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I. INTRODUCTION

This paper is a presentation of the capabilities of the KIVA com-

puter program, l’2 which was written to calculate both two- and three-

dimensional chemically reactive fluid flows. KIVA solves by finite-

difference techniques the unsteady equations for a multi-component,

chemically reactive mixture of ideal gases, together with those for an

evaporating liquid spray. Although it was written with applications to

internal combustion engine research in mind, with modification KIVA can

be applied to a variety of other combustion and two-phase flow prob-

lems. This paper emphasizes the differences between KIVA and the

well-known CONCHAS-SPRAY computer program3 and gives some advantages

and disadvantages of the numerical methodology in KIVA. We illustrate

the capabilities of the program by describing the results of numerical

test problems.

Like CONCHAS-SPRAY, KIVA utilizes the ALE (Arbitrary Lagrangian-

Eulerian) method.k The advintages c~fthe ALE method are its geometric

flexibility and the fact that the finite difference approximations can

be easily formulated to conserve momentum. A disadvantage of the ALE

method is its susceptibility to alternate node uncoupling. 1, 3 This

problem is more pronounced in KIVA than in CONCHAS-SPRAY, and in the

first sect~orl of this paper we tell why this is so and indicate some

ways Lnat are being considered to overcome the problem.

KIVA, like CONCHAS-SPRAY, possesses an arbitrary Mach number capa-

bility-- that is, the same computer program can be used to calculate

both subsonic and supersonic flows. This capability is implemented

differently, however, in KIVA. Instead of the implicit ICE methods

used in CONCHAS-SPRAY, KIVA uses an acoustic subcycling method6 coupled

with methods for scaling the Mach number’ and for damping high frequen-

cy acoustic waveg. o The acoustic subcycling algorithm is described in

section two of this paper.

Section three describes two changes to the particle methodg far

calculating liquid sprays. First, KIVA includes a calculation of drop

collisions and coalescence, lo which influence significantly the dynam-

ics of many Diesel and stratified charge engine sprays. Second, KIVA



radii at injection. With the new sampling method, fewer particles are

needed to obtain results that are independent of number of particle~.

We mention here three additional improvements in KIVA. The sub-

grid scale turbulence model used in CONCHAS-SPRAY has been generalized

by the inclusion of a transport equation for subgrid scale turbulent

kinetic energy. Second, KIVA has an improved method for calculating

chemical equilibria. il Thirdr KIVA has been written for the CRAY com-

puter and makes extensive use of the vector calculation feature of this

computer. Partly for this reason,.KIVA can perform many two-dimension-

al calculations more than five times faster than CONCHAS-SPRAY.

11. THE ALE METHOD

In the ALE method, spatial differences are formed with respect to

a mesh of arbitrary quadrilateral cells in two dimensions and hexahe-

dral cells in three dimensions. As is shown in Fig. 1, the positions

and velocities of cell vertices are stored in computer memory. All

thermodynamic variables are located at.cell centers. The computational

cycle is divided into three phases (cf. Fig. 4). In phase A the chemi-

cal source terms and heat and mass diffusion terms are calculated. It]

phase B, we calculate the pressure gradient accelerations and changes

to the density and internal energy due to divergence of the velocity

field. This is accomplished by the acoustic subcycling algorithm in
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Fig. 1. Typical Finite-difference cell.



KIVA. In phases A and B, the computational mesh is moved in a purely

L3gran91an fashion. In phase C the mesh is remapped or rezoned into

another mesh~ and the resulting convection is calculated. One appeal-

ing feature of the ALE method is that the mesh can be moved in a fairly

arbitrary fashion.

A disadvantage of the ALE method, the alternate node uncoupling

problem, arises because of the above cell variable locations. As has

been previously shown,A2 when the ALE method is applied to the acoustic

wave equations on a two-dimensional square mesht the resulting finite

difference approximation to the Laplacian operator is skewed; that is

FD(v2P)i, j ~ ~ (pi+l,j+l
+ ‘~+l,j-l

+ p, + P,
l-1,-j+l l-1,j-1

- 4P. .)
26x

1,]

(1)

where FD( ) denctes the finite difference approximation to the quanti-

ty in parentheses. It is seen that the sum of the subscripts in each

pressure term in (1) differs from i+j by an even integer. As a result,

pressure disturbances wili propagate in a “checkerboard” fashion; an

acoustic disturbance in a red checkerboard square or cell, will propa-

gate to red cells but not to black cells. This phenomenon is clearly

~hown in Fig. 2, where plots are given of the computer-generated pres-

sure fields ~nd velocity vectors from a KIVA calculation of the propa-

gation of a small pressure disturbance. Initial conditions were a qui-

escent, uniform fluid except in one cell where the pressure was slight-

ly elevated. The velocity vectors in Fig. 2 show the characteristic

“hourglass” mode that is often seen in ALE-method calculations.

!,,, . . .
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Fig. 2. Velocity vectors and pressure contours showing alternate node
uncoupling.



Alternate node uncoupling is often seen in KIVA calculations in

which there are strongly exothermic chemical reactions. The reason is

that chemical reaction rates often have very sensitive temperature de-

pendencies. Small temperature differences give rise to large differ-

ences in reaction rate. Thus if in one computational cell the tempera-

ture is slightly elevated abme that in neighboring cells, the elevated

local heat release rate gives rise to a pressure disturbance that will

generate numerical pressure and velocity oscillations, just as in the

example of Fig. 2.

Figure 3 gives an example of this phenomenon from an internal com-

bustion engine calculation. Shown are velocity vectors and contours of

pressure, temperature, and fuel mass fraction. The temperature and

fuel mass fraction plots show well-behaved temperature and fuel mass

fraction variations, with steepest gradients occurring in a region of

strong premixed combustion. Precisely in this region is where the ve-

locity vectors and pressure contours show oscillations characteristic

of alternate node uncoupling.

The above mechanism for alternate node uncoupling is present in

both CONCHAS-SPRAY and KIVA, but its effects are more pronounced in

KIVA because the fully-implicit ICE formulation in CONCHAS-SPRAY numer-

ically damps the acoustic mode much more than the subcycling algorithm

in KIVA.13 Smaller acoustic wave pressure gradients and velocities im-
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Fig. 3. Plots of velocity vectors and contours of pressure (upper
right), fuel mass fraction (lower left), and temperature
(lower right) from a KIVA engine calculation.



ply that less alternate node uncoupling will be produced. This sug-

gests one means to reduce the alternate node uncoupling problem in KIVA-

use of the fully-implicit ICE formulation. The fundamental problem -

that the acoustic mode cannot be calculated accurately by the ALE

method - is thereby bypassed by strongly damping acoust’ic waves. In

most combustion applications this is not a problem because acoustic

wave effects are unimportant.

To cure the fundamental problem, however, a method must be devised

to couple tL]esolutions in the red and black “checkerboard” cells. One

remedy is to locate velocities on cell faces during all or part of the

computational cycle. Methods that locate velocities on cell faces, do

not suffer from alternate node uncoupling. 14,15 A difficulty w~.th

methods of this type, however, is that their geometric flexibility is

usually reduced; for example, computational meshes are often required

to be orthogonal. ls This remedy and others are currently under inves-

tigation.

111. THE ARBITARY MACH NUMBER CAPABILITY

The KIVA program can be used to calculate flows at arbitrary Mach

number. An acoustic subcycling algorithm6 is currently utilized to

overcome the computational inefficiency that besets many compressible

flow computer programs when applied tG low Mach number problems. The

general idea of acoustic subcycling is illustrated in Fig. 4. Those

terms associated with pressure wave propagation are difference in

phase B with a time step 6ts that can in general be a submultiple of

the main cori?putationaltime step 6t. Phase B uses an explicit method
c6t

that requires that the Courant condition -& < 1 be satisfied.13 Here-

c is the speed of sound and 6x is the computational cell size. The re-

maining terms in the equations are difference with time step 6t that
Udt

is governed by the constraint ~ : 1, where u is the fluid velocity.

u~~. c~t

lf K “l””d+
9 11 as is often true, then

6t ~c -=1/M ,KU (2)

and 6ts << 6t when M << 1. Computational efficiency ~S gained in low

Mach number problems because only a small number of terms are differ-

ence using 6ts, while the remaining terms, whose values vary slowly or,

the time scale of acoustic wave propagation, are diffezenced using 6t.
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An advantage of acoustic subcycling over the ICE method is that

the acoustic mode is calculated more accurately. The finite difference
approximations of the acoustic subcycling method are neutrally stable

c5t
as long ae -# ~ 1. This means that there is no numerical damping of

computed acoustic waves. 13 In contrast, acoustic waves are strongly
damped by the ICE method, even when ~- “ 1.13 This is illustrated in

Fig. S where we compare Riemann problem solutions obtained w..thKIVA

and with CONCHAS-SPRAY, which uses the ICE method. The impl~cit damp-
ing h the CONCHAS-SPRAY calculation is especially evident at the head

and foot of the rarefaction region.
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Fig. S. Riemann problem solutions.

We have modified the acoustic subcycling method to eliminate two of

its disadvantages. First, according to Eq. (2), the number of subcy-

cles per computational cycle is approximately l/M. Thus, when the Nach

number is very small, the method is inefficient. To remedy this, we

use acoustic subcycling in conjunction with the Pressure Gradient Scal-

ing method.7 This is a technique for increasing the Mach number M to a

larger value, while keeping fixed all the other dimensionless variables

that characterize the physical problem of interest. In practice, we

find that in very low Mach number problems, we can increase M to 0.1

without significantly altering solution features of interest.

The second disadvantage of acoustic subcycling is that even short

wavelength (L/6x small) acoustic waves are undamped numerically. These

waves are not resolved; for example, there is still considerable numer-

ical dispersion associated with acoustic subcycling.13

To remedy this, we have added to the momentum equation an explicit

damping term of the form

(3)
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The elliptic divergence is the value ~“~ would have if the pressure

field were uniform in space - that is, in the absence of acoustic

waves. If (V”:). = O, then (3) would have the form of a rate of momen-

tum change due to a bulk viscosity. In a calculation in which the

acoustic waves are very small, ?o; = ($0~)0 and (3) would have no ef-

fect. In the absence of damping mechanisms other than (3), the damping

time of a wave of length L will be approximately L2/(ac26ts), and thus

short wavelength components will be most quickly damped. For more de-,.
tails concerning the implementation of (3) the reader is referred to

Ref. [8].

Even with the above numerical damping, unphysical and very long-

lived acoustic waves can be introduced in calculations. Often this

arises due to discontinuities that are present in one’s initial condi-

tions. An example is given in Fig. 6, which displays results from two

KIVA calculations of the compression of an unreacting gas in an engine

cylinder. The oscillatory solution is obtained when the piston is beg-

un impulsively from its position at a crank angle of 90° BTDC (before
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top-dead-center)~ and the smooth solution is obtained when the piston

is begun at zero velocity from its position at 180° BTDC.

Finally, the user of KIVA is cautioned that in order to calculate

accurately the interaction of acoustic waves with chemical or diffusive

processes, it is still necessary to calculate with c6t/L < 1, where L

is the wavelength of those waves of interest and 6t is the main compu-

tational time step. This criterion says that an acoustic wave can

travel only a fraction of its wavelength in one time step, and allows

chemical or diffusive terms to respond to changes in the fluid varia-
Cat

bles due to passage of the acoustic waves. Since ~ * 1 in low speed

combustion problems, resolved acoustic waves must have wavelengths L

such that

&t

L > c6t “ C +=$ , (4)

where we have used Eq. (2). Thus when M = 0.1, we are at best resolv-

ing wavelengths greater than 106x. This is yet another reason for the

numerical damping supplied by (3). In order to resolve smaller wave-

lengths, one needs to legislate a smaller time step 6t than that given
L16t

by the condition ~ - 1.

Iv ● SPRAY MODEL IMPROVEMENTS

The dynamics of liquid fuel sprays are calculated in KIVA usirig

the stochastic particle method.g In this method, the spray is repre-

sented by computational particles. Each particle represents a number

of drop= with identical size, velocity, and temperature. By “stochast-

ic”, we mean that we sample randomly from distributions assumed to

govern drop properties when they are formed near the injector and drop

behavior at downstream locations.

KIVA contains two improvements to the stochastic particle method

as implemented in CONCHAS-SPRAY. First, we have incorporated a calcu-

lation of drop collisions and Coalescence in KiVA. Second, KIVA uses

a more efficient method for sampling from the distribution of drop

radii at formation.

A. The Drop Collision Model

In this section we discuss briefly some assumptions concerning the

dynamics of drop collisions and the manner in which these collisions

are calculated. For more details, the reader is referred to [1], [10],
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and [161. A fundamental assumption of the spray model in KIVA is that

the liquid droplets occupy a negligible volume fraction c of the two-

phase, gas-liquid mixture; that is, c << 1. When this condition is

16 became impor-violated, a number of complicated thick spray effects

tant, and these effects are not accounted for by the model. Concerning

drop collisions, the assumption that c << 1 allows us to consider only

binary collisions and treat these as instantaneous events. Thus we can

use a collisicm integral similar to that used in the Bolzmann equation

for dilute gases.17 We now show why this is so. As in the kinetic

theory of gases the drop-drop interaction frequency Vint can be roughly

estimated to be the product of the average relative velocity between

drops Vrel, the number density of drops no, and the cross section for

interaction. If the interaction cross section is approximately the

droplet cross-sectional area A, the formula for Vint is

v. mrlvA.
lnt o rel

Letting c denote the volume fraction occupied by the drops and d a

characteristic drop diameter, since c R noAd, we have

v. ‘relme—.
lnt d

/d is approximately the time spent in collisions tcoll. We obtain‘rel
for the time between interactions tint,

t
t

Coil
= l/vint “ —

int E“

Thus if c << 1, the time spent in collisions is a small fraction of the

time between collisions.

A number of other assumptions are made concerning drop collision

dynamics. First, it is assumed that the collision cross section is

equal to the geometric cross section. WhiJ,e this is a poor assumption

for some applications, la there are arguments that it is a good assump-

tion for engine sprays.16 Second, it is assumed that there are two

outcomes of a collision: coalescence or grazing collision. These are

illustrated in Fig. 7. In a grazing c!ul~.ision,the drops temporarily

coalesce, but then separate again because th~ir relative velocity is

large. Experiments19 show that small satellite drops are o:t,en pro-
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Fig. 7. Possible results of a binary drop collision.

duced by grazing collisions. In our model, satellite drop production

is ignored. We also ignore the third type of collision illustrated in

Fig. 7, shattering collisions, which occur at very large relative ve-

locities. Despite the uncertainties in some of these assumptions, this

model has haci impressive successes in predicting the evolution of drop

sizes in experimental sprays. 20, 21

We now describe briefly the basic idea of our collision calcula-

tion. Consistent with the viewpoint of the stochastic particle meth-

od,16 drop collisions are calculated by a sampling procedure. The al-

ternative is to try to represent the c vnplete distribution of drop

properties that arise due to drop collisions. For example, having cal-

culated the collision frequency between a drop associated with particle

A and all drops associated with another particle, we could proceed in

two ways. In the first w=Iy,we could use the collision frequency to

calculate the probable number of drops in particle 1+that undergo col-

lisions with drops in the other particle. To represent the distribu-

tion of collision behavior, this number of drops would be subtracted

from particle A, and one or more new particles would be created having

the properties of the drops reSUltin9 from the collisions. We tried

such a procedure with the result that we quickly had more particles

than could be accommodated by computer storag~. In the s~;condway,



the probability P that a drop in particle A will undergo a collision

with a drop in the other particle. Then all the drops in particle A

behave in the same manner; they either do or do not collide, and the

probability of the former event is P. Since all the drops in particle

A behave in the same way, no new particles have to be created. Then

the probability distribution of outcomes is recovered by ensemble aver-

aging over many computations, or, in a steady-state calculation, by

time averaging over a long time.

B. Imp~oved Sampling Procedure

We have implemented in KIVA a more efficient method for sampling

from the distribution of drop radii of newly formed drops. It is more

efficient in the sense that fewer computational particles are needed to

obtain results that are independent of particle numbers. We assume a

distribution f!r), where f(r)dr is the probability that a new drop’s

radius lies in the interval (r, r+dr). In KIVA, f(r) = I/r exp (-r/Z),

where r is the number-averaged drop radius. The precise form of f(r)

is irrelevant~ however, for the present discussion. AISO associated

with the sampling procedure is a secord distribution g(r), where g(r)dr

is the probability that the radius associated with a new computational

particle lies in the interval (r, r+dr). Thus f(r)/g(r) equals ‘:he

number of drops per computational particle. In CONCHAS-SPRAY, g(r) is

a uniform distribution in the interval (rmin, rmax), where rmin << ;

and rmax >> E. We have found that it is more efficient to sample most

frequently those drop radii where the most mass is located. The reason

is that usually these drops exert the most infltlenceon the gas through

exchange of mass, momentum, and energy. ~’.ncethe mass distribution of

newly formed drops is proportional to r3f(r),,we take g(r) - r3f(r).

This idea was first used in Ref. [161.

c. KIVA Calculations of Spray Combustion

Direct combustion of sprays is important in a number of combustion

devices but is poorly understood partly because of the complexity of

solving equations of motion for two-phase? chemically reacting flows.

In this section we present some preliminary results of KIVA calcula-

tions of spray combustion. The experimental kerosene spray, shown

schematically in Fig. 8, issues fr~ an zixisymm-tric hollow cone injec!-

tor, and a swirling air flow is introduced through a coaxial duct at

the level of the spray injector. A highly turbulent and sooting diffu-

sion flame is observed above the injector. If the swirl velocity of
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Fig. 8. Schematic drawing of spray combustor.

the air is large enough, the frame is observed to lower toward the

plane of the inlet air duct.

Figure 9 gives plots from a KIVA calculation of this flame. Shown

are velocity vectors and spray particle positions as well as tempera-

ture, equivalence ratio, and droplet Sauter mean radius contours.

These show three stages in the formation and combustion of the fuel/air

mixture. Near the injector, there is an entrainment region where air

is drawn into the spray. The c)’trained air flow draws the smaller

drops into the interior of tilespray cone. Because of the cool temper-

atures there, little vaporization occurs and the gas mixture is fuel

lean. A region of premixed combustion is observed above the entrain-

ment region. Most of the spray droplets are vaporized here, and most

of the oxygen in the core of the spray is consumed. Above the premixed

flame region is the region of diffusion flame burning. The equivalence

ratio contours here separate fuel-rich and fuel-lean zones and indicate

the diffusion flame posi.ion.

One question that arises concerning such flames is what determines

the height of the premixed flame above the injector. Preliminary re-
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suits show a dependence of steady flame position on ignition location

and a Ijtrongdependence on the assumed droplet sizes l~earthe injec-

tor. Another possible factor not presently included in the model, is

heat loss to the upstream boundary. The KIVA program is currentiy be-

ing used to systematically explure these physical influences and thus

give a more detailed understanding of spray combustion.
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