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ABSTRACT

This paper addresses the problem of time-optimal motions for a mobile platform
in a planar environment. The platform has two non-steerable independently driven
wheels. The overall mission of the robot is expressed in terms of a sequence of
via points at which the platform must be at rest in a given configuration (position
and orientation). The objective is to plan time-optimal trajectories between these
configurations assuming an unobstructed environment.

Using Pontryagin’s maximum principle (PMP), we formally demonstrate that all
time optimal motions of the platform for this problem occur for bang-bang controls
on the wheels (at each instant, the acceleration on each wheel is either at its upper
or lower limit). The PMP, however, only provides necessary conditions for time
optimality. To find the time optimal robot trajectories, we first parameterize the
bang-bang trajectories using the switch times on the wheels (the times at which the
wheel accelerations change sign). With this parameterization, we can fully search
the robot trajectory space and find the switch times that will produce particular
paths to a desired final configuration of the platform. We show numerically that
robot trajectories with three switch times (two on one wheel, one on the other)
can reach any position, while trajectories with four switch times can reach any
configuration. By numerical comparison with other trajectories involving similar
or greater numbers of switch times, we then identify the sets of time-optimal
trajectories. These are uniquely defined using ranges of the parameters, and consist
of subsets of trajectories with three switch times for the problem when the final
orientation of the robot is not specified, and four switch times when a full final
configuration is specified. We conclude with a description of the use of the method
for trajectory planning for one of our robots, and discuss some comparisons of
sample time-optimal paths with minimum-length paths.

vii



1. INTRODUCTION

A variety of platform designs have been implemented for mobile robots. These
can be classified in three major categories: 1. omnidirectional platforms, that utilize
steerable wheels [e.g., see robots in Brooks (1990), Arkin (1990), or Koren and
Borenstein (1991)], roller-equipped wheels [e.g., see Blaisdell (1991)] or orthogonal
wheel assemblies [e.g., see Killough and Pin (1990)}; 2. car-like platforms that
incorporate controlled steerable wheels on one axle and non-steerable wheels on
another axle [e.g., see Vasseur, Pin, and Taylor (1991)]; and 3. skid-steer platforms
that include two non-steerable independently driven wheels [e.g., see Giralt, Chatila,
and Vaisset (1984), Kanayama and Hartman (1989), or Weisbin et al. (1989)].
This paper is concerned with skid-steer plathMa A typical mission for a mobile
robot can be described by a sequence of via points at which the robot comes to
rest in a given configuration (position and orientation) to perform a given task
(manipulation, sensing, etc.). The problem considered in this paper is that of
finding time-optimal motions of the robot in Cartesian space and the corresponding
control trajectories that will move the robot from an 1mt1al configuration to a final
configuration in an unobstructed environment.

The proposed approach to find the control trajectories that lead to time-optimal
motions of the platform involves utilization of Pontryagin’s maximum principle
[Pontryagin et al. (1986)]. A variety of authors [Kahn and Roth (1971), Niv and
Auslander (1984), Kim and Shin (1985), Weinreb and Bryson (1985), Nakamura
and Hanafusa (1987), Bobrow (1988), Yamamoto and Mohri (1989)] have applied
the maximum principle to the optimal motion planning of serial-link manipulators.
For the time optimal motion of a manipulator with bounded control torques, the
controls occur linearly in the Hamiltonian and the optimal values of the controls are
determined by the dual variables. When its dual variable is not zero, the cptimal
control is bang-bang (the optimal control is at its upper limit for a positive dual
variable and at its lower limit for a negative dual variable). When its dual variable
is zero for a finite interval, the optimal control is singular and will be in the region
between the bounds. An important issue is to determine when the optimal solution
is bang-bang and when it is singular. A variety of authors [Ailon and Langholtz
(1985), Wen (1986), Willigenburg (1990), and Chen and Desrochers (1990)] have
addressed this issue and proven that there cannot be a finite time interval when the
optimal control for a manipulator is singular for all the control torques. In other
words, at least one of the controls is always bang-bang. Further work by Geering,
et al. ( 1986) led to the determinaticn of the parameter values for singular solutions
for three types of manipulators: cylindrical, spheri-al, and two link planar. It has
been demonstrated [Osipov and Formal'skii (1990), Formal’skii and Osipov (1090)]
that the singular solution for the cylindrical case is not optimal. As discussed in the
next section, the kinematics of a two-wheeled robot differ significantly from that of
a serial-link manipulator and, to.our knowledge, the time optimal trajectories for a
two-wheeled robot have never been found.

1
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2 INTRODUCTION

In the following sections, we present the equations of motion for a skid-steer
type of platform moving on a flat, horizontal plane. We then use the maximum
principle to derive the conditions for time-optimal motions of the platform and
democustrate that the optimal controls are always bang-bang. Using this result, we
show that, for a system with bounded wheel accelerations, control trajectories with
three switch times (times at which one of the wheel’s acceleration changes sign)
allow the robot to reach any point in Cartesian space while with four switch times,
the robot can reach any configuration. We then show numerically that these paths
are time-optimal.



2. KINEMATIC EQUATIONS OF
MOTION FOR THE PLATFORM

A skid-steer type of platform must satisfy nonholonomic constraints and cannot
follow an arbitrary path through configuration space. In this section, we develop
a kinematic model of the platform, assuming that the wheels do not slip and that
the wheel accelerations can instantaneously switch from their upper limit to their
lower limit.  The configuration of the platform is described by three cocrdinates:
the Cartesian coordinates, z and y, of the midpoint of the wheel axle with respect
to an absolute reference frame, and the orientation, ¢, of the platform main axis
with respect to the reference frame z axis (see Fig. 1). The joint variables are
the wheels’ translational displacements, denoted by 9z and 6, (representing the
angular rotation times the radius of the right and left wheels), and aure measured
in meters. The wheel velocities are denoted by wp and w; and are measured in
meters per second. The control variables are the right and lefi wheel’s translstional
accelerations (up and uy). The kinematic model links the Cartesian variables to -
the control variables through the wheel velocities:

¢ = (wr —wL)/D | (1)

& = (wr +wp) cos(¢)/2 | | (2
y=(wr+t wL)Sin(yeb)/? (3)
WR = UR (4)

WL = ur | (5)

fr = wr (6)

L =wy (7)

where D is the distance between the centers of the wheels.

Given a trajectory for the control variables, Egs. (1) through (7) can be
integrated to determine the Cartesian variables and the joint variables. Contrary
to what is typically the case for serial link manipulators, the time sequence of the
controls is necessary to determine the final position of & two-wheeled platform. For
example, if both wheels rotate together and move a meter, the platform will move
straight forward a meter, while if the right wheel moves a meter first and then the
left wheel 1.oves a meter, the platform will move to the left to a point less than a
meter away. Although the final values of the joint variables and the final platform
orientation are the same for the twc maneuvers, the final values for the platform
position are not the same.
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KINEMATIC EQUATIONS OF MOTION FOR THE PLATFORM

Fig. 1. The conflguration of the platform is defined by the position (z,y) and
orientation (¢).
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3. THE GENERAL FCRM OF
THE OPTIMAL CONTROLS

Since its discovery in 1956, the Pontryagin maximum  principle
[Pontryagin (1986)] has been used to solve a wide variety of optimization problems.
In this section we utilize the .naximum principle to derive the conditions for time
optimality of the platform motion between the initial and final configurations. For
our problem, we can define five state variables: z; = z,27 = y,23 = ¢, 74 = wp,
and r5 = wy, and rewrite the equations of motion (1) to (5) as:

iy = filz,u) = (z4 + 75) cO8 73/2 (®)
gy = kfg‘(w,‘u) = (z+ 2 sin 23 /2 (9)
i5 = fa(z,u) = (24 — 25)/D (10)
= fulzv) = (1)

25 = fs(z,u) =uy (12)

where the two control variables are: u; = up and ugy = up.
In vector notation, the equations of motion for the state vector z are:

z=f(z,u) , (13)

and the optimization problem is to find a control vector [u] that will move the
system from the initial state z° to the final state £' while minimizing an objective
functional. For our case, the goal is to minimize the transition time, assuming that
the wheel accelerations are bounded: |u1| < @max and |uzl < amax.

Pontryagin introduces a system of dual variables [¢] that satisfy:

o - ofi(z,u) .
i = ?;1 9, b, i=1,2,...,n , (14)
with initial conditions:
'r/)i(t()):/\i i=1,2a"~’n 3 (15)

where, in our problem, n = 5.

If we choose an admissible control and have the solution of Eq. (13), Eqgs. (14)
are !inear and homogeneous and have a unique solution for given initial conditions.
If the equations of motion and the dual variables are combined into a single
Hamiltonian H:

o
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6 THE GENERAL FORM OF THE OPTIMAL CONTROLS

Blaw)=3_wifi(su) (16)
i=1

then the PMP states that [see Theorem 2 in Pontryagin (1986)], if w is an admissible
conﬁmlt ﬂhaﬁ transfers the phase point from the initial state 2(ty) = z% to the goal
state o' = x(t) at some time ¢y, then w(t) and the trajectory z(t) are time-optimal
if there exists a non-zero continous vector function (14(t),...9Yn(t)) defined by
Eq. (14), and suck that w(t) maximizes the function H for all t to <t < ty.

For our mobile platform problem defined by Egs. (8) through (12), the
Hamiltonivm: fvnction H is:

H(b, @,w) = dufi + dofo + ¥y fa + Yawr + Ysus (17)

where the functions fi(z, w) are defined by Eqs. (8) to (12). The equations for the
dual variables are:

P =0 (18)
11[)2 = 0 Y .‘ (1]9)
s = g(as)(zq + T5) ¥ (20)
o = —g'(22) ~ 2/ D (21)
s = —g'(za) + 2 /D (22)
where g(z3) and ¢'(z;) are defined by:
g(z3) = () sinzy — 1y cosxy)/2 (23)
di ]
g'(z3) = —%(5-3-2 = (1)1 cos 2y + Yy sinzy)/2 (24)
3

The platform moves from an arbitrary initial configuration to an arbitrary final
configuration. We can choose the coordinate system such that the initial position is
(0,0) and the initial orientation is ¢ = 0. The boundamy conditions corrmpondlnp:
to the robot being at rest at the initial state 2° = z(to) and final state z! = z(#,),

are -
ﬂi’(ffin‘r) = (0,0,0,0, 0) (25)

L R L L T L Rl T T T T L I L S AR (RN R U U - L T T A B L R L AR L (EL R I



THE GENERAL FORM OF THE OPTIMAL CONTROLS 7

When the final state is fully specified (position and orientation are given),
the final values of the dual variables are arbitrary. When the final state is not
fully specified, the tramsversality condition determines the final values of the dual
variables [see Theorem 3 in P’omtryagin (1986)]. For example, when the final state
is. a position (amd the final orientation is not sp«cxﬁedf) the final value of the third
dual variable (i3) must be zero.

The optimal values for the control vartables (u; and wy) are those that. maximize
the Hamiltonian. From Eq. (17), it is clear that when the dual variables 4 and ¥y
are not zero, the optimal contrel is bang-bang; when 4 is positive, vy = gmax and
when 1y is negative, u; = —anax, and similarly for ¢5 and wy. If ¥y or ¥y is zero
for a finite time interval, the optimal control becomes singular. In the remaining
of this section we will prove that all possible optimal solutions of the system are
bang-bang,

Theorem

All optimal control solutions for the system defined by Eqs. (8) througl (12),
(25) and (2€) are bang-bang. ‘

Proof

From Egq. (17), we know that when the dual variables v, and 1y are not zero,
the optimal coatrol is bang-bang; and when ¥, or s is zern for a finite interval,
the optimal control is singular. To prove the theorem, we will investigate all the
singular solutions and show that they are either impossible or bang-bang,.

When the optimal control is singular, 1y (or ¢s) is zero for a “Inite interval. If
Yy is zero for a finite time interval, [t,t3], all of its derivatives are also zero on the
interval and Eq. (21) yields:

1y = —Dg'(z3) (27)

The time derivative of Eq. (27) implies:

o = =D, = g(a)as — o) (28)

where we have used the fact that i"-—(ﬁ“—‘“ = —g.
Since the right sides of Egs. (‘?0) :md (28) must be equal, we have:

" g(za)zs =0 (29)
Both g(x3) and z5 are continuous functions. If there is a point in [ty, #3] where

is not equal to zero, then there is a finite interval where z5 is not equal to zero and
on this subinterval g(3) is zero. Similarly, if there is a point in [#,, t3] where g(z;)

D W we e T T TIT T S e e I TR TR IR L R IR RENERRELY ot 1T IR TTANEY TR LR T AR TURY o T I O TR



8 THE GENERAL FORM OF THE OPTIMAL CONTROLS

is not. equal to zero, then there is 2 subinterval where z5 is zero. Thus, we will
consider two general cases:

Case 1.  g(z3 y=0 (30

Case2. z5=0 (31)

To simplify the notation, we will continue to label the subintervals of [t2,t3] where
Egs. (30) or (31) are valid [t2, t3].

Case 1 can be subdivided into four subcases:

Case 1.1 ¢1#0 , ¥ #0. (32)
Case 1.2, ¢y =0 1y #0. | (33)
Case 1.3. ¥y #0 1o = 0. (34)
Case 1.4. ¢y =1 =0 (35)

For the first three subcases, 73 is a constant on the interval [t2,t3]):
Case 1.1. ton Ty = 'lz’g/w];
Case 1.2. coszy3 =0

Case1.3. sinzy=9
Consider Cases 1.1, 1.2, and 1.3

Since 3y and 1, ave constant (from Eqs. (18) and (16)) and g(z3) = 0, z; is
a constant and £3 = 0 on the finite interval [t;,#3]. Thus, these cases correspond
to the robot moving along a straight line over a finite interval of time, (the angle
¢ = z3 given by Eqgs. (32), (33), or (34)) and Eq. (10) requires that z, = zs,
i.e., that the controls on both wheels be equal, u;, = 74 = &5 = uy, over the interval
[t2,t2]. Now, since ¢ = 0, 13 = 0 (using Eq. (20)), aad 3 is a constant. Since ¢’
is also a constant (11, Y3, and z; are constants in Eq. (24)), s is constant (from
Eq. (22)).

If ¢"5 is a non-zero constant, then s varies linearly, and the optimal controls s,
and u,; are equal and bang-bang over the interval [ty,t3]. If ¢5 is zero, then Eq. (22)
yields 3 = Dg'(z3) which, with Eq. (27), implies ¢3 = ¢'(z3) = 0. If both ¢ = 0
and g’ = 0, then ¥y = ¢ = 0. This violates the assumptions in Eqgs. (32), (33), or
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(34) and consequently s = 0 is not a valid solution for these cases. Thus, for cases
1.1, 1.2, and 1.3, the only admissible controls are bang-bang.

Consider Case 1.4

If Y1 = 3o = 0 over the interval [t2,1;], they are also zero over the entire
trajectory (from Eqs. (18) and (19)). Thus ¢ = ¢’ = 0 and ¢3 = 0 (from Eq. (20))
over the entire trajectory. Furthermore, since 13 is a constant and i3 = O (from
Eq. (27)) on the interval [t5,#3], 13 = 0 over the entire trajectory. Consequently,
1/:’5 = 0 from Eq. (22), requiring the dual variable 5 to be constant over the entire
trajectory. This is not arn admissible case for our problem since the corresponding
extremal controls u; would not change sign over the eatire trajectory, leading to a
linearly increasing or decreasing wheel velocity and making Eq. (26) impossible to
satisfy. Thus case 1.4/ does not lead to admissible controls for our problem.

Consider Case 2

If z5 = 0 over a finite time interval [t;,t3], then the control uz = 5 = 0 over the
interval, and consequently its dual variable 15 and its derivative s must be zero
over the entire finite interval. Since ¥, = ¢ = 0, Eqgs. (21) and (22) require 13 =0
and g'(z3) = 0 over the entire interval, and consequently v; = 0. Equation (20)
 thus requires either that z4 = z5 = 0, which is an inadmissible case (since, from
Egs. (8) through (12), no motion of the robot would take plact over a finite time
interval during the trajectory, which consequently can not be time optimal), or that
g(z3) = 0 over the finite time interval. If both g and g’ are zero over the finite time
interval, then 1y = 19 = 0. Since ¥y and ¥, are constant over the entire trajectory
(from Eqgs. (18) and (19)), they must be zero over the entire trajectory and Eq. (23),
(24), and (20) lead to g = g’ = 13 = 0 over the entire trajectory. Consequently,
since 1Py = 0 over the finite time interval and 3 = 0 over the entire trajectory,
3 = 0 and ¥4 = 95 = 0 (from Eqs. (21) and (22)) over the entire trajectory.
Therefore, since 1y = 0 and 15 = 0 over the finite interval, they also are zero on
the entire trajectory. Thus this case is not admissible since all dual variables v; are
zero over the entire trajectory.

Since the eguations for 14 and s have the same structure, similar arguments
demonstrate that singular solutions corresponding to the dual variable 15 being
zero over a finite time interval lead to optimal controls that are bang-bang, or are
inadmissible.

If 14 = 5 = 0 over a finite interval [t3, 13}, then ¢4 = 15 = 0 over the interval
and Eqs. (21) and (22) require that g'(z3) = tb3 = 0 over the interval. Since v
and ¥y are constant, ¢’'(z3) = 0 implies that z3 is constant over the entire interval.
Thus £3 = 0 and, from Eq. (10), 4 = z5 over the eutire interval. On the other
hand, 3 = 0 over the entire interval implies 3 = 0, and Eq. (20) requires either
z4 = —xy which, with the conclusion of the previous sentence, leads to z4 = z5 =0
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(i.e., the robot does not move during the entire interval), which is not an admissible
solution; or g{z3) = 0, which has been treated as Case 1 above and shown to lead
to bang-bang or inadmissible controls. Thus, all optimal control solutions for the
system dcfined by Eqs. (8) through (12), (25), and (26) are bang-bang.

A similar result was recently outlined by Jacobs, Laumond and Rege (1691},
however, without consideration given to cases 1.2, 1.3, 1.4, and ¢4 = 5 = 0 in the
demonstration. :

g
q
A
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4. PARAMETERIZATION OF THE
BANG-BANG TRAJECTORIES

The Pontryagin maximum principle converts the problem of time-optimal path
planning from a problem involving trajectories in state space and time to a static
optimization problem in parameter space. Two sets of parameters are available:
the initial conditions for the dual variables [A¢] and the switch times. Using either
set of parameters, nonlinear search techniques can be used to determine bang-bang
control trajectories that move the robot from the initial state to the final state. In
the remainder of this paper, we will use the switch times to parameterize the control
trajectories and the corresponding robots paths. The PMP provides necessary (but -
not sufficient) conditions for an optimal trajectory. In the following sections, we
will indeed find trajectories that satisfy the necessary conditions but are not time-
optimal. To show that a bang-bang trajectory is time-optimal, we must show that
it satisfies the necessary conditions and that the corresponding robot path is faster
than all alternative paths.

To show that a bang-bang trajectory satisfies the necessary conditions, we will
numerically integrate the controls of the wheels to calculate the Cartesian path
of the robot and some auxiliary variables, use the auxiliary variables to calculate
the initial conditions for the dual variables, numerically integrate to calculate the
dual variables, and verify that the necessary conditions are satisfied by showing
that the dual variables are consistent with the bang-bang controls. In this sertinn,
we parameterize the trajectories, define the auxiliary variables, and show how to
calculate the initial conditions for the dual variables. In the next two sections, we
will explore the space of bang-bang trajectories and uniquely identify those that are
time-optimal.

We have proven that the optimal controls are bang-bang. Thus, each wheel
is always either accelerating or decelerating at the maximum rate (amax ), and the
wheel velocity trajectories consist of successive segments of linearly increasing or
decreasing velocity. The wheel acceleration changes sign at a switch time. We can
characterize a wheel control trajectory by its number of switch times, and a robot
path by its total number of switch times and their distribution on either of the two
wheels. We will find that, for given total trajectory times, a specific set of robot
paths with a small number of switch times reach farther (and therefore are faster)
than all paths with a larger number of switch times. At the lower bound, the path
with the smallest number of switch times has two (one for each wheel). However,
uaere are only two paths with two switch times: a translation straight forward and
a pure rotation. On the other hand, we know that the minimum length paths for
a skid-steer platform consist of sequences of translations and rotations. A rotation
followed by a translation can reach n'iy position and requires five switch times,
while a path consisting of a rotation, a translation, and a rotation can reach any
configuration and has eight switch times. In the next section, we will show that the
robot can reach any position in the plane using specific paths involving a total of
three switch times (one on one wheel, two on the other), and does so faster than

11
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12 PARAMETERIZATION OF THE BANG-BANG TRAJECTORIES

with a greater number of switch times. Similarly, we will show that, using specific
paths with four switch times, the robot can reach any configuration faster than with
paths involving a greater number of switch times.

First, we derive an analytical expression for the displacement of a single wheel
with four switch times. By adjusting parameters, the expression will yield the
displacement for motions with one, two, or three switch times. We assume that
the initial value for the wheel displacement () is zero. Since the initial and final
values for the wheel velocity are zero, the wheel will accelerate during half of the
trajectory time, and it will decelerate during the other half. We will denote by T
half of the total trajectory time.

A control trajectory with four switch times has five time segments denoted by
(7i). Fouv two wheels, we can define ten segments; our notation for the right segments
will be (71, 73. 75, 77, 79), while the left segrnents will be (2, 74, 76, 78, T10). Let ug

be the initial acceleration on the right wheel. The control trajectory for the right

wheel will be: ug for [0, 7], —ug for {ry, 7y + 73], up for [r, + 73, 71 + 73 + 73], —up
for [ri+ 475, i +m3+ 75+ 7], and ug for [r; + 73 + 75 + 77, 2T]. Since the
wheel will accelerate durmg half of the trajectory, and it will decelerate during the

other half:

T1+’7'5+7'9:T (36)

T3+ T =T | (37)

Integrating Eqs. (4) and (6), we can calculate the final value of the right wheel
displacement for a four-switcl-time trajectory of that wheel:

0r(2T) = up[—27375 + 2(1y + 75)T — T?] (38)

Equation (38) relates the wheel displacement to the first three segments. Using
Eqgs. (36) and (37), we can relate the wheel displacement to the last three segments:

8r(2T) = up[2rsm7 — 2(7s + 79)T + T?) (39)

The similar expressions for the displacement of the left wheel are:

T2+76+710=T (40)

T4+ Ty =T (41)

0.(2T) = uy[—2r476 + 2(r + 76)T ~ T? (42)
8.(2T) = up[2re7s — 2(76 + 710)T + T?] (43)

with u representing the initial acceleration of the left wheel.
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PARAMETERIZATION OF THE BANG-BANG TRAJECTORIES 13

4.1 ANALYTICAL RELATIONSHIP BETWEEN THE SEGMENTS

AND THE FINAL ORIENTATION ‘

Although the equations of motion for the Cartesian position variables (z,y)
do not have general analytical solutions, a solution for the Cartesian orientation
variable ¢ can be derived analytically. Using Eqs. (6) and (7), Eq. (1) may be
written:

$=(6r—6.)/D (44)
Since the initial conditions for the wheel displacement joint variables are zero,
Eq. (44) can be integrated to yield:

6= b0 +(0r —6,)/D (45)

where ¢ is the initial value of the robot’s orientation.

Equations (38), (39), (42), and (43) relate the segment lengths to the wheels’
displacement, while Eq. (45) relates the wheels’ displacement to the change in
orientation. Given segment lengths for both wheels, the final change in orientation
can be calculated. Alternatively, given the desired final orientation of the robot,
Eq. (45) provides a constraint on the segment lengths.

Consider a robot path involving three switch times; one on the right wheel
and two on the left wheel (the segment lengths are: 7 = 73 = 14 = T, and
Ts = r7 = Tg = Ty = Ty9 = 0). Since 7, + 76 = T, this path is defined by two
parameters (7, and T'). Using Eqs. (39) and (43), the final wheel displacements are:

VAL m S e sl e O PO e
e R S R e T g i e

6r = ugT? (46)
b, = uL[T2 — 276T] (47)

Since the initial value of the robot’s orientation is zero, the final change in
orientation is:

< it s B g e ot S

¢D = uRT2 —--W.LL[T2 — 21T] (48)

If up = uy = u, the final orientation 1s:

oD = 2urT (49)
while if ugp = —uy = u, the final orientation is:
¢D = 2ur,T (50)
. If the final orientation is specified and is positive (negative), then u must be positive

(negative). Moreover, if a final orientation is specified for a three-switch-times path,
Egs. (49) and (50) may not have acceptable solutions for small values of T, since
0 < 7 £ T. On the other hand, if no constraint on the final orientation is specified
for a path, Eqs. (49) and (50) show that as r; or 7¢ varies from zero to T, the
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14 PARAMETERIZATION OF THE BANG-BANG TRAJECTORIES

change in orientation varies continuously from zero (the motion is a translation
straight forward) to 2uT?/D (the motion is a pure rotation).

4.2 CALCULATION OF THE DUAL VARIABLES

To verify that a bang-bang trajectory satisfies the necessary conditions, we must
calculate the dual variables and show that they are consistent with the control paths
li.e., that u; is positive (negativej when 14 is positive (negative), etc.]. The dual
variables satisfy Eqs. (18) to (22), with initial conditions given by Eq. (15). Since
this set of equations is linear and homogeneous, it has a unique solution for any
set of initial conditions ();). Thus, the initial conditions determine the trajectories
of the dual variables. From Eqs. (18) and (19), the first two dual variables are
constants (1; = A; and Y2 = A2). Using Eqs. (8), (9), (20), and (23), the third
dual variable satisfies:

Y3 =12y — Yoy (51)
Since the initial position is (0,0), Eq. (51) can be integrated:

Y3 = AiT2 — ATy + A3 (52)

The fourth and fifth dual variables satisfy Eqs. (21) and (22). The right sides of
these equations depend on the first three state variables. To integrate the equations,
we define four auxiliary variables (z;) by:

2, = sin(z3) z;(0) =0 (53)

27 = cos(z3) 22(0) =0 | (54)

33 =2 23(0) =0 : (55)

24 = 29 24(0) =0 (56)

Using the auxiliary variables, the solutions for the fourth and fifth dual variables
are:

hy = —=A(22/2 4 24/ D) + Aa(23/D = 21/2) = X3(~/D) + My (87)

Y5 = Ai(24/D — 22/2) = da(21/2+ 23/ D) + As(7/D) + As (58)

Since the switch times of a trajectory correspond to times when either 14 or v¥s -
changes sign, one of the dual variables must be zero at the switch time. Thus, the
initial conditions for the dual variables can be determined by solving the matrix
equation: A\ = 0, where AT = (A,,..., Xs) and the rows of the matrix A are
defined by either Eqs. (57) or (58) applied at the switch times. If the switch time
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PARAMETERIZATION OF THE BANG-BANG TRAJECTORIES 15

is for the right wheel, 14 is equal to zero and Eq. (57) defines a row of 4. If the
switch time is for the left wheel, 5 is equal to zero and Eq. (58) defines a row of
A. It is interesting to note here that, in the general case, a control path with n
switch times will produce a matrix with n rows. For the vector A to be nonzero,
the rank of 4 must be four or less. In other words, if a control path has less than
five switch times, a nonzero solution is possible. If the control path has more than
four gwitch times, the columns of the A matrix must be linearly dependent. Thus,
in the next section, we will first explore the space of robot paths involving four
switch times in order to investigate general solutions of our problerm when the final
configuration (position and orientation) is specified. A particular case occurs when
the final state is a position (and the final orientation is not specified). In that case,
the transversality condition [see Pontryagin (1986) Theorem 3, page 50] requires
that the final value of the third dual variable be zero and Eq. (52) defines a row of
A. Thus, when the final state is a position, a path with three switch times would
produce a four row matrix. In the next section, we will therefore explore the space
of robot paths involving three switch times to investigate general solutions of the
problem when the final 2rientation is not specified.
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5. BANG-BANG TRAJECTORIES

Our objective is to move from an arbitrary initial configuration to an arbitrary
final configuration in minimum time. Each configuration is described by three
coordinates (z,y, ¢), where (z,y) is the location of the midpoint betweer. the two
wheels and 6 is the orientation of the robot. We can choose the coordinate system
such that the initial configuration is (0,0,0). The initial and final values for the
wheel velocities (wp and wy) are zero.

We will first explore the spaces of paths with three and four switch times. With
the parameterization described in the previous section, we can vary the available
parameters over the entire range, and for each set of parameter values, we can
numerically integrate the equations of motion using a fourth-order Runge-Kutta
method [Press (1988)] to determine the Cartesian path of the piatform and its final
position and orientation. To produce the example figures in this section, we have
used @max = 0.5 meters/second? for the acceleration bound on the wheels, and
D = 0.76 meters for the wheels’ spacing.

5.1 TRAJECTORIES TO A POINT

When the goal is to reach a given point with no specified orientation, the
problem is symmetricai and can be solved considering only the first quadrant. If
any point in the first quadrant can be reached, symmetrical points in the other three
quadrants can be reached by changing the sign of the wheels’ controls, i.e., changing
the initial direction of motion (symmetry about the y axis) or by exchanging the
trajectories for the two wheels (symmetry about the z axis). Given the symmetry
cond:tions, we are exploring three switch times trajectories involving one switch time
for the right wheel and two for the left wheel. As mentioned previously, the three
switch time trajectories with no specified final orientation can be parameterized
using two parameters and can be of two types, which we refer to as: Type ++ (on
the initial segment, up = u = u) and Type +— (ugp = —ug = u).

Figure 2 shows the final locations of the platform for the two types of solutions
when one of the parameters, the half timeT of the trajectory, is kept at a fixed
value, T = /10 sec. The Type ++ trajectories initiate with a translation and end
with a rotation, while the Type +— trajectaries initiate with a rotation and end
with a translation. As the parameter (7 == 73 or 7¢) increases from zero to T, the
final positions of the robot for both types of trajectories describe a curve from the
point {5,0) to the origin, with the motion varying from a pure translation reaching
the point (5,0) for 7 = 0, to a pure rotation of the robot at the origin for r = T.

Considering the first quadrant and all symmetries involved in the problem,
it is clear that the trajectories of Type +- that end on the arc AB, which we
thereafter call “first arc,” can reach points further away from the origin than the
other trajectories of Type +— and all trajectories of the Type -++. In Fig. 3, the
final platform locations which correspond to first arcs are plotted fo: several values
of T. Since for pure translation, the platform moves a distance z along the z-axis:

17



18 BANG-BANG TRAJECTORIES

r=uT? | (59)
we have used the values T? = 2,4,6,8, and 10 (consequently, 2 = 1,2,3,4, and §
when y = 0 and u = amax = .5 m/sec). From Figs. 2 and 3 it is clear that, for

a constant value of T, the final location of the platform sweeps through the first
quadrant on a first arc as the parameter 7 increases from zero and, for increasing
values of T, the first arcs continuously expand toward higher values of (z,y). Thus,
each point in the first quadrant can be reached by a three-switch-time trajectory
ending on a first arc, and there is a one- to-one relationship between the points in the
first quadrant and the parameter set (T, 7) which uniquely defines the trajectories
reaching the first arcs.

Each first arc is uniquely defined by its value of T and the range of the parameter
T required to sweep the first quadrant: 0 < 7 < 7™, where the value 7™(T)
corresponds to the intersection with the y axis. The ratio of 7™ and T is displayed
in Fig. 4 as a function of T. As discussed previously with Egs. (49) and (50), there is
a minimum half time Ty, required to rotate 90 degrees. For the robot parameter
values used in the figures, Tpin = 1.095. When T is less than 1.065, 7™ is aot
defined. When T is equal to 1.095, 7™ = T and the ratio is 1.0. As T increases, the
ratio decreases as expected, reaching 0.35 when T = 2.0 and 0.09 when T = 4.0.
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Fig. 2. Points that can be reached by trajectories with three switch times for a
constant value of T = /10 sec.
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Fig. 3. Curves thowing the location of the furthest points in the first ¢quadrant

T (T? = 2.4,8,8, and 10).

Fig. 4.
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20 BANG-BANG TRAJECTORIES

Based ot the above considerations, the remaining set of three-switch-time
trajectories that are candidates for time-optimal trajectories to a point, is the
uniquely defined set of trajectories reaching points on first arcs. Sample Cartesian
paths of the robot for the cundidate three-switch-time trajectories are displayed in
Fig. 5 for the case where T? = 10. Note that, at the end of all paths, both wheels
have the same velocity and the Cartesian paths are line segments.

Fig. 6. Cartesian paths of tha robot for three-switch-time trajectories ending on
the first arc defined by T2 = 10.

5.2 TRAJECTORIES TO A CONFIGURATION

In a similar manner, and based on the discussion of Section 4.2, we can use
the parameterization developed in 4.1 to explore the space of four-switck-time
trajectories when the goal is to reach a given configuration. In this case, the
problem is not symruetrical about the r and y axes and the four quadrants have to
be explored.

A four-switch-time trajectory can have either two switch times for each wheel
(Type 22) or one switch time for one wheel and three switch times for the other
wheel (Type 13). For the Type 22 trajectories, the segment lengths satisfy: 73 =
=T, m=1m9=T9=710=0, T1+73 = T and 7p+76 = T. With these conditions
and the constraint on the final orientation given by Eqgs. (38), (42), and (45), these
trajectories can be defined with two parameters, e.g., 71 or 73, and T. Similarly,
for the Type 13 trajectories, the segment lengths satisfy: 7y =73 =T, 5= =
9 =T10=0, 7o +7 =T, and 74 + 73 = T (one switch time on the right wheel
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BANG-BANG TRAJECTORIES 21

and three on the left), or: 7o =my =T, 7. = T = 19 = Tyo = 0, 7y + 75 = T, and

g+ 77 = T (three switch times on the right wheel and or »n the left). With the

constraint on the finall orientation, these trajectories cam wiso be defined with two
parameters 7y or 7y, and T; or ry or 73, and T.
Figure 6 displays: the points: that can be reached by four-switich-time trajectories

when the orientation is ¢ = 0.8 radians and T? = 10. Since we have two types of

trajectories and four combinations of initial acceleration (++, ——, +—, —+), there
are eight curve segments displayed in' Fig. 6. There are four significant. intersection
points (C, D, E, F) in the figure. These are points where the four-switch-time
trajectories become three-switch-time trajectories of the Type 12, i.e., where one
of their segment: 7; vanishes. For example, the two points, C' and D, in the fipst
quadrant are where the two curves in Fig. 2 reach an orientation of 0.8 radians (at.
the points, Eqgs. (49) and (50) are satisfied). All of the eight. curve segnents start at
one of these four points and end at another. The same pattern is observed in Figs. 7
and' 8 which display the points that can be reached by four-switch-time trajectories
when the final orientation is ¢ = 1.57 radians and ¢ = 3.14 radians (and T? = 10).
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Fig. 6. Points that can be reached by trajectories with four switch times for a
constant value of T(T? =10) when the final orientation is 0.8 radians.
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22 BANG-BANG TRAJECTORIES
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Fig. 7. Points that can be reached by trajectories. with four switch times for a
constant value of T(T? = 10) when the final orientation is 1.57 radians.
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Fig. 8. Points that can be reached by trajectories with four switch times for a
constant value of T(T? = 10) when the final orientation is 3.14 radians.
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BANG-BANG TRAJECTORIES 23

Figures 6 and 7 are not symmetrical about the z or y axis. However, we can
show that the two axes of symmetry are rotated by ¢/2 (thus, Fig. 8 is symmetrical
about the z and y axis) and identify the location of the points G and H. Consider an
arbitrary bang-bang trajectory that starts at (0,0,0) and reaches (z*,y"', ¢). Suppose
that a second trajectory leaves. (0,0,0) with the time reverse control trajectory (the
length of the initial segment of the second trajectory will be equal to the length of
the final segment of the first trajectory but the signs of the control variables will
be reversed). The holonomic variables (wheel rotation and final orientation) will
e the same for the two trajectories but the nonholonomic variables (z,y) will be
different. Thus, the second trajectory will reach (z2,y?, #).

If we let time run backwards, the second trajectory is identical to the first and

- we can derive a mapping from (z', yl ) to (z2,y?):

AT T

? =1 cosd+ y'sing | (60)

v =c'sing — ylcosg (61)

The mapping applies to any arbitrary bang-bang trajectory. On the first line of
syminetry, the second point is the same as the first [(z!,y') = (2?,4?) = (z, y)]:

y/r =sing/(l + cos @) = (1 —~ cos @)/ sin ¢ = tan(p/2) (62)

Thus, the direction of the first line of symmetry is ¢/2. On the second line of
symmetry, the second point is reflected through the origin [(z},y') = (-z2, —y*) =
(z,9)]:

y/r =—~(1+4+cos¢)/sing = —sin¢/(1 — cos @) = tan[(r + ¢)/2] (63)

Thus, the direction of the second line of symmetry is (7 + ¢)/2.

We can move the final configuration across the first line of symmetry by time
reversing the congrol trajectory. We can move the final configuration across the
second line of symmetry by reversing the control trajectory between the wheels and
by changing the signs of the controls (if we do not reverse the signs of the wheel
rotations, the sign of the final orientation will be reversed).

Just as in Section 5.1, we can define a set of candidates for time-optimality as
the set of trajectories reaching furthest in the plane for a given value of T. F n
Figs. 6 to 8, it can be seen that the eavelop (C D H E F G C) is reachec ny
trajectories of Type 13+—, 13—+, and some of the Type 22+ — and 22—+ that are
uniquely defined by the points G and H.

T R T e AT T I B L R T A A e L A R
i

[T

TR AU



e

M

IR

24 BANG-BANG TRAJECTORIES

Just like in Section 5.1, we can also show that the candidate four-switch-time

trajectories cam reach any configuration by varying the half time parameter T.

Figures. 9 and 10 illustrate the continuous sweeping through all of the points in
the plane as the parameter T increases. In Fig. 9 the final orientation is ¢ =
0.80 radians, while in Fig. 10 the final orientation is ¢ = 3.14 radians. In both
figures, the curves are for T? = 2,4,6,8, and 10, and amax = 0.5 meters/second.?
Figure 10 includes only four sets of curves (rather than five like Fig. 9) because the
time required for a pure rotation of 3.14 radians (T? = 2.4) is longer than the first
value for the parameter T(T? = 2). ‘
Sample Cartesian paths of the robot for some of these candidate time-optimal
four-switch-time trajectories to a configuration are displayed (for the case where
T? = 10) in Figs. 11 and 12 for final orientations of ¢ = 0.8 radians and
¢ = 3.14 radians, respectively. Note that, as the control trajectories evolve from
Type 22—+ to 13+~ to 22+—, the Cartesian trajectories change continuously.

Fig. 9. Curves showing the location of the furthest points that can be reached by
trajectories with four switch times for several values of T{1? = 2,4,6,8, and 10) when
the final orientation is 0.8 radians.
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BANG-BANG TRAJECTORIES 25

Fig. 10. Curves showing the location of points that can be reached by trajectories
with four switch times for several values of T(T? =4, 6,8, and 10) when the final
orientation is 3.14 radians.

Fig. 11. Cartesian trajectories for paths with four switch times for a constant
value of T(T? = 10) when the final orientation is 0.8 radians.
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26 BANG-BANG TRAJECTORIES

5
4d
y
v )
3 4 5
Fig. 12. Cartesian trajectories for paths with four switch times for a constant
value of T(T? = 10) when the final orientation is 3.14 radians.
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6. OPTIMAL TRAJECTORIES

In this section, we show that the candidate three-switch-time trajectories
identified in the previous section provide time optimal paths to a position,
and the candidate four-switch-time trajectories provide time optimal paths to a
configuration.

The maximum principle provides necessary (but not sufficient) conditions for
an optimal trajectory. To show that a bang-bang trajectory is optimal, we must
show that it satisfies the necessary conditions and that it is better than alternative
paths. Indeed, we will find that some trajectories satisfy the necessary conditions
but are not optimal. Since the candidate sets of trajectories have been identified
through comparisons with trajectories involving the minimum needed number of
switch times, we show that they are better than alternative paths by comparing
them to trajectories with greater numbers of switch times.

To verify that a bang-bang trajectory satisfies the necessary conditions, we must
‘calculate the dual variables and show that they are consistent with the control paths
[that u, is positive (negative) when 14 is positive (negative), etc.]. In Section 4,
we defined four auxiliary variables (z;) that can be used to calculate the initial
conditions for the dual variables. Following the procedure described in section four,
we can calculate the dual variables for any bang-bang solution.

We will consider first the three switch time trajectories to a position. Consider
the results shown in Fig. 2. Our subset of candidate time-optimal-trajectories
includes the trajectories of the Type 12+~ that end on the first arc, i.e., the portion
of the curve that lies in the first quadrant. We have calculated the dual variables
for a wide range of trajectories and found that all 124+— trajectories that end on
first arcs satisfy the necessary conditions. Typical results for a trajectory defined
by (T, 7) = (v/10, .4) are displayed in Fig. 13. The trajectory reaches the point
(0.66, 4.03). For the right wheel, the acceleration is positive for (0.0 to 3.16) and
negative for (3.16 to 6.32). The corresponding dual variable (14) is found positive
for (0.0 to 3.16) and negative for (3.16 to 6.32). For the left wheel, the acceleration
is negative for (0.0 to 0.40), positive for (0.40 to 3.56) and negative for (3.56 to
6.32). The corresponding dual variable (15) is found negative for (0.0 to 0.40),
positive for (0.40 to 3.56) and negative for (3.56 to 6.32). Finally, the transversality
condition requiring that 13 == 0.0 at the end of the trajectory is seen to be verified.

We have also calculated the dual variables for the other 12+— trajectories, and
it is interesting to note that they, too, satisfy the necessary conditions except for
those that reach points on the spiral after it reenters the first quadrant (and the
12+— trajectories cross the 1244 trajectories). On the other hand, none of the
12+ trajectories satisfy the necessary conditions.
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28 OPTIMAL TRAJECTORIES

——  Psi(3]

time

Fig. 13. Dual variables for a three-switch-time trajectory leading to the point
(0.66, 4.03).

In a similar fashion, we have calculated the dual variables for a wide range of
candidate time-optimal trajectories to a configuration, i.e., those four-switch-time
trajectories that end at a configiration laying on CDHEF'G envelops of the type
shown in Fig. 6, and have found that they satisfy the PMP necessary conditions.
Typical results are displayed in Fig. 14 for a 22+— trajectory corresponding to
¢ = 0.8 radians, T? = 10 and 7; = 2.84. The trajectory reaches the configuration
(z,¥,6) = (0.20, 3.43, 0.8). For the right wheel, the acceleration is positive
for (0.0 to 2.84), negative for (2.84 to 6.00), and positive for (6.00 to 6.32).
The corresponding dual variable (1) is found respectively positive, negative, and
positive on the same interval. For the left wheel, the acceleration is negative for
(0.0 to 0.52), positive for (0.52 to 3.68) and negative for (3.68 to 6.32), and the
corresponding dual variable (45) is found appropriately negative, positive, and
negative on the same intervals.

In the remainder of this section, we numerically demonstrate that the
trajectories of the candidate sets are time-optimal by showing that they are faster
than trajectories with more switch times. If the total trajectory time (T) is fixed,
an optimal trajectory will reach further from the origin than any other trajectory.
We demonstrate numerically that the “best” trajectories with n switch times are
longer than the “best” trajectories with n + 1 switch times.



OPTIMAL TRAJECTORIES 29

! ‘ —o—  Psi[4}
~ —o— Psifs]

-1 T T T

0 2 4 8 8
Time

Fig. 14. Dual variables for a four-switch-time trajectory leading to the
configuration (0.20, 3.43, 0.80).

A trajectory with a total of n switch times (ng > 1 on the right wheel, n;, > 1 on
the left wheel, ng +ng = n) involves n + 2 time segments, 7;, which are distributed
on the two wheels with at least two segments on each wheel. Any n-switch-time
trajectory (with n+ 2 segments) of type ngny can be considered as an n + 1-switci-
time trajectory (with n + 3 segments) of type (ng + 1)ny or type ng(ny + 1) in
which the additioral time segment is set to zero. If we denote this additional time
segment by p ana use it as an additional trajectory parameter that can vary over
its entire feasible range within [0, T}, then all n + 1-switch-time trajectories can be
evolved from their parent n-switch-time trajectory. These can then be compared
to ascertain that the parent trajectories always reach further than their “offspring”
for a same total trajectory time.

First consider the special case when n = 2. The “best” trajectories with two
switch times are pure translation (as opposed to the pure rotation trajectories which
do not leave the origin). These trajectories are part of the candidate sets, although
they only reach points on the z axis. However, it is clear from Fig. 2 that when the
parameter is varied, the two-switch-time trajectories reach further than any three-
switch-time trajectories (or trajectories with any greater number of switch times)
that end on the z axis. Thus, to reach points on the z axis, these two-switch-time
trajectories clearly are the time-optimal ones.
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Consider the case when n = 3. The three switch trajectories in Fig. 2 have one
switch time on the right wheel and two switch times for the left wheel, i.e., they
are of Type 12. They have two types of offspring trajectories which are the only
two types of four-switch-time trajectories: Type 22 and Type 13. In this case, the
parameter p becomes either the third time segment on the right wheel or the fourth
time segment on the left wheel. When the parameter is zero, the four-switch-time
trajectories reduce to the three-switch-time trajectories. As the parameter increases,
the offspring trajectories spanned the space of four-switch-time trajectories.

Offspring four-switch-time trajectories are compared to the parent three-switch-
time trajectories in Fig. 15, for Type 22, and Fig. 16 for Type 13. In both cases,
results for the parameter increasing from 0.0 to 0.3 are displayed. As the parameter
increases, the end points of the four-switch-time trajectories move monotonically
toward the origin. Thus, the best three-switch-time trajectories always reach further
from the origin than the best four-switch-time trajectories and the distance between
the end points increases as the four switch paths become less like the three switch

paths.
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Fig. 15. Comparison of four-switch time trajectories of Type 22 and three-switch-
time trajectories.
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Fig. 16, Comparison of four-switch-time trajectories of Type 13 and three-switch-
time trajectories.

Consider the case when n = 4. There are four tjpes of five-switch-time
trajectories: Type 14, Type 23, Type 32, and Type 41, which can all be found
from the parents four-switch-time trajectories of Type 13 and 22, and compared to
them to show that they are not time optimal. Examples of the comparison results
are illustrated in Figs. 17 to 21. The Type 23+— trajectories are compared to
the Type 22-+— trajectories in Fig. 17. As the parameter increases from 0.0 to
0.3, the end points of the Type 23+— trajectories in the upper half plene move
monotonically toward the origin. They also move toward the z axis in the first
quadrant, but they always remain inside the Type 13+ — and Type 22++ curves.

The Type 23+— trajectories are compared to the Type 13+— trajectories in
Fig. 18. As the parameter increases from 0.0 to 0.3, the Type 23+— trajectories
move monotonically toward the origin. They also move radially but they always
remain inside the Type 22+— and Type 22++ curves.

The Type 23++ trajectories are compared to the Type 13-+ trajectories in
Fig. 19. As the parameter increases from 0.0 to 0.3, the end points of the Type 23+ +
trajectories move monotonically toward the origin. They also move radially but they
always remain inside the Type 224~ and Type 224+ curves.
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Fig. 17. Compurison of five-switch-tinie trajectories of Type 23+~ and four-
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Fig. 18. Comparison of five-switch-time trajectories of Type 23+— and four-
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Fig. 21. Comparison of five-switch-time trajectories of Type 144+ and four-
switch-time trajectories of Type 13.

The Type 14+— and Type 144+ trajectories are compared to the Type 13+—
and Type 13++ trajectories in Figs. 20 and 21. The end points of the Type 14
trajectories occupy the inside of the lens shaped region defined by the Type 13
trajectories. As the parameter increases from 0 to 1.0, the end points of the Type 14
trajectories sweep the interior of the lens with a upper left fixed point for the case
of Fig. 20, and a lower right fixed point for the case of Fig. 21.

Similar families of curve can be easily generated to compare parents and
offspring trajectories with five switch times and greater. The important general
result of such an exercise is that the best offspring trajectories never reach further
than their parent best candidate for a same allowed total trajectory time.

In summary, any point in the plane can be reached by a three-switch-time
trajectory which has been uniquely defined in Section 5.1 and shown to be time-
optimal by reaching the desired (z,y) position faster than other three-switch-time
trajectories or trajectories with a higher number of switch times. Similarly, any
configuration in the plane can be reached by a four-switch-time trajectory which
has beer uniquely defined in Section 5.2 and shown to be time-optimal by reaching
the configuration faster than other four-switch-time trajectories or trajectories with
a greater number of switch times.
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7. USE OF THE METHOD. FOR
ROBOT TRAJECTORY PLANNING

Given the results: of the previous sections, the implementiation on our robots
has focussed on developing the driver module for the robots, i.e., the module which
detiermines. the coatrol trajectories necessary for a time optimal motion of the
platform between given subgpals in a sequence provided by the route planmning
module [e.g., see Vasseur, Pin and Taylor (1992) or Andersen et al. (1992)].
Each subgoal is specified as a given configuration where the platform must stop
for the robot to perform some sensing, manipulation, or other tasks. In the first
st of the algoritbm, the arrival configuration is expressed as a relative position
and orientation with respect to the starting configuration. If a final orientation
is. not specified, then the time-optimal three-switch-time trajectory to a point. is
sought which, as explained in Section 5.1, is characterized by two parameters. If
a desired final orientation is specified| the time-optimal trajectory is a four-switcl-
time trajectory to a configuration and, as discussed in Section 5.2, Eq. (40) is first
used to reduce the number of unknown parameters from three to two. In both
cases, the same numerical search technique [Powell's method (Press (198%))], can
thus be used to determine the two parameters (T,r) for the given final location
(z,y) making use of the symmetries with respect to the z and y axes or ¢/2 and
(m 4+ ¢/2) axes as appropriate. From (T, 7) the switch times are easily calculated
and the controls directly sent to the robot actuator servos.

As an example of the gain obtained with the time-optimal trajectories compared
with minimum-length paths to a configuration (i.e., rotate, translate, rotate),
Table 1 shows the total trajectory times required to reach the point (3,3) at several
orientations. T,,¢ represents the optimal trajectory time, while T, is the time
required to execute the RTR (rotate, translate, rotate) strategy with bang-bang
controls. As the orientation increases from 0.80 to 3.14 radians, T,, increases
from 6.18 seconds to 7.15 seconds and the ratio, R = Top¢/Tr¢r, varies from .81 to
.71. These results are typical of the gains obtained with optimal paths over RTR.
paths, and average about 25% for trajectories to near configurations (less than
5 meters away from the start pcint). The gain, of course, decreases as the distance
separating the two configurations increase, as well as for trajectories approaching
pure translations on :he z axis (for which R = 1).

One of the concerns which usually arises when implementing time-optimal
controls on a robot relates to the capability of the controller to closely approximate
the bang-bang demands on the controls. For our 2,000 Ibs. HERMIES-III robot, the
results of well-tuned conventional PID wheel controllers (see Reister, 1992) proved
extremely satisfactory, as illustrated in Fig. 22. In the figure, the velocity target
on one of the wheels and the actual velocity profile obtained during experiments
with the roboi are displayed by the plain and dotted lines, respectively. The
velocity target is a three-switch-tizne trajectory of the wheel with a value of
Amax = .2 m/sec®. With this very good behavior of the controller, time-optimal
motions of the robot were realized with much less than 1% error.
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Table 1. Values of the optimal time (T,p¢). the time for rotate-translate-
rotate (T ,y,) with bang-bang controls, and their ratio (R) for paths that reach the
configuration (3,3,0). \
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Fig. 22. Measured velocity profile for the HERMIES-III robot as it follows a
bang-bang velocity target.




8. CONCLUSIONS

Our objective has been to plan time-optimal motions for a mobile robot with
two independently-driven non-steerable wheels from one static configuration to the
next in an unobstructed planar environment. We have used Pontryagin’s Maximum
Principle to prove that, when the maximum acceleration on each wheel is bounded;
all optimal trajectories are bang-bang. Using this result, we have proposed a
parameterization of the bang-bang trajectories which allows us to span the space
of trajectories and to show that any position in the plane can be reached by a path
with three switch times while any configuration can be reached by a path with four
switch times. With these results, we have identified two uniquely defined subsets
of paths as candidates for time-optimality.

We hase then followed a numerical procedure to verify that the paths in these
subsets are the time-optimal omes: we use the unique two parameters defining
each path to calculate the switch times for that path, numerically integrate the
control trajectories to calculate the Cartesian paths and some auxilary variables,
use the auxilary variables to calculate the initial conditions for the dual variables,
numerically integrate to calculate the dual variables, and verify that the Cartesian
paths are consistent with the bang-bang contrels as required by the maximum
principle. We then numerically showed that the paths in the subsets are time-
optimal by comparing them with other possible paths with larger numbers of switch
times. Being numerical, the procedure required an extensive examination of many
cases; however, it has allowed us to precisely identify and parameterize the set of
trajectories and associated controls that allow a robot to reach any configuration
in the plane in a time-optimal fashion, a problem which had eluded many efforts to
date.

With the set of time-optimal trajectories identified and parameterized, we have
then discussed how the results can be utilized in conjunction with a simple search
technique to implement the time-optimal controls on a mobile robot. For an
illustrative value of 0.5 m/sec? for the bound on acceleration, comparative exz...nles
indicate that the time-optimal paths can be up to 30% faster than rotate-translate-
rotate paths that use bang-bang controls.
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