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I. INTRODUCTION

This paper is a presentation of the capabilities of the KIVA com-

puter program,!’?

which was written to calculate both two- and three-
dimensional chemically reactive fluid flows. KIVA solves by finite-
difference techniques the unsteady equations for & multi-component,
chemically reactive mixture of ideal gases, together with those for an
evaporating liquid sprav. Although it was written with applications to
internal combustion enqgine research in mind, with modification KIVA can
be applied to a variety of other combustion and two-phase flow prob-
lems. This paper emphasizes the differences between KIVA and the
well~-known CONCHAS-SPRAY computer program3 and gives some advantages
and disadvantages of the numerical methodology in KIVA. We illustrate
the capabilities of the program by describing the results of numerical
test problems,

Like CONCHAS-SPRAY, KIVA utilizes the ALE (Arbitrary Lagrangian-
Eulerian) method.“ The advintages of the ALE method are its gecmetric
flexibility and the fact that the finite difference approximations can
be easily formulated to conserve momentum. A disadvantage of the ALE
method is its susceptibility to alternate node uncoupling.l'3 This
problem is more pronounced in KIVA than in CONCEAS-SPRAY, and in the
first section of this paper we tell why this is so and indicate some
ways tnat are heing considered to overcome the problen.

KIVA, like CONCHAS-SPRAY, possesses an arbitrary Mach number capa-
bpility--that is, the same computer program can be uced to calculate
both subsonic and supersonic flows. This capability is Iimplemented
differently, however, in KIVA. 1Instead of the implicit ICE method®
used in CONCHAS-SPRAY, KIVA uses an acoustic subcycling method® coupled
with methods for scaling the Mach number’ and for damping high frequen-
® The acoustic subcycling algorithm is described in
section two of this paper.

cy acoustic waves,

Section three describes two changes to the particle method? for
calculating liquid sprays. First, KIVA includes a calculation of drop
10 which influence significantly the dynam-
ics of many Diesel and stratified charge engine sprays. Second, KIVA

cnllisions and coalescence,



radii at injection. With the new sampling method, fewer particles are
needed to obtain results that are independent of number of particles.

We mention here three additional improvements in KIVA. The sub-
grid scale turbulence model used in CONCHAS-SPRAY has been generalized
by the inclusion of a transport equation for subgrid scale turbulent
kinetic energy. Second, KIVA has an improved method for calculating
chemical equilibria.il Third, KIVA has been written for the CRAY com-
puter and makes extensive use of the vector calculation feature of this
computer. Partly for this reason, KIVA can perform many two-dimension-
al calculations more than five times faster than CONCHAS-SPRAY,

II. THE ALE METHOD

In the ALE method, spatial differences are formed with respect to
a mesh of arbitrary quadrilateral cells in two dimensions and hexahe-
dral cells in three dimensicns. As is shown in Fig. 1, the positions
and velocities of cell vertices are stored in computer memory. All
thermodynamic variables are located at cell centers. The computational
cycle is divided into three phases (c¢f. Fig. 4). 1In phase A cthe chemi-
cal source terms and heat and mass diffusion terms are calculated. 1In
phase B, we calculate the pressure gradient accelerations and changes
to the density and internal energy due to divergence of the velocity
field. This is accomplished by the acoustic subcycling algorithm in
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Fig. 1. Typical Finite-difference cell.



KIVA. In phases A and B, the computational mesh is moved in a purely
Lagrangian fashion. 1In phase C the mesh is remapped or rezored into
another mesh, and the resulting convection is calculated. One appeal-
ing feature of the ALE method is that the mesh can be moved in a fairly
arbitrary fashion,

A disadvantage of the ALE method, the alternate node uncoupling
problem, arises because of the above cell variable locations. As has
12 yhen the ALE method is applied to the acoustic
wave equations on a two-dimensional square mesh, the resulting finite

been previously shown,

difference approximation to the Laplacian operator is skewed; that is

F(VP) (P + P + P + P - 4P, )

(1)

where FD( ) denctes the finite difference approximation to the quanti-~
ty in parentheses. It is seen that the sum of the subscripts in each
pressure term in (1) differs from i+j by an even integer. As a result,
pressure disturbances wili propagate in a "checkerboard" fashion; an
acoustic disturbance in a red checkerboard square or cell, will propa-
gate to red cells but not to black cells. This phenomenon is clearly
shown in Fig. 2, where plots are given of the computer-generated pres-
sure fields and velocity vectors from a KIVA calculation of the propa-
gation of a small pressure disturbance. 1Initial conditions were a qui-
escent, uniform fluid except in one cell where the pressure was slight-
ly elevated. The velocity vectors in Fig. 2 show the characteristic
"hourglass" mode that is nften seen in ALE-method calculations,
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Fig. 2. Velocity vectors and pressure contours showing alternate node
uncoupling.




Alternate node uncoupling is often seen in KIVA calculations in
which there are strongly exothermic chemical reactions. The reason is
that chemical reaction rates often have very sensitive temperature de-
pendencies. Small temperature differences give rise to large differ-
ences in reaction rate. Thus if in one computational cell the tempera-
ture is slightly elevated abcve that in neighboring cells, the elevated
local heat release rate gives rise to a pressure disturbance that will
generate numerical pressure and velocity oscillations, just as in the
example of Fig. 2.

Figure 3 gives an example of this phenomenon from an internal com-
bustion engine calculation. Shown are velocity vectors and contours of
pressure, temperature, and fuel mass fraction. The temperature and
fuel mass fraction plots show well-behaved temperature and fuel mass
fraction variations, with steepest gradients occurring in a region of
strong premixed combustion. Precisely in this region is where the ve-
locity vectors and pressure contours show oscillations characteristic
of alternate node uncoupling.

The above mechanism for alternate node uncoupling is present in
both CONCHAS~-SPRAY and KIVA, but its effects are more pronounced in
KIVA because the fully-implicit ICE formulation in CONCHAS-SPRAY numer-
ically damps the acoustic mode much more than the subcycling algorithm
in XIVA.!® sSmaller acoustic wave pressure gradients and velocities im-
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Fig. 3. Plots of velocity vectors and contours of pressure (upper
right), fuel mass fraction (lower left), and temperature
(lower right) from a KIVA engine calculation,



ply that less alternate node uncoupling will be produced. This sug-
gests one means to reduce the alternate node uncoupling problem in KIVA-
use of the fully-implicit ICE formulation. The fundamental problem -
that the acoustic mode cannot be calculated accurately by the ALE

method ~ is thereby bypassed by strongly damping acoustic waves., 1In
most combustion applications this is not a problem because acoustic

wave effects are unimportant.

To cure the fundamental problem, however, a method must be devised
to couple toe solutions in the red and black "checkerboard" cells. One
remedy is to locate velocities on cell faces during all or part of the
computational cycle. Methods that locate velocities on cell faces, do
14515 difficulty with
methods of this type, however, is that their geometric flexibility is

not suffer from alternate node uncoupling.

usually reduced; for example, computatioral meshes are often required
to be orthogonal.!5 This remedy and others are currently under inves-
tigation.

III. THE ARBITARY MACH NUMBER CAPABILITY

The KIVA program can be used to calculate flows at arbitrary Mach
number. An acoustic subcycling algorithm6 is currently utilized to
overcome the computational inefficiency that besets many compressible
flow computer programs when applied t¢ low Mach number problems. The
general idea of acoustic subcycling is illustrated in Fig. 4. Those
terms asscciated with pressure wave progagation are differenced in
phase B with a time step 6ts that can in general be a submultiple of

the main computational time step 6t. Phase B uses an explicit method
cét

that requires that the Courant condition _TYE < 1 be satisfied.!? Here

¢ is the speed of sound and 6x is the computational cell size. The re-

maining terms in the equations are differenced with time step 6t that

is governed by the constraint %%E < 1, where u is the fluid velocity.

udt C6ts ,
If 3;4 » 1 and " l, as is often true, then

%%;'5‘1/“ ' (2)
and 6t8 << &6t when M << 1. Computational efficiency is gained in low
Mach number problems because only a small number of terms are differ-
enced using Gts, while the remaining terms, whose values vary slowly on
the time scale of acoustic wave propagaticn, are differenced using &t.
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of acoustic subcycling over the ICE method is that
is calculated more accurately. The finite difference

the acoustic subcycling method are neutrally stable

l. This means that there is no numerical damping of
waves,!3 In contrast, acoustic waves are strongly

8
method, even when %;5 ~ 1.'% This is illustrated in

Fig, 5 where we compare Riemann problem solutions obtained w.th KIVA

and with CONCHAS-SPRAY, which uses the ICE method.

The implicit damp--

ing in the CONCHAS-SPRAY calculation is esrecially evident at the head
and foot of the rarefaction region,
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Fig. 5. Riemann problem solutions.

We have modified the acoustic subcycling method to eliminate two of
its disadvantages. First, according to Eg. (2), the number of subcy-
cles per computational cycle is approximately 1/M. Thus, when the Mach
number is very small, the method is inefficient., To remedy this, we
use acoustic subcycling in conjunction with the Pressure Gradient Scal=-
ing method.’ This is a techniqgue for increasing the Mach number M to a
larger value, while keeping fixed all the other dimensionless variables
that characterize the physical problem of interest., In practice, we
find that in very low Mach number problems, we can increase M to 0.1
without significantly altering solution features of interest.

The second disadvantage of acoustic subcycling is that even short
wavelength (L/6x small) acoustic waves are undamped numerically. These
waves are not resolved; for example, there is still considerable numer-
ical dispersion asscciated with acoustic subcycling,!?

To remedy this, we have added to the momentum equation an explicit
damping term of the form

¥ {apc26t8[§-3 - (6'3)0]} ' (3)

where 'a' is a constant usually taken to be unity, o is the mixture

densitv. and lG-ﬁ\ in the ellintie divernanca ~f tha rala~is.. £ia1a B



The elliptic divergence is the value Veu would have if the pressure
field were uniform in space - that is, in the absence of acoustic
waves. If (V-ﬁ)o = (0, then (3) would have the form of a rate of momen-
tum change duz2 to a bulk viscosity. 1In a calculation in which the
acoustic waves are very small, Fe0 = (303)0 and (3) would have no ef-
fect. 1In the absence of damping mechanisms other than (3), the damping
time of a wave of length L will be approximately L2/(ac26ts), and thus
short wavelength components will be most quickly damped. For more de-
tails concerning the implementation of (3) the reader is referred to
Ref., [8].

Even with the above numerical damping, unphysical and very long-
lived acoustic waves can be introduced in calculations. Often this
arises due to discontinuities that are present in one's initial condi-
tions. An example is given in Fig. 6, which displays results from two
KIVA calculations of the compression of an unreacting gas in an engine
cylinder. The oscillatory solution is obtained when the piston is beg-
un impulsively from its position at a crank angle of 90° BTDC (before
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top-dead-center), and the smooth solution is obtained when the piston
is begun at zero velocity from its position at 180° BTDC.

Finally, the user of KIVA is cautioned that in order to calculate
accurately the interaction of acoustic waves with chemical or diffusive
processes, it is still necessary to calculate with cét/L < 1, where L
is the wavelength of those waves of interest and 6t is the main compu-
tational time step. This criterion says that an acoustic wave can
travel only a fraction of its wavelength in one time step, and allows

chemical or diffusive terms to respond to changes in the fluid varia-
cét
bles due to passage of the acoustic waves. Since st ~ 1 in low speed

combustion problems, resolved acoustic waves must have wavelengths L
such that

Sts dx
L>C5t"C—M—=W—, (4)

where we have used Eq. (2). Thus when M = 0.1, we are at best resolv-
ing wavelengths greater than 106x. This is yet another reason for the
numerical damping supplied by (3). In order to resolve smaller wave-

lengths, one needs to legislate a smaller time step 6t than that given

by the condition git = 1.

IV. SPRAY MODEL IMPROVEMENTS

The dynamics of liquid fuel sprays are calculated in KIVA using
the stochastic particle method.? 1In this method, the spray is repre-
sented by computational particles. Each particle represents a number
of drops with identical size, velocity, and temperature. By "stochast-
ic", we mean that we sample randomly from distributions assumed to
yovern drop properties when they are formed near the injector and drop
behavior at downstream locations.

KIVA contains two inmprovements to the stochastic particle method
as implemented in CONCHAS-SPRAY. First, we have incorporated a calcu-
lation of drop collisions and coalescences in KiVA. Second, KIVA uses
a more efficient method for sampling from the distribution of drop

radii at formation.

A. The Drop Collision Model

In this section we discuss briefly some assumptions concerning the
dynamics of drop collisions and the manner in which these collisions
are calculated. For more details, the reader is referred to [1), [10]},



and [16]. A fundamental assumption of the spray model in KIVA is that
the liquid droplets occupy a negligible volume fraction € of the two-
phase, gas-liquid mixture; that is, ¢ << 1. When this condition is
violated, a number of complicat=d thick spray effects'® became impor-
tant, and these effects are not accounted for by the model. Concerning
drop collisions, the assumption that € << 1 allows us to consider only
binary collisions and treat these as instantaneous events. Thus we can
use a collisicn integral similar to that used in the Bolzmann equation
17

for dilute gases., We now show why this is so. As in the kinetic

theory of gases the drop-drop interaction fregquency vy can be roughly

nt
estimated to be the product of the average relative velocity between
drops Veel’ the number density of drops ng e and the cross section for
interaction. If the interaction cross section is approximately the

droplet cross-sectional area A, the formula for Vint is

v

int " novrelA

Letting ¢ denote the volume fraction occupied by the drops and d a
characteristic drop diameter, since ¢ = noAd, we have

vrel/d is approximately the time spent in collisions tC We obtain

oll®

for the time between interactiors tint’

t
_ . _coll -
tint = Y Vine ~ —¢ - ()

Thus if € << 1, the time spent in collisions is a small fraction of the
time between collisions,

A number of other assumptions are mede concerning drop collision
dynamics. First, it is assumed that the collision cross section is
equal to the geometric cross section. While this is a poor assumption
for some applications,18 there are arguments that it is a good assump-
tion for engine sprays.16 Second, it is assumed that there are two
outcomes of a collision: coalescence or grazing collision. These are
illustrated in Fig. 7. 1In a grazing cullision, the drops temporarily
coalesce, but then separate again because their relative velocity is
large. Experiments19 show that small satellite drops are often pro-
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Fig. 7. Possible results of a binary drop collision.

duced by grazing collisions. In our model, satellite drop production
is ignored. We also ignore the third type of collision illustrated in
Fig. 7, shattering collisions, which occur at very large relative ve-
locities., Despite the uncertainties in some of these assumptions, this
model has haa impressive successes in predicting the evolution of drop
sizes in experimental sprays.?20» 2!

We now describe briefly the basic idea of our collision calcula-
tion. Consistent with the viewpoint of the stochastic particle meth-
od,16 drop collisions are calculated by a sampling procedure. The al-
ternative is to try to represent the c mplete distribution of drop
properties that arise due to drop collisions. For example, having cal-
culated the collisinn frequency between a drop associated with particle
A and all drops associated with another particle, we could proceed in
tvo ways. In the first way, we could use the collision frequency to
calculate the probable number of drops in particle A that undergo col-
lisions with drops in the other particle. To represent the distribu-
tion of collision behavior, this number >f drops would be subtracted
from particle A, and one or more new particles would be created having
the properties of the drops resulting from the collisions. We tried
such a procedure with the result that we quickly had more particles
than could be accommodated by computer storage. 1In the secdnd way,
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the probability P that a drop in particle A will undergo a collision
with a drop in the other particle. Then all the drops in particle A
behave in the same manner; they either do or do not collide, and the
probability of the former event is P. Since all the drops in particle
A behave in the same way, no new parcicles have to be created. Then
the probability distribution of outcomes is recovered by ensemble aver-
aging over many computations, or, in a steady-state calculation, by
time averaging over a long time,

B. Improved Sampling Procedure

We have implemented in KIVA a more e{ficient method for sampling
from the distribution of drop radii of newly formed drops. It is more
efficient in the sense that fewer computational particles are needed to
obtain results that are independent of particle numbers. We assume a
distribution f(r), where f(r)dr is the probability that a new drop's
radius lies in the interval (r, r+dr). In KIVA, f(r) = 1/r exp (—r/;),
where r is *the number-averaged drop radius. The precise form of f(r)
is irrelevant, however, for the present 1liscussion. Also associated
with the sampling procedure is a secord distribution g(r), where g(r)dr
is the probability that the radius associated with a new computational
particle lies in the interval (r, r+dr). Thus f(r)/g(r) equals “he
number of drops per computational particle. In CONCHAS-SPRAY, g(r) is
a uniform distribution in the interval (r

. where r . << r
min’ rmax)' here min

and Coax >> . We have found that it is more efficient to sample most
frequently those drop radii where the most mass is located. The reason
is that usually these drops exert the most influence on the gas through
exchange of mass, momentum, and energy. S’ nce the mass distribution of
newly formed drops is proportional to r3f(r), we tike g(r) -~ r3f(r).

This idea was first used in Ref. [16].

C. KIVA Calculations of Spray Combustion

Direct combustion of sprays is impertant in a number of combustion
devices but is poorly understood partly because of the complexity of
solving equations of motion for two-phase, chemically reacting flows.
In this section we present some preliminary results of KIVA calcula-
tions of spray combustion. The experimental kerosene spray, shown
schematically in Fig. 8, issues from an axisymm~tric hollow cone injec-
tor, and a swirling air flow is introduced through a coaxial duct at
the level of the spray injector. A highly turbulent and sooting diffu-
sion flame is observed above the injector. 1If the swirl velocity of
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Fig. 8. Schematic drawing of spray combustor,

the air is large enough, the fiame is observed to lower toward the
plane of the inlet air duct.

Figure 9 gives plots from a KIVA calculation of this flame. Shown
are velocity vectors and spray particle positions as well as tempera-
ture, equivalence ratio, and droplet Sauter mean radius contours.

These show three stages in the formation and combustion of the fuel/air
mixture. Near the injector, there is an entrainment region where air
is drawn into the spray. The ey trained air flow draws the smaller
drops into the interior of the spray cone. Because of the cool temper-
atures there, little vaporization occurs and the gas mixture is fuel
lean. A region of premixed combustion is observed above the entrain=-
ment region., Most of the spray droplets are vaporized here, and most
of the oxygen in the core of the spray is consumed. Above the premixed
flame region is the region of diffusion flame burning. The equivalence
ratio contours here separate fuel-rich and fuel-lean zones and indicate
the diffusion flame posi.ion.

One question that arises concerning such flames is what determines
the height of the premixed flame above the injector. Preliminary re-



LRI N RN R RN
YRR RN AR NN NN AR
(R AN R R A NN RN N
R AN R N NN RN
LR AR A R R R RN RN
LR AN R R AN NN N RN
IR R N Y N Y )
I N N AN N
DO M L AN N YR
I A I I A R T NN
VIRRRITORICI LI 00 0ns

'”"I"Nuu ...... R
u"”"'l“l100 ooooo . ’
CooollII0000000. . , N
0002l Pre0sen. ... K .
westlllsseees... .. : K

W80 0veortere....
Wi0esevvorees

~

VMAX = 960 cm/s H = 2090 K
L = 483 K

—]

H = 25Q2um H = 4.5
L = 2,8um L = 0,5

Fig. 9. Plots of velocity vectors, sp.ay particle positions, and con-
tours of temperature (upper right), droplet Sauter mean radi-
ur (lower left), and equivalence ratio (lower right) from
spray combustion celculation,

sults show a dependence of steady flame position on ignition location
and a strong dependence on the assumed droplet sizes near the injec-
tor. Another possible factor not presently included in the model, is
heat loss to the upstream boundary. The KIVA program is currently be-
ing used to systematically explore these physical influences and thus
give a more detailed understanding of spray combustion.
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