
_IIP i .

ORNL/TM-12070
CESAR-92/09

OAK RIDGIE.
NATIIONAL
LABORATORY

Time Optimal Trajectories for
Mobiile,Robots with Two

Independently Driven Wheels

David B. Reister

,_ Frangois G. Pin

M_NA6L_9Y
M_H_N!M_,RIE-_kENERGYSYSTEMS,,INC. ,,..............

.,

Ii! ,g,i THEUNITEDSTA'TES ........... _ ,..:_,.,.,.:i'_:.!-is (-J.;'.,;,--!.;,,,.'!i,i;.:..,:"

DEP,'AR_MEHTI;GFENERGY



I
This re@orr has been_reproduced directly from the: best available copy

Available tO DOE sndl DOE contractors f_'om the OffiCe of SCf_fic _nd Techni-

cali Information, P.O, B_x 62, OaR Ridge, TN 3783'_ prices available from (61'5)

57@;8401,, FTS 828'840'1,

Available to the public from the Netionel Technical: Information Service, U,S,
Det_rtment of Commerce, 5286 Port Royat Rd., Springfield, VA 22161.

This report wee preparsd as an ._ccount of work sponsored by an agency of
the IJnited States Government. Neither the United' States Government nor any

agency thereof, nor any of their employ_s, makes any warranty, express of

implied', or assumes any legal liability, or resprmsibillty for the accuracy, com,
plet|mes_% or usefulness of any information, apparatus, product, or process dis-

closed,, or reprgsents that its use would, not infringe prtwtely owned rights.

Refer.once herein to any specific commercial product, prr_,e_, or _fvice by

trade, name, t,,_demark, manufacturer, or otherwise, does not necessarily c_n_ti_

tute or imply its endorsernent, recommendation, or favoring by the United _tate_

Government or any agency thereof. 'Tile views and opinion_ of authors

expressed herein d_ not nec,essarlly state or reflect thorpe of the United States
Government or any agency thKJreof.

Ii.
i



ORN%/TM- -1207 0

DE92 010002

Er_gineer'mg: Physiics and, Mathematics Di,vision

TIME OPTIMAL TRAJECTORIES
FOR MOBILE ROBOTS WITH TWO

INDEPENDENTLY DR_EN WHEELS
q

David B. Reister and Franqois G. Pin

DATE PUBLISHED- March 1992

Research sponsored by the
Engineering Research Program
Office of Basic Energy Sciences

U.S. Department of Energy

Prepared by the
OAK RIDGE NATIONAL, LABORATORY

Oak Ridge, Tennessee 37831
. managed by

MARTIN MARIETTA ENERGY SYSTEMS, INC.
for the:

. U.S. DEPARTMENT OF ENERGY
under contract D'E-AC05-84OR21400

MASIE8
/J



...... CONTENTS'

ABSTRACT . ................ vii

1. INTRODUCTION ............ 1m,

2. KINEMATIC: EQUATIONS OF MOTION FOR THE PLATFORM . . 3

3. THE GE NE_L FORM OF THE OPTIMAL CONTROLS . . . . 5

4. PARAMETERIZATION OF THE BANG-BANG TRAJECTORIES . . 11

4.1 ANALYTICAL RELATIONSttIP BETWEEN THE SEGMENTS AND
THE FINAL ORIENTATION ............ I3

4.2 CALCULATION OF THE DUAL VARIABLES .... . . 14

5. BANG-BANG TRAJECTORIES . .......... 17

5.1 TRAJECTORIES TO A POINT ........ 17

5.2: TRAJECTORIES: TO A CONFIGURATION ..... 20

6. OPTIMAL TRAJECTORIES . ........ 27

7. USE OF THE METHOD FOR ROBOT TRAJECTORY PLANNING . 35

8. CONCLUSIONS ........... 37

REFERENCES ............ 39



+,

LIST OF FIGURES
',', tj'l:

,,' ..

1 The confi_ration of the platform is defined by the position (z, y) and
orientation (¢): ....... ........ 4

2 Points that can be reached by trajectories with three switch times for a

constant value ofT = _ sec .... ....... 18

3 Curves showir_g the location of the furthest+ points in the first quadrant
that can be reached by trajectories with tha',ee switch times for several
values of T (T 2 = 2, 4,6,8, and 10) .......... I9

4 Curve showing the ratio of r m and T. The sets (rr", T) define the
intersection oi' the fiirst arcs with the y axis ....... 19

5 Caa'tesian paths of the robot for three-switch-time trajectories ending
on the first arc defined by T '2 = 10 . . +....... 20

6 Points that can be reached by trajectories with four switch times for a
constant value of T(T "2= 10) when the final orientation is 0.8 radians 21

7 Points that can be reached by trajectories with fG_trswitch times for a
constant value of T(T 2 = 10) when the final orientation is 1.57 radians 22

8 Points that can be reached by trajectories with four switch times for a
constant value of T(T 2- 10) when the final orientatior_ is 3.14 radi,-ms 22

9 Curves showing the location of the furthest points that can be reached
by trajectories with four switch times for several values of
T(T 2 = 2, 4, 6, 8, and 10) when the final orientation is 0.8 radians 24

10 Curves showing the location of points that can be reached by
trajectories with four switch times for several values of T(T 2 = 4, 6, 8,
and 10) when the final orientation is 3.14 rachans . . . 25

11 Cartesian trajectories for paths with four switch times for a constant
value of T(T _ = 10) when the final orientation is 0.8 radians . 25

12 Cartesian trajectories for paths with four switch times for a constant
value ofT(T _ = I0)when the final orientation is 3.14 radians . 26

iv

i

.... s,, q,rt. I_ '@ nnnln," n_,r_n _'p_i'"' ,,,llqlllPn,e_ ,, '_,,,'T,' 'm_", "i,_ P'I" "t ...... ' .... _ ' ',,_' ,, ,,v' "lplIP'" pp' il_ ,', 'if," rll,, _,_Ir'ITtt' ,,,i_ ,,,...... _Ir,,," _l,r,.... 'rl,ll'In_ " P...... '_ ,_, ,i l rlp ,,, i,r ....... ,, ,,,' le','.,,p ,_r..... ',g _tI 'rhr'?P'lli'q'"11, _I ,,' li'r_i"



Fig. Page

13 Dual variables for a three-switch-time trajectory leading to the point
(0.66, 4.03) ............... 28

_, r

14 Dual variable_ for a four-switch-time trajectory leading to the
configuration (0.20, 3.43, 0.80) .......... 29

15 Comparison of four-switch time trajectories of Type 22 and
three-switch-time trajectories ......... 30

16 Comparison of four-switch-time trajectories of Type 13 and
three-switch-liime trajectories ......... 31

t ,

17 Comparison of,five-switch-time trajectories of Type 23+- and
four,,sWitch-time trajectories of Type 22+- . . . . 32

i8 Comparison o,f five-swil:ch-time trajectories of Type 23+- and
four-switch-time trajectories of Type 13+- . .... 32

19 Comparison of five-switch-time trajectories of Type 23++ and
four-switch-time trajectories of Type 13++ o . . 33

20 Comparison of five-switch-time trajectories of Type 14+- and
. four-switch-time trajectories of Type 13 ......... 33

21 Comparison of five-switch-time trajectories of Type 14++ and
r. four-switch-time trajectories of Type 13 . . . 34

v

I
rl _lrl ,,l, iii "'F" ..... P_' '1'I' "rim ,I,[ ,r,rrll ,, m ...... tri .... llrql ,,, m_lr'ur nl'rl',,llH'_l,"mlM_' r, ...... FmlJr' iiq,_rl,i, r_l,i, ,rl_l,l, ,,TllllII,, r,lql Ts,I, _ln' ,,,,i '1'$ " Imll "' _JJlI,'rm'IIIIIIJlF........ Iq"', ........ iii,, "rl .... ,1 .... lll_ I,.......... NIHI



ABSTRACT

l

Thispaperaddressestheproblemoftime-optimalmotionsforamobileplatform
ina planarenvironment.The platformhas two non-steerableindependentlydriven

" wheels. The overall mission of the robot is expressed in terms of a sequence of
via points at which the platform must be at rest in a given configuration (position
and orientation). The objective is to plan time-optimal trajectories between these
configurations assuming an unobstructed environment.

Using Pontryagin's maximum principle (PMP), we formally demonstrate that all
time optimal motions of the platform for this problem occur for bang-bang controls
on the wheels (at each instant, the acceleration on each wheel is either at its upper
or lower limit). The PMP, however, only provides necessary conditions for time
optimality. To find the time optimal robot trajectories, we first parameterize the
bang-bang trajectories using the switch times on the wheels (the times at which the
wheel accelerations change sign). With this parameterization, we can fully search
the robot trajectory space and find the switch times that will produce particular
paths to a desired final configuration of the platform. We show numerically that
robot trajectories with three switch times (two on one wheel, one on the other)
can reach any position, while trajectories with four switch times can reach any
configuration. By numerical comparison with other trajectories involving similar
or greater numbers of switch times, we then identify the sets of time-optimal
trajectories. These axe uniquely defined using ranges of the parameters, and consist
of subsets of trajectories with three switch times for the problem when the final
orientation of the robot is not specified, and four switch times when a full final
configuration is specified. We conclude with a description of the use of the method
for trajectory planning for one of our robots, and discuss some comparisons of

" sample time-optimal paths with minimum-length paths.

vii



1. INTRODUCTION

A variety of platform designs have been implemented for mobile robots. These
" can be classified in three major categories: I. omnidirectional platforms, that utilize

steerable wheels [e.g., see robots in Brooks (1990), Arkin (1990), or Koren and
Borenstein (1991)], roller-equipped wheels [e.g., see Blaisdell (1991)] or orthogonal
wheel assemblies [e.g., see Killough and Pin (1990)]; 2. car-like platforms that
incorporate controlled steerable wheels on one axle and non-steerable wheels on
another axle [e.g., see Vasseur, Pin, and Taylor (1991)]; and 3. skid-steer platforms
that include two non-steerable independently driven wheels [e.g., see Giralt, Chatila,
and Vaisset (1984), Kanayama and Haxtman (1989), or Weisbin et al. (1989)].
This paper is concerned with skid-steer platforms. A typicalmission for a mobile
robot can be described by a sequence of via points at which the robot comes to
rest in a given configuration (position and orientation) to perform a given task
(manipulation, sensing, etc.). The problem consideJmd in this paper is that of
finding time-optimal motions of the robot in Cartesian space and the corresponding
control trajectories that will move the robot from an initial configuration to a final
configuration in an unobstructed environment.

The proposed approach to find the control trajectories that lead to time-optimal
motions of the platform involves utilization of Pontryagin's maximum principle
[Pont_agin et al. (1986)]. A variety of authors [Kahn and Roth (1971), Niv and
Auslander (1984), Kim and Shin (1985), Weinreb and Bryson (1985), Nakamura
and nanafusa (1987), Bobrow (1988), Yamamoto and Mohr_ (1989)] have applied

. the maximum principle to the optimal motion planning of serial-rink manipulators.
For the time optimal motion of a manipulator with bounded control torques, the
controls occur finearly in the Hamiltonian and the optimal values of the controls are
determined by the dual variables. When its dual var_iable is not zero, the optimal
control is bang-bang (the optimal control is at its upper limit for a positive dual
variable and at its lower limit for a negative dual variable). When its dual variable
is zero for a finite interval, the optimal control is singalar and will be in the region
between the bounds. An important issue is to determine when the optimal solution
is bang-bang and when it is singular. A variety of authors [Ailon and Langholtz
(1985), Wen (1986), Willigenburg (1990), and Chen and Desrochers (1990)] have
addressed this issue and proven that there cannot be a finite time interval when the
optimal control for a manipulator is singu'lar for all _he control torques. In other
words, at least one of the controls is always bang-baaag. I"51rther work by Geering,
et al. (1986) led to the determinatic.1 of the parameter values for singular solutions
for three types of manipulators: cylindrical, spher;_.al, and two link planar. It has
been demonstrated [Osipov aad Formal'skii (1990), Fornml'skii and Osipov (1990)]
that the singallar solution for the cylindrical case is not optimal. As discussed in the
next section, the kinematics of a two-wheeled robot differ significantly from that of
a serial-rink manipulator and, to our knowledge, the t'.ime optimal trajectories for a
two-wheeled robot have never been found.

1



2 ,INTRODUCTION

In the following sections, we present the equations of motion for a skid-steer
type of platform moving on a flat, horizontal plane. We then use the maximum
principle to derive the conditions for time-optimal motions of _the platform and
demoristrate that the optimal controls axe always ba_.g-ba_g. Using this result, we
show that, for a system ,adth bounded wheel accelerations, control trajectories with
three switch times (times at wifich one of the wheel's acceleration changes sign)
allow the robot to reach any point in Cartesian space while with four switch times,
the robot can reach any configuratior,. We then show numerically that these paths
axe time-optimM.



+

2. KINEMATIC EQUATIONS OF
MOTION FOR THE PLATFORM

+,

A skid-steer type of platform must satisfy nonholonomic constraints and cannot
" follow an arbitrary path through configuration space, In this section, we develop

a kinematic model of the platform, assunfing that the wheels do not slip and that
the wheel accelerations can instantaneously switch from their upper limit to their
lower _limit. +The configuration of the platform is described by three+ coordinates'
the Cartesian coordinates, x and y, of the midpoint of the wheel axle with respect
to an absolute reference frame, and the orientation, ¢, of the platform main axis
with respect to the reference frame x axis (see Fig. 1). The joint variables are
the wheels' translational displacements, denoted by 9R and 0t,, (representing the
angular rotation times the radius of the right and left wheels), and are measured
in meters. The wheel velocities axe denoted by wR and WL and are measured in
meters per second. The control variables are the right and lef_ wheel's translational
accelerations (UR and UL). The kinematic model links the Cartesian variables to
the control variables through the wheel velocities:

¢= (w:,--wn)/D (1)

:_= (wR + WL) cos(C)/2 (2)

_1- (WR + WL)Sin(¢)/2 (3)

=uR (4)

_L --UL (5)

#R (6)

_L ----'talL (7)

where D is the distance between the centers of the wheels.

Given a trajectory for the control variables, Eqs. (1) through (7) can be
integrated to determine the Cartesian variables and the joint variables. Contrary'
to what is typically the case for serial link manipulators, tlle time sequence of the
controls is necessary to determine _he final position of a two-wheeled platform. For
example, if both Wheels rotate together and move a meter, the platform will move
straight forward a meter, while if the right wheel moves a meter first and then the
left wheel i::oves a meter, the platform will move to the left to a point less than a
meter away. Although the final values of the joint _'ariables and the final platform
orientation are the same for the two maneuvers, the final values i'or the platform
position are not the same.

3



,4 KINEMATIC EQUATIONS OF MOTION EOR THE PLATFORM
s

Fig. 1. The configuration of the platform is defined by the position (z,l/) and
orientation (¢).
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3. THE GENERAL FORM OF
THE OPTIMAL CONTROLS.

Since its discovery in 1956, the Poatryagin maximum principle
[Pontryagin (1986)] has been used to solve a wide variety of optimization problems.
In this section we utilize the maximum principle to derive the conditions for time

optimality of the platform motion between the initial and final configurations. For
our problem, we can define five state variables', xi = x, x2 = y, x3 = ¢,x4 = _'Jn,
and a5 = WL and rewrite the equations of motion (1) to (5) as:

'T1 _--" fl('T, u) "-- (X4 "+" X5)COSX3/2 (8)

3C2 --_ f2(x, lZ) "-" (X 4 + xs)sinxa/2 (9)

x3 -" f3( x, u)= (x 4 --xs)/D (10)

_4 = f4(x, v) -ul (11)

= ,,)= (12)
. where the two control variables are: ul = uR and u2 = UL.

In vector notation, the equations of motion for the state vector x are:

._=f(x,u) , (13)

and the optimization problem is to find a control vector [u] that will move the
system from the initial state x ° to the final state x I while minimizing ma objective
functional. For our case, the goal is to minimize the transition time, assuming that
the wheel accelerations are bounded: lull < amax and Iu2! <_amex.

Pontryagin i_troduces a system of dual variables [¢] that satisfy:

Ofi(x,u)¢j, i = 1,2,...,n , (14)¢_ = - Oxi
j=l

with initial conditions:

¢_(t0)=Ai i=l,2,...,n , (15)

. where, in our problem, n = 5.
If we choose an admissible control and have the solution of Eq. (13), Eqs. (14)

axe ._inear and homogeneous and have a uniquc solution for given initial conditions.
If the equations of motion and the dual variables axe combined into a single
Harnilto,dan H:

,5
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6_ T"_B: G'E/.N,E:I_'At_LFO_'M O!F T_E' O!PTI'MAL CO'_N,T1_0'_,5'' ' , '

ff_

riken, the P'M)P st_es _tk,ad_[IseeTh_rem 2 i_, Pontry_gin, (:.l,'986;))],i{u, is,a_, ad,missi_le "
centreli t_h,a_t_,m,sNrs, '_he'ph,a_, poi_ from, the' i;niiti;a$static, x'(f,'o,))=: x °' go, t_he'go_i
s._atJe'x I_= x(,fr } _ some' time tl,, tl_en,u,(,i_:)}amad:the tra_jeegery x(f))a_e _i,me,-optimMi

g% ('1_4_)),and; such, th,a_ ,_(_))m_a_i_iizes. the ft,ro,orion, H for _1)1__, f0, <__ <7t_,.
Fbr e,_.r motb_te, pl_adfferm,probl'em defi:,nedl by' Eqs. (8:)) th_'ou_gh, (]]2)), the.

N&mil',to_i::_,_f_'_egiOr_,.N is::

_,:(¢,,,x; u,)!= e_,f_ 5"ea,A q+CJ,A,+ Ca,u'_,+ e_,u<a, (_7))

wl_ere:,f_tkefimctie_s fi(z,:u,)i are defi,aedl By Eels. (8))t_o (]J2)). The. eq_,a_i_s, for the
d:_a_l,waz,faJSti_sare::

¢_= o , (_9,),

= + < (20,)

, "#,_,= - g'(z_,),- '¢',ID (2.1i)

g("ca);= dg(Za}dza- (¢i (:osxa . ¢_.sinza }/2 (2_)'

The pt_tform moves, from an arbi.trary ini,tial configu,ration to an, arM41r_y ft;nal!
con_fi'gur_ion. We ca_, choose t.he coordinate system su¢'_ tibet the. i,ni,tiMposi_tion, is
(O,O,)::,ar_di the i,ni,tiai!orientation is ¢= 0.. 'The boundary condii{iozas correspo_d:i_g
to. (;he robot bei.ng at rest at the i,ni,tial,s_a_e x°= X(_o,) and_ fi_al state z* = X(fr)>,
are'

• = (o,,o,,o,o,o,),

I,., ' ,I ......Illlr _ )iii . i. I ...... ,1,.... #1,,_11.... i., .... fill .... ,'1.... i '1,' q'l ' ,_,' '., II"r_'',_ ....... _1rll,,' ,', ...... II_r.... u','_$", ..... I_ Iraqi'rqllllll" " .... II ' )'_ .' '"", ,Ul,,,_,,_, ,i,, ' _:",_rll,I,,, " '_' '_1'



THE: GENE:R'AL, FO_RM O_F T'gB OPTIMA,£ CONTR:O'£E' 7

_en, _he, fm,al', s_te _s_fu,_y spe¢i_ed _posii_iion,and; oriente_ion, are gi_ven),
tl_e _m,M,values of the dl_,alivaxiiables are aazbi,t,rary. When, _he fin,M, sta_e i:s not

deters, rees _he fi_i_al_vaJues of f,he. d:u,_fu,lfl7 speei_edt,, the t,ra_sversalLiitiyeon,dli;tion, ' ' '
va_ii_bl'es _see Theorem, 3; i,n,Pont,ryag;m, {'.I_986))]!.Fo_ example,, when _he' ft,n,all s_a_e

" iis;_ posi',_ion,_aa_ _he fin,Mtori:en_at,ion, is not, speci;fiedt);, t,I_efiin,ali va_.'ueof_he _h.irdl
d_alI vaxi;a,bl'e (_/*a')m_s_ ge zeta,.

Tlke op_i;m,aI' va_es' for _iie con,_ro__i_ab'._s: tur _d, u_2:)!axe _hose. rh,at, m.aximize _
the t_ami_li_on,i;an,. From Eq., _7)!,, i_ is clear t,h_a_when, t,he d,u,all var.i_bles _a_an6 _i_
axe. ao_ zero,_ the, op_imali con_mll is bang,bang; when _b_is. posi,t,i_ve,,u'z,= am._xand;
when, ¢_, is: neg_ti,ve; u r = -a'm,_x, _ndt sim i_l_ for ¢_ an,6 u'2:. If _/iaor _*_is zero
for _ fm_e, _i,me, interval t,he opgimall con_roli becomes: si;n,g_,liar. In, _he rem,a_in,k0_g
of, _s, section, we wi,_ prove: _k_ M_II possi,bl*eop_ima_ ,_oha_t,ion_sof _he system axe
ban,g.Nm, g,

Theorem

A_i op'_i,ma_,con_roli sol;_t,_onsfor the syst,em d'efi_ed by _qs. (8;)!_hroug_ (_2)i,

Proof

Y_om Eq. (_7):, we know tk_ when t,he d_uM_v_ii_bl_.s ¢_ and ¢,_ axe no:_ zero,
. _he opt,i.m,all control is bang-bang; and when ¢_ or ¢_ is zero for _ fini._e inte_'va_,

_he op_i:mal control is: si_r_g_lia_..TO.prove t,he t,he_rem, we wi,l_linvestigate alil _he
si,ngu_l!arsol, riots, and show t,k_t, _hey a_:e ei,t,her impossi,b:M or ban,g-bang.

_en t,he optimM con_t,roIis si.n,g_J_, Ca (or ¢_) is zero for _. q;nii_ei.n.terva_,.If'
Ca is zero: for _ fi.ni;t,et,ime i;nterval_ _t,2,.t_.]i,_al.I of i't,s:deriv_t,ives are al!so zero, on _he
i'_n_ervMa_d iEq. (_2_):yiel'dS:

Ca = -ng'(za) (27)

The _ime deriwt,ive of Eq. (27)implies:

/ t

where we laave used the fact, _ha_ _a2
d,a_a --" --g"

Si,nee _he ri_ght sides of Eqs. (20,)and (28,):m,_s_;'be eq_M, we have:

g(, 3)z,_ = O (29_),

Bo_h g(xa))and_ z5 are conti_uo_s functions. If there i,s a poi,n¢,in _t'2,t3]iwhere x,_
" is not equal, t_ozero, then _here is: a fini:_e interval where z_ is: not, eq_M to zero and

on this: s_bi,n_erva_ g(za)is zero. Simi_l_arty,i_ there: is _ point i,n _t_2,ta]i where g(za),

,I_" g_l' rll" , llq_,i,, ,rl ,,, ,_ ,,,, 1,l,r ' ,=ill rl_,, ,n_ " IW_II r_,," ........ r ,,,)l_]rli,l, , ,_l-,,_llr, ,_,ii_i,, ,ill,,, l[,l_HTl,,,lurliilllil_lli_r_ilii,,,ll' rH,l,lll_r_,ll' ,Ii ',il



GENE,_AL FORM OF' T_E' O'PTIMAL. CONTRO!LS

i.s;no,_. e@u'alt _o. zero,,. _:hen. there is _ s_,bm_ervali w_ere x5 iis zero. Thus_,, we w_II1
cogs_,i_ert.wo gene_'al!cases::

C_se,2. z:_= Oi I31)

To._si,rapidity _he notation,, we wi,]_l!coati'hue to iabel_ ihe s_bi_erval_s of _t'2,t ali where
Eq :.{30,>o.r  ,id,

Case 1 can be su,bdi,vi'd'ed _,o fo'_r m_,bcases::

C_e 1.2. ¢_ = 0 ¢_, # 0. (33:)

'¢1= ¢::=0 (35)

For _he fii'.s_ _ha'ee s_bcases, x:a is: _ cons_ar_t, on, _he i,ri_erv_,_ _t_, t_]!::

Case1.1. _a,az3 = '¢_/¢_,

C a._e 1.2. cos z_ = 0

Case 1.3. sin za = 0

Consider Cases 1.1,1.2:_ and: :1_.3

a co_stan_ arid. z:3 = 0 on the fmii_e in_erva/ It:,_,t3]i. Th_s:,. f,hese cases correspond

to _he rol5o_ moving ion.g a s_rai,ght 5ne over a fin,i,_e i:nterve,1 of _ilme, (_he ang1'e

¢ = za given by Eqs. (32>, (33),, or (3_)')and Eq. (10)req_dres _ha_ z4 = z_,
i.e., tha£ the control's on, bo_h wheels be equ_t_, ul. = z4 = :/:5 = u2,over the i,nterva/

is also a cons_amt (¢x, ¢2, aad za are constants: ix_ Eq. (24))_, Cs is constar_t: (from
Eq. (22)>.

If, _,_ is a no_._-zero, cons_a,nt, _hen ¢,_,varies: Ii,nearIy, aad the op_i.mal con._rok 'u._,
and u_ aze equal; and ba_g-b_ over £he i_£erval _t2,_3]i. If _'5 iszero, £hen Eq. (22)

yields _ = Dg'(z3). w_:c2_, w_:th Eq. (2.7), :{mpHes ¢,_ = g'(z_), = 0. If bo_h g = 0
and g'= 0, _hen ¢i: = ¢2, = 0. This _o_es _he ass_p_ions i,n Eqs. (32)!,. (33), or



THE' GENERAL FGRM OF THE OPTIMAL CONTRO:L_: 9'

I.I, 1.2,),m,d 1.3, the ordy admissi,bl_e comrolls: are bang-bad, g,

Consider Case 1.4

If ¢_ - _,_ = O over the imerval _t2,ta]i, they are _so zero over the entire

trajectory (from Eqs:. (1,'8)iand (I9)i). Thus g= g' = 0 sad (b,_= 0 (from Eq. (20}) _
over t_he en,tj;re trajectory. F_rthermom, si;nee _ia is a consta_ and, ¢3 = 0 (from
Eq. (27)_} on the i,r_ter_ _,;2,t3]i,¢3 0 over the entire trajectory. Consequently,
¢5 = 0 from, Eq. (22)', req_iri:r_g the dual vari;ab{e ¢_ to be constant over the entire
tradectory. This: is not an admissibJ:e case for our problem si,nce the correspondi,_g
ex_remal: comro_s: u2 wouM, _of c_ge s_gn over the enti,re t_raj.ec_ory, Ieadir_g to a
1,_nearly i:ncreasing or decreaai,_g wheel velociity and makilng E!q. (26")!impossiib[e Go
satisfy. Thus case 1.(! does; not read to a_isai, ble control:s; for our problem.

Consider _Case 2:

If z:_- 0 overs finite tilme i:r_ter,ral lt2, t3]i, then the control u: = k._= 0 over the
in_iervM, and consequently its, du_ variable ¢5 and its derivative _/:_mus_ be zero
over the enti:re finite i_nter_. Since ¢_ = _k, = 0, Eqs. (2.I} and (22) require '_a = 0
and t __ __g (z_), 0 over the enti,re intervM, and consequently _'a 0. Equation (20)'
thus requires: either that z_ = z_ = 0, which is an inadmissible case (since, from
Eqs. (8:)__hrough {12}, no mo_ion of the robot wo_d take plac_ over a finite time
int',er_ dnri,ng the trajectory,, which consequently can not be time optimal), or that
g(z:) = 0 over the finite *dme interval. If both g and g' are zero over the finite time
i,nterv_, then _ = ¢2 = 0. Since '_bland ¢2 are constant over the entire trajectory
(from Eqs. (18)' and (I9)), they must be zero over the entire tra_jectory and Eq. (23),
(24), and (20)lead to 9 = g' = _ = 0 over _he entire trajectory. Consequently,

since ¢_ - 0 over the finite time inter_ and ¢_ = 0 over the entire trajectory,
¢3 = 0 and Ca = ¢_ = 0 (from Eqs. (21)and (22))over the entire trajectory.
Therefore, since _ = 0 aa_d ¢_ = 0 over the fini:_e intervM, they also are zero on
the entire _rajectory. 'Thus this case is not admissible since _ dual variables '_ii are
zero over the entire trajectory.

Since _he equations for ¢_ and _b,_hax',e f.he same structure, similar arguments
demonstval_e that sir_g_ar solutions corresponding to _he dual variabte ¢_ being
zero over a finite time intervM lead to optimal controts that are bang-bang, or are
inadmissible.

If ¢_ = ¢_ = 0 over a finite interval Itr, ta]i, then '_'_ = _,_ = 0 over the inters'ai
, and Eqs. (21): and (22)requi,re that g'(za)= ¢3 = 0 over the interval. Since _1

and ¢_ are constant,, g_(z3) = 0 impfies that, z3 is constant over the entire inter_.
Thus kz = 0 and, from Eq. (10}, x_ = z_ over the entire intervM. On the o_her

" hand,. Ca = 0 over the entire interval implies _,_ = 0, and Eq.. (20) requires either
x4 = -z,_ which, with the concIusion of the previous sentence, Iea.ds to z4 = z,_ = 0
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(il.e.,__he robot does not move dt_ring the enti;re i_terva/)., whilch iisnot an admissible
solutior_;: or 9{z_)> = 0', w,hi:chhas been. ttreated as Case I above and, shown to lead
to bang-bang or i;r_admissibie controls. Thus:, _11 optimal co_troI solu_i;ons far _he
system defined by Eqs. {8.)_hr0_gh (12), (25}, and (2'6)are bar_g-baag.

A simi,l_arresult w_s recently outlined; by Jacobs, Laumoad! a_d Rege (199I),
however, wit_hout consiideration gilven to cases 1.2', 1.3, I.,_, and _'4 = ¢._ = 0 in the
demons_rati:on.



4. PARAMETERIZATION OF THE
BANG-BANG TRAJECTORIES

, The Pont.ryagin maximum pri;nciple converts the problem of time-optimal path
planning from a problem i_nvolvi,ngtrajectories in state space and time to a s:tatic
opf..imizafion problem in parameter space. Two sets of parameters are available:
the initiial conditions *forthe dual variables [Ak}and the switch times. Using either
set of parameters, nonlinear searce techniques can be used to determine bang-bang
control trajectories that move t'he robot from the initial state to the final state. In
the remainder of this paper., we will use the switch, times to parameterize the control
trajectories and the corresponding robots paths. The PMP provides necessary (but
not sufficient)condiitions for an optimal trajectory. In: the foUowing sectior_s, we
will indeed find trajectories that satisfy the necessary conditions but axe not time-
optimal. To show _hat a bang,bang trajectory is time-optimal, we must show that
if satisfes the necessary conditions and that the corresponding robot path is faster
t h,an ali _ternative paths.

To show that a bang-bang trajectory satisfies the necessary conditions, we will
rmmerieally integrate the controls of the wheels to calculate the Car'_,esian path
of the robot and some auxiliary variables, use the auxiliazy variables to calculate
the initial conditions for the dual variables, nmnericaliy integrate to calculate the
dual variables, and verify that the necessary conditions are satisfied by showing
th,at the dual variables are con Astent with the bang-bang controls. In this se_'i2i_n,

. we parameterize the trajectories, define the auxil:_ary variables, and show ho_., to
calculate the initial conditions for the dual variables. In the next two sections, we
will explore the space of bang-bang trajectories and uniquely identify those that axe
time-optimal.

We have proven that the optimal controls are bang-bang. Thus, each wheel
is always either accelerating or decelerating at the maximum rate (amex), and the
wheel velocity trajectories consist of successive segments of linearly increasing or
decreasing velocity. The wheel acceleration changes sign at a switch time. We can
characterize a wheel control trajectory by its number of switch times, and a robot
path by its total number of switch times and their distribution on either of the two
wheels. We will find that, for given total trajectory times, a specific set of robot
paths with a small number of switch times reach farther (and therefore are faster)
than all paths with a larger number of switch times. At the lower bound, the path
with the smallest number of switch times has two (one for each wheel). However_
_ilere are onIy two paths with two switce times- a translation straight forward and
a pure rotation. On the other hand, we know that the minimum length paths for
a skid-steer platform consist of sequences of translations and rotations. A rotation

. followed by a tr_slation can reach a.._:ffposition and reqlfires five switch times,
while a path consisting of a rotation, a translation, and a rotation can reach any
configuration and has eig.ht switch times. In the next section, we will show that the
robot can reach any position in the plane using specific paths involving a total of
three switch times (one on one wh_l, two on the other), _d d_s so faster than

11
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with a greater number of switch times. Similarly, wc will show that, using specific
paths w'ith four switch times, the robot can reach any configuration faster than with
paths involving a greater =umber of switch times.

First, we derive an analytical expression for the displacement of a single wheel,

with four switch times. By adj_usting paraa'neters, the expression will yield the
displacement for motions with one, two, or three switch times. We assume that
the initial value for the wheel displacement (0) is zero. Since the initial and final
values for the wheel velocity are zero, the wheel will accelerate during ha_lf of the
trajectory time., and it will decelerate during the other half. We will denote by T
half of the. total trajectory time.

A control trajectory with folrr switch times has five time segments denoted by
(vi)'. Fox' two wheels, we can define tee seg,meats; our notation for the right segments
will be (7"1,7"_=.r_, rr, _'9), while the left se_nents will be (r2, r4, v_,,rs, vi0). 'Let un
be the initial acceleration on the right wheel. The, control trajectory for the right
wh_: winbe: '.Rfor[0,,,]:,-._ fo_[_:,,_-_+ _], '_Rfo_[,_,+ .a,., + _ + ._1,-_R
for fr_ .+-v_ + rh, r_ _ r3 + r_ + rv];, and u R for [r_ 4-v3 + r5 + vr, 2TJ. Since the
whcet will accelerate during half of the trajectory, aa._dit will decelerate during the
other half:

ra+ _'_+ r9= T (36)

r3+r7 =T (37)

Integrating Eqs. (4) and (6), we can calc_ate the final value of the right wheel
displacement for a four-switch-time trajectory of that wheel:

0R(2T) = uR[--2r_r_ + 2(rl -t- r._)T- T 2] (38)

Equation (38) relates the wheel displacement to the first three segments. Using
Eqs. (36) and (37), we can relate the wheel displacement to the last three segments:

/gR(2T) = ua[2rhr7 -2(r_ + r0)T + T 2] (39)

The similar expressions for the displ_ement of the left wheel are:

T 2 Jr" 7"6 + T10 -- T (40)

_+_ =T (41)

OL(2T) = UL[--2r, r6 + 2(r_ + rr)T- T _] (42) .

8L(2T) = UL[2r67"s- 2(r_ + rl0)T + T2]. (43) -

with u L representing the initial acceleration of the left wheel.

' 'Iii Till ,,, ,, , _, , 'lr, ...... liltS, "' 'P' 'lHI '' " " 'r '_' ..... III HII _l,p, '"'"' "_ ' "_"llrq " r'll_',"'qr' _l_' " '_' ' 'lr 'II "' II ' '"I'1'_'lip _ " , Illilllll_,ll I_1_n'1,111_111_" rH_ '1 .... ,* w ,, ii,rr,' 'H,,I, iii I""' _,_H _l'l",ll It1_'
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4.1 ANALYTICAL RELATIONSHIP BETWEEN THE SEGMENTS
AND THE FINAL ORIENTATION

" Although the equations of motion for the Cartesian position variables (x,y)
do not have general analytical solutions, a solution for the Cartesian orientB,tion

• variable ¢ can be derived analytically. Using Eqs. (6) and (7), Eq. (1) may be
written:

- (_R - #L)/D (44)

Since the initial conditions for the wheel displacement joint variables are zero,
Eq. (44) can be integrated to yield:

¢ = ¢0 + (SR -- 8L)/D (45)

where ¢0 is the initial value of the robot_'s orientatior_.
Equations (38), (39), (42), and (43) relate the segment lengths to the wheels'

displacement, while Eq. (45) relates the wheels' displacement to the change in
orientation. Given segment lengths for both wheels, the final change in orientation
can be calculated. Alternatively, given the desired final orientation of the robot,
Eq. (45) provides a constraint on the segment lengths.

Consider a robot :path involving three switch times; one on the right wheel
and two on the left wheel (the segment lengths are: vi = v._ = v4 -_ T, and
v5 = r7 = vs = r9 = vi0 = 0). Since r2+7"_ = T, this path is defined by two
parameters (r2 and T). Using Eqs. (39) and (43); the final wheel displacements are:

OR= ureT 2 (46)

OL= uL[T2 - 2_'sT] (47)

Since the initial value of the robot's orientation is zero, the final change in
orientation is:

CD = uRT: uL[T 2 - 2r6T] (48)

If u R = UL --" U, the final orientation is:

,pD = 2ur_T (49)

while if u a = -u L = u, the final orientati, on is:

CD = 2u'r_T (50)

, If the final orientation is specified and is positive (negative), then u must be positive
(negative). Moreover, if a final orientation is specified for a three-switch-times path,
Eqs. (49) and (50)may not have acceptable solutions for small values of T, since

" 0 < vi _ T. On the other hand, if no constraint on the final orientation is specified
for a path, Eqs. (49) and (50) show that as r2 or r_ varies from zero to T, the
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change in orientation varies continuously from zero (the motion is a translation
straight forward) to 2uT2/D (the motion is a pure rotation).

4.2 CALCULATION OF THE DUAL VARIABLES

To verify that a bang-bang trajectory satisfies the necessary conditions, we must
calculate the dual variables and show that they are consistent with the control paths
[i.e., that ua is positive (negative) when ¢4 is positive (negative), etc.]. The dual
variables satisfy Eqs. (18) to (22), with initial conditions given by Eq. (15). Since
this set of equations is linear and homogeneous, it has a unique solution for any
set of initial conditions (ii). Thus, the initiM conditions determine the trajectories
of the dual variables. From Eqs. (18) and (19), the first two dual variables are
constants (¢1 ,/1 and ¢2 = A2). Using Eqs. (8), (9), (20), and (23), the third
dual variable satisfies:

¢3=¢1 2 -¢2il (51)
Since the initial position is (0,0), Eq. (51)can be integrated:

¢3 = Alz2- A2zx + A3 (52)

The fourth and fihh dual variables satisfy Eqs. (21) and (22). The right sides of
_hese equations depend on the first three state v'_xiables. To integrate the cquations,
we define four auxiliary variables (zi) by:

i

_ = sin(x3) zl(0) = 0 (53)

= z2(O)= o (54)

= z(o) = o (55)

Using the auxiliary variables, the solutions for the fourth and fifth dual variables
are:

¢4 = -A,(z2/2 + z4/D) + A2(z3/D - z,/2) - Aa("/D) + A4 (57)

#;5- >,,(z41D - z2/2)- A2(z,/2 + z3/D) -b A3(r/D) + As (58)

Since the switch times of a trajectory correspond to times when either ¢4 or ¢_
changes sign, one of the dual variables must be zero at the switch time. Thus, the
initial conditions for the dual variables can be determined by solving the matrix
equation: AA = 0, where Ar = (Al,..., As) and the rows of the matrix A are
defined by either Eqs. (57) or (58) applied at the switch times. If the switch time

I!.ql _, ' ...... li_'l '. ,,I- ..... Iii ..... 11 ' ' " II"_' ' II m' ..... I11',I " '"' lilHI .... I_UlII' .,1_ .,,, ii' I_Illl, llI



PAR AMETP_RIZATION OF THE BANG.BANG TRAJEC1 c R/,E,_ 15

is for the righi wheel, ¢4 is equal to zero and Eq. (5 7) defines a row of A. If the
• switch time is for the left wheel, ¢5 is equal to zer,0 and Eq. (58) defines a row of

A. It is interesting to note here that, in the general case, a control path with n
switch times will produce a matrix with n rows. For the vector A to be nonzero,

• the rank of A must be four or less. In other words, if a control path has less thara
five switch timee, a nonzero solution is possible. If the control path has more than
four _witch time_, the columns of the A matrix must be linearly dependent. Thus,
in the next section, we will first explore the space of robot paths involving four
switch times in order to investigate general solutions of our problem when the final
configuration (position and orientation) is specified. A particulm' case occurs when
the final state is a position (and the final orientation is no_ specified). In that case,
the transversality condition [see Pontryagin (1986)Theorem 3, page 50] requires
that the final value of the third dual variable be zero and Eq. (52) defines a row of
A. Thus, when the final state is a position, a path with three switch times would
produce a four row matrix. In the next section, we will therefore explore the space
of robot paths involving three switch times to investigate general solutions of the
problem when the final orientation is not specified.

d

' _H_IIP" '_ll ...... i_q......... plil't'rlrjl iii IlqlJll ..... I, ,_lqlFI,llI..... _r"i_..... "ZP'I"" qrl''"t' ,r.....'"'=_i'_'.....rl'iT,' '"li' *t"iT"' Ilrl' III.......... II 'li,'ql, 'I 'r"'"','ll" IIl,'Z



5. BANG-BANG TRAJECTORIES

Our objective is to move from an arbitrary initial configuration to an arbitrary
, final configuration in minimum time. Each configuration is described by three.

coordinates (z, y, d), where (z, y) is the lo_ation of the midpoint between the two
wheels and d is the orientation of the robot, We can choose the coordinate system
such that the initial configuration is (0,0,0). The initial and final values for the
wheel velocities (_vn and WL) are zero.

We will first explore the spaces of paths with three a_nd four switch times. With
the pararneterization described in the previous section, we can vary the available
parameters over the entire range, and for each set of parameter values, we can
numerically integrate the equations of motion using a fourth-order Runge-Kutta
method [Press (1988)] to determine the Cartesian path of the platform and its final
position and orientation. To produce the example figures in this section, we have
used amex = 0.5 meters/second 2 for the acceleration bound on the wheels, and
D = 0.76 meters for the wheels' spacing.

5.1 TRAJECTORIES TO A POINT

When the goal _is to reach a given point wi_h no specified orientation, the
problem is symmetrical and can be solved considering only the first quadrant. If
any point in the first quadrant can be reached, Symmetrical points in the other three

, quadrants can be reached by changing tile sign of the wheels' controls, i.e., changing
the initial direction of motion (symmetry about tile y axis) or by exchanging the
trajectories for the two wheels (symmetry about the z axis). Given the symmetry

• conditions, we are exploring three switch times trajectories involving one switch time
for the fight wheel and two for the left wheel. As mentioned previously, the three
switch time trajectories with no specified final orientation can be parameterized
using two parameters and can be of two types, which we refer to as: Type ++ (on
the initial segment, UR = UL = u) and Type +- (uR = --aL = u).

Figure 2 shows the final locations of the platform for the two types of solutions
when one of the parameters, the half timeT of the trajectory, is kept at a fixed
value, T = VT6 sec. The Type ++ trajectories initiate '_,ith a translation and end
with a rotation, while the Type. +-_rajectories initiate with a rotation and end
with a translation. As the parameter (r = r2 or r6)increases from zero to T, the
final positions of the robot for both types of trajectories describe a curve from the
point (5,.0) to the origin, with the motion varying from a pure translation reaching
the point (5,0) for r = 0, to a pure rotation of the robot at the origin for r = T.

Considering the first quadrant and all symmetries involved in the problem,
• it is clear that the trajectories of Type +- that end on the arc AB, which we

thereafter call "first arc," can reach points further away from the origin than the
other trajectories of Type +- and all trajectories of the Type ++. In Fig. 3, the

" final platform locations which correspond to first a_:cs are plotted fo_' several values
of T. Since for pure translation, the platform moves a distance x along the x-axis:

17
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z = uT , (59) .
we have used the values T _ = 2,4,6,8, and 10 (consequently, z = 1,2,3, 4, and 5
when y= 0 and u = amax = .5 m/see). From Figs. 2 and 3 lt is clear that, for |

a constant value of T, the final location of the platform sweeps through the first
quadrant oa a first arc as the parameter r ir_creases from zero and, for increash_g
values of T, the first arcs continuously expand toward higher values of (x, y). Thus,
each point in +he first quadrant can be reachedby a three-switch-time trajectory
ending on a first arcl and there is a one. to-one relationship between the points in the
first quadrant and the parameter set (T, r) which uniquely defines the trajectories
reaching the first arcs.

Each first arc is uniquely defined by its value of T and the range of the parameter
v required to sweep the _first quadrant' 0 _< r < r m, where the vMuc vm(T)
corresponds to the intersection with the y axis. The ratio of r m and T is displayed
in Fig. 4 as a function of T. As discussed previously with Eqs. (49) and (50), there is
a minimum half time Train required to rotate 90 degrees. For the robot parameter
values used in the figures, Train = 1.095. When T is less than 1.095, r r_ is not
defined. When T is equal to 1.095, v" = T a_d the ra_.io is 1.0. As T increases, the
ratio decreascs as expected, reachi_:g 0.35 when T = 2.0 and 0.09 when T = 4.0.

-5
5 -3 -1 1 3 5

X

.b

Fig. 2. Points that can be reache_t by trajectories with three switch times for a
constv_at value of T = V_'6sec.
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0

0 1 2 3 4 5

X

Fig. 3. Curves showing the location of the furthest points in the first quadrant
that can be reached by trajectories with throe switch times for sovera_ values of
T (T 2 = 2, 4, 6s 8, mid 10),

t,

1.0

1; /T o.s

0.0 !

0 2 4

T

Fig. 4. Curve showing the ratio of lrm and T. The sets (rn_,T) define the
intersection of the first arcs with the y axis.
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Based on the above considerations, the remaining set of three-switch-time
trajectories that are candidates for time-optimal trajectories to a point, is the
uniquely defined set. o£ trajectories reaching points on first arcs. Sample Cartesian
,paths of the robot for the c'cmdidate three-switch-tlme trajectories are displayed in

Fig. 5 for the case where T2 10. Note that, at the end of all paths, both wheels I;"" !_''
have the same velocity and the Cartesian paths are line segments. :!, ,,) ,' ,,, '

5

!

3

Y

2

1

0 ' "

0 1 2 3 4 5 'f

x

Fig. 5. Cartesian paths of the robot for three-switch-time trajectories ending on
the first arc defined by T2 - 10.

5.2 TRAJECTORIES TO A CONFIGURATION

In a similar manner, and based on the discussion of Section 4.2, we tax1 use
the paxameterization developed in 4.1 to explore the space of four-switcl.-time
trajectories when the goal is to reach a given configuration. In this case, the
problem is not symraetrical about the x and y axes and the four quadzants have to
be explored.

A four-switch-time trajectory can have either two switch times for each wheel
(Type 22) or one switch time for one wheel and three switch times for the other
wheel (Type 13). For the Type 22 trajectories, the segment lengths satisfy: ra =
7"4 "- T, r7 = Ts = T9= vi0 = 0, vi +r_ = T and _'2+r6 = T. With these conditions
and the constraint on the final orientation given by Eqs. (38), (42), and (45), these
trajectories can be defined with two parameters, e.g., vi or v2, and T. Similarly, o
for the Type 13 trajectories, the segment lengths satisfy: vi = v'a = T, _'5= T7 --
.'_ = Vl0 = 0, r2 + re = T, and r4 + rs = T (one switch time on the right wheel

t
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a_,elltJh_ee en, _he leff)),,er: _2_= _4 = T, 'r6,= 'rrs,_= v., =_Im_ = 0i¢ _l_+ T5 = T, emdL
'_,_,_z_ = T' (_h_ee switch, _i'.mesen. _he riigl_ wh_l! aadl or _m._he l'ef_))..Wi;_h,_he
eons_rMa_ on, _he' .tim,M!orientation., _hese. _r_jee_ories ca_, a.so. be d'efi;nediwii_h._wo,
para_ef, ers _2_or _r,,.amellT;: or 'rl_er _3_,,am.diT'.

" Fiigm.re.6;d_spl'ays,_Jhepoi.n,_s_f&,afJ¢a_, l_e re_,_edi by fo_.swi¢¢h_i;me _r_jee_ories_
whe_. _Jlhe'orien_tJie_, is: ¢' = 0,'.8;r_d}ams:ametlT_= ]_8_.Si.nee we. ka_re _wo._ypes of
tre_jec_ories;aadl fou.r cem_ig_tJiens; ef iln_;ti,-all_ecel'eraf_ion.(_-_, - - ,, _ - ,, - . )i,._here'
a_e eigh.t; c_,rve segments: displt_yed! ig Fig, 6. There _e fe_= siigni_eam_ in_ersecfien.
poi;nCs;(C, .D,, E',, .F);_in, _he filgu, e,. These a_e poiaCs where the fo_,r-swiit&-t, ime
ti_a_je¢fories:become _h_,ee-s,wi;gehqii;met_je¢fories oi: _he Type ]J2,_ii.e., wt_e_e one
of t_hei;rsegment1 "vi,va_ishes_ For' exaglpig, _he two poi;aCs,:C m,a,d:D,, in, t_he,fir,sf

q_azi_emt aze where _he' _w:o,c_ves in, Fig. 2: reach, an, orientation, of 0!.8,rad'i;ans; {a_,
ghe poi_,_s; E_ts'..(_9)))a_4 IS0)) a_.e satiisfi:ed_)),AN_of ghe eiight,em,_vesegments; sga_ _
one' ofghese four.,poi,n,gsmnd*en.ella_ a_m_her. The same. p_t_ern, i:s:ogservedt i,n,Piigs. 7
andi 8 which, el;Ispli_yt_hepoia,t_st_h,at_¢a_; be, reached: by fem:-s_t_eh-t_i_,le, t_ject_ori:es
when, _he fiR,M!orientlation, is ¢, = _.5,7 ra(_mm, a_di ¢, = 3._ raN;ems: (a_'d, T '2'= _J0_)l.

O'= 0:80_ '

3 G ' °o_ C

, o, 22_.-
,' "l : 22_+1}

E " 22'--
22.+

_' " 1!3_.-
-1, _" 113_.+,

" li3.--
" li3_+

-..°.°o.oq!

. Fig. 6.. Points that can, be reached by trajectories wi_h lbur switch times for a
con,stan,t _alue of T(T_:= lO), when, the final orientation is 0.8 radians.
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Fig. 7. Points that can be reached by trajectories with four switch times for a
constant value of T(T 2:- 110):,when the final orientation is 1.5_' radians.
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Fig;, 8. Points that can be reached by trajectories with four switch times for a
constant value of T(Ta= 10) when the final orientation is 3.14 radians.
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Fiigu.res 6 a_dl 7' are not s_metric_ abou, t the x or y axis:.. I_owever, we can,
show rh,at the t_woa_xes_of symmetry are rotated by ¢,/2 {tl_1_s,.Fi,g. 8 is symmetri,c_
_bou_t.the z an.d y' a_iis:))and! id'en_i;fy t_hel'ocation, oft;he poi:r_s: G and: H. Consider a_a,
arbi:tr_ bad,g-banon trajec_,ory th,a_ s_arts: _. {0:,,0,0).)and reaches: {x 1_,.y:t,,¢,)_.Suppose

" tl_a_ a second _r_jec_ory l'eaves (01,8,0_))wi,ththe: time _everse con_rol__rajectory (the
l_en,g_h o_ the, i;n,ii_ii_ segment of the second; tr_ec_ory w,iil;l_be equal to the l'eng_h_of,
the final segment of the first trajectory bu,t the si,gns of the control variabl'es wi;Hi
be reversed)i. The ho]Jonomic variia_bles fwt_eeI ro_a_ion and, finali orientation) wi_l_l_
oe _he same for the two trajectories, b,_t _he no_o_onomic variables (z, y)_wi,]jl:be
dJi_erent. Th_s, the second_ _r_jec_ory wi;_!reach t z _, y.2,¢)_.

we l_e_.tilme r_n backwar_s_ the second_ trajectory is' iden_i.cal to the firs_ _d
we can.:deri;ve a m appi,ag from, _x 1, y r): to {x: , y:):_:

z _= z" cos¢,+ y_sin ¢ {60:)_

y_ = z _si,n¢ - y_ cos¢ (61)

The mapping app._ies to .any arbitrary ban,g, bang trajectory. On tl_;,efirst l:ine of
symmetry, the second poi:nt is: the same as: the first _(z_,y_ )= (z 2, y2): = (z, Y)I':

_,/== sin,¢/(1 + cos¢)= (_ -cos ¢)/sine = tan(C/2) (62),

Th_s, the direction of the first line of symmetry is ¢/2. On the second: line of
symmetry, the second point i,'s.reflected through _he origin _(x_,y _) = (-z _, -y_)-

y)]i:

y/x = -(1 + cos ¢)/s'2n¢ := -sin ¢/(1 .- cos ¢) = tan_(Tr + ¢_/2] (63)

Thus, the direction of the second line of symmetry is (_"+ ¢)/2.

We can move the finM configuration acros_ the first line of symmetry by time
reversing the con:t,rol 1;rajectory. We can move the final configuration across the
second: line of symmetry by reversing the control trajectory between the wheels and
by changing the si:gns of the controls (if we do not reverse the signs of the wheel
rotations., the sign of the final orientation will be reversed):°

. Just as in Section 5.1, we can define a set, of candidates for time-op_imal, i ty as
the se_ o'_"_rajectories reachi:ng furthest in the plane for a given v',due of T. F n
Figs. 6 t.o 8, i,t can be seen tha_ the envelop (C D H E F (7 C)is reachec oy

"' trajectories o_'Type 13+-, 13-+, and some of _he Type 22+- and 22-+ that are
uniquely defined by the points' G and H.
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i_st _iikei,n Section 5.1,, we ca_ _so show that the candidate fourswi;t_-time
trajectories caau, reac_ a_.y confi,gu,ration by varying the hM_ _ime parameter T. ,
Fiigures 9 a_ I0 il_Iust_rate'the conti;nuous sweepi;_g through _ of the points iin
the pIane as t:he parameter T' i._creases. In Fig. 9 the fi,n,M orientation i,s ¢ =
0.80 rad:i,ar_s,, whi_e i:n Flit. i0' the fi,nM orie=tafiion is ¢ = 3..I4 radi;ans. In both
f_gu_es:, the curves are for T_ = 2,4,6,8:, and: I0_,,a_d amax = 0.5 meters/second. 2
Fi_gure I0 ilnc_udles:only four sets of cu.rve_ (rather tSa_ five _i,keFig. 9):_because the
time re_u,.',red for a pu,re rotation of 3.14 radials (T 2 = 2.4) is: tonger tha_ the firs_
va_ue for the parameter T(T 2 = 2):.

Sample Ca_tesi,aa, pat_hs of the robot for some of these ca_ctidate time-optimal
four-switch-ft,me trajectories to a configu_a_io_ axe di,splayed (for _he cause where
T _ = 10): i.n Figs. 11 a_d_ 12 for _nM orien,tafions of ¢ = 0.8 rad,ian.s: and
¢ = 3.14 radi, ans, respecti,vel_y. No_e tha_,, as the control trajectories: evoI,ve from
Type 22-+ to I3+- to 22+-, the Caxtesi,an trajectories change: con.ti;n,uo,u.s_y.

/

Y

-1 /
/

_3 _

_5 ¸ ,......

-5 -3 -1 1_ 3 5

X

F_g. 9. Curves showing the location of the furthest points _hat can b,e reached by
trajectories with four switch times for sever_ values of T(T _ -- _,4, e, 8, and I0) when
_,he final orientation is 0.8 radian..
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-5,
-5, -3' -1 1! 3 5

X

Fig. 10. Curves showing the location of points that can be reached by trajectories
. with four switch times for several values of T(T 2- 4, 6,8, and 10) when the final

orientation is 3.14 radians.
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i . j
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Fig. 11. Cartesian trajectories for paths with four switch times for a constant
value of T(T _ = 10) when the final orientation is 0.8 radians.
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Fig. 12. Cartesian trajectories for paths with four switch times for a constant
value of T(T 2 = 10) when the final orientation is 3.14 radian,_.
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6. OPTIMAL TRAJECTOIUES

In this section, weshow that the candidate three-switch-t:ime trajectories
identified in the previous section provide time optimal paths to a position,
and the candidate four-s:witch-time trajectories provide time optimal paths to a
configuration.

The maximum principle provides necessary (but not sufficient) conditions for
an optimal trajectory. To show that a bang-bang trajectory is optimal, we must
show that it satisfies the necessary conditions and that it is better than alter'native
paths. Indeed, we will find that some trajectories satisfy the necessary conditions
but are not optimal. Since the candidate sets of trajectories have been identified
through comparisons with trajectories involving the minimum needed number of
switch times, we show that they are better than alternative paths by comparing
them to trajectories with greater numbers of switch times.

To verify that a bang, bang trajectory satisfies the necessary conditions, we must
calculate the dual variables and show that they are consistent with the control paths
[that ul is positive (negative) when ¢4 is post.five (negative), etc.]. In Section 4,
we defined four auxiliary variables (zi) that can be used to calculate the initial
conditions for the dual variables' Followhxg the procedure described in section four,
we can calculate the dual variables for any bang-baz_g solution.

We will consider first the three switch time trajectories to a position. Consider
the results shown in Fig. 2. O_tr subset of cmldidate time-optimal-trajectories
includes the trajectories of the Type 12+- that end on the first arc, i.e., the portion
of the curve that lies in the first quadrant. We have calculated the dual variables
for a wide range of trajectories and found that all 12+- trajectories that end on
first arcs satisfy the necessary conditions. Typical results for a trajectory defined
by (T, v) = (_/T0, .4) are displayed in Fig. 13. The trajectory reaches the point
(0.66, 4.03). For the fight wheel, the acceleration is positive for (0.0 to 3.16) and
negative for (3.16 to 6.32). The corresponding dual variable (_b4) is found positive
for (0.0 to 3.161)and negative for (3.16 to 6.32). For the left wheel, the acceleration
is negative for (0.0 to 0.40), positive for (0.40 to 3.56) and negative for (3.56 to
6.32): The corre_onding dual variable (Cs) is found negative for (O.0 to 0.40),
posiHve for (0.40 to 3.56) and negative for (3.56 to 6.32). Finally, the transversality
condition requiring that Ca = 0.0 at the end of the trajectory is seen to be verified.

. We have also calculated the dual variables for the other 12+-. trajectories, and
it is interesting to note that they, too, satisfy the necessary conditions except for
those that reach points on the spiral after it reenters the first quadrant (and the
12+- trajectories cross the 12++- trajectories). On the other hand, none of the
12.++ trajectories satisfy the necessary conditions.

27
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: PsIC4],
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O' 2 4 6 8

time

Fig. 13. Dual variables for a three-switch-time trajectory leading to the point(o.ee,4.os).

In a similar fashion, we have calculated the dual variables :for a wide range of
candidate time-optimal trajectories to a configuration, i.e., those four-switch-time
trajectories that end at a config_lration laying on CDHEFG envelops of the type
shown in Fig. 6, and have found that they satisfy the PMP necessary conditions.
Typical results axe displayed in Fig. 14 for a 22+- trajectory corresponding to
¢ = 0.8 radians, T _ = 10 and rl = 2.84. The trajectory reaches the configuration
(x,y,¢) = (0.20, 3.43, 0.8). For the right wheel, the acceleration is positive
for (0.0 to 2.84), negative for (2.84 to 6.00), and positive for (6.00 to 6.32).
The corresponding dual variable (¢4) is found respectively positive, negative, and
positive on the same interval. For the left wheel, the acceleration is negative for
(0.0 to 0.52), positive for (0.52 to 3.68) and negative for (3'.68 to 6.32), and the
corresponding dual variable (¢5) is found appropriately negative, positive, and
negative on the same inter vMs.

In the remainder of this section, we numerically demonstrate that the
trajectories of the candidate sets are time-.optimal by showing that they are faster
than trajectories with more switch times. If the total trajectory time (T) is fixed,
an optimal trajectory will reach furthe:r from the origin than any other _,rajectory.
We demonstrate mgnerica.lly that the "best" trajectories wiLh n switch times are
longer t ha_ the "best" trajectories with n + 1 switch times.
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Fig. 14. Dual variables for a four-switch-time trajectory leading to the
configuration (0.20, 3.43, 0.80).

A trajectory with a total of n switch times (nn > 1 on the right wheel, nL >_ I on
the left wheel, n R + n L = n) involves n + 2 time segments, vi, which are distributed
on the two wheels with at least two segments on each wheel. Any n-switch-time
trajectory (with n + 2 segments) of type nRn L Call be considered as an n + 1-switch-
time trajectory (with n + 3 segments) of type (n R + 1)hL or type rtR(hL + 1) in
which the additior_ time segment is set to zero. If we denote this additional time
segment by p an_ use it as an additional trajectory parameter that can vary over
its entire feasible range within [0, T], then ali n + 1-switch-time trajectories can be
evolved from their parent n-switch-time trajectory. These can then be compared
to ascertain 'that the parent trajectories always reach further than their "offspring"
for a same total trajectory time.

First conAder the special case when n = 2. The "best" trajectories with two
switch times are pure translation (as opposed to the pure rotation trajectories which
do not leave the origin). These trajectories are part of the candidate sets, although

. they only reach points on the x axis. However, it is clear from Fig. 2 that when the
parameter is varied, the two-switch-time trajectories reach further than any three-
switch-time trajectories (or trajectories with any greater number of switch times)

' that end on the x axis. Thus, to reach points on the x axis, these two-switch-time
trajectories clearly are the time-optimal ones.
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Consider the caze when n 3. The three switch trajectories in Fig. 2 have one
switch time on _he right wheel and two switch times for the left wheel, i.e., the)'
are of Type 12. They have two types of offspring trajectories which are the only
two types of four-switch:time trajectories: Type 22 and Type 13. In this case, the
parameter p becomes either the third time segment on the right wheel or the fourth
time segment on the left wheel. When the parameter is zero, the four-switc,h-time
trajectories reduce to the three-switch-time trajectories. As the parameter increases,
the offspring trajectories spanned the space of four-switch-time trajectories.

Offspring four-switch-time trajectories are compared to the parent three-switch-
time trajectories in Fig. 15, for Type 22, and Fig. 16_for Type 13. In both cases,
results for the parameter increasing from 0.0 to 0,3 are displayed. As the parameter
increases, the end points of the four-switch-time trajectories move monotonically
toward tile origin. Thus, the best three-switch-tlme trajectories always reach further
from the origin than the best four-switch-time trajectories and the distance between
the end points increases as the four switch paths become less like the three switch
paths.

5

Type 22

, ...-...- - • :
ii • m II

& & & & _. & & ?

3 & & II • •
& • • Q

m •

y & II o •• !1 •

2 A m • •
• 0.0 " ,*

m• 0.1
®•

" 0.2 A"
1 A 0.3 _=*•

A • • I

A Jt 4_ •

0 , , , _, --
0 1 2 3 4 5

X

Fig. 15. Comparison of four-switch time trajectories of Type 22 and three-switch-
time trajectories.
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Fig. 16, Comparison of four.,switch-time trajectories of Type 13 and three-switch-
"time trajectories.

0

Consider the case when n - 4. There are four t,ypes of five-switch-time
trajectories: Type 14, Type 23, Type 32, and Type 41, which can ali be found
from tile parents four-switch-time trajectories of Type 13 and 22, and compared to
them to show that they axe not time optimal. Examples of tile comparison results
are iUustrated in Figs. 17 to 21. The Type 23+- trajectories arc compared to
the Type 22+- trajectories in Fig. 17. As the parameter increases frotn 0.0 to
0.3, the end points of the Type 23+- trajectories in tile upper half pl_aae move
monotonically toward the origin. They also move toward the z axis in the first
quadrant, but they always remain inside the Type 13-1-- and Type 22-F+ curves.

The Type 23+- trajectories are compared to the Type 13+- trajectories in
Fig. 18. As the pararaeter increases from 0.0 to 0.3, the Type 23-t-- trajectories
move monotonically toward the origin. Tllcy also move radially but they always
remain inside the Type 22+- and Type 22-t-+ curves.

The Type 23++ trajectories are compaxed to the Type 13-1-+ trajectories in

Fig. 19. As the parameter increases from Or,0 to 0.3, the end points of the Type 23++
trajectories move monotonically toward the origin. They also move radially but they
always remain inside the Type 22+- and Type 22++ curves.
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Fig. 17. Comparison of flve-switch-tir_ae trajectories of Type 23+- and four-
switch-time trajectories of Type 22+-.
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Fig. 18. Comparison of five-switch-time trajectories of Type 23+- and four-
switch.time trajectories of Type 13+-.
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Type 23++ (Base 13++)

4

, Ut+ + * + t_ * + ,

& NII • *

A nn • to
_. & mm • O i

Y • o,o+I "'+, ",. "- ".'.

: _, o.1 I "" "" °" ;"

0,2 4&AAImm le _ "o

1 22+-

13+- |

22++J +,+I* +o

,i I I' + *'

Fig. 19. Comparison of five-switch-time trajectories of Type 23++ and fot_r-
swi_ch-tlme trajectories of Type 13++,
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_' Fig. 20. Comparison of five-switch-time trajectories of Type 14+- and four-
switch-time trajectories of Type 13.
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Fig. 21. Comparison of five-switch-time trajectories of Type 14++ and four-
switch-time trajectories of Type 13.

,i

The Type 14+- and Type 14++ trajectories are compared to the Type 13+-
and Type 13++ trajectories in Figs. 20 and 21. The end points of the Type 14
trajectories occupy the inside of the lens shaped region defined by the Type 13
trajectories. As the parameter increases from 0 to 1,0, the end points of the Type 14
trajectories sweep the interior of the lens with a upper left fixed point for the case
of Fig. 20, and a lower rlgh_ fixed point for the case of Fig. 21.

Similar families of curve can be easily generated to compare parents and
offspring trajectories with five switch times and greater. The important general
result of such an exercise is that tile best offspring trajectories never reach further
than their parent best candidate for a same allowed total trajectory time.

In summary, any point in the plane can be reached by a three-switch-time
trajectory which has been uniquely defined in Section 5.1 and shown to be time-
optimal by reaching the desired (x, y) position faster than other three-switch-time

trajectories or trajectories with a higher number of switch times. Similarly, auy
configuration in the plane can be reached by a four-switch-time trajectory which N

has been uniquely defined in Section 5.2 and shown to be time-optimal by reaching
the configuration faster _han other four-switch-time trajectories or trajectories with
a greater number of switch times.
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7. USE OF THE METHOD,, FOR
ROBOT' TRAJECTORY PLANNING

,

Gi:ven, the resl:,l,llts:of tt,ie' previous: sections, tl_e im,pl_mentati:on_ en, ou,r robots
" has_focussedl on, dev el_pin,g: tlie. dlri,ver mode,le for the robots,, ii.e., t_he mod_,l'e wh,i:ch,

deformities tJhe co_trol_ trajectories necessary for a tj,me optimal! motion`, of the
p:lla_tfo_m,between, given`, su_bg0M_s,i,n, a seq_en'ce, provided ! by the rou,te t_l,aa,n,'m_g.
mode,fie Ie,g,,, see Vasseu,r, Pir_, an di .Ta_.l_ _992:} or And_r'sen_ et ali. _'i19.92:))]}.
Each, su_bgoali is: speci:fiedt as: a gluten, con,fiigm,r_ion, where, t_b.e:pl*aliform must stop,
ft_r the, robot to. perform, some sensi,ng, maa, igu,l!ati'on,,or' other ._asks. I_n_tl,_e'fi,_st
s_-_;,_of _he a_./gor;.;_b,m_the a_i:vall con.fi:,gu,ration_ is, exl_ressed' as a. reltati,ve posiition,
and* orientation_ wi_h, respect to the starting con,fiig,_ation,, ffa fi_ali orientation,
is net speei;fiedi,: tthen, the time-opti;mal_ thvee-swiltd_time trajectory to _ poi:n_tis
sought wh,ich,, as expllmned', in, Section, 5,.1,, is c2_aracterized! by two parameters. If
a desired fin,al:orientation, is specified!, the _i,z,ne_opti:m,alltrajectory is a four-swi,tch.
time trajectory to _ con_fig_ation aadl, as _scussed in, Section, 5.2, Eq. _0,)', is: filzst
used to reduce the nalmber of unknown, parameters, from three to two. In, both,
cases, the same numerical: search, techn,iq_ae _Powe_l's:method _Press !1988)_)_]i,can,
rh,us:be used to determi,nethetwo parameters(T,r)_forthe givenfi_MiIbc_ion,
_z,y_), mak:i,ng use of the symmetries width respect to the z and y axes or ¢/2 and;
_r. _ ¢/2)_ axes as appropriate, l_om _(,T,r)_ the s_:itch times: are. easily cM'cu,l_tedi
and the controls directly sent to the robot actuator servos.

. As:an exampleof the gain, obtained with th_ time-optimall trajectories compared
with minimum-length paths to a configuration _i,.e., rotate, translate, rotate),,
T_ble t shows the total _trajectory times reqadred to reach the poin,t (3,3)_ _t several

"" orientations. To_t represems the optimM trajectory time, while Tr_r is the time
req_red: to execute the RTR _rotate., trazasl_te, rotate)strategy wii:_hban,g-bang
controls. As t_he orientation increases i_rom 0.80 to 3.]:_ radiaas_ To_ increases
from 6._8 seconds to 7._5 seconds and: the r_tio, R = To_t/Tr_._ varies from .81 to
.71. These remdts are typical: of the gains obtained with optimal p_ths o_er RTR,
paths, and: average _bou,t 25% for trajectories to near configurations (less than_
5 meters: _way fr,ore the start pc.;nt):. The gain,, of com-.se, decreases as: the distance
separating the two configurations increase_, as weil as for trajectories appmachh_g
pu_e translations on :,he z ,axis (for which/_ = i).

One of the concerns which usually ari_s when implememi_g time-opti,mMl
controls: on a robot relates to the capabifity of the controller to closely approximate
the bang-bang demands on the controls. For our 2,000 lbs.. H'ERMIES.III robot, the
results of well-tuned conventional PID wh_l controllers (see Reister, 1992)proved:
extremely satisfactory, ms illustrated in Fig. 22. In the figure, the veloci,ty target
on one of the wheels and the actual velocity profile obtained d_ing experiments
w_gh the robo_ are displayed by the plain, and dotted lines, respectivel$. The
velocity target is a _hree-switch-time trQectory of the wheel with a value of

q' amgx ---- .2 m/soc _. With this very good' behavior of the controller, time-optimM
motions of the robot were realized with much less than I% error.
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Table _ 1. Val_aes of _he optimal time (T0pt) _, the tilrne for rotate-transl_ate-
rotate: ('Trtr,)_ with, bang-bang con_trols,, and: their • ratio (R))for paths; that reach the
cenflguration (3,3,,¢,)).

I Radia, ns Seconds Seconds

0.80! j 6.,18 7,59' .81

I: 1.5,7 ' 6.36 8.92 .7Ii
' 7.,15, I'0!.,06 .71

3,.14 I

0:5

0;4

0_3,

-,

0 0;2-

0:1-

0_0..................... ,....... :......
2 6 1_0'

Time (see)

Fig. 22. Measured velocity profile for the HERMIES-HI robot as it follows a

bang-bang velocity target.
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8. CONC:LUSIONS

0_,lv objective h,as bee.n, to pl,an_ time-opti,mal motions for a mobiil_e robot wiith

two ind'epend'en, tl_y-_ri,ven: aon-steerabl'e wheel's from one static conft, gu,ration to the

next i_, am, u,nobstructed plla_az' en,vi,ron,ment. We have used Pon, tryagi_n's Maximum

Pri,nciple to prove '_hat,: when the m,axi;mum acceleration on, each wheel', is: bounded,;

al'l opti.m, al trajectories are bang-bang. D_li;ng thi;s resul:t, we have proposed: a

pararneterization of the. bangrbarlg trajectories whi, ch a_lows us to span, the space

of trajectories: and; to. show rh,at any posi,tion in. the plisse carl _be reached by a pat,g
wi;th three swi,tch times wbi,l_e any con._g_ration can be rea&led by a path with four

swi,tch times:.. Wi;th these resul_ts, we have iden_i,fted two uniquely deft,ned subsets

of paths as candidates for, _ime-optimalli*ty.

We l_aa'e then foR'owed a n,,.umerical pmcedl_e to verify that the paths in these

subsets _e the time-optimal; ones:: we use the _iq.ue two parameters defining.

each path, to cal_cul_ate the swi:tc& times: for that path, numericall'y integrate the
control', trajectories: to calcul_ate the Cartesi, an paths and some auxi,_ary variables,

use the au,xi,lrary vari,abtes to calcalate the ini,tiial condi:tions for the dual variables,

numerical_ly integrate to cal'cul,ate the dual variabtes,, and verify that the C_tesi_an

paths are consisten'_ with the bang-baal.g controls a.s requi,red by the maximum
pri,nciple. We then numerically showed that the paths in the subsets are time.

optimal by compari.ng them. with other possible paths wi;th l'arger numbers of swi,tch

times. Being numericM, the procedure reqa,,red an. extensive examination of m_ny
cases;, however, it has Mlowed us to precisely identify and para_neterize the set of

trajectories and associated controls that Mtow a robot to reach any conftgur_tion

i.n the pl,auc in a time-optimal fashion, a problem which had eluded many efforts to
date.

Wi,th the set of time-optimal trajectories id'entified and parameterized, we have

theI_ discussed how the results can be uti,lized i.n conj,unction wi,th a simple search

technique to implement the time-optimal controls on a mobile robot. For an

illiustrative vMue of 0.5 m/see = for the bound on acceleration, comparative exr:._.._ples
indicate that the time-optimal paths can be up to 30o26faster than rotate-translate-

rotate paths that use b_,g-baag con, trois.
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