code like PAGOSA; for codes with
implicit components, however, one must ensure that the same computational work is done
by the single node in processing all the subdomains as is done by the parallel computer.
Here we calculate the scaled speedup S (P) from the ratio of the product of the time
required to solve the problem of size N on a single node, 77(N) and the number of nodes,
P, to the time taken to solve the problem of size PN on P nodes, Tp(PN):




25 Scaled Speedup

20

N
Fixed-Size Speedup
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Figure 2. The fixed-size speedup and scaled speedup curves projected on the
P-S plane.

For many scientific and engineering simulations (such as the test problems presented
later and simulated with MIMD PAGOSA) the ratio T1(P )T n(PN) becomes constant when
P is sufficiently large, and S;(P) varies directly with P [10][11], that is, the simulations are
scalable.

The parallel scaled efficiency € is the scaled speedup divided by the number of
computational nodes:

e = S(P)/N = T,(P)/Ty(PN).

The closer the parallel scaled efficiency is to one, the more efficient the parallel
performance of the code is. The parallel scaled efficiency will always be less than one,
owing to algorithmic, communication, or load-balancing overhead.

The grind time is a useful measure of the computational rate of a mesh-based, time-
marching computer code, such as PAGOSA. The grind time, ¢, ,, is the execution time
for the code calculating a given problem divided by the product of the number of time
steps and the number of computational cells:
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where Tp(PN) is the execution time on P nodes for a problem of PN computational cells
run for n time steps. The grind time depends on the number of cells and the number of
nodes, and also on the specific simulation. For a given code solving the same problem on
different computers, the grind time indicates the performance of the code on that computer
and is a useful metric for computer performance comparisons.

Of special interest in indicating parallel computer performance are the maximum
problem size which can be run and the execution time (or equivalently, the grind time) on
the maximum problem size. As discussed above, these are distinct though related
measures of performance. These measures are both very problem-dependent, and so must
be measured for a variety of problems for a given application code in order to adequately
represent the performance of a given computer.

- The relative performance of parallel computers can be assessed from measured values
of scaled speedup, parallel scaled efficiency, grind time, maximum problem size and
execution rate on the maximum problem size. The scaled speedup and parallel scaled
efficiency both measure the scalability of a parallel code on a specific parallel computer.
The grind time and maximum problem size data measure the absolute performance of the
parallel code on the parallel computer.

Development of the MIMD pAGOSA Code

In this section we describe the features of the PAGOSA 5.5 shock-wave physics code
and the process of developing the MIMD PAGOSA 5.5 code from the SIMD version.

Features of PAGOSA 5.5

PAGOSA is an explicit, three-dimensional, multimaterial shock wave physics code
which has been developed at Los Alamos National Laboratory for the CM~2 and CM-5
massively parallel computers in CM Fortran, a variant of the Fortran 90 programming
language [16]. PAGOSA is designed to model problems involving high-speed
hydrodynamic flow and the dynamic deformation of solid materials. The core algorithms
in PAGOSA were inherited from the MESA code [17], but some of the algorithms in
PAGOSA have been rewritten to take advantage of the SIMD parallel architecture of the
CM-2 and the data-parallel programming paradigm of the CM-5. MESA and PAGOSA
were both developed specifically for three-dimensional armor/antiarmor simulations,
although they are now used for a broad range of applications, and both codes include a
variety of equations of state and material strength models.

The numerical algorithms used in PAGOSA solve the equations of conservation of
mass, momentum and energy in an explicit, Eulerian finite difference formulation on a
three-dimensional Cartesian mesh. A staggered mesh is used in which density and
pressure are evaluated at the cell centers, and the velocities are evaluated at the cell
vertices.




The solution at each time step is calculated in two phases, a Lagrangian phase and an
advection phase. During the Lagrangian phase, the Lagrangian equations of motion are
solved to obtain the values of the variables corresponding to a fluid element which has
moved and distorted relative to the fixed Cartesian mesh, using a second-order accurate
predictor-corrector scheme for the time integration.

During the advection phase, the updated variables at the original, fixed cell centers and
vertices are calculated. The advection equations are solved using an operator-splitting
scheme in which the advection operator is split into components along the three
orthogonal mesh directions and the fluxes of mass, energy, momentum and stress through
cell faces are calculated for each direction. Corrections for cross terms are not explicitly
included, but approximate corrections are made implicitly by reversing the order of the
advection directions in alternate timesteps. This tends to remove any directional bias
introduced by the operator splitting. In each coordinate direction an upwind or donor-cell
scheme is used to determine the fluxes of cell-centered quantities through the faces of a
cell; a similar scheme is used for determining the momentum flux, but is based on a
vertex-centered cell. A third-order accurate van Leer limiting scheme is used to correct the
first-order accurate donor-cell fluxes. This makes it possible to maintain steep gradients of
advected quantities without introducing non-physical oscillations.

Ideal gas, Mie-Griineisen, polynomial, and Jones-Wilkins-Lee (JWL) equations of
state, the von Mises elastic, perfectly plastic yield stress model, and a programmed burn
model for high explosives have been implemented in the production version of PAGOSA
[16].

Development of MIMD PaGosa 5.5 from SIMD PAGOSA 5.5

Conceptually, creating an MIMD version of PAGOSA from the SIMD version involves
dividing the global computational domain into a collection of subdomains, with each
subdomain assigned to a single node, and then adding the necessary communications
between neighboring nodes to reproduce the global computational domain. When the
global computational domain is divided into subdomains, each subdomain is surrounded
by ghost cells, which are used for communicating results between neighboring nodes. This
subdivision is illustrated for a two-dimensional domain in Figure 3. This process of
dividing the global computational domain into subdomains, assigning a subdomain to a
node, and implementing the necessary inter-node communications to reproduce the global
domain is called domain decomposition.

More specifically, following the process we used in developing an MIMD version of
the single-material, ideal-gas version of PAGOSA [9], we created an MIMD version of
PAGOSA from the SIMD code (specifically, PAGOSA 5.5) by translating the CM Fortran
to Fortran 77, adding routines to divide the global computational domain into
subdomains and assign each to a node, and adding routines for inter-node communication.
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Figure 3. lllustration of the decomposition of the global computational domain into
subdomains, in two spatial dimensions.

The translation from CM Fortran to Fortran 77 primarily involved replacing
single-line matrix instructions, such as those for adding two vectors, by Fortran 77 DO
loops; we also combined adjacent DO loops where appropriate. This process is illustrated
with the program fragments shown in Figure 5. Each array statement in the CM Fortran
(Figure 8, left) is equivalent to a set of DO loops in Fortran 77. In many cases, adjacent
equivalent DO loops in the Fortran 77 translation can be combined, as illustrated in the
right half of Figure 5.

CM Fortran: Fortran 77:
real,array{(0:nl,0:n2,0:n3)::a,b real af{0:nl, 0:n2, 0:n3),
& b(0:nl, 0:n2, 0:n3)

call shift_left(a
a + cshift(a,1,1) do 300 k =_0 né )

c + Cshift(a,l,l) do 200 j = 0, n2

do 100 i = 0, nl-1
b{i,j.k)=a(i,j, k)+a(i+l,J. k)
c{i,j,kK)=c(i,j.k)+a(i+1,3,.k)
100 continue
b(nl,j,k)=a(nl,j,k)+a(0,3,k)
c(nl,j,ky=c(nl,j,k)+a(0,3, k)
200 continue
300 continue

o
nou

Figure 4. Program fragments illustrating the translation from CM Fortran (left) to
Fortran 77 (right). The DO loops implicit in the CM Fortran array addition are ex-
plicit in the Fortran 77 equivalent. In addition, the different communication over-
head is evident for the simple index shift operations in CM Fortran and Fortran 77.
Two communications, one for each cshift operation, are required in the

CM Fortran code. The equivalent Fortran 77 requires only one, via the
shift_left subroutine. The function of shift_left is illustrated in Figure 5.
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Figure 5. lllustration of shift_left local inter-node communication between two
nodes for two-dimensional subdomains for a message-passing code. The ele-
ments on the left boundary of node 2 are communicated to the ghost cells on the
right boundary of node 1.

The cshift function shown in Figure 5 performs a circular shift; for example,
cshift(a, 1, 1) returns the array of values of the array a shifted by one in its first
index. At the maximum value of the first index, the cshi ft function wraps around and
retumns the value of a at the minimum value of the first index (hence the name “circular
shift”). This is made more clear by the equivalent Fortran 77 code (Figure 4, right).
Within a processor, cshi £t makes internal memory copies; between processors,
cshift uses interprocessor communication to obtain the values required.

The equivalent Fortran 77 code also illustrates the reduction in communication
which is often possible in the message-passing code, compared to the data-parallel code.
In the CM Fortran code (Figure 8, left), many internal memory copies are made and
interprocessor communication is required for each call to the cshift function. In the
equivalent Fortran 77 code, no internal memory copies are required on the node, and
only one communication, implemented with the function shift_left, is required.
These reductions in memory copies and inter-node communication can significantly
improve the performance of the message-passing code over the data-parallel code [11].
The function of the shift_le€£t routine is illustrated in Figure 5 for two-dimensional
subdomains. In this figure, node 2 sends the contents of its left-most cells to the right ghost
cells on the node to its left, node 1.
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Features of MIMD pPaAGOSA 5.5

MIMD PAGOSA 5.5 contains all the features of the SIMD PAGOSA 5.5 code, except
for the X Window graphics, tracer particles, and shadow regions for the high-explosive
burn time calculations. (SIMD PAGOSA 5.5 does not contain fracture models).

. Simulations from MIMD PAGOSA 5.5 can be visualized using the iso isosurface
code, developed by Patricia J. Crossno at Sandia. iso can be run heterogeneously with
MIMD PAGOSA, or used as a post-processor. 1so runs on the Paragon and the
nCUBE 2.

We have also developed an MIMD version of GEN, the generator, or problem-setup,
code for PAGOSA. MIMD GEN runs on the same platforms as MIMD PAGOSA, and can
_ be run either independently of MIMD PAGOSA (for verifying that a problem has been set
up correctly) or called from within MIMD PAGOSA when running a simulation.

An input guide for MIMD PAGOSA 5.5 and MIMD GEN is included in Appendix A.

The Test Simulations

The test simulations used to measure the performance of PAGOSA on the parallel
computers and to demonstrate its capabilities were the oblique impact of a finned tungsten
projectile on a stainless steel plate, the explosive welding of a copper tube to a steel plate,
and the perforation of an oil-well casing by a shaped charge.

The Finned Projectile Simulations

In the simulation of oblique impact of a finned tungsten projectile on a stainless steel
plate, a finned tungsten projectile 0.9 cm long and 0.15 cm in diameter impacts a 0.15-cm
thick stainless steel plate at an angle of 30° from the normal and a speed of 1.0 km/s. We
used linear Us/Up Mie-Griineisen equations of state for the tungsten and the stainless
steel. We ran this simulation with the hydrodynamic constitutive model to a time of 5 u s,
when the projectile has clearly perforated the plate. The left frame in Figure 6 shows the
initial configuration; the right frame shows the configuration at 5.0 ps. A typical input file
for this simulation is given in Appendix B.

We also ran the same simulation with the elastic, perfectly plastic constitutive model
for the tungsten and the steel to a time of 6.7 ps, when the penetrator has clearly
penetrated the plate. The left frame in Figure 7 shows the initial configuration; the right
frame shows the configuration at 6.7 | s. A typical input file for this simulation is given in
Appendix B.




Figure 6. Simulation of a finned tungsten projectile obliquely impacting a stainless
steel plate (hydrodynamic constitutive model).

Ous 6.7us

Figure 7. Simulation of a finned tungsten projectile obliquely impacting a stainless
steel plate (elastic, perfectly plastic constitutive model).

The Explosive Welding Simulation

In the simulation of the explosive welding of a copper tube to a stainless steel plate [2],
a cylindrical charge of the high explosive PBX-9501 is ignited inside a copper tube, and
the resulting detonation welds the tube to a steel plate. The copper tube is 1.2 cm in inside
diameter with a wall thickness of 0.4 cm. The tube is inserted through a 64° bevelled hole
in the plate and protrudes 3.0 cm beyond the surface of the plate. The internal diameter of
the hole in the plate is 2.0 cm and the external hole opening is 4.0 cm. The PBX-9501 is in
the form of a rod, 0.6 cm in outside diameter and of length 0.5 cm. The PBX-9501 is held
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Figure 8. Simulation of the explosive welding ofa copper tube to a stainless steel
plate. The initial configuration is shown on the left; the simulation at 65 us is
shown on the right.

in a position coaxial with the tube by a foam cup, which fills the space between the PBX-
9501 and the inner surface of the copper tube, and also projects 0.25 cm beyond the end of
the high explosive. The PBX-9501 was detonated at the center of the internal end of the
rod using a point detonator. We used a linear Us/Up Mie-Griineisen equation of state and
the elastic-perfectly plastic constitutive model for the copper, the 304 stainless steel, and
the foam. The PBX-9501 detonation products were modeled with the Jones-Wilkins-Lee
equation of state. The programmed burn model was used to model the detonation. For the
performance measurements we ran this simulation a time of 15 p s, when significant
deformation of the copper has occurred. The left frame in Figure 8 shows the initial
configuration; the right frame shows the configuration at 65 p s, when the weld is
essentially complete. A typical input file for this simulation is given in Appendix B.

The Oil-Well Perforation Simulation

In the oil-well perforation simulation, the casing of an oil well is perforated with two
small shaped-charge jets. Well bores are typically lined with steel pipe, or concrete casing,
or both; the liner usually must be perforated with tiny high-explosive charges prior to
pumping. Perforation allows production of oil from specific depths determined from
logging data. The perforators are inserted into the well hole inside carrier tubes and then
detonated when the tube has been lowered to the prescribed depth. They are designed to




make clean holes in the casing and to penetrate several inches outward into the
surrounding oil-bearing strata.

In this simulation, two perforator charges are aimed horizontally in opposite directions
inside a steel carrier tube that has been inserted in an oil well. The perforators are similar
to a current industrial design, with a conical copper liner surrounded by high explosive
and a steel case. The carrier tube is positioned flush against one side of the well casing.
Each charge is point-detonated at the apex of the high explosive layer surrounding the
conical copper liner. Energy release in the detonated explosive then causes the liners to
converge and form shaped-charge jets that perforate the steel carrier tube and casing, and
penetrate into the surrounding rock. '

The inner diameter of the stainless steel well casing is 6.21 cm and the casing is 10.0
cm long and 0.77 cm thick. The casing is surrounded by rock, which is modeled as quartz.
The carrier tube is stainless steel with a spherical cap. It has an inside diameter of 1.55 cm
and a wall thickness of 0.44 cm. The space between the carrier tube and the well casing is
filled with water. The stainless steel, the liner material, and the explosive charge casing
were modeled with linear Us/Up Mie-Griineisen equations of state and elastic, perfectly
plastic constitutive models. The high-explosive, cyclotol, was modeled using the Jones-
Wilkins-Lee equation of state with the hydrodynamic constitutive model, and was
detonated using a programmed burn model. The water was modeled with a linear Us/Up
Mie-Griineisen equation of state and the hydrodynamic constitutive model.

The upper frame in Figure 9 shows the initial configuration; the lower frame shows the
configuration at 140 u s, when the first perforation is complete. An input file for this
simulation is given in Appendix B.
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The Test Conditions

The code was compiled on-each machine at the highest level of optimization which
still yielded correct answers (Table 1).

All simulations were conducted in full-precision (64-bit) arithmetic. The ~-Knoieee
option used on the Paragon substitutes an in-line divide algorithm which produces
results that differ from results generated by algorithms conforming to the IEEE 754
standard by no more than three units in the last place.

For the scaled speedup calculations for the message-passing version of PAGOSA, the
problem size was increased by adding nodes in powers of two. A subdomain of fixed size,
with the size depending on the machine, was placed on each node and the number of nodes
was increased.

Only the main computational loop was timed, unless otherwise noted. /O time was
excluded, except for brief diagnostics which were similar for all versions of the code.
Grind times reported in the tables in the following sections are averages over the full
simulation in each case, unless otherwise noted. The repeatability of the grind time
measurements was tested for each machine, and results are given in Table 2. On each
machine the variation in the grind times was less than 0.2% over ten trials, and so the grind
time results reported are for a single calculation. B

Table 1: Compiler Versions and Options for Compiling MIMD paGoSA

Machine ?;)mg'ler Compiler Options Used
ersion
nCUBE 2 22 -02
Paragon XP/S R4.5 -Knoieee -04 -Mframe

-Mvect=recog, trans-

form, cachesize:12288
-Mnostreamall -Mnoxp -Mnoperfmon
-Mnodepchk -Mnostride0 -Mnodebug

Table 2: Grind Time Repeatability”

Machine Grind Time Range | Mean Grind Time gg?gt?gg
(ns/cell/timestep) | (us/cell/timestep) (i s/celltimestep)
nCUBE 2 108.432—108.469 108.446 0.0123
Paragon XP/S 13.214—13.262 13.226 0.0171

* Results are for the hydrodynamic finned projectile simulation. Ten calculations were run on 64 nodes and
for the largest subdomain which would fit on each node. Each calculation was run for the same number of
time steps on each machine, and for at least 20 time steps.
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The Performance of MIMD PAGOSA

In this section we describe the nCUBE 2 and the Intel Paragon. We will present the
performance of MIMD PAGOSA as measured by the scaled speedup, parallel scaled effi-
ciency, and the grind time for four different simulations:

* The finned projectile simulation without material strength. This represents a minimal
problem of two active materials (tungsten and stainless steel) with a simple but non-
trivial equation of state which will exercise the interface tracker. For reference
purposes, this simulation is designated fp1.

» The finned projectile simulation with material strength. This represents a minimal
problem of two active materials (tungsten and stainless steel) with a simple but non-
trivial equation of state and material strength which will exercise the interface tracker.
This will indicate the computational expense of the material strength model. For
reference purposes, this simulation is designated {p2.

* The explosive welding simulation. This represents a more typical simulation than the
first two, and adds the detonation of the high explosive. For reference purposes, this
simulation is designated ew.

* The oil-well perforation simulation. This represents a more complex simulation, with
10 materials of various types, including a high explosive. For reference purposes, this
simulation is designated owp.

The intent of this study is to indicate the scalability of PAGOSA on the two MIMD
parallel computers and the relative performance of the code on those machines. Both the
MIMD computers ran the same code, compiled as described in the previous section, with
no other computer-specific optimizations. We assume that given sufficient incentive
MIMD PAGOSA could be optimized for either of the parallel computers used; our results
provide a lower bound on the achievable performance of a real application code on these
machines.

For each computer we present the scaled speedup, the parallel scaled efficiency, and
the grind time for two cases:

* The largest subdomain per node, and
* The same subdomain size as used on the nCUBE 2.

Presenting results for the largest subdomain per node will indicate the best
performance for each computer. Presenting the results for the same subdomain size on all
the computers will allow comparisons between the machines to be made more easily. The
nCUBE 2 has the smallest memory per node, and hence the smallest subdomain size.




Message-Passing Performance on the ncuse 2

In this section we present the performance of MIMD PAGOSA on the nCUBE 2,
measured for the fp1, fp2, ew, and owp simulations. The compiler version and options are
given in Table 1. We first briefly describe the nCUBE 2, and then present the performance
results.

Description of the ncuse 2

The nCUBE 2 is a massively parallel, hypercube-topology, distributed-memory,
multiple-instruction stream, multiple-data stream (MIMD) computer. Each node is
capable of running one or more complete programs independently of the other nodes. All
coordination or cooperation between nodes, i.e., “parallel processing”, is performed via
explicit message passing calls. The maximum nCUBE 2 configuration is 8192 nodes with
16 megabytes of local memory each. The MPCRL's nCUBE 2 was acquired in 1989 and is
configured with 1024 four-megabyte nodes.

The individual node is a single-chip VLSI implementation of nCUBE’s proprietary
instruction set architecture, integrating both communications and memory control. The
remainder of a complete system consists mainly of memory chips, communications lines,
power supplies and cooling. 1024 of the nodes fit into a 4-foot high- 19-inch rack. Each .
node has 64-bit internal data paths, sixteen general registers, and 28 direct memory access
(DMA) communication channels. While a logical address is 30 bits, the physical address
is 26 bits, resulting in a maximum physical memory size of 64 megabytes per node. A 64-
megabyte node is implemented on a “double-wide” module using 16-megabit chips. When
double-wide modules are used the maximum configuration is reduced to 4096 nodes.

The instructions are complex (CISC not RISC). Up to three operands can be specified
with addressing modes ranging from register direct to word offset plus stack pointer
memory indirect. The node is rated at 7 million instructions per second, and 3.5 million
single precision or 2.7 million double precision floating point operations per second.
Typical performance is 4 to 7 mips or 1.5 to 2 megaFLOPs per node. The 1024-node
system achieves 1.5 to 2 gigaFLOPs on applications that scale well. Eight-, 16-, 32- and
64-bit twos-complement and unsigned integer formats and 32- and 64-bit IEEE floating
point formats are supported.

The 28 communication channels are paired to form 14 bi-directional links. Thirteen of
the links may be connected to nearest neighbor nodes resulting in the maximum number of
nodes of two raised to the 13th power, or 8192 nodes. The 14th channel may be connected
to an I/O node, an identical node on a separate /O board. “Wormbhole routing” exploits a
gray-code numbering of the nodes and the hypercube interconnection topology, to open
direct links to distant nodes without using the memory or processing power of the
intervening nodes. The farthest node can be only 13 “hops” away, so the 2-microsecond
performance penalty for each hop is small relative to the 50- to 150-microsecond software
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start-up overhead and the asymptotic 2.2 megabyte/second transfer rate in each direction
for a total bandwidth of 4.4 megabytes/second in full duplex mode.

nCUBE supplies a cross-development environment supporting VME bus-based,
shared-memory interfaces to either SUN or Silicon Graphics host workstations. Software
Release 3.2 includes optimizing compilers for the Fortran 77, ANSIC and C++
languages. nCUBE compilers support the typical CISC processor optimizations: global
register allocation, strength reduction, common sub-expression elimination, invariant code
motion, etc. The compilers do not provide automatic parallelism; all parallelism must be
explicitly specified by the programmer, whether at the lowest level of message passing
library calls, or indirectly through calls to routines implementing a higher level paradigm
or math libraries. ,

The nCX operating system and xnc generic host program combine to supply a
UNIX® environment for programs. Operating system services which cannot be satisfied
on the local node are converted to an exchange of messages to the I/O node or host
resource which can supply the requested service.

While each node can be time-sliced among several user processes or jobs, a large
system is usually shared among multiple users via a concept called space sharing. In
space sharing, each user gets the exclusive use of a subset of the total available nodes
called a subcube. A subcube is restricted by the hypercube architecture to consist of a
power-of-two number of nodes. Single node subcubes are allowed.

Message-Passing Performance on the nCUBE 2

The message-passing performance of MIMD PAGOSAon the nCUBE 2 is indicated by
the grind time, scaled speedup, and parallel scaled efficiency data presented in Tables 3-6.
This data is displayed graphically in Figures 8—12.The calculations were performed on an
nCUBE 2 in the MPCRL. The repeatability of the grind time is shown by the data in
Table 2.




Table 3: Performance of MIMD PAGOSA on the nCUBE 2 for fp1

Number | Problem Size | Global Eroblem Scaled Parallel | Grind Time

of on Node 0 Size Speedup Spgled ( K s/cell/
Nodes | (nxXxXnyXnz) (nx X ny X nz) Efficiency | timestep)
1 18x12x7 18x12x7 1.000 1.000 5754.819

2 I9%x12x14 | 18 x12x 14 1.844 0.922 3120.893

4 9x12x14 18x24x 14 3.558 0.890 1617.461

8 9%x12x14 36x24x14 6.909 0.864 832.892

16 I9x12x14 3624 x 28 13.43 0.839 428.501

32 9%x12x 14 36 x 48 x 28 26.23 0.820 219.438

64 9x12x14 72 x 48 x 28 52.04 0.813 110.586

128 9x12x 14 72 x 48 X 56 102.4 0.800 56.213
256 9x12x14 72 %X 96 X 56 201.3 0.786 28.594
512 9x12x14 144 x 96 x 56 397.7 0.777 14.470
1024 I9x12x14 144 x 96 x 112 789.6 0.771 7.288

Table 4: Performance of MIMD pacosa on the nCUBE 2 for fp2
Number | Problem Size Global Problem Scaled Parallel Grind Time

of on Node 0 Size Speedup Scaled (u sfcell/
Nodes | (nxxnyxnz) | (nxXnyXxnz) Efficiency | timestep)
1 15x10%x6 15x10x6 1.000 1.000 9384.238

2 8x10x12 15x10x12 1.816 0.908 5168.621

4 8x10x12 15x20x12 3.469 0.867 2704.819

8 8§x10x12 30x20x 12 6.653 0.832 1410.551

16 E§x10x12 30x20 %24 12.82 0.801 731.922

32 8§x10x12 30 x40 x 24 24.82 0.776 378.141

64 8x10x12 60 x 40 x 24 49.17 0.768 190.858

128 8§x10x12 60 x 40 x 48 95.99 0.750 97.758
256 8x10x12 60 x 80 x 48 185.3 0.724 50.656
512 8x10x12 120 x 80 x 48 365.2 0.713 25.694
1024 8x10x12 120 x 80 x 96 720.3 0.703 13.028
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Table 5: Performance of MIMD PAGOSA on the nCUBE 2 for ew

Number
of
Nodes

Problem Size
on Node O

(nx X ny xXnz)

Global Problem
Size
(nx X ny X nz)

Scaled
Speedup

Parallel
Scaled
Efficiency

Grind Time
(uns/cell/
timestep)

1

14x7x%x7

14x7x7

1.000

1.000

11475.076

7x7x14

14 x7x14

1.778

0.889

6452.905

Tx7x14

14x14x 14

3.311

0.828

3466.073

2
4
g

Tx7x14

28x 14 x 14

6.170

0.771

1859.853

16

Tx7x14

28 x 14 x 28

11.85

0.740

968.521

32

Tx7x%x14

28 x 28 x 28

22.49

0.703

510.196

64

Tx7x14

56 x 28 x 28

44.28

0.692

259.141

128

7x7x14

56 x 28 x 56

85.97

0.672

133.471

256

7x7x14

56 x 56 x 56

169.3

0.662

67.764

512

7x7x14

112 x 56 x 56

337.4

0.659

34.011

1024

Tx7x14

112x 56 x 112

659.6

0.644

17.396

Table 6: Performance of MIMD paAGOSA on the nCUBE 2 for owp

Number
of
Nodes

Problem Size
on Node O
(nxXnyxnz)

Global Problem
Size
(nx X nyxXnz)

Scaled
Speedup

Parallel
Scaled
Efficiency

Grind Time
(ns/cell/
timestep)

15x6x6

15x6x6

1.000

1.000

18449.366

E8x12x6

15x12x6

1.814

0.907

10168.498

8x6x12

15x12x12

3.373

0.843

5469.947

1
2
4
8

Ix6x12

30x12x12

6.532

0.816

2824.440

16

E§x6x12

30x24x12

12.44

0.778

1482.658

32

8x6x12

30x24x24

24.17

0.755

763.337

64

8x6x12

60 x 24 x24

47.44

0.741

388.899 -

86 x12

60 x 48 x 24

93.92

0.734

196.445

Ex6x12

60 x 48 x 48

184.2

0.720

100.168

E8x6x12

120 x 48 x 48

364.4

0.712

50.635

Ex6x12

120 x 96 x 48

728.9

0.712

25.312
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Message-Passing Performance on the Intel Paragon

In this section we present the performance of MIMD PAGOSA on the Paragon,
measured for the fpl, fp2, ew, and owp simulations. The compiler version and options are
given in Table 1. We first briefly describe the Paragon, and then present the performance
results.

-Description of the Intel Paragon

The Intel Paragon is a massively parallel computer which uses a two-dimensional
mesh topology for communications. It is a Multiple-Instruction, Multiple-Data (MIMD)
computer which can be used with either the Single-Program, Multiple-Data (SPMD) or
Multiple-Program, Multiple-Data (MPMD) programming models. It uses explicit message
passing for communications between nodes.

The Paragon at Sandia has 1824 compute nodes, 48 disk nodes, 11 service nodes, 3
HiPPI nodes, two Ethernet nodes, and one FDDI node. There are two sizes of compute
nodes in the machine: 1312 nodes with 16 MB of memory and 512 nodes with 32 MB of
memory. Each disk node contains 16 MB of memory and is connected to a five-disk, level-
3 RAID which has 4.8 GB of formatted space. The 11 service nodes are 32 MB nodes
which run the OSF-1/AD operating system (Open Software Foundation) with a single-
system image. The network nodes are all 32-MB nodes, except for the FDDI node which
only contains 16 MB of memory. There is a total of 36.5 GB of memory on the compute
nodes and a total of 37.7 GB of memory in the machine.

The nodes in the Paragon are connected in a two-dimensional mesh. Each node is
connected to the mesh via a mesh router chip which is on the back-plane of the Paragon,
not on the node. The mesh router chips route the messages across the mesh back-planes
without any intervention from the nodes, until the message arrives at the destination node.
At this point, the message is delivered to the node via a network interface chip (NIC) on
the node board. Messages are routed first in the X 'direction, then in the Y direction.
Measured message latency, from user level to user level, on the Paragonis 17
microseconds for zero-length messages. The achieved bandwidth is 160 MB/s, which is
over 90% of the theoretical bandwidth. The size of the mesh is 120x16 giving an aspect
ratio of 7.5:1.

Each node in the Paragon contains two Intel i860-XP processors: one is used for
computing, the other is used as a message co-processor. The processors operate at 50 MHz
and have a performance of 75 MFLOPS using 64-bit arithmetic. It can run in dual
instruction mode which simultaneously executes integer and floating-point instructions. In
addition, the floating-point unit can execute dual operations using the adder and the
multiplier units in parallel. There are on-board instruction and data caches on the 1860
chip. Each is a four-way, set-associative cache of 16-byte lines for a total of 16 KB for
instructions and 16 KB for data. Cache coherence is maintained using an MESI protocol.




The i860 also uses pipelines and has delayed branch instructions to avoid breaks in the
pipes. :

Each node also has a network interface chip which connects the node to the mesh
router chip in the mesh. There are two DMA devices on each node which allow data to be
fed onto the network with minimal support from a processor. While a DMA transfer is in
progress from memory to the network, the processor can be doing other work. A node also
has a 2-KB cache for sending messages and a 2-KB cache for receiving messages. These
caches allow the DMA devices, or the mesh router chip, to initialize the sending or
receiving of a message before actually putting data onto the network, or into memory.

The operating system shipped with the Paragon is OSF-1/AD from Open Software
Foundation (OSF). It is based on the Mach microkernel architecture. It also contains
system software from Locus Computing which is used to give a single-system image to
the Paragon. This allows all OSF nodes to have uniform access to all resources such as
disks and networks. It does not matter from which node an application makes a system
request, each node has access to all of the resources of the machine. OSF uses the NX
protocol for message passing. This is the same protocol used in the Intel iPSC/860, so
iPSC/860 codes can be ported with little difficulty.

The Paragon at Sandia actually uses a heterogeneous operating system environment
in which OSF and SUNMOS (Sandia/University of New Mexico Operating System) co-
exist. OSF runs on the service nodes, disk nodes and network nodes, while SUNMOS runs
on the compute nodes. SUNMOS is an operating system which was jointly developed by
Sandia and UNM. It was designed as a single-tasking operating system which depends on
OSF to provide services such as I/O (see [20]). The main task of SUNMOS is to run user
processes, pass messages and provide an interface to OSF for I/O. SUNMOS provides the
capability to use both processors for computing, as well as using one for computing and
one as a message co-processor. This allows the user to use the second processor according
to the needs of the application.

SUNMOS contains emulation libraries for both NX, the message passing library used
on the Paragon, and Vertex, the message passing library used on the nCUBE 2. This
allows applications which use either NX or Vertex to be easily ported to SUNMOS. In
fact, some codes at Sandia use both the NX and Vertex message passing libraries. The
implementation of the Vertex emulation is complete except for the functions which use
pointers to buffers in the communications buffer. The NX emulation is not quite as
complete. All message passing functions are implemented, except for hrecv(). However,
all library calls which deal with processes are not implemented because SUNMOS is a
single-tasking operating system.

The Paragon has cross compilers for both Sun and SGI development environments
as well as native compilers on the Paragon. The languages supported include C, C++
and Fortran. C++ is provide by both Cfront (version 3.0) and a C++ compiler. The
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compilers for the Paragon were developed by Portland Group Inc. There are also
SUNMOS versions of the compilers for C, C++ and Fortran. These compilers use the
Portland Group compilers to create object files and then link these files with the -
appropriate SUNMOS libraries. The nodes are shared among users via space sharing.

Message-Passing Performance on the Paragon

The message-passing performance of MIMD PAGOSA on the Paragon is indicated
by the grind time, scaled speedup, and parallel scaled efficiency data presented in Tables
7-10, and graphically in Figures 15-18. The calculations were performed on the 1824-
node Paragon in the Massively Parallel Computing Research Laboratory at Sandia. Two
subdomain sizes per node were used; the smaller is the same as the largest subdomain size
per node on the nCUBE 2 and the latter is the largest that will fit on the 16-megabyte
nodes of the Paragon. The repeatability of the grind time is shown by the data in
Table 2.




Table 7: Performance of MIMD pacosa on the Intel Paragon for fp1

Number | Problem Size | Global Problem Scaled Parallel | Grind Time

of on Node 0 Size Speedup Spgled (u s/cell/
Nodes | (nxXxnyXxnz) (nxXnyXnz) Efficiency | timestep)
1 18 x12x7 18x12x7 1.000 1.000 903.748

2 9x12x14 18x12x 14 1.790 0.895 505.017

4 9x12x14 18x24 x 14 3.463 0.866 261.001

8 9x12x14 36 x24x 14 6.668 0.834 135.536

16 9x12x14 - 36x24 x28 12.99 0.812 69.551
32 9x12x14 36 x 48 x 28 25.16 0.786 35.917
64 9x12x14 72 %48 x 28 49.83 0.778 18.138
128 9x12x14 72 x 48 x 56 96.66 0.755 9.350
256 I9x12x14 72 X 96 x 56 1914 0.748 4,723
512 9x12x14 144 x 96 X 56 377.2 0.737 2.396
1024 O9x12x14 144 %96 x 112 | 751.9 0.734 1.202
1 36 x24x12 36 x24x12 1.000 1.000 741.244

2 36 x24x12 72x24 %12 1.932 0.966 383.745

4 36 x24x12 72x48 x 12 3.828 0.957 193.645

8 18x24 x24 72x48 x 24 7.184 0.890 103.178

16 18 x24 x 24 144 x 48 x 24 14.22 0.889 52.137
32 18 x24 x24 144 x 96 x 24 27.73 0.866 26.733
64 18x24x24 144 x 96 x 48 54.59 0.853 13.578
128 18 x24 x 24 144 x 96 x 96 107.0 0.836 6.928
256 18 x24x24 144 x 192 x 96 207.9 0.812 3.565
512 18 x24 x24 288x192x96 | 409.3 0.799 1.808
1024 18 x24 x 24 288x192x192 | 814.1 0.795 0.909
1824 24x25x%x19 438 x292x 146 | 1353. 0.742 0.548
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Table 8: Performance of MIMD Pacosa on the Intel Paragon for fp2

Number
of
Nodes

Problem Size
on Node O
(nx Xny X nz)

Global Problem
Size
(nx X nyxnz)

‘Scaled
Speedup

Parallel
Scaled
Efficiency

Grind Time
(ns/cell/
timestep)

1 15x10x6 15x10%x6 1.000 1.000 1390.773
2 &x10x12 15x10x 12 1.754 0.877 793.134
4 8x10x12 15x20x12 3.338 0.834 416.671
8 E§x10x12- 30x20x12 6.385 0.798 217.803
16 E8x10x12 30x20x24 12.30 0.769 113.075
32 E§x10x12 30 x 40 x 24 23.50 0.734 59.172

64

Ex10x12

60 x40 x 24

46.68

0.729

29.791

128

Ex10x12

60 x40 x 48

90.60

0.708

15.350

256

E&x10x12

60 x 80 x 48

175.4

0.662

7.928

512

8x10x12

120 x 80 x 48

347.2

0.678

4.006

1024

8x10x12

120 x 80 x 96

684.4

0.668

2.032

30x20x 10

30x20x10

1.000

1.000

1143.038

30x20x10

60 x 20 x 10

1.922

0.961

594.577

30x20x10

60x40x 10

3.792

0.948

301.452

15 x20x20

60 x40 x20

6.891

0.861

165.868

16

15x20x20

120 x40 x 20

13.56

0.848

84.277

32

15%x20x20

120 x 80 x 20

26.13

0.817

43.738

64

15 x20x20

120 x 80 x 40

51.83

0.810

22.504

128

15x20x20

240 x 80 x 40

99.96

0.781

11.435

256

15 %20 x20

240 x 160 x 40

195.7

0.765

5.840

- 512

15 %2020

240 % 160 x 80

376.2

0.735

3.038

1024

15x20x20

480 x 160 x 80

739.5

0.722

1.544

20x21x16

366 x 244 x 122

1077.

0.591

1.060




Table 9: Performance of MIMD pacosa on the Intel Paragon for ew

Number | Problem Size | Global Problem 1 scaled Parallel | Grind Time
of on Node 0 Size Speedup Spgled (u s/cell/
Nodes | (nxXxXnyxnz) (nx X ny X nz) Efficiency | timestep)
1 14x7%x7 14x7x7 1.000 1.000 1763.937
2 Tx7x14 14x7x14 1.704 0.852 1034.936
4 Tx7x14 14x14x 14 3.190 0.798 552.989
8 Tx7x14 28x14x 14 5.872 0.734 300.403
16 Tx7x14 28 x 14 x 28 11.39 0.712 154.833
32 7x7x14 28 x 28 x 28 21.56 0.674 81.816
64 Tx7x14 56 x 28 x 28 42.14 0.658 41.857
128 7x7x14 56 x 28 X 56 80.97 0.633 21.785
256 7x7x14 56 x 56 X 56 160.0 0.625 11.022
512 TxTx14 112 x 56 x 56 320.5 0.626 5.504
1024 TxTx14 112x56 x 112 628.0 0.613 2.809

1 28x15x%x 15 28 x15x 15 1.000 1.000 1637.87

2 28 x15x 15 56 x15x 15 1.889 0.945 866.883
4 28 x 15x 15 56 x30x 15 3.678 0.920 445.250
8 28x15% 15 56 x30 x 30 7.063 0.883 231.886
16 28x15x%15 112 x 30 x 30 13.80 0.862 118.708
32 28 x 15 %30 112 x 60 x 30 26.76 0.836 61.201
64 28x 15x%x 15 112 x 60 x 60 52.62 0.822 31.128
128 28x15x%x 15 224 x 60 x 60 103.6 0.809 15.815
256 28x15x%x 15 224 x 120 X 60 204.1 0.797 8.023
512 28 x 15x30 224 x 120x 120 | 397.0 0.775 4.097
1024 28x15x15 448 x 120 x 120 | 796.7 0.778 2.056

1824 28x15%15 360 x 180 x 180 | 1476. 0.818 1.1096"

* This simulation was run to only 1 microsecond,
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Table 10: Performance of MIMD PAGOSA on the Intel Paragon for owp

Number | Problem VSize Giobal Problem | scaled Parallel | Grind Time
of on Node 0 | Size Speedup Spgled (us/cell/
Nodes | (nxXnyXxnz) (nxXxXnyxnz) Efficiency | timestep)
1 15x6x6 15x6x6 1.000 1.000 3021.62
2 8x12x6 15x12%6 1.689 0.845 1788.75
4 8§x6x12 15x12x12 3.268 0.817 924.620
8 ExX6x12 30x12x12 6.352 0.794 475.816
16 §x6x12 S 30x24x12 11.99 0.749 252.102
32 8x6x%x12 30x24x24 23.61 0.738 127.990
64 8x6x12 60 x24 x24 46.52 0.727 64.954
128 8X6x 12 60 x48 x24 92.58 0.723 32.636

256

E§x6x12

60 x 48 x 48

180.2

0.704

16.771

512

E§x6x12

120 x 48 x 48

3574

0.698

8.456

1024

E8x6x12

120 X 96 x 48

714.7

0.698

4.228

30x12x12

30x12x12

1.000

1.000

2299.389

1
2 30x12x 12 60x12x12 1.951 0.975 1178.958
4 15x24x12 60x24 x 12 3.716 0.929 618.891
8 15x12x24 60 x 24 x 24 7.198 0.900 319.516
16 15x12x24 120 x 24 x 24 14.21 0.888 161.886
32 15x12x24 120 x 48 x 24 27.33 0.854 84.148
64 15x12x24 120 x 48 x 48 54.26 0.848 42.384
128 15x12x24 240 x 48 x 48 107.3 0.838 21.422
256 15x12x24 240 <96 x 48 212.2 0.829 10.836
512 15x12x24 240 x 96 x 96 414.5 0.810 5.548
1024 15x12x24 480 x 96 x 96 808.1 0.789 2.846
1824 20x13x19 | 380x156x 152 | 1499. 0.822 1.534
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Figure 15. Scaled speedup and grind time for the fp1 simulation on the Paragon.
The curves labeled “Small Domains” are for the subdomain size used on the

nCUBE 2.
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Figure 16. Scaled speedup and grind time for the fp2 simulation on the Paragon.
The curves labeled “Small Domains” are for the subdomain size used on the
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Figure 17. Scaled speedup and grind time for the ew simulation on the Paragon.
The curves labeled “Small Domains” are for the subdomain size used on the
nCUBE 2.

10000.0 ———@— Scaled Speedup - 10000.0

——@—— Grind Time 3
——f3—— Scaled Speedup (Small Domains) ]
——&—— Grind Time (Small Domains)

~~~

o

(]

1000.0 -4 1000.0°®

o F ] o)

= i E

D 1000 =

R 100k <4 1000 @

o °

2 2

ge] =

D 100} 3100 O
[ay] F ]

S 1 E

» [ ] (o

ge]

1.0 410 €

=

Q)

0.1 B 0.1
1 10 100 1000

Number of Nodes

Figure 18. Scaled speedup and grind time for the owp simulation on the Paragon.
The curves labeled “Small Domains” are for the subdomain size used on the
nCUBE 2.

44




14

Parallel Efficiency
[=] (=] (=] (=] (=] (=] (=
w s MmN o © -

o
N}

0 | S NEN | 1 SRR | 1 ORI Y |
10° 10’ 10° i0°
Number of Nodes

Figure 19. Scaled parallel efficiency on the Paragon.

Paralle! Efficiency
o o (=] (=] o o o [=] -t
M © B BB N ® © = o

(=]
-

0 1 t 1 P ¢ ]t II 1 - L 1 141 ll' L 1 1t 11 III
10° 10’ 102 10°
Number of Nodes

Figure 20. Effect of subdomain size on the scaled parallel efficiency on the
Paragon for the ew and owp simulations. The points labeled “ews” and “owps”
are for the ew and owp simulations, respectively, using the subdomain sizes used
on the nCUBE 2

45




Performance of MIMD PAGOSA on the nCUBE 2 and the Intel
Paragon Message-Passing Computers

In this section we present a summary of the grind time, scaled speedup, and parallel
scaled efficiency for MIMD PAGOSA running on the fp1, fp2, ew, and owp simulations for
the same number of cells per node on each machine (Tables 11-14). We also present a
--summary of the grind time, scaled speedup, and parallel] scaled efficiency for the largest
problem solved on each computer (Table 15).




Table 11: Performance of MIMD pagosa on the nCUBE 2 and the Intel
Paragon for 18x12x7-Cell Subdomains for the Finned Penetrator Problem
with No Material Strength (fp1)

| Number | Giobal Problem | $M9 | | Parallel

Machine of Size (us/cell/ | Speedup S_ce_lled
Nodes (nx X nyXxXnz) timestep) Efficiency

nCUBE 2 1 18 x12x7 5755. 1.000 1.000
Paragon 1 18 x12x7 903.7 1.000 1.000
nCUBE 2 2 18x12x 14 3121. 1.844 0.922
Paragon 2 18x12x14 505.0 1.790 0.895
nCUBE 2 4 18 x24 x 14 1617. 3.558 0.890
Paragon 4 18x24x14 261.0 3.463 0.866
nCUBE 2 8 36 x24x14 832.9 6.909 0.864
Paragon 8 36 x24x14 135.5 6.668 0.834
nCUBE 2 16 36 X24 x28 428.5 1343 0.839
Paragon 16 36 x24 x28 69.55 12.99 0.812
nCUBE 2 32 36 x48 x 28 2194 26.23 0.820
Paragon 32 36 x48 x 28 35.92 25.16 0.786
nCUBE 2 64 72 x 48 x 28 110.6 52.04 0.813
Paragon 64 72x 48 x 28 18.14 49.83 0.778
nCUBE 2 128 72 x 48 X 56 56.21 102.4 0.800
Paragon 128 72 X 48 X 56 9350 | 96.66 0.755
nCUBE 2 256 72 % 96 x 56 28.59 | 2013 0.786
Paragon 256 72 X 96 x 56 4723 11914 0.748
nCUBE 2 512 144 x 96 x 56 1447 | 397.7 0.777
Paragon 512 144 X 96 x 56 2.396 | 377.2 0.737
nCUBE 2 1024 144 x 96 x 112 7.288 | 789.6 0.771
Paragon 1024 144 x 96 x 112 1.202 1 751.9 0.734
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Table 12: Performance of MIMD pacosa on the nCUBE 2 and the Intel
Paragon for 15x10x6-Cell Subdomains for Finned Penetrator Problem with
Material Strength (fp2)

Grind
Time Scaled
(us/cell/ | Speedup
timestep)

15x10x6 9384. 1.000 1.000
15x10x6 1391. 1.000 1.000
15%x10x 12 5169. 1.816 0.908
15x10x 12 793.1 1.754 0.877
15x20x12 2705. 3.469 0.867
15x20x12 416.7 3.338 0.834
30x20x12 1411. 6.653 0.832
30x20x12 217.8 6385 [ 0.769
30x 20 x 24 731.9 12.82 0.801
30 %20 x24 113.1 12.30 0.769
30x40x24 378.1 24.82 0.776
30 x40 x 24 59.17 23.50 0.734
60 x40 x 24 190.9 49.17 0.768
Paragon 60 x40 %24 29.79 46.68 0.729
nCUBE 2 60 x40 x 48 97.76 95.99 0.750
Paragon 60 x 40 x 48 15.35 90.60 0.708
nCUBE 2 60 x 80 x 48 50.66 | 1853 - 0.724
Paragon 60 x 80 x 48 7928 | 1754 0.662
nCUBE 2 120 x 80 x 48 2569 | 3652 0.713
Paragon 120 x 80 x 48 4.006 | 3472 0.678
nCUBE 2 120 x 80 x 96 13.03 | 7203 0.703
Paragon 120 x 80 x 96 2.032 | 684.4 0.668

Paraliel
Scaled
Efficiency

Number | Global Problem
Machine of Size
"1 Nodes (nx X nyxnz)
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Table 13: Performance of MIMD paAGOSA on the nCUBE 2 and the Intel

Paragon for 14x7x7-Cell Subdomains for the Explosive Welding Problem

(ew) -

Number | Global Proplem | Sd | | Parallel

Machine of Size (u 3'7::2" /| s pc;aegu D Spgled
Nodes (nx X nyxnz) timestep) Efficiency

nCUBE 2 1 14x7x7 11475. 1.000 1.000
Paragon 1 14x7x7 1764. 1.000 1.000
nCUBE 2 2 14x7x14 6453. 1.778 0.889
Paragon 2 14x7x14 1035. 1.704 0.852
nCUBE 2 4 14x14x 14 3466. 3.311 0.828
Paragon 4 14x 14 x 14 553.0 3.190 0.798
nCUBE 2 8 28x14x 14 1860. 6.170 0.771
Paragon 8 28x14x 14 300.4 5.872 0.734
nCUBE 2 16 28 x 14 x 28 968.5 11.85 0.740
Paragon 16 28 x 14 x 28 154.8 11.39 0.712
nCUBE 2 32 28 x 28 x 28 510.2 2249 0.703
Paragon 32 28 x 28 x 28 81.82 21.56 0.674
nCUBE 2 64 56 x 28 x 28 259.1 4428 0.692
Paragon 64 56 x 28 x 28 41.86 42.14 0.658
nCUBE 2 128 56 X 28 X 56 133.5 85.97 0.672
Paragon 128 56 x 28 x 56 21.78 80.97 0.633
nCUBE 2 256 56 x 56 x 56 67.76 | 169.3 0.662
Paragon 256 56 x 56 x 56 11.02 160.0 0.625
nCUBE 2 512 112 x 56 x 56 34.01 3374 0.659
Paragon 512 112 x 56 x 56 5.504 | 320.5 0.626
nCUBE 2 1024 112x56 x 112 17.40 | 959.6 0.644
Paragon 1024 112 x56 x 112 2.809 | 628.0 0.613
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Table 14: Performance of MIMD pAGOSA on the nCUBE 2 and the intel
Paragon for 15x6x6-Cell Subdomains for the Qil-Well Perforation Problem

(owp)

Machine

Number
of
Nodes

Global Problem
Size
(nxXxXnyxnz)

Grind
Time
(ns/cell
timestep)

Scaled
Speedup

Parallel
Scaled
Efficiency

nCUBE 2 1 15x6x%x6 18449.366 1.000 1.000
Paragon 1 15x6x6 3021.62 1.000 1.000
nCUBE 2 2 15x12x6 10168.498 1.814 0.907
Paragon 2 15x12x6 .1788.75 1.689 0.845
nCUBE 2 4 15x12x12 5469.947 3.373 0.843
Paragon 4 15x12x12 924.620 3.268 0.817
nCUBE 2 8 30x12x12 2824.440 6.532 0.816
Paragon 8 30x12x12 475.816 6.350 0.794
nCUBE 2 16 30 %24 % 12 1482.658 | 1244 0.778

Paragon

16

30x24x12

252.102

11.99

0.749

nCUBE 2

32

30x24x24

763.337

24.17

0.755

Paragon

32

30x24x24

127.990

23.61

0.738

nCUBE 2

64

60 x 24 x 24

388.899

47.44

0.741

Paragon

64

60x24 x24

64.954

46.52

0.727

nCUBE 2

128

60 x 48 x 24

196.445

93.92

0.734

Paragon

128

60 x 48 x 24

32.636

92.58

0.723

nCUBE 2

256

60 x 48 x 48

100.168

184.2

0.720

Paragon

256

60 x 48 x 48

16.771

180.2

0.704

nCUBE 2

512

120 x 48 x 48

50.635

364.4

0.712

Paragon

512

120 x 48 x 48

8.456

3573

0.698

nCUBE 2

1024

4 120 x 96 x 48

25.312

7289

0.712

Paragon

1024

120 x 96 x 48

4228

7147

0.698




Table 15: Summary of Maximum Simulation Sizes for the nCUBE 2 and the

Paragon -
' Subdpmain Global .Domain No. of Scaled (13'3?2
Machine |Problem - xsrgex v | o XS';:;_’eX . Nodes Spl:aped- (us/cell
- : : timestep)
nCUBE 2 fpl* 9x12x14 144 x96 x 112 | 1024 | 789.6 7.3
Paragon | fpl 24 x25x19 |438x292x 146] 1824 | 1353. 0.55
nCUBE 2 fp24r 8§x10x12 120x80x96 | 1024 | 7203 13.0
Paragon p2 20x21x16 |366x244 %122} 1824 | 1077. 1.06
nCUBE 2 ew* Tx7Tx14 112x56x 1121 1024 | 959.6 174
Paragon ew 28 x15x 15 |360x180x180] 1824 | 1476. 1.1
nCUBE2 | owp™ | 8x6x12 | 120x96x48 | 1024 | 728.9 253
Paragon | oOwp 20x13x19 |380x156x152] 1824 | 1499. 1.5

* Finned penetrator problem with no material strength.
+ Finned penetrator problem with material strength.
i+ Explosive welding problem.
*#* Oil-well perforation problem.
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Summary and Conclusions

In this report we have presented the measured performance of the MIMD PAGOSA
shock-wave physics code, developed at Sandia for MIMD parallel computers using a
message-passing programming model, on the nCUBE 2 and the Intel Paragon. The
original PAGOSA code was developed at Los Alamos National Laboratory for single-
instruction, multiple data (SIMD) computers using a.data-parallel programming model.

The performance of MIMD PAGOSA! on the various machines was measured in terms
of the scaled speedup, the parallel scaled efficiency, and the grind time (execution time per
computation cell per timestep). Scaled speedup tests (in which the problem size was
increased in proportion to the number of computational nodes) were conducted for each
parallel computer for four test problems: a finned projectile problem with no material
strength (fp1, the minimal test problem), a finned projectile problem with material
strength (fp2), the explosive welding of a copper tube to a steel plate (ew), and the
perforation of an oil-well casing by shaped charge jets (owp). These represent increasingly
complex and realistic engineering simulations. Summary tables (Tables 11-14) present the
performance on the two machines on identical problem sizes. A summary table (Table 15)
presents the largest calculation of each of the test problems on each machine.

The parallel scaled efficiencies were greater than 0.70 when the available memory per
node was filled (or nearly filled). The linear variation of the scaled speedup and grind time
with the number of computational nodes for each machine (Figures 8-12 for the nCUBE 2
and Figures 15-18 for the Paragon) demonstrate that MIMD PAGOSA is scalable on
both the nCUBE 2 and the Paragon to large numbers of computational nodes (1024 and
1824, respectively) for a variety of problems, from simple problems to real-world
problems. The scalability is maintained even if the memory of the computational node is
not filled.

Not surprisingly, adding various material models, such as material strength and high-
explosive burn, affects the code performance by increasing the memory required (for
storing the model variables) and increasing the grind time (because the models must be
evaluated). For example, for the nCUBE 2, adding the material strength models reduces
the maximum number of cells per computational node by a factor of approximately 0.60
(from 1512 cells per node for fp1 to 960 cells per node for fp2) and increases the grind
time by approximately a factor of 1.63 (one node) to 1.79 (1024 nodes). For the
Paragon, adding the material strength models reduces the maximum number of cells per
computational node by a factor of approximately 0.57 (from 10368 cells per node for fpl
to 6000 cells per node for fp2) and increases the grind time by approximately a factor of
1.54 (one node) to 1.93 (1824 nodes).

1. The performance data presented in this report represent only one aspect of the performance of each ma-
chine. While they address fundamental issues of computational and communication speeds, other issues
must also be considered when evaluating computers, including the ease of sharing the machine among sev-
eral users, the functionality of the operating system, the availability of graphical output devices and the ease
of their use, the purchase price, and the maintenance costs. None of the machines examined in this report
should be accepted or rejected based only on the data presented in this report. We have deliberately provided
only enough interpretation to allow the reader to understand the results.
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In Reference 10 we reported the performance of a simplified, single-material version
of MIMD PAGOSA (smPAGOSA) on a variety of parallel computers and on various Cray
vector supercomputers (viz., a Y-MP8E, a Y-MP8I and a Cray C90) for a three-
dimensional, spherical blast wave problem (sbw). In Table 16 we compare the largest
calculations with smPAGOSA on single processors of the Y-MP and C90 with similar
calculations with MIMD PAGOSA on the nCUBE 2 and the Paragon. For the
comparison, we list the calculations with MIMD PAGOSA which had both a similar
number of cells, and a similar grind time. Since MIMD PAGOSA is a much more complex
code than smPAGOSA (e.g., it reconstructs material interfaces), and since the fp1 problem
involves three materials while the spherical blast wave involves only one, the comparison
in the table favors smPAGOSA running on the Cray vector computers. The point of this
comparison is that large shock-wave physics simulations can be run on MIMD
supercomputers at speeds and with problem sizes equalling or exceeding those achievable
with vector supercomputers. In particular, the last row of Table 16 illustrates that much
larger problems can be run significantly faster on the MIMD supercomputers than on
traditional vector supercomputers.

Thus large, real-world, shock-wave physics simulations can be performed on parallel
computers with sizes and speeds that equal or greatly exceed those for a single processor
of a Cray Y-MP, and scalable shock-wave physics codes can be developed to run on
hundreds to a thousand or more computational nodes.

Table 16: Comparisons of Calculations on the Cray Y-MP, Cray c90,
nCUBE 2, and Intel paragon

Machine Code Problem NNga:; Tots; (I\:l:ﬂ;ber G(rp,llnsc;ilcT:I;}e
timestep)
nCUBE 2 MIMD PAGOSA fpl 1024 | 1,548,288 7.3
Cray Y-MP8I | smPAGOSA” sbw’ 1 |2,097,152 8.6
Paragon MIMD PAGOSA fpl 256 | 2,654,208 3.6
Cray Y-MPS8I smPAGOSA sbw 1 |2,097,152 8.6
Paragon MIMD PAGOSA fp1 128 | 1,327,104 6.9
Paragon MIMD PAGOSA fpl 256 | 2,654,208 3.6
Cray C90 SMPAGOSA sbw 1 14,194,304 3.1
Paragon MIMD PAGOSA fpl 512 |5,308,416 1.8
Paragon MIMD PaGOSa fp1 1824 | 18,672,816 0.55

* Single-material version of PAGOSA.
+ Three-dimensional, single-material, spherical blast wave problem.
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Appendices

A MIMD PAGOSA 5.5 Input Guide

PAGOSA Input Summary
Version 5.5
26 Feb 1993 and July 1995

John Cerutti, X-3, MS F663, ph. (505) 667-0738
Jay Mosso, X-3, MS F663, ph. (505) 667-4276
Tom Bennion, X-4, MsS F664, ph. (505) 667-1721
Doug Kothe, T-3, MS B216, ph. (505) 667-9089

Martin Torrey, T-3, MS B216, ph. (505) 667-0976
Ed Kober, T-14, MS B214, ph. (505) 667-5140
Los Alamos National Laboratory )

David R. Gardner, 9221, MS 1111, ph. (505) 845-7875
Courtenay T. Vaughan, 9226, MS 1109, ph. (505) 845-7277
Sandia National Laboratories

This brief input summary has been provided for user reference in lieu of
any other existing documentation. When a set of documentation exists,
this abbreviated input summary will probably not be maintained nor avail-
able. Text which applies to only the SIMD version of PAGOSA 5.5 is print-
ed in an italic font. Text which applies to only the MIMD version of
PAGOSA 5.5 is printed in a bold font. Text which applies to both SIMD and
MIMD PAGOSA 5.5 is printed in normal font.

The input for both the main code and GEN, the generator code, is the
same. They do not use separate input files, but rather different parts of
the same input file. For the more simple problems that will run without
restarts, etc., this means that separate input files need not be main-
tained for each program. For more complicated runs, the user will want to
have separate input files for each phase of the run, but the format, for
now, is the same.

Some input examples are provided under the “examples” directory and oth-
ers may be found with the test problems under the “tp” directory.

Both GEN and PAGOSA have sets of empty “user_mods” routines which may be

programmed to perform special functions. For the generator, for example,

this may be to initialize a space depending on density and energy distri-
bution.

All of the user input, except for the first line, is by means of Fortran
namelists. The first line is always the TITLE, which may be blank, or a
descriptive title which will be used to label all output. It may be up to
100 characters long.

Each namelist block of variables is defined below with a short descrip-
tion. All of the namelists are not used in both GEN and the main code
PAGOSA. The main code does not use the GEN or BODY namelists, and GEN
does not use the TRACERS and DETS namelists. However, this is changing,
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as for example, GEN takes on more functionality such as calculating pro-
grammed burn times. There is no order .to the namelists and they can be
given in any order since the file is logically rewound before each type
of namelist read. The order given below is simply one recommended order.
Many users like to have the MESH, OPTIONS and OUTPUTS given first for
easy access, then the MATS, DETS, and TRACERS next with the GEN and BODY
namelists last. Use the order which best accommodates the way you work.
The MESH and MATS namelists are used to set the problem dimensions.

To run SIMD GEN on the Connection Machine, add the PAGOSA path to your
PATH or else access it explicitly, attach to the Connection Machine and

type:
gen input-prefix

where “input-prefix” is the prefix of the input file (described below).
To look at a previous GEN run, a second argument, an input dump file name
on the Data Vault, will also be requested. More on this later too.

To run SIMD PAGOSA, do the same with the path, attach to the Connection
Machine and type:

pagosa input-prefix restart-dump

where “input-prefix” is the prefix of the input file (described below)
and ‘“restart-dump” is the name of the restart Data Vault file. When
starting from scratch with the GEN output, this file will usually be
named “input-prefix.dump.0”. When running SIMD GEN or the SIMD PAGOSA
main code, 1f the input arguments are omitted, it will then ask for them
Iinteractively. When running non-interactively, this will cause the run
to terminate.

To run MIMD GEN on the Intel Paragon running the SUNMOS operating system,
add the PAGOSA path to your PATH or else access it explicitly and type:

yod -8z N gen input_prefix

where “N” ig the number of nodes to be used and “input-prefix” is the
prefix of the input file (described below).

To run MIMD PAGOSA on the Intel Paragon running the SUNMOS operating sys-
tem, use the same path, and type:

yod -8z N pagosa input-prefix

where “N” is the number of nodes to be used and “input-prefix” is the
prefix of the input file (described below). The restart dump number, if
any, is specified in the input file (described below). When running MIMD
GEN or MIMD PAGOSA, if the input arguments are omitted, the code will ask
for them interactively. When running non-interactively, omitting the in-
put arguments will cause the run to terminate.

The input file must have the suffix “.inp” as the trailing part of the
file name. The prefix part of the file name (before the “.inp”) is also
used to name all of the output files. For MIMD PAGOSA, the graphics and
restart output files may be named independently using options in the OUT-
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PUTS and RESTARTS namelist blocks. Thus, the input “prefix” part is all
that is needed by GEN and the main program and the “.inp” suffix is op-
tional when the user input file name is regquested. Both SIMD GEN and the
SIMD main program also may reguest an input dump file name, a file on the
Data Vault. This is required when restarting a run, or using SIMD GEN to
view the volume fractions of a previous SIMD GEN or PAGOSA run.

- The input and output files now used or produced are described below. Most
have the same prefix (obtained from the user input file) and the suffix
is used for reference and differentiation. With the same prefix, the nor-
mal directory list commands will display them together.

'GEN and PAGOSA Input and Output Files

File Name Description

stdin Program run/prefix information. (Fortran unit ¥*)

stdout Program status information. (Fortran unit ¥*)

stderr System error status information.

prefix.inp Standard code input. {(Fortran unit 1)

prefix.out Standard code list output. This includes regular
cycle prints, mesh & material summaries, short and
long edits, etc. (Fortran unit 2)

prefix.err Code errors (also usually echoed in prefix.out).
(Fortran unit 3)

prefix.aux Auxiliary output, usually special user output.
{Fortran unit 4, not available in GEN)

prefix.trc Massless tracer particle output.
{Fortran unit 7, not available in GEN)

prefix.dump.0 SIMD GEN output dump file, used for starting
PAGOSA. (Fortran unit 10: GEN write, and unit 9:
PAGOSA read)

MIMD GEN output dump file, used for starting
PAGOSA. ‘nnnn’ is the node number. (Fortran unit
10: GEN write, and unit 9: PAGOSA read)

prefix.dump.1
&
prefix.dump.2

Alternating restart dump files as requested by
user. {(Fortran unit 10}

prefix.nnnn.1
&
prefix.nnnn.2

Alternating restart dump files as requested by
user. ‘nnnn’ is the node number. (Fortran unit 10)

prefix.nnnn.trm Final restart dump file as requested by user.
‘nnnn’ is the node number. (Fortran unit 10)

prefix.gd Graphics dumps as requested by the user.
(Fortran unit 8: write and unit 11: read)




GEN and PAGOSA Input and Output Files (Continued)

File Name Description

prefix.nnnn.init Graphics dump initialization file. ‘nnnn’ is the
node number.

prefix.nnnn.N Graphics dump material file. ‘nnnn’ is the node
number. N is the material number (0,1,..)

MESH Namelist Variables
{Mesh Specification)

The MESH namelist input is used to define the Eulerian (fixed) computa-
tional mesh. This is done by specifying mesh segments where each segment
has a constant mesh interval or a geometric mesh interval defined by a
constant expansion or contraction ratio. Simply specify the number of
cells in each mesh segment, the coordinates of the mesh segments, and the
ratio for each. A ratio of 1.0 (or 0.0) specifies a constant zone size
{no geometric expansion or contraction). Use the utility tool “grid” to
help find geometric ratios.

MESH Variables

Variable| Default Description

ncellx - Number of cells in each x-direction mesh segment
coordx - Coordinates of the x-direction mesh segment
ratiox - Geometric ratio of each x-direction mesh segment
ncelly - Number of cells in each y-direction mesh segment
coordy - Coordinates of the y-direction mesh segment
ratioy - Geometric ratio of each y~-direction mesh segment
ncellz - Number of cells in each z-direction mesh segment
coordz - Coordinates of the z-direction mesh segment
ratioz - Geometric ratio of each z-direction mesh segment

OPTIONS Namelist Variables
(Run-time Parameters)

The OPTIONS namelist input is used to specify the “run-time” parameters.
These are the cutoffs, safety factors, etc.
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OPTIONS Variables

Variable Description

cutace Acceleration cutoff

cutd ; ) Density cutoff (alias: cutrho)

cutvof : Volume fraction cutoff

cutrecon . Recon volume fraction cutoff to make
parallel

Relative “zero” epsilon
(alias: alittle)

Safety factor for Courant timestep

Safety factor for divergence timestep
{alias: safediv)

Safety factor for u velocity timestep
(aliases: safevel, safev, safew)

geometry id (1: 2D-cart, 2: 2D-cyl, 3:
3D-cart) (alias: idgeom)

artificial viscosity id
(alias: idartvis, idqg)
: Wilkins

Std div with 1**2 calculated in
the direction of pressure gradient
Std div with 1**2 = diagonal
Std div with 1**2 = dx**2
Std div with 1**2 = dy**2
Std div with 1**2 = dz**2
Std div with
1*2=min (dx**2,dy**2,dz**2)
std div with
1**2 = max(dx**2,dy**2,dz**2)
std div with
1**2 = included in CQ1 and CQ2
by user

Enables a tensor form for the
artificial viscosity instead of the
standard scalar form. The id_g input
variable also has meaning because it
controls the form of the coefficient
in front of the tensor. Dimensionless
coefficients cgql and cq2 are needed as
well (the default values are usually
acceptable) .

Dimensionless coefficient for the
linear artificial viscosity term.
(alias: artl)




OPTIONS Variables (Continued)

Variable Default Description

cq2 2.0 Dimensionless coefficient for the
quadratic artificial viscosity term.
(alias: art2)

ibec 6*0 Boundary conditions
{(Xmin, Xmax, Ymin, Ymax, Zmin, Zmax)
0:rigid/reflective
l:xmit-out
2:vacuum

t 0.0 Current time
(usually set by the code)

dth 1.0e+10 Current time step size
(usually set by the code)

iste 0 Current time step

p (usually set by the code)

dtgrow 1.05 Timestep growth factor

dt0 1.0e+10 Initial time step size
(alias: dtinit)

dtmin 1.0e-6 Minimum time step size

dtmax 10.0 Maximum time step size

clean .false. Enable clean option (uses clean_df
values in $mats)

backup .true. Lagrangian phase autoback-up, else
abort

fix_crossings .false. Detect and fix interface crossings

multidiv_type ‘uniform’ Set to ‘voidclose’ for void closure
model

jciter .false. Set to .true. for strain rate

iteration to occur for Johnson-Cook
strength model

mesh_velocity

(0.0,0.0,0.0)

Mesh translation velocity
(constant, no spatial or temporal
dependence)
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OPTIONS Variables (Continued)

Variable Default

Description

trc_move_mesh 0

Integer number of the tracer whose
velocity 1is to be used for the mesh
velocity. This velocity, unlike the
mesh_velocity input variable, could
vary in time according to the velocity
sampled by the tracer. If
trc_move_mesh and mesh_velocity are
both nonzero, then the mesh moves
according to the tracer number given
by trc_move_mesh.

1.0e+19

mesh_move_time

Time to begin moving mesh

mesh_stop_time 0.0

Time to stop moving mesh

QUTPUTS Namelist Variables
(Output specifications)

The OUTPUTS namelist input is used to specify output times and delta

times. It is also used to specify

are printed outputs (long and short edits),
actual CM frame buffers or on your terminal using X-windows},

dumps, and a preliminary graphics

there
frame buffer plots (on the
restart

dump capability. Massless tracer par-

what will be output. Currently,

ticle outputs are also provided, as well as a user programmable output

capability.

"QUTPUTS Variables

Variable Default

Description

t 0.0

Output times (alias: op_t)

dt 0.0

Delta output times (alias: op_dt)

QUTPUTS Variables:

Restart Dump Variables

Variable Default

Description

dunmp_freq 0

dump frequency
(0: none, -1 each cycle}

dump_read_ fms

read mode

(serial output: .false., FMS .true.)

dump_write_fms

write mode

(serial output: .false., FMS: .true.)




OUTPUTS Variables: Edit Variables

Variable Default Description

long_freqg 0 Long edit frequency (0: none)
short_freq 0 Short edit frequency (-1: each cycle)
ed_imax nx Maximum edit index in x-direction
ed_imin 0 Minimum edit index in x-direction
ed_jmax ny Maximum edit index in y-direction
ed_jmin 0 Minimum edit. index in y-direction
ed_kmax ny Maximum edit index in z-direction
ed_kmin 0 Minimum edit index in z-direction
ed_xmax X-max Maximum edit coord in x-direction
ed_xmin X-min Minimum edit coord 'in x-direction
ed_ymax Y-max Maximum edit coord in y-direction
ed_ymin Y-min Minimum edit coord in y-direction
ed_zmax Z-max Maximum edit coord in z-direction
ed_zmin Z-min Minimum edit coord in z-direction

OUTPUTS Variables: EV Dump Variables (for tool GD_EV)}

Variable Default Description
ev_var - Variable names
(vofm, d, dm, em, p, pm, ¢, cm, q)
ev_mat - material number for mixed cell
variable, else 0 for mixed cell
variables, "07 is not allowed
OUTPUTS Variakbles: YNG dump Variables (for tool GD_YNG)
Variable Default Description
Material number(s) for which
yng_mat None interface polygons are to be computed
‘and written to the EV dump.
yng_first None Number of the first graphics dump for

which interface polygons and other EV
variables (specified with ev_var,
ev_mat) are to be computed and
written to the EV dump.
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OUTPUTS Variables: YNG dump Variables (for tool GD_YNG) (Continued)

Variable Default Description

vng_first None Number of the last graphics dump for
which interface polygons and other EV
variables (specified with ev_var,
ev_mat) are to be computed and
written to the EV dump.

Skip increment between the first and
last graphics dump for which
interface polygons and other EV
variables (specified with ev_var,
ev_mat) are to be computed and
written to the EV dump.

OUTPUTS Variables: Frame Buffer Plot Variables

Variable Default Description

fb_color 255.0 Color maximum (min=0, max=255)

fb_contours 10 Number of contour

fb_freg 0 Frame buffer frequency
(0: none, -1: each cycle)

fb_level Plane level
(min=1, max=direction-max-dim)

fb_mat Material number
(0 means average cell data)

fbh_max Variable maximum (0 means calculate
maximum from data)

fb_min Variable minimum (0 means calculate
minimum from data)

fb_pixwin Maximum number pixels in window

fb_plane Plane and orientation (xy, vz, Xz,
¥yx, 2y, or zx)

fb_smooth ) Smoothing (0: none, >0: b-guad B-
spline}

fb_var Plot variable names
(d, e, p, ¢, q, dm, em, pm, rho, sie,
prs, vof, etc.)

Contour width (full width is 0.5 on

fb_width either side)




OUTPUTS Variables: X-Window Plot Variables

Variable . Default Description

X _freqg 0 X-window frequency
(0: none, -1: each cycle)

X pixwin(id) 512 Maximum number of pixels to

' be used in initializing the
size of X-window identifier.
Window resizing (with the
mouse) after initialization
is permitted, and this action
preempts X_pixwin.

X _xpix border{id) 0.10 Percent of the horizontal
width of X-window identifier
devoted to margins outside
the plot space. A nonzero
value 1is especially
recommended for vector plots.

X yvpix _border(id) 0.10 Percent of the vertical width
of X-window identifier
devoted to margins outside
the plot space. A nonzero
value is especially
recommended for vector plots.

X_frame plot(id) . true. Frame the image by outlining
the computational domain.

X_show_interfaces(id .false. Show material interfaces in

); X-window id. Interfaces are

currently approximated as
the VOF=1/2 level line. If
input variable

"X interfaces” is not ,
specified for X-window id,
then all interfaces are
drawn.

X interfaces(n,id) l:nmat-1 Material numbers of the
Iinterfaces to be drawn in X-
window id. All interfaces
({material numbers 1 to nmat-
1) are drawn as a default.
Example: X_interfaces(1,3) =
4,5,6, specifies interfaces
for materials 4, 5, and 6 are
to be drawn in X-window 3 (if
X_show_interfaces(3) =

. true.)
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QUTPUTS Variables: X-Window Plot Variables (Continued)

Variable Default Description

X plot_type(id) ‘image’ Plot type in X-window id.
' Available options are
‘image’, ‘contour’, and
‘vector”’.

X_show _tracers(id) If .true., plot any tracers
(as points) presently in the
plane of X-window id. The
tracer points are plotted in
X-window id regardless of its
X_plot_type.

X_show_mesh (id) .false. If .true., plot the

‘ computational mesh in the
plane of X-window id. The
mesh lines are plotted in X-
window id regardless of its
X _plot_type.

X color _map(id) ‘rainbow’ Color map for X-window id.

‘ ‘rainbow’ spans from black to
red, through the rainbow of
colors; ‘blue’ spans black to
blue, and ‘grayscale’ makes a
gray-scale color map.
Grayscale is recommended if
black-and-white copies of
the window are to be printed
on a monochrome printer.

‘bilinear’ Interpolation algorithm to
be used for images plotted in
X-window id. ‘bilinear’ uses
a bilinear (first order)
interpolation of
computational cell data to
nearby pixels, whereas ‘ngp’
use a “nearest grid point”
(zeroth order)
interpolation. Both
techniques are useful:
bilinear gives a smoother
view of the data, making it
easier for the eye to discern
patterns in the data, whereas
ngp gives the raw, rough data
as the code sees it.

X _image_interp(id)




OUTPUTS Variables: X-Window Plot Variables (Continued)

Variable Default. » Description

X _color(id) 253.0 Maximum entry into the color
table of X-window id (min=0,
max=253). Positions 254 and
255 are reserved for
background and foreground,
respectively.

X plane ‘xy’ Coordinate plane and i
orientation of the plane for
X-window id. Allowable
values are Xy, ¥z, X2, VX,
zZy, or zX.

X _level(id) 1 Plane level to be plotted in
X-window id. The actual
coordinate value associated
with the plane will be
displayed in the top window
panel. (min=1, max=direction-
max-dim)

X var(id) tdr Plot variable name for X-
window id. Allowable
variables are the same as
those used for the trc_var
input variables, listed in
detail in the
../1ib/trc_data.FCM file.
The only exception is if
X plot_type(id) is set to
‘vector’, in which case
‘velocity’ is the only
acceptable variable name.

X mat(id) 0 Material number for the
variable to be plotted in X-
window id. A 0 gives cell-
averaged gquantities.

X_max(id) preset Plot variable values in the
plane of X-window id are
scaled between 0 and 1 with
this as its maximum. If X_max
is not input, then the
current maximum of the data
is used. '
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OQUTPUTS Variables: X-Window Plot Variables (Continued)

Variable Default ] Description

X min(id) preset Plot variable values in the
plane of X-window id are
scaled between 0 and 1 with
this as its minimum. If X_max
is not input, then the
current minimum of the data
is used.

X_contour_values

, Values of contour lines to be
(n, id)

drawn for the variable in X-
window id. X_contours should
then be set to the number of
contour values specified in
X _contour_values. (Example:
X contour_values(1,2) gives
the value for contour #1 in
X-window #2.)

X_contours(id) Number of contour intervals
to be used in contouring the
variable in X-window id. The
intervals are taken in even
steps between the current
variable minimum and maximum
in the X-window plane. If
quantities for
X_contour_values have been
supplied, and then

X _contours should be egual to
the number of contour values
specified in

X _contour_values. This input
only applies if

X plot type(id) is set to
‘contour”’.

X vector_length 3*max(dx, dy,dz) Length of vectors drawn on
all vector plots. The default
is 3 x the maximum mesh
spacing in the problem.

X _arrowhead_fraction Fraction of the vector length
covered by the arrowhead in
all vector plots.

X_arrowhead_angle Arrowhead opening angle for
the vector arrowheads on all
vector plots.




QUTPUTS Variables: X-Window Variable Aliases

Variable Aliases

X plot_type ‘IMAGE’, ‘Image’, ‘image’, ‘img’, ‘'VECTOR’, ‘'Vector’,

(id) ‘vector’, ‘'VECTORS’, 'Vectors’, ‘vectors’, ‘'CONTOUR’,
‘Contour’, ‘contour’, ‘'CONTOURS’, 'Contours’,

‘contours”’

X _var(id)
(for vectors)

‘VELOCITY '
‘VEL’,

, ‘Velocity’,
‘fluid velocity”’,

‘velocity’, ‘vlcty’, ‘vel”’,

'"FLUID VELOCITY’

X _color_map ‘BLUE’, ‘Blue’, ‘blue’, ‘RAINBOW’, ‘'Rainbow’,

(id) ‘rainbow’, ‘rnbow’, ‘GRAYSCALE’, ‘Grayscale’,
‘grayscale’, ‘GREYSCALE’, ‘'Greyscale’, ‘greyscale’,
‘gray’, ‘grey’

X image interp ‘ngp’, ‘NGP’, ‘first-order’, ‘first’, ‘same-cell’,

(id)

‘bilinear’,

‘LINEAR’,

‘BILINEAR’, ‘Bilinear’, ‘linear’,

‘Linear’

OUTPUTS Variables: Graphics Dump Variables

Variable

Default

Description

gd_freq

0

Graphics dump freguency
(0: none, -1: each cycle)
(alias: dv_£Ireq)

gd_var

Variable names
(vofm,d,dm,em,p,pm,c,cm, g, u, v, w,
bfm, bt, p_shk, etc.)

gd_mat

Material number for mixed cell
variable, else 0 for mixed cell
variables, “0” means all materials
(note: some materials may not have
bfm, p_shk, etc.)

gd_read_fms

.false.

Read mode

(serial output: .false., FMS: .true.)

gd write fms

.false.

Write mode

(serial output: .false., FMS: .true.}

gd_iso

.false.

Flag to specify use of the iso code
to create iso surfaces.

gd_numdisks

Number of disks to which to write
graphics output files.

gd_diskpath

Root location on the disks for
writing graphice output files.
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OUTPUTS Variables: Graphics Dump Variables (Continued)

Variable

Default

Description

gd disk_ file

L U )

Root name for the graphics output
files, relative to gd_diskpath. A
file number is appended to the file
name by the code.

gd _write_file

output file name for the .polyh file
used by the iso code.

gd_mat_thresh

Threshold values used by iso. A value
may be entered for the first n
materials, and the default value will
be used for the remaining nmat-n
materials.

gd_frame number

Starting value for the frame numbers.

OUTPUTS Variables:

KRKL Dump Variables

Variable

Default

Description

krkl _plane

“}Cy”, “ﬂ”/ lllel’ “ZX’, I|yzﬂ, or llzyll

krkl_level

Plane index (min=1, max=direction-
max-dim)

krkl _first

First dump number (optional)

krkl_last

Last dump number (optional)

krkl_inc

Increment between dumps (optional)

OUTPUTS Variables:

Auxiliary Output Variables

Variable

Default

Description

user_freg

0

User auxiliary frequency
(0: none, -1: each cycle)

OUTPUTS Variables:

cer Output Control Variables

Variable

Default

Description

tracer_freg

0

Tracer fregquency
(0: none, -1: each cycle)

tracer_var

Variable names

(std 9: x, y, 2z, u, v, w,
(choices: ¢, g, vof, sxx,
syy, syz, plst, plwk,
p_shk, f_shk, etc.)
falias: trc_var)

d, e, p)
sxy, sxz,
else, bf, dg,

tracer_mat

Material number (alias trc_mat)




RESTARTS Namelist and RAIDS Namelist Variables

The RESTARTS and RAIDS namelists are used to write and read restart dumps
for the MIMD version of PAGOSA. A separate RAIDS namelist block is re-
quired for each disk to which restart dumps will be written or from which
they will be read.

RESTARTS Variables: Restart Dump Variables

Variable Default Description

restart .false. Flag to indicate whether the
calculation will be restarted from a
dump.

numraid 0

Number of disks to which the restart
dumps will be written. Each disk must
have its own RAIDS namelist block.

readfile v The path used for the restart dump to
be read. The full path has the form
raidname/readfile.processor_number.e
xt. raidname and ext are defined
below. processor_number is the
logical number of the processor which
will read the file.

ext A The extension used to distinguish
among restart dump sets. GEN and
PAGOSA write Aumps with extensions 1,
2, and trm.

writefile A The path used for writing the restart
dump. The full path has the form
raidname/writefile.processor_ number.
ext. raidname is defined below. ext
is defined above. processor number is
the logical number of the processor
which wrote the file. A restart dump
set must be read by the same number
of processors which wrote the set.

RAIDS Variables: Restart Dump Variables

Variable Default Description

raidname AN The root path name for a disk to
which restart dumps are written or
from which they are read. A separate
RAIDS block is required for each
digk. On the Intel Paragon, the disks
often have the root form /raid/io N
or /pfs/io_N, where N is the two-
digit number of the disk (disk 1 is
number 01, etc.).
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MATS Namelist Variables
{(Materials Data)

The MATS namelist is used to specify all of the material properties (EOS,
HE burn, Strength, Fracture and other data associated) for each material
in the problem. Each material may be entered using a separate MATS namel-

ist block without any indexing,

or all the material data may be entered

within a single MATS namelist block by using explicit indexing (sub-
scripts). The former is recommended since it is then order-independent
and easily changed as materials are added or deleted.

Mats Variables

Variable

Default

Description

material

Material index (alias: mat)

matbak

Background material number

matname

Material name

priority

Material priority (aliases: pri,
mpri)

do

Initial material density
(alias: rho0)

dls

Normal solid density
(usually d0, alias: rhoOs)

el

Initial specific internal energy
“(alias: sie)

pmin

Minimum pressure cutoff (simple spall
scheme) {alias: prsmin)

clean_df

Density cutoff fraction for purging
{aliases: cfrho, cleandf)

close

For void material, set to true for
void closure




Mats Variables: EOS (Equation-of-State) Data

Variable Default Description
eosform EOS form
‘void’ ‘vacuum’, ‘null’
‘gas’ ‘ideal’, ‘ideal gas’, ‘ideal-gas’,
‘perfect gas’
‘poly’ ‘polynomial’
‘osb’ ‘osborne, ‘mod-osb’,
‘mod-osborne’, ‘modified-osborne’
‘uéup’ ‘us-up’, ‘us/up’, ‘gruneisen’,
‘mie-gruneisen’, ‘mie’
\jwll
‘bkw’ ‘bkw-gas’, ‘bkwgas’, ‘bkwfit’
‘bkwhe ’ ‘bkw-he’, ‘he-bkw’, ‘hebkw’
eoscon constants for each EOS form
‘void’ (no constants)
‘gas’ gamma
‘poly’ al, al, a2c, a2e, a3, b0, bl, b2
‘usup’ c0, s, gamma0, gammal, p0, d_max
al, a2c, aZe, b0, bl, b2c, b2e, <0,
‘osb’
cl, c2c, c2e, epsO
‘jwl! w, bl, ci, b2, c2
(cl = d*rl, c2 = d*xr2)
‘bkw' A, B, C, D, E, K/ Ll Mr NI OI Qr R( SI
T, U, Cv, Z, d_max, d_min
‘bkw-he’ c, s, gammal, gammal, PO dsmax, K, L,
M, N, O, Cv{(s), alpha, A, B, C, D, E,
KI I"I MI NI 0I QI RI SI |I‘l UI Cv(g) ’
Z, dgmax, dgmin, maxit, t_del
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Mats Variables: HE Burn Data

Variable Default Description

burnform EOS form

‘null’, ‘inert’

‘progburn’, ‘program’, ‘time’
‘dynaburn’, ‘dynamic’

‘cjburn, ‘c-j burn’, ‘volburn’
‘ffburn’, ‘forest’, ‘ffb’, ‘*ffpburn’
‘msffburn’, ‘msforest’, ‘msffb’

‘jtfburn’, ‘tangburn’, ‘tang’,
‘model-t’ (not yvet implemented)

burncon constants for each HE burn form
'(no constants)

detvel

matdyna, edyna, dedyna

bf_min cut, bf_max cut, CJ density

bf_min cut, bf_max cut, bp_min cut,
bp_max cut, n (number of FF constants
following), FF constants (*n” of
them), Q lim

bf_min cut, bf_max cut, bp_min cut,
bp_max cut, n (number of MSFF
constants following), MSFF constants
(*n” of them), Q lim, p_shk min,
p_shk max, g_shk min, dg min, reshock
P

MATS Namelist Variables (continued): Strength Data

A large number of additional arrays are allocated to calculate strength.
i1t is now minimized by specifying strength only for those materials which
require it. For example, if there are 10 materials specified for the
whole problem but only two of then have strength, then only about 20% of
the possible storage will be allocated. Also, only about 20% of the pos-
sible computer time will be spent in the strength routines compared to
that if all 10 materials had strength. Users are encouraged to minimize
the number cof materials which will realistically require strength in or-
der to minimize run time and space.

There is a compiler option to compile the code with or without the
strength routines and storage arrays. As such, for “hydro only” problems,
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the code is much simpler and smaller if compiled without strength. How-
ever, with recent code changes, the code compiled with strength but run
without strength (hydro only), a minimum of storage is now dynamically
allocated and the strength routines will never be called. It is no longer
a significant time and space penalty to run a “hydro-only” problem with a
version of the code compiled with the strength option {(which is the

default) .
Mats Variables: Strength Data
Variable Default Description
strform strength form
‘none’ ‘null’, ‘*hydro’
‘ep’ ‘e-p’, ‘epp’ .
‘s-g’ ‘sg’
vy-cr vie
yo0 - initial yield strength (alias: y1d0)
ymax - maximum yield strength
(alias: yldmax)
g0 - initial shear modulus (alias sm0)
gmax - maximum shear modulus (alias smmax)
eoscon constants for each str form
‘none’ {no constants)
‘e-p’ (no constants)
‘s-g’ alpha, psi0, beta, delta, emelt,
gama, gamap
‘jocr bcap, ccap, an, am, emlt, eroom,
gamap
Mats Variables: Fracture Data
Variable Default Description
fracform fracture form (not yet implemented)
‘none’ ‘null’
fracon constants for each fracture form (not
yet implemented)
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DETS Namelist Variables
(Detonator Specifications)

The DETS namelist is used to specify the programmed burn detonation
points. Only a simple scheme is now implemented which does not handle
shadow regions.

DETS Variables

Variable Default Description

type ‘point’ Detonator type: ‘'point’, ‘line’,
‘plane’, cylindrical’, ‘spherical’
{(aliases: ‘points’, ‘cyl’, ‘sph’)

Detonation time({s) (alias: time)

X, ¥, and Z detonator coordinate
triple(s)

\xll \y-l, or \ZI
axis of line, axis normal to plane,
or axis of cylinder

radius cylinder or sphere radius

shadow_fraction Detonation-velocity reduction
fraction for shadow region

TRACERS Namelist Variables
(Massless Tracers Particles)

The TRACERS namelist input is used to specify massless tracer particles.

NOTE: Between restarts this data must be manually updated and reentered
as the current tracer positions are not now written on the restart dumps.
This will be eliminated soon and become automated.

TRACERS Variabkles

Variable Default Description

xyz(i,np) N/A Tracer number (i = 0) and initial
(x,v,z) coordinates (i=2,3,4) for
tracer particle np

(aliases: trc_xyz & tracer_xyz)

frame (i, np) ‘Lagrangian’ Reference frame for tracer particle
for 1 =1,2,3 np in direction i (i = 1 for the X-
direction, 2 fer ¥, and 3 for Z)
(‘Eulerian’ or ‘Lagrangian’)
(aliases: trc_frame & tracer frame)




GEN Namelist Variables
(Generator Specifications)

The GEN namelist input block is used to specify some basic input control
information for the generator, GEN.

GEN Variables

Variable Default Description

particles 5 Number of particles per cell and per
coordinate direction used to
calculate volume fractions
statistically.

1 - new generate from input file
2 - view previous generate from a
Data-Vault restart dump file

start_mode 1

interactive .true. .false. - The generator will ask
questions about various input options
and ignores them from this input
file.

restart_dump .true. .false. - Write a Data-Vault dump of
the code variables for use in
starting a calculation with PAGOSA.

burn_times .false. .true. - Calculate and write a Data-
Vault dump of the program burn times
(only 1if there is program burn
material in the problem)

BODY Namelist Variables
(Material Body Specifications)

The BODY namelist input is used to defined the material geometry, one
body at time. In practice, it often takes several bodies of the same ma-
terial to make-up the complete three-dimensional solid desired. As such,
all bodies of the same material are added together (union). Previously
defined bodies are also “subtracted” from subsequent body specifica-
tions. This is often very handy, but it is suggested that users try not
to overlap bodies and have GEN help to find any overlaps. All surfaces
defined within a body are also combined (intersection). Aliases for the
variable names are given in parentheses.
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BODY Variables

Variable

Description

Allowable Input

material_number
{mat)

material index

material number from EOS inbut

surface_name
(surf)

(first 3 characters used)

Plane

“plane’, ‘planar’, ‘pla‘’

Box

box’, ‘cube’, ‘cub’,
parallelepiped’, ‘par’

Sphere

sphere’, ‘sph’

Ellipsoid

ellipsoid’, ‘ellipse’, ‘ell’

Cylinder

cylinder’, ‘cyl’

Cone

cone’, ‘conical’, ‘con’

Tabular

Background

‘tabular’, ‘tab’

‘background’, ‘bac’

Initial
velocity

Constant numerical values.

Initial
density &
energy

The body is filled with the default
density & energy of the material
specified unless overridden here by
specifying an initial 40 & eO0.

material
location

To place the

material
inside the
becdy or in

the positive

direction

To place the

material
outside the
body or in

the negative

direction

inside’, ‘*£fill inside’, ‘insert’,
‘+7, *right’, ‘above’, ‘top’,
‘front’

outside’, ‘£ill outside’, delete’,
‘-7, *left’, ‘below’, ‘bottom’,
‘back’

BODY Namelist Variables {continued)

For each surface there is an appropriate and necessary set of associated
location and defining input parameters from the following set. Rotations
are performed first (positive angles: counter-clockwise, negative an-
gles: clockwise) and then translations. Rotations are performed about
the body’s local origin unless a non-zeroc rotation point is specified.




BODY Variables: Geometry Parameters

Variable Description Allowable Input
axis orientation ‘%!, ‘y', or ‘z’
axis ‘x-axis’, ‘y-axis’ or ‘z-axis’

\ll' \2', Or \3[

radius body radius Radius triple (may change soon)
(triple required for ellipsoid)

height height of body] single value

Xyz_length length of dx, dy and dz triple

(length) sides

xyz_translation new location X, Yy, z triple

_pt of body

(trans,

Xyz_trans)

Xyz_rotation_pt body rotation‘ X, ¥, 2 triple

{rot, xyz_rot)

point

xyz_rotation_an
gle

(angle,
rot_angle)

body rotation
angle

Angle triple (degrees)

tabular_type
(tab_type)

type of
tabular body

‘rotation’ or ‘translation’

A rotated tabular body forms an n-
sided collection of cylinders and
cones if the axis of rotation is
included as one side of the body. If
the axis is not included, then the
body has a toroidal shape.

A translated body is used to form an
“extruded” shape; a “funny”
cylinder with sides defined by the
n-sided tabular entries instead of
a circle.

rz_tabular_pt
(rz)

tabular body

Table of r,z points

rtheta-
tabular_pt
(rtheta)

tabular body

Table of r,theta points

file_name
(file)

tabular file
name

File name (w/path spec)
(see TABULAR_DATA below)
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BODY Namelist Variables (continued): Surface Parameters

The parameters required for each surface are given below.

BODY Variables: Surface Parameters

Surface Parameters Origin Description

‘plane’ axis 0,0 Axis normal to plane

N/A This “surface” is used to
define the remaining
space not occupied. With
"matbak” now required,
this body type is
optional. If present, it
must be the last body
specified.

‘background’

‘box’ xyz_length Center Length of each of the
' three coordinate sides.

‘sphere’ radius Center (temporarily use 3*value)

‘ellipsoid’ radius Center Three radil required
xyz_translation_pt
xyz_rotaticn_pt

xyz_rotaticn_angle

‘cylinder’ radius Center {temporarily use 3*value)
of
base

axis Axis of cylinder
height Height of cylinder
xyz_translation_pt
Xyz_rotation_pt
xXyz_rotation_angle

radius Center (temporarily use 3*value)
of
base
axis Axis of cone
height Height of cone
xXyz_translation_pt
xyz_rotation_pt
Xyz_rotation_angle




BODY Variables: Surface Parameters {(Continued)

Surface Parameters Origin Description
‘tabular’ tabular_type 0,0 ‘rotation’ or
‘translation’
axis Axis of rotation or axis
along which points are
translated.
rz-tabular_pt Table of r,z points

making up an n-sided
pelygon in either the
clockwise or counter-
clockwise direction

xyz_translation_pt
Xyz_rotation_pt
xyz_rotation_angle

TABULAR_DATA Namelist Variables
(Tabular Contour Specifications)}

The TABULAR_DATA namelist input is used to read-in a contour table in ei-
ther r,z or r,theta form. In the r,theta form, theta is measured from the
normal to the z-axis and can take on positive or negative values in de-
grees. The positive values are counter-clockwise, while the negative
values are clockwise. For example, 90 degrees is along the positive z-ax-
is, -90 degrees is along the negative z-axis while 0 degrees is at the
eguator (perpendicular to the z-axis).

TABULAR_DATA Variables

Variable Description Allowable Input
rz r,z table of values| Constant coordinate values
rtheta r, theta table of Constant coordinate values
values -

SETVEL Namelist Variables for use in GEN
(User Modified Initial Velocities)

GEN now includes two user modifiable routines called “setvel” and
“setvel_inp”. The first (in the file setvel.Fcm) calls the second (in the
file setvel_inp.F). Right now, the sample code within each is to set a
uniform radial inward or outward velocity. The inclusion of a non-zero
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velocity in the SETVEL namelist input will set all materials in the prob-
lem to that radial velocity (negative is inward). As presently coded, it
assumes the origin of the mesh is the origin of the radial velocity. If
an additional table of numbers is provided, one for each material in the
problem, then the radial velocity is set only for those materials flagged
with a 1 (one) and not set for those flagged with a 0 (zero).

Code users are encouraged to modify these routines to suit their own spe-
“cial problem set-up requirements. A non-uniform density, energy, veloci-
ty, etc. distribution may be programmed in to facilitate a special
problem.

As currently coded, a missing or empty SETVEL namelist causes no change

to the velocity distribution as set-up by the other parts of the genera-
tor input. ‘

SETVEL Variables

Variable Description Allowable Input

vel radial velocity + (outward) or - (inward) real
number

A zero or missing value currently
has no effect on the velocity
distribution.

material table A list of 0's & 1’s with a one-to-
flags one correspondence with the
material numbers.

A “0” means do not impose the radial
velocity on this corresponding
material while a “1” (or other non-
zero) means to apply the uniform
radial velocity to this
corresponding material.

Omitting the "mats” table causes
the radial velocity to be imposed
over the entire mesh for all
materials.

CRAYLINK Namelist Variables for Use in GEN

GEN now includes the means to link from the MESA-3D generator the mate-
rial volume fractions and programmed burn times. This namelist may be re-
peated as often as necessary to map over all of the desired regions of
the mesh.




SETVEL Variables

Variable Description Allowable Input

vi_1lnk vol-frac file name (alias: vf_file)
bt_1lnk burn_time file name| (alias: bt_file)
Ink_imin x-direction (defaults = 0,mx)

Ink imax indices (aliases: imin & imax)
Ink_jmin, y-direction (defaults = 0,my)
1lnk_jmax indices (aliases: jmin & jmax)
Ink_kmin, z-direction (defaults = 0,mz)
Ink_kmax indices (aliases: kmin & kmax)
i_offset, mapping offsets (defaults = 0,0,0)
j_offset, (aliases: ioffset, joffset &
k_offset koffset)

ud, v0, wo mesh velocities (defaults = 0,0,0)

WINDOW

In addition to GEN and the PAGOSA main program, there is a preliminary
windowing utility program which merges previous GEN or PAGOSA made re-
start dumps into a new restart dump. In this manner, different portions
may be pieced together (or deleted) as a problem is run. 0ld portions may
be deleted and new portions may be added. The mesh size may be expanded
or shrunk as needed, but the mesh cells may not be “rezoned” or resized.
As of now, portions may be “extracted” from previously made restart dump
files and placed upon a whole new mesh. Also, two-dimensional portions
may be “extruded” in the orthogonal directions to make a three-dimension-
al problem out of a two-dimensional problem.

EXTRACT Namelist Variables for use in WINDOW

EXTRACT Variables

Variable Description Allowable Input

file name of old restart required, must not be blank
dump

nx, ny, nz size of old mesh required

nmat number of materials | Reqguired

in old problem
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EXTRACT Variébles (Continued)

Variable

Description

Allowable Input

imin, imax
Jjmin, jmax
kmin, kmax

mesh range of old
problem from which
to “extract”

(defaults = whole old mesh)
(less than or egual to the new
“window?” range)

istart,
Jjstart,
kstart

mapping offsets
into the new
“window” mesh

(defaults = 0, 0, 0)

mats_table

material marping
table

For each old material, a “zero”
indicates that material is to be
skipped (or dropped).

A non-zerc “new” material number
Indicates that material is to be
included, but as the "“old n-th”
material as given by this position
(or index) within the table.

burnform

old HE burn form,
if any

‘prog’, ‘msff’, etc. in the “old n-
th” material position of this array
as required to read the old restart
dump .

({defaults: none)

fracform

old fracture form,
if any

(not yet implemented)

strform

old strength form,
if any

‘ep’, ‘kospall’, etc. in the "“old
n-th” material position of this
array as required to read the old
restart dump.

(defaults: none)

burn_times

old burn_time file
name

Include only if needed for the next
phase of the new problem.

faliases: bt_file and
prog_burn_times)




EXTRUDE Namelist Variables for use in WINDOW

EXTRUDE Variables

Variable Description Allowable Input

plane name of 2D plane to required, must not be blank
extrude ‘xy’, ‘yz’, ‘xz’, ‘zx’, ‘yz’, ‘zy’
Existing level of 1 through mx, my, or mz

start_level the 2D plane (defaults to 1)

final level] Level to which to may be above or below the
extrude start_level

(defaults to mx, my, or mz)

imin, imax Mesh range of new (defaults = whole old mesh)
jmin, jmax problem from which (less than or equal to the new
kmin, kmax to “extrude” "window” range)

WINDOW also has a set of empty “user_mods” routines which may be pro-
grammed to perform special functions reguired by the user. These may in-
clude changing a material throughout the mesh, etc.

Post-Processing Utility Programs
GRID

This program is used to help calculate a mesh grid. It copied from and
slightly improved upon the Mesa-2D program which does the same thing.
Please refer to the Mesa-2D manuals at this time for more information, or
else just try it!

GD (Graphics Dumps) Utilities

These utilities are for post-processing the graphics dumps. For input,
they use an input file which may be identical to the original file used
to run PAGOSA (however, rename it with a different prefix to avoid over-
writing the same output files). For the most part, they are self explan-
atory, for there is not yet a detailed description of their workings.

GD Utilities

GD_EV Makes an EV (Eulerian Viewer) file for viewing data on
the IRIS graphics system.

GD_KRKL Makes a near faithful reproduction of a Mesa-2D dump for
subsegquent processing through KRKL for plots of two-
dimensional slices.

GD_MERGE Merges or extracts portions of graphics dump files.

GD _MOVIE Shows on the frame buffer (or X-terminal) a “movie” like
sequence of frames produced by GD_SLICE.
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GD Utilities (Continued)

GD_SLICE Extract two~dimensional slices from the graphics dumps
and render them into frame buffer image using the frame
buffer specifications in the OUTPUTS namelist block.

iso Extract three-dimensional iso~surfaces of volume
fraction from the graphics dumps and create a file of
polvhedra which can be visualized using AVS modules.

READ_ TRACERS

This utility program reads the “prefix.trc” output by PAGOSA and extracts
the data reguested into a file of time and value pairs for plotting by

Xvgr or other plotting programs. It asks for the prefix, the time range
desired, the variable values wanted and some scaling information. Again,
try it and see if it will extract the data you need.

EXTRACT_SHORT

This utility extracts data from the short edits on the “prefix.out” file
made by PAGOSA into a file(s) of time and value pairs. Again, this is for
post-processing plots. The data which may be selected as of now by mate-
rials is volume, mass, density, total energy, internal energy and kinetic
energy.

EXTRACT_LONG

This program extracts spatial data from the long edit on the “prefix.out”
file. In addition to the prefix, it asked for the variables desired and
the indices, or spatial range to be extracted.

EXTRACT_RDR

This is a utility program to extract the integral of Rho*dr over time
from the “prefix.aux” file written by the special “user_write” subrou-
tine. The user must compile and run PAGOSA with this special version of
the subroutine for this data to be calculated and written out on the aux-
iliary prefix.aux file.
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Sample Sequence in Running GEN and PAGOSA

The following schematic is a sample sequence showing several phases in
running GEN and then PAGOSA with a restart. Here there are separate input
files for each run (“prefix.a.inp” for GEN, “prefix.b.inp” for the first
PAGOSA, and “prefix.c.inp” for the PAGOSA restart), but they are derived
from each other and are nearly identical. For example, the “b” version
may have a special initial timestep and stopping time specified, while
the “c¢” version may reset the initial time step large (which then has no
effect), set a new stopping time, and update the tracer particle coordi-
nates.

The names “prefix.a”, "prefix.b” and “prefix.c” are then used to name all
of the output files with unique and non-overlapping names. The “prefix”
part is usually a brief problem identifier (unclassified) which is also
recommended to be a sub-file directory name. For example, “testl”,
“test2”, etc. where “test” is the overall parent directory name. A naming
scheme like this helps to keep things organized, logically together and
non-overlapping

prefix.a.out

prefix.a.inp ————-ipm GEN — e .
prefix.a.err

prefix.a.0000

prefix.a.000n

prefix.b.out
prefix.b.aux
prefix.b.exrr
prefix.b.txc

prefix.b.inp ————pwl PAGOSA |——-pp

prefix.b.0000

prefix.b.000n

prefix.b.out
prefix.b.aux
prefix.b.err
prefix.b.trc

prefix.c.inp ———p PAGOSA [~

prefix.c.0000

prefix.c.000n
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PAGOSA Directory Structure

The following directory structure currently applies to PAGOSA and all of
its programs and utilities. Note the executable programs are stored in
the /bin sub-directory while the binary libraries, sources and debugging
intermediate source files are found in separate directories, one for each
program.

The library (*.a file), sources (*.Fcm, *.F, *.f and *.fcm files) are
found under each program directory in the format as shown for GEN and
PAGOSA. The *.F files are the F77 sources while the *.Fcm files are the
CMF sources, both used as input to the CPP preprocessor run under CC. The
* f and the *.fcm are the corresponding preprocessor output files which
are actually compiled by F77 and CMF respectively, ox by if77. They are
also available for use with the debuggers.

The Makefiles are the compiler scripts for each program and are under
constant change as we learn how to do things in a better way. This is par
for UNIX. They (and the code storage structure) will also change when we
start using the CVS or SCCS code maintenance system.

The /include directory is for the common blocks and variable definitions
which are included within the programs by the preprocessor. Any changes
to these may require recompiling all of the programs and libraries.

The /1lib directory is for those subroutines which are used in common be-
tween GEN and PAGOSA: or the other utility programs. As such, it is sepa-
rated out and compiled once. Any changes to it require reloading
(sometimes changing and re-compiling) all of the programs which use it.
As of now, it is not real easy to recompile lib.a by itself without pro-
viding some compile switches to its Makefile. Compiling GEN or PAGOSA now
automatically compiles and builds lib.a as needed.

The /examples directory is for some example input files to help users get
started while the /tp directory is for test problems used for code vali-
dation and guality assurance (Q/A). The /archive directory is for each
new code version by version number. The last (highest version number) is
the version in the program directories which are compiled and stored in
/bin.

The tools directory is the beginning of a set of utilities or tools for
pre-post processing. The grid program assists in setting-up a variable
mesh, or grid. The read tracers program is used to extract massless trac-
er particle data from the *.trc tracer output file, and the ‘gd’ series
is used to process the graphics dumps. gd_ev is used to extract data from
a graphics dump and make a set of EV input dump files for displaying on
the Iris SGI. gd_krkl is used to make a MESA dump file for plotting by
the KRKL plotting program. gd_merge 1s used to exact or merge together
graphics dump files. gd_movie is used to display frame buffer plots (2D
slices) made by the gd_slice program.
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Abbreviated Directory Structure for PAGOSA

/pagosa
/bin /include /1ib /gen /pagosa /window /tools /examples /tp /doc /archive
gen /*.h /1lib.a /gen.a /pagosa.a /window.a /gd /m.m
pagosa ! ! 1 ! 1 .
window *.f,* . fcm *.f,*.fom *.f,*.fom *.1,*.fem /grid /n.n
grid !. Pl 11 /gd_ev
read_tracers *.F, *.FCM*.F, *.FCM*.F, *.FCM .F, *.FCM /script /ete.
gd_ev /9d_krkl
gd_krkl Makefile Makefile Makefile Makefile /read tracers
QZJnergle /gd_merge
gd_mzx.lle /extract
gd_slice : /gd_movie
gd_v3d

extract_long

/gd_slice

extract_short /ete. g

extract_short
extract_long /gd_v3d
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B Test Problem Input Sets

In this appendix we present input sets for the two finned projectile problems, fpl and
fp2, for the explosive welding problem, ew, and for the oil-well perforation problem, owp.

B1 Input Set for the Finned Projectile Problem with the Hydrodynamic Constitu-
tive Model, fp1

Finned Projectile Obliquely Impacting a Steel Plate Hydrodynamically

Smesh

ncellx 384,192, éoordx , 0.5, ratiox

0.0
ncelly 96, 96, coordy . 0.0, 0.5, ratioy
0.5

ncellz 96, coordz . .5, ratioz = 1.0,

matname 'Tungsten Projectile’,

material 2,

priority = 1,

d0 = 17.3, d0s = .3, e0 = 0.0, clean_df = 0.2, detvel = 0.0,
eosform = ‘us/up’',

pmin = -0.02,

eoscon = 0.4, 1.295, 0.0, 1.43,

strform = 'none’,

y0 = 0.0193, ymax = 0.0193, g0 = 1.28, gmax = 1.28,

fracform = ‘none’,

mat = 3,

pri = 3,

matname = 'SS plate’',

d0 = 7.89, e0 = 0.0, clean_df = 0.2, pmin= -.06,
eosform = 'us/up’, '

eoscon = 0.4569%, 1.49, 0.0, 2.17,

strform = 'none'

y0 = 0.010, g0 = 0.77,

fracform = ‘none',




Soptions
dt0=0.010, dtmin=1.0d-5, dtmax=0.20,

id_g=1, cgl=0.2, cg2=2.0,
cutacc=1.0d4-9, cutd=1.0d4-5, cutvof=1.04-5,

dtgrow=1.2,
safec=0.75, safed=0.25, safeu=0.25,

ibe = 1,1, 1,1, 0,1,

$end
Soutputs
£t=0.0, 5.00, 4t=0.01,
gd_freq=0,
gd_var ='vofm',
gd_mat = ¢ |,
short_freqg=0,
dump_freg=0,
Send
$gen
particles = 5,
startmode = 1,
interactive = .false.,
restartdump = .false.,
burntimes = .false.
Send
$body
mat = 1,
surf = ‘plane’,
fill = ‘right',
axis = 'x,
trans = 0.150, 0.000, 0.000,
rot = 0.000, 0.000, 0.000,
angle = 0.000, 0.000,-30.000,
Send

o1




surf
£ill
axis
trans

rot
angle
Send

Sbody

trans
rot
angle
ul

mat
surf
£ill
axis
radius
height
trans
rot
angle
ul

mat
surf
£ill
axis
length
trans
rot
angle

i

3,
‘plane’,
'left?
'x', 'x!
.150,
.000,
.000,
.000,
.000,
.000,

OO 0O o0 o0

-0.200,
0.000,
0.000,
0.100,

2,
‘eyl?,
'inside’
xt,
0.075,
-0.700,
-0.200,
0.000,
0.000,
0.100,

2,
‘box',
'inside®
%,
0.200,
-0.800,
.000,
.000,
.100,

[ I o I )

‘plane’,
'right*,
0.000, O
0.000, ¢
0.000, O
0.000, O
0.000,-30.
0.000,-30.

0.000, O
0.000, ©
0.000, O
v0 = 0.0

r

0.000, 0.000,
0.000, 0.000,
0.000, 0.000,
v0 = 0.00, w0 = 0.00,

I

0.300, 0.050,

0.000, 0.000,

0.000, 0.000,

0.000, 0.000,

v0 = 0.00, w0 = 0.00,

.000,
.000,
.000,
.000,
000,
000,

.000,
.000,
.000,
0,

wo 0.00,




$body

mat = 2,

surf = 'box ',

£fil1 = tinside!',

axis = ‘x!',

length = 0.200, 0.050, 0.300,

trans = -0.800, 0.000, 0.000,

rot = 0.000, 0.000, 0.000,

angle = 0.000, 0.000, 0.000,

] = 0.100, v0 = 0.00, w0 = 0.00,

Send
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B2 Input Set for the Finned Projectile Problem with the Elastic, Perfectly Plastic
Constitutive Model, fp2

Finned Projectile Obliquely Impacting a Steel Plate

$mesh
) ncellx = 320,160, coordx = -~1.0, 0.0, 0.5, ratiox = 1.0, 1.0,
ncelly = 80, 80, coordy = -0.5, 0.0, 0.5, ratioy = 1.0, 1.0,
ncellz = 80, coordz = 0.0, 0.5, ratioz = 1.0,
Send
Smats
mat = 1,
pri = 3,
matbak = 1,
matname = ‘void’',
eosform = ‘'void’',
$end
Smats
matname = 'Tungsten Projectile’,

material = 2,

priority = 1,

d0 = 17.3, d0s = 17.3, 0 = 0.0, clean_df = 0.2, detvel = 0.0,
eosform = ‘'us/up’',

pmin = ~0.02,

eoscon = 0.4, 1.295, 0.0, 1.43,

strform = 'ep',
v0 = 0.0193, ymax = 0.0193, g0 = 1.28, gmax = 1.28,
fracform = 'none’,
Send
Smats
mat = 3,
pri = 2,
matname = 'SS plate',
d0 = 7.89, e0 = 0.0, clean_df = 0.2, pmin= -.06,
eosform = ‘us/up’', )
eoscon = 0.4569, 1.4¢%, 0.0, 2.17,
strform = 'ep'
vy0 = 0.010, g0 = 0.77,
fracform = 'none’',
Send
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Soptions

dt0=0.010,

id_g=1, cql

dtmin=1.0d-6, dtmax=0.10,

=0.2, cg2=2.0,

cutacc=1.0d-9, cutd=1.0d-5, cutvof=1.04-5,
dtgrow=1.2,
safec=0.75, safed=0.25, safeu=0.25,
ibe = 1,1, 1,1, 0,1,
clean = .true.,
$end
Soutputs
t=0.0, 7.00, 4t=0.01,
gd_freq=0,
gd_var ='vofm',
gd_mat = o ,
short_freg=0,
dump_£freqg=0,
Send
$gen
particles = 5,
startmode = 1,
interactive = .false.,
restartdump = .false.,
burntimes = .false.
Send
$body
mat = i,
surf = ‘plane’,
fill = 'right',
axis = X',
trans = 0.150, 0.000, 0.000,
rot = 0.000, 0.000, 0.000,
angle = 0.000, 0.000,-30.000,
$end
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surf
fill
axis
trans

rot

angle

mat
surf
£ill
radius
height
axis
trans
rot
angle
u0

mat
surf
fill
axis
radius
height
trans
rot
angle
uo

mat
surf
fill
axis
length
trans
rot
angle
u0

L1}

1]

0

n

3,
'plane’,
'left’ ,
'x', 'xe
.150,
.000,
.000,
.000,
.000,
.000,

[T« B = B = BN « BN

2,
‘cone’,
‘inside!
0.075,
0.200,
'x,
-0.200,
0.000,
0.000,
0.100,

2,
‘cyl',
'inside’
'x,
0.075,
-0.700,
-0.200,
0.000,
0.000,
0.100,

2,
‘box',
‘inside'
‘Xt
0.200,
-0.800,
0.000,
0.000,
0.100,

‘plane’,
‘right',
0.000, O
0.000, 0
0.000, O
0.000, O.
0.000,-30.
0.000,-30.

’

0.000, 0.000,
0.000, ©0.000,
0.000, 0.000,
v0 = 0.00, wQ = 0.00,

’

0.000, 0.000,
0.000, 0.000,
0.000, 0.000,
v0 = 0.00, w0 = 0.00,

’

0.300, O
0.000, O
0.000, O
0.000, O

0

.000,
.000,
.000,

.000,

000,
600,
000,

050,
000,
000,

w0 = 0.00,




_$body

mat = 2,

surf = 'box’',

£ill = ‘inside',

axis = x',

length = 0.200, 0.050, 0.300,

trans = -0.800, 0.000, 0.000,

rot = 0.000, 0.000, 0.000,

angle = 0.000, 0.000, 0.000,

u0 = 0.100, vl = 0.00, w0 = 0.00,

Send
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B3 Input Set for the Explosive Welding Problem, ew

Explosive Welding of a Copper Tube to a Steel Plate

Smesh
ncellx 240,240, coordx . .0, 3.0, ratiox
ncelly 120, coordy . 3.0 ratioy

ncellz 120, coordz . 3.0 ratioz

mat 2,

pri = 1,

matname = ‘'copper’',

d0 = 8.93, e0 = 0.0, cleandf = 0.2, pmin = -.06,
eosform = ‘us/up’,

eoscon = 0.394, 1.489, 0.0, 2.002,

strform = ‘'ep’',

y0 = 0.003, g0 = 0.477,

fracform = 'none’

mat = 3,

pri = 2,

matname = '304 SS plate‘,

do = 7.89, e0 = 0.0, clean_df = 0.2, pmin= -.06,
eosform = ‘'us/up’',

eoscon 0.4569, 1.49, 0.0, 2.17,

strform = ‘'ep’

y0 = 0.010, g0 = 0.77,

fracform = 'none’',




Smats

mat = 4,

pri = 3,

matname = 'PBX-9501',

A0 = *Fx*, e0 = **** pmin = ****, detvel = *¥**,
clean_df = 0.0,

eosform = 'jwl’,

eoscon = ****, ****' ****' ****’ ****,

y0 = 0.0, ymax = 0.0, g0 = 0.0, gmax = 0.0,

burnform = ‘prog’,
strform = ‘'none’,
fracform = 'none’,
$end
Smats
mat = 5,
pri = 4,
matname = 'foam’',
d0 = 0.32, €0 = 0.0, clean_df = 0.2, pmin = -0.001,
eosform = 'foam-us/up’,
eoscon = 0.07, 1.13, 0.0, 1.70,
strform = ‘'none’,
fracform = ‘none',
Send
Sdets
time = 0.0,
xyz = 1.0, 0.0, 0.0,
Send
Soptions
dt0=0.005, dtmin=1.0d4-5, dtmax=0.25,
id_g=1, cqgl=0.2, <cg2=2.0,
cutace=1.04-9, cutd=1.0d-5, cutvof=1.04-5,
dtgrow=1.2,
safec=0.75, safed=0.25, safeu=0.25,
ibc = 1,1, 011, Olll
clean = .true.,
Send
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Soutputs

Send

$gen

Send
Sbhody

$end

$Sbody

Send

$body

Send

100

t=0.0, 10.0
gd_freqg=0,
gd_var ='vo
gd_mat =

short_freqg=
dump_freg=0

particles
startmode
interactive
restartdump
burntimes

mat
surf
£i1l
axis
radius
height
trans
rot =
angle

\

mat
surf
fill
axis
radius
height
trans
rot
angle

mat
surf
fill
axis
radius
height
trans
rot =
angle

i

1]

0, dt=1.00,

fm',

o,

o,

5l

1,
= .false.,
= _false.,
= .false.

4,

‘cyl?,

‘inside’,

lxl,

0.300,

1.000,

0.000, 0.000,

0.000, 0.000,

0.000, 0.000,

5,

‘eyl!',

'inside',

x,

0.600,

1.500,

0.000, 0.000,

0.000, 0.000,

0.000, 0.000,

1,

'eyl!',

'inside',

"%,

0.600,

3.000,

0.000, 0.000,

0.000, 0.000,

0.000, 0.000,

0.000,
0.000,
0.000,

0.000,
0.000,
0.000,

0.000,
0.000,
0.000,




$body

$end‘:

$body

Send

Shody

$end

mat

surf
fill
axis

radius

height

trans

rot

angle

mat
surf
fill
radius
height
axis
trans
rot

angle

mat

surf
£fill
axis

trans

rot

angle

]

i}

1]

.2,

‘eyl! , ‘eyl!
‘outside', ‘inside’
'x! , 'x',

0.600, 0.600, 0.600,
1.000, 1.000, 1.000,
5.000, 5.000,

0.000, 0.00G, 0.000,
0.000, 0.000, 0.000,
0.000, 0.000, 0.000,
0.000, 0.000, 0.000,
0.000, 0.000, 0.000,
0.000, 0.000, 0.000,
1,

'cone',

'inside’,

2.000,

2.000,

',

0.000, 0.000, 0.000,
0.000, 0.000, 0.000,
¢.000, 0.000, 0.000,
3,

‘plane', 'plane’,
‘left® , ‘'right’,

'x', 'x',

2.000, 0.000, 0.000,
0.000, 0.000, 0.000,
0.000, 0.000, 0.000,
0.000, 0.000, 0.000,
0.000, 0.000, 0.000,
0.000, 0.000, 0.000,
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B4 Input Set for the Oil-Well Perforation Problem, owp

0il Well Perforator with Water

$mesh
ncellx = 96,144, coordx =
ncelly 96, coordy
ncellz 96, 96, coordz
Send

Soptions
cutacc = 1.0e-9, cutd = 1.0e-5, cutvof = 1.0e-4, cutrecon
safec = 0.75, safed = 0.25, safeu = 0.25,
id_geom = 3,
id g=1, cql = 0.2, c¢g2 = 2.0,
ibe =1, 1, 0, 1, 1, 1,
dtgrow = 1.1, 40 = 0.02, dtmin = 0.0001, dtmax = 0.75,
clean = .true., backup = .true., fix_crossings = .false.,
$end )

Soutputs _
t = 0.0, 30.0,
long_freqg = 0,
short_freq = 0,
dump_freq = 0,
gd_freq = 0,
gd_var = 'vofm',
gd_mat 0,
user_freq = 0,
tracer_£freg = 0,

S$end

Sdets
type = 'los_point',
xyz = -2.2860, 0.0,
-0.3683, 0.0, -1.5,
time = 0.0, 0.0,
Send

$mats
matname = ‘'tubing air',
material =
priority
matbak
eosform = ‘gas’',
d0 = 1.293e-03, e0 = 1.9335e~03, pmin = 0.0,
eoscon = 1.4,
strform = 'none’,
fracform = 'none',




Smats

Send

Smats

Send

Smats

Send

Smats

Send

matname = 'liner’',

material = 2,

priority = 2,

eosform = ‘'usup’,

d0 = 8.93, d0s = 8.93, e0 = 0.0, clean_df = 0.1, pmin = -0.001,
eoscon = 0.394, 1.489, 0.0, 2.17,

strform = ‘e-p’',

y0 = 0.001, ymax = 0.001, g0 = 0.477, gmax = 0.477,
fracform = ‘'none’,

matname = ’'cyclotol’,

material = 3,

priority = 3,

eosform = 'jwl',

burnform = ‘'program',

dO = ****, eo - ****' pmin = ****, detvel = ****'
eoscon = ****l ****I ****, ****, ****’

strform = ‘'none’',

y0 = 0.0, ymax = 0.0, g0 = 0.0, gmax = 0.0,

stxrcon = 0.0,

matname = 'stainless steel’,

material = 4,

priority = 4,

eosform = ‘'usup’,

a0 = 7.896, e0 = 0.0, clean df = 0.1, pmin = -0.003,
eoscon = 0.4569, 1.49, 0.0, 2.17,

strform = 'e-p‘',

y0 = 0.010, ymax = 0.010, g0 = 0.81, gmax = 0.81,
fracform = 'none’,

matname = ‘water’,

material = 5,

priority = 5,

eosform = ‘'usup’',

d0 = 1.0, e0 = 0.0, clean_df = 0.1, pmin = 0.0,
eoscon = 0.18, 1.6, 0.0, 1.0,

strform = 'none’,

fracform = 'none’',
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matname = 'quartz strata’,
material = 7,

priority = 7,

eosform = 'usup’,

d0 = 2.204, e0 = 0.0, pmin = 0.0,
eoscon = 0.794, 1.695, 0.0, 0.9,
strform = ‘none’,

fracform = 'none’,

particles
startmode
interactive
restart_dump
burntimes

1,
= 'tabular’,

= 'rotation',
= 'x’',
= 'inside’,
.0000, -1.8070,
.1483, -1.8070,
.8725, -0.0000,
.0000, -0.0000,

0.0, 0.0, 1.5,

3*0.0,

3*0.0,

mat 1,

surf 'sphere’,
fill 'inside',
radius 3*0.16,

trans -1.7471, 0.0,
rot 3*0.0,

angle 3*0.0,




Sbhody

$end

$body

Send

Shody

Send

il

mat

surf
tab_type
axis =
fill =

rz =

o O O O o

trans =

i}

rot
angle =

2

surf
£ill
radius

"

fl

trans

rot =

angle

mat =

surf
tab_type

1

axis
fill =

YZ =

O O O O O O O O

i

trans

rot

it

angle

2,

‘tabular’,

= 'rotation’',
IXI,
'inside’,

.0000, -1.9472,
.2206, -1.9472,
.8725, -0.3734,
.8725, -0.2032,
.0000, -0.2032,

0.0, 0.0, 1.5,
3*0.0,
3*0.0,

2,

'sphere’,
'inside’,
3*0.2388,

-1.8558, 0.0, 1.5,
3*0.0,

3*%0.0,

3,

‘tabular’,

= ‘rotation’,
'xt,

‘inside’,

.0000, -2.2860,
.1981, -2.2860,
.1981, -2.1338,
.3175, -2.1336,
.5156, -2.0345,
.8725, -0.8712,
.8725, -0.3734,
.0000, -0.3734,

6.0, 0.0, 1.5,
3*0.0,
3*0.0,
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mat = 4,
surf = ‘tabular’',
tab_type = ‘'rotation’,

axis = 'x',

fill = 'inside’',

.2794, -2.6543,

.1981, .2860,

.1981, .133s,

.8725, 2032,

.8725,

.9266,

.2065,

.2065,

.1532,

.8128,

.6985,

.6985,
0.0, 0.
3*0.0,
3*0.0,

rz =

C O O P P OO O OO OO

mat =1,
surf = 'tabular’',
tab_type = ‘rotation’,
axis = 'x’',
£ill = 'inside’',
rz = 0.0000, 1.8070,
.1483, 1.8070,
.8725, 0.0000,
.0000, 0.0000,
~-2.6543, 0.0, -1.
3*0.0,
0.0, 0.0, 0.0,

mat 1,

surf 'sphere’,

fill ‘inside’',

radius 3*0.16,

trans -0.%072, 0.0, -1.5,
rot =3*0.0,

angle = 0.0, 0.0, 0.0,




$body

mat = 2,
surf = ‘tabular’,
tab_type = 'rotation',
axis = 'x',
fill = ‘'inside’',
rz = 0.0000, 1.9472,
0.2206, 1.9472,
0.8725, 0.3734,
0.8725, 0.2032,
0.0000, 0.2032,
trans = -2.6543, 0.0, -~-1.5,
rot = 3*0.0,
angle = 0.0, 0.0, 0.0,
$end
Sbody
mat = 2,
surf = 'sphere’,
£ill = 'inside’,
radius = 3*0.2388,
trans = -0.7985, 0.0, -1.5,
rot = 3*0.0,
angle = 0.0, 0.0, 0.0,
Send
Sbody
mat = 4,
surf = 'tabular',
tab_type = ‘rotation’,
axis = 'x',
fill = 'inside’,
rz = 0.2794, 2.6543,
0.1981, 2.2860,
0.1981, 2.1336,
0.8725, 0.2032,
0.8725, 0.0,
0.9266, 0.0,
1.2065, 0.2774,
1.2065, 1.1049,
1.1532, 1.5164,
0.8128, 2.1145,
0.6985, 2.1717,
0.6985, 2.6116,
trans = -2.6543, 0.0, -1.5,
rot = 3*%0.0,
angle = 0.0, 0.0, 0.0,
Send
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mat
surf
£il1l
axis
height
radius
trans

rot
angle

mat
surf
fill
axis
height
radius
trans
rot
angle

= 3*0.0,
= 3*0.0,

4,
‘eyl', 'eyl',
'outside', ‘ingide’,
'z', ‘z!',

10.0, 10.0,
3*1.54686,
-1.32715,

'sphere' ‘'sphere’
‘outside’',

3*1.99136,
0.0, -5.0,
-1.32715, ©
14.75784, ©
-17.41214, 0.
*

*

3*14.25238,

'

0
0,
0

3*0.0, 3*0.0,

0
3*0.0, 3*0.0, 0

3*0.
3*0.

._5,

‘eylt, ‘oyld
‘outside', 'inside’,
tzr, tz',

10.0, 10.0,
3*1.83261,
-1.32715, 0.0, -5.0,
2.89433, 0.0, -5.0,
3*0.0, 3*0.0
0.0, 0.0, O.
0.0, 0.0, 0.

3*6.21284,

0,
0

’

6,

‘eyl', ‘cyl?

‘outside', ‘inside’,

tzt, 'z!',

10.0, 10.0,

3*6.21284, 3*6.985,

2.89433, 0.0, -5.0,
2.89433, 0.

3*0.0, 3*0.0

0.0, 0.0, 0.0,

0.0, 0.0, O.

‘

7,

lcyll
‘outside’,
IZII

10.0,

3*6.985,
2.89433, 0.0,
3*%0.0,

0.0, 0.0, 0.0,

-5.0,

‘outside’,

3%14.25238,




Sbody
mat =1, ]
surf 'background’,
$end
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