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ELECTROMAGNETIC DECAY OF GIANT RESONANCES*

J. ft. Beene, F. E. Bertrand, M. L. Halbert, R. L. Auble, 0. C. Hens ley,
D. J. Horen, R. L. Robinson, R. 0. Sayer, and T. P. Sjoreen

Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831

We have carried out coincidence experiments to investigate the photon and
neutron emission from the giant resonance regions of aff8Pb and 9 oZr using
the ORNL Spin Spectrometer, a 72-segment Nal detector system. We have
determined the total gamma-decay probability, the ground-state gamma
branching rat*o, and the branching ratios to a number of low-lying states
as a function of excitation energy In z o ePb to ~15 MeV. Similar data were
also obtained on 9QZr. The total yield ef ground-state E2 gamma radiation
in 208pb and the comparative absence of such radiation in 9 0Zr can only
be understood if decay of compound (damped) states Is considered. Other
observations m 208Pb include the absence of a significant branch from the
giant quadrupole resonance (GQR) to the 3~ state at 2.6 MeV, a strong
branch to a 3* state at 4.97 MeV from the same region, and transitions to
various 1" states between 5-7 MeV from the E* ~ 14 MeV region (EO
resonance).

1. INTRODUCTION

The giant electric multipole resonances in heavy nuclei are simple nuclear
states embedded in a dense spectrum of more complex states, with which they
mix. The consequent damping of the giant resonances (GR) offers an excellent
test of our understanding of many-body physics in atomic nuclei. The questions
now being asked1'2 concerning the microscopic structure and the damping of
these resonances require more detailed experiments than those which have served
to build up the systematic catalog of gross properties of the resonances over
the last decade.3'5 The data required are coincidence data on the particle and
gamma decay of the resonances, which can probe aspects of the resonance struc-
ture not addressed by the existing systematics.3"5

The GR are described microscopically as a coherent superposition of one-
particle one-hole excitations relative to the ground state.3 «6»7 This coherent
state is connected — by definition — to the ground state by a strong electro-
magnetic matrix element. Observation of the corresponding electromagnetic
decay deexciting the GR is of great importance, because of its direct relation-
ship to the concept of a GR, since it offers the possibility of a determination
of the resonance strength independent of that provided by analysis of inelastic
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scattering data with reaction models. Unfortunately, the electric GR l ie above

particle emission thresholds, with the consequence that the Y decay, in heavy

nuclei, occurs for only about one in 10* decays.

The particle-hole states that make up the resonance can decay directly into

the continuum, producing a free particle and the A-l nucleus in the correspond-

ing hole state. This is considered a direct decay process, and the correspond-

ing width r t is called the escape width. Observation of the distribution of

hole states le f t behind after such decays would provide detailed information

about the microscopic structure of the resonances. Unfortunately, in a heavy

nucleus such direct particle decays are also rare and di f f icul t to Isolate from

more common processes.8*9 The resonances in a heavy nucleus typically l ie in a

region of very high level density. The simple lp-lh states of the resonance

are consequently mixed or damped into the more complex np-nh states which exist

at the same excitation energy.

This mixing or damping can be thought of as an alternative decay process for

the coherent state.1»8>9 From this point of view, the GR is excited as a pr i -

mary doorway state in the inelastic scattering process. This state decays

directly via r+ or by gamma emission, or i t "decays" into the continuum of more

complex (compound) states. These states then decay stat ist ical ly , usually by

particle emission. A width r*\ the spreading width, is associated with this

decay into the continuum. The observed width of the GR state Is thus Tj *

r+ + r+ (we can safely neglect r T ) . For heavy nuclei, r r - r+ (Refs. 8 ,9 ) . A

microscopic understanding of this damping process is the focus of current theo-

retical work on giant resonances.5 Decay studies can provide insight into this

process too, i f , as has been suggested, the most important states involved in

the mixing process are the 2p-2h states formed by coupling the lp-lh states of

the resonance to low-lying surface vibrations.2 Evidence for the importance of

such couplings should appear in the particle or gamma deccy to the low-lying

collective states.

2. EXPERIMENT

He have recently carried out experiments at the HHIRF at ORNL, designed to
study both the y decay and particle decay of the giant resonance region (~9 to
20 MeV of excitation) in 208Pb and 9 0Zr. The 208Pb experiment has been dis-
cussed elsewhere,10'12 and a reasonably detailed description of the analysis is
given in Ref. 8. Nevertheless, a brief recounting of the experiment and analy-
sis techniques will be included here.

The resonances were excited by inelastic scattering of 381-MeV 1 7 0 . Oxygen-17
was chosen as a projectile because the low neutron binding energy (4.1 MeV)
minimizes Interference from gamma rays from projectile excitation. For 9 0Zr,



four telescopes at 6 • 8.9° and AO • 1.5° were used. For 2°8Pb the inelas-
tically scattered 1 70 was detected in six cooled Si surface-barrier telescopes
arranged symmetrically around the beam at an angle 6 - 13° subtending AS * 3°
and At * 9° each and a total solid angle of 22.6 tnsr. The telescopes consisted
of two elements of thickness ~500 um and -1O0O urn, respectively. The energy
resolution was ~300 keV, and the mass resolution was sufficient to separate 1 70
from adjacent oxygen isotopes. A singles spectrum of ineiastically scattered
1 70 is shown in Fig. 1. Strong excitation of the giant resonance region, cen-
tered at ~11 MeV, is evident. Decay products were detected in 70 elements of
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Fig. 1. Spectrum of 380-MeV 1 70 scattered by 2 0 BPb. The elastic
peak has been prescaled by a factor 512. The large bump between 9
and 15 MeV results from excitation of giant resonances.

the ORNL Spin Spectrometer. The spectrometer, which has been described in
detail elsewhere,13 consists of a spherical shell of Nal 17.6-cm thick, divided
into 72 independent modules surrounding the target chamber. For the present
experiment, two modules at 0° and 180° were removed to allow the beam to enter
and leave the chamber. A photograph showing the experimental setup, including



a portion of the Spin Spectrometer, is shown in Fig. 2. The response of the
spectrometer to high-energy photons was determined by using tie l2C(p,p')12C
reaction with 24-HeV protons, which produces 4.43-, 12.71-, and IS.ll-MeV gamma
radiation. The response at lower energies was obtained from a variety of
radioactive sources.

Fig. 2. Six-telescope array In the Spin Spectrometer. The
exit hemisphere and one part of the spherical reaction chamber
were removed for the photograph. The beam enters from the right,
and the target is at the center.

Figure 3 shows some of the level- of 2 0 7Pb and 2 0 8Pb relevant to the present
experiment. The goal of the experiment is to study, as completely as possible,
the decay of states in the 9- to 16-MeV region of 2 0 8Pb. Only two decay modes
are important. Neutron emotion accounts for >99% of decays, while gamma rays
are emitted with a probability of ~10"3 to 10"1*. This report focuses on the
gamma decay. Copious information on n decay was also obtained and will be
reported elsewhere.

3. ANALYSIS

The experiment posed a number of difficulties for which the Spin Spectrome-
ter, with its very large efficiency and multiple segments, proved almost ideal.



The chief experimental problems were, first, isolating gamma decays from the
>103 times more frequent n decays in the GR region; second, distinguishing
direct gamma transitions to the ground state from multiple or cascade decays;
and, third, isolating decays which directly populated low-lying states cf inter-
est (e.g., the 3", 2.61-MeV state) by a single gamma ray from the GR region.
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Fig. 3. Selected levels in 20aPb and 2°7Pb. The configuration
labels on the 2 0 7Pb states refer to neutron hole states.

The raw data obtained from the spectrometer consisted of pulse heights from
the individual Nal elements and times of these pulses relative to the inelasti-
cally scattered 1 70 with which they were in coincidence. A number of derived
parameters were obtained which were used to address the questions raised
earlier. The total gamma-ray pulse height, H = £1^-, was constructed by sunning
all those pulses which occurred within a prompt time window. This window
(which was a function of pulse height) was narrow enough to eliminate pulses
resulting from detection of neutrons with energies less than ~5 MeV, due to
their longer flight time to the Nal. Single high-energy gamma rays are
extremely unlikely to trigger a single Nal detector. Consequently, the number
of detectors triggered is not very useful for isolating single gammas. A more
useful quantity can be constructed by considering each pulse height observed
in an element of the spectrometer as a vector quantity, fif, with direction



determined by the location of the element, from which the quantity V * |£?ii|/H
is formed. For a single high-energy gamma ray, V - 1, while for multiple gamma
rays a smaller value of V is much more likely. Other useful quantities are the
cluster sum pulse height and the cluster multiplicity. They are constructed
for each event as follows. First, the largest pulse height is found, and a
cluster sum is created by adding to it all the pulse heights in the five or six
nearest neighboring detectors. Then the next largest pulse height not yet
included in a sum is found, and a cluster sum is calculated from its nearest
neighbors (not including those already used). This process continues until all
the Nal pulses which satisfy the time gate are used. The number of clusters
found is called the cluster multiplicity. For events such as those encountered
in 2°8pb decay, in which a small number of gamma rays (usually fewer than four)
are emitted, the cluster sums are a much betttr reflection of individual garana-
ray energies than the separate Nal pulse heights.

10 Sn
E* 20BPb (MeV)

Fig. 4. Two-parameter density plot of events from 2 0 8 Pb( 1 7 0, 1 7 0 ' ) in which
one or more Nal detectors registered a delayed pulse. These should be due to
neutron decays. The abscissa is derived from the energy lost by the inelastic
1 7 0 . The ordinate is the sum of the y-ray energies seen in the Nal detectors
and is equal to the excitation energy in the residual nucleus.
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Fig. 5. Two-parameter density plot of events from 2 0 8 Pb( 1 7 0, 1 7 0 ' )
in which no Nal detector registered a delayed pulse. The axes are
the same as for Fig. 4. Events fa l l ing between the pairs of lines
are due to y-decay events: (a) a l l events; (b) events satisfying the
additional requirement V > 0.95 to select ground-state transitions.



The separation of neutron decays from purely gamma decays is i l lustrated in
Fig. 4. The horizontal axis measures excitation energy in 208Pb obtained from
the kinetic energy of the inelastically scattered 170 ions. The vertical axis
is the sum gamma-ray energy. The upper solid line in the figure is the line
which would be occupied by events for which these two quantities are equal.
Purely gamma decays were Isolated by placing a gate around this line., as in
Fig. 5a (the width of the gate in each direction reflecting instrumental
resolution). Another line is drawn 7.4 MeV (the n binding energy in 208Pb)
below this line in Fig. 4. Events in which a neutron was emitted should l ie
below this line in the figure.
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Fig. 6. Gamma-ray spectra from 2 0 8Pb for V > 0.98 (only ground-
state gamma rays).

Direct single-step transitions to the ground state were isolated by requir-

ing that the cluster multiplicity be one and the parameter V > 0.98. (This

value was arrived at experimentally using the 15.1-MeV 1 2C calibration data.)

Figure 5b shows the result of imposing this requirement. Figure 6 shows

spectra obtained by projecting the gates in Figs. 5a and 5b onto the sum



gamma-energy axis. Taking the ratio of spectra such as these produces the

ground-state branching spectrum shown in Fig. 7. The peaks in this spectrum

below the neutron binding energy are at the position of states in 2 0 8Pb known

100 n
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Fig. 7. Ratio of ground-state r-decay events to total gamma
yield as a function of 208Pb excitation energy.

to have large ground-state branches. Above the neutron binding energy, the
ground-state branching fal ls off rapidly until the vicinity of the giant quad-
rupole resonance (GQR) is reached. The large peak in the branching spectrum
between ~9 and 15 MeV nicely i l lustrates the strong localization of electro-
magnetic strength to the ground state in this region. The bump contains
contributions from both the GQR at 10.6 MeV and the giant dipole resonance
(GDR) at 13.4 MeV, which is very weakly excited in the reaction. He have not
been able to decompose the ground-state gamma spectrum into quadrupole and
dipole components as a function of energy; however, we can establish that the
region of 9.5 to 11.5 MeV consists of (70 ± 10)% quadrupole radiation. Contri-
bution of multipolarit ies, other than L = 1 and 2, to the ground-state decay is
extremely unlikely. The spectrum of ground-state gamma rays was f i t using the
resonance parameters in Table I . By dividing the ground-state gamma-ray yield
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by the singles yield of scattered particles populating the GQR, obtained from a

fit to the l 70 singles spectrum, we obtain

£*£ = (327 ± 0.45) x lO"4 (2°8pb,GQR) .

This value has been corrected for instrumental efficiency and for the fraction

of quadrupole radiation in the region obtained from fits to the photon angular

distribution.

TABLE I. Properties of states above 8 MeV in 208Pb observed in
208Pb(p,pl), from Ref. 22. The last two columns refer to the present
2O8(i7otl7Q') experiment. Expected a is the cross section expected
for 1 70 scattering based on the proton results. Observed o is the
cross section which we observe. Uncertainties of about 151 apply to
both the observed and expected cross sections.

Excitation
energy
(MeV)

8.11

8.35

8.86

9.34

10.6

12.0

13.6

13.9

L

4

3

2

2

2

4

1

0

r
(MeV)

0.4

0.4

0.4

0.4

2

2.4

4.0

2.9

EWSR
fraction

(%)

3

4

7

5

70

10

100

100

For (170

Expected
a

(mb/sr)

:i
8

5

50

17

~4j

10 J

,170')

Observed
a

(mb/sr)

13

6

13

60

18

20

A similar analysis can be applied to our 90Zr data [E*(GQR) = 14 MeV, r =

3.4 MeV]. Me find

Y&- = (6 ± 3) x 10-5 (9<>Zr,GQR) .

The Zr result suffers from very poor statistics. This will be much improved

when the analysis of a new experiment on Zr is completed. We estimate that we

have increased the amount of data available by a factor of 20-50.



11

These results for rYo c a n ^ compared to expectation based on on the energy-

weighted sum rule (EWSR). I f we consider the ground-state gamma decay to occur

d i rect ly from the GR doorway state, then i t should be considered as occurring

in competition with the damping process, characterized by r+, which we Identify

with the experimentally observed resonance widths rexp (20 MeV in 208Pb and 3.4

MeV in 9 0 Zr ) . The ground-state gamma widths for a state exhausting 100X of the

isoscalar L = 2 EWSR is 1 . 1 " 1 - 1 6

ry0(EWSR) = 8.07 x 10-7 EyQ B(E2+)EWSR ™ I

B(E2+>EWSR = 5B(E2+)EWSR =—t

Using these expressions we f ind for the direct ground-state, branch

r l ° ( 0 ) 1 = 8.62 x 10-5 (208Pb) .
r J100* EWSR

. = 4.6 x 10-5 (90Z r ) .
JlOOX EWSR

Taken at face value, this implies the rYo strength in 208Pb corresponds to 379%

of the EWSR and that in 90Zr to ~130%! Apparently, we should look either for

some process associated with the reaction mecharrsm which might enhance the

ground-state decay, or some process other than the direct process which might

contribute to i t . The simplest explanation is decay of the compound states

into which the GQR is damped. We can estimate this effect:

EGQR

where <rYo> is the average ground-state branch of the individual compound

states and <rn> is the corresponding average neutron width . 1 7

<rYo(EY)> = p(J = 2 , EGQR)

where fE2(Ey) i s t n e ^ 2 gamma strength function and p is the density of s tates.

Similar expressions can be given for the averge neutron wid th , 1 8

<rn> =

I (I (13-i-U sin /E7x 103

p(J = 2, EGQR)

where the sum is over f inal states (spin I) in the A - 1 nucleus, vA is the
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penetrability factor , 1 8 ! 1 9 En is the neutron kinetic energy (MaV), and Sx is

the neutron strength function18"20 for orbital angular momentum X,

- 1.3 x lO"4 (208Pb) ;

- 7 x 10"6 (9°Zr) .

Since both the CN and direct calculations assumed 100% of EWSR, our data, i f we

allow ~50% uncertainty in the CN estimate, implies
208Pb E2 yO strength ~ (145 ± 50)% EWSR,

and
9 0Zr E2 T0 strength ~ (113 ± 60)% EWSR.

Note that in earl ier reports,10>12 due to an error in our expression for the

direct r r 0 sum rule of a factor of (A/I)2, we quoted values of -85% of the EWSR

for the EWSR foe the direct component alone in 2 0 8Pb.

I t is also of great interest to see i f gamma-decay branches other than the
ground-state decay can be Identif ied. In particular, direct decays to the low-
lying collective states, the 3" state at 2.61 MeV and the 2+ state at 4.085 are
of interest , . Figure 8 shows the relative strength of gamma-ray branches to a

number of low-lying states. Figure 8a Is for ground-state transitions, and

Figs. 8b and 8c are for direct decays to the 3", 2.61 and 2+ , 4.08 states,

respectively. Multistep cascades are ruled out in these cases by requiring

that the cluster multiplicity discussed earl ier be precisely two. Figure 8d is

the relative strengths for decays populating the 4.97-MeV, 3* state. The yield

distributions in Fig. 8, other than the ground-state y ie ld , must be considered

semiquantitative, especially where they indicate very small strengths, since

adequate background subtraction has not been done. Nevertheless, they are

valuable to indicate general features. A few of the more striking aspects in -

clude the marked absence of strength to the 2.61 and 4.08 MeV states across the

resonance region. Another interesting feature is the strong yield of decays to

the 2.61-MeV state at ~5.2 MeV of excitation energy. This might be an indica-

tion of the long sought two-phonon octupole vibrational states. A strong yield

of decays to the 3- state at 4.97 MeV (thought to be a noncollective state

dominated by a single lp-lh configuration) is seen to appear at - 9 MeV and

remains significant across the GQR region. This is in market' contrast to the

absence of decays to the lower lying collective 3* state. A very similar,

though weaker, strength distribution to that shown in Fig. 8d is seen for

decays to a 5" state at 3.9 MeV. This indicates the existence of high-spin

strength underlying the GQR. A more quantitative treatment of decay branches

from the GQR region ( i . e . , a bin from 9.5 to 11.5 MeV) is shown in Table I I .
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Fig. 8. Relative gamma-decay strengths for transitions to a
number of low-lying levels in 207Pb: (a) for ground-state
decays; (b) for transitions to the 2.61-MeV, 3" state; (c) the
1.08-MeV, 2+ state; (d) the 4.97-MeV, 3* state.
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It should be noted that the absence of decay to the 2.6-MeV, 3" state, which

appears remarkable at first sight, agrees with a recent calculation by

Bortignon, Broglia, and Bertsch.21

TABLE II. Relative gamma branching to low-
lying states in 2°8Pb from an excitation energy
region 9.5-11.5 HeV [E(GQR) ± r(GQR)/2]. The 5-7
MeV, 1" states refers to a group of 1" states in
that region known from {y,y') experiments.

Energy

0

2.61

3.97

4.08

4.97

5-7

J*

0+

3-

5-

2+

3"

1-

Relative gamma
branch {%)

20 t 2

0.6 ± 0.8

-5-10

0 3+1*°U>J-0.3

36 ± 5

23 ± 9

4. DISCUSSION

The strength of the ground-state E2 gamma branch from the GQR of both 2 0 8Pb

and 90Zr seems to be accounted for reasonably well if effects of compound decay

are included. Quantitative conclusions are hampered by the limitations of our

crude estimate of the compound-state <Tn>, but this estimate seems at least to

offer an explanation of the much greater importance of compound decays in 208Pb

than in 90Zr. However, some inconsistencies remain. The absence of a direct

El branch from the GQR to the 2.61-MeV, 3" state in 2 0 8Pb is well accounted for

by the calculations of Ref. 21; however, we must also consider the compound

decay, and in a strongly statistical decay this branch should be about 1.4

times larger than the E2 ground-state branch. The compound decay to this state

is apparently also greatly suppressed.
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