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11. SUMMARY 

A des ign  f o r  a  c l o s e d ,  d i u r n a l  , i n t e r m i t t e n t  abso rp t ion  
<.:. r: 

c h i l l e r  f o r  pas s ive  s o l a r  a i r - c o n d i t i o n i n g  us ing  l i q u i d  sor -  

ben t s  has been cons t ruc t ed  and t e s t e d .  
1 - 
I... - 

LiBr -HZO w i l l  n o t  work w i t h  t h i s  d e s i g n  because of  i t s  

low vapor p re s su re  a t  t h e  t empera tu re  a v a i l a b l e .  The approach I.., 
h a s .  p o s s i b i l i t i e s  u s ing  t h e  2  LiBr-ZrBr-CH30H o r  H20-NH3 s o r b e n t  

I r e f r i g e r a n t  p a i r s .  The use  o f  H20-NH3 appears  t o  be t h e  b e t t e r  
I cand ida t e  because of t h e  lower s o l u t i o n  v i s c o s i t y  and l e s s  

I c y c l e  weight ,  through t a n k  volumes and c o l l e c t o r  requirements  

I a r e  s i m i l a r .  Fu r the r  s tudy  o f  o t h e r  r e f r i g e r a n t  p a i r s  such a s  
. . .  

S-Thlpcfahate-..:vnmonia .. . . i s  i n d i c a t e d ,  however t h e  d i f f i c u l t i e s  

encountered i n  c o n s t r u c t i o n  'and lbw p t e n t i a l  c o e f f i c i e n t  of 
I .. 

performance,  and t h u s  l a r g e  c o l l e c t i o n  a r e a  needed, makes 
. . 

. commerci'alizati.on of such a system . .. d o u b t f u l  i n  t h e  . f o r s e e a b l e  . 
. . 

f u t u r e .  



. . 
111. A . .  INTRODUCTION AND OBJECTIVES 

s o l a r  energy i s  n a t u r a l l y  i n t e r m i t t e n t  by i t s  d i u r n a l  

cyc le .  U s e  of  t h i s  c y c l e  a s  a  means t o  produce d r i v i n g  temp- 

e r a t u r e  d i f f e r e n t i a l s  f o r  p a s s i v e  c o o l i n g  has  been t h e  s u b j e c t  

of much e f f o r t  and d i s c u s s i o n .  Such d i f f e r e n t i a l s  would a l s o  

seem a  p e r f e c t  match f o r  t h e  requi rements  o f  s o r b e n t - r e f r i -  
. . 

ge ran t  combinations.  Simply s t a t e d ,  ' : in. t h e  h e a t  of t h e  day , s o l a r  
:. . . . _ I . .  

energy s e p a r a t e s  t h e  sorbekt - re f  r i g e r a i t  'pair. I n  t h e  e v e n i n g  

r e f r i g e r a n t  vapor  i s  resorbed  by t h e ' c o o l e d  so rben t  which 

provides  'a reduced vapor  p r e s s u r e t h a t  e i t h e r  vapor i ze s  . . a d d i t -  

i o n a l  r e f r i g e r a n t  from i t s  con ta i . nb r ,  which r e s u l t s  i n  c o o l i n g ,  

o r  i n  an open system, dehumidi f ies  a i r  t o  be l a t e r  cdoled by 

evapora t ive  cool ing .  . 

The o b j e c t i v e  of t h i s  p r o j e c t  i n v o l v e s  c o n s t r u c t i o n  o f  , 

a  300  square  f o o t  s o l a r  c o l l e c t o r  p a n e l  f o r  t h e  development 

o f  d e s o r p t i o n  energy,  t h e  c o n s t r u c t i o n  of evapora to r  and 
. . . . 

condenser c o i l s  and t h e  performance a n a l y s i s  of t h i s  proposed 

d i s i c c a n t  s o l a r  a i r  c o n d i t i o n i n g  system. 

1 .  111. B.. THE INTERMITTENT MACHINE 

The abso rp t ion  use  of  t h e  i n t e r m i t t e n t  r e f r i g e r a t i o n  - 
.?: 
.=,I C c y c l e  was f i r s t  demonstrated by Faraday . i n  . . . .  1824 .who s a t u r a t e d  

. . .  . - . . , .  .' . 
s i l v e r  c h l o r i d e  w i t h  ammonia g a s  i n '  an . enc losed  .. . appardtusd;' ... . ?- i .. .., . 

I--! (F igure  1). ' I n  such a  d e v i s e ,  i f  t h e  s i l v e r  ' ch lo r ide  c o o l s ,  
I . . :  

i t reabsorbes  ammonia vapor  caus ing  t h e  p rev ious ly  condensed 

ammonia l i q u i d  t o  vapor i ze  and i n  s o  do ing ,  remove h e a t  from 

i t s  surroundings .  

1-1 The use  of s o l a r  energy t o  d r i v e  an i n t e r m i t t e n t  ammonia- 

wat.er absorption cycle w a s  developed i n  1 9 5 8  by Williams, Chung, 



. . 

Lof , e t  a l ,  (1) . More r e c e n t l y '  Tchernev has used' a  z e o l i t e -  

water  ' system ( 2 )  .. 

A system using' l i q u i d  d e s i c c a n t - r e f r i g e r a n t  p a i r s  and 

t h e  t h r e e  t a n k  p r i n c i p a l  o f . .  Rombe and Foex ( 3 )  has  been cons- 

t r u c t e d  w i t h  t h e  i n t e n t  of .producing a t o t a l l y . p a s s i v e  s o l a r  

i n c o r p o r a t i o n  i n t o  b u i l d i n g  c o n s t r u c t i o n .  A schemat ic  diagram 
. . 

of  t h e  s y s t e m a s  i n i t i a l l y  conceived i s  shown i n  F igure  2 .  

111. C.. THE INTERMITTENT SORPTION CYCLE 

The thermodynamic p a t h  of  t h e  t y p i c a l l y  i d e a l  i n t e r m i t t e n t  

c y c l e  can be demonstrated by a c l o s e d  loop  on a vapor p r e s s u r e  

vs .  t empera ture  c h a r t  f o r  r e f r i g e r a n t - s o r b e n t  concen t r a t i ons .  

A t y p i c a l  c h a r t  i s  shown f o r  l i t h i u m  bromide-water i n  F igu re  3. 

The r egene ra t ion  phase of  t h e  c y c l e  beg ins  a t  1 where h e a t  

i s  provided t o  t h e  s o l u t i o n .  The t empera tu re  o f  t h e  s o l u t i o n  i s  

inc reased  t o  p o i n t  2 where t h e  vapor  p r e s s u r e  o f  t h e  r e f r i g a n t  

i s .  equa l  t o  i t s  condensat ion p r e s s u r e  i n  t h e  .condenser ( a t  a 

lower t empera tu re ) .  Continued a d d i t i o n  o f  h e a t  vapor ized  r e f r i g -  

e r a n t  (which t r a v e l s  t o  t h e  condenser  from t h e  s o l u t i o n  a t  cons- 

t a n t  p r e s s u r e  and a l s o  h e a t s  t h e  d r y i n g  s o r b e n t  u n t i l  t h e  f i n a l  
. . .  

g e n e r a t o r  temperature  i s  reached a t  3 which ends  t h e r e g e n e r a t i o n  
. . 

phase .  For t h e  r e f r i g e r a t i o n  phase ,  t h e  gene ra to r , '  now t h e  

abso rbe r ,  i s  cooled t o  p o i n t  . 4  where t h e  vapor p r e s s u r e  ove r  t h e  
. . 

so rben t  i s  equa l  t o  t h e  vapor  p r e s s u r e  o f  t h e  r e f r i g e r a n t  w i t h i n  
. . 

t h e  condenser / evapora tor .  The r e f r i g e r a n t  v a p o r i z e s  removing 

some ' h e a t  from t h e  remaining r e f r i g e r a n t  l i q u i d  and t h e  rest from 

i ts surroundings .  The f u r t h e r  c o o l i n g  o f  t h e  abso rbe r  a l lows  t h e  

cont inued r e s o r p t i o n  of  t h e  r e f r i g e r a n t  t o  i t s  s t a r t i n g  p o i n t  1. 

Simultaneously ,  . a s  t h e  evapora to r  c o n t i n u e s  t o  absorb  h e a t ,  i t  

r e t u r n s  t o  i t s  i n i t i a l  t empera ture  and p r e s s u r e  cond i t i ons .  



The pr'imary thermodynamic p e n a l t y  t o  t h e  i n t e r m i t t e n t  c y c l e  
I 

i s  apparen t  from t h e  f u n c t i o n s  r e p r e s e n t e d  by l i n e  1-2 and l i n e  

I 3-4. Continous c y c l i n g  of f l u i d s  through h e a t  exchangers can  

r ec l a im  t h e  h e a t  removed i n  3-4 t o  p rov ide  t h e  h e a t  needed f o r  

1-2 .  The i n t e r m i t t e n t  c y c l e  p rec ludes  such exchange. 

.. . 
The . . t h e o r e t i c a l  r e f r i g e r a t i o n  ob ta ined  from each  u n i t .  

weight  of  r e f r i g e r a n t  cycled i n  t h e  i n t e r m i t t e n t  c y c l e  i s  

e q u i v a l e n t  t o  t h e  change i n  ' en tha lpy  ( h e a t  c o n t e n t )  o f  t h e  . . pure  

r e f r i g e r a n t  from i t s  cooled s t a t e o f  condensa t ion  ( p o i n t  4 i n  ; 

Figure  5 )  t o  i t s  f i n a l  s t a t e  of  e v a p o r a t i o n ,  p o i n t  1. T o t a l  

r r e $ k i g e r a t i o n  supp l i ed  i s  t h i s  equal  - 30 t h e  condensa te  mass . . .  cyc led  

W. m u l t i p l i e d  by t h e  en tha lpy  of  v a p o r i z a t i o n  h fg*  . . 

111. D.. COOLING RATIO 

I 
Def in ing  t h e  coo l ing  r a t i o  n  f o r t h e  c y c l e  as t h e  energy 

removed from t h e  surroundings  d u r i n g  t h e  r e f r i g e r a t i o n  phase  

4 -1  d iv ided  by t h e  energy supp l i ed  t o  t h e  g e n e r a t o r  d u r i n g  t h e  

r e g e n e r a t i o n  p h a s e ,  Sargent  and Beclanan ( 4 )  have shown t h a t  t h e  

c o o l i n g  r a t i o  7 i s  approx ima t4  b y  : 

Defining o p e r a t i n g  tempera ture  parameters  - s u i t a b l e  f o r  an a i r  
. ._ _ , . .  ..  .. . - ~ .  - . 

cooled a i r  c o n d i t i o n e r  as : . -. . 
- -  . . , '  . : .  . - - 

t h e  above equa t ion  prov ides  a t h e o r e t i c a l  upper  l i m i t  o f  t h e  

c o o l i n g  r a t i o  f o r  any p a r t i c u l a r  a b s o r b e n t - r e f r i g e r a n t  p a i r  

( i f  t h e  p a i r  w i l l  o p e r a t e  wi thi r l  these parameters) . 



Assuming a w e l l  b&l+ house h a s  a requ i rement  o f  100,000 . 

Btu c o o l i n g  p e r  2 4  your  c y c l e ,  t h e  upper  p o r t i o n  of  t h e  e q u a t i o n  

p rov ides  an e s t i m a t e  of  t h e  minimum r e g r i g e r a n t  c y c l e  we igh t  t o  

m e e t  thi 's  100,000 Btu /cyc le  requ i rement .  The c o o l i n g  r a t i o  ' . 

f u r t h e r  p rov ides  an  e s t i m a t e  of  t h e  h e a t  needed and t h u s  c o l l e c -  

t o r  a r e a  needed t o  m e e t  t h i s  c o o l i n g  load .  T h e . r e s u l t s  o f  such  

an a n a l y s i s  a r e  shown i n  Tab le  1 f o r  f o u r  d i f f e r e n t  l i q u i d .  

a b s o r b e n t - r e f r i g e r a n t  p a i r s .  

. . : . . 
. . 

Table  1. Analys i s  of  Four R e f r i g e r a n t  P a i r s  t o  a c o o i i n g  

Requirement o f  100,000 Btu/day. 
. . 

111. E.. NATU- PUMPING 

I n  t h e  d e s i g n  o f  F igu re  2 t h e  movement o f  t h e  f l u i d  from 

t a n k  1 t o  t h e  g e n e r a t o r / a b s o r b e r  d u r i n g  2--3 . .. is produced by 

t h e  d i f f e r e n c e  i n  p r e s s u r e  between t a n k  1 and t h e  gene ra to r -  

/ ab so rbe r .  A s  t h e  t empe ra tu r e  i n c r e a s e s  i n  t a n k  1, t h e  vapor  

p r e s s u r e  d i  f f c r e n c e  over t a n k  I. moves the c o n c e n t r a t e d  f l u i d  



I .  t h rough  t h e  gene ra to r  t o  d r a i n  i n t o  t ank  2  u n t i l  t h e  r educ t ion  

r o f  f r e e  volume o f  t a n k  2  prov ides  a  p r e s s u r e  from non-condens- 

a b l e s  and p a r t i a l  p r e s s u r e  o f  t h e  r e f r i g e r a n t ,  e q u a l  t o  t h a t  o f  
. , 

r - t h e  p a r t i a l  weigh ts  o f  t h e  r e f r i g e r a n t  . . i n  t h e  gene ra to r .  

I .  . 
Assuming t h e  s o l u t i o n s  reach  equ i l i b r ium between t h e  gener- 

I a t o r  c y c l e  2-3 and t h e  abso rp t ion  c y c l e  4 - 1 ,  t h e n  t h e  d p / d t  

r e l a t i o n s h i p  of t h e  s o l u t i o n  i n  t a n k  1 s p e c i f i c k l l y  d e f i n e s  t h e  

r e q u i r e d  t a n k  1 tempera ture  t h a t  w i l l  cause t h e  c y c l i n g  of t h e  

f l u i d  weights  s p e d i f i e d  i n  Table  1 through' h e i g h t  h l .  

r . . 
I .  I n i t i a l  o p e r a t i n g  c o n d i t i o n s  ' de f ine  ' t h e  of  t h e  

i 
g e n e r a t o r  / absorber  a t  2. Assuming ' t h e  p a r t i a l  p r e s s u r e  o f  t h e  

non-condensable gas  p l u s  any p a r t i a l  p r e s s u r e  o f  r e f r i g e r a n t  

i n  t a n k  2  a t  t h e  end o f  a b s o r p t i o n  1 i s  e q u a l  t o  t h a t  needed t o  "' 

1 :  provide  t h e  i n i t i a l  c o n d i t i o n  g e n e r a t o r i a b s o r b e r  p r e s s u r e . o f  t h e  

evapora to r  p l u s  t h e  r e q u i r e d  p r e s s u r e  t o  l i f t  t h e  l a s t  of t h e  fluid ':.: 

I from t a n k  2  t o  t h e  g e n e r a t o r / a b s o r b e r  through h2 and us ing  t h e  

i d e a l  gas  law f o r  t h e  non-condensable gas i n  t a n k  2 ,  i f  h2 i s  : 
.' j 

I s p e c i f i e d ,  t h e  minimum volume o f  t a n k  2  can be calcula ted. .  . ;, 
I 

I 

For t h e  LiBr-H20 example, d u r i n g  t h e  end o f  r e g e n e r a t i o n  

1 .  - 3 t h e  p r e s s u r e  needed i n  t h e  g e n e r a t o r / a b i o r b e c  t o  ma in t a in  , 

condensa t ion  p r e s s u r e  i n  t h e  condenser i s  36.0. mm Hg. D i 3 r e -  ' 

gard ing  f r i c t i o n  l o s s e s ,  t h e  p r e s s u r e  t o  move . so lu t ion  . . t o  t h e  . - . .  . . .. 

gene ra to r / abso rbe r  is t h e  36.0 mm p l u s  . . t h a t '  need&d t o  ' i i f t  - :.- 

t h e  s o l u t i o n  through hl. ~ s s u m i n ~ '  t h a t  t a n k  . 1 . can b e  mainta ined 
. . a t  180°,  t h e  LiBr-H20 s o l u t i o n  pn ly  p rov ides  a vapor: p r e s s u r e  . . 1 : . . .  

. . 

I - of  118 rnm Iig. The n e t  82 mm H g  (118-36) i s  enough t o  pump , , . : . .  

I s o l u t i o n  through an  h, of 3.6 f t .  When pumping from t a n k  ' 2  
.&. 

I te t h e  geneka to r / a so rb r r  a t  4 - 1 ,  t h e  mini,mum p r e s s u r e  needed 

i s  equa l  t o  t h e  6.4 mm Hg w i t h  t a n k  2  f u l l  . ( p a r t i a l  p r e s s u r e  

of  H20 i s  ze ro )  p rov ides  a  l i f t i n g  n e t  p r e s s u r e  of  29.6 mm 

Hg--enough f o r  an h2 of 8.8 i nches .  

I f  t h e  p r e s s u r e s  a v a i l a b l e  are more than  s u f f i c i e n t  for 



1- ' 

. . 

n a t u r a l  pumping a t  s e l e c t e d  h e i g h t s ,  t h e r e q u i r e d  tank  1 temp- I 

e r a t u r e  can be reduced. These f i g u r e s  a s  w e l l  as o t h e r s  a r e  

summarized i n  ~ a b i e  2, 

. . 
Table 2.System Requirements f o r  I d e a l  Cycle of 100,000 Btu/Cycle. 

. . .  . . Minimum ~ a n k  1 Maximum Natural 
. . Mmmmn Tank Size i n  G a l .  Tanperatwe for  mmping Height 

Re&i  -ant Pair Tank 1 Tank - 2  Tank 3 Natural mnnpinq 
. . .  . . . .  Lh, 

. . 

The LiBr-H20 system i s  not s u i t a b l e  f o r  n a t u r a l  . . pumping 'because 

t h e  low vapor  p r e s s u r e s  of t h e  r e f r i g e r a n t  are i n s u f f i c i e n t  t o  

pump n a t u r a l l y  a t  t h e  i n i t i a l  c o n d i t i o n  tempera tures .  The volumes 

and weight  of t o x i c  r e f r i g e r a n t  and c o r r o s i v e  s o l u t i o n  r equ i r ed  

c l e a r l y  e l i m i n a t e  t h e  H20-So2 p a i r  from c o n s i d e r a t i o n .  . . .  For methanol,  - 
t h e  requirement  f o r  a 287 g a l l o n  t a n k  t h a t  p rov ides  an  h20f less 

t h a n  2  f e e t  could be achieved by a  1.5 . diameter .  . x8.2 f t .  t a n k  
.- ;:. ..... . . . . . . . . .  ... , .  . . . . . . .  

. / I  
. . . . . . . . . . . .  . . . . . . .  2 

on i t s  s i d e ,  though t h e  1,200 l b s .  o f  so lu t . ion  . . . .  . .  . , .  . &uld . .  _ have  t o  . 
. . 

have s p e c i a l  suppor t ing  roof s t r u c t u r e .  . . . .  F o r .  . . . .  n a t u r a l  pumping . . .  , t h e  
. , . > . .  , . .  . . . . .  . . . . ..;.. .:. .. .. . . .  . 

proposed system would probably work b e s t  wi th- 'a&nonia%atei  . _  
: . . . . .  p a i r  

, .  . , . 

which provides  s u f f i c i e n t  vapor p r e s s u r e  d i f f e r e n t i a l s  t o  e a s i l y  

move the  su lu . t i ons  and t h e  tempera ture  of t a n k  1 and t h e  t a n k  

i s i z e s  are workable.  

111. . PROBLEMS b:NCOUmERED 



- - 
Besides  t h e  f a c t  t h a t  w a t e r  based p a i r s  such a s  LiBr-  

w a t e r  and CaCl-H20 wou'l d n o t  p r o v i d e  enough v a p o r  p r e s -  
,.. 

u r e s  , t h e r e  was a l s o  d i f f i c u l t y  w i t h  t h e  b u i l t '  i n  abso rbe r s  

l eak ing  r a i n  wate r  i n t o  t h e  i n t e r i o r  o f  t h e  c o l l e c t o r  pane l s  

. This  would c r e a t e . a  h i g h  humidity i n  t h e  pane l  a i r  when t h e  

pane ls  f i r s t  began 'opera t ing  i n  t h e  morning. S e a l i n g  t h e  g l a s s  

covers  was never t o t a l l y ,  and t o  my mind, s a t i s f a c t p r a l l y  

achieved.  The best s o l u t i o n  w e  found w a s  t h e  u se  of  s i l i c o n e  

s e a l e n t  a t  a l l  t h e  edges  and j o i n t s .  
. . 

The n a t u r a l  pumping system i s  s e l f  r e g u l a t i n g  b u t  f a r  from 

optimum. The p r e s s u r e  r e q u i r e d  t o  move s o l u t i o n  and t h e  t ime 

it begins  t o  move is  independent  of  t h e  r e q u i r e d  condenser cond- 

e n s a t i o n  p re s su re .  However, an  au tomat ic  va'lve could  be p laced  

between t h e  s o l u t i o n  c o l l e c t o r  pane l s  and gene ra to r / abso rbe r  and 

another  between t a n k  2  and t h e  g e n e r a t o r  such t h a t  s o l u t i o n  w i l l  

no t  flow u n t i l  t h e  t e m p e r a t u r e s . r e q u i r e d  f o r  condensa t ion  o r  

. .  evapora t ion  a r e  a v a i l a b l e .  - 

-. 
To achieve anyth ing  nea r  t h e  Sargent-Bechman 9 , e v e r y  

pound of s o l u t u i o n  must go f u l l y  from 1 through  3 ,  t h e  d e s i g n  . 

i t s e l f  p r even t s  . . t h i s .  I f  t h e  s o l u t i o n  beg ins  t o  move f o r  desor -  

p t i o n  a t  t h e  tempera ture  j u s t  above 2 ,  t h e  s o l u t i o n  r each ing  t h e  

g e n e r a t o r  / absorber  w i  11 v a p o r i z e  some r e f r i g e r a n t  , b u t  c l e a r l y  

w i l l  no t  con t inue  t o  vapor i ze  t o  3 wi thou t  t h e  a d d i t i o n  o f  

-- hea t .  The s o l u t i o n  must t hen  be hea ted  t o  2 '  b e f o r e  i t  i s  allowed 

t o  e n t e r  t h e  gene ra to r / abso rbe r  i f  h e a t  o f  v a p o r i z a t i o n  i s  sup- 

' ¶  
L: 

p l i e d .  Thus f o r  t h i s  p a r t i c u l a r  d e s i g n ,  t h e  maximum ach ievab le  n 

of  t h e  syst& is.- a p p r o p r i a t e l y  r e p r e s e n t e d .  
-7 

.A. . . . .  - - 
. ' . by: -. ". : . ,. -. . ~4 h4%/ -. 

- .  '7 " .  
m, (L,-h,) + - 

This  r e v i s e s  t h e  o p e r a t i o n a l  requirements  o f  Tab le s  1 and 2  t o  

t hose  shown i n  Table  3.  



Table 3. C o l l e c t o r  a r e a  needed f o r  100,000 Btu/Day c o o l i n g  

w i t h  7' 

. . 2 
C o l l e c t o r  700 B t u / f t  .day 

. . 
~t~ 

7' 1-2' 2 1 - 3  (themnosiphon) T o t a l  
. . 

2 L i  Br-lZnBr- .50 125 160 285 

There is  another  c o n s i d e r a t i o n .  Even i f  t h e  w e t  s o l u t i o n  

e n t e r s  t h e  genera tor /absorber '  a t  t h e  s p e c i f i e d  . . s t a t e  2 '  temp, 

t h e  v a p o r i z a t i o n  o f  t h e  r e f r i g e r a n t  from t h e  s o l u t i o n  removes 

h e a t  c a r r i e d  on ly  by t h e  s o l u t i o n  i t s e l f - - t h u s  t o " d r a i n  s t a t e  

3  s o l u t i o n  t o  t ank  2  r e q u i r e s  t h e  s o l u t i o n  be superhea ted  beyond 

s t a t e  2 '  upon e n t e r i n g  t h e  gene ra to r / abso rbe r .  . . .  Thi s  superhea ted  

s o l u t i o n  tempera ture  requirement  of  54g°F, 308'F and 3 3 4 0 ~ '  f o r  i ' 

. . 

t h e  L i B r - H 2 0 ,  2LiBr-1ZnBr-H20 a i d  H20-NH3 p a i r s  r e s p e c t i v e l y  i s  

unworkable. I f  t h e  s o l u t i o n  is  hea ted  t o  2 '  and f l a s h e d  . 
5 

.... 

t o  t h e  2-3 p r e s s u r e  w i t h  t h e  h e a t  of  v a p o r i z a t i o n  provided by 
i 

on ly  t h e  s o l u t i o n  (do t t ed  l i n e  of  F igu re  3) t h e  9 drops  f o r  t h e  J! : 

LiBr-H20 system t o  .7%--far  t o o  low a s  over  33,000 l b s  o f  so lu-  : 
t i o n  wbuld be r equ i r ed .  The a d d i t i o n  o f  a the .mosiphon h e a t  exc- ' 

hanger t o  p rov ide  t h e  h e a t  o f  v a p o r i z a t i o n  t o  t h e  genera tor /ab-  

s o r b e r  from a p o r t i o n  o f  t h e  s o l a r  pane l s  i s  a _. 'workable . : al ter- .  
. . . . . .  

n a t i v e .  The' f l u i d  of  t h e  h e a t  exchanger and pane l s  . 
a 

; cou id  . . be i t .  
atmospher ic  p r e s s u r e ' b u t  would r e q u i r e  a h i g h e r  t empera ture  t han  

t h e  i n i t i a l  maximum 180°F tempera ture  . . 
. 

. s p e c i f i e d  f o r  . . . . . .  h e a t  exch- 
. . . . . .  

' . 1 ' . " . ange a t  t h e  1800 requirement .  The h e a t  requirement , ,  m (h3-h ) , 
. . . .  

could s t i l l  be  provided d i r e c t l y  by a ded ica t ed  p o r t i o n  of  , t h e  

c o l l e c t o r .  
# 

. , 

With t h e  l i m i t e d  e f f i c i e n c y  o b t a i n a b l e  from t h e  s e l f -  

pumping, d i u r n a l  i n t e r m i t t e n t  c y c l e ,  i t  i s  c l e a r  t h a t  f u r t h e r  

e f f i c i e n c y  p e n a l t y  of s e l f  r e g u l a t i o n  cannot be t o l e r a t e d .  The 

a d d i t i u n  of t h r e e  s imple  t e m y e r a t ~ ~ c e ,  on-off swi t ches  (snap 

swi tch  t y p e )  could prov ide  an  e f f e c t i v e  means of  r e g u l a t i n g  t h e  



. .. r cyc l e .  such a  sys tem i s  shown i n  F i g u r e  4 .  

I V .  CONCLUSIONS AND RECOMMENDATIONS 

I 
The o p e r a t i o n  of t h e  self-pumping,  d i u r n a l  i n t e r m i t t e n t ,  

L l i q u i d  s o r b e n t  a i r  c o n d i t i o n  sys tem of  F igu re  4 i s  p o s s i b l e  

u s ing  t h e  2LiBr-1ZnBr-CH30H o r  H20-NH3 s o r b e n t  r e f r i g e r a n t  . . 

p a i r s .  The u se  o f  H20-NH3 appears  t o  b e  t h e  b e t t e r  c a n d i d a t e  : r: because of lower s o l u t i o n  v i s c o s i t y  and less c y c l e  we igh t ,  

though t a n k  volumes and c o l l e c t o r  requ i rements  a r e  s i m i l a r .  

p. F u r t h e r  s t u d y  o f  o t h e r  p o s s i b l e  r e f r i g e r a n t  p a i r s  such  as sodium 

t h i o c y a n a t e  - ammonia i s  i n d i c a t e d ,  however conunerc ia l i za t ion  

o f  such a sys tem a t  t h i s  t i m e  i s  d o u b t f u l .  
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FIGURE' 1. Faraday's Apparatus Demonstrating The Intermittent Sorption Cycle ----- -- i 

, . . . 
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' : FIGURE 2. Proposed Self-Pumping Passive Solar Air-Conditioning System 

'Generator/ Absorber  all-~ection 
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FIGURE 3. L,B, - HtO Vapor Pressure vs. Temperature 



FIGURE 4. Revised Self-pumping Passive Solar Air-Conditioning System 
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V. NOTES ON MATERIALS : 

Since t h e  r e s u l t s  of t h i s  e f f o r t  i n d i c a t e  t h a t  e i t h e r  

H20-NH3 o r  sodium t h i o c i p a n a t e  - NH3 a r e  t h e  b e s t  working p a i r s  

f o r  t h i s  t ype  of system,  t h e  m a t e r i a l s  and equipment used i n  

t h e  f u r t h e r i n g  of  t h i s  s tudy  would o f  n e c e s s i t y  be of  m a t e r i a l s  

not  e f f e c t e d  by NH3. The copper pane l s  and copper t u b e  used i n  

t h e  c o n s t r u c t i o n  of  t h e  system u t i l i z e d  f o r  t h i s  g r a n t  . are . 

a t t acked  by t h e  NHJ and are t h u s  no t  s u i t a b l e  f o r  use  a s  a n  

o p e r a t i o n a l  system. Materials such' a s  s t a i n l e s s  s teel  o r  ga l -  

vanized s t e e l  would. be neces sa ry  f o r  such a  system. T h i s  would 

a l s o  e f f e c t  t h e '  p r i c e  of  t h e  system and hence t h e  commercial- 

a b i l i t y  of such a system w i t h  a  NH3 working f l u i d  i s  a l s o  

i n  doubt. 

V I .  NOMENCLATURE AND REFERENCES 

Nomenclature : 

h = e n t h a l p y  

hf9  
= e n t h a l p y  o f  v a p o r i z a t i o n  

m = mass 

h  = condensa te  m a s s  . 

n = c o o l i n g  r a t i o  

S u b s c r i p t s :  . . 
. . .  

= condenser . . . , .  C 
. . 

e = e v a p o r a t o r  

v = s a t u r a t e d  vapor  . .. .. . , . , . . -. . . 

1 ,2 ,3 ,4 ,  = t h e  s t a t u s  r e p r e s e n t e d  by Fi.gure 3. . . 
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