
- . :
.:

SCIENTIFIC
COMP.OTER INFORJVIATIQrf:

•

I, - --

EXCHANGE MEETING
SEPTEMBER 12·13·1979

LIVERMORE ·CALIFORNIA
THEME=IMPACT OF ADVANCED SYSTEMS ON

SCIENTIFIC COMPUTATIONS

PROCEEDINGS MASTER

SPONSORED BY:
DEPARTMENT OF ENERGY

OFFICE OF BASIC ENERGY SCIENCES

LAWRENCE LIVERMORE LABORATORY

-....
a ..

•

~

~-_-.;.,
- 11:.

- 8-

~):::::::::: :::: ~::·:·/::::::::: :::: .::·:·j:::::::::: :::: ~:::x:::::::: :::: .::·::·/:::::::: :::: .::·:·:/::::::::: :::: .:::·:·/::::::::: r::: ~:·:·::<::::::::lr::: .::·::·>::::::::::!!:::: .::·::·;<::::::::lr::: .::·:·:·<::
"' DISTRIBUTION OF THIS DOCUMENT IS UNLIMI!§l

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.

... -

;iii'-

~.
....

~··~
4 ..

..
~ .

.. ! -·

...
f
' lb. ... •
i-

....

-•

r ..
NOTICE

"This report was prepared as an account of work
sponsored by the United States Government.
Neither the United States nor the United States
Department of Energy, nor any of their em­
ployees, nor any of their contractors, subcon­
tractors, or their employees, makes any warranty,
express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness
or usefulness of any information, apparatus,
product or process disclosed, or represents that
its use would not infringe privately-owned rights."

.-

NOTICE

Reference to a company or product name does
uul imply approval or 1ecunuueuualiuu uf Ute
product by the University of California or the
U.S. Department of Energy to the exclusion of
others that may be suitable.

Printed in the United States of America
Available from

National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Road
Springfield, VI\ 22161
Pnce : Pnnted Copy $; Mtcroftche $J .OO

Domestic
Page Range Price Page Range

001 - 025 s 4 .00 326- 350
026- 050 4 .50 351 - 375
051 ~075 5::... 5 376- 400
076 100 6.00 '101 1:!5
101 - 125 6.50 426- 450
126- 150 7.25 451 - 475
IS I 175 8.00 476- 500
176- 200 9.00 501 - 525
201 - 225 9.15 526- 550
226 - _50 9.50 551 - 575
251 - 275 10.75 576- 600
::!76- 300 11.00 601 - up
301 - 325 11.75

~' -

Domestic
Price

$12.00
12 .50
13 .00
13.25
14.00
14 .50
15.00
I 5.25
I 5.50
16.25
16.50

I

!1!\Ud 2.50 !'t>r cul'lt addit ional 100 pugc increment from 601 pages up.

•

• - -·

tr: .. ,
• "f!"'­

...,..Jitt¢~ ;, .. ,
lllofijiik-.

.< .. ~ ... ,_

.-... ~"
I

- """"

Work performed under the auspices of the U.S. Department of Energy, under
contract No. W-7405-Eng-48 .

' .. ~ -... - *lliJtll"- - .. - ~-. - ~ - • -. :
""'-

CONF · 790902

. SCIENTIFIC
COMPUTER INFORMATION

EXCHANGE MEETING
-·--~

· SEPTEMBER 12·13·1979
LIVERMORE·CALIFORNIA
THEME= IMPACT OF ADVANCED SYSTEMS ON

SCIENTIFIC COMPUTATIONS

PROCEEDINGS

~.===~==~DimSCL~AIME~R==~==~~
This book was prepared as an account of work sponsored by an agency of the United States Government.
Neither tho United States Government nor any agency thereof, nor any of their employees, makes any
warrantv. exor~~ nr i"'fllied, or auumot :.nv lcgot liability or r~t~il.>ilily lu1 the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product. process, or ~rvice by trade name, trademark, manufacturer, or otherwise, does
not necessarily constitute or imply its endorsement, recommendation, or favoring by the United

· States Government or any agency thereof. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or any agency thereof.

- --- ---~---- -----=-------------..---------~ --

SPONSORED BY:
DEPARTMENT OF ENERGY

OFFICE OF BASIC ENERGY SCIENCES

LAWRENCE LIVERMORE LABORATORY

Chairman:

Co-Chairman:

SCIENTIFIC COMPUTER INFORMATION EXCHANGE
MEETING ON IMPACT OF ADVANCED

SYSTEMS ON SCIENTIFIC COMPUTATIONS

Sidney Fernbach

·Bill Buzbee
Mal Kalos
Garry Rodrigue

Secretary: Maylene Wagner

Session Chairmen: Plasma Simulation - John Killeen
Atmospheric Modeling - Joe Knox
General Scientific Computation - Bill Bu~bee
Turbulence/Hydrodynamics - Stuart Patterson

II

PREFACE

The Scientific Computer Information Exchange
Meeting was held at the Lawrence Livermore Laboratory,
Livermore, California, on September 12-13, 1979. The
theme of the meeting was the Impact of Advanced Systems
on Scientific Computations. The meeting was sponsored by
the Department of Energy Office of Basic Energy Sciences
and the Lawrence Liv~rmore Laboratory. The papers
printed in these proceedings have been reproduced from
camera-ready manuscripts furnished by the authors. They
have not been refereed nor have they been extensively
edited.

Advanced computing systems such as the CDC­
STAR, CRAY-1, ILLIAC-IV, and TI-ASC have been on
the market and used by scientific institutes for several
years. Experience hus led to the realization that different
numerical and software techniques that fit these architec­
tures are required. The papers in this symposium were
presented by physical and computational scientists who use
advanced computers in their work. The sessions covered
plasma simulation, atmospheric modeling, turbulence ancl
hydrodynamics, and topics in general numerical algo­
rithms.

Ill

The success of any meeting depends, of course, on the
work and support of the many people involved. It is my·
pleasure to thank Sid Fernbach, symposium chairman, for
suggesting the idea for the meeting and for his handling of
many of the necessary administrative decisions. The .ad­
ministrative support of Maylene Wagner .and Virginia
DuBose was invaluable to the smooth running of the
meeting.

A personal thanks goes to the DOE sponsor of the
symposium, Jim Pool of the Applied Mathematics Divi­
sion of the Office of Basic Energy Science.

Finally, I am extremely grateful to my co-chairmen
Mal Kalos and Bill Buzbee for their advice and coopera­
tion, and to the session chairmen for their solicitation and
selection of papers and their skillful handling of the ses­
sions.

Garry Rodrigue
Coordinating Chairman

THIS PAGE

WAS INTENTIONALLY

LEFT BLANK

CONTENTS

Preface Ill

·Session 1: Plasma Simulation
Session Chainnan: John Killeen

Vectorized PIC Simulation Code on the CRA Y-1
D. W. Forslund, C. W. Nielson, and L. F. Rudsinski

Realistic 30 Resistive MHO Calculations on the CRA Y-1
H. R. Hicks and B. Carreras

3

4

Simulation of Gradient-Drift Striations on. the ASC . 10
B. E. McDonald, S. L. Ossakow, S. T. Zalesak, and N. J. Zabusky

Numerical Experiments in the Dynamics of Galaxies on ILLIAC IV
R. H. Miller and B. F. Smith

Particle Simulation on the YAP ·.
W. E. Drummond and B. N. Moore

A Vectorized Fokker-Planck Package for the CRA Y-1
M. G. McCoy, A. A. Mirin, and J. Killeen

The CRAY-1 and MHO Stability Studies in Tokamaks
M. Manickam

Session II: Atmospheric Modeling
Session Chairman: Joe Knox

A Vectorized Three-Dimensional Operational Tropical Cyclone Model
Rangarao V. Madala and Simon Chang ·

Implementation of Vectorizing Techniques on the CDC-STAR-100
for Speed Enhancement of GLAS GCM

Lawrence Marx

The Use of the CRA Y -I i)l Simulating Hail Growth
C. M. Berkowitz

. 18

......... 24

. 30

. 38

.... 45

. 47

. 53

......... 54

Development of a STAR-100 Code to Calculate a Two-Dimensional Fast Fourier Transform 60
Jay Lambiotte

Session III: General Scientific Computation . 69
Session Chairman: Bill Buzbee

Impact of Advanced Systems on LMI:BR Accident Analysis Code Development · · 71
F. E. Dunn and J. M. Kyser

Implementation of a Linear System Solver 81
James G. Sanderson

Advanced Computers and Monte Carlo . 85
Thomas L. Jordan

Detailed Vectorized Reactive Flow Simulation on the Texas Instruments ASC 92
J. P. Boris, D. L. Book, T. R. Young, Jr., E. S. Oran, and M. J. Fritts

v

Design Considerations for a Partial Differential Equation Machine
Arvind, and Randal E. Bryant

......... 94

Vectorized Sparse Elimination
D. A. Calahan

..................................... 103

Parallel Algorithms for Solving Banded Toeplitz Linear Systems 115
Ahmed Sameh and Joseph Grear

An Experience with the Conversion of the Large-Scale Production
Code DIF3D to the CRA Y-1 116

Keith L. Derstine

Session IV: Turbulence/Hydrodynamics . 129
Session Chairman: Stuart Patterson

Calculations of Water Waves and Vortex Arrays by Numerical Solution of
I ntegro-Differentiai Equations . 131

P. G. Saffman, B. Chen, and R. Szeto

Steady High Reynolds -Number Flow Past a Cylinder
Bengt Fombf.'.rg

Vectorization Techniques for an Iterative Algorithm ...
Dennis V. Brockway and Fred Gama-Lobo

Evolution of the MHO "Sheet Pinch"
W. H. Matthaeus and D. Montgomery

................... 138

................... 144

.......................... 149

Num·erical Solution of the 3-0 Navier-Stokes Equations on the CRA Y-1 Computer 159

~- S. Shang, P. G. Buning, W. L. Hankey, M. C. Wirth, D. A. Calahan, and W. Ames

Attendees of SCIE Meeting, September 12-13, 1979 : 167

vi

PLASMA SIMULATION

• Vectorized PIC Simulation Code on the CRAY-1

• Realistic 3-0 Resistive MHO Calculations on the CRAY-1

• Simulation of Gradient-Drift Striations on the ASC

• Numerical Experiments in the lJynam1cs of Galaxies on I LLIAC IV

• Particle Simulation on the VAP

• A Vectorized Fokker-Pianck Package for the CRAY-1 , • The CRAY-1 and MHO Stability Studies in TOKAMAKS

• . •

VECTORIZED PIC SIMULATION CODES ON THE CRAY-1

D. W. Forslund and C. W. Nielson
Los Alamos Scientific Laboratory

Los Alamos, New Mexico 87545

and

L. F. Rudsinski
Consultant

ABSTRACT

The PIC simulation code WAVE has been almost completely vectorized for the CRAY-1
and is being routinely used on a production basis. We discuss here the vectorizing tech­
niques for the particle mover and the field solver as well as the I/O routines which r·e­
sult in the code being nearly CPU-bound. The procedure used to vectorize the particle
mover is to rewrite it in a series of small loops which then are readily converted by a
vectorizer program into special vector macros recognized by the FTN compiler at LASL.
This allows selective vectorization of different sections of code to determine the optimal
vectorization strategy. As is well known the interpolation technique used in PIC simu­
lation for the fields, charges and currents is not vectorizable. We find that the optimal
strategy for the FTN compiler is to keep this interpolation process completely in scalar
mode. If we separate the scalar fetch and then vectorize the interpolation, we find a ·
degradation of 30% in speed. On the CRAY-1 we obtain speeds of 5.5·,s/particle for a 2-D
electrostatic mover, 11.5 s/particle for a 2 1/2-D (with all field quantities) non­
relativistic electromagnetic mover and 12.4 s/particle for a 2 1/2-D relativistic elec~
tromagnetic mover. We also use a fUlly vectorized Poisson solve algorithm which uses FFT
(Berglund real form) in one direction and tridiagonal solve i~ the other. Vectorization
is achieved in the direction normal to the transform or tridiagonal solve. A 256 x 256
Poisson solve takes lOO.ms and a 64 x 64 Poisson solve takes 5.1 ms." The FFT takes 2/3
of.the time and the tridiagonal solve takes 1/3 of the time. In order to sustain these
speeds for large problems, an efficient I/0 algorithm is needed on the CRAY-1. ·The algo­
rithm we have implemented in production is triple-buffering with two disk channels.
Sustained transfer rates of 375,000 words/sec/channel are obtained which allow for nearly
complete overlap with the relativ~stic mover. Exploratory tests have shown that it will
be possible to obtain sustained rates of 450,000 words/sec on each of four channels
driven simultaneously and overlapped with computation. The size of the required buffers
to achieve this is dependent on the details of the operating system.

3

By acceptance of this article, the
publisher or recipient acknowledges
the U.S. Government's right to
retain a nonexclusive, royalty-free
license in and to any copyright
covering the article.

REALISTIC 3D RESISTIVE MHD CALCULATIONS ON THE CRAY-1*

H. R. Hicks and B. Carrerast
Oak Ridge National Laboratory

P. 0. Box Y, Oak Ridge, Tennessee 37830

ABSTRACT

CPU times for nonlinear resistive MHD calculations are very strongly dependent on
the input variables. Although some regions of parameter space can be studied very
cheaply, the conditions that correspond to Tokamak plasmas are extremely time consuming
to study. Unfortunately, it is not possible to extrapolate reliably from the easy cases
to the interesting regime. In recent years we have improved the efficiency of our codes
by two ordcr:J of magnitude. A::; a ·result it is now feasible for us to run some realistic
Tokamak cases on a CDC 7600. An additional factor of-four reduction in run time is
obtained by going to the CRAY-1 where the most time consuming routines are vectorized.
This last factor makes a program of systemati.c studies feasiblP..

INTRODUCTION

The device which presently holds the
most promise for obtaining· energy by
controlled fusion is the Tokamak.
Although there is much that is still not
understood about Tokamak confinement,
possible explanations of some Tokamak
observations have emerged from resistive
magnetohydrodynamic (MHD) calculations
during the last several years.

The ability of a Tokamak to confine
a plasma is limited by the disruptive
behavior1 of the plasma. In the case of
major disruptions (total loss of
confinement), damage to the device can
result from the sudden deposition of
energy to the walls. Plasma disruptions
are generally accompanied by MHD
activity. The observed timescale of the
major disruption (about 10 ~sec to 1 msec
in present Tokamaks) is of the order of
the linear tearing mode growth time.2
Further analytic calculations3 have shown
that the nonlinear growth time of these
resistive MHD modes, such as are seen as
precursors of the major disruption, is on
the order of the plasma skin time, TR ·(a
fraction of a second to a few seconds).
This result has made it difficult to
identify tearing modes as the dynamical
mechanism of the major disruption.

All of t.hese analytic results were
for large aspect ratio, low 8 (ratio of
the plasma energy to magnetic energy) and
single helicity. The low 8 assumption is
valid for present ohmically heated

4

Tokamaks. The single helicity
approximation is valid only in
cylindrical geometry and only when the
plasma equilibrium is linearly unstable
with respect to just one helic~ty.

The ear&ies5 numerical
calculations ,5, ,·r also retained all of
these restrictions. The low S assumption
allows the number of MHD partial
differential equations (p,d.e.'s) to be
reduced, and, in the single helicity
approximation, thP calculation onn be
performed in two dimensions (2D). The
resistive MHD p.d.e.'s are solved as an
init.ir:~1 vr~lue fluid problem on A 2D
cylindrical grid. The initial condition
corresponds to a plasma equilibrium plus
a small perturbation: The single
helicity case has yielded a wealth of
results including posSible mechanisms for
internal disruptions, ,9 Mirnov
oscillations9,lO and disruptions during
the initial stage of the Tokamak
discharge. 6 • 11 However, the explanation
of the timescale of the major disruption
remained elusive.

In nonlinear resistive calculations
it is necessary to follow events on two
disparate timescales, the aforementioned
skin time TR, and the peloidal Alfven
time Til[!" In modern Tokamaks
TR/TH = S ~ 107. Computation time
increRses strongly with S. As a result,
numerical efficiency is an important
issue if one wishes to consider realistic

values of S. Unfortunately, the resu~ts
of faster calculations_ (at, say, S=10)
can yield qualitatively different
results, making extrapolation in S a
questionable strategy.

We have speculated that a possible
mechanism for the major disruption
involves the interaction of 2 or more
linearly unstable modes of different
helicities, necessitating solving the
problem in three dimensions. This
approach has been quite fruitful, since
it has revealed that a timescale of the
order of the linear growth can re-enter
the nonlinear problem9• 12 when it is
generalized to 3D. Comparison of our
coupled helicity results with
experimental observations of the major
disruption has been favorable in the few
cases where sufficient data exists.
Moreover, by modifying the boundary
conditions we have determined that a
feedback circuit 13 might be successful in
preventing major disruptions.

Resistive 3D MHD calculations have
also been carried out by Schnack 1 ~. He
has directed his ·work to reversed field
pinches where e is relatively high and s
is not as high as in Tokamak~. He has
dropped the large aspect ratio and low e
assumptions, but retained the single
helicity restriction.

THE EQUATIONS

We simplify 5,l5,l6 the full set of
resistive MHD equations by assuming_
Tokamak ordering and low 8. We solve the
resulting equations in either a torus or
a periodic cylinder. To simplify the
presentation we write here the equations
in their cylindrical form:

lY!.:
at 11 J

I';

+
= v2 tjJ

. .l

s

The functions tjJ (peloidal flux),
U(toroidal component of vorticity),
~(velocity stream function) and
J~;;(toroidal current~ are scalar functions
of all 3 spatial coordinates as well as
of time. The cylindrical coordinates are
r, 6 and I'; where I'; is the coordinate
along the cylinder. Et and S ·are
time-independent scalars. The
resistivity, 11, can be treated several
ways. Here we shall assume it is only a
function of radius and does not vary with
time. The numerical problem is to
integrate in time the two coupled
3-dimensional p.d.e.'s.

The boundary conditions are
appropriate to a rigid cylinder,

and either constant toroidal current,

'd<tjJ> ()
a,r rWall : Q I

or conducting walls

All functions are periodic along the
cylinder, e.g. 1

and are regular at the cylindrical axis.

The poloidal flux function, tjJ, is
initialized to correspond to a plasma
equilibrium (which is a function only of
radius) plus a small perturbation. The
perturbation is normally chosen to
approximate the sum of several linear
eigenfunctions. Under these conditions,
the earliest phase of the calculation is
characterized by the exponential growth
of the true eigenfunctions. Each
eigenfunction is of the form

tjJ(r,6,1';) = tjJmn(r) cos(m6 + nl';)

where m (n) is the poloidal (toroidal)
mode number. Any part of the initial
perturbation which does not project into
one of these growing solutions becomes
relatively insignificant and can be
ignored. At high values of S, this
exponential phase is followed by a clear
nonlinear phase of slow algebraic growth,
in agreement with theoretical
predictions.3 In the 2D approximation

either the mode saturates, g1v1ng a new
non-axisymmetric equilibrium, or, through
reconnection, the mode is no longer
resonant in the plasma and a new
axisymmetric e~uilibrium is formed. In
the 3D case,9, 2 under _certain
conditions, the growing modes interact
nonlinearly generating other MHD modes
and accelerating their growth. The
number of modes caught up in this process
increases rapidly with time. The time
scale of this phase is like that in the
earlier exponential phase. In agreement
with experiment, the toroidal current is
severely deformed in a way that the self
inductance of the plasma decreases and a
negative voltage spike is produced at the
plasma edge. The flux surfaces are
destroyed 9ver a large region in which
the magnetic field wanders stochastically
(Fig. 1).

-0.8

0.8

. 0.4

-0.4

-0.8

-0.8 -0.4 0 0.4 O.B ,,.

-.,-. I • 5291ttp

///,
I 1"'/ ,:? ~:;_., \.

;_· __ (_._._n,~_·_._._~_._, ;~7~\ -~:::;~~:: .. "
~~~~f·i, 

-0.8 ·0.4 0 ,,. 0.4 0.8 

Fig. 1. The magnetic field evolves from 
a state of well defined flux surfaces to 
a state with a large volume filled with a 
stochastic field line. 

During this phase there is a 
transition from large scale phenomena to 
small scale phenomena. At this point the 
fluid model starts losing its validity 
and the calculation should be stopped. 
Except for this final phase, the 
calculation is dominated by a small 
number of modes. It is this feature 
which leads us to the method RSF, 
described in the next section. 

6 

NUMERICAL METHODS 

The technique7• 12 • 16 we employed in 
implementing our first 3D computer code, 
RS3, is the most obvious choice. The 
functions are represented on a 
cylindrical grid. Unequal spacing in 
radius is permitted. Finite difference 
expressions are•used for spatial 
derivatives in all 3 directions: The 
equations are advanced in time explicitly 
except for the nJs term which is advanced 
implicitly. 

This formulation has two problems. 
Execution times, even for rather fast 
cases, are so long that systematic 
stuc1.iP..s arP. impossible. This io 
compounded by the fact that at the 
singular points, where accurae1y is most 
important, the truncation error can have 
a signiflcaut effect.17 

Our second formulation, RSF, is 
designed to eliminate the truncation 
problem which originates from 
discretization in the e and s coordinates 
in RS3. The finite difference 
approximations in those directions are 
replaced with a Fourier series expansion 
of the dynamical functions, 17 e.g., 

lji(r,9,s) = I: [lji~n(r)cos(me + ns) 
mn 

Except for the end of our multihelicity 
calculatiOns, each run is dominated by a 
small number of terms in the series. 
Therefore the series expansion is 
actually a much more economical 
representation. When the calculation 
enters a stage where small scale 
structures become important, both methods 
are inadequate. 

The code using the series expansion, 
RSF, executes about 2 orders of magnitude 
faster than RS3. The exact factor 
depends on the problem being solved as 
well as the accuracy desired. The ' 
nonlinear terms take the bulk of the 
execution time in RSF, due to the 
convolutions necessary to multiply 2 
seties expansions together. 



At the time we started to develop 
RSF, installation of a CRAY-1 at the NMFE 
Computer Center was about 6 months away. 
As we wrote Fortran code, we used a style 
which could be largely vectorized by the 
CRAY Fortran compiler. This was not 
difficult and in fact probably resulted 
in more readable (and thus easily 
modifiable) code. However, the most time 
consuming operation, the convolution, 
appeared inherently difficult to 
vectorize since it involves nonlinear 
subscripting. For example: 

F = 0. 
DO 100 LP=LPMIN,LPMAX 

100 F = F + G(LG(LP))*H(LH(LP)) 

However, since we retain a finite 
difference grid in the radial direction 
it is necessary to perform the above 
calculation at each radial grid point. 
Putting the loop over grid points on the 
inside gives the vectorizable code 

DO 102 J = 1 ,JMAX 
102 F(J)=O. 

DO 100 LP=LPMIN,LPMAX 
DO 10 1 J = 1 , JMAX 

101 F(J)=F(J)+G(J,LG(LP))*H(J,LH(LP)) 
100 CONTINUE 

In this form the convolution routine . 
gains a factor of 5 in speed over the 
unvectorized version. 

A coupled helicity run can take as 
little as a few minutes or as much as 
several hours on the CRAY-1 depending 
primarily on S and on the accuracy 
desired. In addition, execution is 
greatly slowed by incl~sion of 
temperature evolution 1 (factor of 10) 
and/or toroidal effects19 (factor of 10). 
It is a general feature of our coupled 
helicity runs that the time step drops 
rapidly as the fast nonlinear effects 
become important (Fig. 2). 

7 

ORNL-OWG 79-2994 FED 

5 

2 

w-7 

<] 5 

a. 
ILl 
..... 
"' ILl 2 
~ 

i= 

w-e 

5 

. 2 

w-9 L..._ ____ _._ ____ __,_ ____ __,'---' 

0 2 3 

Fig. 2. Finite difference timestep size 
decreases significantly late in the run 
when mode coupling dominates. Most of 
the run time is concentrated at the end 
of the calculation. 

With the convolution routine highly 
optimized for each machine, execution 
time on the CRAY-1 is about one fourth as 
long as on the CDC 7600. This factor has 
made it possible for us to run the 
necessary numerical validation runs and 
to analyze a large number of initial 
conditions. Without a computer in the 
CRAY-1 class, a very large part of this 
work could not have been done. 

REFERENCES 

• Research sponsored by the Office of 
Fusion Energy (ETM), U.S. Department of 
Energy under contract W-7405-eng-26 with 
the Union Carbide Corporation. 



tvisitor from Junta de Energia Nuclear, 
Madrid, Spain. 

1. E. P. Gorbunov, et al., At. 
Energ. 12, 363 (1963)[Sov. At. 
Energy 12, 1105 ( 1963)]; 
L. A. Artsimovich, et al., At. 
Energ. 11, 170 (1964)[Sov. At. 
Energy 11, 886 (1964)]; 
L. A. Artsimovich, et al., in 
Plasma Physics and Controlled 
Nuclear Fusion Research 
(International Atomic Energy 
Agency, Vienna, 1971), Vol. I, 
p. 443; 
S. von Goeler, et al., Phys. Rev. 
Lett. 33., 1201 (1974); 
V. S. Vlasenkov, et al., Nucl. 
Fusion Suppl. . .1, 1 (1975); 
L. A. Berry, et al., in Plasma 
Physics and Controlled Nuclear 
Fu~ilHI Rt::n::sea.r·uh ( Intel'na t.ional 
Atomic Energy Agency, Vienna, 
1977), Vol. I, p. 49; 
I. Hutchinson, Phys. Rev. Lett. 31, 
388 (1976); 
D. B. Albert, et al., Nucl. Fusion 
11. 863 ( 1977); 
S. V. Mirnov, et al., in Plasma 
Physics and Controlled Nuclear 
Fusion Research (International 
Atomic Energy Agency, Vienna, 
1977), Vol. I, p. 291; 
N. R. Sauthoff, et al., Nucl. 
Fusion~. 1445 (1978); 
K. Toi et al. , 11 Current Density 
Profile Control by Programming of 
Gas Puffing and Plasma Current 
Waveform in the JIPPT-II Tokamak," 
IPPJ-372, March 1979. 

2. H. P. ~urth, et al., Phys. Fluids 
.2.. 459 (1963); 
H. P. Furth, et al., Phys. Fluids 
.16., 1054 (1973). 

3. P. H. Rutherford, Phys. Fluids JQ, 
1903 (1973). 

4. B. V. Waddell, et al., Nucl. Fusion 
J.Q., 528 ( 1976); 
D. Biskamp, et al., in Plasma 
Physics and Controlled Nuclear 
Fusion Research (International 
Atomic Energy Agency, Vienna, 
1977), Vol. I, p. 579. 

5. M. N. Rosenbluth, et al., Phys. 
Fluids .19., 1987 (1976). 

6. R. B. White, et al., fn Plasma 
Phvsics and Controlled Nuclear 

8 

Fusion Research (International 
Atomic Energy Agency, Vienna, 
1977), Vol. I, p. 569. 

7. B. V. Waddell, et al., in 
Theoretical and Computational 
Plasma Physics (International 
Atomic Energy Agency, ·vienna, 1978) 
p. 79. 

8. B. V. Waddell, et al., Nucl. Fusion 
.1]., 735 (1978); 
G. L. Jahns, et al., Nucl. Fusion 
.1]., 609 (1978). 

9. J. D. Callen, et al., in Plasma 
Physics and Controlled Nuclear 
Fusion Research (International 
Atomic Energy Agency, Vienna, 
1979), Vol. I, p. 415. 

10. R. B. White, et al., Phys. Fluids 
.£Q., Boo < 1977 >; 
B. Carreras, et al., "Peloidal 
Magnetic Field Fluctuations in 
Tokamaks", Nucl. Fusion (to be 
published) . 

11. B. Carreras, et al., Nucl. Fusion 
_ll, 583 ( 1979). 

12. B. V. Waddell, et al., Phys. Rev. 
Lett . ..!!.1, 1386 ( 1978); 
B. V. Waddell, et al., Phys. Fluids 
zz.. 896 ( 1 q79) . 

13. J. A. Holmes et al., "Stabilization 
of Tearing Modes to Suppress Major 
Disruptions in Tokamaks," (to be 
published in Nucl. Fusion); 
H. R. Hicks et al., 
"Stabilization of Tearing 
Modes: Feedback Stabilization and 
Profile Tailoring," IAEA Technical 
Committee Meeting on Disruptive 
Instabilities, Garching, Germany, 
February, 1979. 

14. D. Schnack, "Nonlinear Numerical 
Studies of the Tearing Mode," 
Ph.D. Thesis, Univ. of Calif., 
Davis, UCRL-52399 (1978); 
D. Schnack, J. Killeen, Nucl. 
Fusion .19., 877 (1979); 
D. Schnack, J. Killeen, (to be 
published in J. Comput. Phys.). 

15. H. R. Strauss, Phys. Fluids .19., 134 
(1976). 

16. H. R. Hicks, et al., "Interaction 
of Tearing Modes of Different Pitch 



16. H. R. Hicks, et al., "Interaction 
of Tearing Modes of Different Pitch 
in Cylindrical Geometry," 
ORNL/TM-6096 (December 1977). 

17. H. R. Hicks, et al., "Fourier 
Transform vs. Finite Difference 
Techniques in Nonlinear Resistive 
MHD Codes," 8th Conf. on Numerical 
Simulation of Plasmas, Monterey, 
CA, June 1978, CONF-780614. 

18. B. Carreras, et al., "Multiple 
Helicity Tearing Mode Calculations: 
Major Disruptions," International 
Atomic Energy Agency Technical 
Committee Meeting on Disruptive 
Instabilities, Garching, Germany, 
February 1979. 

19. B. Carreras, et al., "Reduced Set 
of Resistive MHD Equations in 
Toroidal Geometry," Sherwood Theory 
Meeting, Mt. Pocono, PA, April 
1979; 
H. R. Hic~s, et al., "Effects of 
Toroidicity on the Nonlinear 
Interaction of Tearing Modes," 
ibid. 

9 



SIMULATION OF GRADIENT-DRIFT STRIATIONS ON THE ~C~~ 
~ 

B. E. McDonald, S. L. Ossakow, and S. T. Zalesak 
Plasma Physics Division 

U.S. Naval Research Laboratory 
Washington, D. C. 20375 

and 

N. J. Zabusky 
Mathematics Department 

University of Pittsburgh 
Pittsburgh, Penn. 15260 

ABSTRACT 

The evolution of many artificial ionospheric plasma clouds is governed by a 
simple two dimensional model consisting of a continuity equation and' a variable 
coefficient elliptic equation. This type of model appliee also to some non-plasma 
fluid flows. Despite the simplicity of the model, state-of-the-art methods are 
required to maintain integrity of the solution. These are explained in moderate 
detail. Our one-level striation code is highly vectorized and achieves in excess 
of 80% execution efficiency on the ASC. We give typical results and timings for 
the code and point out areas of current investigations. 

INTRODUCTION 

Artificial plasma clouds de­
posited in the ionosphere at al­
titudes of 140 km or greater are 
observed to evolve in a matter of 
minutes from an initially smooth, 
roughly spherical shape to a state 
of intense small. scale structure.l 
The quasi-final state usually con­
sists of long parallel fingers of 
ionization when viewed in the plane 
perpendicular to the earth's mag­
netic field. The individual fin­
gers or striations point in the di­
rection of the neutral atmospheric 
motion relative to the bulk ion 
motion. Theoretical advances dur­
ing the last twelve years have 
identified the driving mechanism 
for this structure as the gradient 
drift instability.2-4 Numerical 
simulation capabilities for the 
nonlinear equations of motion have 
existed for approximately six 
years.5-7 However some very recent 
advances in numerical solution 
methodsB,ll and computing hardware 
have greatly improved the simula­
tions. 

10 

EQUATIONS OF MOTION FOR THE 
ONE. LEVEL MODEL 

For many cases of interest, an 
artificially produced plasma cloud 
will possess a field-line integra~ 
ted cross-field conductivity which 
is scalar and which dominates that 
of the background plasma. In 
these cases the electrical currents 
are largely contined within the 
cloud, alleviating the need for 
modeling remote regions. The high 
ion mobility aiong the field twu­
dimensionalizes the cloud to a high 
degree. As a result, the clGud' s 
evolution is concisely described 
by the following set of equations 
in the plane (x,y) perEendicular 
to the magnetic field: · 

~ 'V • p 'V cpx z + 'V • K( p ) 'V p 

'V .p'Vcj> = E .'Vp 
_o 

In (1) and (2) p, c, B, and cp are 
respectiveiy.the io~ number densi­
ty, the speed of light, the con­
stant geomagnetic field strength 
(with B = Bz), and the cloud-in­
duced ~lectrostatic potential. 

(l) 

(2) 



K and E are the cross-field plasma 
diffusi8n coefficient and ambient 
electric field. We choo~e coordi­
nates such that E = E y = con­
stant. Equation-~1) i~ the plasma 
continuity equation cast in coordi­
nates moving with the ambient plas­
ma drift at a velocity V = cE x 
!/B2 relative to the ne~~ral -o 
atmosphere. The diffusion coeffi-. 
cient K(p) is included to account 
for single particle collisions be­
tween electrons and ions, and be­
tween charged particles ·and the 
neutral atmosphere. Although K 
depends upon parameters of the 
neutral atmosphere and the ion 
cloud,12 we shall only note that 
typically 

4 2 . 
K :: 10 em /sec (3) 

This model assum~ a homogeneous 
neutral atmosphere which is un­
affected by the plasma cloud. 

The boundary condition for 
the elliptic equation (2) is that 
~ should vanish at great distances 
from the cloud. In practice boun­
~aty conditions must be imposed at 
a finite distance from the cloud. 
We have chosen a Neumann condition 
(a/ax = 0) in the direction of the 
neutral flow (the x direction by 
arbitrary choice) to allow plasma 
to flow through the boundaries. In 
the transverse direction (y) we im­
pose periodicity, which would be a 
reasonable approximation for simu­
lation of a small portion of a 
large striated region. For a sin­
gle isolated cloud the dipole na­
ture of the source term keeps image 
effects small. This has been veri­
fied by tests in which the symmetry 
of the images is reversed by im­
posing a Neumann condition in y. 
Only minor differences were noticed. 

Equation (1) is integrated as 
an initial value problem in time 
beginning with some specified dis­
tribution p(x,y) at t = 0. The 
spatial boundary conditions for P 
are the same as for ~· It is per­
haps worth pointing out that eqs. 
(1) and (2) with minor modifica­
tions are descriptive of two di­
mensional incompressible flow prob­
lems not normally associated with 

II 

plasma physics. One example is 
vorticity transport, in which p 
would play the role of the vor­
ticity and ~ the streamfunction. 
Another example is stratified 
porous medium flow, in which p 
would be the mass density and ~ 

the streamfunction. 

NUMERICAL METHODS 

All work presented here has 
been performed using NRL's two-pipe 
Texas Instruments ASC. The simu­
lation code is written entirely in 
IBM-compatible Fortran (except for 
parameter statements). The primary 
impact of the ASC's configuration 
upon our simulations has been to 
select out one particular method as 
being more efficient by at least 
a factor of twoll than other meth­
ods currently available for solution 
of the elliptic equation (2). 
Thus the discussion in this section 
is primarily devoted to the solu­
tion of (2). 

ELLIPTIC EQUATION 

AG io the case for many models 
requiring the solution of a varia­
ble coefficient elliptic equation, 
our one level gradient-drift code 
spends most of its time (60% or 
more) solving eq. ( 2). Of the so­
lution methods currently available, 
the most efficient method for the 
ASC appears to be the Chebrchev 
semi-iterative method.lO,l ,13 
This choice results from the fol­
lowing: (1) we have a good approx­
imation to ~ (by extrapolation 
from two previous timesteps in our 
case); (2) the method vectorizes 
completely on the interior of a 
multidimensional ~omain; and (3) 
good convergence can be attained 
with 32 bit precision in some cases 
where conjugate gradient methods 
require 64 bit precision. We pre­
condition (2) by multiplying both 
sides by p-1, where p is a five 
point average of p to be defined 
later. This results in a matrix 
whose condition is not substan­
tially different from that of the 
matrix for the discretized Poisson 
equation. Although the Chebychev 
method extends to non self-adjoint 
matrices,lO,ll the pre-conditioned 



equation (2) is self adjoint for the 
inner product 

(A,B) = .L: A .. P .. B .. 
i,j ~.] ~.] ~.] 

and suitable boundary conditions. In 
(4) i and j are spatial indices dis­
cretizing x and y respectively. 

In the results to be presented here, 
a un{form spatial grid of 162 by 82 
points was used, with the exterior points 
being guard cells for boundary condition 
purposes. Second order centered differ­
ences were used to represent (2). Since 
p and ~ are stored on the same spatial 
mesh, the p values appropriate for use 
on the left side of (2) are spatial 
averages between two points used to eval­
uate ~ derivatives. For computational 
efficiency we ucc the following pre­
conditioning divisor.: 

p .. =[ (2p .. + p.+l .+Pi 1 .)lox2 
~.] ~.] ~ ,] - ,] 

(4) 

2 
+ < 2 t~ i , j + Pi , j +1 + Pi , j -1 > 1 oy J < 5) 

I< 4lox
2 

+ 4lo/) 

Thus the preconditioned representation 
of (2) is 

L ~- . = S .. , 
~..1 l.,.J 

where 1 is the five point operator 
-1 

(2p .. ox2) L ~- . 
~.J ~.] 

x ((p.+l .+P .. )(~.+1 .-~ .. ) 
~ ,] ~.] ~ ,J ~.J 

- (pi,j + pi-l,j)(~i,j-~i-l,j)) 

? -1 
+ (2P . oy~) 

O,J 

x((P. "+l+p .. ) (~. "+1-~. ·.) 
~.J ~.] ~.J ~.] 

-(P .. - "frp .. 1) (~ .. -~ .. 1)) 
~.J ~.J- ~.] ~.]-

and the driving term is 

(6) 

(7) 

- -1 
S .. = E (2p .. oy) (P .. +

1
-P .. 

1
).(8) 

~.] 0 ~.] ~.] ~.]-

The choice of p in (5) results in the 
matrix L having constant diagonal ·co­
efficient 

12 

Ld. 
~ag 

2 2 
-2lox - 2loy 

Preconditioning with p also yields an 
upperbound for the eigenvalues of 1: 

$ max .L: ILiJ. I 
i j 

2 2 = 4lox + 4loy , 

which is identical to the maximum eigen­
value for Poi?son's equation. 

The Chebychev semi-iterative method 
produces a sequence of iterates ~n con­
verging to the solution of (6) by the 
following algorithm: 

(9) 

(10) 

Let ~0 trial solution 

~Pi 4>0 - h 
-1 

(l. 
0 

lj> ·-

and ~n+l F 
n 

((1-b) ~n -$) 

S) 

_ G ~n-1 
n ' 

(11) 

(12) 

(13) 

n > 0. 

Th d ~n+l d f" d · · e up ates ~ .are e ~ne on ~nter~or 
mesh points from (13). Values on ex­
terior guard cells are then set to satis­
fy boundary conditions. The constants b, 
Fn and Gn are calculated as follows. The 
error vector L ~n - S can be expressed as 
a linear combination of eigenvectors of 1. 
The Chebychev method gu~r~nteee conver­
gence for all eigenvector components of 
the error ~hose eigenvalues A fall itt 

the range 

where 

providing 

F 
n 

G 
n 

where 

b+a ~ A :;; b-a, 

bla > 1, 

2 T (q) 
n 

\+l(q) Ia I 

T 
n-l(q) 

T· .n+l(q) 

, and 

(14) 

(15) 

(16) 

(17) 



q = - b/a (18) 

In (14) we have taken a and b to be nega­
tive since the operator L is nonpositive 
for periodic - Neumann boundaries. In 
(16) and (17) Tn is the Chebychev poly­
nomial of degree n, which is calculated 
from the recursion formulae 

T (x) 1 
0 

Tl (x) = X 

Tn+l (x) = 2x Tn(x)- Tn-l (x), n > 0 

For this application we have chosen 

(19) 

b = L . = -2/6x
2 

-2/6y
2 

(20) 
d1.ag 

and 

a = b + E: • (21) 

The asymptotic convergence rate is then 
(-2 E/b)~. The choice of e will be dis­
cussed below. We have chosen (20) for b 
for computational efficiency. This value 
of b results in the matrix L~b in (13) 
having zero diagonal. This reduces the 
h~si~ operation count by approximately 
16%, and in addition allows a "hopscotch" 
calculaL.i.on in which <j>n+l is updated only 
on alternate gridpoints. This would 
effectively double the computational speed 
of the method. However, the results pre­
sented here have not taken advantage of 
the "hopscotch" feature. 

ACCELERATION OF CONVERGENCE BY REGRIDDING 

If we were to attP.mpt to cover the 
entire eigenvalue spectrum of L on a 
single grid, we should take € in (21) to 
be minus the eigenvalue of least nonzero 
magnitude. We estimate E: roughly by 
taking L ~ v2. Then for Neumann-periodic 
boundaries on a mesh of Nx by Ny interior 
gridpoints we take 

n 2n 
2 

e "'Min ( N .ox , N. ·oy) (22) 
X y 

For the results presented here, (N ,N ) = 
(160, 80), and 6x = 6y ;· so the asym?totic 
convergence rate per iteration is 

-~ c .= 2 n/N 
X 

Thus the number of operations required to 
attain a given error reduction is proper-

(23) 

13 

2 
tional to N N , For the present case, 
the total o?er~tion count can be reduced 
by a factor in the approximate range of 
4 to 7 by solving for the long wa~elength. 
components on a reduced grid of (n ,n ) = 
(Nx/4,Ny/4) points.ll x Y 

For the results presented here, an 
initial approximation to <j> was taken 
from linear extrapolation from the two 
previous timesteps. The residual error 
R = L<j>-S was extracted on the fine grid 
and placed on a coarse grid by taking 
block averages of 16 fine grid point 
values. The same averaging was used to 
obtain p values on the coarse mesh. A 
correction term <l>c was initialized to 
zero on the coarse grid and improved by 
72 iterations on the equation Lc<l>c = Rc. 
(subscripts c denote coarse grid quanti­
ties.) These iterations used parameters 
a,b, and € from (20) - (22) with 6x and 
Nx replaced by 46x and Nx/4, respectively. 
Then <l>c was defined on the fine grid by 
linear interpolation and subtracted from 
the trial solution. Twelve follow-up 
iterations were then performed on the 
fine mesh with e =-b/30. This proced­
ure resulted in typical rms residual 
errors (normalized to the rms source 
term) of a few parts in 104. 

CONTINUITY EQUATION 

We integrate eq. (1) forward in time 
by the method of flux correction,8,9 
which combines a fourth order spatial, 
second order temporal leapfrog scheme 
with a first order donor cell method. 
The resulting hybrid scheme maintains 
high order accuracy in regions where p 
is smooth and monotonic, but reverts to 
low order where p is sharply structured. 
Effectively it is a prescription for add­
ing diffusion in a systematic, localized 
way to prevent generation spurious os­
cillations. or anomalous extrema in p, 
which could have disastrous consequences 
for the electrostatic potential <j>. (Note 
that (2) can oe written as a modified 
Poisson's equation, with polarization 
charges proportional to Vp/p.) 

In one dimension, the method of 
flux corre~tion may be represented as 
follows: 

p~ 
l. 

f • ol 
l. .,....-2 

(24) 



The superscripts and subscripts are re­
spectively temporal and spatial indices. 
In (2~), f.is a flux derivable from a 
low order representation of (1) (e.g. 
donor cell) which does not generate 
spurious extrema.. The flux correction of 
in (25) is such that f + Of is identi­

cally the flux derivable from a suitable 
high order scheme (e.g. fourth order 
leapfrog-trapezoidal for the. present 
case.) All Q in (25) satisfy 0 $ Q $ 1. 
One method of determining the Q is tQ 
require for each point i that neighboring 
flux changes of tending to increase Pi 
be limited multiplicatively so as to pre­
vent a new maximum in p from being e~n­
era ted. Then neighboring flux changes· 
tending Lu decrease Pi are limited to 
pr~clude generation of a new mirlimum. 
This procedure extends straightforwardly 
to two rlimension58,9 without time-
step splitting. 

Let us consider (1) as a special 
case of the equation 

t = 'V • p~. (.26) 

where ~(x,y) = (u (x,y), v (x,y)). The 
low order donor cell fluxes in (.24) are 
obtained as follows. Let 

( u . + n . +l . ) I 7 . 
1,] 1 ,] 

(.27) 

Then 

= .0.!. fx. ,, . (p .. Max(:U.+' , , 0) 
1.....-!l,J ox 1,] 1 -':i,] 

(28) 

+ p. +l . Min (tr. , 1 • , 0) ) 
1 ,] 1.,---:2,] 

is a vectorizable expression for the x 
component of the low order flux f = 
(fx, fy). Equations (27) and (2S) ex­
tend straightforwardly to the y component. 

For the high order representation 
of (1) we have chosen the spatially 
fourth order leapfrog-trapezoidal 
scheme. 14 This scheme controls the com­
putational mode by appending a trapezoidal 
integration step to the familiar leapfrog 
scheme. Denoting fourth order spatial· 

14 

differences with coefficients(l/lZ,-2/3,0, 
2/3,-l/12)by Dx and Dy' define 

n.P-1 n n-1 "t Ot p = ~(p + p ) - (-u D +- D ) 
•OX X Oy y 

n vn p • 

Then the spatially fourth order update 
would be 

4
n+l 

p .. 
1,] 

n 
P .. 
1,] 

- Fx . , 1 • + Fx . 1 • , 
1.,---:2' J 1 -~ ' J 

where the high order fluxes are 

Fx oL • 
i"'2,] 

and 

T. ol • 
1.,---:2,] 

1/3 T - 1/24 
i+l--:2,j 

(Tl+3/2,j + Ti~~,j). 

v~ .). 
1,] 

In (30) p4 is never computed, but serves 
only to define the fluxes Fx and Fy. 
Equations (31) and (32) extend straight­
forwardly to the y fluxes Fy. Having de­
fined high and low order fluxes, we de­
fine flux corrections 

0 fx.-'..1.. . 
1•'2,] 

Fx. ,, . 
1.,---:2,] 

fx. ol • 
1.,--1,] 

0 fy .. ol = Fy. , ol - fy. •-'..1.. 
1 'J .,---:2 1 'J .,---:2 1 'J ''2 

for use in the two dimensional analog 
of (25). 

The flux limiting procedure (choice 
of Q in (25))is adequately discussed 
elsewhere8,9 and will not be detailed 
here. Decisions necessary for the 
limiting process require no scalar logic 
on the ASC. They are made by proper use 
of the vector functions AMINl, AMAXl, 
and SIGN. 

OPERATION COUNT AND RUNNING TIME 

To illustrate the execution 
efficiency of the code, we will compare 
actual running speeds with theoretical 

(29) 

(30) 

(31) 

(32) 

(33) 



maxima obtained from bare operation 
counts. The operation counts are con­
verted to machine cycles per gridpoint 
per timestep through use of the values in 
Table 1. 

Table 1. Machine cycles required per 
result for seven basic functions on the 
ASC in 32 bit vector mode. Store and 
fetch times are included. 

Operation Cycles per operation 

+,-,* 1 

Aminl, Amaxl 1 

Sign 4 

I 8 

In Table 2 are presented theoretical 
and actual timings for the run from which 
results are presented below. The first 
column gives operation count converted to 
cycles per timestep per interior grid­
point for the main parts of the code. 
The second column gives theoretical 
running times obtained by multiplying the 
first column by 1943 timesteps x 160 x 80 
interior gridpoints x 40 nanoseconds per 
cycle. (The NRL machine has a cycle time 
of 80 nsec; however there are two pipes· 
delivering rP-sul.ts si:muJ.taneously.) The 
third column in Table 2 are the actual 
running times of each port:ion of t:he 
code. The results in Table 2 are typical 
of all our experience with the code to 
date. (The contour plots to be presented 
below are out to 160 seconds, although. 
the full 1943 timestep run went to 240 
seconds.) 

Table 2. Operation counts, theoretical 
and actual running time (seconds) for 
major parts of the code. 

Cycles Theoretical Actual 
per cpu time cpu time 
point 

Driver 26 25.9 40.3 
Continuity 142 141.3 154.3 

eq. 
Elliptic 288 286.5 352.1 
eq. 456 453.7 546-:7 

From Table 2 we see that t:he code ex­
ecutes at 83% efficiency (without machine 
coding). The operation counts in Table 2 
apply only to operations executed on the 
full grid (162 x 82) or the interior 
grid (160 ·x 80). No allowance has been 
made for boundary point calculation or 

15 

other operations which do not apply to 
a fully two dimensional set of points. 
Thus the true efficiency of the code is 
somewhat higher than 83% since the actual 
cpu times include all operations. 

TYPICAL RESULTS 

Figures l-4 give contours of equal 
plasma density at four times following 
the release of a lkm-radius barium cloud 
in the ionosphere at an altitude of 190km. 
The barium plasma (ionized by solar radi­
ation) is subjected to a neutral atmo­
spheric drift of 100 m/sec, to the right. 
The geomagnetic field is directed per­
pendicularly out of the plane. The grid 
interval for this calculation was 30 
meters, so the dimensions of the rectang­
ular integration volume are 4.8 by 2.4 
kilometers. The initial condition is 

2 2 2 
p(x,y)_ = (1 + 4e-(x +y )/R) (l+t:(x,y)),(34) 

Po .. 

where R = 1 km and <:(x,y) is a random 
phase perturbation of rms amplitude 0.03. 
The contour·values are evenly spaced from 
1. 0 to 4. 5. 

Fig. 1. 

' ' ' 

Plasma density contours at 
0 sec. The horizontal scale 
has been compressed by 30% 



-------e--------------"'~------------;'0-- ---

___ ... --- ---- -&--------------- __ ,_ .... a-"' ...... -- -- .. -~,_'G 
~( 

Fig. 2 Plasma density contours at 
80 sec. 

.. . --_ ... ,:<!"!_ 

-·~:.:!:;-_ .. 

Fig. 3 Plasma density contours at 
120 sec. · 

16 

---;:::::::- -
_:::==---

Figure 4 Plasma density contours at 
160 ~ec. 

Three areas of current invesciga­
tinn will rP.rr.ivc hrief description here. 
All are oriented toward gaining knowledge 
concerning the spatial and spectral prop­
erties of the "well developed" state. 
First, we are interested in the degree to 
which diffusion, a linear process, de­
termines minimum scale sizes. ·This has 
been discussed elsewhere.l2 We are also 
interested in nonlinear saturation mech­
anisms which determine the point of 
break-away from linear growth and help 
determine the well developed state 
(including its power spectrum).l5 The 
last area we will mention here concerns 
an apparently anomalous mechanism which 
causes some observed barium clouds to 
•·•"freeze up'' after conforming to the model 
(1) - (7) fnr snme ten to twenty growth 
times. It may be possible to test vari­
ous candidate mechanisms within the 
framework of our model by invokinf>; ::mnm­
alous transport coefficients or altered 
conductivities . 

ACKNOWLEDGMENT 

This work was sup.ported by the 
Defense Nuclear Agency. 

1. 

REFERENCES 

T. N. Davis, G. 
Westcott, R. A. 
and H. M. Peek 
~. 67 (1974). 

J. Romick, E. M. 
Jeffries, D. M. Kerr, 
Planet. Space Sci., 

2. G. Haerendel, R. Lust, and E. Reiger, 
Planet. Space Sci., 15, 1 (1967). 

3. L. M. Linson and J. B. Workman, J. 
Geophys. Res., ]2, 3211 (_1970). 

-



4. F. W. Perkins, N. J. Zabusky, and 
J. H. Doles III, J. Geophys. Res., 
78, 697 (1973). 

5. F. W. Perkins, N. J. Zabusky, and 
J. H. Doles III, J. Geophys. Res. 
~. 711 (1973). 

6. F. W. Perkins, N. J. Zabusky, and 
J. H. Doles III, J. Geophys. Res. 
81, 5987 (1976). 

7. A. J. Seannapieco, S. L. Ossakow, 
D. L. Book, B. E. McDonald, and 
S. R. Goldman, J. Geophys. Res. 
!..2_, 2913 (1974). 

8. s. T. Zalesak, NRL Memo Report 3716 
(1978). 

9. s. T. Zalesak, J. ComE. Ph;¥:s., 31, 
. 335 (1979) . 

10. B. E. McDonald, NRL Memo Report 
3541 (1977). 

11. B. E. McDonald, J. ComE. Phys. in 
press. 

1~. B. E. McDonald, Proc. IonosEheric 
Effects Symp., ed~- J. M. Goodman, 
Naval Research Lab. (1978). 

13. R. S. Varga, "Matrix Iterative 
Analysis," Prentice-Hall, Englewood 
Cliffs, ·N.J. (1962). 

14. A. Grammeltvedt, Monthly Weather Rev., 
2]_, 384 (1969). 

15. P. K. Chaturvedi and S. L. Os·sakow, 
J. GeoEhys. Res. 84, 419 (1979). 

17 



NUMERICAL EXPERIMENTS IN THE DYNAMICS OF GALAXIES ON ILLIAC IV 

R.H. Miller 
University of Chicago 

Dept. of Astronomy and Astrophysics 
1100-14 East 58th Street 

Chicago, IL 60637 

B.F. Smith 
NASA-Ames Research Center 

Theoretical and Planetary Studies Branch 
Mail Stop 245-3 

Moffett Field, CA 94035 

ABSTRJ\CT 

Fully three-dimcnaional n~body integrations thaL r·uu on ILLIAC IV have been in rou­
tine use for the past

5
thr,P.e years in a variety of astronomical studies in the dynamics 

of galaxies. Some 10 particles move self-consistently under forces of Newtonian gravi­
tation. The particles themselves are the source of the gravitational forces, The dyna­
mical problem lends itself to a structure that fits the ILLIAC IV architecture very 
naturally; it should fit other array processors as easily. The complexity of results, 
coupled with their frequently unexpected nature, make graphic methods the only feasible 
way to study the results of a calculation. The programs and the astronomical problems 
studied will be briefly described and motion pictures generated in some runs will be 
shown. Th~ motion pictures were produced as our usual method of studying the computa­
tional results. 

I. SCIENTIFIC MOTIVATION AND 
PROGRAM DEFINITION 

A galaxy can be seen from only one 
side; we cannot go around to look at it 
from the other side. We cannot kick it to 
see if it bounces. Galaxies devglop so 
slowly (fast changes occur in 10 years) 
that no visible changes of shape occur in 
human lifetime. Yet galaxies are known 
fo involve a complicated interplay of many 
physical effects, and the processes that 
determine the behavior of them are highly 
nonlinear. These features.necessitate 
some kind of check on theoretical specula­
tions. Numerical experiments are the only 
substitute available to replace laboratory 
experiments. The analogy between numeri­
cal experiment and laboratory experiments 
may be pressed further--program checks 
correspond to equipment checks and syste­
matic errors can be induced by numerical 
effects or by leaving out some essential 
physics. Notwithstanding these problems, 
the study of galaxies is peculiarly sa­
tisfying because the real objects we study 
are so beautiful and many of the objects 
created in the computer are beautiful as 

18 

well. There is even a thrill of sorts to 
watch these systems develop. 

The self-consistent response of a 
system of particles to forces of Newton­
ian self-gravitation underlies a variety 
of astronomical problems ranging from 
planetary formation in the solar system 
through clusters of stars to galaxies 
and clusters of galaxies. While some of 
these systems display striking sym­
metries, most lack exact symmetry and 
some are quite irregular. A program to 
study these objects cannot presuppose any 
symmetry, especially if we are to under­
stand the reasons why some objects deve­
lop and maintain their beautiful symme­
tries. A fully three-dimensional program 
is required. 

Galaxies are self-consistent self­
gravitating collections of stars that are 
held together by gravitational forces and 
that are prevented from collapsing by 
angular momentum and by random velocities 
(which behave in some respect like a 
hydrodynamic pressure). Structure, form, 
stability, and evolution of galaxies must 



be studied as a dynamical problem that is 
best attacked by seeing what kinds of 
steady-state solutions are preferred. 

Two timescales show up in conven­
tional analyses of the dynamical problem. 
We imagine the actual force field analyzed 
into a smooth field and a fluctuating 
part. The dynamical timescale is defined 
by the orbital period of typical particles 
moving in the smooth field. The fluctu­
ating part arises principally from two­
body interactions. The time scale over 
which the fluctuating part causes a parti-

. cle to multiple-scatter away from the "un­
perturbed". orbit in the smooth field is 
the two-body relaxation time, and usually 
is simply called the relaxation time. It 
is the second timescale. Relaxation times 
in galaxies are typically around 1013 -
1015 years, as much as 1000 times the 
Hubble time or the age of the universe. 
The important processes in the dynamics of 
galaxies proceed on a dynamical timescale, 
(Gp)-~. 

The number of particles needed in an 
n-body calculation is determined by the 
need to assure a clear separation of 
dynamical and relaxation timescales. The 
two timescales are nearly the same for 
particle numbcrc under 1000 and thP. ratio 
of the timescales is logarithmic in the 
number of particles. Because of the weak 
dependence on particle number, n-body 
calculations need 50,000 - 100,000 part­
icles to ensure that two-body relaxation 
effects may safely be ignored. Even at 
104 particles, the slower relaxation 
timescale cannot yet be ignored. Experi­
mental checks verify that calculations 
with 105 particles are on safe ground. 

The parameters of a practical cal­
culation to study galaxies are determined 
by physical considerations. Calculations 
designed without sufficient attention to 
these matters are difficult to interpret 
and of~en yield misleading results. 

Problems in the dynamics of galaxies 
that are to be attacked by n-body inte­
grations are formulated as initial value 
problems. Initial conditions are unknown 
for true astronomical problems, and a 
major puzzle is to determine what kinds of 
initial conditions might have led to the 
variety of galaxies we see today. A 
guiding principle is that, because gal­
axies are more similar to each other than 
initial conditions could have been, final 
forms must be more or less independent of 

19 

details of initial conditions. A second 
group of problems can be set up by sel­
ecting models like actual galaxies as 
inital conditions. Stability, shapes, 
and internal dynamics can be studied 
this way. Stable systems remain similar 
to the initial galaxy while unstable 
systems change on a dynamic timescale. 
Here again, a guiding principle is that 
real galaxies must be straightforward to 
mimic; they cannot require improbable or 
difficult-to-set-up initial conditions. 

A wide variety of problems can be 
attacked with the code described here. 
Questions of the stability of galaxy 
models leads to studies of actual three­
dimensional shapes on the one hand and to 
the suggestion that galaxies are actually 
much more massive than had been thought 
on the other. If so, there may be enough 
mass in galaxies or in clusters of gal­
axies to close up the universe. Mass 
density estimates for the universe fall 
short of closure'by a factor 30- 100 
unless there is some unseen mass to make 
up the difference; massive dark halos 
around galaxies provide one of the more 
attractive possibilities. The sugg·estion 
that galaxies must have massive halos 
came from earlier stability studies based 
nn n-hody integrations in which the ini­
tial conditions were chosen to represent 
actual galaxies. A list of problems 
studied or under attack is included in 
Sec. IV. The calculation is very similar 
to plasma simulation codes. 

II. PROGRAM DESIGN 

Programs of the type described are 
best designed around data structures that 
represent the state of the problems. The 
same physical problem, translated into a 
program to run on a different processor, 
should be programmed differently to make 
use of a data structure that leads to the 
best program design. That data structure 
is dependent on the architecture of the 
computer on which it is to run. We esti­
mate that about 70% of the design effort 
for a new large program goes into the 
design of the data structures. We make no 
claim that the program designed for 
ILLIAC IV could be rewritten to run de­
cently on other computers without major 
redesign of the data structures. The 
programs described here were designed 
4~ years ago, when ILLIAC IV was the 
only large processor available to us. It 
works nicely on ILLIAC. 



Program design is incomplete without 
provision of a method to analyze the re­
sults of computations and methods for 
handling archival storage of output. 
These programs were designed around the 
use of motion pictures for both purposes. 
We return to this point in the next sec­
tion. 

The three-dimensional n-body pro­
gram constructed for ILLIAC IV is de­
signed to be fairly general so it can be 
used for a variety of problems of astro­
nowical interest. It can handle about 
10 particles within a cubic volume, but 
it is usually used with about 105 part­
icles. Forces are computed in a manner 
that allows details down to 1/64 of the 
linear dimension of Lhc confip;uration 
space to be resolved. Long-range effects 
are correctly hanrlled by the force 
calculation. 

Each partic.lt!: is LI:JJLI:::;~:uL!:!d by one 
ILLIAC word. In addition to the config­
uration coordinates and velocities, 10 
bits are allowed for other attributes. 
These attributes may be defined in any 
way necessary for the problem of inter­
est. For example,one bit can designate 
whether the particle represents a star 
or a gas cloud. Other bits can be used 
to measure heavy element buildup in the 
gas or stars. This use of particle 
attributes leads to interesting and use­
ful simulations to study the evolution of 
stellar populations in an evolving gal­
axy, wlLh ~:vl<l!:!nt consequences tor 
studies in nucleosynthesis. 

On the computational side, the pro­
gram designs are pleasing in the way they 
fiL the ILLIAC IV architecture and uti­
lize the parallel features of ILLIAC. It 
is likely that they would fit other 
architectures as easily; the transition 
to less restrictive array processors 
should be straightforward. The program 
needs a machine like ILLIAC or a modern 
array processor--the sheer size of the 
program demands a large machine and the 
property of the calculation to admit 
parallel processing makes it amenable to 
treatment on ILLIAC. With graphics sup­
port, this program produces useful scien­
tific results that also appeal to the lay 
public. This program can give the public 
an example of what scientific research is 
all about and can help convey some of the 
excitement of scientific research. 

20 

Like most large n-body programs, 
that designed for ILLIAC IV consists of 
two principal parts: the potential 
solver, or subroutine in which the forces 
are calculated, and the particle-pusher, 
or subroutine in which the particle vel­
ocities and positions are advanced ac­
~ording to the forces. The potential 
solver makes use of densities (or the 
projection of the'particle phase space 
density onto the configuration space), 
which are tabulated by the particle­
pusher as the new velocities and posi­
tions are computed. Output summaries 
and generation of plot files are.handled 
by other subroutines, as is the ~:::;Lab­

lishment of starting conditions. 

Two-dimensional calculations can be 
core-contained; this is no longer pos­
sible for r~:a::;unably-sized three­
dimensional calculations. Fnrrr.-vRlt.tPS 
and density counters must be in core 
along with the particle data during the 
particle-pushing part of the calculation. 
There is no need to have all the particle 
data available at once; data that refer 
to one particle can be processed to com­
pletion without reference to other par­
ticles. Particle interactions take place 
thrnt.Jgh the force-field. But there is 
not even enough room for the entire 
force fi.eld or density count in three 
dimensions. 

One WRY to handle a three­
dimensional calculation is to retain only 
a portion of the force field and of the 
density count in cor~ At .<~ny one time. 
All of the particles whose configuration 
coordinates are within a limited region 
are proc.~ssPcl hPfore moving on to 
another region. Potential values and 
density counters are also available for 
this limited region. Particle clrJt::t may 
be handled in any of several different 
ways. If large data file I/O is cheap, 
several sweeps may be made through files 
of particle data, selecting those parti­
cles whose coordinates match the other 
data in core at each pass. An alterna­
tive is to pre-arrange particle data 
before writing output files, to avoid 
need for several passes. This is the 
method adopted in the ILLIAC IV program 
because disk I/O is expensive. The pro­
gram is constructed around a pattern for 
partitioning the data which fits the 
ILLIAC IV arrhitecture naturally, Match­
ing portions of the particle data, of the 
force field, and of the density count are 
in memory at the same time. 



The cubic volume occupied by the 
system of particles is divided into 64 
subdivisions along each edge; the force 
calculation returns values at the center 
of each subdivision. Force values at 
points other than the center are found by 
linear interpolation. Densities are de­
termined from the count of particles in 
each subdivision (NGP assignment is used, 
but it is not required by program de­
sign). The cartesian coordinates are 
designated as follows: The 64 subdivi­
sions along the x-coordinate are each 
assigned to one of the 64 processing ele­
ments (PE's) of ILLIAC IV; each PE 
handles particles whose x-coordinate is 
equal to the PE number. All 64 subdivi­
sions of the y-coordinate and 8 of the 64 
subdivisions of the z-coordinate are in 
PE memory at the same time. Eight such 
loadings are required to process the 
entire set of z-values, and thus to pro­
cess the entire accessible configuration 
space. With nonuniform particle distri­
butions in the configuration space, 
unequal numbers of particles are in 
volumes represented by different PE's; 
this leads to some unavoidable ineffi­
ciency because some PE's may have 
completed processing their load of part­
icles while others still have particles 
left to work on. Particle data must be 
reassigned to the correct PE after they 
have moved in an integration step, and 
they must be placed on disk so they will 
be brought back in the proper band of z­
values on the next integration step. · 
This feature, along with the need for 
frequent access to backup storage on the 
ILLIAC disk, is the principal complica­
tion in the design of the particle­
pushj_ng programs. Programming is made 
more difficult by tight memory and by 
the lack of an operating system to as­
sist with disk I/O operations on ILLIAC. 

A) THE POTENTIAL CALCULATION 

The potential calculation is de­
signed to generate values of the poten­
tial at the center of each subdivision 
from the new density data. Potentials go 
to zero at infinite distance, the boun­
dary condition that is appropriate for 
the gravitational problem. The calcula­
_tion proceeds through Fourier transforma­
tions and the convolution theorem. This 
method of computing forces is necessary 
to avoid the n2-dependence of exact force 
calculations on particle number. Correct 
values of the potential are returned at 
the tabulation-points in the center of 

21 

each cell. Linearly interpolated forces 
are obtained in the particle-pusher by 
interpolation on the potential 
values. 

Fourier transformations calculated 
in a computer are discrete, and represent 
periodic functions. The potentials 
generated represent periodically repli­
cated density distributions. They can be 
made to represent the gravitational po­
tential of an isolated system by doubling 
the period in each spatial coordinate, 
with a modification of the dependence on 
distance of the potential around a single 
particle (the potential must go to zero 
beyond double the initial interval). 
This is the procedure followed in the 
ILLIAC program. 

The potential calculation utilizes 
the architecture and parallelism of 
ILLIAC IV fully. All PE's are on all the 
time. Some 1552 words of the 2048-word 
PE memory are used for data manipulation 
in the potential calculation. 

B) THE PARTICLE-PUSHER 

The part of the program that handles 
the actual integration (or particle­
pushing) is modular for readability, to 
simplify debugging, and to facilitate 
program development. As much as pos­
sible, the overall supervision, the por­
tions that relate to moving particle data 
data to and from the ILLIAC disk,- and the 
portions in which the actual processing 
of particle data is carried out in sepa­
rate modules. 

Like the main program, these modules 
are designed around a certain allocation 
of PE memory. To a lesser degree, they 
are also designed around a certain map­
ping of particle data into a 64-bit 
ILLIAC word. The major design feature 
of the particle data is that all data 
that refer to a certain particle (7 
fields) are packed into a single ILLIAC 
word. 

The actual integration proceeds by 
means of a time-centered leapfrog scheme. 
Forces are obtained by interpolation of 
potentials from neighboring grid-points. 
All 27 neighboring values are used in a 
quadratic interpolation of the poten­
tials. 



C) PROGRAMMING 

This problem was written and debug­
ged by 1 person. Writing and debugging 
required about 1 calendar year. Be­
cause of other commitments a reasonable 
estimate is about 1/2 to 3/4 of a man­
year. Both design and checking were 
straightforward extensions from previous 
experience with 2-dimensional (point 

· particles on a plane) programs. . It was 
essential to be near the machine and in 
an environment where others were pro­
gramming for the same machine in order to 
have ready access to help in learning how 
to interpret dumps, idiosyncrasies of the 
compilers and job submission procedures, 
etc. The programs were written in CFD, 
a FORTRAN-like complier written at Ames. 
This complier does not hide the machine 
architecture. 

III. SCIENTIFIC RESULTS 

A) EXPERIMENTS RUN 

Nearly 200 distinct numerical ex­
periments have been run in the past three 
years. These cover a variety of problems 
in galaxy dynamics. The major groupings 
of experiments are listed to give some 
idea of the range of problems studies. 
Fuller descriptions are being published 
in the astronomical literature. 

1. Collapse of initially spherical rotat­
ing configurations. A two-parameter 
space was sampled: initial angular vel­
ocity of rotation and initial velocity 
dispersion. Some of the models passed 
through intermediate ring stages, but 
the rings were short-lived nonaxisym­
etrically unstable forms. Other models 
passed through short-lived sheet struc­
tures. All systems adopted a steady­
state barlike form rotating end-over-end 
in space. These experiements showed 
that bars are robust dynamically stable 
forms and strongly suggest that the 
three-dimensional forms of elliptical 
galaxies must be barlike. 

2. Rapidly rot~ting axisymmetric config­
urations. Eliptical galaxies have con­
ventionally been thought to be oblate 
axisymmetric objects flattened by rota­
tion, rather than the barlike objects 
suggested by our experiments. The checks 
in this set of experiments show that 
stellar systems do not flatten as much 
by rotation as had been expected, even 
though some of our models rotate more 

22 

rapidly than had been thought possible. 
This makes the case for the prolate (bar­
like) objects stronger because rotation 
cannot account for the observed shapes 
of elliptical galaxies, quite apart from 
stability considerations. 

3. Collapse of nonspherical rotating 
configurations. Th,is. sequence was run to 
test the sensitivity of the short-lived 
intermediate forms to lack of symmetry 
in the initial state. The sheets were 
quite sensitive, but rings could tolerate 
~ 10% asymmetries. All of these models 
ultimately formed bars as well. 

4. Internal dynamics of a bar. This ex­
periment used the bar at the end of one 
of the experiments in (1.) r.~hove r.~s the 
initial state in r~ study of the dynamical 
pr,operties of a bar in an attempt to un­
dar~tund the peculiar arability of bars. 
This led to the clisrovPry of f.l sl.lrpris­
ingly large number of periodic orbits 
within the bar, and of a forward fluid 
s·treaming within the rotating bar pat­
tern. 

5. Colliding galaxies. Two stable self­
consistent configurations were projected 
toward each other to study the response 
of fully self-consistent systems in 
these circumstances. These ·experiments 
led to the discovery of coherent flows 
within each galaxy in response to the 
force field of the other, which leads to 
larger, energy transfer within a collision 
than had previously been expected .. The 
galaxies contract momentarily at close 
passage. 

6. Anisotropic models. Several experi­
ments have been run in which models main­
tain nonspherical form by means of aniso­
tropic "pressures". Thus far, none of 
these models has achieved a true steady 
state, but they are close. 

7. Galaxy model in a bath of stars. 
These experiments are designed to study 
some peculiar galaxies (multiple-core 
cO's) in which several density condensa­
tions seem to survive within a larger 
diffuse background. Such configurations 
are difficult to understand dynamically. 
The experiments verify that such dense 
"cores" tend to diffuse on a dynamical 
timescale in the presence of a sea of 
low-density stars. 

8. Protogalaxies. For these experiments, 
particles represent either gas or stars. 



The experiment starts from a purely 
gaseous configuration. Stars form from 
the gas according to preassigned rules. 
Heavy element synthesis is a consequence 
of stellar evolution, and is taken into 
account in these models. Supernova out­
bursts stir up macroscopic motions in the 
remaining gas. These experiments are 
still in early stages but already they 
show a possible mechanism for formation 
of double radio sources symmetrically 
placed around a galaxy. The radio 
sources result from gas ejected from the 
protogalaxy by energy from supernova 
outbursts, which drives a pair of oppo­
sitely-directed jets. 

9. Planetary formation. Gravitational 
instabilities in particulate matter left 
orbiting the sun in the early solar 
nebula have been confirmed by experiments 
in which our cubic volume is pictured as 
being in orbit around the sun. Particles 
aggregate into planetesimals as a result 
of these instabilities. These experi­
ments are in progress. 

10. Early universe. The or1g1n of irre­
gularities in the very smooth early uni­
verse at "recombination" is poorly under­
stood. Experiments are planned in which 
growth rates, unstable modes, shapes left 
when instabilities reach finite ampli­
tude, and so on, are studied. 

B) ANALYSIS METHODS 

This catalogue of projects under­
lines the need to consider means of 
analyzing results as part of the program 
design. These programs were designed 
with graphics as the primary analysis 
tool. Motion pictures are routinely 
made as our primary output and archival 
storage. We normally make motion pic­
tures of temporal development as seen 
from three orthogonal view directions. 
Other view directions or special co­
ordinates, velocities, and particle 
attributes for about 2000 particles are 
recorded in a plot file at each integra­
tion step and these files are used for 
motion pictures, to view results on CRT 
displays, or for numerical analyses. 

We normally have little idea what 
to expect in an experiment. Motion 
pictures are a happy choice because unex­
pected results are more easily appreci­
ated visually than by almost any other 
method. Even the fact that something 
unexpected is happening can be missed 

23 

without such a powerful and general meth­
od. While production and quality control 
problems are often annoying and turna­
round can be impossibly long (we've 
experienced 6 months!" the power of the 
method, the discovery of unexpected 
results, and the beauty of the pictures 
makes it worth the pain. 

To stress the power, we mention 
several discoveries made in these experi­
ments that would not have been found by 
other methods. (1) The appearance of 
sheets in the collapses of spheres. (2) 
The discovery of the remarkable stability 
of barlike forms. (3) The discovery of 
the coherent responses in galaxy colli­
sions. (4) The discovery of oppositely 
directed jets in the protogalaxy problem. 
(5) The discovery of forward streaming 
motions within rotating bars. In each 
case, the coherent picture of changing 
configuration, easily afforded by motion 
pictures, is an essential part of the 
discovery. 

Motion pictures are an essential 
part of this entire project. They are 
not simply an appealing way of presenting 
results that we could equally well have 
found by other means. They are the tool 
by which the important discoveries of 
this project have been made. The fact 
that discoveries made in these 'experi­
ments tend to relate to properties other 
than those which the experiments were 
designed to study (e.g., radio sources 
when studying galaxy formation) under­
lines their unexpected nature and the 
power of graphic presentation. 

It is a pleasure to thank Margaret 
Covert for assistance with the operation 
of computer programs and 'in handling 
the data generated. Computations re­
ported were carried out on the ILLIAC IV 
computer at the Institute for Advanced 
Computation. Funds for partial support 
of this study have be allocated by the 
NASA-Ames Research Center, Moffett Field, 
California, under Interchange No. NCA2-
0R108-902. R.H.M. received partial sup­
port from NSF grant AST 76-14289. 



PARTICLE SIMULATION ON THE VAP 

W. E. Drummond and B. N. Moore 
Austin Research Associates 

1901 Rutland Drive 
Austin, Texas 78758 

ABSTRACT 

A report will be given of the status of hardware and software development un the 
JAP. The VAP is.designed as a floating point vector array processor of considerable 
power and will be able to execute large vector programs at high speed in a stand-alone 
mode. Other design features are multiple large fast data memories with independent 
data paths to a pipelined arithmetic unit,. Four of these memories are vector (serial) 
memories with a maximum size of 8 million words. There is also a scalar (ram) 
memory with a total of 1 million words. Practical operation at speeds of 12 mflops 
will be possible. A software package is under development which will eventually make it 
possible to program at the Fortran level. Applications to plasma simulation will be 
discussed. 

INTRODUCTION 

Austin Research Associates is develop­
ing a floating point vector array processor, 
the VAP. This development was originally 
motivated by the need for an inexpensive 
high speed vector processor for large-scale 
plasma simulations. However, the archi­
tecture of the VAP provides an extraordi­
nary degree of flexibility in vectorizing 
algorithms encountered in the solution of 
physical problems and, as a result, the 
VAP should have a fairly wide applica­
bility. 

The principal attributes of the VAP 
are: 

1. It executes large vector programs 
at high speed. 

For plasma simulation problems, it 
is expected to be approximately three 
time~;; faster than a CDC-7600. 

24 

2. It has multiple, fast, data, 
memories with independent data paths to 
the pipelined arithmetic units. Four of 
these memories are vector (serial) 
memories and one is a fast scalar (ram) 
memory. The initial configuration will 
have a total of 1.5 million words of fast 
memory and can be.easily expanded to a 
much larger total.memory. 

For fully electromagnetic 2-1/2 D 
plasma simulation problems, the 
initial configuration handles 25,000 
cells and 200,000 particles. 

3. Programming is carried out using 
a subset of standard Fortran statements 
plus a few additional statements unique 
to vector programming. 

4. It is inexpensive--less than 
4 percent of the cost of a Cray I or a 
Star. 

In the following sections, the 
organization of the VAP memories and data 



flow logic will be described, together 
with certain features of the VAP software 
and utility packages. 

MACHINE DESCRIPTION 

The CPU of the VAP is a modified 
Floating Point Systems, Inc. AP-120B array 
processor. The AP-120B is a high-speed 
synchronous processor with a cycle time 
of 167 nanoseconds and·executes one instruc­
tion per cycle. The instruction word pro­
vides the capability of overlapping 10 
independent operations in each instruction, 
i.e., 10 independent instructions per 
cycle. The floating point arithmetic 
units consist of a pipelined multiplier 
and a pipelined adder, each of which can 
produce one result per cycle. Thus, the 
maximum execution rate for floating point 
operations is 12 megaflops. 

To write and debug optimized code for 
the AP-120B requires assembly language 
programming which is extremely tedious 
because of the overlaJ.JJ.Jlug uf multiple 
operations on P.a~h instruction. In 
addition, because of data path and memory 
conflicts, even carefully written assembly 
language code does not make very efficient 
use of the arithmetic pipelines. Finally, 
there is only one data memory which is 
limited to a maximum of a million words. 
Even with these restrictions, however, we 
have written pla::;ma simulation codes on 
the AP-120B which execute at approximately 
the same speed as on the CDC-7600. Thus, 
the AP-120B is a cost-effective processor 
for many applications. 

The VAP was designed to make use of 
the many attractive features of the 
AP-120B, while at the same time removing 
the memory size and data path conflict 
restrictions. The resulting hardware con­
figuration lends itself to vector process­
ing and the development of a vector 
Fortran compiler removes the need for 
assembly language coding. With this 
vector Fortran compiler, programming can 
be carr~ed out as easily as on a 

25 

standard Fortran processor and programs 
execute approximately three times faster 
than on a CDC-7600. 

The principal modifications to the 
AP-120B involve the addition of four 
high-speed data ~nd contiol paths to the 
CPU~ together with the expanded hardware 
logic to facilitate the flexible use of 
these additional data paths. The four 
high-speed data paths are connected 
through controllers to four high-speed 
ram memories which are used as vector 
(serial) memories. The use of ram memo-· 
ries avoids the latency problems asso­
ciated with CCD or bubble memories. 

The resulting VAP functional diagram 
is shown in Figure 1 and more details of 
the array processor ~ection are given in 
Figure 2. In summarizing machine features 
and capabilities, it is convenient to 
distinguish between those characteristics 
of the conventional AP mode of operation 
given in Table 1 and the extended VAP 
mode given in Tr~hle 2. Under software 
control, the VAP can operate either as 
a vector array processor or in a con­
ventional AP mode. 

LOGIC 
CONTROL 

.URAT ?ROCtsSOR .U.t:'S ..... 
!iE:':ORll.S 

Fig. 1. VAP Machine Organization 



TO SIIUI. JIDtOUD 

. 
L-----Ji-----li'---:-L '.R,_-......X--...I......J~•••j 

Fig. 2. Details of Array Processor CPU. 

Table 1. AP mode features. 

* 167 nsec cycle time. 

* Independent pipelined floating 
adder and multiplier. 

* Pipelined access to as much as 512K 
words of ram data memory at rates up 
to 6 million words/second. 

* Sixteen 16-bit integer scratch 
regis·ters with associated ALU. 

* 2K table memory rom. 

For large vector programs, the execu­
tion speed is primarily limited by the 
maximum rate from the data memories to the 
ALU. The addition of the four fast data 
memories increases the data rate for the 
VAP to 30 million words per second as 
compared to 6 million words per second in 
the AP mode. 

26 

Table 2. VAP features. 

* All features of conventional AP 
available. 

* 4 (n x 64K) serial memories con­
figurable under program ~ontrol as 
inputs and outputs of arithmetic 
units. 

* Access rates of 6 million words/ 
second to each memory giving total 
data flow rate of 30 million 
,,rords/ second • 

* Setup time for vector operations 
~ 4 microseconds. 

The additional control logic incor­
porated in the VAP takes advantage of the 
flexibilities provided by a mixture of 
vector and scalar memories so that 
scatter/gather operations which, in the 
past, were not thought to be vectorizable, 

-are, in fact, easily vectorizable. For 
plasma simulation problems, the scatter/ 
gather operations of interpolation and 
allocation are thus materially speeded up. 

SOFTWARE 

Parallel development of software and 
hardware is being undertaken in order 
that hardware design options may be 
realistically evaluated as they become 
apparent. The earliest possible useful 
production from the machine will also be 
obtained. VAP software items can be 
classified as support, e.g., compiler, 
assembler,.linker, etc., or as utilities. 
Typical utilities include commonly used 
vector arithmetic operations, as well as 
specialized utilities for plasma simula­
tion problems. Figure 3 is a block dia­
gram indicating the stages required to 
convert VAP Fortran source code into an 
execution module. All of the support 
software items appear in Figure 3. All 
of the compiling, assembling, and linking 



is done on the host computer and the 
complete binary execution module is 
shipped from the host to the VAP for 
stand-alone execution. Results and diag­
nostic data can be returned to the host 
during execution. 

Fig. 3. Support snftwArP.. 

Programming is done principally in 
terms of a subset of standard Fortran 
statements with a few modifications unique 
to vector operations. Variables are 
declared as either vector or scalar varia­
bles and then used in the usual Fortran 
syntax. 

For example, if B, C & D are vectors 
of the same length, located in different 
vector memories, the Fortran statement 

A = B * C + D 

multiplies each element of B times the 
corresponding element of C and adds the 
product to the corresponding element of 
D, to produce the resulting vector A, 
which is stored in the remaining vector 
memory. 

Scatter/gather operations make use of 
additional symbols but the same Fortran 
syntax. E.g., if B, C & J are vectors 
located in different serial memories, the 

27 

Fortran statement 

A = B * .c + M < J > 
multiplies each element of B by the corre­
sponding element of C and adds the product 
to the contents of the scalar memory at 
the address specified by the correspond­
ing element of J to give the resulting 
vector A, which is stored in the fourth 
vector memory. This scatter/gather vector 
operation executes at the same speed as 
the pure vector operation discussed 
above.* Table 3 lists the execution rate 
of typical Fortran operations. 

Table 3 .. Execution rates for VAP Fortran 
statements and utilities.a 

Pure Vector Operations 

l.A+B*C 

2. A (B .±. C) 

3. A B * C + D 

4. A (B .±_ C) A D 

6 Megaflops 

6 Megaflops 

12 Megaflops 

12 Megaflopa 

Scatter/Gather Vector Operations 

l. A=B*C+M <J> 12 Megaflops 

2 • M < J >-= M <J) + A * B 4 Megaflops 

Vector Utilities 

l. A 

2. A 

a 

SQRT(B) 

1/B 

1.5 Megaflops 

l. 5 Megaflops 

In this table, A, B, C and J are vectors 
loc~ted in different vector memory. 
M ( J) is the contents of the scalar 
memory location whose address is the 
corresponding element of the vector J. 

* Other scatter/gather operations, e.g., 
scatter/gather operation No. 2 in Table 3 
may run more slowly for two reasons: 
The scalar memory is accessed twice for 
the operations on each element; and if 
adjacent elements of J have the same 
value, i.e., if the same memory location 
is addressed for two consecutive elements, 



A critical element in any vector 
processor is the setup time for vector 
operations. For the VAP, this setup time 
is between three and four microseconds. 
Since the basic VAP cycle time is 167 ns, 
this means that the setup time for any 
vector op_eration consumes approximately 
20 cycles. Since the most common vector 
operations execute one vector element per 
machine cycle, the overhead time, as a 
fraction of the execution time, is simply 
20 divided by the number of elements in 
the vector. For vectors of length 200, 
the setup time is thus 10 percent of the 
execution time. For partic:le si.mulati.nn 
problems, the typical vector length is 
2,000, and thus setup time amounts to only 
1 percent of the execution time. As a 
result, the utilization of the arithmetic: 
pipelines approaches 100 percent in the 
VAP. 

APPLICATIONS 

Although the VAP is being developed 
because it is needed for a rather specific 
problem, it will be capable of quite 
general application. Some problems for 
which the VAP will be useful are listed in 
Table 4. Consideration of the 2-1/2 D 
plasma simulation problem will illustrate 
some of the features of the VAP. A 2-l/2 D 
fully-electromagnetic, fully relativistic 
e-beam simulation code has been in produc­
tion on the AP for some time and it will be 
the first major code to be implemented on 
the VAP. An estimated performance compari-· 
son is given in Table 5. The VAP can 
handle larger field arrays and particle 
tables because of the serial memory 

the write to this memory location from the 
first of these elements would not be com-· 
pleted before the read of that same memory 
location for the next element. To guard 
against this possibility, the utility has 
been slowed. For plasma simulation codes, 
a special utility has been written for 
this operation which executes at 6 mega­
flops. 

28 

capacity, and the availability of opti­
mized Fortran operations and efficientl~ 
coded vector utilities makes larg~r 
pieces of the code run at the 12 megaflop 
rate. With the VAP Fortran compiler, 
programs will also be more easily modi­
fied and debugged. 

Table 4. Applications. 

* 
* 

* 

2-1/2 D and 3 D plasma simulation. 

Hydrndyn;~mi('. ;and m:a~n~tQhydrorl:rnnmi . .­
problems. 

Simulation of diode operation. 

General 2 D and 3 D partial 
differenti.:tl equation~:~. 

OUTLOOK 

An operating prototype of the VAP 
with reduced data path width and skeleton 
serial memory should be available by the 
end· of the year to perform tests of the 
design. If all goes reasonably well at 
that point, it is anticipated that a 
fully operational machine will be working 
hy the middle of next year. 

Most of the software will be availa­
ble before the prototype VAP is opera­
tional, and work·will proceed on actual 
code development. 



Table 5. Comparison of the capabilities of the AP mode and the VAP mode for a 2-1/2 D 
fully-electromagnetic, fully-relativistic, particle push program. 

Number of particles 

Number of cells 

a 
Execution time per particl~ 

Ease of programming 

81 
~ 

AP 

32K 

4K 

~sec/particle 

Difficult 

VAP 

200K 

25K 

21 ~sec/particle 
b 

Same as 
Standard Fortran 

aFor purposes of comparison, standard Fortran programming of the CDC-7600 gives an 
execution time of about 80 microseconds. per particle and standard Fortran programming 
of the Cray I initially achieved an execution time of approximately 12-1/2 microseconds 
per particle. However, more recent hand-optimized coding on the Cray I has led to a 
significant reduction in this push time. (Private communication - D. Forslund) 

b 
This result is not a measured result. However, since the processor is a synchronous 

proce~sor, it is believed to be accurate. 

29 



A VECTORIZED FOKKER-PLANCK PACKAGE 
FOR THE CRAY-1* 

M. G. McCoy, A. A. Mirin, J. Killeen 
Magnetic Fusion Energy Computer Center 

Lawrence Livermore Laboratory 
P. 0. Box 5509 

Livermore, CA 94550 

ABSTRACT 

A program for the solution of the time-dependent, two dimensional, nonlinear, 
multi-species Fokker-Planck equation is described. The programming is written su~h 
that tht; loop strudure is highly vectorizable on the CRAY FORTRAN Compiler. A brief 
discussion of the Fokker-Planck equation itself is followed by a description of the 
pruct!dure developed to solve the·equation efficiently. The Fokker-Planck equation is a 
second order partial differential equation whose coefficients depPnd upon moments of the 
distribution functions. Both the procedure for the calculation of these coeffid.ents 
and the procedure for the time advancement of the equation itself must be done 
efficiently if significant overall time saving is to result. The coefficients are 
calculated in a series of nested loops, while time advancement is accomplished by a 
choice of either a splitting or an AD! teehnique. Overall, timing tests show that the 
vectorized CRAY program realizes up to a factor of 12 advantage over an optimized 
CDC-7600 program and up to a factor of 3.65 over a non-vectorized version of the same 
program on the CRAY. 

INTRODUCTION 

In the simulation of magnetically con­
fined plasmas in which the ions or. electrons 
are non-Maxwellian and where a knowledge of 
the distribution functions is important, 
kinetic equations must be solved, In both 
mirror and tokamak confinement devices 
non-Maxwellian plasmas may be present. 
This may be due to the presenre of Px­
tensive loss regions in velocity space or 
to the presence of monoenergetic neutral 
beams. The kinetic equation to be solved 
is the Boltzmann equation with Fokker­
Planck Coulomb collision terms. 

This nonlinear partial differential 
equation,which describes the evolution 
of the distribution functions of all 
charged species in the plasma,has seven 
independent variables (three spatial 
coordinates, three velocity coordinates 
and time). Consequently, a number of 
simplifications must be introduced into 
the equation to allow any present day 
computer to solve the problem. One can 
reduce the number of independent variables 
to three by neglecting spatial dependence 
and by assuming azimuthal symmetry of the 
distribution functions about the direction 

30 

of the magnetic field. With these 
simplifications Rosenbluth, MacDonald and 
Judd(l) succeeded in expressing the 
equation in a form suitable for solution 
on .q computer. 

Subsequently, a number of computer 
programo hflvt>. been Jo::vdu!Jed(2),(3) which 
solve this equation. These Fokker-Planck 
codes are frequently incorporated in 
larger codes which simulate add~tional 
physical processes such as quasi-linear 
diffusion due to radio frequency heating(4) 
and spatial diffusion of the plasma(5). 

A problem encountered in these pro­
grams has been the long run times required 
to solve the Fokker-Planck equation, and 
this problem is aggravated in studies for 
which it is necessary to solve for the 
operator at a large number of spatial 
points or when very high resolution is 
required. 

With the arrival of the CRAY-1, it has 
become possible to gain a full order of 
magnitude savings in computer time with 
respect to a program optimized for the 



CDC-7600 by casting the equations in a 
tractable form and applying some vector­
ization techniques. The program is com­
piled on the CRAY using CFT. Provided that 
careful attention is paid to "do loop" 
coding, this program provides an example 
of the capability of the compiler to 
vectorize coding and improve performance. 
A package, available to the community, has 
been written which solves the Fokker-Planck 
equation and has been incorporated in a 
number of programs.(3),(4),(5) 

THE FOKKER-PLANCK EQUATION 

The Boltzmann equation for the dis­
tribution funr.tion of each plasma species 
is given by 

afa afa I afa =(afa) (l) 
at + :!._ • -ax- + ;- av at c 

a -

where fa is the distribution function of 
species type "a", I is a force field and 

(~ft) \a is the Fokker-Planck operator 
c 

representing the rate of change of the 
distribution function due to Coulomb 
collisions. 

With the simplifying assumption that 
the Fokker-Planck operator depends only on 
the velocity,:!._, and not upon spatial 
position, x, the olerator as derived by 
Rosenbluth-et al. ( ) has the form 

{ 
a ( aha) 

r a - av . \fa av . (~n = 
c 

+ ~ :~2 av. (,a ::·~v. )} (2) 

~ J I ~ J 

where the usual summing conventions over 
repeated indices "i" and "l" are to be 
used and where f = 4nz4 e /m2. The 

a a a 
"Rosenbluth potentials"are written as 

~ (~:)' in Aab.Pb c,· l 1,_ - v' I dv' 

(3) 

(4) 

31 

The Coulomb logarithm which depends on both 
interacting species is 

tn 1\ab = tn [(::::) 2acA.D 

2 e 

• sup (~"{.J ~ 
where a = l/137 is the fine structure 
constant, A. = IE /6nn eZ is the Debye 

D e e 

length, Ek is the energy of species k, and 
ne is the electron density. 

If we assume further that the dis­
tribution functions fa are azimuthally 
symmetric about the direction of the 
magnetic field, the formulation given above 
may be recast as a two dimensional problem 
when written in spherical polar coordinates 
(v,8,~), where vis the speed, 8 is the 
angle between the velocity vector and the 
magnetic field, and ~ is the azimuthal 
angle. Equation (2) then becomes 

l 
r 

a 

where 

G a 

H a 

( ::a)c = v\ a~: + 2 l ::a' (5) 
v sin8 

af af 
A f + B ~+ c a 

a a a av a as (6) 

af af 
= D f +E -~+F a 

a a a· av a as (7) 

The coefficients Aa, Ba' Ca, Da, Ea and Fa 
satisfy 

A 
a 

B 
a 

c 
a 

ag 
a 
~-

(8) 

(9) 

(10) 



D 
a 

. a a2 ah 
a 1 ga cosS ga 

_.,-::...·_s as + -2 2 "S2 - sinS as 
2v2 s1n · v a 

2 

[ 
1 Clga 1 a ga] 

Ea sinS - 2v as+ 2 avaS 

2 
F = sinS a ga + sinS aga 

a 2v2 as2 2v av 

(11) 

(12) 

(13) 

As suggested by Rosenbluth et al. (l), 
the "Ros~ul>luth potentials" and the 
distribution functions themselves may be. 
represented by expansiuus in Legendre 
polynomials. For this purpose we let 

00 

L vbJ' (v,t) P. (cosS). 
·J j=o 

where 

b = 2j+l V.(v,t} 
J 2 J

+l 

fb (v,cosS,t) 

-1 

• P.(cosS) d(cosS) 
J 

The expansions for the potentials are 

and 

g (v,8,t) 
a 

h (v,S,t) 
a 

oo (z ) 2 
" "' b .L L_, Z tn \b 

J=o b a 

• B~ (v,t) P.(cosA) J . . J 

_[ r.(m~~ l~b) :l 

J=o b b } \ a 

b 
• tn Aab Aj(v,t) Pj(cosS) 

with coefficients 
; 

A?= 
47T 

1 ~ov (v' )j+2 
V ?(v', t) dv' 

2j + '+1 J VJ J 

(14) 

(l ')) 

(16) 

(17) 

B~ 
. J 

( 
j-1/2 

1 - j+3/2 
(v;) 2'v~(v') dv' 
v l J 

( 
_ j-V2 

2 
) 1 

j+3/2 :v')2 

(19) 

It is convenient to define four 
functionals 

M. (w) (v) = loo w(y) y(l-j) dy (20) 
J v 

N/W) (v) = lv w(y) (2+j) d y y (21) 

R. (w) (v) 100 w(y) 
(3-j) . 

(22) y dy 
J v 

1 v (4+') 
E.(w) (v) = w(y) y J dy 

J 0 

. (23) 

Using these functionals,Eqs. (18) and (19) 
beconte 

Abo _ 47T [ -j-1 
J - (2j+l) v 

+ vJ M. (V.) . b ] 
J J 

b 47T { ] 
B j = 2 j +1 ""( 2=-j-+_3,_) 

b 
N. (V.) 

J J 

(24) 

(25) 

Evaluation of the coefficients defined 
in Eqs. (8)-(13) requires derivatives of 
the "Rosenbluth potentials". These may be 
obtained through term by term differ­
entiation of Eqs. (16)-(17). To obtain 
derivatives with respect to v requires 

+Lao 
vj 

(v' )j-1 
V~(v',t) 

J dv] (18) differentiation of the right hand side of 
Eqs. (24)-(25). This is done analytically. 

32 



The resulting expressions are 

aA~ 
___1. 
dV 

41T [· j-1 b 
(2j+l) J v Mj(Vj) 

(j+l). v -j-2 N. (V~) J 
J J 

dB~ { ~ = (2~:1) Tzj!3) [<j+2) 

(j+l) v-j-2 E. (V~)] 
. J J 

l [ jvj-l R. (V~) 
(2j-l) J J 

- (j-1) v-jNj (V~)]} 

41T { (j+l)(j+2) 
(2j+l) (2j+3) 

+ vj M (Vb)] - j (j-l) 
j j "{2j-l) 

+ vj-2 R ( b)]} 
j vj 

a 3B~ { 

~ = (2~:1) (2j~3) 

(26) 

"+1 b 
v] M. (V.) 

J J 

(2 7) 

b 
E. (V.) 

J J 

(28) 

• [j (j+l) (j+2) vj-l H. (V~) 
J J 

(j+ 1) (j+2 )(j+3) v -j - 4 Ej (V~)] 

- (2j~l) [j (j-1) (j-Z) v -j-
3 

Rj (V~) 

- (j+l)(j)(j-1) v-j-
2 Nj(V~)]}. (29) 

Derivatives with respect to 6 are also- done 
analytically. 

SOLUTION PROCEDURE 

The numerical finite difference 
solution to the problem consists of two 
separate parts: the first is concerned 
with obta~ning the coefficients Aa through 
Fa (Eqs. (8) through (13)) while the second 
is devoted to the actual time advancement 
of the Fokker-Planck operator. 

33 

COHPUTATION OF COEFFICIENTS 

Since the structure of each of the 
six coefficients is quite similar, we will, 
for simplicity, consider the detailed 
evaluation of only one of them, namely Ca 
(see Eq. (10)). 

Letting 

1 b 
- -2. B. (vk) 

vk J 

1 
+ _l_ Bb (vk) 

2 av j 

we may, using.Eqs. (10) and (16), express 
ca in terms of the various c~ coefficients 
as J 2 

ca (vk,ei) L tn J\ab(~b) 
b a/ 

(31) 

Note that we have truncated the Legendre 
series at H+l polynomials and have 
introduced velocity and theta meshes 

{ Jkmax d {u } imax ff v · an v. Coe icieuts 
k=1 1 l=l 

A~ through F~ may be similarly defined and 
J J 

expressed. 

The exEressions for the coefficients 
A~ through F~ are complicated (e.g. Eq. 30) 

J J 
and these coefficients must be evaluated at 
all of the mesh points. In fact, the 
computation of these coefficients repre­
sents a high percentage of the total 
number of arithmetic operations required; 
consequently, it is necessary to calculate 
these c,oefficients as rapidly:· as possible. 
This is accomplished through a series of 
nested "do-loops" which the CFT compiler 
vectorizes. 

_ The coefficients A~(vk,6i) through 
F~(vk,6i) are functions of the four 
indices, "b", "j", "k" and "i", and 
efficiency considerations dictate that the 
species index "b" and the Legendre index 
"j" form the outer-most "do-loops", since 
"b" and "j" are never large. Within these 
two loops one must evaluate Eq. (30) for 
all (vk,6i) mesh points. The procedure 
may be outlined as follows: 



>1) Calculate the Legendre coefficients 
F~(vk,t~ :fx (Eq. (15)). This involves 
the calculation of krnax 1-D integrals 
over 8, and may be calculated in two 
nested loops with the outermost loop 
over 8 ("i"). This will permit compiler 
vectorization of the entire procedure, 
since the inner loop over v ("k") is not 
recursive. 

(2) Evaluate the functionals fMj (~) (vk), 
Nj (Vj) (vk), Rj (V~) (vk), Ej (V~) (vk)} k=~x 
(See Eqs. (20) - (23)). This is accom­
plished in two separate loops over "k". 
For the funct:lonal N·(V~)(vk), in 
th~ first loop we calculate the temporary 
array TEM(k) = V~(vk) vk(Z+j) 6vk, where 
6vk is a mesh in~rement, while in a second 
separate loop we add together these tempo­
raries to fonn the funct:ional Nj (V!) (vk). 
This second_loop does not vectorize si.nr.P. 
:it is recursive. 

(3) Determine the coefficients 
( b a b } kmax ,, ( ,\ 
~- Bj (vk), av Bj (vk),etc k=l \Eqs. 24)-(29);. 
This is accomplished through a single 
vectorizable loop over "k". 

{
-b 

S4) Determ~ne. ~.i (vk,8i) through 
Fb ( 8 )} "J.max, ldl'lax I . . d from j vk, i i,k=l . t 1s ev1 ent 
Eq. (30) that the evaluation procedure is 
vectorizable. We choose the theta ("i") 
loop on the outside, since it is normally 
much smaller than the velocity ("k") loop. 
The Legendre polynomials and their 
derivatives are time-independent and are 
stored quantities. As the coeffi.r.i.Pnts 
"'b -b Aj - Fj are calculated, they are simul-
taneously summed over "j" since it is the 

M -b 
sum,.~ Cj , that is required in Eq. (30). 

J=o 

(5) Evaluate the contribution of the bth 
species to the Fokker-Planck coefficients 
Aa(vk,8i,t) through Fa(vk,8.,t) for all 
species "a" (see Eq.(31)). fhis is 
accomplished within the two outer loops 
over "b" and "j" and within a third 
loop over "a". The procedure easily 
vectorizes. 

TIME ADVANCEMENT 

The second part involves the numerical 
integration of the finite difference analog 
of the equation 

1 3f 1 aca 1 aHa 
r at 2 av + 2 . 8 ~ a v v s1n 

(5) 

34 

Both operator splitting and ADI methods 
have been used to solve this equation. 
Consider the splitting scheme 

·df 
1 a 
rTt 

a 

3f 
1 a_ 
r-at-

a 

1 3Ha 
2 . 

8 
as v s1n 

Equation (32) is discretized as 
follows: 

(32) 

(33) 

fn+l 
k,i 
r 

a 

n 
- fk . 

,1 Ak_n_+_l,~1-· f_~_:--;i:;-,,_i_-_~.:...,._-1;;;...<.., 1.:...,· _f_:~:.:-~...;;t~·--~ .. 
2 

2vk 6vk 

n 
- ck-1 i , 

• ~~~1,1+1 - f~-l,i-1)] 
268. 

1 

(34) 

The coefficients Bk±~ i <!re simple 
averages of Bk,i and Ak±l,i• and the 6v's 
and 68'c arc mesh incremeul:l;. The sub­
script "a" has been dropped. 

This equation may be written in the 
form 

n n+l n fn+l 
-Ak,i fk+l,i + Bk,i k,i 

en fn+l 
k,i k-l,i 

n 
Dk . ,1 

Employing a standard technique for solving 
tridiagonal systems(6), the problem is 
solved recursively. We have 

fn+l = fn+l + 
k,i Ek,i k+l,i Fk,i (35) 



where 

1c,i (36) 

Fk,i = {nk,i + ck,i Fk-l,i) 

/(Bk,i - ck,i Ek-l,i) (37) 

n+l 
with F1 i• El,i' and .fkmax,i 
determi~ed through boundary conditions. 

The use of two dimensional matrices 
for E and F permits vectorization of the 
calculation. Clearly since the arrays 
E and F are large, if there were no 
intention of vectorizing the coding, one 
dimensional arrays of length sup. {kmax,imax} 
could be used in place of E and F, thereby 
saving storage.This is the case in the 7600 
version of the program. 

The calculation on the CRAY proceeds 
as follows: 

(1) Determine thekmatrices 
Jr;. F } 1m ax, max Th . . 
\~k,i• k,i i,k=l . 1S 1S 

accomplished in two nested loops with index 
"k" on the outside and "i" on the inside. 
This order:i.ng i.s for.c:ed if one wishes to 
vectorize the inner loop since E and F are 
defined recursively on index "k". 

{ 
n+ i\ kmax, imax 

(2) Calculate fk,ij "=l (See Eq.(35)). 
This too is vectorize~'Ey placin~ the loop 
over "k" on the outside since f~, r is . 
determined recursively in "k". 

A similar procedure, with loops 
reversed, is employed for the second half 
of the splitting procedure. An ADI scheme 
can also be used, but requires a little 
more time due to the need to evaluate the 
explicit terms. 

It must be noted here that any 
comparison between two programs, one 
optimized for the CRAY-1 and the other for 
the CDC-7600,must take into account the 
different sizes and types of memories of 
the two machines· :...,. in particular the· fa·ct 
that most of the 7600 memory, LCM, is slow 
access. While it is possible to optimize a 
7600 program with STACKLIB commands, and 
efforts have been made to do so, one is 
still forced constantly to swap back and 
forth between SCM and LCM. Furthermore, 
one is often inhibited from attempting 
more STACKLIB or vector operations on the 
7600 due to the increased memory 

35 

requirements in SCM needed for vector­
ization. For instance, on the 7600 the 
arrays E and F defined in Eqs. (36) and 
(37) are one dimensional. To add two more 
arrays of length kmax by imax would be 
prohibitive. This eliminates any 
possibility of STACKLIB vectorization on 
the 7600 of this particular solution 
procedure, further increasing the 
advantage of the CRAY-1 over the 7600. 

TIMING RESULTS AND CONCLUSIONS 

In order to determine the efficiency 
of the vectorized program, a number of 
timing tests for various mesh resolutions 
were performed. Comparisons were carried 
out between the vectorized program on the 
CRAY-1 (CRV in column two of TABLE-I 
below), the same program on the CRAY-1 
with the vector option turned off (CRNV 
below), and the STACKLIB optimized 7600 
program (denoted by 7600 below). In 
all of these examples, Fokker-Planck 
equations for the distribution functions 
of two charged species were time-advanced 
in the presence of three background 
Maxwellian species. A value of M=4 was 
used for each of the two primary species, 
whereas M=O sufficed for the background 
Maxwellians. 

The immediate conclusion is that the 
CRAY vectorized program achieves at least 
an order of magnitude advantage over the 
7600 version and, depending on mesh size, 
a factor of from 2.86 to 3.65 over the 
nonvectorized CRAY version. Separate 
timings were carried out for the cal­
culation of the Fokker-Planck coefficients 
and the time-advancement of the Fokker­
Planck operator. Of general interest 
is the marked gain in efficiency which 
results from the relatively simple pro­
cedure of vectorizing the operator 
splitting or ADI section of coding. As 
much as a factor of 4.4 has been achieved 
over the non-vectorized version and a 
factor of 14 over the 7600 version. 

The effects of vectorization can be 
r.eacii.ly seen in TABLE-II, where the 
computer time per mesh point is given. 
Note that the efficiency steadily 
increases with increasing mesh size up 
to a resolution of 64 x 45. There is a 
small loss of efficiency at 65 x 45 due 
to the increased overhead in vectorization 
Overall peak efficiency is reached at 
64 x 45 and little speed is gained at 
higher resolutions. 



The Fokker-Planck equation is a 
fairly typical example of the type of com­
plicated nonlinear partial differential 
equation being solved today. The 
procedure employed to optimize the 
solution of this equation basically con­
sists of organizing the loop structure 
so that the compiler can vectorize the 
code efficiently.. It appears likely that 
similar order of magnitude improvements 
can be achieved with the use of no more 
than CRAY FORTRAN in most programs which 
solve equations of this type. 

Table 1. CRAY-1 vs. CDC-7600 Improvement Factors 

MESIJ FAC'l'UK 
(krnax x imax) TYPE SUBROUTINE OV'F;ll. 7600 

(32 :X. 13) CRNV Time Adv. 3.16 
II CRNV F-P Coefs 3.44 
II CRNV Both 3.36 

.. 
II CRV Time Adv. 10.03 
II CRV F-P Coefs 9.49 
II CRV Both 9.63 

. --
(46 X 19) CRNV Time Adv. 3.22 

II CRNV F-P Coefs 3.39 
II CI:{NV Both 3.34 -- ---
II CRV Time Adv. 11.71 
II CRV F-P Coefs 10.09 
II CRV Both 10.53 

.... 

(64 X 46) CKV Time Adv. 14.15 
II CRV F-P Coefs 11.41 
II CRV Both 12.1!:1 

36 

FACTOR 
OVER CRNV 

1. 

1. 

1. 
.. . .. 

3.17 

2.76 

2.86 

1. 
\ 

1. 

1. 

3.63 

2:97 

3.15 

4.40 

3.37 

3.65 



Table 2. CRAY-1 Computation Time Per 
Mesh Point NOTICE 

MESH Time (sec) 
(kmax X imax) · Per mesh pt. 

32 X 13 1. 62 X 10-5 

46 X 19 1. 37 ·X 10-5 

64 X 45 1. 09 X 10-5 

65 X 45 1.15 X 10-5 

115 X 49 1.10 X 10-5 

REFERENCES 

1. M. N. Rosenbluth, W. M. MacDonald and 
D. L. Judd, The Physical Review, 
Second Series, Vol. 107, No. 1 (1957), L 

2. J. Killeen·, A. A. Mirin, M. E. Rensink, 
Methods in Computational Physics, Vol. 16, 
(1976) 389-432. 

3. A. A. Mirin, ·Lawrence Livermore 
Laboratory Report, UCRL-51615 Rev. 1 
(1975). . 

4. R. W. Harvey, J. C. Riordan, J. L. Luxon, 
K. D. Marx, "Studies of Current Due to 
RF Induced. Runaway in the DIIA Lower 
Hybrid Experiment" presented at the 
Annual Meeting on Theoreitcal Aspects 
of Controlled Thermonuclear Research, 
Mount Pocono, April 18-20, 1979. 

5. A. A. Mirin, J. Killeen, K. D. Marx 
and M. E. Rensink, Journal of 
Computational Physics, Vol. 23, No. 1, 
(1977), 23. 

6. R. D. Richtmyer and K. W. Morton, 
Difference Methods for Initial Value 
Problems, John Wiley and Sons, 
New York, (1967), 198. 

*Work performed under the auspices of the 
U.S. Department of Energy by the 
Lawrence Livermore Laboratory under 
contract number W-7405-ENG-48. 

37 

"This report was prepared as an account of work 
sponsored by the United States Government. 
Neither the United States nor the United States 
Department of Energy, nor any of their employees, 
nor any of their contractors, subcontractors, or 
their employees, makes any warranty, express or 
implied, or assumes any legal liability or respon­
sibility for the accuracy, completeness or 
usefulness of any information, apparatus, product 
or process disclosed, or represents that its use 
would not infringe privately-owned rights." 



THE CRAY-I AND MHO STABILITY STUDIES IN TOKP~AKS 

J. Manickam 
Princeton Plasma Physics Laboratory 

Princeton University 
Princeton, NJ 08544 

ABSTRACT 

The stability of tokamak plasmas in reactor-like configurations to 
linerarized magnetohydrodynamic modes is of great interest from the theo­
retical and practjcal point of view. Analytic ~tudies can give general 
dependencies in various approximH~ions. NumQriaal otudic~ ar~ J!~~~~~Kry 
to describe the behavior of plasmas in realistic configurations of practi­
cal interest, and require large high speed computers. With the advent of 
advanced computers, such as the C.RAY-1, such a study is now feasible. This 
paper reviews the history of the computational study of MHO modes and 
describes the implementation of one such code on the C.RAY-I, It desr.ribes 
the imp net of U1~ luereased memory and speed on the computational program 
to study the dependence of these instabilities on various parame~ers of 
interest. 

INTRODUCTION 

The aim of this paper is to 
review the impact of advanced com­
puter systems, specifically, the 
CRAY-I on the computational study 
of the MHI) - Stability of Tokamaks. 
In order to do this, it is impor­
tant to first review the background 
of the computational problem. This 
is not meant to be an exhaustive 
revie~ which may be found else­
where. 1

' 
2 Here we intend to provide 

a flavuL uf the problems associated 
with the computational study of MHO 
instabilities, and describe some of 
the interesting techniques used to 
overcome them. We then proceed to 
discuss the impact of the CRAY-I on 
one particular code. 

In the first section we briefly 
describe the physics of the problem 
and define a physical model. In Sec. 
2, we establish the numerical model 
and outline the main features of 
the code. In Sec. 3, we discuss 
the implementation of the code on 
the CRAY and compare it with the 
implementation on the CDC 7600. 
Section 4 contains the results in 
the context of their impact on the 
computational program to study the 
MHO Stability problem. In Sec. 5, 
we present a summary and observa­
tions on the future role of advanced 
scientific computers in the 

38 

stability studies of tokamaks. 

1. THE PHYSICAL MODE~ 

In the quest of achieving 
viable fusion reactors, the tokamak 
approach is considered to be one of 
the more promising. The tokamak is 
essentially a toroidal device, with 
a strong externally generated 
toroidal magnetic field. The mag­
netic field lines are given a helical 
twist by a Peloidal magm~ti r field gen­
erated largely by the current flowing 
in the plasma in the torus. Figure 1 
show·s the genmAtry of a tokamak in 
schematic form. The plasma in such a 
device is subjeet to a host of possi­
ble instabilities, however s\:able 
regimes can be found, where the insta­
bilities do not exist. Stuc'ly of the 
nature of the instability often gives 
us a clue on how we might be able to con­
trol or supress it. Of these insta­
bilities the most obvious and danger­
ous ones are the gross H!-:ID instabili­
ties, associated with balance of the 
various forces acting on the system. 
The complex geometry makes this a 
difficult device to study analytically. 
It is common to resort to approx­
imations based on various ordering 
schemes. For example, one considers 
an ordering in aspect ratio, the 
ratio of major to minor radius. 
Another parameter used for ordering 
is S, the ratio of material to 



magnetic pressure supported by the 
system. These give analytic tools 
of some value, but we still lack an 
accur~te description of realistic 
systems. Tokamaks of practical 
interest are of small aspect ratio, 
typically between 3 and 5. At these 
values toroidal effects appear, that 
have no analogue in the cylindrical 
limit. Further from the reactor 
point of view, the highest possible 
S is preferable. In fact an impor­
tant aim of a computational program 
to study the MHD behavior of 
tokamaks, would be to determine the 
dependence of Sc, the largest stable 
S, on various parameters, such as 
the geometry, and thA pressure and 
current profiles. Such a study 
would then permit the design of an 
optimal tokamak from the MHD stabil­
ity point of view. 

MAGNETIC 
FIELD 
LINE 

z 

PLASMA CURRENT I 

POLOIDAL MAGNETIC 
FIELD Bp 

ROTATIONAL 
TRANSFORM 

ANGLE ~ 

Fig. l A schematic diagram of a 
tokamak. The upper half shows the 
plasma current flowing clockwise, 
the toroidal field is opposed to it, 
and the lower half of the figure 
shows the resulting magnetic field 
line. The safetv factor q = 2n/t. 

For numerical studies in 
tokamak systems, it has been shown 
that a relatively simple model, with 
the plasma treated as a perfectly 
conducting fluid, ignoring dissipa­
tive effects, such as resistivity, 
viscosity etc., is adequate to 
describe these instabilities. In 
such a model, known as the Ideal MHD 
model, we describe the system 

39 

through the equations, 3 

dv 
p dt = -Vp + J x B 

ClB 
- = -V X E at 

E = -v x B 

-v•Vp 

ap at= -v·Vp - pV•v (l) 

these are essentially the Maxwell's 
equations, ignoring the ~isplace­
ment current, equations of continu­
ity and motion. The fluid behavior 
also requires an_equation of state 
and of course the necessary boundary 
conditions. These equations are 
usually linearized using a pertur­
bation expansion about the stationary 
equilibrium defined by, 

Vp = J X B 

J = v X B 

0 (2) 

The linearized equations of motion 
for the displacement vector ~ are 
given by, 

0 
p 

+ (V x B0
) x [V x (E x B0

)] 

+ {11 x [11 x (~ x B0
) ]} x B0 

( 3) 

the quantities with the superscripts 
are equilibrium quantities. 

There are two commonly used 
techniques to solve these equations. 
One is basically the time advance­
ment of the linearized equations of 
motion of the perturbed quantities. 
The second method is essentially a 
variational method based· on an 
energy principle. 

The time advancement method 
has been used extensively with 
considerable success. 4

' 
5

' 
6 



This method faces a formidable 
obstacle in the multiplicity of time 
scales associated with the linear 
MHD spectrum. These range over 
eight to ten orders of magnitude. 
Different methods have been used to 
solve this problem with considerable 
success. One technique involves 
eliminating the fast time scale 
analytically, generally accomplished 
by considering various limiting 
forms of the MHD equations. Another 
interesting technique has been to 
average over the fast time scale 
~ume:ic_:=ally by the use of a partially 
1mpl1c1t scheme, on a dynamic grid. 
This method has the virtue of pre­
serving phenomena on the fnRt time 
scale. These time dependent methods 
hav~ the added advantage of being 
eas1ly extended into the non-linear 
phase. For a more complete descrip­
tion of this approach, refer to the 
work of Carreras and Hicks in these 
proceedings. 

The second approach uses the 
Lagrangian associated with the 
linearized perturbations, about an 
equilibrium configuration to 
formulate an eigenvalue problem. 
Reference 7 gives a fine comparison 
of three ma~or codes of this 
class. 8

' 
9

' 
1 We describe here the 

implementation of one of them,~ the 
~EST (Princeton Equilibrium, Stabil-
1ty and Transport) code, on the 
CRAY-I. 

2. THE NUMERICAL MODEL 

In the Lagrangian approach, we 
seek normal modes of the system. 
We denote the displacement vector 
as l;, then the Lagrangian L is given 
by 

l;(r, t) = t;(r)eiwt 

2 
L = w K (t;, l; *) - oW (t; , t; *) ( 4) 

where K represents kinetic energy, 
and oW the potential energy associated 
with the perturbation. We adop the 
Galerkin approach to the more 
ge~eral Rayleigh-Ritz procedure, in 
wh1ch the t;'s are expressed as a 
linear superposition of a subset of 
a complete set of functions. 

E a m m 
<P 

m 

40 

Then the variational calculation is 
reduced to the determination of the 
eigenvalues and eigenfunctions of 
the matrix eigenvalue problem, 

2 * * E [w <<P ,IKI<P >-<<P ,loWI<P >]a= 0 m m m m m m 

(5) 

This procedure has several nice 
features. It assures convergence 
from above, and therefore will not 
give instability in an essentially 
stabl~ configuration, the numerical 
approximations involve only square 
integrable functions, so it avoids 
singularities. The choice nf 
expansion functions is governed by 
the boundary conditions, e.g., the 
kinetic energy norm must remain 
finite, the normal component of the 
perturbed magnetic field must be · 
continuous at the plasma-vacuum 
interface and vanish at the vaccum 
wall. For the expansion functions, 
<P, we use Fourier series in the 
peloidal direction and finite 
elements in the radial direction. 

The PEST code is composed of 
three parts, an equilibrium section 
whic~ determines the equilibrium by 
solv7ng the Grad-Shafranov equation 
?bta1ned from Eqs. (2) above, which 
1s essentially an elliptic partial 
differential equation for the 
peloidal magnetic flux, ~ 

') 

x .1__ ! ~ ~ + a .... ~ 
ax x ax a 2 = 2TI x J</> (6) 

z 

This is solved by using double 
cyclic reduction in a form quite 
similar to the usual application to 
Poisson's equation in cylindr{cal 
coordinates. This in itself 
constitutes a major part of the 
problem. Figure 2 shows a typical 
configuration for a plasma with an 
essentially circular cross-section: 
The next step is to map the 
equilibrium flux function to a flux 
coordinate system, better suited to 
t~e decomposition of the expected 
~1genvectors. This mapping section 
1s the second major part of the PEST 
package. Finally the matrix 
elements of the potential and 
kinetic energy are computed, and the 
~atrix eigenvalue problem, Eq. (5) 
1s posed. The matrices are real . , 
symmetr1c and banded, a consequence 



of the Hermitian nature of oW, the 
symmetry, and the use of finite 
elements. This is solved either by 
a direct Gaussian elimination 
scheme to obtain the entire eigen­
value spectrum, if the rank of the 
matrix is small enough to fit into 
the available memory, or by an 
inverse iteration scheme, designed 
to determine only the lowest eigen­
values, which are in fact the most 
interesting. Extensive post 
processing facilities are available 
to examine the resulting eigen­
vectors. 

Fig. 2 A contour plot of the 
poloidal flux at equilibrium, 
showing a cross section of the torus. 
The dark solid line shows the 
po.si tion of the vacuum vessel. 

3. THE IMPLEMENTATION ON THE CRAY 

The PEST package is in an 
overlayed format on the CDC 7600. 
The three overlays consist of the 
three parts described in Sec. 2, 
the equilibrium, mapping and 
stability. Thus a single run 
covering all three parts can be 
executed in one job step. This is 
particularly convenient in simpli­
fying the file management, as the 
data is in large part passed between 
overlays through disk, and the CPU 
requirements indicate that a batch 
type production run is most 
appropriate. Memory requirements 
are set by the computational grid 

41 

dimensions in each part of the 
program. The appropriate figures 
are a 65 x 65 mesh for the equilib­
rium, mapping onto a 97 x 128 mesh 
in the mapping section. In the 
stability section the relevant para­
meters are the number of radial 
finite elements, which can be up to 
half of the number of surfaces, 97, 
and the number of Fourier modes 
permitted, typically about 30. The 
resulting eigenvalue problem 
involves matrices of rank ranging 
from 1500 to 4500. With this set 
of parameters, the code essentially 
uses all available memory on the 
CDC 7600. Running times are 
typically 5, 7, and 15 minutes, 
respectively, for the three parts. 
In practice it is necessary to make 
several stability runs in order to 
fit a convergence formula and extra­
polate to the true eigenvalue. Thus 
a typical calculation to determine 
one such point would require about 
75 minutes. To determine .the 
dependence of a single instability 
mode on any given parameter would 
require several such runs, and in 
practice there ar~ several para­
meters which play an important role 
in determining the stability of a 
given configuration. Thus it is 
impractical to attempt a serious 
parameter survey. Fortunately the 
CRAY provides, through its 
increased memory and speed a 
practical solution for this problem. 

On the CRAY we found it 
convenient to break up the code in­
to its three components. This was 
dictated in large part to the 
convenience of debugging, without 
having to worry about complications 
of the overlay structure. Since 
implementation, the dramatic change 
in CPU requirements has eliminated 
the original purpose of the overlay 
structure. The next major consider­
ation was to improve the vector­
ization. The PEST code does not 
easily lend itself to vectorization, 
as say a time dependent code would. 
However there is room for optimiza­
tion. This has been accomplished 
largely by increasing buffer 
lengths in the inverse iteration 
package for determining the unstable. 
eigenvalues, eliminating logical 
test statements within inner loops, 
consolidatinq coding from functions 



/ 

and subroutines into single sub­
routines where possible, and 
reordering the internal storage to 
take advantage of the increased 
availability of memory and there­
fore reduce I/0. The increased 
memory of the CRAY permits finer 
computational meshes. The 
equilibrium can now be obtained on 
a 129 x 129 mesh, the mapping can 
used a 145 x 128 mesh, and the 
_resulting matrices are of rank up to 
6500. Running times on the CRAY 
with the modifications mentioned 
above are significantly lower. The 
equilibrium, mapping and stability 
sections, now require, 1, 1, and 
1.5 minutes for comparable para­
meters respectively. Further, 
convergence improves with the 
increased dimensionality and the 
CPU requirements for one converged 
point drops to about 8 minutes from 
the 75 minutes on the CDC 7600. ~'Ve 
discuss the impact of these changes 
in the next section. 

4. IMPACT OF THE CRAY-I 

In this section we discuss the 
impact of the CRAY on the study of 
Ideal MHD instabilities in tokamaks. 
Such a study would in large part 
reflect a parameter survey, with the 
aim of optimizing the stability of 
some idealized configuration. In 
practice there are several different 
kinds of instabilities, each requir­
ing a slightly different computa­
tional approach. The'main features 
identifying the instabilities are 
the toroidal mode number n, the 
helicity of the peloidal magnetic 
field expressed as a ratio of the 
toroidal magnetic field, through a 
quantity termed as the safety 
factor q. The peloidal mode numbers 
of interest then lie around m = nq. 
n takes values 0, 1, 2, 3, ... etc. , 
while q lies between 1 and 5 in 
configurations of interest. The 
ability to represeh.t high m' s is 
limited by the mesh size to be 
about 40. The coupling of the modes 
requires inclusion of several m's 
on either side of the dominant m. 
Thus with moderate q, we see that 
the largest n allowed is about 5 or 
6. Independent analytic theory, 11 

inspired in part by earlier studies 
from the PEST code for n = 3, has 
revealed that the high n limit is 

42 

more restrictive for an important 
class of modes called ballooning 
modes. The analytic theory is 
for n = oo, which leaves a large 
gap of intermediate values of n, 
which are at the present time 
.difficult to study. In addition to 
n and q, the boundary conditions are 
important in de.termining the nature 
of the instability. Figure 3, shows 
an example of a particularlyvirulent 
n = 1, instability. The intricate 
structure, of the displacement 
pattern shown emphasizes the need 
for a fine mesh to resolve the 
details of the mode. This is only 
an m = 3 mode. 

·L 
X 

Fig. 3 A free surface kinkinsta­
bility for n = 1, q = 3. The arrows 
indicate the projection of the dis­
placement vector field, onto the x­
z plane. Note the complicated 
structure of the mode, which 
requires careful resolution with a 
fine computational mesh. 

In transferring the PEST code to the 
CRAY, the major areas of change 
have been in the ability to use 
finer meshes, and the dramatically 
reduced CPU times. The importance 
of the grids is in determining the 
accuracy and variety of modes that 
can be study. In particular, near 
the marginal point, greater accuracy 
is needed and the singular behavior 
of certain modes requires finer 
meshes. This resulted in a moderate 



boost in the value of n that can be 
examined, and in the accuracy of 
determining marginal points. These 
are important effects but are not 
quite as dramatic as the impact of 
the reduced CPU requirements. The 
change of CPU requirements has made 
it possible to conduct extensive 
parameter surveys which have been 
hitherto impossible. In particular, 
a~ this point in time we havestu~ied 
and understand the influence of 
various geometrical effects on the 
stability of the configuration. 12 

This has in turn influenced the 
design of future tokamaks. The 
effects of other parameters, such 
as the current and pressure profile 
are much more difficult, and are now 
being studied. Further, it is now 
routine practice to use the code to 
examine specific configurations of 
interest for their stability 
properties. In this last context 
the code is being used as a design 
tool by the engineers and 
experimentalists. 

5. SUMMARY AND OBSERVATIONS 

We have reviewed the 
computational study of Ideal MHD 
instabilities in tokamaks. The 
main conclusion is that the 
nature of the problem is such that, 
while it is possible to use a 
machine such as the CDC 7600, the 
CRAY is really better suited. Thus 
the earlier studies on the 7600 
should be viewed as preparation of 
the code. The numerical techniques 
are not particularly different from 
those on smaller machines, except 
that with the increased memory, and 
more important, speed of the CRAY, 
this field of study h~s matured. 
The discussion in Sec. 4 shows that 
even the CRAY is not adequate to 
simulate some of the instabilities. 
Different numerical approaches are 
being studied to complete the 
range of possible instabilities that 
are represented. 

In this discussion we have 
restricted ourselves to consider­
ation of linerarized ideal MHD effects 
only. This represents one important 
part of the physics of tokamaks. 
For completeness of an HHD study, 
we would have to introduce non-ideal 
effects and extend the study into 

43 

the non-linear phase. This would 
best be done in a time dependent 
model. We have earlier alluded to 
the time scale problem that has 
to be overcome. Extension to three 
dimensions to account for non­
axisymmetric effects adds another 
major degree of difficulty. Such 
codes are being developed, their 
effectiveness in realistic 
configurations remains to be 
demonstrated. In this area, even 
computers of the CRAY-I class are 
inadequate, and at best serve as a 
developing tool, even as the CDC 7600 
served to develop the linearized 
ideal codes. Future, more powerful 
computers will be needed to fill 
the need in this area. 

Finally we recognize that 
these MHD codes carry us through 
only a part of the time .evolution of 
a plasma discharge in a tokamak. 
They consider the equilibrium, and 
the evolution of gross MHD 
instabilities from the linear to 
the non-linear phase. There remain 
other major areas of consideration. 
For example the slow evolution of 
the system between quasi-equilibria 
due to dissipation, is the subject 
of transport codes. These codes 
are also advancing, and are now 
capable of studying the two-dimen­
sional evolution. With the in­
creased speed of stability codes, 
we might consider coupling the two 
together. In practice one might 
advance the transport code to 
find a quasi-equilibrium and then 
examine its stability and continue. 
Such codes are under consideration. 
Efforts are also underway to couple 
transport effects into a time 
advancement MHD code. We should 
point out that this will not 
present the ultimate code to 
describe all the physics of the 
tokamak. Indeed given the complex­
ity of the system and the various 
processes that need to be con­
sidered, such a code remains a near 
impossibility. However the future 
of MHD studies of tokamaks remains 
a promising and exciting field. 
The continued development of 
advanced computer systems assures 
continued progess in our under­
standing in this very important 
area of plasma physics, 



REFERENCES 

1 . 
R. C. Grimm anq J. L. Johnson 

in Comp. Phys. ·comm., 12, (1976) 45. 

2J. A. Wesson in Nuclear Fusion 
18, (1978) 87. 

3 r. B. Bernstein, E. A .. Frieman, 
M. D. Kruskal, and R. M~ .Kulsrud 
in Proc. Roy. Soc., A244, (1958) 17. 

4c. Bateman, W. Schneider, and 
W. Grossman in Nuclear Fusion 14, 
(1974) 669. 

5A. Sykes and J. A. Wesson in 
Nuclear Fusion 14, (1974) 645. 

6 s. c. Jardin, J. L. Johnson, 
J. M. Greene, and R. C. Grimm in 
J. of Comp. Phys., ~, (1978) 101. 

44 

7M. Chance, et. al., in J. of 
Comp. Phys. ~, (1978) 1. 

8 G . . d R. C. r1mm, J. M. Greene, an 
J. L. Johnson in Meth. of Comp. 
Phys., Ed. J. Killeen, 16, (1976) 
253. 

9c. Berger, R .. Gruber; and F. 
Troyon in Proc. of 2nd European ' 
Conference on Comp. Phys. (1976) 
Paper C3. 

10 . 
W. Kerner and H. Tasso in 

Plasma Physics and Controlled 
Nuclear Fusion Research !• (1974) 
475. 

11 Dobrott, et. a'l., irt Phys. Rev. 
Lett. ~, (1977) 943. 

12A. Todd, et. al., in Nuclear 
Fusion 1"9, (1979) 743. 



ATMOSPHERIC MODELLING 

• A Vectorized Three-Dimensional Operational Tropical Cyclone Model 

• Implementation of Vectorizing Techniques on the CDC-STAR-100 for 

Speed Enhancement of GLAS GCM 

• The Use of the CRAY-1 in Simulating Hail Growth 

• Development of a STAR-100 Code to Perform a Two-Dimensional 

Fast Fourier Transform 





A VECTORIZED THREE-DIMENSIONAL OPERATIONAL TROPICAL CYCLONE MODEL 

Rangarao V. Madala 
Naval Research Laboratory 

Washington, D.C. 20375 

and 

Simon Chang 
JAYCOR 

Alexandria, VA 22304 

ABSTRACT 

A three-dimensional numerical model to predict the intensification and movement of 
tropical cyclones is under development at the Naval Research Laboratory using TI-ASC* 
computer. 

The physics of the model includes latent heat released in convective and non-convec­
tive clouds. The atmospheric boundary layer is parameterized using generalized similarity 
theory. 

A newly developed fully vectorisable time integration scheme, split-explicit, is 
used to integrate the governing equations. In this scheme all the dependent.variables are 
initially expanded in terms of the natural eigen modes of the model.' The spectral equa­
tions governing the eigen modes are integrated using a time step which varies with each 
mode. These modes are then recombined at regular intervals of time to obtain the 
required solution. Use of this method has enabled us to reduce the computing time te­
qni.rements by a factor of four compared to the conventional explicit schemes. 

For a horizontally staggered 5lx5lx7 grid network with a horizontal resolution of 
60 km, each computational cycle of the model requires 3.85 seconds when run in vector 
mode and 15.25 seconds when run in scalar mode. 

INTRODUCTION 

Operational forecast of tropical 
cyclones with numerical models has been 
moderately successful. One of several 
severe restrictions of operational models 
is the time requirement within which the 
model computation must be complete. There­
fore, operational models either have poor 
spatial resolution or crudely para­
meterized physics. Current operational 
models of tropical cyclone which have 
limited skill on storm track forecast, 
have no skill on intemd.ty forecast. 

It is generally believed that the 
storm track cannot be determined solely by 
the mean flow. There are important inter­
actions between the tropical cyclone and 
the mean flow. The internal structure of 

the tropical cyclone is an important 
factor in the interactions. To have a 
realistic model structure become~ a pre­
requisite for a good forecast model. Such 
models should have good spatial resolution 
and parameterized physics comparable to 
some research models. 

With the development of the advanced 
computing systems, operational models with 
adequate spatial resolution and physics 
are feasible. One such model is now 
being developed at the Naval Research 
Laboratory. 

With the vectorization of the code 
and a new temporal integration scheme, 
called split-explicit method, an efficiency 
of 16 is achieved compared with the same 
model using leapfrog method run on scalar 
machine. This efficiency enables the 

*Mention of a commercial product does not imply endorsement. 

A7 



final version of the NRL tropical cyclone 
to meet the Navy's requirement in an 
operational mode. 

We will present in the following 
section governing equations, parameterized 
physics and computational aspects of the 
present version of the model. Model 
structure and some preliminary results 
from a series of hindcast will be dis­
cussed. And finally, we discuss the 
future development of the model. 

GOVERNING EQUATIONS AND MODEL PHYSICS 

The governing equalions include Lhe 
primitive conservation equations for 
horizontal momentum, mass, enthalpy, awl 
water vapor. The system of equations is 
hynrostatic, a normalized pressure (aigma) 
is the vPrtical coordinate (Phillips, 
1957). 

The model physics include the sub­
grid-scale horizontal mixing, the cumulus 
convection, the large scale precipitation, 
and the subgrid-scale vertical mixing due 
to surface friction. 

The subgrid scale horizontal m1x1ng 
is parameterized by a kinematic eddy 
coefficient. This coefficient consists 
of a constant part and a part linearly 
dependent on wind speed (Anthes et al, 
1971). This form of eddy coefficient 
yielrl.c; .suitable mixing in the initial as 
well as the mature stages. 

The cumulus convection is para­
meterized following Kuo's (1974) method. 
Conditional instability and the boundary 
layer convergence of water vapor initiate 
the convection. Partit·ionlug of heating 
and moistenin~ depends on the relative 
humidity of the air column. The vertical 
distribution of heating is a function of 
the conditional instability. Large scale 
precipitation occurs when the air reaches 
saturation in large scale lifting. 

The surface friction is parameterized 
based on a generalized similarity theory, 
in which logarithmic-linear profiles in 
the surface layer are "matched" into the 
mixed layer (Chang and Madala, 1979). 
Universal functions involved are formulated 
following Yamada (1976). Charnock's 
formula is used to compute the roughness 
of the ocean surface. 

48 

GRID NETWORK AND INTEGRATION SCHEME 

The model atmosphere from P = Ps 
(surface) to P = 0 is divided into seven 
sigma layers. All prognostic variables 
(such as u, v, T, q) are defined at the 
center of each layer, all diagnostic vari­
ables (such as a and w) are defined at the 
boundary of each layer. The momentum 
points and mass points are staggered in 
horizontal directions following Arakawa 
scheme C. 

~he center-in-space finite differ­
encing method is used for spatial differ­
Ct'lr.ing, M::ui:il, rn0mPntum, anc;l enthalpy in 
the model are conserved in finite differ­
encing form. 

For the temporal integration, a newly 
develuped split-explicit method (Madala, 
1979) is uyeJ. In thic method, all the 
t.lependent variables are initially expanded 
in terms of eign modes of the model. The 
linearized spectral equations governing 
the eigen modes are integrated in leapfrog 
fashion using a time step which varies 
with each mode. Those modes are then 
recombined at regular intervals of time 
to evaluate the forcing function and non­
linear effects. The over.all computing 
time are reduced by a factor of tour 
compared with the conventional explicit 
methods. 

There are 51 x 51 horizouLally 
staggeret.l gi.'id pointe and seven vP.rtical 
layers in current version of the model. 
The uniform horizontal resolution is 
60 km. 

INITIALIZATION PROCEDURE 

· A sta~ic initialization based on the 
nondivergent compunent of observed wind 
field is used. The procedures are as 
follows: 

(a) Vorticity is computed from the 
observed wind. 

(b) A Poisson equation is solved to 
determine the stream function. Non­
divergent wind field is obtained from the 
stream function. 

·(c) A second Poisson equation is 
solved to determine the surface pressure 
based on the non-divergent wind. 



(d) A three-dimensional Poisson equa­
tion is solved for the geopotential or 
temperature fields over the domain of the 
model. 

Additional restriction on the lateral 
boundary is added in steps (a) and (b) to 
ensure there is no net mass inflow or out­
flow at all levels. In above, a direct 
fast elliptic equation solver (Madala, 
1978) i~ used to solve the Poisson equa­
tions. 

STRUCTURE OF THE MODEL TROPICAL CYCLONE 

It is generally believed that the 
forecast of the paths of tropical cyclone 
is not just simply the transport of 
isolated vortices by mean flow. There are 
significant interactions between the 
tropical cyclones and the mean flow. The 
internal structures of the storm have 
great influence in these interactions. 
Thus, to have a realistic model structure 
becomes one prerequisite of a good fore­
casting model. 

To examine the model structure at 
quasi-steady state, we integrate the model 
from a hypothetical asymmetric initial 
vortex embeded in a tropical atmosphere 
with zero large scale mean flow on an 
f-plane over 28.5 C ocean water. The 
model tropical cyclone, after the initial 
dissipation stage, and the development 
stage reaches quasi-steady state at about 
60h. At 72h simulating time the minimum 
central pressure is 980 mb and the maximum 
wind is 40 m s-1 

The surface pressure analysis shows 
an axisymmetric low pressure center with 
concentrated pressure gradients near the 
center (Figure 1). 

Figure 2 shows the wind vectors and 
isotachs in the lowest layer of the 
tropical cyclone where the inflow and con­
vergence is the strongest. The wind field 
is chara~te.rized by a mostly axisymmetric·, 
cyclonic circulation with high wind 
velocities near the storm' center. At the 
storm center, the veloci.ty is nearly zero. 
The maximum wind speed occurs to the north­
east and the southwest of the center and 
is believed to be associated with the 
strong convective band. 

49 

SURFACE PRESSURE fMBJ AT.T- 60 HR 

~ 
0 

~ 

0 

'il 

0 

~ 

~ 
>= 
"' 0 

f5iG . 
>-O 
~ 

0 

~ 

0 

-~ 

0 
.,; 

0 
0 

o.o s.o 10.o 1s.o ao.o as.o 30.0 Js.o to.o iS.o so.o 
XI• 60 KMI 

Fig. 1. Analysis of the surface pressure 
of a stationary tropical cyclone. The 
interval between isobars is 4 mb. The 
outmost circle is the 1016 mb isobar, the 
minimum pressure is 981 mb. 

VELOCITY fM/SJ AT LEVEL 7 AT T- 60 HR 

~r--------------------~-------------------------, 

lfi" I 

0 

, ,_ I , ~ ' ' • 4 ~ 4 w ,,,,,,_.J-----

- .. - ... "" "" .. 
d+---~--~--,-------~---r--~--~--~--~ 

O.o s.o 1o.o 1~.0 ?.!i.n 2Vl J::i.o 3S.o iO.~ '!.~.::~ !>J.!l 
XI• 60 K/11 

Fig. 2. Analysis of the isotach and 
the vectors of the surface wind field._

1 The interval between isotachs is 5 m s 
The maximum wind is 41 m s-1. 



Figure 3 shows the wind field at the 
outflow level just beneath the tropopause;· 
Contrary to wind field at the inflow level, 
the wind field at this level is highly 
asymmetric, in agreement with observation. 
It features weak cyclonic circulation 
near the center and anticyclonic with 
high speed circulation at large radii. 
The high anticyclonic wind speeds are 
caused by the conservation of angular 
momentum in the outflow supported by the 
conservation of angular momentum in the 
outflow supported by the warm core. 

VlLOCITY (M/51 AT LEVEL 2 nT T- 60 HR 

0 

' ' ' Ill 
' ' ' 

0 
0 

o.o s.o 10.0 15.0 20.0 25.0 30.0 35.0 ~0.0 iS.O 50.0 
X!• 60 KMl 

Fig. 3. Same as Figure 2 except at the 
outflow level. 

The warm core character of the storm 
is depicted by the temperature change 
from the initial condition on an east­
west cross-section through the storm 
center (Figure 4). The warm core, with 
maximum of 9°C at near 300 mb, is caused 
by the exceed of the diabatic heating 
over the adiabatic cooling. The cooling 
on top of the tropopause is due to the 
forced assending in a stably stratified 
environment and the geostrophic adjust­
ment there. 

50 

0,7 

···~ 
0.11.2 

li(Kml --EAST 

Fig. 4. The temperature change (°C) on a 
eastwest cross-section through the ~torm 
center. 

The structure of the eye and the 
eyewall is illustrated in Figure 5 by the 
relative humidity (RH) on che same cross 
e:ection as :in Fienre. 4. The RH field 
features (1) a very dry eye region due to 
the descending motion, (2) relatively 
moist eyewalls due to convection, (3) 
very moist inflow due to sea-surface 
evaporation, (.4) very moist outflow 
layer, and (5) relatively dry troposphere 
outside the eyewalls due to general 
descending motion. 

In general, the structure of the 
model tropical cyclone is very realistic 
as compared with the observations. 

D.l 

•.. 

0,7 

... r"~~~ .. ~~~d ~~m~~-~rn• •• ~-~ m~-~ 
wm-- XIKml 

__ ,.,., 
Fig. 5. Same as Figure 4 except for the 
relative humidity (%). 



HINDCASE PERFORMANCE 

A series of real data experiments 
have been carried out on ten typhoon cases 
in the 1976 and 1977 seasons to test the 
forecast skill of the model. Two 
current operational models, the Movable 
Fire Mesh Model (MFM) of the National 
Meteorological Center and the One-Way 
Interaction Model (OI) of the Fleet 
Numerical Weather Prediction Center, are 
used for comparison. 

Table l"lists the averaged vector 
position error (VPE) for these ten 
typhoon cases. It is clear that the 
present model has much less vector posi­
tion errors at 24 and 36 hr. The deteri­
oration of the forecast of our model at 
48 hr is caused by the ad hoc boundary 
conditions of our model as the typhoons 
move close to the boundaries. Unlike the 
mesh of the other two models in·comparison, 
the mesh in the present model is not 
moveable and is not nested into a coarse 
grid. An effort to implement a moveable 
nested grid work is now being undertaken. 

Table 1. Averaged Vector Position 
Error (n.m.) 

12h 24h 36h 48h 

MFM 63 130 158 200 

OI 81 123 143 163 

NRL 66 91 112 217 

The persistance of our model forecast 
is illustrated by the standard deviations 
in the VPE for the 10 typhoon cases 
(Table 2). 

Table 2. Standard Deviations of the 
Vector Position Errors 

12h 24h 36h 48h 

MFM 109 221 257 318 

OI 102 196 194 261 

NRL 83 113 133 245 

51 

SUMMARY 

A three-dimensional numerical model 
of tropical cyclone is under deve~opment 
at the Naval Research Laboratory. This 
model, when fully developed, will satisfy 
the Navy's needs in operational forecast 
of tropical cyclone. 

As shown, the present version of the 
model is capable of producing a realistic 
structure of tropical cyclone. A series 
of test runs shows the model has greatly 
reduced the averaged vector position 
errors in storm track forecast. Combining 
the utilization of a new temporal inte­
gration scheme and the vectorization of 
the computer code, an efficiency over 
conventional models using conventional 
computers of 16 is achieved. A 72 hr 
integration of the present version 
requires· 50 min. of CPU time on a TI-ASC. 

Before becoming Iully operational, 
there are several areas in the model that 
need to be improved. One of the most 
important improvements will be the 
implementation of a moveable nested grid­
work. It is planned to construct a grid 
network that has spatial resolutions of 
20, 60, and 180 km. The two inner grids 
will be able to move with the tropical 
cyclone so that the center of vortex is 
never far away from the center of the two 
finer grid networks. Such a nested grid 
work will give good enough resolution 
at the finest grid for the detailed 
structure near the storm center while 
providing good interaction at the coarser 
grid with the synoptic scale flow. 

ACKNOWLEDGEMENTS 

We thank Mr. Richard Hodour of the 
Naval Environment Prediction Research 
Facility for running the real data ·tests. 
Mrs. Jane Polson typed the .manuscripts. 

The development of the model is 
supported by grants ONR RR033-02-44, 
NAVAIR 9F52-551-792, and NRL N00173-78-C-
421. 



REFERENCES 

Anthes, R. A., J. W. Trout, and S. L. 
Rosenthal, 1971: Comparisons of 
tropical cyclone simulations with 
and without the assumption of circu­
lar symmetry. Mon. Wea. Rev·. 99, 
759-766. 

Chang, S. W., and R. V. Madala, 1979: 
Use of similarity theory to para­
meterize the PBL of tropical cyclone. 
NRL Technical Memorandum. 

Kno~ H. L,, :!,974: Further studies of the 
parameterization of the in£1uence of 
cumulus convection on large scale 
flow. J. Atmos. Sci., 31, 1232-1240. 

Madala, R. V., 1978: An efficient direct 
solver for separ:abll:! auJ non·­
~eparable elliptic equations. 
Mon. Wea. Rev., 106, 1735-1741. 

Madala, R. V., 1979: Computationally 
efficient time integration methods. 
Fourth Conference on Numerical 
Weather Prediction of the American 
Meteorological Society, October 1979, 
Silver Springs, Maryland. 

Phillips, N. A., 1957: A coordinate 
system having some special advantages 
for numerical forecasting. 
J. Meteor., 14, 1~4-185. 

Yamada, T., 1976: On the similarity func­
t~ons A, B, and C of the plani:!Laty 
boundary layer. J. Atmos. Sci, 33, 
781-793. 

-

52 



IMPLEMENTATION OF VECTORIZING TECHNIQUES 

ON THE CDC-STAR-100 FOR SPEED ENHANCEMENT OF GLAS GCM 

Lawrence Marx 
Sigma Data Services Corporation 

c/o NASA/Goddard Space Flight Center 
Code 911, Building 22 

Greenbelt, Maryland 20771 

ABSTRACT 

The Goddard Laboratory for Atmospheric Sciences nine-level global general circu­
lation model with variable horizontal grid resolution has been converted.to run on the 
CDC STAR lOO,at NASA Langley Research Center. Vectorization programming has been em­
ployed to achieve enhanced·computational performance including: (i) dynamic equiva­
lencing; (ii) a generalized development of vector expansion and masking techniques for 
dealing with ·cloud distributions and other scalar dependent processes; (iii) the use of 
high-speed vector kernel functions. These program.enhancements have resulted in an 
overall 4.5 speed factor improvement over the same code run on the Amdahl 470V/6 at the 
Goddard Modeling and Simulation facility. 

53 



THE USE OF THE CRAY-1 IN SIMULATING HAIL GROWTH 

C. M. Berkowitz 
Battelle, Pacific Northwest Laboratory 

P. 0. Box 999 
Richland, WA 99352 

ABSTRACT 

A two-dimensional (x,z) Monte Carlo model of the hail growth zone was used to inves­
tigate the effects of updraft tilt and width on hail production. To allow for selection 
processes necessary to resolve the difference between th~ concentration uf hailsLuue 
embryos and the concentration of hailstones, the growth of a large number of embryos 
had to be simulated. Development of this model on a CDC-7600 computer required extensive 
tape and mass storage buffer operations to model the many growing partieles. By modi­
.fying the program to run on the newly available Cray-1 computer, most or the I/O 
operations were no longer necessary, and computation times were greatly reduced. This 
allowed for a more extensive investigation than would otherwise have been possible. 

INTRODUCTION 

The large number of computations re­
quired to simulate the growth processes of 
hailstone embryos have greatly restricted 
the investigation of-hail development 
through the use of mathematical models. 
By use of fairly sophisticated I/0 soft­
ware, the CDC-7600 computer could be used 
to model such interactions in simple two­
dimensional (x,z) models. With the advent 
of s.uch systems as the Cray-1, cloud 
physicists now can spend more time on 
modeling the physics, and less time having 
to develop software processes which circum­
vent memory and speed limitations of 
standard computers. 

At least two categories of physical 
processes have to be identified when de­
scribing the growth of hailstones. There 
is, of course, the growth of the indivi­
dual embryo, which is described by collec­
tion and heat budget equations. And, of 
equal importance, there are processes 
resulting from the presence of other 
embryos within the cloud, competing.with 
each other for the available liquid water 
required for growth. 

Development of the simple kinematic 
flow model of hailstone growth which is 
described in this paper began on a CDC-
6400 at the University of Adzona, where 
extensive use was made of time-consuming 
mass storage read and write statements. 
Work on the 6400 was, however, directed 
primarily at developing a working FORTRAJ~ 
code which modeled the microphy.sics of 

54 

individual particles. Only one embryo 
per time step could be processed, so 
there was effectively no depletion of the 
liquid water field and no interaction 
among developing hailstones. 

The second phase in the development 
of the hail grow·th zone model was done on 
the NCAR CDC-7600, a larger, much faster 
.machine. At NCAR, hundreds of groups of 
embryos could be simulated per time step 
and processed, although core requirements 
still required buffering intermediate 
blocks of data to disk, whictl woulu Lhen 
be buffered back later in the program 
when they were needed for further compu­
tations. Using a series of such buffer 
manipulations~ it was possible to run the 
model for some of the more simple cases 
of interest, and barring l1ardware problems, 
obtain results within a day or two·. 

Even in the 7600 though, core limi­
tations forced development of a hail 
growth model consisting of two programs; 
one to simulate the microphysics, and a 
separate code to actually evaluate the 
data. The first program produced a tape 
containing the size, density, and coordi­
nates of hailstones that were outside 
the model grid. A second program would 
perform an assortment of statistical 
tasks on this first data set. 

The hail growth model was probably 
one of the first programs to be modified 
for operational use on the NCAH's Cray-1 
system. Using the Cray, the hail growth 
program and the analysis program could 



not only be combined into one deck (all of 
the development was done in batch mode) 
but no tapes or disk space was required to 
circumvent the considerable memory overflow 
problems encountered when running the Hail 
Growth Analysis Packet on the 7600. The 
turnaround time went from days to minutes, 
making refinements in the code for the 
microphysics orders of magnitude easier 
to develop than they had been previously. 

Given a computer of infinite memory 
capacity and speed, each hailstone could 
be individually modeled. Until such 
descendents of the Cray-1 are developed 
though, cloud physicists must be content 
with processing groups of hailstones that 
are defined by a common size, temperature, 
density, location, and which contain a 
specified number of particles per unit 
volume. However, because any one particle 
within these groups is treated in exactly 
the same fashion as any other particle, 
they will all compete for liquid water on 
an equal basis--this is a result of the 
grouping process, and has no physical 
justification. 

In a series of experiments to investi­
gate the results of this numerical compe~ 
titian, Young 1 found that for a 60 m by 
Go m :;eL of grids (defined by a homogeneous 
liquid water content), the maximum number 
of particles that could be contained in a 
group was 100/m3 • With a concentration 
greater than 10Q/m3 per group, numerical 
competition was found to significantly 
decrease the resulting mean hailstone size 
of particles in a group. 

By limiting the group concentration 
to 100/m3 and specifying a 40 m x 40 m 
grid that was assumed to be 1 m <leev, ·up 
to 160,000 particles ·per erirl cnnld com­
pete for the liquid water. Using the Cray-
1, up to 70,000 groups per time step 
(spread throughout the model) could be 
processed. 

REVIEW OF THE PHYSICAL PROBLEM 

THE HTSTORY OF A HAILSTONE 

Observations of Knight and Knight2 
suggest that the majority of hailstone 
embryos in northeast Colorado are graupel; 
that is, ice crystals which have collected 
enough super-cooled water drops to obscure 
the crystals' original structure. These 
embryos are thought to begin their devel­
opment as hailstones within a convective 
cell in updrafts that are just strong 

55 

enough to buoy them up but not so strong 
that they are lifted out the top of the 
cloud. As the embryos grow, they are 
thought to enter regions of stronger up­
drafts having higher liquid water content 
(between 3 and 7 g/m3 ) than the weaker 
updrafts. Because liquid water is a 
prerequisite to hailstone growth, which 
is primarily an accretion process, temper­
atures in this zone of strong updrafts 
must be less than -40°C to avoid homogen­
eous freezing which, in turn, would 
effectively remove liquid water available 
to the growing embryos. An upper temper­
ature limit of approximately -20°C can 
also be specified for this zone of strong 
updrafts since warmer temperatures are 
more likely to result in "soft" or spongy 
hail, which would probably melt before 
reaching the ground. 

This highly simplified conceptual 
model of embryos developing initially in 
a zone of weak updrafts (called the Embryo 
Formation Region, or EFR) and undergoing 
most of their growth in a zone of strong 
updrafts having more liquid water and a 
fairly well defined temperature range 
(called the Hail Growth Zone, or HGZ) is 
consistent with observations made during 
the National Hail Research Experiment 
(NHRF.) 3 , 4 , and the Alberta Hail Study 
(ALHAS) 5 . It can apply to short-lived 
convective systems by adopting a time 
sequence for the transition from EFR to 
HGZ. It can also apply to a longer last­
ing supercell with a fairly steady-state 
circulation. In this latter case, the 
EFR and HGZ would be spatially contiguous. 

THE HEAT BUDGET OF A HAILSTONE 

There are a few studies in r.Joud 
physics which do not draw heavily on the 
fundamental concepts of classical thermo­
dynamics. The theoretical development of 
hailstones is no exception, and a heat 
budget approach is the basis of a quanti­
tative theory of hailstone growth first 
formulated by Ludlam6 and reviewed 
briefly here. 

The temperature of a hailstone will 
be determined by a balance between four 
factors. First, sensible heat will be 
lost to the environment by the hailstone. 
Assuming a spherical particle of radius 
rh, a constant thermal conductivity of air 
of K, and a factor to account for the 
anisotropy of the temperature field the 
particle is falling through, b, then the 
heat transfer rate, dQs/dt, will depend 

l 



.. 
on the temperature gradient, 

dQ 

dt 
s dT 4Tibr 2K -

h dr 
(1) 

By assuming a constant heat transfer rate, 
and evaluating dT/dr at rh, this integrates 
to 

dQ 
s --= 

dt 
(2) 

where T is the environmental temperature, 
and T is the hailstone's surface tempera­

h ture. 

Similar arguments for the mass flux 
away from the hailGtonc can be used to 
derive an expression for the water loss 
by sublimation with resultant cooling: 

dQ 
m 

dt (3) 

where Ls is the latent heat of sublimation, 
D is the diffusivity of vapor in air 
(assumed constant), cis a mass ventila­
tion factor, and the p's refer to the 
saturation vapor density of water at the 
hailstone's surface (Ps,h) and the environ­
mental vapor density (p

00
). 

Heat is gained by the accretion 
p:roeess, whereby supercooled water droplets 
(occurring with number density x) freeze 
onto the hailstone, releasing their J.at~;nt. 

heat of fusion, Lf: This he~t source is 
described by a collection equat.i.on for 
collector particles of radius rh, moving 
with speed Vh, colliding with smaller 
particles of size category ,j and having a 
velocity Vj: 

dQ 
~ = L Tir 2 ( V - V . ) X . 
dt f h h J J 

(4) 

where it has been assumed that all parti­
cles in the sweep path of the hailstone 
are collected. 

The last term in this heat budget 
expression is one describing the exchange 
in sensible heat between the hailstone and 
the accreted droplets, 

These four expressions involve temp­
erature as a function of heat transfer rate, 

56 

fall speed (also a function of size and 
air density, among other factors), liquid 
water content an'd latent heats (which are 
functions of particle temperature). The 
growth of a hailstone from a small graupel 
particle is obviously related to the envi­
ronmental characteristics and cloud height, 
which will be continually changing. 
Reasonable values for the ambient tempera­
ture, ·vapor density, and liquid water 
field must be i::!lmulated, in addition to 
vertical and horizontal winds. Hailstones 
that develop in an environment where 

dQ dQ dQ 
_s_ + ______!!!_ > ~ + 

dQ 
c 

dt dt dt dt 
( 6) 

(sensible heat loss + sublimal cooling > 
heat released by freezing of droplets + 
sensible heat transfer by droplets) 

will loose heat fast enough to a.llow solid 
ice to form on the surface, producing a 
hailstone with a ulfferenl.; clensity than 
one where the heat budget is described by 
a reversed inequality sign in Eq. (6). 

With so many interacting factors, it 
is difficult to see how a population of 
hailstones can be treated as a homogeneous 
group. This, of course, necessitates 
inulvidual processing ul' enibryos, which in 
turn necessitates use of computers such 
as the CDC-7600 and Cray-1. 

COMPETITION AMONG HAILSTONES AND STOCHASTIC 
PROCESSES 

Early computer models of hail growth 7 

have assumed smooth trajectories of parti­
cles moving through the hail growth zone 
that are basically determined by the ini­
tial size and location o1' the embryo. 
With the addi.t.:i.on of a perturbation com­
ponent to the mean velocity of a particJ.P., 
a unique trajectory for a given size parti­
cle beginning growth at a particular loca­
tion no longer exists. This mixing can 
move larger particles from low, more 
favored trajectories. Therefore, analysis 
of model results must be done in a stati­
stical manner, and hence the need for a 
second program to interpret the results of 
the microphysical model on the CDC-7600. 

Competition for available liquid 
water has been suggested as a mechanism 
for producing the interesting phenomenon 
of "size-sorting". By simulating deple­
tion of cloud water by hailstones, Young8 

found that a high embryo concentration 
would result in a "most favored trajectory" 



for hailstone growth that was quite low 
and short in length when compared to 
"least favored trajectory" that would be 
higher and longer, but would allow a 
hailstone to encounter less liquid water 
due to depletion by many lower trajector­
ies. In this situation, large embryos 
would have a greater chance of developing 
to hailstones since they would have a 
more likely chance of following a lower 
trajectory. This process would result in 
the larger embryos falling out first--a 
phenomenon Young called "negative size 
sorting". With low embryo concentrations, 
a higher trajectb;ry would be the "most 
favored", since there would be little 
depletion of liquid water; thus, smaller 
embryos would have a tendancy to produce 
bigger hailstones and these hailstones 
would fall out further from the EFR by 
virtue of their longer path; this has 
been labeiled "positive size sorting". 

Of importance here is that size­
sorting and "most favored trajectory" 
are a result of the stochastic processes 
and liquid water depletion. These two 
features, Young concludes, must be 
included among the interactive effects of 
hailstone growth. 

MODEL RESULTS AND CONCLUSION 

By modeling heat budgets, perturba­
tion velocities and hailstone interaction 
(via competition for liquid water), the 
effect of updraft width and tilt on hail­
stone size and total mass was investigated. 
Quantitative values of size and ma?s were 
derived, but because of the extreme com­
plexity of the actual physical system 
under c:onsideration, with all its many 
feedback processes, direct comparison of 
model results with field observations is 
difficult at best, and more probably 
impossible at this stage of hail growth 
models. The results are most; useful in 
helping to define isolated mechanisms of 
hail growth. 

The tilt (tangent of the updraft 
angle from the vertical) and width of the 
updraft were found to have significant 
effects on the total hail mass produced 
and on the sizes of hailstones. Because 
a very broad updraft could buoy a develop­
ing hailstone up longer than a narrow one, 
and an updraft that was more strongly 
tilted would carry a hailstone through an 
updraft core faster than a more vertical 
one, it was not surprising to find that 
the maximum and average hailstone size 

57 

increased linearly with the ratio of up­
draft width to tilt, W/T (Fig. 1). A 
similar linear relationship between hail 

· mass produced by the HGZ and W/T was also 
found for W/T ~ 5 (Fig. 2). By plotting 
the cumulative frequency of hailstone 
size for assorted ratios of W/T (Fig. 3), 
the model was found to decrease the total 
number of hailstones for values of W/T > 2. 
However, since the mean hailstone size 
continues to increase with W/T, the effects 
of increasing hailstone size and decreasing 
hailstone numbers appear to balance, pro­
ducing a roughly constant hail mass. With­
out simulating depletion of the liquid 
water field by hailstones of assorted 
sizes, such results would not occur, and 
the hailstone mass and size would continue 
to increase with W/T values. 

0 T • 0.2 

• T • 0.4 
2.0 

tl T • 0.5 . T • 0.6 

0 I • 0,8 

0 

~ 1.5 

:> 
0 
~ 

• 
A 

1.0 . 

wn 

Fig. 1. Maximum and average hailstone 
radii as a function of the ratio of up­
draft width to tilt (W/T). Lines of 
best fit for maximum and average radii 
are also shown (r 2=0.97 and 0.95 respect­
ively). Maximum updraft strength was 
25 m/s in all cases. 

Sulakvelidze 9 has proposed that the 
largest hailstones to be produced by the 
HGZ will be those having fallspeeds equal 
or greater than the maximum updraft velo­
city. By modeling a tilted flow field and 
including random horizontal displacements, 
hailstones appear to be able to pass 
through the updraft core without ever 
achieving a balance with the maximum up­
draft. Should this "tunneling" phenomenon 
be found to exist, then nomograms fore­
castipg maximum hailstone size based on up­
draft strength, and temperature at which 
the maximum updraft occurs9,lO,ll would 
require the addition of updraft tilt and 



width in order to be complete. 

"' 'e 
~ 

~ 
~ 

~ 
!§ .. 
; 
2 
> 
§ 
~ 
:0 ,_, 

)5(J) 

• 
JOOl 

1500 
• 

lOCAl 

1100 

UXXI 

sal 

0 

wn 

0 T • 0.1 

e I· 0.4 

t:. T • O.S 

• T • 0,6 

0 T • 0.8 

0 

l"ig. 2. ~·otal hail mass per m2 depo­
sited on the ground as a fm;ction of 
the ratio of updraft width to tilt 
(W/T). The total hail mass is the 
amount of hail that would be left on 
the ground by a storm which had passed 
overhead, moving at 10 m/s. The total 
mass demonstrates a linear dependence 
on W/T for W/T < 5 (r2=0.96). 

ul 

tal 

lrfl 

2.5 

1.4 1.6 1.8 

RADIUS ltml 

Fig. 3. Cumulative number frequencies 
for five different combinations of up­
draft width and tilt. All cases had 
a maximum updraft of 25 m/s. 

With the memory and speed of the 
Cray-1, it may be possible to extend the 
two-dimensional model to a third dimen­
sion, allowing for recirculation of hail­
stones. Also, an updraft profile that is 
time and height dependent can now be con-

58 

sidered, as can an even more complete 
treatment of microphysical processes. Such 
refinements, which are only now possible, 
would greatly facilitate studies into 
hailstone trajectories, feedback mechanism 
between hailstones and updrafts, and the 
feasibility of cloud seeding for hail 
suppression. 

ACKNOWLEDGEMENT 

Funding for the development of the 
variable updraft Monte Carlo model was 
provided by NSF Grant SUB NCAR 55004 under 
the National Hail Research Program. 
Current application and related research 
was conducted on the MAP3S Scavenging 
Program at Pacific Northwest Laboratory 
and is supported by the U.S. DepA.rtment 
of Energy under contract EY-76-C-06-.1830. 

The author would lilte to tho.nk Dr. 
Bryan St:'ot.t f'or hi~ 11~Pf11l r.nmment.s on 
the original <lraft of this paper. 

Dr. Ken Young of the University of 
Arizona was principle investigator for NSF 
Grant Sub NCAR 55004, under which this work 
was done. Dr. Young's support and guidance 
are very much appreciated. 

REFERENCES 

1 • Young, K. C., 1978b: On the role of 
m1x1ng in promotine; compet.i.tirm 
between growing hailstones. J. Atmos. 
Sci., }2:2190-2193. 

2. Knight, C. A., and 
Hailstone embryos. 
27:659-666. 

N; C .. K:n:ight, 1970: 
J. Atmos. Sci., 

3· Browning, K. A. and G. B. Foote, 1976: 

4. 

5. 

Airflow and hailgrqwth in supercell 
storms and some implir:atiou!:\ ror· hail 
suppression. Quart. J. Roy. Meteor. 
Soc., 102:499-533. 

Browning, K.A., J.C. Fankhauser, P..J. 
Chalong, P.J. Eccles, R.G. Straoch, 
F.H. MPrrem, D.J. Musil, E.L. May and 
W.R. Sand, 1976: Synthesis and impli­
cations for hail growth and hail 
suppression. Structure of an evolving 
hailstorm. NHRE Tech. Rep. 71/l, Il/ 
22. 

Chisolm, A.J., 1973: Alberta Hail­
storm: Part I. Radar case studies 
and airflow models. Meteor. Monog. 
36:1-36. 



6. 

7. 

8. 

9. 

1 0 • 

1 1 • 

Ludlam, F.H.; 1958: The hail problem. 
Nubila, 1:1-12. 

Musil, D. J., 1970: Computer model­
ing of hailstone growth in feeder 
clouds. J. Atmos. Sci., 27:474-482. 

Young, K. C., 1978a: A numerical 
·examination of some hail suppression 
concepts. Meteor. Monog., 38:195-214. 

Sulakvelidze, D. K., N. Sh. Bibilash~ 
vili, and V. F. Lapcheva, 1965: 
Formation of Precipitation and Modi­
fication of Hail Processes. Program 
for Scientific Translations, Jerusa­
le.m, TsraP.l, ?011 p:p. 

. Diebert, R. J., 1976: Alberta hail 
project field program, 1975: Alberta 
weather modification Board, Three 
Hill"s; C.anada. 67 pp. 

Dennis, A. S., and D. J. Musil, 1973: 
Calculations· of hailstone growth and 
trajectories in a simple cloud model. 
J. Atmos. Sci., 30:278-288. 

59 



DEVELOPMENT OF A ST~-100 CODE TO 
.;;::-..::... 

CALCULATE A TWO-DIMENSIONAL FAST 

JOURIER TRANSFORM 
-:;.. 

Jay Lambiotte 
NASA 

Langley Research Center 
MS/125 

Hampton, VA 23665 

ABSTRACT 

This paper describes the development of a computer code to perform a two-dimensional 
fast Fourier transform (2-D FFT) for real data on the STAR-100. Since the 2-D transform 
can be computed by performing successive 1-D transforms, the code has been built around 
an existing S;J'AH .l-lJ 1''.1<''1' subroutine. Much of the complexity of this development effort 
has resulteu fl'Olll the STAR hardware requirements i'or vectors to be sufficiently long and 
to reside in contiguous memory locations, from the need to compute the transform of large 

. data sets which can exceed the available central memory of the STAR, and from the desire 
to take advantage of the real property of the data. These particular requirements are 
discussed and STAR-100 timing results are presented. 

INTRODUCTION 

The need to compute a two-dimensional 
discrete Fourier transform (DFT) arises in 
a variety of applications such as data 

analysis, image processing1 , and spectral 
approaches to solving partial differential 

equations2 This paper describes the 
author's effort to develop a two-dimen­
sional fast Fourier transform (2-D FFT) for 
the STAR-100 vector processing computer. 
The 2-D FFT can be viewed as successively 
performing the 1-D FFT of each of the rows 
of data from a grid followed by the 1-D 
FFT of the resulting column information. 
Consequently, ii' a 1-D FFT code is avail­
able, the 2-D code is conceptually simple. 
However, when one considers the vector pro­
cessing characteristics of the STAR-100, 
the task become's more complicated, especial­
ly in light of the computational require­
ment to transform both row and column in­
formation. In addition, the desire to 
minimize the CPU time for a given computa­
tion can, at times, be in conflict with 
the desire to minimize the amount of page 
faulting by the virtual memory system of 
the STAR-100 and vice-versa. 

The code, FFT2DR, described here is a 
compromise between these two objectives. 
It is primarily directed at minimizing the 

60 

CPU time for small grids which require no 
paging (up to 128 x 128) but with enough 
virtual memory considerations to permit 
problems 4 to 16 times that number of 
points to be computed with a moderate 
amount of paging. The extra software com­
plexity does not increase the CPU time 
more than a few percent. Alternative 
vectorizations, which could significantly 
reducP. thP. paging at the expense of in-· 
creasing the CPU time, will be mentioned. 

This paper will first cxamil'le the 
equations and computational requirements 
for computing a 2-D FFT. Then the specific 
effects of the STAR-100 hardware on these 
requirements are examined. FFT2DR is 
described next followed by results of some 
numerical experiments with the code and 
suggestions for alternative vectorization. 

2-D DFT F.QUATTONS 

The 2-D Discrete Fourier Transform 
can be expressed as 

F. k 
J' 

1 

/MN 
N-1 M-1 

L:L: 
p=O q=O 

f p,q 
(1) 



where 

f p,q 

w = 
M 

F. k 
J' 

are complex data defined for 
p = 0, l, .. , N-1 and q = 0, 
l, .. , M-1. 

21Ti/M 
e and WN 

21Ti/N 
e 

are the complex transform of 
f and are defined for j = .o, 
p,q 

l, .. , N-1 and k = 0, l, .. , 
t-1-l. 

The inverse discrete Fourier transform 
(IDFT) can similariiy be expressed as 

f p,q 

l N-1 M-1 
- " " -pj /MN LJ LJ FJ.,k W N 

j=O ~=0 

-qk 
WM 

with the obvious changes in the given de­
finitions. It is easy to see1 that Eq. 
(l) can be evaluated in the two steps: 

l M-1 
wqk F 1M" L: f p,k q=O p,q M 

(2) 

for all p,k 

and 
l N-1 

wPj F. k INL: F p,k J' p=O N 
(3) 

Now, for each of the N values of p, Eq. 
(2) is a 1-D DFT of the pth row of grid 
values, fp,q' and for each of the M· 

values of k, Eq. (3) is a 1-D DFT of the 
kth column of grid values of F k" Con-

p, 
sequently, the computation to be done 
involves N independent FFT's over the row 
of data followed hy M independent FFT's 
over the columns of intermediate data. 

When the inpllt data are real, the 
storage and computation can be cut in half 
u::;ing the following well-known procedures3: 

PROCEDURE l 

Given two real sets of data xj' yj' 
j 0, l, .. ' N-1 with transforms xj' Yj, 

j 0, l, . . ' N-1, let u . = X. + iyj. 
J J 

Then use a standard FFT subroutine to com-
pute U. = X. + iYj. Given the fact that 

J J 

61 

x is real if, and only if, 
gate even (X. = ~- .), X and 

J -11!-J 
covered through the equations 

X. 
J 

and 

l. -
Y. = -21(UN . - U.) 

J -J J 

X is conju­
y can be re-

( 4) 

( 5) 

Since X, Yare conjugate even, only Xj, 

Yj, j = 0, l, .. ,(N/2) + l need be stored 

or computed. 

PROCEDURE 2 

Similarly, given two complex data 
sets, X andY, which are conjugate even, 
the IDFT can be computed by forming for 
j = 0, l, .. , N/2 

u. -~ X. + iY. 
J J J 

(6) 

UN . X. iY. 
-J J J 

(7) 

After the IDFT of U, 

X. Real 
J 

(u.) 
J. 

(8) 

·y. I mag (uj) 
J 

( 9) 

PROCEDURE 3 

Consequently, given a 2-D array of 
real values with M rows and N columns, the 
following steps can be used to compute the 
2-D FFT assuming M and N are even: 

(l) Perform3 M/2 1-D complex FFT's of 
length N letting row i be the real part of 
a complex data set U. and row i + l be 

J 
the imaginary part fori= l, 2, .. , M/2. 

(2) Recover the M transforms using 
F.quations (4) and (5) storing only the 
first N/2 + l components of each trans­
form. 

(3) Perform (N/2) + l independent FFT's 
of size M from the columns of transformed 
data. 

The inverse 2-D FFT can be computed by: 

(l) Perform (N/2)+1 1-D complex inverse 
FFT's of length Mover the columns of 



transformed data. 

(2) Using Eqs. (6) and (7) on the rows 
resulting from step (1), form M/2 complex 
data sets of size N to be inverse trans­
formed. 

(3) Perform M/2 FFT's of size N. 

(4) Recover the real data using Eqs. (8) 
and ( 9). 

CONSIDERATIONS FOR THE STAR-100 

The programming considerations for 
Procedure ·3 become more complex when one 
considers the architecture of the STAR-100. 
The characteristics of the STAR-100 most 
relevant to coding a 2-D FFT are: 

CPU SPEED IS A FUNCTION OF VECTOR LENGTH 

:The CPU efficiency on STAR i nc:::rr:>ases 
as a ftinction of vector length due to the 
sLarLup time associated with each vector 
operation. A vector operation, op, of 
length N has a startup time, S , and 

op 
result rate, a , related to the total 

op 
time, Top' by 

T 
op S + a * N op op (10) 

where all times are in units of the STAR-
100 40 nanosecond min~r cycle. For the 
vector multiplication , S* = 159 and 
a* = l. For the addition, S+ = 69 and 

l 
a+ 2· The vector length obviously has a 

significant effect on the overall result 
rate. For example, a vector addition of 
length 60 generates 15 million results per 
occo11d, uu~ of length 3600 generates 48 
million results per second ana i.n the 
limit as the vector length increases, 50 
million results per second can be achieved. 
From this it is clear that a vectorized 
FFT algorithm that has vector lengths pro­
portional to only one dimension of a grid 
or the other will not be particularly fast. 

Two STAR subroutines exist at NASA's 
Langley Research Center on the STAR Math 
Library to perform 1-D FFT's. The first, 
Q4FFTV, is designed to perform the FFT of 

.one, or a few, long data sets.5 Its 
vectors are proportional toN, the size of 
the data set. The other subroutine, 
Q4FFORMS, assumes there are M independent 
FFT's to do and achieves average vector 
lengths5 of l M.log

2 
N. Table l 

2 

62 

demonstrates the difference in the two sub­
routines. For the present application 
Q4.FFORMS is superior. It assumes that the 
M independent data sets of N complex 
values are stored in 2*M*N contiguous loca­
tions as shown here for M = 3: 

[x0 (R), X
0
(I), Y

0
(R), y

0
(I), z

0
(R), 

z0 (I), X1 ( R) , Xl (I), . . . , ZN-l (I)] 

where X.(R) is the real component of the 
J 

j+l element to be transformed and X.(I) 
J 

is the corresponding imaginary component. 

Table l. Comparison between Q4FFTV and 
Q4FFORMS 

M 

l 
32 

256 

N 

64 
64 
64 

CPU times (microsecs) ~er 
transform for M transforms 
of size N 

Q4FFORMS 

3170 
147 

59 

Q4FFTV 

1080 
430 
430 

VECTOR CONTIGUOUS LOCATION REQUIREMENT 

The vector arithmetic operations on 
the STAR-100 require the source. operawls to 
be in contiguous locations. Consequently, 
while Q4FFORMS can do the FFT's of the rows 
of a 2-D grid c;tored columnwise in the 
computer, it cannot transform the columns 
unless the matrix of data values is rear­
ranged so that it is stored consecutively 
by rows. Consequently, a matrix transpose 
subroutine is used to do the data movement. 
As wiJ..l be ohsPrvP.d later; thi::J is nuL all 
insignificant cost, being about l/3 of the 
FFT time for the cases run. The transposes 
couJ d. be eliminated by using Q4FFTV to 
transform the column data since that soft­
ware requires the data for each transform 
to be stored consecutively. This alter­
native was rejected because Q4FFORMS is 
enough faster than Q4FFTV for the problem 
sizes of interest to more than make up for 
the extra transpose time. 

VIRTUAL MEMORY CONSIDERATIONS 

The STAR-100 has a virtual memory 
architecture. At Langley Research Center, 
there are 8 large pages of central memory, 
each page being tS5536 64-bit words long. 
In principle, the virtual memory system 
can be used to do calculation on problems 



whose storage requirements exceed the cen­
tral memory capability. .However, there 
are examples of algorithms, or entire 
codes, which must be reworked considerably 
if they are to avoid excessive data move­
ment (paging) to and from central memory. 

The subroutine Q4FFORMS has been 
found to have excessive paging if M*N > 

45,000 - MAX. This relatively small value 
of MAX occurs because: 

(l) Temporaries of length M*N are required 
for vector operations of that length. 

(2) The programmer gave the most emphasis 
in his design to reducing the CPU time; 
for example, the implementation avoids the 
bit reversal at the expencc of an extra 
storage array the size of the input array. 

In order to permit the code to calculate 
2-D FFT's of larger size, a partitioning 
strategy is incorporated. If (K-l)*MAX < 

M*N < K*MAX, K separate steps are per­
formed. At each of the K steps, the 
largest number of rows that Q4FFORMS can 
accommodate with no paging are moved to a 
temporary array. The temporary array is 
then transformed. Similarly, the smaller 
number of transformed rows are manipulated 
(e.g., the transposes taken, the two com­
plex transforms recovered from the single 
complex set, etc.) prior to being inserted 
into the large output array. With this 
approach the only paging which occurs is 
during the movement from the input array 
to the buffer and possibly from the buffer 
to the output array. Even this amount of 
paging, however, is significant so that it 
is desirable to keep the number of steps K 
to a minimum. 

MAXIMUM VECTOR LENGTHS 

The maximum vector length allowable in 
the STAR-100 hardware is 65,535. From the 
stanupu.int of CPU efficiency this is an 
unimportant restriction and rarely occurs. 
But, on occasion, it gives rise to added 
programming complexity. In this case the 
code was originally written without thought 
to the vector length restriction. There 
are portions of the code'in which the oper­
ations on MP independent transforms of 
size N involve vectors of length 2*MP*N, 
meaning that instead of MP*N < 45,000 (the 
restriction for paging), the code, as 
originally written, had the vector length 
restriction MP*N < 32,767. This had the 
effect of increasing the partitions needed 

63 

and, hence, the paging. The code has been 
reworked to divide each major step into 
the minimum number of substeps necessary 
to keep the vector lengths below 65,536. 

CODE DESCRIPTION 

This section describes FFT2DR as­
suming an input array A contains N columns 
of real data, M entries per column. Fig­
ures l and 2 will be referenced frequently. 
All arrays are stored consecutively by 
columns. If a block in either figure has 
an extra vertical line on the left, then 
the dimensions given refer to complex data 
entries. These figures do not show the 
additional logic required to ensure the 
vector lengths do not exceed 65535. 

FORWARD TRANSFORM 

There exists the choice to evaluate 
the 1-D FFT of either the row or column 
data first. Since Q4FFORMS is ideally 
structured to transform 2*MP rows of A as 
MP complex FFT's of size N with no data 
rearrangement, the rows of A will be 
transformed first. 

Fl. The code determines the number of 
blocks, KK, that A must be partitioned 
into. Each block contains MR = 2*MP rows 
of data such that MP*N < MAX. Then for 
each block of rows, Steps F2 thru F7 are 
performed. 

F2. In subroutine TRBLK, the N columns of 
MR values each are transferred to the 
buffer array C. This transfer can be 
accomplished via a DO Loop performing N 
vector to vector transfers of length MR. 
However, the TRANSMIT INDEXED LIST in­
struction in the STAR has a G-bit option 
which allows groups of elements from A to 
be moved to C. Here each group is taken 
to be one of the N columns. The time for 
this instruction is given as 73 + N(56 + 
MR/2). This is superior to the DO Loop 
approach which would require N(9l + MR/2) 
plus the overhead for the loop and de­
scriptor generation. All paging occurs 
during the steps involving TRBLK: Note 
that since A is stored by columns, each 
page on which A resides is referenced. 

F3. The MP complex transforms of size N 
are performed by Q4FFORMS. The value of 
MP has been chosen so that no paging is 
required during this step. In order to 
rearrange the complex data so that the 
second sequence of 1-D transforms can be 



performed, the row-stored complex data 
must be transposed. 

N 

MR 
M 

A ) 
TRBLK 

N { c MP~"------~------~ 
Q4FFORMS 

II c 

CR 

r.J 

TRANSP 

N C 1 N C2 

N 

\ 
M TRBLK 

N~ 
Fig. 1. Forward Transform 

64 

F4. To facilitate both the transpose pro­
cedure and the recovery of the transforms 
of the two real data sets, the real and 
imaginary components are compressed into 
arrays CR and CI, respectively, in sub­
routine CMPRS. The r·eal or imaginary part 
can be obtained using the STAR COMPRESS 
instruction with a bit vector which al­
ternates l and 0. Each will be of length 
MR*N. 

F5. The arrays CR and CI are transposed 
using subroutine TRANSP which makes 
repetitive use of the STAR instruction 
which transposes an 8x8 array. The trans­
posed arrays are stored in the upper and 
lower halves of C, referred to as Cl and 
C2 in Fig. l. 

.1<'6. 'l'he MR compJ.~:x: transforms <:u·e re­
covered from the MP computed transforms in 
RECOVRI using Eqs. (4) and (5). The 
vectoriL:ation involvco vector uuuiti•;•ns of 
length N/2 an(! vP.r.t.nr mnltiplications of 
length N. The vector TIEVEilGE instruction 
is also used to reverse the components of 
U as required in Eq. (4) and Eq. (5). 
The first (N/2) + l (denoted N in Fig. l) 
components of each of the MR transforms 
are stored back·into CR and CI. 

F7. The real and imaginary parts of the 
transform are merged together in sub­
routine MERGE using the STAR MERGE in­
struction with the alternating bit vector. 
These are vectors of length N*MR. They 
are merged into the I\1. x M complex output 
array B. 

Tl!lb e:ompletes all ·the opcrationo on a 
particular block of MR rows. After all 
blocks are processed, the 1-D FFT's in the 
other direction must be computed. 

F8. Since the transformed data from the 
rows of A has been tranopooed and nm.,r 
resides in columns of B., it is the rows of 
B which must be transformed. Because of 
the conjugate even property, there are 
only N such transforms of size M to be 
performed. · Again, FFT2DR determines the 
number of transforms, denoted NP, to be 
included in a block and transfers the 
NP*M complex elements to C in TRBLK. The 
vector ·lengths are 2*NP. 

F9. The NP complex transforms of size M 
are computed by Q4FFORMS and stored back 
into C. 



FlO. The columns of C are stored back in­
to the original portions of the columns of 
B using the TRANSMIT LIST INDEXED instruc­
tion with the G-bit option in a manner 
similar to the step F2. 

Having completed all blocks of B, the 
forward transform is complete. 

M 

M TRBLK 

NP..._II ___ c __ J~ 
Q4FFORMS 

...... ll ___ c __ ~ 
NR TRANSP 

M CRI 

M 
2 

y 
TRBLK 

N 

~~ MP II c 

Q4FFORMS 

II c ''\ 
TRBLK 

M 

A 

Fig. 2. Inverse Transform 

65 

INVERSE TRANSFORM 

The inverse transform procedure in­
corporat~s much of the software already 
described. It expects an N by M complex 
array B as input. The program flow is 
illustrated in Fig. 2. 

Il. FFT2DR computes the number of blocks, 
KK, and the number of complex transforms 
per block, NP. 

I2. TRBLK is called to move the NP com­
plex data sets from B to C. 

I3. The NP inverse FFT's of size Mare 
computed in Q4FFORMS. 

I4. The array C is transposed using 
TRANSP into the M x NR array CRI which is 
equivalent to the space CR and CI occupy. 
Here NR = 2 x NP. 

I5. The array CRI now contains the data 
in a form that allows the computation 
indicated in Procedure 2 by Eqs. (6) and 
(7). Initially, assume NP = N. Then, for 
j = l, 2, .. , NP the (2j-l) column of C 
contains the real part of the jth component 
of each of the N inverse transforms just 
computed. The 2j column contains the cor­
responding imaginary parts. The subrou­
tine CONJ uses each pair of columns of C 
as vectors to compute, first, the jth 
component of each of the M/2 complex sets 
(one such complex set is denoted U in 
Eq. (6)) and then the (N-j)th component 
(see Eq. (7)). If only a subset of theN 
transforms are being performed, then the 
components being computed are only a por­
tion of the total of N· and are inserted 
into B as shown in Fig. 2. The vectori­
zation in CONJ uses vectors of length M/2 
or M to compute each of the M/2 complex 
quantities. An alternating patterned bit 
control vector is required since the com­
plex result vector has real and imaginary 
parts interspersed. After all KK blocks 
of B have been processed, B contains M/2 
complex data sets of size N which have 
been combined as in Procedure 2. 

I6. The final steps require only perform­
ing the M/2 1-D FFT's after moving a block 
of MP complex data sets from B into·c (see 

'Fig. 2). The resulting MP transforms are 
then moved to the corresponding part of A. 

I7. The resulting real data is recovered 
using Eqs. (8) and (9). However, the 

~ storage used means that the real data set 
X is a row of A and y is the next row of 



A. If the inverse transform on B is per­
formed with no filtering or manipulation 
of B after the forward transform, the re­
sulting matrix A is the original input 
data. 

RESULTS 

A number of cases were executed on the 
STAR-100 and are summarized in Table 2. 
The FFT time is, as expected, the most 
dominant as it requires 53% of the time 
for a 64x64 grid and the percentage in­
creases for larger grids. The transpose 
time is also si.gnificant as it requires 
A.pprmd.mately 20% of the total time. The 
extra work required to recover the two 
transforms in RECOVRI and to combine the 
two complex data sets to be inverse trans­
form/O'd i.n CON.T appears to be well worth 
the effort. As M and N increase this 
extra work becomes less impu1·tant. 'l'here 
are L"wo .reason!'! for this: first, for 
M = N, the computation in these two sub­
routines is O(N2 ) whereas the overall re­
q~irements are O(N2Log2N) and secondly, 
s1nce the vector lengths are O(N), i~­
creases in the problem size by a fact'r of 
2 do significantly increase the vector 
result rate. Q4FFORMS, in contrast, in­
creases its share of CPU time as problem 
size increases and for essentially the 
same two considerations: first, its part 
of the total computation dominates that 
total more and more, and second, its vector 
lengths are sufficiently large for the 

problems shown that increases in vector 
length.are not noticeably increasing the 
result rate. A close estimate for the FFT 
times in Table 2, based on published 
timing5, is given by .08*(N+M) + .00014 * 
N * M * Log2(N * M). Twice this estimate 
is then an overestimate to do the entire 
computation. 

As previously mentioned·, paging occurs 
in TRBLK when the data base is s~ large 
that it cannot reside fully .in memory. As 
each block of partial columns are trans­
ferred between A and C, the entire A. array 
is referenced. It is for this reason that 
it. i::. important to keep the n~bP.:r of par­
titiom; of A t.o H .mi.ni.mum. For ex?J!!ple, 
setting MAX = 40000 caused KK = 4 for the 
512 x 512 grid and resulted in 183.page 
faults instead of 139. 

.fi~TERNATIVEf::i 

lt is clear that ful' the larger pro­
blem sizes the paging time (approxi­
mately . 3 second/page fault·) dominates the 
overall time.- There are alternative 
approaches that will reduce the paging at 
the expense of increasing the CPU time: 

a. Write a more memory conscious FFT sub­
routine. 

Q4FFORMS could be rewritten to perform the 
bit reversal at completion of the FFT pro­
cessing. This would reduce the inter­
mediate storage and increase the size of 

Table 2. FFT2DR statisticsa for M x N array of real values 

M 64 128 128 256 256 512 512 
--·--

N 64 611 128 128 ?5h 256 512 

Total time 31.6 51.6 90.4 164.0 30'(. '( 670.0 1393.0 
(millisecs) 

TRBLK (%) 7.1 7.1 6.3 6.1 5.7 6.0 5.9 

Q4FFORMS (%) 53.0 56.9 55.9 58.5 58.7 61.7 63.7 

COMPRESS + 3.5 3.8 4.2 4.6 4.6 4.3 4.1 
MERGE (%) 

TRANSP (%) 19.8 17.5 20.9 19.5 21.2 20.7 20.1 

RECOVRI + 15.5 13.9 12.6 10.9 9.7 7.3 6.1 
HERMCON (%) 

No. of partitions 1 1 1 1 1 2 3 

No. of page 0 0 0 5 16 50 139 
a The table entr1es 

verse transform 
are the total for a forward transform and an 1n-

66 



MAX. It is also possible to write FFT 
software which is specifically designed 
for out-of-memory problem sizes7 so that 
no partitioning of A or B is performed at 
all. 

b. Eliminate the B array. 

The array B could be eliminated by storing 
the transformed data back into a slightly 
enlarged A. This would have the effect of 
reducing the paging at each step by making 
the working set smaller. In addition, 
study shows that the number of calls to 
TRBLK would be reduced by l/3. However, 
since all data is stored columnwise (when 
considered as a matrix of input data), 
twice as many transpose operations would 
be required, significantly increasing the 
CPU time. 

Very little increase in CPU time has 
resulted from the efforts to generalize 
the code to the extent shown in Figs. l 
and 2. The only penalty suffe~ed by the 
partitioning is that when none is required, 
there is no need to transfer the data from 
A or B to C as in TRBLK. From Table 2, 
approximately 7% could be saved. Logic to 
recognize this situation is currently 
being implemented. 

Au a.lL8J.'ua.t.i.ve wl1:ie:h was C:ul1sidered 
during the code design, but rejected

3 
was 

. computing the FFT of a real data set of 
size N as the FFT of a complex set of size 
N/2. It was rejected because the savings 
in CPU time to perform M FFT's of size 
N/2 as opposed to M/2 of size N is only 
minimal (approximately 33% for the M = N 
64 case and less for larger values of M 
and N). In addition, storage incompat­
ibilities with Q4FFORMS, and more complex 
pre- and post-processing would offset the 
modest gains in FFT time. 

- SUMMARY AND CONCLUSIONS 

The STAR-100 code, FFT2DR, which per­
forms a two dimensional FFT of real data, 
has been described and analyzed. It is 
shown that for an M x N grid of real data, 
the CPU time in mj_lliseconds for a forward 
transform followed by the inverse trans­
form is bounded by 2*(.08(M+N) + .00014 * 
M * N * LOG2(M * N)). The code has been 
designed primarily to minimize the CPU 
time but a partitioning· strategy has been 
included to prevent the virtual memory 
system from "thrashing" during the FFT 
calculation for larger problems (M*N > 
90,000). This strategy adds o~ly 

67 

approximately 10% of overhead CPU time and 
while it does permit problems of any size 
to be done without thrashing, there are 
still unacceptable amounts of paging for 
some problem sizes of interest. Alterna­
tives are discussed which will both in­
crease the maximum size of a problem which 
can be done with no paging at all and will 
reduce the total amount of paging once it 
occurs. 

While it is both desirable and 
aesthetically pleasing to write a code for 
a virtual memory system which will handle· 
the large problems efficiently but at no 
cost to the smaller ones, it is frequently 
difficult to do. Persons using a code 
such as FFT2DR to do 64x64 transform 
thousands of time do not want the overhead 
of' the partitioning regardless of how 
relatively small its cost. Persons 
wanting to do a l024xl024 transform con­
sider an extra second or two of CPU time 
insignificant if some other approach will 
substantially decrease the paging. It 
appears that even with a virtual memory 
system it is still necessary, for some 
types of problems, to have different codes 
to handle different problem sizes. 

ACKNOWLEDGEMENT 

Tho author would like to o.clmowlcdgc 
the many useful discussions with Dr. 
George Ioup of the University of New 
Orleans about the 2-D FFT and its compu­
tation. 

REFERENCES 

l Andrews, H. C., Computer Techniques in 
Image Processing, Academic Press, 1970. 

2 Fornberg, B., J. Comp. Phy. 25, l 
(1977). 

3cooley, J. W., Lewis, P. A., and Welch, 
P. D., J. Sound Vib. 12, 315 (1970). 

4control Data Corporation, STAR-100 
Instruction Execution Timing Manual, Pub; 
6o44o6oo, Arden Hills, Minn. 55112. 

5Korn, D. G. and Lambiotte, J. Jr., 
Math. of Comp. 33, 977 (1979). 



6Lambiotte, J. Jr., NASA TM X-3512 
(1977): 

7sing1eton, R.· A., CACM 10, 647 (1967). 

68 



GENERAL SCIENTIFIC 
COMPUTATION 

• Impact of Advanced Systems on LMFBR Accident Analysis 

Code Develupmenl 

• Implementation of a Linear System Solver 

• Advanced Computers and Monte Carlo 

• Detailed Vectorized Reactive Flow Simulation on the Texas 

Instruments ASC 

• Design Considerations for a Partial Differential Equation Machine 

• Vectorized Sparse Elimination 

• Parallel Algorithms for Solving Banded Toeplitz Liner Systems 

• An Experience with the Conversion of the Large- Scale Production Code 

DIF3D to the CRAY-1 





IMPACT OF ADVANCED SYSTEMS ON 
LMFBR ACCIDENT ANALYSIS CODE DEVELOPMENT 

F. E. Dunn and J. M. Kyser 
Reactor Analysis and Safety Division 

ARGONNE NATIONAL LABORATORY 
9700 South Cass Avenue 

Argonne, IL 60439 U.S.A. 

ABSTRACT 

In order to investigate the ability of an advanced computer, using currently avail­
able software, to handle large LMFBR accident analysis codes, the SAS3D code has been 
run on the NCAR CRAY-1. SAS3D is a large code (56,000 Fortran cards) using many differ­
ent physical models and numerical algorithms, no one of which dominates the computing 
time. Even though SAS3D was developed on IBM computers, remarkably little effort was 
required to run it on the CRAY-1. Making limited use of the CRAY-1 vector capabilities, 
it runs a factor of 2.5 to 4 times faster on the NCAR CRAY-1 than on the ANL IBM 370-
195. With minor modifications, an additional 20-30% speed improvement on the CRAY-1 
is achieved. In the current process of completely re-writing SAS3D to make SAS4A, much 
of the coding is being vectorized for the CRAY-1 without sacrificing IBM, CDC 7600, or 
UNIVAC performance and portability. An initial SAS4A test case runs a factor of 7.1 
faster on the.CRAY-1 than on the IBM 370-195. On either computer, this SAS4A case runs 
appreciably faster than a corresponding SAS3D case, indicating that there can be sig­
nificant benefits from using vectorizable coding, even on a non-vector computer. .It 
appears that even though the one-dimensional models in SAS3D strain the capacity of 
ANL's current computers, an advanced computer such as a CRAY-1 would make it feasible· 
to replace many 1-D models w.i.Lh 2-D or 3-D models. 

INTRODUCTION 

The SAS series of computer codesl, 
2,3,4 are used to analyze hypothetical 
accidents in Liquid Metal Cooled Fast 
Breeder Reactors (LMFBRs), as well as Gas 
Cooled Fast Reactors (GCFRs). All of the 
existing codes in the SAS series, except 
for the original SASlA, have been capable 
of representing a reactor. core with a 
quasi-three-dimensional treatment which 
uses coupled one-dimensional models to 
approximate the real three-dimensional 
system. The current representation is 
adequate for many cases; but for some 
phenomena, local two-dimensional or three­
dimensio.nal effects occur which can not be 
handled adequately with the current SAS 
one dimensional models. More detailed 
two- or three-dimensional models would 
probably require significantly more com­
puter time than the current models. Even 
with the current models, a detailed whole 
core analysis with the SAS3D code can 
strain the capacity of the current IBM 
370-195 and IBM 3033 computers at Argonne 
National Laboratory (ANL); indicating 
that it may be desirable or necessary to 

71 

consider the use of more advanced com­
puters if more detailed models are needed. 
Therefore, an effort was undertaken to 
address two main questions. First, how 
much effort would be required to get the 
SAS3D code, which is the current produc­
tion version in the SAS series, to run on 
an advanced computer? Would extensive 
re-writing of the code be necessary? 
Second, since the next SAS code, SA34A, 
is currently being written from scratch, 
as opposed to adding new modules onto 
SAS3D, can SAS algorithms and coding be 
modified so as to vectorize on a vector 
machine without sacrificing IBM, CDC 7600, 
or UNIVAC performance or portability? 
Under a grant from the National Center 
for Atmospheric Research, computer time 
on the NCAR CRAY-1 computer was available 
for this project. 

SAS CODES 

GENERAL DESCRIPTION 

The SAS codes have been developed 



to analyze the initiatini phases of hypo­
thetical accidents in LMFBRs or GCFRs. 
SAS3D starts with steady-state calcula­
tions to determine the initial condition~ 
in the reactor, usually normal operating 
conditions. Then transient accident cal­
culations are made for a user-specified 
event, such as loss of power to the pri­
mary coolant pumps, or insertion of 
reactivity at a user specified rate. 

In an LMFBR or a GCFR, the reactor 
core contains long,· narrow fuel pins, 
which are steel tubes (cladding) con­
taining fuel pellets plus a gas plenum 
above or. below the fuel to hold the gas­
eous fission products rele41Ad during ir­
radiation of the fuel. The fuel pins are 
arranged in hexagonal arrays within fuel 
subassemblies, with coolant flowing in the 
axial direction between the pins. The 
subassemblies have steel, hexagonal shaped 
outer duct walls. The ducts are somewhat 
longer than the fuel pins to allow room 
above and below the pins for flow orifices 
and instrumentation. Typically, there are 
217' fuel pins, each 1/4 inch in diameter 
and about 8 feet long, in a fuel subassem­
bly which is about 12 feet long. There 
are between 75 and a few hundred subassem­
blies in a reactor core. 

The geometry used by SAS3D to repre­
sent the reactor core consists of a number 
of "channels", where each channel repre­
sents a fuel pin and its associated 
coolant. Usually a SAS channel is used 
to represent a subassembly or a.group of 
similar subassemblies. In this case, the 
fuel pin represents an "average" pin in 
the subassembly. Coolant flow in a SAS 
channel is only in the axial direction, 
and heat flow in a pin is calculated only 
in the radial direction. Because of the 
very large length-to-diameter ratio of the 
fuel pins, axial heat conduction within 
the fuel pin or the coolant is negligible. 
The coolant removes heat by convection. 

Each SAS channel is divided into a 
number of axial nodes. Typically about 20 
axial nodes are used to represent the 
fueled part of the pin, and another 10-15 
nodes are used to represent the rest of 
the subassembly. At each axial node in 
the fuel section, about 10 radial nodes 
are used in the fuel and 3 radial nodes 
are used in the clad. One radial nqde is 
used for the coolant, and one or two 
radial nodes are used for the "structure", 
which represents both the subassembly duct 
wall and the wrapper wires or grid spacers 

72 

which keep the pins in position. Above 
and below the fueled section, only a few 
radial nodes are used. 

With this channel treatment, SAS3D 
calculates steady-state and transient tem­
peratures in the fuel, clad, coolant, and 
·structure. Sodium boiling; clad melting, 
relocation, and freezing; fuel melting, 
relocation, and freezing; and interactions 
between molten fuel and liquid coolant are 
calculated. Also, the stresses and strains 
in fuel pins prior to pin failure, the 
amount of fission product gas in the fuel 
and its contribution to fuel relocation 
after pin failure, and the pressures and 
flow r4teo of tho gool3nt jn thP rure And 
around the primary coolant loop are cal­
culated. 

ADVANTAGES AND LIMITATIONS OF THE SAS 
CHANNEL REPRESENTATION 

One big advantage of the SAS chamtel 
representation is that it provides a 
detailed, three-dimensional representation 
of the reactor core even though only one­
dimensional equations are solved; and the 
solution of one-dimensional equations is 
usually much faster than the solution of 
multi-dimensional equations. Detailed 
radial and axial temperature profiles in 
the fuel pin are obtained by solving a one 
dimensional radial heat transfer equation 
at each axial node. Coolant temperatures 
and flows are obtained by solving one 
dimensional equations for the axial 
direction. Fuel and cladding reloca-
tion are calculated in the axial direc­
tion. Different subassemblies or groups 
of subassemblies can be represented by 
different SAS channels, providing detailed 
axial descriptions at a number of radial 
and azimuthal locations in the core. 

SAS3D only accounts for limited 
coupling between SAS channels, but this 
corresponds to the limited interaction 
between subassemblies in a reactor. The 
duct walls prevent coolant flow between 
subassemblies, except that the suba~sem­
blies all receive their coolant from a 
common inlet plenum and all discharge 
their coolant into a ~ommon outlet plenum. 
The common inlet and outlet plenums are 
accounted for in SAS3D. The different 
parts of the core are coupled neutroni­
cally, and this neutronic coupling is 
accounted for in the SAS3D neutronics 
calculations. There is some heat flow 
between the duct walls of adjacent 
subassemblies, whereas SAS3D uses an 



adiabatic boundary at the outside of the 
SAS "structure". Accounting for heat 
flow between subassemblies by computing 
heat transfer between the structures in 
different SAS channels could be done in 
a fairly straight-forward manner without 
changing the basic SAS channel represen­
tation. 

The main limitation of the SAS chan­
nel representation is that it does not 
account for any differences between fuel 
pins or coolant ~ub-channels within a 
subassembly. In reality, there are often 
power skews across a subassembly, the 
coolant sub-channels next to the duct 
walls are somewhat larger than those in 
the interior of the subassembly, and the 
duct walls have heat capacity and tend 
to act as limited heat sinks during a 
transient.· The net result is that the 
interior of a subassembly is usually 
hotter than the edge, and sometimes one 
side is hotter than another. 

The use of an "average pin" represen­
tation in SAS3D tends to average-out many 
of the variations within a subassembly and 
often gives good results. For instance, 
predictions of the boiling model in SAS3D 
usually agree reasonably well with the 
results of multiple-pin boiling tests.5,6 
On the other hand, it is often necessary 
to account for radial incoherence within 
a pin bundle to obtain satisfactory agree­
ment with clad melting and re-location 
experiments.? A really adequate treatment 
of fuel relocation probably also requires 
accounting for radial incoherence within 
a subassembly. 

POSSIBLE IMPROVEMENTS AND COMPUTER LIMITA­
TIONS 

Because of the above mentioned limita­
tions of the current SAS3D "single pin" 
representation of a subassembly, it would 
be desirable to have a "multiple pin" 
representation in which a subassembly is 
represented by a number of pins or pin 
groups with connected coolant channels. 

One problem with developing multiple 
pin models for whole-core accident analysis 
is that even the one-dimensional single pin 
models in SAS3D strain the capacity of the 
current ANL computers. A 33 channel SAS3D 
case can take 6 hours of computer time on 
the IBM 370-195 or IBM 3033. It also 
requires about 3 megabytes of memory on 
an IBM computer. Even a 1 channel case 
requires about 800 kilobytes of memory. 

73 

On a CDC 7600 the same 33 channel case 
would require about 3 hours and almost 
400,000 words of LCM storage. These 
computer times are almost entirely CPU 
times, since SAS3D does relatively little 
I/0 in a big run. If multiple-pin models 
were used, the running times would proba­
bly increase at least linearly with the 
number of pins used per subassembly, and 
the increase may be proportional to the 
square of the number of pins. 

Some computer codes already exist 
for treating some aspects of intra­
subassembly incoherence. Because of com­
puter limitations, these codes are usually 
limited to treating single subassemblies 
instead of whole cores, and they are lim­
ited in the phenomena that they treat. 
For instance, both the COBRA-3 code8,9 and 
the COMMIX-1 codelO can compute detailed 
coolant temperature distributions within 
a subassembly. Either steady-state or pre­
voiding transient calculations can be made 
by these codes. On the IBM 370-195 it is 
estimated that COMMIX-1 would require about 
2.5 hours to compute the stead·y-state tem­
peratures in all of the coolant sub-channels 
of a 217 pin subassembly. COBRA-3 can take 
20 minutes to calculate steady-state coolant 
temperatures for 12 coolant sub-channels. 

Because of the above mentioned com­
puter limitations, it is unlikely that 
many pin (217 pin) models will be used in 
whole-core LMFBR accident analysis codes 
in the near future, even if significantly 
faster computers are used. On the other 
hand, a reasonable increase in computer 
speed would make it feasible to use "few 
pin" models for whole-core analysis. A 
well developed model using 2-5 pin groups 
to represent a subassembly would probably 
be quite adequate for most purposes. 

NUMERICAL ALGORITHMS AND CODING ASPECTS 

SAS3D is a relatively large code, and 
SAS4A will be larger. The source deck for 
SAS3D contains about 56,000 FORTRAN cards. 
The main reason that SAS3D is large is 
that it contains a number of separate, but 
coupled, modules for computing different 
aspects of an accident: heat transfer, 
coolant flow, fuel pin mechanics, sodium 
boiling, clad relocation, fuel relocation, 
fuel-coolant interactions, and neutronics. 

The equations solved by these mod­
ules are all different, but there are some 
aspects that are common to most of the 
modules. Finite differencing in both 



space and time ~s used. A number of 
discrete nodes are used to obtain spatial 
variations, and the transient time behav­
ior is obtained using discrete time steps. 
Typically, the algorithms are set up to 
determine the conditions at each node at 
the end of a time step, starting from 
known conditions at the beginning of a. 
time step. In general, the equations 
solved are non-linear, although they are 
linearized across a time step. Semi­
implicit or fully implicit schemes are 
often used, leading to the simultaneous 
solution of linear equations with coef­
ficients that are re-calculated each time 
step. The resulting matrices are banded, 
often tri-diagonal. The calculation of 
the coefficients usually takes longer than 
the actual solution of the matrix equa­
tions. A significant amount of computer 
time is used in obtaining physical and 
thermal properties as a function of tem­
perature, and sometimes as a function of 
pressure or other variables, by linear 
interpolation from tables or by the 
evaluation of numerical correlations. 

Since the SAS channels are only loosely 
coupled, SAS3D works on one channel at a 
time, completing a time step for one or 
more modules for .one channel before going 
on to the next channel. The arrays used 
for each channel are stored in a few "data 
packs". The data packs for a channel are 
moved into working memory while the code 
is doing the calculations for that channel, 
and then moved out to a storage area. 
Thus, every time step the data packs for 
each channel are moved into and out of the 
working area a few times, and each code 
module is entered at least once for each 
channel in which the module is active. 
They are often 1000 or more time steps in 
a run. 

On an IBM or CRAY-1 computer, the 
storage area is in main memory. On a CDC 
7600, working memory is in SCM, and the 
storage area is in LCM. There are about 
9000 words per channel in the data packs. 
In principal the storage area could be on 
disk, but in practice it is best to have 
the whole calculation core-contained. 
Storing either coding overlays or data 
packs on disk adds tremendous amounts of 
I/0 time and increases the total running 
time by about an order of magnitude. 

One important aspect of SAS3D is that 
no one small area of the code accounts for 
the bulk of the computing time, and no one 
subroutine accounts for more than about 15% 

74 

of the total time on the IBM 370-195. The 
computing time is spread through many mod­
ules and many subroutines. Therefore, dra­
matic improvements in running time can not 
be obtained by improving a single algorithm 
or a single subroutine. In order for the 
code as a whole to run well, a large number 
of subroutines must each run well. 

·coDE PORTABILITY 

SAS3D is currently being used by many 
organizations in the U.S and abroad on CDC, 
IBM, and UNIVAC computers. Therefore, it 
was written with lortability in mind. ANSI­
standard FORTRANl is used almost entirely, 
and machine-dependent features are avoided. 
The few machine-dependent features that are 
required are mainly isolated in a few sepa­
rate subroutines. 

The UPDAT Code. One feature that contrib­
utes to both the portability and the main­
tainability of SAS3D is the use of the 
UPDAT code to modify the SAS3D source files. 
UPDAT, which was written at ANL by R. George, 
has many of the features of CDC's UPDATE 
code,l2 such as inserting and deleting 
cards, and inserting COMDECKS. In the 
SAS3D source, th.e COMMON blocks are listed 
only once, and the COMDECK feature is used 
to insert the common blocks in each sub­
routine where they are needed. UPDAT is 
also used to make corrections or modifica­
tions to the code. 

Programs with features similar to 
those of UPDATE have been available on 
IBM computers, but the IBM codes and CDC's 
UPDATE use different directives and require 
different input. The UPDAT code, which 
was written in FORTRAN, runs on IBM, CDC, 
and UNIVAC computers, and all versions use 
the same input. Therefore, the same UPDAT 
input deck can be used to modify or cor­
rect the IBM, CDC, and UNIVAC versions of 
the code. 

RUNNING SAS3D ON THE CRAY-1 

Considering the size of the SAS3D 
code, it was relatively easy to get the 
code running on the NCAR CRAY-1. A few 
routines known to be machine dependent had 
to be modified, but the modifications were 
straight-forward. Also, the Cray Fortran 
Compilerl3 (CFT) would not compile a few 
statements, but these were mainly cases of 
violating the ANSI FORTRAN standards. 



The actual process of putting SAS3D 
on the NCAR computer and running it was 
all done from ANL using a remote batch 
terminal. The main steps in this process 
were as follows. 

1. A FORTRAN source tape was written at 
ANL and sent to NCAR. This tape contained 
3 files. The first file was the source 
for the UPDAT program. The second file 
contained the SAS3D COMMON blocks, and 
the third file was the SAS3D source file. 

2. The UPDAT program was compiled after 
the necessary modifications to the UPDAT 
source were made using the system UPDATE 
utility. 

3. UPDAT was used to insert the common 
blocks into the SAS3D routines and to 
make modifications to the SAS3D source. 

4. The resulting SAS3D source code was 
compiled, and both the source file and 
the object file were stored in permanent 
datasets on the CRAY-1 disks. 

5. Sample SAS3D cases were run; and 
the results were compared with IBM and 
eve results. 

The cue version ot the export ver­
sion of UPDAT was sent to NCAR. Some 
changes to this code were required to 
get it to run on the CRAY-1. Frist, 
some machine-dependent constants had 
to be changed to account for differences 
in word length and data representation. 
The CDC 7600 uses ten 6 bit characters 
per 60 bit word, whereas the CRAY-1 uses 
eight 8 bit characters per 64 bit word. 
Fortunately these constants were all set 
at the same place in DATA statements, so 
it was easy to change them. Second, in 
one spot the CRAY-1 version required the 
FORTRAN function SHIFTR instead of the 
SHIFT function used in the CDC version. 
Third, the UPDAT directive *END happens 
to correspond to a NCAR control card, so 
in UPDAT this directive was changed to 
*EEND by changing one DATA statement. 

The CDC 7600 version of SAS3D was 
sent to NCAR. This version is overlayed, 
with a special overlay routine that stor.es 
overlays in LCM rather than on disk. 
Since the NCAR CRAY-1 has plenty of main 
memory, and no LCM, the CRAY version of 
SAS3D was not overlayed. Thus, all of 
the OVERLAY and CALL OVERLAY cards were 
removed, as well as subroutine OVERLAY. 

75 

Another known machine-dependent aspect 
was the data pack storage area and the rou­
tines that store and retrieve data packs. 
On the CDC 7600, the routines READEC and 
WRITEC, written in COMPASS, are used to 
store blocks of data in LCM when they are 
not being used, and to put them back in 
SCM when they are needed. On the ANL IBM 
machines, the data packs are stored in main 
memory, using specially optimized FORTRAN 
vers1ons of READEC and WRITEC. On the 
CRAY-1, the data packs are stored at the 
end of blank common, using simple FORTRAN 
versions of READEC and WRITEC. The CRAY 
FORTRAN compiler (CFT) automatically vec­
torizes these versions of READEC and WRITEC. 
Since the CRAY loader loads coding from the 
bottom of memory up, with b·lank common at 
the end of the coding, and since I/0 buffers 
start at the top of memory and work down, 
any unused memory is between the end of 
blank common and the bottom of the I/0 
buffers. Therefore, the effective length 
of the data pack storage area at the end 
of blank common can be set at ·run time by 
specifying the total job memory size to 
correspond to the size of the problem being 
run. 

Another machine-dependent aspect of 
SAS3D is the timing routine TLEFT. For 
the CRAY-1, a TLEFT routine that sets TLEFT 
to 1,000,000-lOO.*SECOND(l.O) was used, 
where SECOND is the elapsed CPU time. 
This version gives the correct timing of 
various parts of the code, but it does not 
give an accurate warning when the code is 
approaching a time limit. 

Some accumulated SAS3D modifications 
were also incorporated into the CRAY-1 
version. These modifications are minor 
items that correct some known non-standard 
usages in the code. 

The first attempt to compile SAS3D 
on the CRAY-1 turned up only 6-8 FORTRAN 
errors. One error was in a DATA statement 
in subroutine RESTAR. The IBM version of 
this statement uses a 4H specification, 
the CDC version uses lOH, and the CRAY 
version requires 8H. The other errors 
were all cases of non-standard separators 
in FORMAT statements. The CRAY compiler 
does not allow two consecutive comma 
separators or ,/,in a FORMAT statement. 
Apparently the IBM and CDC systems ignore 
spurious commas in FORMAT statements. 

After SAS3D compiled, the first at­
tempt to run a case turned up one last 
problem. Subroutine WRITEI is a multiple-



entry routine, even though it should have 
been written originally as two separate 
single-entry routines. The CRAY compiler 
uses an IBM-type convention for passing 
arguments to multiple entry points, 
whereas the CRAY version of SAS3D started 
as a CDC version, with a different treat­
ment of multiple entry points. 

After the entry point problem was 
corrected, a number of SAS3D cases have 
been run successfully without encountering 
any additional problems. 

Linear Interpolation Routines 

Although the Cray Fortran Compiler 
will automatically vectorize part of the 
SAS3D coding, the FORTRAN coding in three 
linear interpolation routines, INTIRP, 
INTERP, and INTRP, will not vectorize. 
These routines provide an area in which 
moderate improvements in CRAY performance 
can be achieved with relatively little 
effort, since they are small routines 
that account for a moderate fraction of 
the total running time. 

INTIRP scans a table'of Y as a func­
tion of X. It obtains the result Y1, 
corresponding to the input value X1, by 
linear interpolation between the appro­
priate table values. INTERP is the same 
as INTIRP, except that INTERP is passed 
an extra parameter, !FUEL, the fuel type; 
and the tables used by INTERP contain 
entries for each fuel type, i.e., theY 
array has two subscripts, Y(J, !FUEL). 
INTRP takes a whole array of input var1-
ables, Xl(I), and an array of fuel types, 
IFUELI(I), and it computes a whole array 
of oucpur results, Yl(I). 

Timing studies on both the IBM 370-
195' and the CDC 7600 have shown that 
INTIRP and INTERP spend more time scanning 
the tables to find the appropriate table 
entries than they do in the actual inter­
polation. INTIRP and INTERP always start 
scanning from the start of the table. 
INTRP starts scanning at the start of the 
table for the first variable in the input 
array. For later values in the imput array, 
INTRP starts scanning the table at the 
location where it found the previous value. 

The table scanning loop in these rou­
tines was written in a somewhat convoluted 
manner in order to get into loop-mode on 
the IBM 370-195, since significant speed 
improvements are often achieved in loop­
mode. A simple DO loop containing an IF 

76 

statement that jumps out of the loop when 
the appropriate table location has been 
found will not run in loop-mode on the 195. 
The logic required to achieve loop-mode on 
the IBM machine degrades the performance 
on CDC and CRAY computers, both of which 
will run the simple DO loop version as a 
simple in-stack loop. 

The Cray Fortran Compiler uses only 
scalar instructions to compile either the 
convoluted scanning loop or the simple 
scanning loop in the interpolation rou­
tines. Therefore, CAL verisons of these 
routines were written to use the vector 
compare instructions on the CRAY-1. Also, 
the CAL version of INTRP performs the ac­
tual interpolation calculations in vector 
mode. 

Timing Results for Interpolation Routines. 
For timing purposes a simple driver pro­
gram was written to call the interpolation 
routines with the proper arguments. The 
tables used for this program had a length 
of 20, which is typical of the tables used 
in SAS3D. An array of 12 values of X1(I) 
was used, and these values were distributed 
fairly evenly over the tables. The values 
used for !FUEL were 1,1,1,1,2,2,2,2,3,3,3,3. 
For timing INTIRP an inner DO loop in the 
driver made 12 separate calls to the rou­
tine using the appropriate values for X1 
and !FUEL. For timing INTRP, one call was 
made to obtain an array of 12 results. In 
order to obtain running times large enough 
to measure, an outer DO loop was used to 
call INTRP 1000 times or to execute the 
inner loop for INTIRP 1000 times. Thus, 
the measured times are for 1000 calls to 
INTRP or 12,000 calls to INTIRP. Since 
lNT~KP is very similar to INTIRP, it was 
not timed. 

Table 1 lists the runn1ng times mea­
sured for these routines. The simple DO 
loop for scanning does somewhat better 
than the original coding on any computer. 
One call to INTRP with an array of 12 
values takes less time than the correspond­
ing 12 calls to INTIRP, partly because sub­
routine linkage overhead accounts for a 
moderate fraction of the total INTIRP time, 
and partly because of the more efficient 
table scanning in INTRP. The FORTRAN ver­
sions of these routines run a factor of 
2-2.5 times as fast on the CRAY-1 as on 
the IBM computers. The use of the vector 
compare instructions, as well as generally 
tighter coding, in the CAL version improves 
the CRAY speed by an additional factor of 
3-4. 



Table 1. 
routines. 

Timing results for interpolation 

Computer, 
Compiler 

IBM 370-195 
FTH,a OPT=2 

IBM 3033 
FTH, OPT=2 

CDC 7600 
FTN4,b OPT=2 

CRAY-1 
CFT 

CRAY-1 
CAL 

CPU time (seconds) for 
12,000 results 

INTRP 

.165 

.160 

.121 

.067 

. 021 

INTIRP 
original 
coding 

.366 

.305 

.224 

.178 

simple 
scanning 
DO loop 

.320 

.165 

.127 

.032 

aiBM's Fortran H compiler 
bene's Fortran Extended, Version 4 com­

piler, as implemented on the Lawrence 
Berkeley Laboratory Computers. 

SAS3D TIMING RESULTS 

Timing comparisons for the SAS3D code 
are ~omplicaled by Lwu fa~Lurs. First, 
there is no one small section of the code 
that accounts for the great bulk of the 
computing time. It ~s necessary to run 
the whole code, or a significant fraction 
of the code, in order to get meaningful 
t1m1ng comparisons. Second, there are 
many types of cases in which it is not 
possible to get exactly the same results 
on different computers. In many cases, 
differences in running times between com­
puters are due to both differences in com­
puter speeds 3nd differences in computa­
tional paths. 

Three different SAS3D cases were run 
on the CRAY-1. The first case was a 
limited case which exercised only part of 
the code, but it was a case for which the 
same computed results are achieved on all 
computers, so that exact timing compari­
sons are meaningful. This was the first 
300 time steps of a 1-channel low power 
boiling case (LOWBLA).. This run ·was ter­
minated before boiling initiation, so it 
only tested the pre-boiling parts of the 
code. 

77 

The second case was a more extensive 
1-channel case: 1000 time steps for chan­
nel 1 of a 33-channel CRBR transient under­
cooling case (1-channel test). This case 
gets into sodium boiling, clad relocation, 
and fuel relocation (SLUMPY). The results 
obtained on different computers for this 
case were not identical, but they were 
quite similar; and the computational paths 
were quite similar. 

The third case was the standard SAS3D 
3-channel test case (3-channel test). This 
case was run mainly to test the code rather 
than to get timing comparisons. This case 
tests most of the options ih the code. It 
is an extremely touchy case with an appre­
ciable amount of pos.itive feed-back. Any 
small deviation, due to factors such as 
round-off error, tends to grow as the run 
progresses, and it is not possible to get 
the same results for this case on different 
computers. Even the IBM 370-195 and the IBM 
3033 give different re~ults for this case. 

Table 2 gives the running times on 
various computers for these cases. Also, 
given in parentheses are the relative 
speeds, with the IBM 370-195 speed defined 
as 1 for each case. 

Table 2. SAS3D timing 

CPU time, 
Computer (Relative 

LOWBLA, 
1 channel, 
300 steps, 
no boiling 

IBM 370/ 44.1 
195 ( 1. 0) 

IBM 3033 43.8 
( 1. 01) 

CDC 7600 19.4 
(2.27) 

CRAY-1 11.8 
cFTb (3.73) 

CRAY-1 9.7 
CALC (4.55) 

comparisons. 

seconds 
speed, 1/CPU time) 

1 channel 3-channel 
test, 
1000 
steps 

333.3 
( 1. 0) 

309.1 
(1.08) 

162.9 
(2.05) 

129.6 
(2.57) 

95.5 
(3.49) 

testa 

740.0 
(1. 0) 

453.9 
(1.63) 

186.2 
(3.97) 

aTiming comparisons are not very 
meaningful for the 3-channel test case. 
bAll-Fortran version. 
CCAL versions for three interpolation 

routines, everything else Fortran. 

.... ·· ,, . 
. , 



SAS3D runs slightly faster on the 
IBM 3033 than on the 195, about twice as 
fast on the CDC 7600 as on the 195, and 
a factor of 2.5 to 4 times as fast on the 
CRAY-1 as on the 195. 

The only area in which performance 
improvement for SAS3D on the CRAY-1 was 
investigated·was the three linear inter­
polation routines. Use of the CAL ver­
sions of these routines led to an improve­
ment of 20% - 35% in the overall running 
time of SAS3D. 

SAS4A 

The initial version of SAS4A contains 
mainly steady-state and pre-voiding tran­
sient heat transfer and coolant flow rou­
tines. Other modules are being added as 
they are dev.eloped, but this initial ver­
sion is the only one that has been run on 
the CRAY-1. 

There are two main differences be­
tween these SAS4A pre-voiding routines and 
the corresponding SAS3D routines. First, 
the pre-voiding SAS4A module contains rou­
tines that have been especially tailored 
for prevoiding transient calculations, 
whereas in SAS3D the corresponding routines 
are generalized routines that handle the 
whole transient. Second, the· algorithms 
used in the pre-voiding routines were modi­
fied somewhat to promote vectorization. 
This did not require major changes in 
algorithms; mainly it involved re-ordering 
of calculations and sometimes the saving 
of arrays of interim results. Also, some 
changes in programming style were required 
to eliminate cases where the basic algorithm 
allowed vectorization but programming style 
precluded it. 

Most of the pre-voiding transient 
coolant calculations vectorized easily. 
These calculations consist mainly of obtain­
ing coolant properties at each axial coolant 
node by evaluating parametric fits. The 
fits are all single range fits containing no 
branching, and properties for all coolant 
nodes can be calculated in parallel. Also, 
since typically about 30 coolant nodes are 
used, vector lengths of about 30 were 
achieved. 

In cases where a complete calculation 
could not be vectorized, part of the cal­
culation often could. For instance, the 
calculation of the coolant pressure at node 
J requires the value from node J-1, so the 
calculation could not be vectorized. In 

78 

.this case, the calculation of the node­
to-node pressure differences would vec­
torize, and this calculation accounts for 
most of the computing time in this area. 
Then a small non-vectorized loop sums the 
differences to give the final results. 

Vectorizing the heat transfer rou­
tines was more difficult. For each axial 
node, the temperatures at all radial nodes 
are solved for simultaneously by solving 
a tri-diagonal matrix equation. Many of 
the calculations used to obtain the coef­
ficients of the matrices were vectorized, 
but the vector lengths were usually no 
longer than the number Qf radigl nQd~~. 
which typically ranges from 4 or 5, above 
and below the fueled region, to about 17 
in the f~eled region. The tri-diagonal 
matrix solution itself does not vectorize 
in the pr.e-voidi.ng mdule, although in the 
voiding module the corresponding matrix 
solution might be vectorized by solvine 
for all axial nodes simultaneously. In 
the pre-voiding calculation, the computed 
coolant temperature at axial node J is 
needed to obtain some of the coefficients 
for node J+l; but in the voiding module, 
the coolant temperatures are calculated 
separately in the coolant routines, and 
in the fuel pin heat transfer routines 
there is no coupling between axial nodes. 

SAS4A TIMING RESULTS 

A non-voiding case with 1000 time 
steps was timed using the initial version 
of SAS4A. In addition to total running 
times, a timing distribution by subroutine 
was also obtained. For the timing distri­
bution, the CFT timing trace was used on 
the CRAY-1, the PROGLOOK feature was used 
on the ANL IBM 370-195, and a combination 
of the SNOOPY routines plus a number of 
calls to SECOND was used on the CDC 7600. 
For this case, the steady-state initial­
ization accounts for less than 1% of the 
running time, so it was mainly the pre­
voiding transient routines that were timed. 
Tables 3 and 4 give these timing results. 

These timing results indicate that 
SAS4A runs about six times as fast on the 
CRAY-1 as on the IBM 370-195; with CAL 
versions of the interpolation routines, 
the speed ratio increases to seven. The 
CDC 7600 version also runs appreciably 
faster than the IBM version, but the CRAY-1 
version still run~ a factor of 2.1 to 2.5 
times as fast as the CDC 7600 version. 



Table 3. SAS4A timing comparisons. 

Computer CPU time Relative speed 
seconds 1/CPU time 

IBM 370-195 43.6 1.0 

IBM 3033 46.5 .94 

CDC 7600 15.49 2.8 

CRAY-1, CFTa 7.37 5.9 

CRAY-1, CALb 6.14 7.1 

aAll-Fortran version. 
heAL versions of interpolation routines, 

CFT for rest of code. 

Table 4. Detailed breakdown of SAS4A 
timing. 

Program 
area 

heat transfer, 
except 
matrix 
solution 

matrix 
solution 

interpolation 
routines 

coolant 
routines 

log, exp, xY 

READEC, 
WRITEC, 

data pack 
movement 

formatted I/0 

other 

total 

CPU time, 
(percentage 

IBM CDC 
370-195 7600 

9.98 
(23%) 

1. 81 
(4%) 

4.38 
( 10%) 

2.03 
(5%) 

6.85 
(16%) 

9.22 
(21%) 

8.41 
(19%) 

.92 
(2%) 

4.54 
(29%) 

1.41 
(9%) 

3.46 
( 22%) 

1.19 
(8%) 

1. 84 
( 12%) 

. 56 
(4%) 

2.38 
(15%) 

.11 
(1%) 

seconds 
of total) 

CRAY-1 
CFT CALa 

2.01 
(27%) 

.51 
(7%) 

1. 91 
(26%) 

.42 
(6%) 

b 

.32 
(4%) 

2.10 
(29%) 

.10 
(1%) 

2.01 
(33%) 

.51 
(8%) 

.68 
(11%) 

.42 
(7%) 

b 

.32 
(5%) 

2.10 
(34%) 

.10 
(2%) 

43.6 15.49 7.37 6.14 
(100%) (100%) (100%) (100%) 

acAL versions of INTRP, IINTIRP, CFT for 
rest of code. 
bincluded with coolant routines. 

79 

Comparisons with the LOWBLA times 1n 
Table 2 for 300 pre-voiding steps show that 
SAS4A runs 1000 steps in about the sarne 
time that SAS3D requires for 300 steps. 
About 1/3 of the SAS3D time. for this case 
was accounted for by the DEFORM module, 
which has not been incorporated into SAS4A 
yet; but the remaining 2/3 of the time is 
in routines corresponding to the SAS4A 
routines. This indicates that the heat 
transfer and coolant routines in SAS4A run 
about twice as fast as the corresponding 
SAS3D routines. On the CRAY-1, the SAS4A 
speed improvement is greater than a factor 
of two. 

Formatted I/0, mainly printing tran­
sient results, accounted for an appreciable 
fraction of the total CPU time for this 
case. In 6 seconds of computing on the 
CRAY-1, -this case printed 213 pages of 
output. For longer runs, it will be 
necessary to reduce greatly the amount of 
print-out per second of computation. 

The log and exponential functions are 
called by the coolant routines. On the 
IBM and CDC computers, and maybe on the 
CRAY-1 also, they account for the bulk of 
the time spent in the coolant routines. 
The cooiant routines vectorized well on 
the CRAY-1, and this shows in the relative 
coolant calculation times. On the CRAY-1, 
the coolant routines, including the log 
and exponential functions, run about 21 
times as fast as on the IBM 370-195, or 
about 7.2 times as fast as on the CDC 7600. 

The data pack movement is quite a bit 
slower on the IBM 370-195 than on either 
the CRAY-1 or the CDC 7600. This reflects 
the relatively slow speed of the main 
memory on the IBM 370-195 . 

SUMMARY AND CONCLUSIONS 

The SAS3D code was run on the CRAY-1 
computer with only minor modificaitons to 
the code, and it ran reasonably well. On 
the CRAY-1, SAS3D runs 3.5 to 4.5 times as 
fast as on the IBM 370-195, or about twice 
as fast as on the CDC 7600. The IBM and 
CDC compilers that are used with SAS3D are 
highly developed compilers that produce 
well optimized object code, so the perform­
ance of SAS3D on the CRAY-1 is a reflection 
of the basic speed of the CRAY-1 hardware, 
as well being an indiciation that the CFT 
compiler produces moderately efficient 
object code. 



Writing new pr~-voiding heat transfer 
and coolant flow routines for SAS4A, using 
new algorithms and coding that would vec­
torize where possible, led to significant 
speed improvements on all three computers. 
The CRAY-1 version of SAS4A runs about 
2.5 times as fast as the CDC 7600 version, 
which runs 2.8 times as fast as the IBM 
370-195 version. Even the IBM version of 
SAS4A runs about twice as fast as the cor­
responding IBM version of SAS3D. Some of 
the improved speed of SAS4A, as compared 
to SAS3D, was probably due to the use of 
somewhat better algorithms and the elimina­
tion of some unnecessary calculations, but 
much of this improvement is probably due 
to the fact that coding that vectorizes 
on a CRAY-1 tends to run efficiently on 
an IBM 370-195 or a CDC 7600. Therefore, 
new coding for the SAS codes should be 
vectorizable where possible, even if it 
is not expected that these codes will be 
run extensively on vector machines in the 
near future. 

The performance attained by SAS3D and 
SAS4A on the CRAY-1 was partly due to the 
ability of the CRAY-1 to use short vectors 
effectively. Many of the vector lengths 
in these codes are in the range from 10-20, 
and some are as small as 3 or 4. Other 
than block transfers, none of the vector 
lengths is currently greater than 48. The 
SAS codes probably would not perform well 
on a computer designed for long vectors. 

The computing speed attainable on a 
CRAY-1 computer should make it feasible to 
develop "few pin" models for whole core 
accident analysis, if the models are 
carefully developed and coded so as to 
optimise computer pertormance. ·Such cal­
culations may even be feasible on a CDC 
7600. Even on a CRAY-1, detailed many pin 
(217 pins. per subassembly) models would 
probably still be restricted to limited, 
single subassembly cases because of running 
time considerations. 

ACKNOWLEDGMENTS 

We would like to thank L. Rudsinski 
for obtaining computer time on the NCAR 
CRAY-1 for this project, and also for his 
assistance in getting SAS3D to the NCAR 
computer. This work was performed under 
the auspices of the U. S. Department of 
Energy. 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

80 

REFERENCES 

D. R. MacFarlane, J. C. Carter, 
G. J. Fischer, T. J. Heames, N. A. 
McNeal, W. T. Sha, C. K. Sanathanan, 
and C. K. Youngdahl, ANL-7607 (1970). 

F. E. Dunn, G. J. Fischer, T. J. 
Heames, P. A. Pizzica, N. A. McNeal, 
W. R. Bohl and S. M. Prastein, 
ANL-8138 (1974). 

M. G. Stevenson, W. R. Bohl, F. E. 
Dunn, T. J. Heames, G. Heppner, and 
L. L. Smith, Proceedings of the Fast 
Reactor Safety Meet Gig, Beverly Hi Us, 
CA, (1974), CONF-740401, p. 1303. 

J. E. Cahalan, D. R. Ferguson, H. U. 
Wider, C. H. Bowers, L. L. Briggs, 
F. E. Dunn, J. M. Kyser, L. Mync, 
A. M. Tentner, and W. L. Wang, ANS/ 
ENS International Meeting o~ Fa~ 
Reactor Safety Technology, Seattle, 
Washington, (1979). 

, . 
G. Hoppner, W. L. Chen, F. E. Dunn, 
and M. A. Grolmes, Trans. Am. Nucl. 
Soc., lJ!., 213 (1974). 

I. T. Hwang, T. M. Kuzaz, W. W. Marr, 
and K. J. Miles, Trans. Am~ Nucl. Soc., 
~. 443 (1978). 

M. Ishii and W. L. Chen, Trans. Am. 
Nucl. Soc., 28, llll2 (1978). 

D. s. Rowe, BNWL-1522-4 (1971). 

W. W. Marr, ANL-8131 (1975). 

w. T. Sha, ANL-7796, NUREG/CR-0785 
(1979). 

"American National Standard Program­
ming Language FORTRAN," ANSI x3.9-1978. 

Update Reference Manual, Control Data 
Corporation Publication No. 60342500, 
Minneapolis, Minnesota, (1978). 

CRAY-1 FORTRAN (CFT) Reference Manual, 
Cray Research Publication No. 2240009, 
Bloomington, Minnesota, (1977). 



U1PLEMENTATION OF A LINEAR SYSTEM SOLVER 

James G. Sanderson 
Los Alamos Scientific Laboratory 

P. 0. Box 1663 
Los Alamos, New ~'texico 87544 

/ ABSTRACT 

We will discuss the use of a line relaxation scheme to solve a five point differ­
ence approximation to the radiation diffusion equation. The matrix solver has·been 
vectorized for the CRAY-1. We will also discuss the use of a column convergence test 
and column iteration decision to speed computation. 

In addition, the implementation of a multigrid routine in one of two dimensions is 
mentioned. 

INTRODUCTION 

We seek a solution to the radiation 
diffusion -equation over a region contain~ 
ing numerous materials and moving material 
boundaries. One approach [1] leads to the 
implicit difference scheme 

PROBLEM 

We first set up the matrix of cou­
pling coefficients. Since several mate­
rials may be contained in each cell and 
each material requires table lookups, the 
computational cost is extreme. Having 
constructed the matrix and right hand side 

KlT.. (n+l) 
lJ 

C T (n+l) 
1 ij-1 

C T (n+l) 
2 ij+l 

C T (n+l) 
3 i+lj 

C T (n+l) 
4 i-lj 

KlT .. (n) 
lJ 

(1) 

where n represents the time step, T the 
fourth power of the temperature, and C. 
and K. are the coupling coefficients. 1 In 
matri~ form (1) is the usual symmetric 
five point difference matrix under the 
natural ordering. 

Various methods exist to solve (1). 
In (2] Buzbee, et. al., describe Xhe use of 
successive line over relaxation (SLOR). 
They choose to adopt an odd-even ordering 
of lines. Hence the tridiagonal systems 
associated with odd (even) lines are 
mutually independent and can be solved 
simultaneously. By solving the systems 
simultaneously vectorization was achieved. 
As in the problem here the region was 
embedded in a rectangle. 

We will study the strategy suggested 
by Buzbee and also study the use of an old 
convergence test and column iteration de­
cision to speed convergence. 

81 

we are ready to iterate using SLOR. To be 
specific consider the following example 
with i = 60, j = 129. 

·. 

j 

Fig. 1. A 60 x 129 problem. 

Using the natural ordering , the resulting 
matrix can be written as 



(2) 

Where Ai is a symmetric tridiagonal 
matrix, 60 x 60 and Di is a diagonal 
matrix of dimension 60 X 60. Let xi be 
the solution vectors of length 60 and let 
Bi be the vectors representing the right 
hand side. 

ALGORITHM 

Let Xi(o) be some initial guess at 
the solution. Using Ruzhee's suggestion 
wri t,c. 

A. X~n+l) 
J J 

D. X ~n)l + 
J J-

0. 
1 

X ~n) + 13. 
J+ J+l J 

x~n+l) 
J 

+ X. (n) 
J 

w (X ~n+l) 
J 

x~n)) 
J 

(3) 

(4) 

We will solve (3) simultaneously for all 
the odd values of j and update the guess 
Xi as in (4) for the oddvalues of j. We 
then repeat (3) for the even values of j. 
Then (4) for the even values of j. The 
procedure described constitutes one 
iteration. It will suffice to note that 
w is computed every 12 iterations by a 
prescription described by Carre [3]. See 
also [4-8] for advice on computing w. 

Several observations can be made. 
Since the matrixes Aj do not change from 
one iteration to the next, we can factor 
each Aj and store_)the factors. It is 
necessary ~hen only to"backsolve to 
arrive at Xj. Initially w is chosen to 
be 1.375. The entire iteration is ter­
minated when the sum of the squares of 
the updates in each column is less than a 
prescribed tolerance. Finally note that 
the solution estimate is changed only 
after each odd (or even) sweep is com­
pleted. 

82 

Both the initial factorization of 
Aj and the backsolves are vectorizable. 

TIMING 

The algorithm described above was 
implemented in FORTRAN and run on the 
CRAY-1 using the XFC compiler, OPT = 1 
at Los Alamos Scientific Laboratory. 
Th~ same routine was then vcctorizcd 
using the MCA vectorizer [9] and executed 
similarly. The routine consists of set­
ting up the matrix from stored coeffi­
cients, the initial factorization of the. 
matrix and the SLOR iteration for the 
60 x 129 problem. 

TIMING IN SECOKDS OF CPU TIME 

FORTRAN VERSION VECTORIZED VERSION 

Initial Factorization 
T1fl!(l/it'l'r:ltion 
Time/Tridia5!onal Solve: 

Even (64) 
Odd (65) 

Entire Routine: 
9 Iterations 

49 Iterations· 

.009721 

.04!.3 

.06366 

.06465 

-4~06 
2.278 

.001725 

.03~1 

.001562 

.002053 

.34958 
1.823 

Timing studies under CFT are forthcoming. 

OLD CONVERGENCE TEST 

In an ancient LASL code which used 
a variation of SLOR an interesting line 
convergence test and iteration decision 
was implemented. Simply stated, a 
column will not be iterated on if it has 
converged and both its neighbors have 
converged. Consider the following exam­
ple where the three middle columns have 
converged under the sum of the squares 
test previously described. See Fig. 2. 

12345 67 

Fig. 2. Columns 3, 4 and 5 
have converged. 

The routine continues to iterate on 
columns 1-3 and S-7. Since a column is 
converged if and only if its immediate 



neighbors are converged. As the itera­
tion proceeds more columns will converge 
and the work load in scalar mode will de­
crease. Note that a converged column may 
become "unconverged" on subsequent itera­
tions. 

Since the column iteration test in­
volves a FORTRAN IF test within the back­
solve loop it is not readily vectorizable 
and thus there is no need to choose the 
odd-even ordering. The matrix factoriza­
tion is still vectorization. Time per 
iteration will vary since a different 
number of columns will be iterated on in 
general. However, total run times were: 

9 iterations 
52 iterations 

.41585 
1.086 

for the respective cycles in Table I. 

It should be noted that if most of 
the columns are converged then each 
iteration is quite inexpensive. In prob­
lems with local disturbances or front 
propagation problems either column or line 
convergence tests could save time. 

MULTIGRID APPROACH 

The multigrid method [10] users 
Gauss-Seidel iterations on levels of fine 
or coarse meshes to accelerate conver­
gence. In the problem discussed here the 
cost of recomputing the coefficients 
~ould prove prohibitive. However, it is 
quite possible to describe a two level 
multigrid technique in one of two dimen­
sions. It is best described by Fig. 3. 

(a) (b) 

Fig. 3. (a) is the fine mesh, 
(b) is the coarse mesh. 

Note that the same number of 
columns are used. 

For the mesh in Fig. 3 (b), the 
coupling coefficients to neighboring cells 
are simply the average or sum of the ap-

83 

propriate coupling coefficients origi­
nally computed for the fine mesh shown 
in Fig. 3 (a). The number of rows is 
reduced in the coarse iteration and the 
number of columns remains unchanged. The 
method combines the use of multigrid and 
the vector solver while minimizing 
coefficient.computation cost. 

ACKNOWLEDGMENTS 

The author wishes to thank Billy 
Buzbee of LASL for his support and en­
couragement. Discussions with Seymour 
Porter and Richard Varga were also 
helpful. 

REFERENCES 

[l] J. G. Sanderson, "An Implicit 
Scheme for the Solution of the 
Nonlinear Radiation Diffusion 
Equation," Los Alamos Scientific 
Laboratory, 1979. 

[2] B. C. Buzbee, L. D. Boley, and 
S. V. Parter, "Application of 
Block Relaxation," Society of 
Petroleum Engineers Fifth 
Symposium on Numerical Simulation 
of Reservoir Performance. 

[3] B. A. Carr~, "The Determination 
of the Optimum Accelerating 
Factor for Successive Over­
Relaxation," The Computer. 
Journal, Vol. !' 1961. 

[4] G. E. Forsythe and J. Ortega, 
"Attempts to Determine the 
Optimum Factor for Successive 
Over-Relaxation," Info, Proc., 
UNESCO, Paris, 1959. 

[5] H. E. Kulsrud, "A Practical 
Technique for the Determination 
of the Optimum Relaxation Factor 
of the Successive Over-Relaxation 
Method," Comm. Assoc. Comput. 
Mach., Vol.!, 1961. 

[6] J. K. Reid, "A Method for Finding 
the Optimum Successive Over­
Relaxation Parameter," The 

.Computer Journal, Vol. ~' 1966. 

[7] A. K. Rigler, "Estimation of the 
Successive Over-Relaxation 
Factor," Math. Comp., Vol. .!2_, 
1965. 



[8] L. A. Hageman and R. B. Kellogg, 
"Estimating Optimum Over-Relaxation 
Parameters," Math. Comp. Vol. 22, 
1968. -

[9] Massachusetts Computer Associates. 

84 

[10] R. A. Nicolaides, "OR Multiple 
Grid and Related Techniques for 
Solving Discrete Elliptic 
Systems," J. Comp. Phys. 19, 
1975. 



ADVANCED COMPUTERS AND MONTE CARLO 

Thomas L. Jordan 
Los Alamos Scientific Laboratory 

P.O. Box 1663 
MS 265 

Los Alamos, New Mexico 87544 

ABSTRACT 

High-performance parallelism that is currently available is synchronous in nature. 
It is manifested in such architectures as Burroughs ILLIAC-IV, CDC STAR-100, TI ASC, 
CRI CRAY-1 ICL DAP and many special-purpose array processors designed for signal pro­
cessing. fo our kn~wledge, this form of parallelism has not been of significant value 
to many important Monte Carlo calculations. Nevertheless, there is much asynchronous 
parallelism in many of these calculations. A model of a production code that requires 
up to 20 hours per problem on a CDC 7600 is studied for suitabi~ity on some asyn~hronous 
architectures that are on the drawing board. The code is descr1bed and some of 1ts prop­
erties and resource requirements are identified to compare with corresponding proper­
ties and resources of some asynchronous multiprocessor architectures, Arguments are 
made for programmer aids and special syntax to identify and support important asynchro­
nous parallelism. 

INTRODUCTION 

Monte Carlo calculations predate 
their computation with electronic compu­
ters. An interesting aid for doing 
Monte Carlo calculations was invented by 
Enrico Fermi. In 1946 S. Ulam proposed 
a statistical approach to study neutron 
behavior in various materials and geo­
metries. Shortly thereafter, John 
von Neumann developed an algorithm with 
anticipated use of the ENIAC. Delays 
in availability of the ENIAC, duP. to its 
move to Aberdeen, caused Fermi to think 
about a substitute. He designed the 
13-inch long, hand-operated mechanical 
computer shown in Fig. 1 to perform 
these computations. It was built by 
L. D. P. King. Neutron sample sizes of 
100 were used to develop neutron his­
tories and statistics. The operator 
needed tables of random numbers and mass 
constants to operate this "computer." 

Electronic computers eventually pro­
vided the speed and decision-making capa­
bility necessary for any realistic model­
ing of serious simulation of probalistic 
events. The study of particle physics 
(neutrons, photons, etc.) has provided 
a classical setting for the Monte Carlo 
method. Flexible Monte Carlo codes exist 
to study detailed particle physics in 

85 

very elaborate geometries. Because of 
the computer time required, these codes 
are used most frequently whenever more 
accuracy and/or geometric reality is re­
quired than can be provided by one- and 
two-dimensional transport codes. Prob­
lems requiring many hours of CDC-7600 
time are not uncommon. Monte Carlo would 
be used more frequently if the method 
were not so costly. 

How has this method faired rela­
tive to other types of calculation, say 
solving partial differential equations, 
during recent periods of increasing com­
puting power? Once we began getting 
speed through synchronous parallelism 
(on computers such as the CDC STAR-100, 
CRI CRAY-1, TI ASC, ICL DAP, and 
ILLIAC IV), Monte Carlo calculations have 
not kept pace. Efforts to vectorize our 
Monte Carlo codes have not been very 
successful to date. Although some suc­
cess has occurred with the simplest of 
models, a success verdict is not yet in 
on the big codes. As a consequence, the 
ability to perform this kind of compu­
tation is not keeping pace with a grow­
ing need for yet more detailed simula­
tion. 

To better understand what is re­
quired for Monte Carlo codes, we de-



Fig. 1. Fermi's hand-operated mechan1cal computer. 

veloped a model of a production code to 
compare its properties and resource re­
quirements with those of some asynchro­
nous multiprocessor architectures. 

CODE CHARACTERISTICS 

The code does not lack for paral­
lelism; in fact, the total computation 
is almost completely parallel. The 
tracking of each particle and its prog­
eny is independent of all other his­
tories. Only the accumulation of sta­
tistics and the use of statistics in 
sample biasing couple one particle to 
another. This is not to say that the 

86 

computation performed on each history 
is the same. The randomness and variety 
of possible events make it very difficult 
to develop and process queues of similar 
computations. Today's codes are fraught 
with conditional and case statements 
that define the many possible reactions 
in complex and varied geometries. Given 
the physical input parameters, the whole 
calculation is a function of a single 
random variable. 

One must be cAreful not to extra­
polate this computational independence 
to all codes that might use the Monte 
Carlo method. As particle dependence 
or coupling between particles increase, 



the lengths of the chains of independent 
computation may decrease. This will in 
turn decrease the efficiency of multi­
processing. At another extreme some prob­
lems in which there is tight coupling 
(for example, a many-body problem in 
which one particle's behavior affects 
every other one similarly). have been 
highly vectorized .. 

The code is an ideal example of 
asynchronous parallelism. In an environ­
ment of n asynchronous multiprocessors, 
the code could be easilY modified so that 
each progfissor could independently pro­
cess 1/n of all the particles before 
rejoining to accumulate statistics. 
When the processors have finished their 
tasks, one or more processors could be 
used to accumulate total statistics. We 
believe it is feasible, with little addi­
tional work, to perform this calculation 
on four CDC 7600s coupled only through 
a common file system. Only concern for 
total system reliability deters one from 
doing this in order to speed up the cal­
culation for the more time-consuming 
problems. 

INCREASE PARTICLE COUNT AND TEST 

GENERATE A NEll PARTICLE 

A SIMPLE MODEL 

To present the flavor of this Monte 
Carlo code, an extremely oversimplified 
model is presented in the form of ~ flow 
diagram in Fig. 2. This code accumulates 
statistics on the behavior of a photon 
source in a cylindrical drum of carbon. 
This code is of value only·for bench­
marking and analysis. 

To study the efficiency of this 
problem on an n-processor system, we 
took a small number of particles (~024); 
partitioned them into subsets of 2 , 
k = 0,1, .•• 9; and timed the computation 
of the subsets. If t is the ma~mum 
time for all subsets ~rxsize 1024/2 and 
trotal is the sum of these times, then 
tfie efficiency is 

e: = 1 -

The results are shown in Table 1. Hence, 
we conclude that for particle numbers 
of interest that the problem efficiency 

DON!: 
EXIT 

TRACK: COMPUTE DISTANCES TO CEU. BOUNDARIES 
TABLE LOOK-UP: LOCATE ENERGY IN TABLE 
INTERPOLATION: FIND X-SECTION VALUES 
COU.ISION: COMPUTE DISTANCE TO COU.ISION 

Fig. 2. Flow diagram of a simple Monte Carlo model. 

87 



Table 1. M~tiprocessor efficiency for 1024 particles distri-
buted over 2 processors. 

No. of 
k Processors 

0 1 
1 2 
2 4 
3 8 
4 16 
5 32 
6 64 
7 128 
8 256 
9 512 

would be very h:f.gh. In that sense the 
problem has ideal asynchronous paral­
lelism. 

ASYNCHRONOUS SYSTEMS AND THE PRODUCTION 
CODE 

A number of commercially available 
asynchronous processor systems appear 
likely to emerge in the not too distant 
future. Will these systems provide the 
speed and facilities needed for the 
Monte Carlo Production code? To get at 
this question, we will describe some 
properties of the code that will help 
determine the adequacy of various archi­
tectures to support this computation. 

Note that in o1,1r crudely couplP.c'l 
system of four CDC 7600s, the total code 
and data have been replicated entirely. 
The only benefit to using such a system 
is to reduce the total elapsed time. Of 

No. 
No. 

of Particles 
of Processors Efficiency 

1024 1.0 
512 0.97 
256 0.95 
128 0.95 
64 .0.90 
32 0.91 
16 .0.85 

8 0.74 
4 0.70 
2 0.22 

course this could be sufficient justifi­
cation for using such a system despite 
the four-fold amplification of all other 
costs. In partfcular our memory require­
ments have grown from 0.5M words to 2M 
words. Most of the·data, x-section or 
probability data, is read-only data ex­
cept for problem initialization. It is 
read relatively infrequently and can re­
side in a comparatively slow bulk memory. 
However, disk storage is too slow. A 
typi_cal storage requirement might be as 
given in Table 2. 

Obviously'only one copy of the read­
only data is needed even though all 
processors must access it. Replication 
of all data would unduly burden systems 
with many processors. 

One of the important character­
istics of this problem is that the data 
memories are very randomly accessed. 

Table 2. A classification of storage requirements. 

A. 

B. 

c. 

D. 

Type 

x-sections and 
constants (read­
only) 

code (read-only) 

tally (read/write) 

other (read/write) 

88 

Amount 
(words) 

400,000 

30,000 

20,000 

4,000 

Complexity 
Level Based on Data 

Replication 

0 (all) 

1 (all but A) 

2 (all but A + B) 

3 (D only) 



This helps to avoid me·mory conflicts. 
However, it decreases the advantages of 
cache and virtual memories. Caches for 
code instructions will be increasingly 
im~ortant as the number of processors 
grow. However, there are comparatively 
few DO loops in this kind of code. Con­
sequently, any local piece of code has a 
relatively low duty cycle. Even in the 
code concerned with geometry (particles 
intersecting surfaces), one heavily used 
DO loop simply controls access to formulas 
for different types of surfaces. Hence 
the code selected here is usually dif­
ferent each time through the loop. 

The group responsible for the actual 
production code ran a sampler to identify 
the calculations 'that consume the most 
time. Some are included in Table 3. 

Table 3. Times for various subroutine 
calculations. 

Function 

Find minimum distance to cell surfaces 
Compute x-sections and locate isotopes 
Find new cell particle entered 
Tally contributions to detectors 
Table look-up of energy 
Subroutines: RANF, EXP, LOG, SQRT 

Total 

Percent 

33.9 
20.5 
10.6 
8.9 
8.6 

_hQ_ 
85.5 

Finally, we note that MIPS (millions 
of instructions per second) are more 
important to this problem than MFLOPS 
(millions of floating point operations 
per second). Table 4 contains dynamic 
measurements of the utilization of 
various classes of instructions on a 
CDC-7600 computer. Tom Keller of the 
LASL Computer Science and Services 
Division used an on-line instruction 
monitor to obtain the statistics tabu­
lated in Table 4. 

Table 4. Operation Mix (dynamic measure­
ment). 

Operation class 

Increment 
Jumps 
NO OP 
Boolean 
Shift 
Other (including floating point) 

Total 

Percent 

54 
12 

9 
5 
4 

16 

100 

89 

HARDWARE 

Asynchronous multiprocessors appear 
most promising for this particular pro­
blem. Carnegie Mellon University's CM~ 
is a working research model of such a 
computer. Siemens of Germany has a work­
ing prototype and has plans for· a machine 
called the SMS-3. At least two of the 
machines proposed for the Numerical 
Aerodynamic Simulation Facility (NASF) 
can operate asynchronously. The pro­
posed Burroughs computer can use its pro­
cessors either in lockstep or independ­
ently. The Texas Instrument (TI) pro­
posal is based on the data-flow principle, 
which in theory is a complete captor of 
parallelism. They have a working 
4-processor model. A few other manufac­
turers have discussed plans for asyn­
chronous computers. However a descrip­
tion of their computers is not yet in 
the public domain. 

There is insufficient information 
on a large scale TI machine to determine 
whether their computer is appro-
priate for this Monte ·carlo problem. 
Hence we are able to analyze only the 
Burroughs NASF and the SMS-3 ·for feasi­
bility. We do so relative to a 
system of four cue 7600s and supply some 
relevant data in Table 5. 

The SMS-3 does not appear to be 
useful for this problem. The amount of 
memory directly accessible to each pro­
cessor is at best marginal for code and 
read/write data. We see no way to make 
the read-only data directly accessible 
to each processor. This computer ships 
data between processors in synchronized 
or phased bursts. This method of trans­
ferring data is not at all suitable for 
the random accesses required of the 
x-section data. Despite the asynchronous 
operation of the processors, this com­
puter still,seems most useful for syn­
chronous parallelism or, at least, a prob­
lem processing data in a regular manner. 

The Burroughs NASF machine appears 
to be suitable for this problem. How­
ever, more work will have to be done than 
would be necessary for a 4-CDC 7600 
system. Note that with SOM words of mem­
ory available in the NASF machine, the 
problem will not fit a 512-processor 
system with 0-level of replication (all 
data and code replicated). Hence, the 
operating environment would have to be 



Table 5. Comparative data of some multiprocessor systems. 

Burroughs Siemens 
4 CDC 7600s NASF SMS-3 

No. of Processors 
Total speed (MFLOPS) 
Local Memory/Processor 
Global Memory 

modified to reproduce certain variable 
storage and not others. Less than 100 
processors could be used if all data 
were replicated·. This allows at mos e 
20% efficiency in using the system in 
this manner. 

PARALLELISM AND SYNTAX 

4 
16 

512K 
DISK 

WhAt sn~t. of pa.rA.l.lP.l:fRm do we. P.X­
pect to capture with asynchronous multi­
processor systems not capturable with 
synchronous devices? Isn't there com­
petition between what might be called 
local parallelism and global parallelism? 
To get at these questions, let us first 
try to identify some easily recognized 
forms of parallel activity. 

1. Array Computation 

2. 

DO I = 1, N 
x(I) = f(I) 

Local Independent Task 

a. z = u*v + x*y 

b. X = u*v 
y w*z 

c. bookeeping overlapping 
computation 

3. Global Independent Tasks 

a. JOB A, JOB B 

b. Monte Carlo type problem 

We assume there are no fundamental 
differences in parallel processes when 
expressed in term of a dependency graph. 
All of the independence exists in the 
total graph. However, we must believe 
that if we have_finite resources to per­
form various parallel tasks that there 
will be competition for these resources 
by the different independent tasks. Will 
the right subgraphs be selected? We 
doubt very seriously that much efficiency 

90 

512 128 
1000 18 

32K 64K (BYTES) 
33M HOST 

will be gotten .from this problem for 
many years with an approach other than 
level-0 replication unless there is some 
new syntax in which the programmer can 
tell the operann.g system how t:o capturl:! 
the important parallelism. Consequently, 
we must think about language features 
that are needed to direct the operat-
ing system. 

In contrast to what is done today, 
w~ ~o not want to spend our resources on 
the inner loops or local portions of 
this problem. Instead it is the big 
outer loop with largest payoff .. In fact, 
it is not a DO loop at all. Hence the 
dependence on the loop index is absent 
and, therefore, implicit.· Certainly 
global compilation is required if such 
global parallelism is to be captured 
automatically. 

Somehow we must make :1. t easy to i.n­
crease the dimensionality of a code. 
Currently, we introduce DO loops and in­
crease the rank of dimensionality of the 
appropriate variables as a convenience 
to the compiler only to have the compiler 
remove them. This is not practical over 
a code that requires 30,000 words of 
instructions. This kind of requirement 
merely reinforces the long overdue need 
for an array syntax. Not only mus·t the 
dimensionality of the d~ta be increased 
but that of the code itself if different 
copies of the code are required for each 
processor. This is just task spawning. 
What do we need to specify in a task 
spawning statement? Once many tasks are 
active they must be told to rejoin and 
collapse to sequential mode. 

Tallying is the major obstacle to 
achieving full parallelism and is repre­
sentative of the more general problem 
associated with vector reduction opera­
tions. If t·he tally data is replicated 
and only later do we tally the sub­
tallies, then we have vastly simplified 



the problem. This is the case for. rep­
lication levels 0, 1, and 2. If for ' 
storage reasons we cannot afford this 
replication, then the tallying process 
must be done by a single processor if 
only one copy of the tally data is al­
lowed. In such cases it would appear 
that re-entrable programs may be needed 
to allow queueing of tallies without 
choking the system at this point. 

CONCLUSIONS 

Given only a glimpse of future 
asynchronous architectures and a Monte 
Carlo application that has ideal asyn-

91 

chronous parallelism, we are yet unable 
to estimate the effort that'will be re­
quired to fit the problem to the machine. 
We have observed that memory requirements 
may be exorbitant in those cases where 
the processor count is large. In ad­
dition, it is unlikely that the more 
profitable global parallelism w{ll be 
discovered and selected automatically by 
the compiler. We believe that new syn­
tax will be needed to assist the pro­
grammer: (1) in describing the paral­
lelism available to the compiler and 
(2) making it easier to increase the 
dimensionality of the problem without 
rewriting code. 



DETAILED VECTORIZED REACTIVE,FLOW SIMULATION 
ON THE TEXAS INSTRUMENTS ASC 

J. P. Boris, D. L. Book,. T. R. Young, Jr., E. S. Oran 
and M. J. Fritts 

Laboratory for Computational Physics 
Naval Research Laboratory, Washington, D. C. 20375 

ABSTRACT 

Detailed modelling, also known as numerical simulation, provides a description of a 
reactive system by solving numerically tho governing tlm~-depenuent conncrvation equa­
tions for mass, momentum and energy wi t.h sonrrP And ~ink tnl"'mo, Empirical .;ulwnJill:'ll:! are 
only incorporated when the quantities required must be derived from more fundamental 
models ·or theories·. This is the case for chemical rate ·constants, for Lbermal conducti­
vity coefficients, and for other thermophysical and thermochemical data in a detailed 
reactive flow calculation. There are four kinde of problems in l:!lmulating accurately 
the propagation of a shock or a flame front in a reacting mecHum. One stems from the 
widely different tlme scales characteristic of the interacting fluid and chemical pro­
cesses. Another arises because conventional numerical methods are unable to resolve 
accurately the characteristically steep spatial gradients in pressure, density, and tem­
perature. Two others are associated with the twin problems of physical and geometric 
complexity, which can cause calculation times to increase by orders of magnitude compared 
with idealized or empirical models. The approach taken in the Reactive Flow Modelling 
program at the Naval Research Laboratory is to treat the fundamental processes of the 
problem individually and then to combine them with due concern for the way they interact. 
This operator-split design philosophy requires "asymptotir. techniques" when there are 
short' time scales which we do not wish to resolve. 

Numerical techniques developed at.NRL following this modular "asymptotic" approach 
include CHEMEQ, 1 for the solution of stiff ordinary differential equations, the Slow 
Flow2 and ADINC 3 algorithms for handling flamP propagation problems where it is ~uo cum­
bersome and costly to treat sound waves explic.i'Lly, and DFLlJX 2 :t'or the accurate solution 
of coupled multi-species mass diffusion fluxes. ADNIC and Flux-Corrected Transport 
(FCT) 4

, an explicit transport algorithm technique developed to handle SllpPrsnnic flow, 
solve ~uuve~Live e~uations with near-optimum resolution of steep gradients and fine 
structure .. SPLISH , a Lagrangian two-dimensional triangular grid technique for de­
scribing flows over complicated surfaces, has been d~veloped to PnAhle solution of prob­
lem::! ln complex geometries. 

In this paper, these algorithms will be d:iscussed briefly and references to more 
detailed discussions will be given. Implementation in working codes will be discussed, 
with particular attention to vectorization and achieving maximum efficiency with NRL's 
Texas Instruments ASC. Illustrations will be drawn from combustion modelling work cur­
rently being pursued at NRL. 

REFERENCES 

l. T. R. Young, Jr. and J. P. Boris, "A 
Numerical Technique for Solving Stiff 
Ordinary Differential Equations Asso­
ciated with the Chemical Kinetics of 
Reactive-Flow Problems", J. Phys. Chern., 
81, 2424, 1977. 

2. W. W. Jones and J. P. Boris, "Flame 
and Reactive Jet Studies Using a Self­
Consistent Two-Dimensional Hydrocode", 

92 

J. Chern. Phys., 81, 2532, 1977; 
"Flame- A Alow-Flow Combustion Model", 
by W. W. Jones and J. P. Boris, Naval 
Research Laboratory memorandum report 
No.. 3970, July 1979. 

3. J. P. Boris, "ADNIC: An Implicit La­
grangian Hydrodynamic Code", Naval 
Research Laboratory memorandum report 
No. 4022, June 1979. 



4. J . . P. Boris and D. L. Book, "Solution 
of Continuity Equations by the Method 
of Flux-Corrected Transport", Methods 
in Computational Physics, 16, p 85, 
Academic Press, 1979. 

5. M. J. ·Fritts and J. P. Boris, "The 
Lagrangian Solution of Transient Prob-· 
lems in Hydrodynamics Using a Triangu­
lar Mesh", J. Comp. Phys., 31, 173 
(1979). 

93 



Design Considerations for a Partial Differential Equation Machine< 1) 

Arvind, and Randal E. Bryant 
Laboratory for Computer Science 

Massachusetts Institute of Tectmology 
Cambridg.e, MassachCisetts 02139 

Abstract 

Partial differential. equation (POE) simulation provides an attractive area for the application of highly 
parallel computer systems. The regular and static structures of these problems and the limited data 
dependencies allow them to be mapped onto a system consisting of many interconnected processors. Thi~ 

paper presents an analysis of a program for simulating the hydrodynamic motion and heat flow in a 
compressible fluid. Based on this analysis, some of the issues in designing programming languages and 
computer architectures for POE simulations are discussed. The data flow model of computation is seen to 
provide an attractive means for managing the complexity of highly parallel systems. Data flow concepts 
can be applied to relatively simple architectures specifically designed for POE simulation. 

Introduction 

Partial differential equation (POE) simulation 
has often been proposed as an ideal area for the 
application of hi9hly concurrent computer 

·architectures. The high computational 
requirements of these problems provide an 
incentive . for hi~1h speed computation, while the 
regularity and minimal data dependencies provide 
hope that this speed can be achieved through 
pa~allelism. 

Highly parallel computer architectures diverge 
from traditional, sequential computers· to different 
degrees and in a variety of different ways. This 
paper examines how a computer architecture and 
hi~Jh level programmin9 lan~1uage can be developed 
to achieve hi~Jh performnnce at il reasonable cost, 
while maintaining programmability. Some of the 
architectural considerations include: how the 
processing resources are allocated, how the 
activities of the processors are synchronized, and 
whAt forms of communication are allowed between 
processors. Other potentially important decisions 
such as mechanisms for achieving fault tolerance 
and for input and output will not be considered. 

( 1 ) This r.esearch was supported by the National 
Science Foundation under grant MCS-7902782, 
and by the University of California, Lawrence 
Livermore Laboratory under contract no. 8545403. 

94 

While the above-mentioned design issues are 
directed toward the computer architecture, they 
will also stron~Jiy influence the· design of the 
proqra111111in~J languages supported by the 
mchitecture. To provide reasonable 
proqrammability, the architecture must support 
some abstract model of computation which can 
form a bosis for a hi{lh level programming language. 
For example, traditional architectures can be 
viewed as performing a sequence of updates to a 
set of memory cells, forming the basi~ for 
lnnguo {les such as FORTRAN. Hiyltly parall!:!l 
architP.ctures, however, must diverge from this 
model and hence will require new forms of 
progtammin£1 lan~Jllfl~Jes. Thus we will discuss 
computer architectures and the languages for 
these architectures to9ether. 

We will assume the system consists of a 
number of processing elements (or simply 
"processors"), each capoble of storing and 
exccutinn a JHO~Jrflm and of storing data. 
Exnmples of such systems include the Irvine data 
flow architecture (3, 8], and the Utah data flow 
architectures [ 5, 1 OJ. This model does not 
encompA$S the MIT data flow architecture (7] in 
which the functions of pro{Jram storage, instruction 
execution, nnd data storage are performed by 
separate units. Nonetheless, much of the analysis 
should apply to this system as well. 



The SIMPLE Code 

As a focus for the study we have been 
studying the SIMPLE code [ 4], a 1500 line 
FORTRAN program developed at Lawrence 
Livermore Lnborntories. The SIMPLE code is a 
simplified version of a pror~ram for simulating both 
the hydrodynamics, or mechanical motion, and the 
hem flow. or the conduction of heat between 
re~1ions of a compressible fluid. Most of the 
simplifications servp only to decrease the total 
size of the prowam without decreasing the 
complexities of the numerical model. In comparison 
to other POE simulatior.1 pro~1rams, such as for 
weather simulation or aerodynamic modeling, this 
pruqrarn simulates systems undergoing very rapid 
chnnoes with extremes of temperature and 
pressure nnd also with nwny shocks. As a result 
this simulation requires a more complex numerical 
model. The SIMPLE code may present somewhat of 
a "worst case" ex<~mrle in terms of potential 
concurrency and renularity of computation. 

Althouuh mechanic.ill motion and heat 
conduction procec.d simultaneously in the physical 
system, SIMPLE SE,pMates tile two during each 
time step, simulatinq first the hydrodynamics and 
then the heilt flow. ·1 he fluid is represented in a 

' two-dimensional, Lnwanoinn formulation. A block 
dinqram for the pro9ram is shown in Figure 1. 
Durino the hydrodyn<~mics phase of a cycle, the 
prownm uses the positions x, and velocities v of 
the node points and the pressures p, artificial 
viscosities (l) q, nnd densities p of the zones to 

com.pute new positiC!ns x' of the nodes by an 
explicit difference method. Then new values for 
density P' and mtificial viscosity q' are calculated 

alon9 with intermedinte vnlues of energy E. The 
heat conduction phnse takes these intermediate 
ener~IY values nnd transfers energy between 
zones to represent the flow of heat resulting in 
new eneroics E' by nn alternating-direction implicit 
difference method. It also c'omputes a new set of 

zone pressures p' bnsed on the ener~IY· Finally, a 
vnlue for the sizP. of the next time step Clt Is 
calculated. The time step must be kept small 
enough to nwintaii1 the stability of the computation· 
[ 11]. This requires Cillculating the allowable time 
step for each zone find finding the minimum of 
these values over the entire mesh. Following the 

( 1) Artificial viscosity [ 11] is a computational 
technique used to smooth out shocks 

95 

time step calculation a new cycle can begin. 

Inherent Parallelism and Computational 
Requirements 

An annlysis of the SIMPLE program reveals 
the quantity of computation required and the forms 
of parallelism allowed for a typical POE simulation. 
In SIMPLE the amount of concurrency and the data 
dependencies vary 9rea tiy in the different phases 
of the computation, because of the different 
numnrir.al methods used. These data 
dependencies have important implications for 
Hxploitinq the potential concurrency of the 

prow Am. 

Finure 2 shows the pa~tial ordering on the 
prowarn vnrinbles imposed by the data 
depP.nrl.encies. This dia9ram omits those arcs 
implied by transitivity. As can be seen, the data 
dependencies impose a nearly linear ordering on 
the computations. Most of the variables, however, 
are two-dimensionnl arrays. If we consider the 
arrny P.lernents ns individuAl values to be computed 
we cnn study their data dependencies as well. 
Figure 2 shows four classes of dependencies: 

locnl: arrny element (l<.,f) depends only 
on elements (l<.,f) of the other 

nrrnys. 

neiqhbor: flrray element (1<..1) depends on 
elements (1<,1), (I<.+ 1 .f), (1<.-1,/), 
(I<. ,I+ 1 ), (1<.,1-1 ). 

{llobal: n scalar value depends on all 
elements of the arrays. 

scnlar; every array element depends 
o.n some scalar value. 

As c<~n he seen, most zone and node computations 
depend only on values from nei~Jhboring nodes and 
zones. In fact, mnny computations are fully 
localized. In only n few cases must the results of 
one computation he received from the neighbors 
hefore another computation can proceed. This 
docs not take into account any sharing of program 
or constant data between zone computations to 
reduce the total stora9e ·requirements. 

Finure 3 depicts the potential concurrency 
and computational requirements graphically for a 
1 00 by 1 00 zone mesh assuming that the two 
equation of state calculations for each zone take 



two iterations on average to converge. This figure 
shows how the computation for one time step 

would proceed if unlimited processing and 

communication resources were available. The 

abscissa shows the elapsed time in units of 

floatin~1 point operation times (all operations are 

assumed to require the same time.) The ordinate 

shows the total number of operations proceeding 
concurrently, typically a small constant times the 

number of concurrent zone computations. The area 
of each shaded reqion then shows the total number 
of opmations for each section of the program. 

As Fiqure 3 demonsttates, with unbounded 

processinq capability the heat conduction section 
would require 86% of the eiapsed time, even 

thou~th it represents only tiro ot the total number of 
. or era lions due to the restricted concurrency of 
this section. This anfllysis is somewhat misleading, 
hownvcr. bco<1t1sc oven the heat conduction 

section would allow approximately 220 operations 
to proceed concurrE!nlly. While this is substantially 

less than the 211.000 to 48,000 concurrent 
opcrnlions allowed by other sections of the 

proqram, it still exceeds the capacity of any 

P.xistin{l concurrent architecture. The desire for 
hiqher concurrency may ultimately call for a 
different numerical method, but this conclusion 

should not be r0<1ched too hastily. Figure 3 also 
does not show the possible overlapping of 
cnlculations for two time steps. In SIMPLE this 

possible is limited, because the 6t calculation 

requires the results from one time step before 
allowing the next time step to begin. 

Irregularities in the Computation 

In most sections of SIMPLE, an identical set 
of operations is performed for every zone. These 

sections could bP. carried out by a set of 
processors P.xecutinq identical, or at least very 

similar. instn1r.tion streams. Certain aspects of the 
proqrnm. however, perturb this re{lularity, requiring 

a different set or operations for some of the 

zones. /\ny pro~1rnmmin{l lnn{luage or computer 
architr.ctme whir.h cnnnot deal with these 

irre{llllaritics efficiently may exact a large penalty 
in pro{lrammnbility or performance. 

IJoundary cnlculntions always cause 

irrcqularities in PDE simulations. SIMPLE only 

nllows a limited class of time-invariant boundary 
r.onrlitions. and the boundaries must correspond to: 

the edqes of the rectanoulnr state variable arrays. 
Nonetheless, these boundnry calculations differ In 

their form and dnta dependencies from the 

calculations for internal zones and typically require 
more computntion. In more complex programs, a 
variety of time-varyin~l boundary conditions may be 

srecified, and the boundnries may cause the 

lo~1ical representations of the state variables to 

have irreuul;u perimeters and holes. Calculations 

for boundary conditions will prove the downfall of 

any lannuaue or architecture which requires an 
identical set of operations over an entire array or 
vector. 

Any part of the program for which the flow of 

control depends on data-dependent decisions may 
also cause irrcqulnrities in the program. For 

ex~mpte, ii1 two sect1ons ot ~IMPLE the root of an 
r.qua linn is t;omput P.d iteratively for each zone. 

The number of iterRtions required for convergence 

will differ from zone to zone. Each iteration 

r0quirP.s a si9nificnnt amount of computation, 
cDusinu larue variCitions in the amount of 
computation per zone. Similarly, another section of 
the proqram npproxinwtes a function with a 

piecP.wisc-polynomial curve. Computing this 

function first req11ircs SP.arching a table for the 
nppropriate set of coefficients with a 

· clatn-clependent search time. Finally, whenever an 
exceptional condition is encountered in the 

computation, such ns a quantity exceeding some 
upper or lower limit, the proqram must take steps 

to correct this condition. Thus, the 
clCI t a -clependr-mt ch"!cisions in the program can 

cause both small and lnr~1e irregularities in the 
overall structure of the computation. 

Programming Languages for POE Simulation 

Onr.e the difference equations for a POE 
simulation have beP.n specified, their coding in a 

FORTR/\N-Iike lanouaoe proceeds without difficulty. 

The nrray data structures and DO loop control 

structums provide ndequate expressive power for 

most applications. These programs, however, do 
not run r.fficiently on existing high performance 

computers sucl1 as the Star-1 00, Cray-1, or 

l'llinc IV. The IH0£1fillllS must be carefully hand 
codP.cl (often in assembly l<1nguage) and optimized· 

before the potentinl of these machines can be 
realized. Smart compilers have failed to bridge the 

~tap from traditional lanuuages to high performance 
mar.hinP.s. 

This disappointing performance of FORTRAN 

rrourams stems largely from a mismatch of 
lnnouaue nnd hiqh performance architectures. A 



. FORTRAN program specifies the computation in 
terms of a sequence of updates to individual 

memory locations. ArrAy nnd pipeline computers, 

however, operate most efficiently when working 
with entire arrays or vectors. Thus, the compiler 

. (usunlly auumentecl by a human) must try to 
combine nnd restructure sections of code to make 
full use of vector instructions. If vectors must be 

stored conti~1uously in the memory, further 

complications arise. 

The diqiculties in pronramming existing high 
perforrnnnce machines is further compounded by 
their restrictive architectures. To support high 

level lanquaoes efficiently an architecture must 
lend itself to n process of abstraction in which the 
exact size, configuration, and speed of the 
ha rrlwme components are masked. The 

mchitceture must then hnve the flexibility to 
achieve reasonable performance even with less 

than optimal prowams. Unless the architecture 

supports some nbstract model consistently and 
efficiently, the prowammer will be forced to resort 
to mAchine-level codino to take full advantage of 

the mnchine's power. 

We believe the data flow model of 

r.ompllt<~lion [6] proviclos a suitable bacis to be 
supportP.d by hiqhly concurrent architectures and 

upon which hi~lh level lan9tH1ges can be built. As a 
basis for hi~lh level lannua~JC, the data flow model 
allows prownms to be writt,en which express the 
mnximnl concurrency allowed by an algorithm. 

Control is based solely on the availability of data 
rather tiHtn on the sequential ordering of program 

statements. l·lence, only data dependencies 

constrai.n the proor<Jm's concurrency. 

The data flow model supports functional 
prowammin~l lnnouages in which program 
stntements define functions from the input 
operands to the output VHiues. In a functional 

lanounqe a statement can be executed (i.e. the 

function evnluaterl) as soon as the input operands 
have been computed. Functional languages 

contrast with im(lcn:ttive lannuagP.s in which each 

st<~tement defines n command for altering some 
memory location. and statements must in general 

be executed sP.qttentially. With imperative 

l<mqunqes concurrency can be achieved only by 

· removino the unnecessary sequencing constraints 
in the prnornm. wlwreas such constraints never 
nppear in functionnl programs. Functional 

lanmra~1es which hnve been designed with the data 
flow model as their basis include let [3] and Val [1,. 

97 

2] 

Functional proqramming languages have been 

stP.rP.otyped ns amusing diversions for 

<~cndcmicinns . rnther them serious tools for 

cxprcssinu production scientific programs. The 

syntax and datn structures of lan{luages such as 
Lisp seP.m forcion to most scientific programmers. 
Such difficulties nrise not from their functional 

nature but rc1ther from the purposes these 

lnnnun~1cs (Ire intended to serve. We believe that 
functionc1l lnnf.!Uil£1f!S for sc:ientific programming can 
be developed which will actually simplify the task 

of codin~1 e1nd mnintainin£1 programs. Attempts at 
reprownmminu SIMrLE in Irvine dataflow (ld) have 
proved quite succr,·~ssful. 

Architectures for POE Simulation 

Some hif.lh performance computer 
mchitectures, such ns the Cray-1, have achieved 
remarkable success whilE! maintaining the basic 

sinr.11e sequence control. Others, such as the 
Star-1 00 and !Iliac IV hnve failed to live up to their 
expectntions. WhiiP. the success of the Cray-1 
c<tn be <!scribed lar9ely to the quality of its 
en~1inePrinu. it nlso results from a greater 
to1Nili1CC or the lrre(IUiatities in the program 

structure. The lllinc IV operates efficiently only 

when performinn an identical operation over an 
P.ntire mr(ly, while the Stm operates efficiently 

only on lonu vectors. Sections of the program 
requirinq scnlnr or short vector operations move at 

a mttch slower pace. As <1. result, programs must be 

pninstakin~1ly reworked to maximize their regularity, 
often to a qreiltcr extent than is called for by the 
alqorithm. For example, the holes and irregular 

perimeter of the mesh may be filled with "null" 
zon0.s to rcct<~n£1Uimize the state variable 

descriptions. The Crc1y-1, on the other hand, 

ochieves rensonnble performance with scalar and 
short vector computation:>. As a result, it can 
tolcratP. pnrtinlly vectorized programs. 

Nonetheless, it too requires careful optimization to 
ochicve nwximum pP.rformance. 

All cxistinq architectures have tried to 

nchievc hinh performance by maximtzmg the 
renulority in the pruwilm nnd then exploiting the 
pnr<~IIP.Ii:;m nllowr.d hy this re9ularity. This 

appro<Jch will alwnys force the programmer to 

carefully think in terms or how the program fits 
onto the mnchine. This level of thinking requires 
mnchine-level r.odin~1 to provide the necessary 
cleqrce of control. Furthermore, many programs 



. simply d9 not lend themselves to highly regular 

structurin£1. Future nrchitectural developments 
must follow a new path if they are to achieve 

significantly hiqher performance and 

pro~1rammnhility. 

lis we have seen, POE simulation programs 

potentially allow a hir,1h degree of concurrency in 
their execution. To exploit this concurrency 

. effectively. 11 computer must be capable of 

concurrently executing different instructions on 
different dntn. Within this framework, one can. 

choose from n vnriety of schemes for processor 

synchronizntion, resource allocation, and processor 

interconnection. These design decisions result in 
trncte-otfs l>etwceti cost, performance, and 
proqrnmnwhility. 

Procossor Synchronization 

The processors in the system must 
synclnoni ze with one another in order to 
communicate. With control-driven synchronization, 

the processors trnnsmit and accept values at 
points in time determined by external control 

siun«ls. For example, with lock-step 
synchronization the processors are periodically 
synchronized by a central controller for the 
purpose of exciH1n9in9 data. Between 
synchronization points each processor executes a 

small code se~1111ent based on the newly received 
dntn. With lock-step synchronization, a 
time-r.onsuminq computation for one portion of the 
mesh will cause most of the system to remain idle 
until this computation is completed. 

In 1:1 ::;y::;tl.!lll bctst:d on data-driven 

synchronization the processors independently 
execu.te their own instruction streams waiting only 

· when cia ta is needed from some other processor. A 

l"rocessor sends dnta to another as soon as it has 
been computed in a "packet" containing the data 

value and some identification of the data. 
Oat a-driven synchronization allows greater 
autonomy of processors ·and greater asynchrony in 

their operation. Small irregularities can be 

nhsorbed by ne;uhy processors rather than cause 

qlobal im"!fficiencies. Of course, data-driven 

synchronization docs not guarantee that all 
processors will be fully utilized, but it provides an 

important step. 

Data-driven synchronization also helps 

provide the flexibility of operation needed to 
support hi9h level IAn~1uages. By removing the 

98 

~1lobal synchronization of processors we decrease 
the severity of the penillty paid by nonoptimal 

proqrnm irnplementntions. 

Processor Allocation 

A lflr(IC scnle computer system contains a 
variety of resources for processing, storage, and 

communication. These resources must be allocated 
both in time And in space, with the optimal_ 

nllocation dP.pendinn on ·the configuration and 
spc0.·d of the system components as well as on the 

pro9r<1m itself. Thus, the subject of resource 
nllocntion is lmne and complex. For the purpose of 

this paper we will consider mainly the_ allocation of 
processinq resources. 

The spatial ;dluca liu11 of t1rocessors involves 

mnppinrt thP. rliffr.rcnt nctivities to be performed 
onto the processors of the system. With static· 
mappillf.l. the spatial allocation is fixed before the 

proqrnm P.xecution beoins. POE simulations, with 
their re~JIIIAr and well-defined structures suggest a 
variety of static mappin~l schemes such as one 

zone· and/or onP. node per processor, or one row of 
zones per processor. As long as the size of the 

problem motclws tiH'! size of the system, and the 

nmount of computntlon per processor can be 
rensonnbly well ~!qualized, this approach seems 
quitP. attrnctive. 

With dynamic mnppin9 the activities of the 

proqrnm are nssinnecl to the processors as the 
r.xP.cution procnr.cls. This approach would in 
principle maximize the utilizntion of the processors 

nnd allow for hi~1hly irre9ular and dynamically 

chnnoinn prownm 3tructure3. However, the 
difficulty of effectively mapping tasks onto 

processors nncl the overhead needed to perform 
this allocation nwy ne{late the potential benefits. 

In addition to nwppin9 the operations onto the-
, processors, the opcrt~tions of each processor must 
he ordered in time. This scheduling of tasks within 

each procP.s:>or ciln occur either statically or 
dynnrnicnlly. St11tic scheduling occurs in 
conventionnl processors where the order of 
instruction execution is fixed in advance. While 
this flppronch leilds to simpler processor design, it 

is vulncrnble to the SAme problems as lock-step. 
synchronizn tion when opplied to multiple processor· 

:>y:>tP.ms. llniP.ss operations can be scheduled so 
that dilta arrivr..<> before the operation which needs 

them is initiated, a processor will sit Idle even if it 

has other tasks to perform. Static scheduling 



within a processor would require a detailed timing 

flll<tlysis of the proqram and would fail when 
computations ox·c:eed their expected time. A 

dynflmic schedulino scheme, on the other hand, 

involves simply mflintaining a task list and 

executinn tl10se tnsks for which the data Is 
present. The incrensed flexibility and performance 

of clynnmic task schedulin{l within each processor 
will easily offset its overhend. 

Processor Interconnection Schemes 

A variety of interconnection schemes have 
been proposed for multiple processor systems [3, 

7, 9). RflthP.r than discussin9 the details of each 

of the.sP. clesi~Jns. we shnll explore some of the 
properties of tlw:>e interconnection schemes In the. 

context of the prqhlE!Ill at hand. 

Some interconnection schemes such as trees, 
rin~Js. and Cmtesinn qrids favor local over 
lonn-rlistnnce communication, whereas others such 

ns the routin~1 networks of the MIT data flow 
machine [ 7] require the same communication delay 
between any pilir of nodes. Those favoring local 
communiciltion typicolly require fewer components 
(switches nnd wires) and allow faster 

comn11111ication in thP. loc:ol case but are slower in 

the lono-rlistance cnse. 

1\s wns SP.P.n in Fioure 2, the SIMPLE program 
shows fl qreflt deill of locnlity between zone 
computotions. Mnny computations depend only on 

clntn local to the zone while many others require. 

data from only nrdqhhorino zones. Thus a potential 

does exist for exploitin~l the locality of 
comrnuniciltion. The milppin~l of operations onto 

JHOCP.ssors, however, must match the locality in 
the proqr,,m to the locnlily in the communication 

system. The cleqrce to which this can be achieved 

clepP.nds on the ilc:tivity mappin9 scheme and the 
type of Interconnection network. 

With stntic: spntinl mapping. one can easily 
inw nine nwppino ml jilcent zone computations onto 
flrljnr.cnt prnr.P.ssors. If the prownm size and 

str11ct11re does not miltc:h the system size and 

structure. however. complete locality cannot be. 
nwintnined. For f!Xnmple, if the prouram has a 60 
by 1 nO ?.one mesh, it cnnnot be mapped onto a 

1 00 by 1 00 nrrny of processors while maintaining 

the locality of the prownm and utilizing as many 
processors ns possible. If resources are allocated 
dynamicnlly, on tlw other· hand, the. assignment 
function must mnp operations which are likely to 

99 

communicnte onto nearby processors. This would 

weatly complicnte the resource allocation problem. 

Finnlly, even SIMPLE requires some global 
communicntion for findinq n minimum over all zones 

and' for distrihutin9 scniar values. One may also 

wnnt to restrict the number of redundant copie's of 

dnta or code to silve storn~1e. thereby increasing 
the lonu-cJistnnce r.ommunication requirements. 

Thus. the delay incurred by long-distance· 
.communica lion r.annot be too great, although no 
qu.1ntitative requimments have been derived yet. 

In summary, the structure SIMPLE code at 

first {llnnce SU{lqP.StS a simple interconnected 
nrray of processors. Such a scheme would 
minimi7.e the cost nnrl nnturally reflect most of the 

data clcpenclenr.ies of the al~1orithm. After further 
study. however. one reillizes that global 

c:ommunicntion would probably take too long with 

such a scheme. and the configuration would not 
tolernte program structures and processor 

nssi~Jnment sr.hemes which do not match this 
comwctivity.. Nonetheless, a fully uniform 
interconnP.ction schr.me does not seem to be 

required, nor could its inilbility to take advantage 
of locality be tolerotecl. Some elaboration on an 
interconner.ted mrily of processors seems the 
niost cost effectivP.. 

Conclusion 

nesenrch in clntn flow has been inspired 
lar~1ely by theoreticnl models of computation and 
lnnqUil£Jf-!S. I !once, JHOqramming languages have 

ll f-! en s tudiccl thoroughly, nnd urea ter consensus 

has been renched on their desiqn. Exercises in 

prowamming scientific proqrams such as SIMPLE in 
hioh h~vP.l clntn flow lnnouages have proved quite 
promisinq in terms of hoth ease nne! the amount of 

concurrency which is shown. It has become clear 

thnt prowammin~J lilnqua~JCS for highly concurrent 
sy:-:tems must hrc.1k nwny from the sequential 

memory upclnte model of the Von Neumann 
computer nnd instead allow pronrams to be 

P.XJHCssecl in n mnximally concurrent, functional 
form. 

Aescnrch in nrr.hitecture to support the data 

flow morfol. on I he other hnnd. has not conlesced 
. into n woll-dofincd hody knowled{Je. Most efforts 

h<jvn hncn directed at specific architectures with 
particulnr hiilse.s in terms of generality, 

perform<tiiCP., and r.ost. In studying the range of 

possihiP. mchitecturcs for partial differential 



equation simulation, it has become apparent that 

clntn flow concepts con and indeed should be 
opplir.d at n Vilrir.ty of dif.fment levels. At the 

lowest ~evels, the architecture would be 

specinlized towmd the types of problems to be 

solved in terms of confiuuration, processor 
nllocotion, and interconnection but would employ 
dnta-driven control and il dynamic scheduling of 

nctivities within processors. These classes of 
machines would still require a certain amount of 

effort in nwppin~J n prowam onto a machine but 
would at least nllow a much more abstract view 
than do existin~J hi~Jh performance machines. At 
higher levels of sophisticotion the architecture 
would support ll verv abstract data flow mode and 
clyrwmically hnndle all problems of resource 

nt'lociltion. I hese mnchmes would allow more 
neneral classes of prooroms and would be less 

nffccled by irre9ulor prowam structures and less 
thnn optimal code. Which type of machine should 

be built depends lnr£tely on the nature of the 
problems to be solved. the sophistication of the 

user community. and the acceptable cost of a 
nwchine. For POE simulations. with their high 
computationnl requirements and statically-defined, 

renular structures, a specialized machine with 

static octivity nwppin9 and limited processor 
interconnections may indeed prove the best 
choice. 

Acl<nowledgements 

Our work l1<1s been aided ~treatly by the help 

~liven by John Myers as a consultant to the MIT 
Laboratory for Computer Science. We are also 
{lrnteful to Chris H£HHirickson, Tim Rudy, and John 
Woodruff of Lowrence Livermore Laboratory for 

first developinu the SIMPLE program and then 

explainin£1 nwny of the fine points of POE 
simulntion. 

Refer<lnces 

[1] Ackerman. W., "Data Flow Languages," 
Proceedings of the 1979 National Computer 
Conference, /\FIPS ( 1 979). 

[2] /\ckerrnon, W., r~nd J. Dennis, "VAL -- A 

.Voluc-Oriented /\I£JOrithmic Language: 

Prelirnlnnry Reference Manual," Computation 
Structures Group, Laboratory for Computer 

Science, MIT, Cambrid{le, Mass. ( 1 979). 

100 

[3] /\rvind. K. P. Gostelow, and W. Plouffe, An 

llsyncl1ronous Programming Language and 

Computing Machine, University of California 
Irvine Technical Report TR-114a (December, 
1 978). 

[ 1.1) Crowley, W. P., C. P. Hendrickson, and T. E. 

Rudy, The SIMNE Code, Internal Report 
UC ID-1 7 71 5. Lawrence Livermore 
Lahorntories, l.ivermore, Ca. (Feb., 1978). 

[5] Dovis. A. L.. "A Loosely-Coupled Applicative 

Multi-Processing System," Proceedings of 

the 797!} National Computer Conference, 
AF!PS (June, 1 979). 

[6] Dl:!nnis, J. B .• "first Version of a ·oata Flow. 

1-'roccclum Languaoe," Programming 
Symposium: Proceedings, Colloque sur Ia 

Programnwlion, (B. Robinet, Ed.), Lecture 

Notes in Computer Science 19 (1974), 
362-376. 

[7] Dennis, ,J. · !;., ancl 0. P. Misunas, "A 
Prr.liminmy Architecture for a Basic 

Data-Flow Processor," The Second Annual 

Symposium on Computer Architecture: 

[8] 

Conference Proceedings, (January, 1 975), 
126-132. 

Gostelow, K. P., and R. E. Thomas, 
Performance of a Data-Flow Computer, 

Univc:rslty of C<tllfornla Irvine Technical 
Report TR-127 (April, 1 979). 

[9] Gritton, E. C., et a/, Feasibility of a Special 

Purpose Computer to Solve the 

Navier-Stokes Equatrons, Rand Technical 

Report R-2183-RC, Rand Corporation, Santa 
Monica, Ca. ( 1 977). 

[ 1 0] Kellr.r. R., S. Patil, and G. Lindstrom, "An 

Architecture for a Loosely-Coupled Parallel 

Processor," Proceedings of the 7979 

N;;~lional Computer Conference, AFIPS 

( Hl7!1). 

[ 11] Richtrnyer, and Morton, Difference Methods 

for Initial Value Problems, Wiley 

lnterscience, New York ( 1 967). 



Figure 1. Block Diagram of SIMPLE 

..J(. 

Hydro- ' ' Heat x, v,p, q x,p 

dynamics Conduction 
' 

.J'. 
p, 

p, £ __. 

. I 

Figure 2. Data Dependencies in SIMPLE 

~-v 
Iff:--
' I 

! I 

SIG 

II 

£ 

I I 
1 1 A~ 

\i -l~ 
I I I: 

bG ~~~~~F-=-~-~-=-~-~-~-~-~-~-~~-=-~-~-~-~-~-~-~-~-~-~-~-~-~1, .Ll b.I/41Ti- - - : -- -------- --- ---- - -- - - -r~ 

I I 

II I 

~ ~ ~ E)' "-- -------11 
I I 

I I £.tnc. 
~:. -_-.:-.:-.:-_-

.... _ -- -.-

__.. 

I ... 
I b.t 

"' p 

local data dependency 

· b. thydro 

·+ 
minimum 

~~::-=::;:..· -=-=--="""')=)~-=-=--=-=-:::~~• neighbor data dependency 

••=~~G~>~~===tf global data dependency 

£ - - ..:>-- -:: : 3 distribution of scalar 

101 

p', E' 

b. th eo t 

I 



. Figure 3, 

# of 

-Operations 

x 103 

50 

40 

30 

20 

10 

0 

Assumptions: 

kmx, lmx = 100. 

2 

Potential Concurrency 
SIMPLE Code, 1 0,000 zones 

Conductonc es 
(24/zone) 

Hydrodynamics 

( 360/zone) 

4 

Typically: 
100,000 time steps 
400 billion f.p. ops. 

Energy: 

Table Lookup 

( 3 2 I zone) 

I rnp I ic it Temperature 
·Calculation (22/zone) 

6 8 12 
Time (unit= 100 floating_ point add· times) 

All flo a tin9 point operations take one time unit. 

102 

14 



VECTORIZED SPARSE ELIMINATION 

D. A. Calahan 
Department of Electrical and Computer Engineering 

University of Michigan 
Ann Arbor, MI 48109 

ABSTRACT 

Vectorizable sparse equation solution algorithms are classified by 
the matrix structure which they favor. The state-of-the-art for solution 
of.relatively dense systems is then reviewed. A hybrid vector construct 
is defined for the increasingly common structure of both moderate local 
matrix density and global matrix regularity. Estimates are made of CRAY-
1 speedup achievable with this construct. A finite difference matrix is 
studied as an example. 

INTRODUCTION 

Direct solution of sparse 
systems has enjqyed wide applica­
tion to simulation of lumped phy­
sical systems described by ordin­
ary differential equations. Also, 
the last decade has seen a move­
ment toward implicit solution of 
partial differential equations 
away from explicit procedures. An 
excellent example is Navier Stokes 
aerodynamic simulation codes, 
which have changed from the purely 
explicit, through hybrid explicit­
implici~and now purely implicit 
procedures2. 

The vectorization of direct 
solution portions of large codes 
has an immediate aspect related to 
the receding of specific equation 
solvers for a particular architec­
ture. Although most vector archi­
tectures have at least a minimal 
provision for sparse vector opera­
tions, an overhead is inevitably 
incurred in reduced memory band­
width and/or t~e loading of assoc­
iated bit maps and linked lists. 
It is the goal of research in· 
sparse matrix algorithms to reduce 
this overhead by re-organization 
of the computation either (l) to 
obtain longer vectors, or (2) to 
reduce data flow, and thus achieve 
an overall speedup. 

This paper (l) classifies 
sparse matrix characteristics 
amenable to vector processing, (2) 
reviews the state-of-the-art in 
solving certain of these problems, 

103 

and (3) presents new results in 
the detection of vectors in pat­
terned sparse systems. All of the 
experimental results were obtained 
from the CRAY-1; even the algorithm 
classifications to be made are 
useful only for a memory~hierarchL­
cal processor of the CRAY-1 class 
with a range of scalar, short 
vector, and lonq vector capabili­
ties. 

CLASSIFICATION 

Consider the linear system 
Ax = b solved by triangular fact­
orization of A into Land U. As­
sume that the factorization has 
proceeded by outer product column­
row operations so that an nxn un­
reduced system remains. The stzuc­
ture of this unreduced system-­
which includes fill from the com­
pleted portion of the reduction-­
then becomes the principal issue 
in determination of the sparsity 
algorithm to be used during the 
remainder of the reduction. This 
is an important generalization 
beyond examination of only the 
structure of A, since it suggests 
the use of different algorithms 
(polyalgorithms) as the reduction 
proceeds and fill increases the 
density of the unreduced portion. 

Four sparsity structures will 
be considered at various parts or 
this paper; they are listed below 
to assist in unifying the later 
discussion. These distinguishing 



attributes are related to local 
and global sparsity characteris­
tics: 

(a) locally and globally 
dense, partitioned; 

(b) locally dense, globally 
unpatterned; 

.(c) locally dense, globally 
patterned; 

(d) locally .sparse, globally 
patterned; 

(e) locally sparse, globally 
unpatterned. 

The last is the least vectorizabla 
Its scalar solution is probably 
amenable to speedup only by using 
a MIMD architecture) and so will 
not be discussed further. 

BLOCK-ORIENTED SPARSE SOLUTION 

INTRODUCTION 

Two classes of relatively 
dense matrices benefit from solu­
tion by a general sparse solver 
which is oriented toward the solu­
tion of block structures. Al­
though algorithmically less 
challenging than the sparser case 
to be studied later, such struc­
tures are becoming more common due 
to the aforementioned increase in the 
implicitness of PDE solution code& 

THE DENSE, PARTITIONED CASE 

The utility of a general 
sparse solver in the analysis of 
full, banded, and other dense 
systems arises from vector length 
limitations of the processor, 
which in turn results from a rela­
tively small cache memory in a 
hierarchial memory system. Such 
dense systems must be block­
partitioned; in the case of the 
CRAY-1, these partitions must be 
limited in one dimension to 64, 
the maximum vector length of the 
machine. Using a general solver 
avoids the writing of specialized 
assembly language routines for 
dense systems with globally dif­
ferent density patterns but ·which 
are partitioned into locally sim­
ilar 64-length or smaller dense 
blqcks. 

The processing of such large 
blocks with a sparse solver can be 
carried out on the CRAY-1 with 

104 

>99.9% of the solution time in 
numeric kernels, and with <.1% in 
processing of lists resulting from 
the general sparsity assumption. 
A variety of common compressed 
storage schemes can also be accom­
odated4. 

LOCAL DENSITY 

Moderate-sized dense blocks 
occur naturally from the represen­
tation of variable and equation 
coupling, from nodal coupling in a 
g~id, and from coordinate trans­
formations, amonq other causes. 
In the absence of other vectoriza­
tion strategies (to be discussed 
shortly), it becomes necessary to 
reduce the system a block at a 
time with dense matrix kernels of 
a bluck=oriented s~arse solver. 
Descriptors of the location and 
size of the block suffice to iuide 
the solution of such a system . 

The overhead of list process­
ing of the blocks may be compen­
sated by finely-tuned numeric 
kernels, with the net result that 
a general solver can execute at a 
higher rate than a conventionally­
coded specialized solver4. 

The execution rate is of 
course highly dependent on the 
ml:ltrix sparsity strucLur8. How­
ever, a timing model of the num­
eric kernels and the list process­
ing overhead4 allows the esta­
blishment of MFLOPS bounds for 
matrices of constant block si~es 
but arbitrary block sparsity 
patterns. Such bounds are given 
in Table 1 for the CRAY-1. The 
minimum rate is achieved with a 
single off-diagonal block (e.g., 
block tridiagonal) and the maximum 
'with r off-diagonal blocks (Figure 
1), as r+oo. 

LOCALLY DENSE, GLOBALLY PATTERNED 
SPARSE SYSTEMS 

INTRODUCTION 

Table 1 shows that processing 
block sizes with dimensions below 
10 utilizes a small fraction of 
the CRAY-1 processor speed. To 
regain a high processing rate, 
another structural property be-



Block 
sizes 

2 
3 
4 
6 
8 

12 
16 
32 
64 

MFLOPS 
range 

1.9 - 7.6 
5.0 - 17. 
10. - 26. 
21. - 43. 
32. - 60. 
54. - 84. 
69. - 98. 

102. - 124. 
126. - 141. 

Table 1. Performance of general 
block sparse system 
solver on the CRAY-1 

Diagonal 
block 

---l••r blocks 

D 
!D 
blocks 

• • • • • 

Figure 1. Model of block pivot 
step 

sides density should be exploited. 
It is proposed to utilize global 
similarities or patterns to length­
en density-related vectors. These 
will be termed hybrid vectors and 
are the subject of the remainder of 
this paper. 

A "bottom-up" approach will be 
used. After defining and illustra­
ting the model hybrid problem, it 
will first be demonstrated that the 
CRAY-1 .can achieve considerably 
higher execution rates on hybrid­
related kernels. Then it will be 
shown how such hybrid vectors can 
be achieved with common finite 
difference (or finite element) 
structures. 

GLOBAL vs. LOCAL PROPERTIES 

In establishing the hybrid 
vector concept, it will be useful 

105 

to use the notion of the graph of 
a matrix. 

The non-zero structure of a 
matrix A, where A is structurally 
symmetric, has a convenient graph 
theoretic formulation. Assume 
that aii~O, i=l,2, ... n. Let V = 
{vl,v2, ... vn}, with the vi termed 
vertices and V the vertex set. 
Define a set P of ordered pairs of 
V, called edges, by (vi,vj)E P if 
and only if ai·O and k~j. Then 
G=G(V,P) is called the graph of A. 
Note that, because the matrix is 
structurally symmetric, (vi,Vj)E P 
if and only if (vj,vi)E P. 

To illustrate the relation­
ship between local and global pro­
perties, consider the subgraphs 
G1 and G2 of Figure 2(a). These 
subgraphs are possibly connected 
by paths through vertices not 
shown, but are assumed to be not 
directly connected. If the assoc­
iated equations are arranged in 
the numbered order, the partial 
matrix structure of Figure 2(b) re­
sults. This structure is locally 
dense (contrast full) but globally 
sparse, since the two dense sub­
matrices are not coup.led in the 
northwest matrix partition. If 
the equations are reordered so 
that similarly-connected nodes are 
consecutively ordered, then each 
of the resulting 16 partitions is 
either a diagonal or a null sub­
matrix (Figure 2(c)). Because 
most sparse blocks are coupled to 
other sparse blocks by diagonal 
coupling blocks, ·.the matrix struc­
ture is now termed globally dense. 
(It may be noted that the local 
density pattern of each dense 
block of Figure 2(b) is identical 
to the global density pattern of 
Figure 2(c) .) The factorization 
of the northwest corner of the _ 
system matrix may utilize any a~o­
rithm, independently of the algo­
rithms used to reduce the remain­
der of the matrix. 

If the connection symmetry 
between the two sets of nodes 
undergoing reduction extends to 
their interconnections to other 
unreduced nodes as in Figure 3(a), 
and if these unreduced nodes are 
properly ordered as shown, then 
the northeast and southwest parti-



graph 

arbitrary 
density 

(a) Similar·subgraphs (G
1 

and G
2

) 

12345678 I 
I 

X X X X I 
X X X I 
X X I 
X X X I 

X X X X I 
X X X I 

-- -- ~ :< ~ -! -I-
arbitrary 
density I • 

I 

(b) Locally dense, globally sparse 
corner 

1 5 2 6 3 7 4 8 

(c) Locally sparse, globally 
dense corner. 

Figure 2. Relationships between 
local, global matrix 
properties 

106 

graph 

arbitrary 
density 

3 
4 

8 

2 

(a) Similar subgraphs and connect­
ions (o-node undergoing reduc­
tion; •-unreduced node) . 

1 2 3 4 5 6 I 7 8 9 10 
I 

~~~: ~ 
~:~~
- - - - - - _I - - - - - - -
~ I arbitrary

~ ~
1

density

(b) Associated matrix

Figure 3. Similar subgraphs wlth
similar connections to
rest of graph.

tions can be made .to contain simi­
lar diagonal coupling matrices
(Figure 3 (b) .

KERNEL STUDY

In solution of large sparse
systems, the multiplication/accum­
ulation (M/A) kernel dominates
other numeric kernels. Elimina­
tion of a strip of row and column
blocks synunetrically coupling a
diagonal block to r other diagonal
blocks (Figure 1) requires (a) fac-

torization of a diagonal block,
(b) r block forward and back sub­
stitutions, and (c) r2 multiplica­
tions/accumulations. For r=3 (a
common number for dissected finite
element and finite difference
grids), 69% of the operations are
of the M/A type. The M/A kernel
therefore warrants principle study.

The nature of the M/A model
kernel with both local diagonal
sparsity and global density is
illustrated in Figure 4. It is
proposed to study the execution of
the kernel

C +- C ± A*B (1)

where A, B, and C are illustrated
in the figure.

diagonal
block

B-+r blocks

A r------""'

r
blocks

Figure 4.

~~~+-C 
··\1~~-· 
~~~ . -----­unreduced 

matrix partition

Example of model
problem

The preference for processing
hybrid kernels can be expected to
arise from the interconnection or,
more generally, the data flow pro­
tocol of the processor. For the
CRAY-1, two recursive features of
the vector registers permit high
performance M/A kernels.

4-Matrix M/A. The pattern illus­
trated by the matrix multiply

107

A * B

xxAllxx X xx8 llxx X
X X

XX X X XX X X
X X X X

xxA2lxx X X X X
X X X X (2) X X X X XX X

X X X X X

xxA3lxx X X X X
X X X X

X X X X X XX X X X X X

represents, on equation reordering,
the. simultaneous multiplication of
four 3x3 full matrices. It ii
proposed to ·implement the assoc­
iated accumulation kernel by form­
ing

clj clj Alk
3

c2j +- c2j ± L: Bkj A2k (3)
k=l

c3j c3j A3k

i.e., by accumulating a column of
diagonal blocks of C. To perform
each term of the summation by a
single chained multiply-add vector
operation with the CRAY-1 requires
chain replications of the 4-length
Dkj to a 12-length vector so that
the overhead of the replication
does not seriously impact the over­
all timing.

The basis of this replication
is the recursive feature of the
vector logical pipeline, whereby,
if the same vector register is both
operand and result register-­
usually prohibited in register
allocation--data will be delayed
four clocks in the pipeline and
the desired replication achieved.
Figure 5 gives the CAL instruction
sequence and the clock level report
of a part of the accumulation loop,
as reproduced by a CRAY-1 timing
simulatorS.

Table 2 gives the execution
rates of a complete 4-matrix mul­
tiply, in comparison with the rates
of two full matrix multiply kernels
previously studied. The standard
full kernel for short vectors pro­
duces large gaps in the floating
point pipelines due to the chain­
ing6,7. The high-performance
matrix multiply kernel avoids
chaining and the consequent gaps

but suffers from register and pipe­
line reservations and addressing
overhead resulting from four sep­
arate invocations of the full mat­
trix multiply. Table 2 shows that
nearly three times the execution
rate is achieved for multiplication
of four 4x4 matrices with the spec~
ialized kernel, in comparison with
the standard CAL kernel.

8 Matrix M/A. A similar recursive
feature of the addition pipeline
allows the rapid accumulation of

T FFF
A INSTRUCTION P'···ADDR CP PPPVVV
G +*I&>+
5 Vt ,AO,AO :34C f.,28: oz
6 A3 AO+A3 54[1 629:oz

630 oz
7 A3 A3+At 55~ 631 0
8 VL A':' 5'.5B ~2 0
9 AO AO+A~i ::~:"ic f.,3:~ 0
A A5 A5tA6 5~'j[l 1.,34 0

b35 0
B A5 AO+A5 51.> A 1.>36 0
c vo ,AO,AO 56B 1.>37 0

1.>38 0
639 0
f.,40
64:1.

[I V3 V3!V1&VM !:'i6C 642 [I

~.>4::~ [I

1.>44 [I

1.>4::) [I

E V4 V3*F~VO 56[1 1.>46 E [I

F AO AO+A4 !:'i7A b47 E [I

G A4 A4+A:I. :J/B {,48 E [I

649 E [I

6!50 I E [I

b:J:J. 1::. [I

b52 E n
b!:-i3 F [I

b!:'i4 E [I

H Vb V7+FV4 57C 6!55 HE [I

I VL Al !:'i7D b~.'i6 HE [I

b!:'il HE [I

b58 HE [I

b~.'i9 HE [I

bi.,O HE [I

bb:J. HE [I

bb2 HE [I

6b3,HE [I

b64:HE [I

8-length vectors and consequently
the simultaneous multiplication of
8 matrices. This is a well ·known
feature described in [8] and will
not be discussed here. It suffices
to note in Table 2 the extraordin­
ary speedups achievable with very
small matrices. However, the
execution rate has a large dis­
continuity between n=7 and n=8;
due to the nature of the algorithm,
and is less desirable beyond n=7
than a 4-matrix multiply.

v. li:EG BBRRR t~

'·' B. li:EG A A. li:EG
SCKKI'\ li: R

0:1.234:7i6/ F:I.I~BC AO:J.234:'5b/ AO:I.234:7i67
!:'iO 00 : !5 4
~)() 00 II::"

,.J 4 6
:so 00 r:.-

•• J 4 6 6
~)() 00 .:;•,

,.J 4 4 7
::;o 00 "'" ,.J l 7
:::;o 00 !5 9
!30 00 ·=· ,.J 99 A
50 00 ·==· ,.J A ~I
•:.-•. J 0 B

C* 0 c ,B B
C5 0 f' ·'
C5 0 c
c•.,. ,..J 0 c
C5 0 c
CD [I 0 c
CD [I 0 f' ·'
CD n f'
CD [I c
ED EE c

,ED EE c F
:ED EF c :FF G
:ED EE c :G G

ED EE :c
ED I~. I:~ :c
ED EE :c
ED EE c
ED El::: c
ED EH HH c
ED EH HH c
ED EH HH c
ED EH HH c
En EH HH c

.Fn EH HH c
:En EH HH c
:En EH HH c
:ED El-l *H c
:ED EH HH c . • . . . • + • t •

/04:HE D :ED El-l HH:C
/05:HE [I :En EH HH:

..J V:l. ,AO,AO bOA 701.> :HE [I :E..J El-l HH:..J

Figure 5. Simulator output for 4-matrix accumulation instruction se-
quence for VL = 64. Vl is replicated into V3 with VM = 0077 . . 7 8.

108

Full High- 4- 8-
matrix Stand. perf. matrix matrix

size full full hybrid hybrid**

2 7.6 8.7 17.2 22.1

4 19. 30. 54.0 55.7

6 NT* NT 76.3 88.5

8 43. 64. 90.2 72.5

10 NT NT 97.8 90.8

16 88. 102. 119.

* Not tested
** Positive accumulation only

Table 2. Execution rates (MFLOPS)
of matrix multiply ker­
nels. Subroutine entry
and exit overhead is not
included.

AN ALGORITHMIC OVERVIEW

An important algorithmic pro­
perty of the above hybrid vector
construct is that the kernel vector
length is proportional to the prh­
duct of factors related to (1) t e
lo~al matrix density and (2) the
global matrix patterns. In less
precise terms, one may claim the
length is the product of local
coupling and global decoupling.

In solution of large init­
ially sparse patterned systems,as
the reduction progresses fill
causes the coupling to increase
and the decoupling to decrease,
leaving the possibility that their
product remains a relative constant.

Such a result could produce a
very useful generalization of
previous work (ref. [9) [10]) where
vector lengths were assumed a func­
tion of the local density only or
global patterns onlyll. To length­
en vectors by increasing local
density, previous algorithms were
inevitably driven to an increase
in the arithmetic computational
complexitylO.

The following study can be
considered an initial investiga­
tion into the production of hybrid
vectors for finite difference grids.

109

A number of algorithmic questions
will be left unanswered, a topic
for continuing research.

GENERATION OF HYBRID VECTORS

INTRODUCTION

Given the graph of a matrix,
it is proposed to perform opera­
tions on this graph which yield
hybrid vectors in the matrix re­
duction with either no increase or
a determinable increase in the
arithmetic operation count. The
example of a 5-point 2-D finite
difference grid will be used to
illustrate the procedure, because
of its connection regularity and
because its solution by nested dis­
section is characterized by exploi­
tation of decoupling to achieve a
reduced arithmetic operation count
for large grids. The reader is
assumed to be familiar with this
dissection processl2,13.

FOLDING AND ROTATION

The (diagonal) nested dissec­
tion of a 5x5 grid proceeds by re­
cursively dividing the grid into
quadrants until each quadrant con­
sists of a single node. This div­
ision is performed along diagonal
separators, which are lines of
nodes whose removal divides the
graph int~ unconnected parts.

It is clear from Figure 6(a)
that, since the quadrants have a
similar structure, "similarly-pos­
itioned" vertices not on a separator
may be eliminated simultaneously
with vector operations, without
increasing arithmetic computation.
These vectors will be of length
four, as required for the 4-matr-ix
kernel of Figure 5.

"Similarly-positioned" nodes
can be generated by overlaying the
quadrants so that a single node in
the overlay represents .4 nodes.
This single-quadrant representation
of the 4 quadrants may be achieved
by folding or rotating the original
graph. This rotation process is
illustrated in Figure 6(a)-(b); a
recursive folding process - which
generates vectors of decreasing
length - is discussed in ref. [14].

Because the non-separator
nodes are eliminated first in the
nested dissection process, these
interior nodes are represented by
the northwest corner of the system
matrix; this corner is consequent­
ly guaranteed to consist of 4x4
blocks with either diagonal or null
structure .. The southeast corner
of LU, representing the reduction
of the separator nodes, is dense
and can be reduced at execution
rates exceeding 100 MFLOPS. The
northeast and southwest partitions,
however, represent coupling between
the separators and the interior
nodes of the quadrants. Asymptoti­
cally in the grid dimensions,
operations involving these two
p~rtitions consist of approximate­
ly 30% of the total, so that the
choice of a proper kernel is im­
portant (Figure 7). Irregularity
in these coupling matrices results
in part from the separator nodes
shared by Ql and Q4 (nodes #1, #7
and #13 in Figure 6(a)) in the
rotation sequence. The regula~ity
may be restored by cutting the
graph along the boundary, adding
nodes and associated unknowns, and
adding equations that relate the
new nodes to the originally shared
ones. This cutting process 1s il­
lustrated in Figure 6(c)-(d).

The structure of L and U re­
sulting from application of such
cutting to a 17 x 17 finite dif­
ference grid is shown in Figure
8(b). The conventional nested
dissection ordering for the same
matrix yields the LU map of Figure
8(a~. Coupling in the northwest
partition appears as 4x4 diagonal
blocks, as predicted; coupling in
the northeast and southwest par­
titions appears as 4-length stripes,
but not necessarily as 4~4 diagonal
blocks. Thus a somewhat modified
4-~atrix accumulation kernel would
have to be used. The addition of
the 8 nodes along the cut also in­
creases each dimension of the dense
southeast corner of LU by approxi­
mately 25%. The total increase in
computation resulting from cutting
is a·s yet undetermined.

SUMMARY

Vectorization and data flow

110

(a)

(b) 3,15,23,11

\ -
1,5,25,21 v 2,25,21,1

cut

(c)

13

/ '
/ '

Q3 25

(d) 3,15,23,11

\
1.S.25,21v5.25.21,26.

13

Figure 6. Rotation of quadrants (a)
into single-quadrant
representation (b); ro­
tation with cut and
creation of nodes ((b)­
(c)) •

for a memory hierarchical process­
or add two new issues to be con­
sidered in the development of codes
for the direct solution of 2-D
finite difference grids. What is
a single algorithm class--nested
dissection--for a scalar machine
now divides into subclasses of
algorithms, of which the above
proposal is only one. Checker­
board and related ordering strat­
egies are also attractive; pre­
liminary estimates indicate such
codes will ~xrgute over 100 MFLOPS
on the CRAY-1 , which can partial­
ly compensate for increased arith­
metic computation.

accum: 4-matrix

% opns: 50

MFLOPS: 2

accum: ?

% opns: 30

MFLOPS: ?

dense

% opns: 20

MFLOPS: >100

(Table l)

*Approx. percent of total arith­
metic operations.

Figure 7. Estimated asymptotic
perf. of polyalgorithm
to perform nested dis­
section in four matrix
partitions.

SPARSE, PATTERNED SYSTEMS

As the coupling in A, B, and
C of Figure 4 decreases, each
approaches a diagonal matrix. The
accumulation then involves at least
two vector loads (and usually one
vector store) for each floating
point M/A operation and sufficient
list processing to locate at least
two of the matrices in memory. An
accumulation kernel written for
the CRAY-1, including list process­
ing and a vector store for each
accumulation, executes at the rate

l
MFLOPS = 53.3 (l + 31 _3/t)

Ill

with the maximum value of 35.8 for
i = 64. This is less than l/4 the
asymptotic rate of a dense accumu­
lation. The kernel is memory bound
and involves significant start up
time for the relatively small float­
i~g point computation involved.

CONCLUSION

While the speed of vector
processors encourages the formula­
tion of denser systems, their in­
creasingly parallel design favors
the construction of longer vectors
that can be distributed across
many pipelines operating concur­
rently. In this paper, the vector­
lengthening advantages of the hy­
brid vector construct have been
shown at the kernel level and
methods have been proposed to pro­
duce such vectors directly from
the problem structure.

From the algorithm viewpoint,
the direct relationship between
problem and processor structure
offers novel insight possibly use­
ful in developing a family of
equation ordering techniques
based on fulu.iu~::~, l.Utdl:luu,et<.:.
It is also hoped that a high per­
formance software package may be
developed for specific 2D grid
geometries.

From the viewpoint of process­
or architecture, this paper has
quantified the motion that the
less dense the system, the more
data flow and other accumulation
kernel overhead is required. A
patterned system may permit the
lengthening. of vectors - which re­
duces the influence of overhead -
but does not significantly alter
the data flow problem.

ACKNOWLEDGMENT

The author acknowledges the
programming assistance of M.
Yatchman, and the insight provided
by a CRAY-1 simulator developed by
D. A. Orbits. This work was spon­
sored jointly by the Mathematical
and Information Sciences Director­
ate of the Air Force Office of
Scientific Research, and by the
Air Force Flight Dynamics Labora­
tory, Wright Patterson AFB under

Figure 8 (a)~

'•,,.

,,
"'

111111 I

.:::l· .. :

" "

"'
:

"
"

"

-
"

-·

::.

::.

::.

·.::.

--
--

.:

Matrix of dissected l7xl7 5-point finite difference grid;
before rotation.

112

···.:· ..

Figure 8 (b).

.... 000:::::

·· ...

·~· ·.

··.:·

0 0

Matrix of dissected l7xl7 5-point finite difference grid;
after rotation.

113

Grant 75-2812.

l

References

R. W. MacCormack, "An Efficient
Numerical Method for Solving the
Time-Dependent Compressible Navier­
Stokes Equations at High Reynolds
Number," NASA Report TMX-73.129,
Ames Research Center, Moffett
Field, CA, (July, 1976).

2R. M. Beam and R. F. Warming, "An
Implicit Factored Scheme for the
Compressible Navier-Stokes Equa­
tions II: The Numerical ODE Conn­
ection," Paper No. 79-1446, AIAA.
4th Computational Fluid Dynamics
Con£., Williamsburg, VA., (July,
1979).

3o. Wing, ancl J. W. Huang, "An Ex­
periment in Parallel Processing
of Gaussian Elimination of a
Sparse Matrix," Proc. IEEE 1976
International Symposium on Circuits
and Systems, Munich, Germany
(April, 1976).

4o. A. Calahan, "A Block-Oriented
Sparse Equation Solver for the
CRAY-1," Proc. 1979 Intl. Con£.
on Parallel Processing, Bellaire,
MI. (August, 197 9) .

5o. A. Orbits, "A CRAY-1 Simulator,"
Report #118, Systems Engineering
Laboratory, Univ. of Michigan,
(Sept., B78).

6o. A. Orbits, and D. A. Calahan,
"A CRAY-1 Simulator and Its Use

7

8

in Development of High Performance
Algorithms," Proc. Workshop on
Vector and Parallel Processing,
Los Alamos Scientific Labor~tory,
42-56, (Sept., 1978).

W. G. Ames, et al, "Sparse Matrix
and Other High Performance Algo­
rithms for the CRAY-1," Report
#124, Systems Engineering Labora­
tory, Univ. of Michigan (January,
1979).

CRAY-1 Reference Manual, Pub.
#2240004, Cray Research, Inc.,
Chippawa Falls, Wise.

9o. A. Calahan, "Complexity of
Vectorized Solution of 2-Dimen­
sional Finite Element Grids,"
Report #91, Systems Engineering
Laboratory, Univ. of Michigan,
(November, 1975).

10 A. George, W. E. Poole, Jr., and
R. G. Voigt, "Analysis of Dissect­
ion Algorithms for Vector Compu­
ters," !CASE Report 76-17, NASA
Langley Research Center, Hampton,
VA (June, 1976).

110. E . Barry, C. Pottle, and K. A.

12

13

14

15

114

Wirgan, "A Technology Assessment
Study of Near Term Computer Capa­
bilities and Their Impact on Power
Flow and Stability Simulation Pro­
grams," Final report on Research
Project EPRI TPS 77-749, General
Electric Co., Schenectady (June,
1978).

A. George, "Numerical Experiments
Using Dissection Methods to Solve
n by n Grid Problems," SIAM J
Numer. Anal., vol. 14, 161-179
(April, 1977).

P. T. Woo, s. J. Roberts, and F.
G. Gustavson, "Applications of
Sparse Matrix Techniques in Res­
ervoir Simulation," SPE 4544 48th
Annual Fall Meeting of Soc. of
Pet. Engrs., Las Vegas, Nevada
(1973)

D. A. Calahan, Ann w. G. Ames,
"Vector Processors: Models and
Applications," (To be published,
Trans. IEEE on Circuits and
Systems, Fall, 1979).

D. A. Calahan, W. G. Ames, and
E. J. Sesek, "A Collection of
Equation-Solving Codes for the
CRAY-1," Report #133, Systems
Engineering Laboratory, Univ. of
Michigan (August, 1979).

PARALLEL ALGORITHMS FOR SOLVING BANDED

TOEPLITZ LINEAR SYSTEMS

Ahmed Sameh
Joseph Grear

Department of Computer Science
University of Illinois at Urbana-Champaign

Urbana, Illinois 61801

ABSTRACT

Such systems of linear algebraic equations arise in many applications such as the
numerical solution of partial differential equations using finite difference descreti­
zation. We present several algorithms for the solution of these systems, and compare
their efficiencies and numerical stabilities on a model parallel computer with a small
number of processors. Assuming unlimited parallelism, however, we show that a positive
definite Toeplitz system of order nand bandwidth m<<n can be solved in time O(m log 2n)
using O(mn) processors.

HS

AN EXPERIENCE WITH THE CONVERSION OF THE LARGE-SCALE PRODUCTION
CODE Dif~D, TO THE ~-1

~ , r -. ~~=--~~--!:.~

Keith L. Derstine
Argonne National Laboratory

Applied Physics Division
9700 S. Cass Avenue

Argonne, Illinois 60439

ABSTRACT

Optimized iteration methods for the solution of large-scale fast reactor finite­
difference steady state neutron diffusion theory calculations are presented. The methods
utilized include the Chebyshev semi-iterative method applied to accelerate the outer fis­
sion source iteration and an optimized block successive overrelaxation method for the
within-group iterations. The theoretical basis and the computational and data management
considerations that enter into the formulation of the overrelaxation method are dis­
cussed. A vectorized variant of the overrelaxation method is discussed~ The conversion
to the CRAY-1 of a computer code employing these methods is discussed and the performance
of vector and scalar algorithms on vector and scalar computers is compared for a benchmark
problem.

I. INTRODUCTION

Much effort has been devoted to the
development of optimized iterative methods
and convergence acceleration techniques
for application to the finite-differenced
form of the multigroup neutron diffusion
equationl-3. A powerful multidimensional
multigroup diffusion code DIFJD4 employs
these techniques for fast breeder reactor
(FBR) design at ANL; typical FBR problems
require from 5xl05 to 1.6xl06 space
energy unknowns.

ln recent years the advent of
advanced computing systems capable of exe­
cuting upwards of 40 million floating point
operations per second (megaflops) has stim­
ulated the development of parallel algor­
ithms exploiting the newly available vec­
tor processing capabilities. Recognizing
the potential for vastly improved perfor­
mance, a study has been conducted to
determine the impact of the CRAY-1
advanced computing system on the DIF3D
computational and data management strate­
gies as optimized for the IBM 370/195 and
the CDC 7600 computers; investigations
concerned with vectorization achieved by
appropriate algorithm modifications
requiring minor program modifications were
included.

116

Results of the study indicate that
the unmodified scalar algorithms in DIF3D
aided by an optimized CAL assembler rout­
ine can achieve a 3 fold increase in com­
putation speed over machines such as the
CDC 7600 and the IBM 370/195. Minor modi­
fications in which a key algorithm is vec­
troized yield a nearly 6-fold performance
gain. Analysis of the CFT compiler code
gc:tlc:ration lml.i.t::alt:!S LhaL an 0-fuld !Jel­
formance gain is highly probable with sui­
table CAL optimization to a single vector
subroutine.

In Sec. II of this paper, the finite
differenced form of the multigroup neu­
tron diffusion equations is presented,
along with a review of the properties of
these equations which permit the applica­
tions of the iterative methods discussed
in subsequent sections. The theoretical
aspects of the iteration methods used for
the inner (or within-group) iterations are
described in Sec. III. · Section IV con­
sists of a discussion of the computational
considerations that strongly influence the
manner in which these iteration methods
are implemented in this optimized itera­
tion strategy. Because of the massive
amount Of data that lllU!:ll be dealt With at
each iteration cycle in large FBR problems,
the data management requirements of a

particular iteration strategy have a
strong influence on the efficiency of that
strategy. Section V of this paper de­
scribes the data management considerations
that have had a significant impact on the
form of the iteration method described in
this paper. ·The relatively rapid conver­
sion of DIF3D for implementation on the
CRAY-1 is discussed in Sec. VI. The minor
programming changes required to achieve
significant vectorization of inner itera­
tions are discussed in Sec. VII. Section
VIII concludes with a comparison of the
performance of DIF3D variants of both vec­
tor and scalar algorithms on vector and
scalar computers.

II. THE FINITE DIFFERENCED MULTIGROUP
DIFFUSION EQUATION

The time-independent multigroup neu­
tron diffusion equations can be written as

D + + r + + -v· (r)V~ (r) + E (r)~ (r) g g g g

-L:
g'fg

1 G
=)!<g L: f ~ + vE ,(r)~ ,(r), g=l,2, ••• ,G.

g g (1)
g'=l

The symbols used here and elsewhere in
this paper that are not defined locally
are defined in the Nomenclature.
Boundary conditions for Eqs. (1) are of
the type

o, te:r, (2)

where r is the boundary of the region of
solution R.

Equations (1) are discretized in
space by first subdividing the region R
into a regular array of ·Subregions or mesh
cells. Then, using either the me~;;h-cell­
centered method5,6,7 or the mesh cell­
corner method,a the actual finite differ­
ence equations for the appropriately
defined cell-averaged fluxes are obtained.
For energy group g,the resulting equations
can be written in matrix form as

G

Ixg :E Fg,;g'
g'=l

(3)

117

+
where ~g is the vector of (approximate)
fluxes on the finite difference mesh. The
matrices E , T ,, F ,, and X are N x N

g gg g g
diagonal matrices, where N is the number
of cells in+the finite difference mesh.
The vector ~g• of length N, consists of
the neutron flux values in each of the
mesh cells consistent w~th the method used
to finite difference the equations. For
purposes of this+paper, it is assumed that
the unknowns in ~ are ordered in a lin­
ear fashion, row ~y row and plane by plane.
Given this linear ordering, the N x N
matrix Dg contains three, five, or seven
nonzero stripes for one-, two-, or three­
dimensional orthogonal geometries, respec­
tively. It operates on •g to yield the
net leakage across the faces of each mesh
cell. Note that in Eq.(3) and throughout
the remainder of this paper, it has been
assumed that no upscattering is present,
i.e., Tgg' = 0, g' >g.

The G Eqs. (3) can be condensed into
the single matrix equation,

+
M til 1 B ~

A.

wher~ M and B are square and
and~ ~ col[t 1 , ~ 2 ~···~ $cl·
M is given by

(4)

of order N*G
The matrix

where A (=D + E) is the lcakage-plus-
g g g

removal matrix operator and 0 is the null
matrix. By defining the N*GxN matrices,

F col[Fl, Fz, ••• , Fe] (6)

and
X col[X1 , Xz, ••• , X) G , (7)

the matrix B can be written as

B X FT (8)

where superscript T denotes the transpose
of a matrix.

The matrices used in Eqs. (4) through
(8) possess a number of properties that
provide a sound theoretical basis for the

iteration methods discussed in Sec. III.
For any physically realistic set of
assumptions, the diagonal matrices Tgg'•
Xg• and Fg are non-negative matrices.
It has been shown9 that the matrices Ag
are irreducible Stieltjes matrices and
that the inverse of each Ag has all posi­
tive entries, i.e., Agl>O. Because of
these properties, the matrix M is nonsing­
ularlO and the eigenvalue problem Eq. (4)
can be written as

(9)

Under quite general conditions, Froehlichll
has $hown that Eq. (9) has a unique posi-

. . + d d. t1ve e1genvector 11 an a ~nrrespon_lng
single positive eigenvalue Al greater than
the absolute value of any other eigenvalue
of Eq. (9). Furthermore, any positive
eigenvector of M-lB is a scalar multiple
of $1.

The properties of B permit a reduc­
tion of the matrix eigenvalue problem that
must be solved to obtain Al from one of
order N*G[Eq. (9)] to one of only order
N (Ref. 12). Advantage is taken of this
fact in obtaining the outer iteration
method presented in Sec. III, which is
used to obtain Al and t1• This reduc­
tion is accomplished by first noting that
M-lB is of order N*G and therefore
has N*G eigenvalues. However, the rank
of 1' is only N, thus making the r.ank of
M-lB only N. Hence, (G - l)*N of its
eigenvalues are zero. The nonzero eigen­
values can be determined by considering
the reduced but equivalent problem of
order N.

Following Ref. 12, but considering a
full down-scattering matrix, this reduc­
tion is accomplished by first defining the
fission source vector, ;, as

G
+
'¥ L (10)

g=l

and the N*GxN matrix L as

L col [Llo 1 2, ••• , Lc 1 M-lx '
(11)

where the NxN matrices Lg are defined as

L - A-l<x + L T ,L I) (12)
g g g g'(g gg g

118

These definitions p~us Eq. (4) permit the
group flux vector, ~g• to be written
as

+
~g 1 L ;

X" g

Premultiplying Eq. (9) by FT and using
Eqs. (8) and (10) yields the reduced
problem

+
Q'¥

where

Q
G.

L:
g=l

P' L
g g

(13)

(14)

(D)

If t and A are an eigenvector and corre­
fpouding nonzero eigenvalue of M-lB, then
'¥ and A must be an eigenvector and eigen­
value of Q and vice versa. Furthermore,
by making use of a simif~rity transforma­
tion, it has been shown that the non­
zero eigenvalue spectrum of Q is identical
to the nonzero spectrum of M-lB and that
any non-negative eigenvector+of Q is
either a scalar multiple of '¥1 or else
.corresponds to a zero eigenvalue, where
'¥1 corresponds to Al• Thus the two
eigenvalue problems, Eqs. (9) and (14) are
equivalent.

III. ITERATION METHODS: THEORY

The solution method presented in this
paper utilizes two levels of iteration,
the outer or fission source·iteratjon and
the inner or within-group iteration. The
outer iterations seek to 4et~rmine tl~
fundamental eigenvector, '¥1, and corres­
ponding eigenvalue, Al• Qf Eq. (14) or the
fundamental eigenvector ~l• and Al of
Eq. (9).

Fast reactors tend to be tightly
coupled with relatively small nonfission­
able regions. In addition, the data man­
agement requirements associated with
accelerating the flux vector are at least
an order of magnitude greater than those
associated with the fission source for the
10 to 30 energy groups that are typically
for fast reactor calculations. Both of
these factors tend to favor the use of an
outer iteration procedure based on fis­
sion source vector acceleration.

In the method reported here, approxi­
mations to Al and ~1• the funda-
mental eigenvalue and eigenvector of Q,
are obtained by the well-known power iter­
ation method. It is assumed that the
eigenvalue spectrum of Q satisfies . +
Al> A2 > A3 >•••> AN and that ~i is
the eigenvector associated with Ai• The
power method proceeds as

and

+(n)
~

(n)
A

1
---rq~(n-1)
A(n-1)

A (n-1) nr(n~-~--L-
+(n-lJ '

II~ Ill

(16a)

(16b)

where n is the .outer iteration index and
u·n1 denotes the L1 norm. The actual
computation of the product Q~(n-1) in
e.g., Eq. (16a) ivolves another level of
iteration, and is discussed later in this
section.

Because the largest (in modulus)
eigenvalue of Q is real and simple, the
power method is guaranteed to converge for
~nb arbitrary non-negative initial vector
~() to Al• and c~l• where c is
some positive constant. If it is assumed
that the eigenvalue esimates A(n) are
sufficiently well converged to Al and
that ~(0) can be expanded in terms of

+ . the ~i• the elgenvectors of Q, then the
rate at which ~(n) converges to ~1
depends on the separation of Al from the
other eigenvalues of Q (Ref. 9). This
converge~ce rate depends on the dominance
ration, a, given by

(17)

with the convergegce rate ultimately being
controlled by (a) •

Dominance ratios for recent large fast
reactor designs are typically on the order
of .95 or larger, implying relatively slow
convergence of the iterative process given
by Eq. (16). In addition, typical
fast reactor multigroup representations
are characterized by nearly full downscat­
tering matrices. The group-by-group cal­
culation of the scattering source required
for each outer iteration becomes a
costly input/output-bound calculation
when such representations are used in
large multidimensional calculations.

119

Both of these factors motivate the use of
an efficient outer iteration acceleration
technique in fast reactor diffusion theory
calculations.

The Chebyshev semi-iterative method
is utilized to accelerate the outer fis­
sion source iteration given by Eq. (16).
Its application is based on the assump­
tions that the eigenvalues of Q are real
and non-negative and are ordered as
Al)A2~A3> ••• >AN>o and that the eigenvec­
tors ~i of Q form a basis for the
N-dimensional vector space. The basic
power iteration is accelerated by choosing
a linear ~ombination of the eigenvector
iterates ~(n) such that

p +(n*+j) :Ea. ~ .
. 0 JP J-

~(n*+p) (18)

where n* is the outer index where this
acceleration begins and p successive fis­
sion source iterates are employed. The
objective is to choose the coefficients

~(n*+p) :t: such that approximates fl more
closely than does ~(n*+p)•

Ref. 4 outlines the derivation that
leads to the accelerated iterative proced­
ure for p>l:

~(n*+p)

-
;<n*+p)

where

al

ap

6p

1 + (n*+p-1)
A (n*+p-1) Q~

;<n*+p-1)

-
+a [~(n*+p) _ ;<n*+p-1)]

p

~(n*+p-2)

2·
61=0 - , ,

2 - a

4 cosh[(E- l)Y]

a cosh[pY]

a
1 - 2 ap - 1 .

1, (19)

(20)

To apply the iteration schemes given
~y Eqs. (16) and (19), the dominance ratio
a must be obtained and a suitable con­
vergence criterion must be applied to

measure convergence; the theoretical
aspects of these estimates are discussed
in Ref. 4.

The inner iterations are required in
carrying out the operation Q~(n-1) on
the right side of Eqs. (16a) and (19a).
From Eqs. (12) and (13), q~(n-1) can
be written as

~ F L ~(n-1)
LJ g g
g=l

G
A (n-1)"" F +(n) t=l g<Pg

(21)

where

+(n)
4>g

--,.-1~ L ~(n-1)
A(n-1) g

(22)

+(n) +(n-1)
Given the ~- , Q~

+(n)
and heltl:e 1¥

can be easiYy obtained.
Lg, Eq. (12), defines a
equations:

The definition of
series of linear

Ag;£n) "b£n), g = 1, 2, ••• ,G, (23)

which can be solved for the group flux

vectors +£n) <j> • The source "b£n) is given by

"b(n)
g I:

g'<g

T ,$(~) + 1 +(n-1)
gg g A(n-1) Xgl¥ (24)

For multidimensional problems,the direct
inversion of Ag matrices in Eq. (23)
is not practical. The iterative inver­
sion of A8 for each group comprises
the inner iterations.

Because of its sound theoreticAl
basis and computational simplicity (see
Sec. IV), the line successive overrelaxa­
tion method has been chosen for the solu­
tion strategy reported here. The matrix
A in Eq. (23) (dropping the group sub­
script) is split asl4

A D - E - F (25)

where D contains the diagonal of Ag plus
those off-diagonal coefficients that repre­
sent coupling between cell fluxes in each
row, E contains those blocks of A that lie
below the diagonal blocks placed in D, and
F contains those blocks that lie above
the blocks in D. The line successive
overrelaxation procedure is then given by

(26)

120

where

(D - WE)-1 (WF + (1 - W)D] (27)

and

(28)

The matrix Lw is the line successive over­
relaxation iteration matrix and w is the
overrelaxation factor; both are group de­
pendent. Because A (for each group) is an
irreducible consistently ordered two­
cyclic Stieltjes matrix for the finite
differencing schemes used here, the itera­
tion procedure given by Eq. (26) is con­
vergent for l'W'2 (Ref. 8). Furthermore
there is an optimum value of w, say wb,
for. which the convergence is the most
rapid. This group-dependent value of
wh is given by14

2
(29)

1 + [1- P(L1)]1/2 '

where P(Ll) is the spectral radius of L1,
the associated Gauss-Seidel iteration
matrix, which can be obtained from Eq. (27)
by setting W=l.

Following the procedure outlined in
Ref. 15, the value of wb can be deter­
mined to arbitrary accuracy because the
A matrix for each group has the properties
.J,isted above. Fur such matrices, if
x(O)>O ancl if

~(m) - L;~,~(m-1)

and

o(m) -
[~(m), ~(m)]

[~Cm), ;(m-1)]

then

lim 6 (m) P(Ll) .
m-+oo

Furthermore, :i,f x{m-1) 'f 0 and if
~

O(m)

then

(m)
o(m) x·

- mi n---,-....;.~-7
· (m-1)
~ xi

o-(m) ;.. P(Ll) ;.. ~(m),

o-<m) .. o(m) .. o(m)

(30)

(30)

(31)

, (32)

and

lim ;s<m) lim §.(m) (33)
m~ m~

The spectral radius (Ll) can be computed
by carrying out the iterati~n given by
EQ. (30a), computing 0(m), 0 (m), and
0Cm), and observing their convergence to
one another. The computational details
involved in implementing this procedure
for computing Wb are discussed in Sec. IV.

IV. ITERATION METHODS: COMPUTATIONAL
CONSIDERATIONS

In Sec. III, the theory underlying
the iteration methods for the solution
strategy here has been presented. In this
section, the computational considerations
that determined the details of their
implementation in the DIF3D code are dis­
cussed. The inner tteration procedures are
presented here, preceded by a summary of
the outer iteration procedures.

· The obvious ultimate goal of the
outer iteration procedure is to be able to
apply the Chebyahev acceleration procedure
given in Eqs. (!9) with accurate estimates
of both_Al and 0 • However, since neither
Al nor o are known when the outer itera­
tions are commenced, a "boot-strap" pro­
cess is required. As reported in Refs. 12
and 13, ·it has been found advantageous to
perform a limited number of power itera­
tions, Eq. (16), initially to provide a
resonable es!imate of Al and an initial
estimate of o, which is generally quite
low. A series of low-order extrapolation
cycles is then utilized, during which the
higher overtones are rapidly da~ped out
and more accurate estimates of 0 are
obtained. Only when all but the first
overtone mode are essentially damped out
are high-ordeE cycles based on accurate
estimates of o utilized. The precise
algorithm is described in terms of four
basic parts in Ref. 4.

Computational considerations arise
concerning three aspects of the inner
iterations. These are the computation of
the optimum overrelaxation factor Wb for
each group, the determination of the num­
ber of inner iterations that should be
carried out for a given group at a parti­
cular outer· iteration, and the actual

121

procedure used to solve the tridiagonal
matrix equations that characterize the
line successive overrelaxation method.

It has been shown in Sec. III that
the optimum overrelaxation factor for'a
given group can be computed if the spec­
tral radius of the line Gauss-Seidel
matrix, P(Ll), is known. The procedure
outlined in Eqs. (30), (31), and (32)
provides a rigorous method for deter­
mining P(Ll)• With the coding to carry
out the inner iterations using the line
successive overrelaxation method already
in place, the implementation of this pro­
cedure is trivial, since L1 is equal ~o
Lw, with w set to unity. The vector kg
in e.g., Eq. (26) also has to be set to
the null vector.

To ensure that the actual outer and
inner iterations are as efficient as poss­
ible, this computation of the overrelaxa­
tion factors is done prior to commencing
the first outer iteration. Starting with
~n arbitrary non-negative initial guess
x(O), the iteration in Eq. (30a) is
carried out for m = 1 to 10. Following
each iteration for m > 10, the quanti­
ties o(m), o(m), and o(m) are computed.
The related quantitii~ w(m), w(m),
and ~ (m), defined by

w(m) 2
1 + [1 - o(m)]l/2 ,

ro(m) 2

1 + [1- o(m)]l/2

and

w(m) 2
1 + [1- ~(m)]l/2 '

(34)

are also computed. The iterations for a
given group are terminated when

w(m) - w(m) (2·- w(m)
5 (35)

and wb for that group is set equal to
w(m). The test given by Eq. (35) forces
tighter convergence as P(Lw) increases.
The amount of central processor unit
(CPU) time required to precompute the wb
is typically on the order of one to two
outer iterations.

The theory presented in Ref. 4 on
the Chebyshev acceleration method impli­
citly assumes that. the matrix equation

for each group, Eq. (23), is solved
exactly during each outer iteration. For
multidimensional problems, this is not
the case. It has been shownl3 that the
effect of solving Eq. (23) iteratively to
less' than infinite precision for each
group is to modify somewhat the system of
equations being solved. Although both
systems share the same fundamental eigen­
value and eigenvector, the dominance ratio
of the modified system is larger than the
original system, Eq. (14). Some of the
eigenvalues of the modified system may be
negative or complex, which would slow con­
vergence of the outer iterations.

The most practical solution to this
problem is to do a sufficient number of
inner iterations for each group during each
outer iteration, so that the effect on the
dominance ratio is not appreciable, yet no
more than this. It has been determined
experimentally for a range of typical fast
reactor problems that this can be achieved
most economically by doing a fixed number
of iterations, mg, .for e~ch group.duri~g.
each of the outer 1terat1ons. Th1s el1m1-
nates the need for any convergence check­
ing during the inner iterations and thus
eliminates the costly divides that would
have to be done to determine relative con­
vergence on a component-by-component basis.

This number, mg, is determined for
each group by requiring that the norm of
the continued product of the iteration
matrices for that group during each outer
iteration be less than some desired error
reduction factor. This ensures that the
norm of any of the components of the
error vector is greater than or equal to
this error reduction factor during each
outer iteration. For a variant of the
line-successive overrelaxation method of
Eq. (26), where a single Gauss-Seidel
iteration precedes (m - 1) successive
overrelaxation iterations, the norm of
the continued product of the iteration
matrices is given byl6

(t2 + t2)1/2, m~l, (36)
2m-l 2m

where

x (1 + (m- 1){1- [p(L1)]1/2}).

122

The single Gauss-Seidel iteration is
applied because the norm in Eq. (36) is
then strictly decreasing for m ~ 1.
Letting £in be the desired error reduc­
tion factor and given wb and P(Ll) for a
group· from the optimum overrelaxation fac­
tor calculation just described, Eq. (36)
is solved to determine that value of m
such that

(37)

The value of m so obtained is the fixed
number of inner iterations, mg, t~at ar~
done for group g for every outer 1terat1on.

Experience has shown that choosing
£inC 0.04 will result in no adverse
impact on the outer iteration convergence
rate for typical fast reactor problems.
For problems with dominance ratios)0.85
(large reactors), a value of £in as
small as 0.01 ic cometimco ncccooary. It
is quite obvious when a value of £in that
is too large for the problem at hand has
been chosen. The dominance ratio estimates
being obtained from the outer iterations
grow too large, and oscillatory behavior
of the acceleration cycles generally
results.

A large percentage of the total CPU
time required to solve large problems with
this solution method :i.s spent in the inner
iterations. In implementing the algo­
rithms used to carry out these iterations,
it is essential that the full capabilities
of the present-day large-scale scientific
computers are utilized. The impact of
vector processing capabilities is con­
sidered in Sec. VII. A feature shared by
some of these computers is the high-speed
instruction stack, from which significant
gains in execution speed c.an he ohtained
when repetitive instruction sequences can
be contained in this stack. Multiple
functional units and instruction segmen­
tation permit parallel execution of sev­
eral arithmetic operations, loop indexing,
and the storing and fetching of data.

The requirements for utilizing these
features efficiently include the following:

1. compact coding for loops

2. no conditional branching per­
formed within the loop

3. avoiding divisions whenever
possible

The one-line successive overrelaxation
method was chosen in part because it is
simple and can be coded compactly. Per­
forming a fixed number of inner iterations
for each group eliminates the need for the
divides and conditional branching that
usually accompanies convergence checking.
Finally, by utilizing the procedure out­
lined below, it is possible to eliminate
all divides and conditional branching from
the innermost loops of the inner iteration
algorithm and reduce those loops to a few
lines of machine language coding that
easily fit within the instruction stack on
an IBM 370/195 or the CDC 7600.

For a particular line of fluxes that
are computed simultaneously during each
inner iteration, the equations that must
be solved are of the fQrm

+b + C +(m+l) + C +(m)
jk j-lk~j-lk jk~j+lk

+ B +(m+l) + B +(m) (38)
jk-l~jk-1 jk~jk+l ,

A !(m+l)
jk"'jk

!(m+l) ·
"'jk

"*(m+l)
"'jk , (39)

Wb[t~k+l) - ~~k)j + ~~k~
(40)

where j and k are the row and plane indices
of this ~ine and Ajk is a tridiagonal
Stieltjes matrix given by

(41)

-dl-1 el-l -dl

-dl el

where I is the number of mesh cells in the
line. The diag9nal matrices Cjk and Bjk
are the off-diagonal coefficients that
represent coupling between cell fluxes in
neighboring rows.

The solution of Eq. (39) utilizes a
forward-elimination backward-substituion
algorithm similar to Gaussian elimina­
tion. The forward elimination on the
matrices Ajk is performed only once,
prior to the beginning of .the outer
iterations, in such a fashion as to

123

+
in computing the ~jk• The backward
sweep .and overrelaxation are then com­
bined into a single loop to save mem­
ory fetches and stores.

The forward elimination on Ajk is
.given by

(42a)

6
i

i ,1, 2, ... , I ,... 1, (42b)

1
- d a ,

ei i i-1

i 2, 3, ••• , I. (42c)

The Yi values are saved for subsequent use
in the inner iterations by storing over the
e~ val~~~+l~hich a:e no ~onger.needed.
G1ven Sjk f6r one 1nner 1terat1on, the
forward sweep on it is g1ven by

Tl.
1

i 2, 3, ••• , I,

(43a)

(43b)

where si is the i'th component of Sjk• A
second loop then performs the remainder of
the work on line j, k according to

Ill Tl I,

~(m+l)
I

~(m) + w
I b

[ll -
I

<Pim)], (44a)

ll. T) + di+ly/i+l' 1 i

i I - 1, ... , 2,1 (44b)

lj>~m+l) lj>~m) +w [ll - lj>~m)],
1 1 b i 1

i I 1, ••• , 2, 1
(44c)

This procedure permits extremely· effi­
cient use of the scalar arithmetic cap­
bilities of high-speed computers.

V. DATA MANAGEMENT CONSIDERATIONS

Strong consideration must be given
to the data management implications of
any solution method that is contemplated
for use in a code capable of treating
problems where the number of space-energy
unknowns can exceed 106. From the previ­
ous sections, it is obvious that such con­
siderations have influenced the form of
the solution method presented in this
paper. These considerations are summar­
ized in this section.

The primary goal.of the solution
strategy described here is to reduce the
number of outer iterations to a minimum,
even at the expense of invest·ing relative­
ly greater effort in the inner iterations
performed during each outer iteration. By
minimizing the number of outer iterations,
the number of scattering source calcula­
tions (one per group per outer iteration)
is kept at a m1n1mum. Tltt:!~t:! ~caltering

source calculations necessitate the trans­
fer of large amounts of data from periph­
eral storage to core memory for problems
utilizing ten or more energy groups, yet
there is little arithmetic to be.done
while these data transfers are taking
place. As a result, CPU utilization can
be quite low during the scattering source
calculations, even if efficient asynchro­
nous data transfer methods are utilized.

Data management considerations also
led to the decision to apply the Chebyshev
polynomial acceleration technique to the
fission source vector ; rather than the
flux vector $. 'lbree complete fission
source or flux vectors, depending on which
are to be accelerated, have to be stored
on peripheral storage devices and trans­
ferred to core to carry out the accelera­
tion procedure for each outer iteration.
Again, there is little arithmetic asso­
ciated with this acceleration method, so
that CPU utilization can again be low if
large amounts of data have to be trans­
ferred. Since the fission source vec­
tors are only (1/G) as long as the flux
vectors, a significant reduction in data
transfer requirements is achieved by

. + accelerat1ng the ~ vector.

VI. CONVERSION OF DIF3D TO THE CRAY-1

The implementation of the entire
DIF3D code (43000 cards) on the CRAY-1
at the National Center for Atmospheric
Research (NCAR) was accomplished with
relative ease. DIF3D is designed with

124

portability in mind, and to this end a
simple preprocessor activates or de­
activates coding appropriate for the
intended host computer.

Among the available options coding
for a longword single level memory hier­
archy machine was selected for implemen­
taion on the CRAY-1. Several changes to
this source code included ENTRY point
syntax and removal of overlay calls.
The CDC FTN4 ENTRY point syntax invoked
by the longword coding was modified to
the IBM compatible syntax supported by
the CFT compiler. One million words is
ample storage for the problems likely to
be considered presently, so that the
overlay option has not yet been invoked.

Miscellaneous compiler and machine
dependent items requiring change included
several utility fnnrtinn (F.ND-QF-FILE Sl;u ...

tus and word address) names and a machine
dependent routine that invokes the MEMORY
macro to dynamically increase user memory.
Dynamic allocation of arrays is performed
in a storage container adjacent to the
last word of user code.

DIF3D is organized to take advantage
of asynchronous random access I/0 on
machines which support these features.
All unformatted binary I/0 is isolated
in a few standard I/0 subroutinesl7 to
facilitate local adaptions where standard
FORTRAN performance is unacceptable. Only
synchronous l/0 hAs been attempted with
DIF3D on the CRAY-1.

The data management strategy in DIF3D
is dynamically selected based on the
available memory for the problem at hand.
A variety of regimes are permitted; two
are of interest here. First, large two­
or three-dimensional problems require
that only one of the typically 20 to 30
energy groups of data be core contained
du~ing the inner iterations on a group
flux. Second, depending on the user
supplied container size, three-dimensional
problems may be forced into a concurrent
inner iteration strategy that requires
data for only a fraction of the total
number ·of mesh planes in a group be
core contained. Consequently an un­
limited numbP.r of mesh planes with a
plane size of nearly 33000 mesh cells
is permitted on the CRAY-1 with one
million words of memory. The corres­
ponding limit for two-dimensional
problems is nearLy 90000 mesh cells
in a plane.

VII. VECTORIZATION of SLOR

The recursive aspect of the solution
algorithm for solving the tridiagonal sys­
tem of equations, Eq. (39) can be avoided
by adopting an odd/even line orderingl8,19.
When solved simultaneously, the mutually
independent blocks of lines yield a vec­
torization with vector length equal to
half the number of lines under considera­
tion. The recursions now become recursions
on vectors of length equal to the number
of systems being solved.

For computational convenience an odd/
even ordering on a plane was implemented
in DIF3D. The theory of Sec. III is
readily shownl4 to apply to this reordered
system of equations so that the computa­
tional equations of Sec. IV remain
unchanged except for their order of appli­
cation to the mesh lines. The reordered
algorithm for mesh plane k successively
solves Eqs. (39), (43) and (44) simultan­
eously for the odd numbered lines on plane
k. The process is then repeated for the
even numbered lines on plane k. The
results in Sec. VIII show that computa­
tion speeds between 20 and 30 megaflops
are achieved.

VIII. PERFORMANCE RESULTS

The fact that 75% of DIF3D execution
time on the IBM 370/195 computer is
accounted for by the scalar SLOR algorithm
Eqs. (38), (39) and (40), led to the crea­
tion of a DIF3D kernel that largely con­
sists of two small subroutines (SORINV
and ROWSRC) at the heart of the optimized
algorithm.

To assess relative computing speeds
of selected large scale scientific compu­
ters for this algorithm, a benchmark model
with a 50x50 mesh using 25 inner iterat­
ions was repeated ten times for a total of
625000 mesh cell iterations with 13 float­
ing point operations per mesh cell itera­
tion. Several optimized SLOR algorithm
options were compared: (1) Vectorized
FORTRAN coding (odd/even ordering);
(2) Scalar FORTRAN coding; (3) Scalar
FORTRAN coding with an assembler optimized
SORINV. The relative computing speeds are
illustrated in Table I.

Analysis of the code generated by the
CFT compiler indicates that CAL assembler
optimization of the vectorized SORINV
subroutine could obtain execution rates of

125

33 megaflops compared to the 22 megaflops
presently achieved.

To assess the performance of the
entire DIF3D code, a sample two-dimensional
two group problem with a space mesh of
170xl70 (57800 unknowns) was chosen.
Problem results are displayed in Table II.
A three-dimensional two group problem
with a space mesh of 34x34x75 (173400
unknowns) was also solved. Problem results
are displayed in Table III. The relatively
short vector length in this realistic three
dimensional problem significantly reduces
the megaflop rate. The vector length could
be doubled in this problem by reorienting
the spatial dimensions; thereby attaining
a corresponding increase in speed.

Although the spectral radii of the
inner iteration matrices were comparable
for both scalar and vector SLOR alg.orithms,
the effect on the outer iterations was
noticably different. In vector mode, the
two-dimensional problem required about 19%
fewer outers and the three-dimensional
problem required about 10% more outers
than their respective scalar counterparts.
It is hypothesized that an alternate
strategy utilizing an odd/even ordering
of lines in three-dimensions, not just on
a plane, would i~prove the Chebyshev
acceleration of the outers and at the same
time yield significant performance advan­
tage due to the increased vector lengths.

In conclusion, these preliminary
experiences with DIF3D on the CRAY-1 indi­
cate that a code designed primar~ly for
optimal scalar performance can be effi­
ciently implemented on the CRAY-1 in both
scalar and vector mode, achieving 10 mega­
flops in the former and.20-30 megaflops in
the latter mode for realistic size pro­
blems. More extensive algorithm modifica­
tions and careful optimization has the
potential for reaping improved performance
at the possible expense of portability.

Tnbl<" I. K..::rncl problem relative execution rutes in units of 4a 2
megaflops.

11Elll00/MACH1NE CRAY-1 1811 370/195 CDC 7bOO

Vector Fort ran 5. 4 1.05 1.09

Scalar t'ortl·an 1. 7 o. 98 1.13

Scalar Fortran with
AssemblE-r SORINV 3. 3 1.0 l. 4

Table 11. 2-0 sample problem execution rates in units of 3a9
megaflops.

Ht:lllOil/MACHlNE

Vector Fortran

Scalar Fortran

Scalar Fortran with

CRAY-1

4.4 (5._3)~---

1. 6

Aosemb1er SOR1NV 2. 7

lBit 370/t9S CDC ~bOO

q.83

0.9/

'(:;. :S) denotes the aetual speed advantage due to 191 fewer ou::er
iteration.

Table Ill. 3-D sarnple problem execution rates in
units of megaflop&•

ME1ll00/MACH1NE CRAY-1 18M 370/195

Vector Fortran llo

Scalar Fortran 2.98

REFERENCES

lR. S. VARGA, MatPix ItePative
AnaLysis, Prentice-Hall, Inc., Englewood
Cliffs, New Jersey (1962).

2E. L. WACHPRESS, ItePative SoLution
of ELLiptic Systems and AppLications to
the NeutPon Diffusion Equations of ReactoP
Physics, Prentice-Hall, Inc., Englewood
Cliffs, New Jersey (1966).

~. S. VARGA, IRE TPans•NucL• Soc•,
NS-4, 52 (1957).

4D. R. FERGUSON and K. L. DERSTINE,
"Optimized Iteration Strategies and Data
Management Considerations for Fast Reactor
Finite Difference Diffusion Theory Codes,"
NucL• Sci• Eng• 64, P• 593 (1977).

SR. w. HARDIE and W. W. LITTLE, Jr.,
"3DB, A Three-Dimensional Diffusion Theory
Burnup Code," BNWL-1264, Battelle-Pacific
Northwest Laboratories (19_70).

6D. R. VONDY, T. B. FOWLER, and
G. W. CUNNINGHAM, "VENTURE: A Code Block
for Solving Multigroup Neutronics Problems
Applying the Finite-Difference Diffusion­
Theory Approximation to Neutron Transport,"
ORNL-5062, Oak Ridge National Laboratory
(1975).

126

7T. A. DALY et al., "The ARC System
Two-Dimensional Diffusion Theory
Capability, DARC2D," ANL-7716, Argonne
National Laboratory (1972).

8R. S. VARGA, MatPix ItePative
AnaLysis, Chap. 6, Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey (1962).

~. S. VARGA, PPoc. Symp. AppL.
Math., 11, 164, American Mathematical
Society, Pr~vid.ence, Rhode Island (1961).

lOG. BIRKHOFF and R. S. VARGA, J.
Soc. Ind. AppL. Math., 6, 354 (1958).

llR. FROEHLICH, "A Theoretical
Foundation for Coarse Mesh Variational
Techniques," FPoc. Int. Conf. ReseaPch
ReactoP VitaLization and ReactoP
Mathematics, Mexico, b.F., 1, 219
(May 1967).

. 12L. A. HAGEMAN, "Numerical Methods
and Techniques Used in the Two-Dimensional
Neutron Diffusion ProgrAm PDQ-5,"
WAPD-TM-364, Bettis Atomic Power
Laboratory (1963). ·

13L. A. HAGEMAN and C. J. PFEIFER,
"The Utilization of the Neutron D{ffusion
Program PDQ-5," WAPD-TM-395, Bettis Atomic
Power Laboratory (1965).

14R. S. VARGA, MatPix ItePative
AnaLysis, Chap. 4, Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey (1962).

!SR. S. VARGA, MatPix Itepative
AnaLysis, Chap. 9, Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey (1962).

16R. S. VARGA, Mat1•ix It~1•ai.A.ve
AnaLysis, Chap. 5, Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey (1962),

17R. DOUGLAS O'DELL, "Standard
Interface Files and Pro~edures for Reactor
Physics Codes, Version IV," LA-6941-MS,
Los Alamos Scientific Laboratory (1977).

18B. BUZBEE, Los Alamos Scientific
Laboratory, personal communication.

19D. L. BOLEY, "Vectorization of
Block Relaxation Techniques Some
Numerical Experiments," Proceedings
of the 1978 LASL Workshop on Vector and
Parallel Processors, LA 7491 C, p. 166
(1978).

NOMENCLATURE

Any symbol not defined in the Nomen­
clature is defined locally in the text.

Scalars

g

G

<Pg

r
Eg

r
Eg

s
Egg'

a
Eg

Xg

f'
vEg

N

11

index number of the energy group

total number of energy groups

scalar neutron flux [n/cm2s)]
in enercy group g

diffusion coefficient for neu­
trons in group g (em)

macroscopic removal cross
section for group g

Ea + ~ Egs'g
g'=g

macroscopic scattering cross
section from group g'· to group g

macroscopic absorption cross
section in group g

fission spectrum in group g

average number of neutrons per
fission times the macroscopic
fission cross section in group g

keff of reactor

total number of finite difference
mesh cells

estimate for Al at outer itera­
tion n

outer iteration index

Matrices and Vectors

+ <Pg scalar neutron flux. vectors,
group g

three-, five-, or seven-stripe
diffusion matrix for group g

diagonal removal matrix for
group g

= diagonal scattering matrix, group
g' to group g

127

Xg

Q

+(n)
ljl

+(n)
<P

diagonal fission spectrum matrix,
group g

diagonal production matrix,
group g

leakage plus removal matrix
operator, group g

fission source vector

outer (fission source) iteration
matrix

eigenvector of Q corresponding to
ni

+
estimate of ljll at outer
iteration n

+
estimate of <Pg at iteration n

ACKNOWLEDGMENTS

The author is indebted to Larry
Rudsinski for init·iating the project
which provided access to the CRAY-1 at
NCAR and to Floyd Dunn for providing
optimized CAL and COMPASS versions of
SORINV.

This work was performed under
the auspices of the U.S. Department
of Energy.

TURBULENCE/
HYDRODYNAMICS

• Calculations of Water Waves and Vortex Arrays by Numerical
·solution of Integra--Differential' Equations

• Steady High Reynolds Number Flow Past a Cylinder

• Vectorization Techniques for an Iterative Algorithm

• Evolution of 'the MHO "Sheet Pinch"

• Numerical Solution of the 3-D Navier-Stokes Equations on
the CRAY-1 Computer

 129 130

CALCULATIONS OF WATER WAVES AND VORI'EX ARRAYS BY NUMERICAL SOLUI'ION

OF INI'EG.RCrDIFFERENTIAL EQUATIONS

P.G. Saffman, B. Chen, R. Szeto
Departrrent of Applied Mathematics 101-50

California Institute of Technology
Pasadena, California 9ll25

ABSTRACT

Steady gravity-capillary waves of permanent form on deep water and the shapes of
vortices in a linear array are calculated nurrerically. For the waves, it is shown that
finite arrplitude waves can bifurcate and new types of steady waves exist in which crests
and troughs may be of unequal height. Gravity-capillary waves of rraximum height are
calculated. For the vortices, the shapes are found for various values of the size/
separation. It is found that there exists a rraximum size for given separation and
properties of the array are determined. The non-linear equations were solved by Newton's
rrethcx:l using the CDC STAR-100 computer at the CDC Service Center in Minneapolis.

INTRCDUCTION

Steady solutions of the incompress­
ible Euler equations (inviscid Navier­
Stokes equations) are of considerable in­
terest for many fluid mechanical problems
because of the insight they can provide
into some of the physical processes that
govern the behavior of fluids of small
viscosity and constant density. If the
flow is everywhere irrotational, i.e. free
of vorticity and circulation, then the
calculation of the flow field reduces to
finding solutions of I.aplaces equation
with suitably given boundary conditions.
This class of problems is of limited in­
terest. But if the flow contains vorti­
city, either continuously distributed or
concentrated into sheets or both, then the
mathematical problems become rrore
challenging and the physical relevance may
be significant. A large part of the
mathematical difficulty, which is directly
connected with the physics, arises from
the fact that the position and strength of
the vorticity are in general unknown and
are to be determined. Thus even in those
parts of the flow where the notion is
irrotational and governed by I.aplaces
equation, the shapes of the boundaries are
unknown and one faces a free boundary value
problem. The problems tend to be strongly

'!his research was supported by Control Data
Corporation, the Department of Energy
(EY-76-S-03-0767) and the U.S. Army Research
office, Durham (DAAG 29-78-C-0011).

131

nonlinear, and relatively little has been
found so far using the classical methcx:ls
of perturbation theory or the qualitative
concepts of functional analysis (including
catastrophe theory) apart from indications
of possible trends of suggested classifi­
cations. '!his is not enough, because
existence and uniqueness problems are now
not academic niceties, but real physical
questions, and there same exact analytical
solutions available to show that existence
and uniqueness cannot be taken for granted.
The study of the bifurcation and limit
point behavior associated with the lack of
uniqueness, and the investigation of the
stability of the flows to small distur­
bances, require actual nUJTbel::'s and quanti­
tati ve details for a proper qualitative
understanding to be obtained, especially
if application to real flows is to be
made. Nurrerical solution in an appropriate
way of the equations seems to be the rrost
powerful tool currently available for the
discovery of new qualitative behavior,
and the fact that it gives the numbers at
the sarre time is an invaluable bonus.

we shall discuss here two examples
to support this statement. The problems
to be described are-capillary-gravity
waves of permanent form on deep water and
the structure of an infinite array of uni­
form vortices. The first has been of
mathematical interest since the work of
Stokes in 1840 and applications to ocean

engineering and extraction of energy from.
the sea has led to a present high level of
interest in water waves. The second is
related to the recent discovery of organ­
ized structures in turbulent mixing layers
and the idea that turbulent transport and
mixing might be understandable in terms of
the interaction of two-dimensional vortices
of finite size. (A review of vortex in­
teractions is provided by Saffman and
Baker 1

•) For both problems, we wished to
use a rretha:l which v.uuld uncover quali­
tati ve properties, .as well as provide the
quantitative details, and rroreover v.uuld
v.urk if the steady flow is unstable.
Newton 1 s rretha:l proved ideal. However 1

the calculations would not have been
possible without the availability of time
on a large, fast computer because of the
relatively large number of variables.
Our computations were performed on the
Uontrol Data Corporation STAR-100 Computer
locuted .:1t the CDC Serviac Center in
Minneapolis, Minnesota. V€ are grateful
to Control Data Corporation for making the
roaching available to us, and· for giving us
the opportunity to derronstrate haw new
insights can be obtained by the use of a
sufficiently powerful computer.

WATER WAVES

We consider periodic, steady or
permanent, orie dimensional, inviscid
irrotational 1 progressiVe water waVeS Of
finite amplitude on deep water. The
crests are supposed parallel and straight,
and :the problem is to determine the wave
profile, i.e. the shape of the free sur­
face, and the speed of propagation as
functions of the wave height or average
slope. The mathematical problem is to
find a solution of the Eule·r equations,
which in this case reduce to Laplaces
equation, such that the unknown free sur­
face is a streamline relative to an ob­
server rrovmg with the wave on which the
pressure is constant. Generalizations to
water of finite depth, or interfacial
waves between fluids of different density,
or waves on a uniform shearing flow, are
in principle straightforward but remain to
be studied in detail. There are several
mathematical formulations of the problem.
We used one based on the concept that the
free surface can be regarded as a vortex
sheet between the water and the air.
Chen and Saffman 2 showed that this leads
to a complex singular integra-differential
equation for the pararretric equations
x = x(o), y = y(o) of the free surface,
which can be written

132

(1 - gLZ Im Z + ~)
TIC C R

* dz
dO - l

-~ P!21T t z(o)-z(o 1)
21T 0 co 2

(1)

for 0 <a < 21T. Here, z = x + iy, g
is the acceleration due to gravity, K is
the surface tension, L is the period of
the notion, c ·is -the unknown wave speed,
P denotes Cauchy principal value, and R
is the radius of curvature of the free
surface

! = 2n Im d2z dz */ lddoz 13
R L do2 do (2)

The actual physical coordinates are ob­
tained by multiplying x and y by
L/2n, and the origin is chosen to be in
the rrean level of the surface. A periodic
solution (rrodulo 2n) is required so that

z (u+2·n) = z (CJ') + 27T (3)

The trivial solut1on is z = cr, in
which the surface is flat. This solution
bifurcates with infinite degeneracy (the
so-called primary bifurcation) into in­
finitesimal or linear progressive waves
of complex amplitude a

z = a + aieiNo + O(a2) . (4)

21Tr._.2] 41T2K - - + · N + O(a2) , (5) gr;- - N ----gi7

where N is an arbitrary positive intege~
which specifies the wavelength A = L/N
(i.e. the distance between crests) m· the
m.nnber of waves in the window of length
L.

Finite amplitude numerical solutions
were calculate6 by sulvlny a ul::;cLel.i.:t.t.'l.l
form of Eq. (1) . A uniform rresh in a was
intra:luced and equations for the values of ·
z at the rresh points were obtamed as
follows. The derivatives in Eqs. (1) and
(2) were replaced by a sixth order finite
difference formula. 'Ib evaluate the in­
tegral, an integration rresh was intro­
duced midway between the first rresh, the
values of z were evaluated on the inte­
gration mesh by a sixth order interpola- .
tion formula, and the integral was then
evaluated on the rresh by the trapezoidal
rule. The set of non-linear transendental
equations that results from satisfying
Eq. (1) were solved by Newton 1 s rrethod,
combined with Euler cont.i.r'illation in the
wave height or an equivalent pararreter tu
construct a branch of solutions. The
linear solution given by Eqs. (4) and (5)
was used to give the initial guess for

small amplitude waves. Bifurcation and
limit rx>int behavior was treated for by
rronitoring the sign of the Jacobian in the
Newton iteration. Keller's 3 rrethod of
pseudo arc l~gth continuation was used to
follow branches in the neighborhood of
critical rx>ints.

The infinitesimal waves are all
syrnrretrical about crests and troughs, and
without loss of generality the argurrent
of a can be fixed so that cr = 0 is a
crest. It has been proved that waves of
given height and wavelen~ are unique and
syrnretrical provided 4n K/gL2 =I l;M,
where M l.s an integer greater than one
and the height is sufficiently small. In
the first instance th~refore, ~ suprx>sed
that the waves of finite amplituc1e were
syrnrretrical about cr = 0, i.e.

* z (cr) = -z (-cr) . (6)

Each branch correSIX>nding to a par­
ticular. value of N is then ~ll defined
for small amplitude and· continuation to
finite amplitude was straightforward.
One little trick was, however, useful.
When the waves becorre steep, they tend to
be cusped at the crests and resolution
there is irrpaired. t.o€ then replaced cr
for calculation on a particular branch by
a new independent variable cr' , defined
by

cr = cr' - ~sin Ncr'
N

(7)

and used a unifonn mesh in cr ' . By choos­
ing d just less than 1, rx>ints are
concentrated in the neighborhood of the
crests.

In the calct.llations we used 40 and
80 rresh rx>ints. For the smaller value, it
took about 1 sec. to compute and invert
the Jacobian. Four iterations were
usually sufficient to reduce the residuals
to 0(10- 10).

It may be asked why it is necessary
to calculate on branches w:i.th different
N, since surely solutions on the different
branches are similar because a wave with
surface tension K, wavelength L and
speed c is the sarre as one for· which
these quantities are K/N2

, L/N and

c/N~. Thus the first branch N = 1 shouid
give all the other branches. It turns out
that this is only true when the waves are
small. The branches with N > 1 bifurcate,

133

and new branches exist at finite amplitude
which. cannot be found just by considering
the continuation of the · N = 1 branch to
steep waves. ~ wish to emphasize that
these secondary bifurcations were found by
nurrerical solution and were completely
unsuspected by analytical theoreticians,
.although in retroSpect it becorres clear
that they are associated with the special
behavior when 4n 2 K/gL2 = 1/M and can be
analyzed for capillary-gravity waves by
perturbation theory when this condition
is approximately satisfied2

•

GRAVITY WAVES

Pure gravity waves (i.e. K = 0)
have been calculated in recent years by
several authors and their properties
along, in effect, the N = 1 branch have
been studied from infinitesimal waves to
the wave of greatest height h/L = 0.141
(h = ·vertical distance from trough to
crest) for which thg crests are cusped
with a slope of 30 (see, e.g. Cokelet").
The results display sorre curious features.
For instance, the wave speed and wave
energy are not rronotonic functions of the
wave heiggt and the rnaximurri slope can
exceed 30 • ~ calculated the N = 1
branch wi tn our ITEt.hod , to check the
approach and ~arch for bifurcation. Our
results agreed to at least 4 significiant
figures with the rrost reliable of the
others, and rrore significiantly no criti­
cal rx>ints were discovered.

Results for computation along the
branches N = 2 and N = 3 are Shown
in Figures 1-4.

0.78

o.n

u

0.76

REGULAR
WAVE

~.
BIFURCATED
WAVE

0. 75 '::";:--~::---:::-'::::-----::-1:-:---::-li:-:--......,J
0.75 0.80 0.85 0.90 0.95 1.00

b

Figure 1. Wavespeed vs. he.i.~:Jlll 1 N = 2.

.~. "'" t ' /".
-3.00~~~

-0.30

,.,,,., t
·~~·

-0.30

Figure 2. Waves on new branch 1 N = 2.
'Ihe origin has been displaced
to o = 1T and the rrean
water level.

134

.634

.631

.628

•
.625

u

.622

.619

.616

REGULAR
WAVE

..... --------

~
•

BIFURCATED •
WAVE

.613 .1_ -o .. l. ____ ~=--'7-::--'
0.75 0.80 0.85

b

Figure 3. Wave speed vs. height I N = 3.

b •. 99023 020

·~
-0.20

b • .95023 u.~o

·~·
-0.20

be• .87902

' -0.20
b •. 83023 0.20

·~~\
-0.20

b •. 78023 0.20

.~;p0~
-0.20

Figure 4 . Wuves on new branch 1 N = 3.

'Ihe wave speed has been made dirren­
sionless by taking g = 1 and L = 21T.

The pararreter b · is a dirrensionless
rreasure of the height at o = 0; b = 0
is the flat surface and b -+ 1 when the
crest at o = 0 peaks. Keller' s 3 rrethcrl
enabled us to follow the new branches
without trouble.· The term regular wave
refers to the branch that is the scaled

N = 1 branch. The crests of waves on the
bifurcated branches are of unequal height.
The decrease in b along half the new
branch does not rrean that the wave is
getting flatter, but that the heighest
crest is not at a = 0. Actually for
N = 2, the waves on each side of the new
branch are identical, the difference is a
horizontal displacerrent of ~L.

The dotted line of Figure 3 shows the
result of a calculation in which the
possibility of bifurcation into unsyrmetri­
cal waves was studied. As is clear from
Figure 4, the new waves for N = 3 are
not syrnretrical about all crests. The
calculation picked up the waves of Figure
4 referred to an unsymmetrical crest.
No completely unsymrretrical waves have
been discovered, but it remains an open
question whether. they can exist. The
stability of these waves to small dis­
turbances and the bifurcation properties
of branches with N > 3 remains to be
investigated.

GRAVITY CAPILLARY WAVES

The richness of bifurcation behavior
in this case is too great to be summarized
succinctly and in fact has not yet been
properly classified. In Figures 5-7, we
show some examples of capillary-gravity
waves found by following branches. The
waves of greatest height for K ~ 0 are
limited by the surfac~ touching itself and
enclosing a bubble. Continuation in K

shows that the limit K = 0 is singular
and gravity waves cannot be obtained as
the continuous limit of a capillary-gravity
waves as K -+ 0. For further details, see
Chen and Saffman 5

•

VORI'EX ARRAYS

As a second example, we consider the
problem of calculating tJ1e equilibrium
shapes of a linear array of equal uniform
two-dimensional.vortices of finite size.
This problem has become of practical imr
portance in recent years because of the
discovery of 1 big eddies 1 or coherent
structures in the turbulent mixing layer
(Roshko 6) we suppose that each vortex has
strength r and area A. The centers lie
on a straight line, distance L apart.
The vorticity inside each vortex is con­
stant of value f/A.

Let Z(s) = X(s) + iY(s) denote
the surface of the vortex whose center is
at the origin. Then it can be shown7

135

"'' .050039

"' '.050033

"'' .050027

"' ' .050016

"' ' .050005

"' ' .049987

"' ' .049961

"'' .049934

"'' .049920

"'' .049913

Figure 5. Continuous transition fran
N = 4 to N = 5.

~·0.1341, c•0.9431

~. 0.0419, c •1.1049

~. 0.0179, c. 1.0935

Figure 6. The branch N = 1 for K = · .19.

that Z(s) is a solution of the equation

Im ~~*!D logJsimr(Z-Z 1)/LJdZ 1}= 0. (8)

For A/L 2 « 1, it can be shown that

I(• 0.4925, c. 0.9855

I(. 0.1905, c. 0.9431

I(. 0.1628, c. 0.9375

........

Figure 7. Waves of greatest height,
N = l, for various K.

.the approximate solution.is

z = (~)"~ieie (l + t 1f ~2 cos26) (9)

The problem is to determine ilie shape for
finite values of A/L2

•

We restrict attention to shapes with
the sarre symrretry as those of Eq. (9),
i.e. elliptical with one axis (in fact the
major axis) along the line of centers.
A polar coordinate representation was

i6 used for the shape ; z = Re where

N
R = a 0 + E a2 cos2n6.

l n
(10)

Substitution into Eq. (8), and evaluating
the integral by the trape~oidal rule at
the rresh paints '

o.
J

1fj/2(N+l) 1 j l,2, ... ,N (ll)

g1. ves N non-linear, transcendental equa­
tions for the (N+ l) unknown Fourier
coefficients. Putting the area equal to
A closes the system.·

Again Newton's rrethcrl and Euler
continuation in

l.:
A 2/L was used to construct solutions,
with the solution of Eq. (9) giving a
first guess for small

136

A~/L. Critical points were again detected
by rronitoring the Jacobian of the Newton
iteration and handled without difficulty
by pseudo-arc length continuation. For
N = 80, each iteration took al::x:mt 3 sec.
Typical shapes (no:rmalized on L = l) are
shown ~ Figure 8.

0.5

-0.5

Figure 8. Shapes of vortices in an array.

A continuous branch of solutions
exist for 0 < a/L < 0.5, where 2a is
the length of the rmjor axis. At
a/L = 0. 5 , the vortic~s touch and the
continuation of the branch is a family of
connected vortices which end up in a
unifonn vortex sheet of finite thickness,
as shown in Figure 9.

0.5

-0.5

Figure 9. Shapes of connected vortices:

In Figure 10, we show a/L and
b/L (b = semi minor axis) plotted against

A~/L. The full line shows the properties
of isolated vortices. The dotted line
described the connected continuation.
(The dashed line is the prediction of an
approximate analytical model by Saffman
and Szeto7

). · '

0.5

_l

' .D

_j

' 0

Figure 10. Dirrensions of the vortices.

In this problem., no bifurcations
were detected, but there is limit point
behavior as the figure clearly shows that
there is an upper limit on the value of

~/L for steady, symmetrical solutions to
exist. The existence of this upper

8
limit

was guessed at by Moore and Saffman. , and
used by them to propose an explanatlon ~or
the coalescence of coherent structures ln
the turbulent mixing- layer.

The stability of the vortices to
small disturbances is of interest. W::!
repeat that the convergence ~f Ne':"=<?n's
rrethod is independent of the stablll ty of
the flow. Fortunately, a qualitative
argurrent of Lord Kelvin enables us to make
predictions about stab~lity ~y calculat~g
the energy of the conflguratlon and avolds
the necessity of calculating the eigen­
values of small disturbances. The excess
energy per unit length (i.e. the. . .
difference in energy of the conflguratlon
and a vortex sheet of the sarre strength
.and zero thickness) is shown in Figure 11.
The excess energy is a minlinum for the

137

vortex of maximum area. According to
Kelvin's argurrent, the more circular or
less deforrred shapes with A < A max are
therefore stable to two-
dirrensional disturbances, whereas the more
deforrred and connected vortices are un­
stable.

.35'
0 '

' '

-.005

E -.010

-.015

-.020

\
\
\

' \
\
\

\
\

.40

~
~

~
~
~

~
'\

\
\
\

\
\

\
.\

.45

\

' ' ' \ •. \

···~.\ .,
\:

' \
' ' '

.50

' '' ,,

Figure 11. Energy excess of the array.

REF'EREN:::ES

1P.G. Saffman and G.R. Baker, Ann. Rev.
Fluid Mech. 11, 95 (1979).

2B. Chen and P.G. Saffman, Stud. App.
Math. 60, 183 (1979).

3H. B. Keller, Applications of Bifurcation
Theory p. 359. Academic Press (1977).

4E.D. Cokelet, Phil. Trans. Roy. Soc.
A286, 183 (1977).

5B. Chen ·and P.G. Saffman, New types of
gravity waves and finite amplitude
steady capillary gravity waves. Stud.
App. Math. (to appear).

6A. ROshko, A.I.A.~.J. 14, 1349 (1976) •.
7P.G. Saffman and R. Szeto, Structure of a
linear array of uniform vortices.
Submitted to J. Fluid Mech.

8o.w. Moore and P.G. Saffman, J. Fluid
Mech. 69, 465 (1975).

STEADY HIGH REYNOLDS NUMBER FLOW ,..-_,
PAS::f:P' A CYLINDER

Bengt Fornberg
Department of Applied Mathematics 101-50

California Institute of Technology
Pasadena, California 91125

ABSTRACT

Viscous flow past a circular cylinder becomes unstable around Reynolds
ngmb~r R,e = 40. With a new numerica~ technique, based on Newton's method,
steady (but unstable) s;olutions of high accuracy have been obtained up to Re = 300.
A new trend in the solution was found when the Reynolds number. was increased
above 260. The· wake bubble begins to decrease in ·length as vorticity in the wake
is convected back towards the body. The numerical calculations were performed
on the CDC STAR-100 computer at the CDC Service Center in Minneapolis.

INTRODUCTION

Viscous steady flow past a cir­
cular cylinder at high Reynolds numbers
has become one of the classical prob­
lems in numerical fluid mechanics.
There are several reasons for the con­
tinuing interest in this problem. One is
that it forms a good model ·problem for
flows around other bodies o1 more prac­
tical interest. Steady solutions for
Reynolds numbers (based on the dia­
meter) higher than 40 may in the future
be achieved by flow control methods.
This may give rise to flows with prac­
tical applications. Complete, steady
flow fields have so far only been ob­
tained numerically up to around
Re = 100. The first reference1 gives
a brief. survey of previous work and
describes also this present work in
some detail.

Contradictory suggestions have
been made for the limit of Re - oo.

· Brodetskyz suggests a solution with
vortex sheets bounding an infinite wake
region containing stagnant flow.
Batchelor3 suggests a limit which has
a finite wake with piecewise constant
vorticity and no drag on the body. Up
to Re ~ 100, all evidence has been in
·support of a wake growing approximately
proportional to Re. We will see a

This research was supported by
Control Data Corporation and ERDA
(Grant No. 04-3-767).

138

quite sudden reversal of trends around
Re = 260, which casts definite doubt on
B rodetsky' s solution ('the free stream­
line' model).

Our numerical calculations were
performed on the Control Data Corpora­
tion STAR-100 Computer located at the
CDC Service Center in Minneapolis,
Minnesota. We wish to express our
gratitude to Control Data Corporation
for making this system available to us.
The solution of large banded linear
systems was the most time-consuming
part of the present calculations. These
solutions ran about 200 times faster on
the CDC STAR-100 than on the Caltech
IBM 370/158 (which was used for some
preliminary tests and the graphical
output).

MATHEMATICAL FORMULATION

With a unit cylinder and Re based
on the diameter, the Navier-Stokes
equations take the form

6w + w = o

6 w + Re{aw. aw aw. aw} = O
2 ax ay - ay ax

In most of the work we use

!/; (x, y) = w (x, y) - y

(1)

(2)

(3)

instead of w. This variable lj; gives
the streamlines of the perturbation
from free stream.

The main problems that earlier
investigators have encountered are

1. Boundary conditions for lj; at
large distances.

2. Boundary condition for w at the
body surface.

3. Convergence rate of numerical
iterations.

4. Convergence to a smooth solution
without a loss of accuracy that
goes with upwind differencing.

5. Economical choice of computa­
tional grids.

Our numerical method, described in the
next section, was designed specifically
to overcome these difficulties, if
necessary at the price of a high com­
putational cost per iteration.

NUMERICAL METHOD

All......-'Lo.rticity is concentrated on
the body surface and in a quite thin
streak downstream of the body. Out­
side this region, we can use the much
si11.1.pler equationo

t:,.lj; = 0

w = 0

(4)

(5)

----------~

20o 1/,_--'',---------- \
D :

51/ :

"···::io""~~\ ci J n -~ ···-· --~o·-·-- . io qu -:iJ" --~-tki- io ~--to·-.. · '.910

·1:100 ·200 0 200

Fig. L. Conformal mapping of the
inner region.

The top part of Fig. 1 shows a region
which includes all the vorticity. This

139

will form the inner of the two compu­
tational regions we will be using. The
rest of Figure 1 illustrates the steps in
a conformal transformation to a rec­
tangle. The steps are

1. p = xl/3

2.

3.

1
z = c(p--)

p

z 2 s = 3 (1 + z)
c

(constant c = .2)

The inverse transformation can also be
expressed explicitly.

The Navier-Stokes equations
were transformed to this new coordi­
nate system (also stretched to increase
boundary layer resolution at the surface)
and approximated numerically in a
straightforward way (centered, second
order accurate approximations).
Newton's method was then used to solve
this system together with the boundary
conditions, There are two conditions
for lj; on the surface (no fluid passing
the surface and no slip), and

E3l!. = ow -ny ay- o

on y = 0, On the curved upper side
of the region, we have w = 0 and we

require ~w = 0 on the far right
edge. Thex physics require no infor­
mation on w from the outflow side.
This freedom can be used to eliminate
the possibility of staggered mesh
oscillations for w, a frequent compli­
cation with centered approximations for
the vorticity transport equation at high
Reynolds numbers. To find lj; on the
upper and right sides, an outer compu­
tational region has to be introduced and
an iteration between the grids will be
performed.

A polar coprdinate system can be
introduced by

£ + i11 = ~ £n(x+ iy) (6)

and refined in the wake by

(7)

Fig. l. Outer and inner computational
grids.

We express now equation (1) in
£, 11' -coordinates and solve for rjJ by
'black- red' -orde~ed SOR. Figure 2
shows the two computational grids
superimposed. In the actual calcula­
tions, the grids had twice the illustrat­
ed densities.(The inner grid had
6 5xl14 points, the outer grid 129xl3 2
points. Both extended to 600 radii from
the cylinder). The outer boundary con­
dition for rjJ on this la:st grid has been
discussed in detail1 • It was found that
the usual free stream (l/; = 0) was very

unsatisfactory but that * = 0 worked

successfully at low Reynolds numbers.
At high Reynolds numbers, a satisfac­
to:ry condition of the form

E.!/!.. = f(rj;)" was found. o£
Our final complete method was

a repetition of the following four steps:

1. Perform one Newton iteration on
the inner grid.

2. Interpolate w to the outer grid.
3. Solve for rjJ on the outer grid.
4. Interpolate rj;-values back to the

edge of the inner grid.

Although step l in itself is quadratically
convergent, this inner-outer iteration
scheme converged only linearly. The
convergence was nevertheless very
rapid, about a factor of 10 per each
cycle of the four steps. Six to eight

140

cycles were sufficient in all cases,
each .costing about one minute of com­
puter time.

X

Fig. 3. Structure of the Jacobian
matrix.

-
R~-1
RBCI/t1

Rw2
Rw3
R~4 .
.

R"'N
RB
RBCI/t"

Figure 3 shows the structures of
the Jacobian matrix that entered as
coefficient matrix in Newton's method.
Here, ~ denotes a vP.ctor of w-values
on the first grid line (body surface),
rf;2 the rf;-values on the next grid line

etc. The right- hand- side contains the
residuals in the different equi:l.tiono i:l.nd
boundary conditions. The particular
u1·o.l~1·iug ::;huwu give::; a ::;tructure that
allows immediate simplification. With
use of suitable multiples
of the equations in the top half, all
entries in the bottom right corner can
be eliminated. We are left with a
banded system confined to the dotted
region in the bottom left corner. It
will contain only 13 non-trivial dia­
gonals. Table l shows its size and
the cost to solve it by Gaussian elimi­
nation.

size of
inner grid

system band
width

number of
equations

CPU-time on
CDC STAR-100
LU-decomp.
Back Subst.

estimated time
on IBM 370/158

LU-decomp

M*N "' 65*114

4~'M-7 = 253

(M-2)~'(N+l) = 7245

29 0 3 s.
1 0 3 s.

l hr. 40 min.

RESULTS

The flow results are illustrated
·in Figures 4-14 below. The most
prominent feature· is the recirculation

.of vorticity starting around Re = 260.
It affects quite dramatically some flow
quantities (like the length and width of
the wake bubble) but leaves others
(like the drag coefficient, pressure
distribution etc) quite unaffected. The
calculations were not carried beyond
Re = 300 since higher Reynolds numbers
would have required a still finer grid.
A grid twice as dense would have been
too costly at the present time.

~·

~

Fig. 4. Streamlines at Re = 2,4,10,
20, 40, and 100,

141

Fig. 5.

Fig. 6.

Fig. 7.

Streamlines at Re ::: 200,230,
260, 290, 295 and 300.

Lines of equal vorticity at
Re = 2, 4, 10, 20,40 and 100.
(The first three cases were
obtained by a different method) ..

Lines of equal vorticity at
Re = 200,230,260,290,295
and 300.

Position of
end of
woke bubble

40

30

20

10

0 0L-lLo--14L0----Lio-o------~-uLu-~l:':j:-:U-l~t:i:::.u-:-:-~::90~30:-:o~--. Re

Fig. 8. Position of end of wake
bubble.

Width of
woke bubble

4

0 20 40

.-r.-

100

-·--~---

200 230 260 290 300

Fig. 9. Width of wake bubble.

Re

142

Vorticity

-15

- 5

-I

n 1.6
+I

Re300

___ O(J a.,

Fig. 10. Vorticity distribution on the
body surface.

Pressure

...
Re2

1.2

1.0 Re4

.8
ReiO

Rc!O
.6 Re40

ReOO
Re~o%· ..

.2

9 >.0 ·' 0 9
0

"} 1.0 .9 v ,
R~YW'l

·.2

...
-.6.

·.8

·1,0

Fig. 11.

Re200
ReiOO
Re40
Re20
ReiO

• ••

Re2

Pressure distribution on the
body surface.

Pressure at front
stagnation point

1.4
X
\

1.2 \
\
\
\

1.0 'x
\
\

.8 ' ' x,

.6
'X

.4

'·x
''x--x-x -llmlt.5-

.2

0~~~~~~~~~~~--·
2 4 10 20 40 100 200 400 1000 Re

Fig. 12. Pres sure at the front stag­
nation point.

Pressure at rear
stagnation point

-1.4

-1.2

-1.0

X
\ -.8
\

-.6

-.4

\
\

\
X

' ' ' ·x,
-.2 "'X .. "'?<-,X

'·x x
o~~~~J_J_~~~~--L---•

2 4 10 20 40 100 200 400 1000 R e

Fig. 13. Pressure at the rear stag­
nation point (on the body).

143

1.

I
• I
\
\

\
•
' ' ' ' ' ·­ ----

100

--x--x-
-x---x1t1t-

200 230 260 290 300

Fig. 14. The drag coefficient.

REFE'RENCES

Fornberg, B., A numerical study
of steady viscous flow past a
circular cylinder. Submitted
to JFM.

2. Brodetsky, S. Proc. RoySoc.
London Al02, 542 (1923).

3. Batchelor, G.K., JFM 1, 338 (1956).

Re

VECTORIZATION TECHNIQUES FOR AN ITERATIVE ALGORITHM

Dennis V. Brockway
Fred Gama-Lobo

Los Alamos Scientific Laboratory
P. 0. Box 1663

Los Alamos, New Mexico 87545

ABSTRACT

A major vectorization effort on a large complex hydrodynamics code on the CRAY-1 was
recently completed, resulting in a factor of 10-speed increase over the original code on
the CDC-7600. To accomplish this required vectorizing an iterative algorithm. Some new
techniques were developed to do this, which 'will be described in dP-ta.il.

INTRODUCTION

A major effort was completed recently
to vectorize a large 2D Lagrangian hydro­
dynamics code for the CRAY-1. This parti­
cular code was chosen because it was the
largest consumer of computer time at.LASL.
When this code was first converted from
the CDC-7600 to the CRAY-1, which was just
a straight FORTRAN conversion with minimal
changes, it gained a factor of 2.5 in speed.
The initial target of the vector.ization
effort was to get up above a factor or 4
over the CDC-7600. The result of the vec­
torization was a factor of 10 speedup over
the CDC-7600 (or a factor of 4 over CRAY-1
scalar code) .

The reason our initial target was so
low was that approximately 40% of the ex­
ecution time of the code was spent solving
an iterative algorithm that did not appear
at first analysis to be vectorizable~ As­
suming we got a factor of 10 for the sec­
tion of the code taking 60% of the time and
remained at a factor of 2.5 for the sec­
tions of code taking 40% of the time, then
the overall factor F can be computed from

l/F=0.6 X (1/10) + 0.4 X (1/2.5)

resulting in F=4.5.

We did, however, develop a successful
technique for vectorizing the iteration,
which will be described in what follows ..
As a result, we were able to vectorize
about 95% of the code so that we actually
got a factor of 10

OVERALL VECTORIZATION EFFORT

CODE REWRITE

To vectorize the hydro code we rewrote

144

nearly all of the computational section of
the code. This was done. by restructuring
the code into simplP- no loops based on the
basic guidelines for vectorization describ­
in Chapter 4 of the CRAY-Z FORTRAN (CFT)
REFERENCE ~NUAL 1 and in the paper How To
Get More from Your Vector Processor .. 2 we
went beyond these basic techniques in vari­
ous places in the code, and this paper de­
scribes some of those.

CFT COMPILER

The vectorized code was written mainly
in standard FORTRAN using the CFT Compiler,
which automatically generates vector .in­
structions fOL' simple DO loops. The main
exception was the use of the conditional
vector merge statements available in CFT.
These are equivalent to simple IF state­
ments, and whenever they were used in the
code, they were preceeded by a comment de­
scribing the equivalent :i:F.

SAMPLE

We made an extensive use of a routine
called SAMPLE, which determines the distri~
bution of time during code execution and
produces a histogram of time used per sub­
routine and for locations within each sub­
routine.3 Initially, the distribution of
time in the code was fairly flat with no
single subroutine taking a large percent­
age of the time, which prompted our deci­
sion to rewrite the entire computational
section of the code. After we vectorized
a major portion of the code, we used
SAMPLE to locate those places that still
took significant amounts of time and were
candidates for fine tuning.

OVERALL EFFORT

The overall effort was considerable

due to the size and complexity of the code.
It took 3 people 6-months to complete the
effort, which was actually quite a bit less
manpower than early projections predicted.
This was due to some extent to the people
being quite familiar with the code to begin
with and the use of mostly standard FORTRAN.
The people who did the work were Dennis
Brockway, Fred Gama-Lobo, and Karl Wallick
of Group TD-9 at LASL. We would also like
to acknowledge the work of Alex Marusak and
Don Willerton of C-3, who wrote SAMPLE.

VECTORIZATION OF THE ITERATIVE ALGORITHM

CODE DESCRIPTION

The hynro code calculates motion ln
an object represented by a 2D mesh of quad­
rilaterial zones·. All mesh variables are
held in doubly dimensioned arrays and in
each computational cycle a time step is
taken; all the hydrodynamics calculations
are performed on these variables in double
DO loops. To vectorize the code it has to
be rewritten so that all inner loops are
simple calculational loops that satisfy the
conditions for vectorization in the CFT
compiler. 1

TTS ITERATION

The iteration that took up 40% of the
execution time in the scalar code is called
Temporary Triangular Subzoning (TTS). 4 For
TTS each quadrilateral zone is divided into
four triangles. For each triangle the in­
ternal energy is computed from the equation

E(triangle)= E0-0.5 x (P(triangle)+P(zone>)

x DTAU(triangle)

All quantities in this equation can be
computed directly except for the Energy and
Pressure of the triangle, which are both
functions of Temperature and Density. These
functions are defined in Equation of State
(EOS) Tables. The Density is known, but
the Temperature is not, so an iteration ·
must be performed to find a Temperature
such that E(triangle) and P(triangle) sat­
isfy the above equation.

EOS TABLE LOOKUP

The EOS table lookup does not require
a table search since values are equally
spaced based on logarithms of base 2. Given
a Temperature and Density, indices to re­
trieve values for Energy and Pressure from
the tables can be calculated directly using
the LOG function. For each table lookup

145

the code needs to do a LOG to compute in­
dices to the table, fetch 8 quantities
from memory by indirect addressing (gather) ,
and do 2 exponential interpolations requir­
ing 2 calls to EXP.

The reason the TTS is so time consum­
ing is because of the great number of times
that the EOS table lookup must be done and
that each table lookup requires a LOG, 2
EXP's and 8 gathers. The table lookup must
be performed for each iteration for each
of the 4 triangles for each of the zones.
In a typical problem there are 7000 zones,
and it takes 3 iterations on the average
for the TTS equation to converge. That
means that for each computational cycle the
table lookup is done 3x4x7000 (or 84,000
times).

TTS FLOW

The following is the flow of the TTS
iteration in the original scalar code:

DO 100 K='l,70
DO 100 L=l,lOO
DO 100 ITRI=l,4

Step 1. Compute EO , PZONB , DTAU

Step 2. Compute initial guess of
Temperature T

Step 3. Call EOS to look up ETRI and
PTRI

Step 4. Test for convergence -

ENG= EO - 0.5 * (PTRI + PZONE) * DTAU
TEST = ABS ((ENG - ETRI) / ENG
IF (TEST .~T. l.E-5) GO TO 100

Step 5. Compute new guess of tempera­
ture T

GO TO Step 3

100 CONTINUE

VECTORIZATION OF TTS

The first step in speeding up the TTS
was vectorizing the table lookup, which
consisted of writing a routine producing
arrays of results rather than a single re­
sult.· The new routine is a factor of 4
faster than CRAY scalar per table lookup.
The main reason for the speedup is that
the vector LOG and EXP functions can now .
be used. These functions are provided by
CRAY Research in their library supporting
the CFT compiler. They are used by refer­
encing. ALOG and EXP just as is done in

standard FORTRAN. If the references to the
functions are in a DO loop which otherwise
satisfies the CFT conditions for vectori­
zation, the compiler will automatically
generate calls to the vector functions.
These functions are approximately a factor
of 15 times faster per element than their
CRAY scalar counterparts. We were disap­
pointed that we were unable to speed up the
gathers in the routine, but the speed in­
crease in LOG and EXP still allowed us to
make a very good gain overall for the EOS
table lookup.

The next step was to vectorize the
iteration itself. 'l'his consisted of com­
puting all the terms in the TTS equation
in vector loops, calling the t~ble lookup
routine to get arrays of values for E(tri­
angle) and P(triangle) based on an array of
initial guesses for Temperature, and then
computing the difference between the left
and right hand sides of the equation in a
vector loop. This difference is used for
testing convergence. An array IDOESIT is
used to keep track of convergence. For a
set of iterations being done in vector
loops, we set IDOESIT(L)=l if this itera­
tion for zone L did not converge and set
IDOESIT(L)=O if this iteration converged.
Then we check this array to see if any
iterations have not converged; and if any
have not, new guesses for Temperature are
computed from appropriate derivatives and
the process is repeated until all itera­
tion" converge.

VECTORrZED TTS FLOW

The following is the flow of the vec­
torized TTS iteration:

DO 100 ITRI=l,4
DO 100 K=l,70

DO 10 L=l,lOO

Step 1. Set IDOESIT(L)=l for zones
flagged for TTS

10 CONTINUE

DO 20 L=l,lOO

Step 2. Compute EO(L) , PZONE(L)
DTAU(L) in vector loop

step 3. Compute guess of Temperature
T(L) in vector loop

20 CONTINUE

Step 4. Call up vectorized EOS to look
up arrays ETRI and PTRI

146

DO 30 L=l,lOO

Step 5. Compute convergence criteria
in vector loop

ENJ(U = EQ(U - 0.:> " <PT!<i<U + PLONtCU ~ DlJIJ.J(U

lESHU = A8S ((ENJ(l) - EfRI (L)) I E/f,(L)

Step 6. Set IDOESIT(L) = 0 if
r.onvP.rCJP.nce -

IOOESIT(L) = Cv1'11P CIOOESIHU , D , lESHU - l.E-!))

Note: The above CFT conditional vector
merge statement is equivalent to
the following IF statement -

. IF (TEST(L) .LT. l.E-5) IDOESIT(L) 0

30 CONTINUE

DO 10 L=l,lOO

Step 7. Check if any iterations have
not converged -

IF (IDOESIT(L) .NE. 0) GO TO 50

40 CONTINUE

50

GO TO 100

DO 60 L=l,lOO

Step 8. Compute new guess of empera­
ture T(L) in vector loop

60 CONTINUE

GO TO Step 4

100 CONTINUE

LOOP LIMITS

After vectorizing the TTS by the above
method, we merely broke even with the sca­
lar code. The reason was that on the ave­
rage it takes 3 iterations for the TTS
equation to converge, but there are usually
some triangles in the inner loop that take
twice as many or more iterations to con­
verge. Some anomalous triangles may take
20 to 30 iterations to converge. In the
above method all the calculations in the
inner loops are done for all the triangles
as many times as it takes for the worst
triangle to converge. This meant that the
vector code was doing at least twit:e the
calculations of the scalar code, which
wiped out any gains due to using vector
operations.

To get around this problem we varied
the limits of the inner loops each cycle
of the iteration to avoid doing most of the
unnecessary calculations. The way this was
done is to use the array IDOESIT and set
limits based on the ranges of non-zero
values in the array. Suppose IDOESIT has
the following set of values:

0 0 0 1 1 1 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 0 Q
4 3 11 1} 23 25

For this case the code would set up 3 sets
of limits, 4-8 and 11-13 and 23-25, and the
inner loops would be repeated for these 3
sets of limits. The code will actually go
up to 4 sets of limits. If there are more
than four, it will bridge all but the 4
largest gaps of zeros. It will also bridge
a gap of zeros smaller than 10% of the size
of the array. Therefore, in the above ex­
ample the zeros in positions 9 and 10 would
be bridged and the code would actually only
set up 2 limits, 4-13 and 23-25.

FLOW FOR VECTORIZED TTS WITH VARYING LIMITS

DO 100 ITRI=l,4
DO 100 K=l,70

DO 10 L-1,100

Step 1. Set IDOESIT(L) 1 for zones
flagged for TTS

10 CONTINUE

DO 20 L=l,lOO

Step 2. Compute EO(L) , PZONE(L) ,
DTAU(L) in vector loop

Step' 3. Compute guess of Tempera­
ture T(L) in vector loop

20 CONTINUE

25

Step 4. Set up limits based on
IDOESIT. N is the number of
limits, LIMl is the array of
lower limits, and LIM2 the
array of upper limits.

DO 35 I=l,N

Ll
L2

LIMl (I)
LIM2(I)

Step 5. call vectorized EOS to look
up arrays ETRI and PTRI for
L values Ll to L2.

147

DO 30 L=Ll,L2

Step 6. Compute convergence criteria
in vector loop -

ENGCU = EOCU - fl.5 • CPTRI <L> * PZO!IECU> • DTAUCU

TEST<L> = ABS <<ENG<L> ~ ETRI<L> I ENGCL>>

Step 7. Set IDOESIT(L) = 0 if conver­
gence -

IDOESITCL> = CVMGP CIDOESITCL) , 0 , TESTCL) - 1.£-5)

30 CONTINUE

35 CONTINUE

DO 45 I=l.N

Ll LIM! (I)
L2 LIM2 (I)

DO 40 L=Ll,L2

Step 8. Check is any iterations have
not converged -

IF (IDOESIT(L)· .NE. 0) GO TO 50

40 CONTINUE

45 CONTINUE

GO TO 100

50 CONTINUE

Step 9. Reset limits based on IDOESIT

DO 65 I=l,N

Ll LIMl(I)
L2 LIM2 (I)

DO 60 L=Ll,L2

Step 10. Compute new guess ·of tempera­
ture T(L) in vector loop.

60 CONTINUE

65 CONTINUE

GO TO 25

100 CONTINUE

USE OF THE VECTOR MASK

After putting in the varying limits,
·we got a speed increase over a factor of 2

over scalar. Use of SAMPLE 3 indicated that
a significant amount of time was still be­
ing spent in some remaining scalar loops
that had previously been ignored and in the
scalar. calculation of the limits described
above. The calculation of the limits re­
quired a scalar search of the array IDOESIT
for non-zero elements. The way we vector~­
zed this process was to write an assembly
language routine to create a vector mask
from the array IDOESIT. If IDOESIT has the
values in the example used before, the vec­
tor mask would consist of a single word
with the bit pattern:

00011111001110000000001110 ... 0

The CFT functions LEADZ (tally of leading
zeros) , SHIFTL (left shift) , and COMPL
(bit-by-bit) logical complement) 1 are then
used to successively count zero and non-zero
bits in the mask and thus set up the 1im1ts.

SUMMARY

After eliminating most of the remaining
scalar code in inner loops, the TTS ran a
factor of 3.8 faster than scalar. The gains
in the rest of the code averaged above a
factor of 4 so that the overall gain was a
factor of 4 over CRAY-1 scalar (or a factor
of 10 over the CDC-7600).

REFERENCES

1. CRAY-1 FORTRAN (CFT) Reference Manual,
Manual #2240009, Cray Research, Inc.,
1/79.

2. Brian Q. Brode, How To Get More Out Of
Your Vector Processor, Massachusetts Com­
puter Associates, 9/78.

3. Alex Marusak and Don Willerton, Deter­
mining Distribution of CPU Time Used on The
CRAY-SAMPLE, LASL Program Library writeup,
7/79.

4. Philip L. Browne and Karl B. Wallick,
The Reduction of Mesh Tangling in Two­
Dimensional Lagrangian Hydrodynamics Codes
By the Use of Viscosity, Artifical Viscos­
ity, and TTS (Temporary Triangular Sub­
zoning for Long Thin Zones), LASL Document
LA-4740-MSm 11/71.

148

EVOLUTION OF THE l'-1HD "SHEET .PINCH"
::::;..

W. H. Matthaeus and D. Montgomery
Physics Department, William and Mary

Williamsburg, VA 23185

ABSTRACT

A magnetohydrodynamic (MHD) problem of recurrent interest for both astrophysical and
laboratory plasmas is the evolution of the unstable "sheet pinch", a current sheet across
which a de magnetic field reverses sign. We follow the evolution of such a sheet pinch
with a spectral-method, incompressible, two-dimensional, MHD turbulence code. Spectral
diagnostics are employec'l, as ll.r.P. contour plots of vector potential (magnetic field lines),
electric current density, and velocity stream function (velocity streamlines). The non­
linear effect which seems most important is seen to be current filamentation: The concen­
tration of the current density onto sets of small measure near a magnetic "X point." A
great deal of turbulence is apparent in the current distribution, which, for high Reynolds
numbers, requires large spatial grids (~ (64) 2

).

INTRODUCTION

We report a numerical.solution of the
problem of an evolving MHD "sheet pinch":
a topic which has generated a voluminous
literature, but about which unanswered
questions.remain. The problem is inher­
ently a turbulence problem, involving
spatial excitations over a wide range of
spatial scales, thus requiring high spatial
resolution. Our grid size (64 x 64) is at
the lower limit of what is required to com­
pute the phenomenon accurately. We utilize
a two-dimensional,incompressible MHD code
of the Orszag-Patterson 1 spectral type
(Galerkin approximation), employing perio­
dic boundary conditions. The periodic
boundary conditions demand certain compro­
mises with the physics, but the ga.ln in
computational simplicity is great.

TEXT

The initial magnetic field line geome­
try for all runs is shown in Fig. 1. The
periodic boundary conditions require two
current sheets, into and out of the xy
plane, parallel to the xz plane. All
variables are assumed z-independent. If
the ti-ro current sheets a.r.P.· far enough
apart, their interaction should be minimal,
and we do not believe the evolution to be
significantly different than it would be
for a single current sheet. The basic
square is 64 x 64 cells, with a maximum­
to-minimum wave number ratio of 32. The
current sheets are about four cells wide,

149

and the magnetic field reverses sign twice,
once across either current sheet. The box
size, in our units, is 2TI units of length.

'l'he velocity field v and the magnetic
field B are in the xy plane and the vector
potential a= a& is normal to it.

- z
B = ~a X e ' and v = ~· 1 • X e ' where ,, is z - 'I' z . 'I'

the stream function. The vorticity is in
the z direction, and has magnitude
w = -~ 2 \jJ, while the vector potential and
current density j are also related by
Poisson's equation:· ~ 2 a = -j. The direc­
tion of the current density is along the
z axis. The time evolution comes from ad­
vancing the (Fourier-transformed) pair of
equations:

Cla + v·~a at

We have used the dimensionless units of
Fyfe et al, 2 whose papers should be con­
sulted for a detailed description of the
method. In these units, the dimensionless
magnetic diffusivity ~ and dimensionless
viscosity V are the reciprocal magnetic
and mechanical Reynolds numbers. The case
of most physical interest is the case
where ~ and v are small but non-zero.

(1)

The initial de magnetic field can be
well represented by the Fourier modes with
kx 0 and ky = ±1,±3,±5, ... ,±15. We

call these the "sheet pinch modes", and
after t = 0, allow their Fourier coeffi­
cients to advance on the same footing as
all the others. The unstable growth is
initiated by adding small random values to
the Fourier coefficients of the non-sheet
pinch modes. This random initial noise is
small enough that the non-sheet pinch
Fourier amplitudes are typically down from
the sheet pinch Fourier amplitudes by fac­
tors of <10- 3 •

After several tens of time steps, some
of the non-sheet pinch modes have tempo­
rally growing components which emerge from
the initially rather unsystematic MHD
activity observed at the outset. The most
rapidly growing t modes move slowly out to
values of the order of k ~ 10, but do not
get near the maximum k of' 3~. Systematic
growth of both the kinetic energy and non­
sheet pinch magnetic energy are observed
for a few thousand time steps. Most of
the ~agnetic excitation is initially, and
remalns in the modes with k 2 = 1. The
modes ~ = (0,±1) are sheet pinch modes and
those with ~ = (±1,0) are non-sheet pinch
modes. Ext:ept for a very slow drain of
the (0,±1) modes by the (±1,0) modes, the
growth of the kinetic energy and non-sheet
pinch magnetic energy appears to have
ceased by about 5000 time steps even for
~=v=O (an unphysical case, but nonetheless
an instructive one, to be discussed pre­
sently). For finite~. v, the saturation
occurs even sooner, and the total energies
decay throughout the run, as predicted by
Eqs. (1) and (2). This decay can be kept
small by keeping ~ and v small enough. . .

It is instructive to cn~sider first
the (unphysical) case ~=v=O. Fig. 2 shows
the time evolution of the non-sheet pinch
magnetic energy, the total mean square
current, the total mean square vector po­
tential, and the total kinetic energy.
During the growth phase, the most active
Fourier modes are in the range k ~ 10.
The growth qualitatively speeds up at
approximately time step 1000, and saturates
near time step 5000. Late in the run it
is necessary to halve the time step i~
order to preserve the conserved quantities.
After saturation, the spectrum appears to
be heading for an absolute equilibrium
spectrum2

, but does not reach it over the
times we compute: strong anisotropy in k
space remains. Rather surprisingly, the­
state in the region of limiting non-sheet

!50

pinch magnetic energy bears considerable
similarity to that for the finite dissipa­
tion cases. Fig. 3a shows the contours of
constant current density j in xy space at
t = 0. Fig. 3b shows the j contours after
2000 time steps. The current distribution
close to a uniform sheet in Fig. 3a, has '
filamented, and has concentrated itself in
sets of small measure near a magnetic field
zero of the "X point" type. This effet:l,
appears to be fundamental.

Since we are working with a finite,
discrete representation of the fields the
various pointwise invariants (or "top~lo­
gical" invariants) of ideal MHD are .not
conserved. Contrary to what is sometimes
asserted, thin non-conservation is not
connected with dissipation. The present
system is non-dissipative.

AL a stlll later Lime (4500 time
steps), Fig. 3o chowo that the j contours
have scattered randomly and essentially
homogeneously over the square; this fea­
ture is not observed at finite ~ and v.
Much less activity is visible in the con­
tour plots of constant vector potential
a (magnetic field lines, in two dimensions)
for the same three times in Figs. 1, 4a,
and 4'b. The vector potential apectrum is
domi~ated by the longest wavelength terms,
and ln that part of the spectrum, strong
anisotropy persists.

Figs. 5a, b, c are contour plots of
constant 1jJ (vclut:Hy streamlines) at times
t = 0, after 2000 time steps, and after
4500 Lime sLeps. Fig. 5b shows a charac­
teristic "jetting" of the magnetofluid:
the fluid is rather violently expelled
lntere.lly !'rom the weak pair of corners
at the X point in the magnetic field.
This has been seen also in a very differ­
ent kind of computation l>y Sato and
Hayashi. 3 Finally, Fig. 6 shows the
directionally averaged ~ and y field
spectra to which the configuration has
evolved, by the end of the run. This is
not an absolute equilibrium spectrum2

,

and considerable anisotropy has been ob­
s:ured by the directional averaging. Solid
llnes are equilibrium spectra. 2

·

The preceding results cannot clajm
accurately to represent the physics, but
they do anticipate some of the conclusions
for finite ~ and v. Table 1 lists some
important parameters for both the run
~=v=O just described and .for ~=v=. 0025,
the other case for which we shall present
results here (a.more extended presentation
will be given elsewhere 4

). Fig. 7 shows

the time history of the bulk quantities
(non-sheet pinch magnetic energy, mean
square current, etc., as in Fig. 2) for
~=V=.0025. Figs. 8a, b show the contours
of constant j at time steps 2000 and 5500.
The finite ~. most effective at high k,
has wiped out much of the short wavelength
activity apparent in Fig. 3c; the sheet
pinch geometry remains visible to the end
of the run. Figs. 9a, b show the magnetic
field lines (which give little indication
of the disordered activity shown in Figs.
8a, b) at time steps 2000 and 5500. In
all runs carried out, single magnetic
"islands" were always the end product, as
far as magnetic structure was concerned.
The filamentation of the current and the
jetting of the velocity field were also
always observed. Figs. lOa, b show stream
function contours at time steps 2000 and
5500, and show a strong persistence of the
jetting, or horizontal magneto-fluid ex­
pulsion, to the end of the run.

A qualitative physical picture of the
unstable development and filamentation
might go as follows, keeping in mind the
fact that in two dimensions, the contours
of constant vector potential a are magne­
tic field lines, and both j and ~ are
expressible as spatial derivatives of a.
The magnetic volume force on an element of
fluid can be shown to be (Vx~) x ~ = jVa.
.Moreover, j generates a through Poisson's
equation, V2 a = -j. ~hus, even though
electric current distributions are not
"frozen in" to the fluid, two fluid ele­
ments carrying currents in the same direc­
tion attract each other. Current filaments
distributed around a magnetic "0" point (a
maximum in a, if j is out of the paper)
will feel a force toward the 0 point, but
the fluid elements cannot move toward the
0 point because the velocity field is di­
vergenceless; effectively, collapse toward
an 0 point is prohibited by the mechanical
pressure which b-uilds up. No ::;u<.:h prohi­
bitions occur concerning collapse toward
an X point, since Va points toward the X
point on the strong magnetic field sides
of the X point, and away from it on the
weak magnetic field sides. An X point is
a saddle point in a. Current elements feel
a force on the strong magnetic field sides
of the X point which accelerate fluid ele­
ments toward it. Eq. (l) shows that for
small ~. the field lines of ~ will be
dragged with the fluid element. They will
be stretched in the process, raising the
local value of j. This obviously is a
self-enhancing effect, and is not compen­
sated by the fact that fluid elements are

151

simultaneously being accelerated away from
the X point at the weak magnetic field
corners: there are fewer field lines there
and they are not in general stretched by
the expulsion. Fig. ll shows the esse~tial
orientation of the relevant vectors.

Something similar to this filamenta­
tion appears to be visible in Fig. 7 of
Orszag and Tang. 1

The collapse of the current distribu­
tion would appear to be limited by the
finite ~. which becomes effective at the
smaller spatial scales. The local dissi­
pation rate varies as ~j 2 , which contri­
butes a larger total integral, for a given
total current, a·s that current becomes
concentrated into a smaller and smaller
area. The collapse ceases when the dissi­
pation becomes great enough to balance the
magnetic energy which can be dragged into
the region. This is difficult to estimate
analytically.

It is significant that the kinetic
energy of the dissipative magnetofluid is
never more than 0.05% of the magnetic
energy. The high ratio of mean square
vector potential to magnetic energy (the
ratio at t = 0 is o.88i6, while the maxj.­
mum value the ratio can have is 1.0)
effectively locks most of the energy into
the magnetic field for a long time.

What is not entirely clear is whether
the growth we are seeing is a linear in­
stability of the kind proposed by Furth,
Killeen, and Rosenbluth 5

'
6

'
7 or a non­

linear coalescence involving the inter­
action between perturbed current distri­
butions. It seems clear that the satura­
tion mechanism is highly nonlinear.

ACKNOWLEDGEMENTS

We would like to thank Drs. J. Drake
and C. S. Liu each for a valuable discus­
sion, and to Dr. Dennis Bushnell for making
the NASA-Langley computational facilities
available to us. This work was support.ed
in part by NASA under Research Grants
NsG-7416 and NGL-16-001-043, and in part
by the U. S. Department of Energy.

Table 1 and Key

]1=\!=0]1=\!=.0025

time step 0 2000 4500 2000 5500

£:
B (s .p.) 2.7489 2. 552. 2.199 2.499 2.216

E:B 2.7503 2.702 2.6259 2.5018 2.231

E: 8.74xl0- 3 4.64xl0- 2
v

l.29xl0- 1 2.75xl0- 4 2.26xl0- 4

J 8.936 16.62 44.78 4.471 3.13

A 2.4307 2.11285 2.11251 2.324 ? .153

rl ,).()()).2.)8 40.52 2.73xl0- 2 l. 7hl0- 2

~ l.U6 1.055 1.041 1.037 1.018

k v 10.7 16.5 l'(. '(10.5 8.77

k * *]1 * 34.59 31.68

k * * \) * 9.67 8. 64

E:B total magnetic energy

E:B (s.p.) magnetic energy in "sheet pinch modes"

E:
v

total kinetic energy

J total mean square current

A total mean square vector potential

rl total mean square vorticity (enstrophy)

~ = EB/A (mean magnetic wave no.) 2

k2
v

ri/E: (mean kinetic wave no.) 2

v

k
]1

1/4
l(dE:B/dt)]l- 3

1 magnetic dissipation wave no.

k\) kinetic dissipation wave no.

Time step size ~t (256)- 1 , both runs; (becomes (512)-.1, late in dissipative run)_,

152

Figure Captions

Fig . 1 . Magnetic field lines (contours of constant vector potential a) for the initial
sheet pinch configuration . ~passes through zero at each sheet .

Fig . 2 . Time evolut i on , for the non- dissipative run , .of non- sheet pinch magnetic energy
EB (nsp), mean square current J, mean square vector potential A, and kinetic energy Ev .

Fig . 3a . Contours of constant current density j for non- dissipative (and dissipative)
run at t = 0 . Compare with Fig . 1 .

Fig . 3b . Contours of constant j at 2000 time steps , for].FV=O .

Fig . 3c . Contours of constant j at 4500 time steps , for J.l=V=O.

Fig . 4a . Vector potential contours (J.l=V=O) after 2000 time steps .

Fig . 4b . Vector potential contours (J.l =V=O) after 4500 time steps .

Fig . 5a . Contours of constant stream function (vel ocity streamlines) for J.l=V=O at t 0 .
The velocity field shown is essentially infinitesimal random noise.

Fig . 5b . Stream function contours for J.l=V=O at 2000 time steps .

Fig . 5c . Stream function contours for J.l=V=O at 4500 time steps .

Fig . 6a ,b . Modal ~ andy energy spectra (directionally averaged over all f vectors
corresponding to a given k 2

) , averaged over time steps 4500 to 5000 , .for J.l=V=O.

Fig . 1. Time history of EB(nsp) , J , A, Ev for J.l=V=0 . 0025 run. The same quantities for

zero dissipation , starting from the same initial conditions , are plotted in Fig . 2 .

Fig . 8a . Constant ,i contours at 2000 time steps for J.l=V=O. 0025 .

Fig . 8b . Constant j contours at 5500 time steps for].1=\!=0 . 0025 .

Fig . 9a . Constant a contours at 2000 time steps for].1=\!=0 . 0025 .

Fig . 9b . Constant a contours at 5500 time steps for j.l=\)=0 . 0025 .

Fig . lOa . Stream function contours at 2000 time steps for j.l=V=0 . 0025 . [The t 0
contours are shown in Fig . 5a .]

Fig . lOb . Stream function contours at 5500 time steps for J.l=\!=. 0025 .

Fig . 11 . Schematic diagram showing the direction of the accelerations , for j > 0 , in the
neighborhood of a magnetic X point . Field lines dragged toward the X point from the high
field sides are stretched . Footnotes

1 ·S . A. Orszae; , Stud . Appl . Mat.h . 50 , 293
(1971) .

G. s . Patterson and S . A. Orszag , Phys .
Fluids 14 , 2358 (1971) .

s . A. Orszag and C. - M. Tang , J . Fluid
Mech . 90, 129 (1979) .

2
D. Fyfe and D. Montgomery , J . Plasma

Phys . 16, 181 (1976) .
D. Fyfe , G. Joyce , and D. Montgomery ,

ibid . 17 , 317 (1977) .
D. Fyfe , D. Montgomery , and G. Joyce ,

ibid . 17 , 369 (1977) .

3 T. Sato and T . Hayashi , Phys . Fluids 22,
1189 (1979) . (This paper also con­
tains a rather more complete biblio-·
graphy of the astrophysical background
of this problem than we present here .)

153

4 W. H. Matthaeus and D. Montgomery , sub­
mitted to Phys . Fluids , 1979 .

5 H. P . Furth , J . Killeen, and M. N. Rosen­
bluth , Phys . Fluids~' 459 (1963) .

6 E. M. Barston , Phys . Fluids 12, 2162
(1969) .

7 J . F . Dri:ike, N. T. Gladd, C. 8 . Liu, and
C. L. Chang, "Microtearing Modes and
Anomalous Transport in Tokamaks",
University of Maryland Plasma Preprint
PL #79- 026 (April, 1979) .

5
1

0

,_.
,.

--
-1

I 0
'"Z

j

c
t-'

•
O'

Q

(_
f)

f\

_
)

\.J
.)

T

I
II

)

II
z D

(f

)
w

G

l
1

1

I
--

-1

'"Z
j

I
'"Z

j
>-

<
~

t-
'·

t-
'·

O'
Q

O'
Q

~

~

.
rr

-

.
v

.

1-
'

,

.j:
:>

.

f\
.)

Il

l

I
:

lf
)

--
-1

)
r-

Il
l

U
l

'1
]

(j
')

\
f- +-

(
]
)

'"Z
j

(
f-'

•
O'

Q
r1

i
:::

:0

(
_

(t"

)

\.J
.)

<

%

%

0

%

1
\)

0

,--
-,

o
'

1
\)

0

z
"

0
,.

..
..

_.
.l

()

U
l
~

0
::1

(

1
\)

0

C'll
V

\
.0

V

\

0
V

\

bD

bD

bD

·M

'M

'M

1%.
1%.

1%.

C'll
.0

0

-.::!
("

')
-.::!

bD
bD

bD

'M

'M

'M

1%.
1%.

1%.

v
.

0
\

l'%
j

1-
'•

O
Q

 .

U
'lG

V

 C
K

l
S

Q

0
-7

.(
1

0

-'
3

.0
0

-5

.0
0

-4

.0
0

-

3
.(

10

-2
.0

0

-1
.0

0

0
.0

0

·
~
~
-
-
~
-
-
-
-
~
-
-
-
-
~
-
-
-
-
-
L
-
-
-
-
-
L
-
-
-
-
-
L
-
-
-
-
~

D

0 [
)

U
l

!:
l

r
·o

a
o

G

l

;>
:;

(f
) o
:- ", 0 ru

r;
)

r:
l "' Lf
1

0 "' 0 0 "" Lf
1

0

"' "" "'

..

"" "'
"

"" J
l(

"'
"

"'
Y.

"'
" "'
~

}'
!.

~

"'
r.>

a a U
1

0 Q

 0 "' 0

-4
.J

O
 ~
.

l...
•)

G
 B

 C
K

l
SQ

-3

.0
0

-2

.0
0

-1

.0
0

0

.0
0

i

.0
0

2

(1
0

"'
"'

"'
)'

;

"' -"
'·

"'
]r

..

"" "
"'

I
-

1
-

-

I
,

-

~

I
I

~

--

II
I

S
d31S

3W
I1

~
0

S
O
N
~
S
r
O
H
l

01
6

8
L

9

S
h

S
2

1
0 0 0 0 1 ?

(i\ 3
-
-
-
-
-
-
-
-
-
-
-
-
-

611 ·1
x
r
-
-
-
-
-
-
-
-
-
-
-
-
-
~

"(
~
~
-
-
-
-
-
-
-
-
-
-
-
-
-
-
~
~
~
~
~
-
-
-
-
~

o
o
s
~ (d

S
N

)
8=r __/'

U
l

0

V
>

oc

"%
j

1-
'·

O'
Q 1-

'
&f

"%
j

1-
'•

(7
':l

 "' o'

NUMERICAL SOLUTION OF THE 3-p NAVIER-ATOKES
EQUATIONS ON THE CRAY-1-:::COMPUTER-3

~}

* ** * J. S. Shang, P. G. Buning, W. L. Hankey

* ** ** M. C. Wirth, D. A. Calahan and W. Ames
*Air Force Flight Dynamics Laboratory

**University of Michigan

ABSTRACT

A three-dimensional, time dependent Navier-Stokes code using MacCormack's explicit
scheme has been vectorized for the CRAY-1 computer. Computations were performed for a
turbulent, transonic, normal shock wave boundary layer interaction in a wind tunnel
diffuser. The vectorized three-dimensional Navier-Stokes code on the CRAY-1 computer
achieved a speed of 128 times that of the original scalar code processed by a CYBER 74
computer. The vectorized version of the code outperforms the scalar code. on the CRAY
computer by a factor of 8.13. A comparison between the experimental data and the
numerical simulation is also made.

c
Def
e

F, G, H

L~, Ln, Ls
M
p
q
R ey

T
t
u

u
u,

x,

E;.,

p

T

v,

y,

n,

w

z

r;

NOMENCLATURE

Speed of Sound
Deformation Tensor
Specific Internal Energy
c T + (u2 + v2 + w2)/2

v
Vector Fluxes, Equation (15)
Differencing Operator

Mach Number
Static Pressure
Rate of Heat Transfer
Reynolds Number Based on Run­
ning L~ngth P00U00X/~00
Static Temperature
time
Dependent Variables in Vector

.Form (p, pu, pv, pw, pe)
Velocity Vector
Velocity Components in
CRrteBian Frame
Coordinates in Cartesian
Frame
Transformed Coordinate System,
Equation (14)
Density

Stress Tensor

INTRODUCTION

In the past decade, computational fluid
dynamics has become firmly established as
a credible tool for aerodynamics
researchl,2. Aided by some rather crude
and heuristic turbulence models, success
has been achieved even for complex turbu­
lent flows3-8. In spite of all these con­
vincing demonstrations, the objective of a

159

wide application of computational fluid
dynamics in engineering design has yet to
be achieved. The basic limitation is in
cost effectiveness. A lower cost and
systematic methodology needs to be
developed9.

The present analysis addresses one of
the key object.ives in obtaining efficient
numerical processing. To achieve this
objective, two approaches seen obvious;
either develop special algorithms designed
for a particular category of·problems
according to the laws of physics or utilize
an improved computer. In the case of
special algorithms, a better understanding
of the generic structure of the flow field
is required. In general, these attempts
have been successful and have achieved an
order of magnitude improvement in comput­
ing speed. On the other hand, a class of
computers designed for scientific computa­
tions; the CRAY-1, STAR 100 and ILLIAC IV
among others, has become available.· The
most significant advance in computer hard­
ware related to computat.ional fluid dyna­
mics is the vector processor which permits
a vector to be processed at an exceptional
speed. This option gives a new perspec­
tive; i.e., a drastic reduction in comput­
ing timelO, 11, 12

A three-dimensional time dependent
Navier-Stokes code using MacCormack's
explicit schemel3 has been vectorized for
the CRAY-1 computer. The selection of
this particular finite differencing scheme
is based on its past ability to perform a
large number of successful bench mark
runs2-7, its proven shock-capturing capa-

bility, and the inherent simplicity of the
basic algorithms. The Cray-1 computer was
chosen because at the present time, among
all the available general purpose scienti­
fic pr~cessors, it provides the highest
potential floating point computation rate
in both the scalar and the vector model4.
The combination of the selected algorithm
and the CRAY-1 computer provides a bench
mark for future development and a tool for
current engineering evalution.

The problem selected for evaluating the
CRAY-1 performance was the experimental
investigation of Abbissl5,16 of a three­
dimensional interaction of a normal shock
with a turbulent boundary layer in a square
wind tunnel diffuser at a Reynolds number
of thirty million and Mach number of 1.51.
The primary purpose of the paper is to
determine the computational speed of the
code, although a comparison with experi­
mental data is presented to demonstrate
the validity of the oolution.

GOVERNING EQUATIONS

The time dependent, three dimensional
compressible Navier-Stokes equations in
mass-averaged variables can be given as

~ + 'i/ • (p;:;) = 0
dt

ap;:; + v • (p;:;;:; - T) = o
dt

ape + 'i/ • (pe;:; -
dt

u • T+q)=O

(1)

(2)

(3)

The turbulent closure of the present
analysis is accomplished through an eddy
viscosity model. The effective thermal
conductivity is also defined by the turbu­
lent Prandrl number (Prt = U.Y). The equa­
tion of state, Sutherland's viscosity law
and assigned molecular Prandtl number
(0.73) formally close the system of govern­
ing equations.

Figure 1. Flow Field Schematic

160

Since the wind tunnel flow field con­
sisted of four symmetrical quadrants, only
a single quadrant was computed. The boun­
daries of the computational domain contain
two intersecting wind tunnel walls and two
planes of symmetry for which the associated
boundary conditions are straight forward
(Figure 1). In order to develop upstream
conditions equivalent to the experiment a
separate computation is initiated with a
free stream condition and permitted to
develop a three-dimensional boundary
layer along the corner region until the
boundary layer duplicates the experimental
observation (o = 4.0 em, x = 316 cm)l5.
Then, the computed flow field at this
stre:;~,mw;i,se loc:ation iR impnRf>d i'IS the np­
steam condition for the interaction com­
putation. On the wind tunnel walls, the
boundary conditions are ~o-slip for the
velocity r.omponents and a constant sur­
face temperature. The wind tunnel wall
pressure is obtained by satisfying the
momentulu e4uaL.iuu aL the solid surfac:e.
On the planes of symmetry, the symmetrical
boundary conditions are given for all de­
pendent variables. The normal shock wave
across the wind tunnel is then specified
according to the Rankine-Hugoniot condi­
tions. The far downstream boundary con­
dition is the well known no-change con­
dition. In summary:

INITIAL CONDITION:

fico, l;, n, 0 = u
00

UPSTREAM CONDITION:

fiCt, 0, n, 0 = u
00

DOWNSTREAM

~~I . 0
x-+ XL

_O_N _P_L_~N::.E.:::.S_O::.;F:;__:S::..:Y:.:;MM=E:.:::T::.R:.::_Y :

~~~ = 0 and ~~~z 
y = YL 

ON WIND TUNNEL WALL : 

u = v = w = 0 
Tw = 313. 79°K· at y, z 

v · T = o 

0 

0 

(9) 

(10) 

(11) 

(12) 

(13a) 
(13b) 

A coordinate system transformation is 
introduced to improve the numerical resol­
ution in the viscous dominated region. 

~ x/xL (14a) 

n 1/k ln[l +(ek 1) y/yL] (14b) 

c; 1/k ln[l +(ek 1) z/zL] (14c) 



The governing equations in the transformed 
space are of the following form: 

au + t;x ~~ + ~ nx. ac + Ll; ~~ = .0 
at 0~ 1 1 an i xi o., 

(15) 

where t; , n and r; are the metrics of the 
X y Z 

coordinate transformation. The definition 
of the conventional flux vectors F, G, and 
H can be found in Ref. 7. 

NUMERICAL PROCEDURE 
AND DATA STRUCTURE 

The basic numerical method is the 
time-split or factorized scheme originated 
by MacCormack. The finite difference form­
ulation in terms of the difference operator 
can be expressed as 

(16) 

Each difference operator contains a 
predictor and corrector. During a specific 
numerical sweep, the flux vectors are appro­
ximated hy a central, forward, and back­
ward differencing scheme in such a fashion 
that after a ~omplete ryrle of the pre­
dictor and corrector operations all the 
derivatives are effectively approximated 
by a central differencing scheme. A 
graphic representation of these operations 
is given by Figure 2. 

OlffiRWCING 
OPERATOR 

l ( 

l~ 

Figure 2. 

PREDICTOR tORRfCTOR 

~·[jtlB 
~~ 
~~ 

~,00 
' 

Grid Points Involved in the 
Time Step Sweep 

When investigating flows with strong 
shock waves, it is necessary to employ 
numerical damping in a shock-capturing 
scheme. Fourth-order pressure damping was 
utilized which generates an artificial 
viscosity-like term.l7 

t.tt,t;~ _a_ [I uil + c 
1 at;. 

4
. 

1 p 

2 
~] 
at;~ 

1 

au 
~. 

1 

i = 1,2,3 

161 

The approximation of second order central 
differencing for the corrector step 
required additional grid point information 
beyond the immediately adjacent planes. 
The damping terms, however, are effective 
only in the presence of shock waves where 
the numerical resolution is degraded. 

From the symmetric differencing opera­
tor sequence of predictor and corrector 
steps, one detects that the dependent vari­
ables in the predictor level can be com­
pletely eliminated by retaining only the 
three cyclic pages currently in use 
(Figure 3). For a flow field requiring a 
large amount of data storage, this reduc­
tion in memory requirement is substantial. 
Meanwhile, the paging process is reduced 
from two sweeps to one. The predictor 
and corrector sequence is performed with­
in one sweep by overlapping the corrector 
operation during one fractional time step. 

PRIO!t!OR 

tORR!CTOR 

.... ~ ~ ..... ;::: 
~ -.....: :<-..:<-..~ 

l ' 
' 

Figure 3. Data Storage and Data 
Flow Diagram 

Once the planar or page storage is 
adopted, the vector length can be deter­
mined. Separate vectors are constructed 
for n and r; directions, yielding vector 
lengths approximately equal to the number 
of grid points in each direction. In 
order to keep all solutions in the same 
page (n- r; plane), the streamwise sweep 
(l; sweep) is vectorized in the r; direction. 

For the present problem, the computa­
tional domain with the dimension of 
356.3cm x 45.5cm x 45.5cm is partitioned 
into two streamwise sections of 64 pages 
each. Every page contains 33 x 33 grid 
points inn and r; coordinates respectively. 
The problem is solved in two steps. The 
first computational section generates a 
three-dimensional boundary layer over a 
corner which becomes the in-flow boundary 
condition for the following shock-boundary 
interaction domain. Both contain 
64 x 33 x 33 grid points, but a finer 
streamwise mesh spacing t,x = 1.27 em was 
used for the interaction zone to gain a 
finer numerical resolution of the shock-



boundary layer interaction. The ratio 
between the fine and coarse streamwise 
grid spacing is 0.3q63 of the local 
boundary-layer thickness (4.0cm)l5. The 
cross flow plane grid-point distribution, 
however, remains identifical between the 
two overlapping segments. The memory 
requirement for each is about 0.545 mil­
lion words. 

The numerical solution is considered 
at its steady state asymptote when the 
maximum difference between two consecutive 
time levels of the static pressure in the 
strong interacting zone is less than 0.2 
percent. In the leading computational 
domain the convergence criterion is 
established similarly but is based on the 
velocity profiles instead of pressure. 

TIMING RESULTS 

A portion of the present effort is 
aimed at making internal comparisons of 
the relative times for various types of 
functional unit processing and memory 
loading (I/O) for the vectorized code. 
A knowledge of relative time expenditure 
information is important to provide some 
insight into the program execution rate. 
Although this type of data is code depend­
ent, the present example is deemed typical 
of a large class.of Navier-Stokes solvers. 
The timing information is measured by vec­
tor operation countsll and shown in Figure 
4 .. It is obvious that the relative usage 
of the memory path and functional units is 
dominated by memory loadings (34.6%) and 
floating point multiplication (33.3%). 
Within the functional units, the relative 
usage of the floating point addition and 
multiplication has the ratio of two to 
three. The relative usage of the recipro­
cal approximation is extremely rare, i.e. 
less the 2%. In spite of the high per­
centage of memory loading, a portion of 
the vectorized Fortran code has achieved 
an execution rate of 42.9 MFLOPSll. 
Further improvements still can be made 
either in Fortran or assembly language 
versions of the present code. However, we 
feel an overall execution rate greater 
than 60 MFLOPS on this size problem is 
unlikely. 

A basic dilemma exists for the com­
parative investigation; namely in the pro­
cess of vectorization significant changes 
were made either on the amount of computa­
tion performed or on the number of sub­
routine calls made. The final vectorized 
program usually bears little resemblence 
to the original scalar code7, 11 Sub-

162 

stantial improvement in performance of 
the vectorized code on a scalar machine 
has also been reported. However, this 
improvement in performance can be consid­
ered as a contribution due to the vector­
ization process. 

Figure 4. Vector Operation Counts in 
Percentage 

In order to perform the comparative 
study, a criterion must be established. 
The ultimate evaluation of data processing 
rate is the computing time. The complete­
ly duplicated computations for an ident­
ical fluid mechanics problem are usually 
prohibited by the incore memory and the 
indexing limitations for various processors. 
Therefore, one has to accept the rate of 
data processing as the criterion. The 
rate of data processing is commonly defined 
as 

RDP = CPU Time/(Total Number of Grid 
Points x Total Number of Iterations) 

The particular rate of datA pro~essing is 
most suitable for numerical programs with 
similar algorithms and convergence rate. 
If the ratio between field grid points 
and boundary points can be maintained 
between two programs then the comparison 
is particularly meaningful. 

In Table 1, the comparison of timing 
results between the scalar code and 
vectorized code on the CRAY-1 is presented. 

Table 1 

The Comparison of Scalar and 
Vector Processing on CRAY-1 

VERSION OF CODE 

Scalar 

Vector 

RDP(Sec/Pts, ITERATIONS) 

4.761 X 10-4 

4.861 X 10-5 

The vectorized program outperforms the 
original scalar code by a factor of 8.13. 
In Table 2, the timing results of the 
scalar code and vectorized code perform-



ance for four different computers are 
given. 

Table 2 

Comparative Timing Results 

COMPUTER (RDP)CYBER 
RDP 

CYBER 74 Scalar 7.48xl0 -3 1.0 

CDC 7600 Scalar 1.45xl0-3 5.2 

-4 15.7 CRAY-1 Scalar 4.76xl0 

CRAY-1 Vector 5.86xl0 -5 127.7 

CRAY-1 Assembly 5.19xl0 -5 144.2 

A brief description of each running 
condition for which the timing results 
were obtained may help with the interpre­
tion of the data. The computations con­
ducted on CYBER 74 and CDC 7600 with a 
grid point system of (17 x 33 x 33) were 
performed in the early phase of the pre­
sent task7. On the CYBER 74 computer the 
data storage problem was overcome by a 

74 

data manager subroutine in conjunction with 
a random access disk file. The computation 
carried out on CDC 7600 used large core 
memory for all the dependent variables. 
The I/O requirement is substantial, par­
ticularly for the computation performed on 
the CYBER 74. 

FORTRAN VS. ASSEMBLY LANGUAGE 

The multiple functional units and mem­
ory hieracrchy of the CRAY-1 can be dif­
ficult for the Fortran compiler (CFT) to 
manage efficiently.· Consequently, CRAY 
Assembly Language (CAL) versions of a num­
ber of subroutines which account for up to 
78% of the computation time were written 
with the aid of a .simulator [18]. These 
kernels were also vectorized in Fortran 
with the CRAY-1 architecture and compiler 
features in mind; however, non-ANSI stan­
dard utility functions [19] and unusual 
Fortran constructs [20] were not employed. 

The principle timing results follow. 

1) Among 9 kernels, assembly language 
speedups ranged from 11% to 29% with 
vector lengths of 33 (= a grid dimen­
sion). 

2) An overall speedup of 14.2% was 
achieved (Table 2), including the 
common 22% Fortran. 

163 

3) A detailed simulator-produced evalua­
tion of a subroutine which accounts 
for ~ 20% of the total computation 
time is given in [21]. The execution 
rate of ~ 50 MFLOPS is 1/3 of the 
maximum practical rate of the proces­
sor. However, the memory path is 
busy 70% of the time for the Fortran 
code for a vector length of 63, and 
up to 90% for the CAL code, indicating 
the memory bound nature of the algor­
ithm on the CRAY-1. Indeed, the 90% 
busy time is viewed as an excellent 
indicator of the optimality of the 
CAL code. 

A more detailed comparative study of this 
code is given in [21]. 

COMPARISONS WITH EXPERIMENTAL DATA 

In Figure 5, several velocity profiles 
across the wind tunnel at a Reynolds number 
of 3.0 x 107 are presented. This location 
represents the flow field condition at the 
end of the leading segment of the computa­
tional domain which is also the upstream 
condition for the following interaction 
zone. The present results agree reasonably 
well with the data of Seddonl6. The data, 
however, were collected at a Reynolds num­
ber one decade lower than the present con­
dition and at a slightly different Mach 
number (1.47 v.s. 1.51). At the range of 
Reynolds numbers considered, the Reynolds 
number dependence should be scaled out by 
the boundary layer thtckness. An inde­
pendent boundary-layer calculation using 
the exact simulated condition was per~ 
formed that verified this contention. It 
was found that the difference in magnitude 
of velocity is a few percent. ·The present 
result underpredicts the measured boundary 
layer thicknessl5 by about eight percent 

1.4 

1.1 
Yl6 

1.0 

0.8 

0.6 

0.4 

OJ 

M.,~~.t.51 R£Y ~~~" l.OxiO: 

y I 
0.018 'l'~= 0.149 

~lAOFSUlllON 1 
~ 
8 

0 OJ 0.4 0.6 0.8 1.0. 

0 D.J 0.4 0.6 0.8 I~ 

U/Ue 

0~ 7 

b = 40 U.M. 

0.001 

Figure 5. Velocity Profiles Along 
the Tunnel Wall 



A direct comparison of several velocity 
distributions between the data of Abbiss 
et allS and the present calculation is 
presented in Figure 6 for the interaction 
region. The data are displayed for fixed 
x/o and y coordinates away from the corner 
domain. The coordinate x is taken in the 
streamwise direction along the tunnel floor 
and y normal to the floor. Excellent agree­
ment between the data and calculation is 
observed for the regions either deeply 
imbedded within the boundary layer or com­
pletely contained in the inviscid domain. 
The maximum discrepancy between data and 
calculation is in the lambda wave structure. 
The maximum desparity between data and 
calculations is about 10 percent. 

: r:---.,·-o~o '• 8'~ 
U>oo ~'l...Q_ ___ , 

Ill I : Q Q 0 '""\ 
1 

• I~M 
~(;){;)(:)~ 

0 0 
G 0 () T • ll~m 
~eoooooooo 

li:J 

"'~~ooo Y •IDIEI:~ 
oo0o 00 J:~.:~ .. 

"" .., 
"" 
till 

I ..0 .U 

"" 
l•~cra UW:! 

~;;---:-- ,:.:--:-<,.-7.,.:---:..,':---~­
XIb 

Figure 6. Comparison of the Flow Field 
Velocity in the Interactive 
Region 

In Figure 7 the Mach number contour is 
presented in an attempt to compare with 
the flow field structure given by Abbiss 
et allS in Figure 8. The bifurcation of 
the normal shock wave is clearly indicated. 
The calculation nearly duplicates all of 
primary features of the experimental 
observation. However, a difference can 
be discerned in the dimension of the 
embedded supersonic zone between the 
experimental observation and calculation. 
The local supersonic zone emanates from 
the expansion due to the total pressure 
difference between the normal shock and 
the lambda shock structure and the rapid 
change in the displacement surface. A 
few percent disparity in predicting the 
magnitude of velocity lead to the dis­
tinguishable discrepancy in the definition 
of the embedded supersonic zone. A 
similar observation may be made for the 
work of Shea2 2 in his,investigation of the 
two-dimensional normal-shock wave turbu­
lent boundary layer interaction. 

164 

l.D 

a.D 

l!o:.~1.Sl 
IIIy • 3.0J.10' 
& •40m.m 

CI.TAOFABSISS ElAI. 

----· , ..... ....-·so~~ USE 

... ·"· 

~ -'wiiicuiiE - --

1.0 2Jl 10 4.0 5.0 B.D 

lib 

Figure 7. Experimentally Measurerl Flow 
Field Structure in the Plane 
of Symmetry 

8.0 

4.0 

-4.0 

"\., = 1.51 

Rey = 3.0 X 107 

6 = 40 JlUil 

0.8 

"---------..__ 

4.0 8.0 
x/6 

Figure 8. Computed Number Contour in the 
Plane of Symmetry 

In Figure 9, the velocity distribution 
parallel to the wind tunnel side is given. 
A reverse flow is observed beneath the 
lambda shock wave system. The separated 
flow region begins about three boundary­
layer thickness upstream of the normal 
shock and terminates at five boundary layer 
thickness downstream. The length of the 
separated domain is similar to the measure­
ment of Seddonl6 and the numerical simula­
·tion by Shea22. 



Figure 9. Computed Velocity ~ield in the 
Interaction Region 

The entire flow field structure is pre­
oented in Figure 10 in terms of dencity con­
tours at various streamwise locations. The 
shear layer over the corner region, the 
strong inviscid-viscous domain, and the 
subseque~t readjustment of the flow field 
are easily detectable. A clear indication 
of substantial growth of the shear layer 
over the wind tunnel wall is also obvious. 

CONCLUSIONS 

A three-dimensional time dependent 
Navier-Stokes code using MacCormack's 
explicit scheme has been vectorized for 

the CRAY-1 computer achieved a speed of 
128 time that of the original scalar code 
processed by a CYBER 74 computer. The 
vectorized code outperforms the scalar 
code on the CRAY-1 computer by a factor of 
8.13. 

The numerical simulation for a turbu­
lent, transonic, normal shock-wave bound­
ary-layer interaction in a wind tunnel has 
been successfully performed using a total 
139,400 grid points. The numerical res~lt 
indicates sufficient resolution for eng1ne­
erirtg purposes. Additional increase in 
speed by up to an order of magnitude 
through algorithm requirement also seems 
attainable. 

ACKNOWLEDGEMENT 

The authors wish to acknowledge the 
assistance of S. Arya and E. Sesek of the 
University of Michigan in preparation of 
the CRAY-1 program. This work was pre­
pared in part under the auspices of Grant 
AF AFOSR Grant 75-2812. The authors also 
wish to express their appreciation to 
Cray Research, Inc. and Lawrence Livermore 
Laboratory for the use of their computer 
facility. 

M
00 

= 1. 51 

Rey = 3.0 X 107 

o = 40 mm 

Figure 10. Perspective View of Density Contours 

165 



REFERENCES 

1. Chapman, D. R., Drydent Lectureship in 
Research Computational Aerodynamics Devel­
opment and Outlook, AIAA Paper 79-0129, 
January 1979. 

2. Peyret, R. and Viviand, H. "Computa­
tion of Viscous Compressible Flows Based 
on the Navier-Stokes Equations," AGARDo­
graph, No. 212, September 1975. 

3. Knight,·D. D., "Numerical Simulation 
of Realistic High-Speed Inlets Using the · 
Navier-Stokes Equations," AIAA J., Vol. 16, 
June 1978. 

4. Levy, L. L. "Experimental and Computa­
tional Steady and Unsteady Transonic Flow 
About a Thick Airfoil," AIAA J., Vol. 16, 
June 1978. 

5. Mikhail, A. G., Hankey, W. L. and 
Shang, J. S., "Computation of a Supersonic 
Flow Past An Axisymmetric Nozzle Boattail 
with Jet Exhaust," AIAA Paper 78-993, 
July 1978. 

6. Hung, C. M. and MacCormack, R. W. 
"Numerical Solution of Three-Dimensional 
Shockwave and Turbulent Boundary-Layer 
Interaction," AIAA J., Vol. 16, No. 10, 
October· 1978. 

7. Shang, J. S., Hankey, W. L. and Petty, 
J. S., "Numerical Solution of Supersonic 
Interacting Turbulent Flow Along a Corner," 
AIAA Paper 78-1210, July 1978. 

8. Pulliam, T. H. and Lomax, H., "Simula­
tion of Three-Dimensional Compressible 
Viscous Flow on the Illiac IV Computer," 
AIAA Paper 79-0206, January 1979. 

9. "Future Computer Requirements for Com­
putational Aerodynamics," A Workshop held 
at NASA Ames Research Center, Oct 406, 1977, 
NASA Conference Proceeding 2032. 

10. J. S. Shang, B~ning, P. G., Hankey, 
W. L., and Wirth, M. C., "The Performance 
of a Vectorized 3-D Navier-Stokes Code on 
the CRAY-1 computer'· AIAA Paper 79-1448, 
1979. 

11. Buning, P. G., "Preliminary Report on 
the Evaluation of the CRAY-1 as a Numerical 
Aerodynamic Simulation Process," Presented 
at AIAA 3rd Computational Fluid Dynamics 
Conference, Open Forum, June 1977. 

166 

12. Smith, R. E. and Pitts, J. I., "The 
Solution of the Three-Dimensional Compres­
sible Navier-Stokes Equations on a Vector 
Computer," Third IMACS International Sym­
psium on Computer Methods for Partial Dif­
ferential Equations," June 1979, Lehigh 
University, PA, and Private Communication. 

13. MacCormack, R. W., "Numerical So1u­
tions of the Interactions of a Shock Wave 
with a Laminar Boundary-Layer," Lecture 
Notes in Physics, Vol. 8, Springer-Verlag, 
1971. . 

14. Calahan, D. A., "Performance of Linear 
Algebra Codes on the CRAY-1, "Proceedings 
SPE Symposium on Reservior Simulation, 
Denver, CO, 1979. 

15. Ahiss, .T. R., R.<~st, T~. F., Nash, C. !L, 
P.<~rkP.r, P., J'j_ke, E. R. and Swayer, W. G., 
"A SL.udy of the Interaction of o Normal 
Shock-wave anci a Turhnl P.nt Rnnnci.<~ry T . .<~yPr 

Using a Laser Anemometer," Royal Aircraft 
Establishment, England, TR 75151, February 
1976. 

16. Seddon, J., "The Flow Produced by 
Interaction of Turbulent Boundary-Layer 
with a Normal Shock Wave of Strength Suf­
fir.iP.nt to Cause Separation," Royal Air­
craft Establishment, England, Rand M 3502, 
March 1960. 

17. MacCormack, R. W. and Baldwin, B. S., 
''A Numerical Method for Solving the Navier­
Stokes Equations wi.th Application to Shock­
Boundary Layer Interactions," AIAA Paper 
75-1, January 1975. 

18. Orbits, D. A., "A CRAY-1 Simulator," 
Report #118, Systems Engineering Laboratory 
Univ. of Michigan, September 1, 1978. 

19. CRAY-1 Fortran (CFT) Reference Manual, 
Pub. #2240009, Cray Research, Inc., 1978. 

20. Higbie, Lee, "Speeding Up Fortran (CFT) 
Programs on the CRAY-1," Technical Note Pub. 
#2240207, Cray Research, Inc., 1978. 

21. Ames, W. G., Arya, S. and Calahan, 
D. A., "An Evaluation of the Fortran Com­
piler on the CRAY-1," Report //134, Systems 
Engineering Laboratory, University of 
Michigan, October 1, 1979. 

22. Shea, J. R., "A Numerical Study of 
Transonic Normal Shock-Turbulent Boundary 
Layer Interactions," AIAA Paper 78-1170, 
July 1978 and Private Communication. 



ATTENDEES OF SCIE MEETING 
September 12-13, 1979 

Larry Ablow 
SRI International 

Bill Alzheimer 
Sandia Laboratory, Livermore 

G.W. Anderson 
Sandia Laboratory, Livermore 

Arvind 
Massachusetts Institute of Technology 

John Avila 
NASA/At1ES 

Pat Bailey 
EPRI 

Robert Barton 
Lawrence Livermore Laboratory 

Marsha Berger 
Stanford University 

Stanley A. Berger 
University of California, Berkeley 

Carl Berkowitz 
Pacific Northwest Laboratories 

Richard Blaine 
International Business Machines 

David L. Book 
Naval Research Laboratory 

Jay P. Boris 
Naval Research Laboratory 

Dennis Brockway 
Los Alamos Scientific Laboratory 

Inorid Bucher 
Los Alamos Scientific Laboratory 

Pieter Buning 
NASA/AMES 

Bi 11 Buzbee . 
Los Alamos Scientific Laboratory 

167 

D. A. Calahan 
University of Michigan 

David Ceperley 
Lawrence Berkeley Laboratory 

Simon W. ·Chang 
olnyr.or 

W. J. Cody 
Argonne National Laboratory 

Mark Cotnoir 
SYstems Development Corporation 

Keith L. Derstine 
Argonne National Laboratory 

Ronald J. Detry 
Sandia Laboratory, Albuquerque 

Jack Dongarra 
Argonne National Laboratory 

Paul Dubois 
Lawrence Livermore Laboratory 

Floyd E. Dunn 
Argonne National Laboratory 

Jim Edwards 
General Electric 

Ted Einwohner 
Lawrence Livermore Laboratory 

Raymond Ell is 
Sandia Laboratory, Livermore 

Kenneth Eppley 
Lawrence Livermore Laboratory 

Albert M. Erisman 
Boeinq Computer Services Company 

Vance Farber 

Mike Farmwald 
Lawrence Livermore Laboratory 



Michael D. Feit 
Lawrence Livermore Laboratory 

Sidney Fernbach 
Lawrence Livermore Laboratory 

Horace Flatt 
International Business Machines 

Kirby W. Fong 
Lawrence Livermore Laboratory 

Bengt Fornberg 
California Institute of Technology 

Paul Fredrickson 
Los Alamos Scientific Laboratory 

Alex Friedman 
University of California, Berkeley 

Verlan K. Gabrielson 
Sandia Laboratory, Livermore 

Fred Gama-Lobo 
Los Alamos Scientific Laboratory 

W. Morven Gentleman 
University of Waterloo 

William E. Gifford III 
AFWL, Kirkland 

Eric Gilbert 
Lawrence Livermore Laboratory 

Dick Giroux 
Lawrence Livermore Laboratory 

Joseph Grear 
University of Illinois 

Anne Greenbaum 
Lawrence Livermore Laboratory 

John Greenstadt 
International Business Machines 

William Gropp 
Stanford University 

Louis A. Hageman 
Bettis Atomic· Power Laboratory 

Karen Haskell 
Sandia Laboratory, Albuquerque 

168 

Gerald Hedstrom 
Lawrence Livermore Laboratory 

Leland C. Helmle 
Informatics - PMI 

Richard Hickman 
Lawrence Livermore Laboratory 

H. Richard Hicks 
ORNL 

Lee Higbie 
Cray Research 

Lee E. Hollingsworth 
Sandia Laboratory, Albuquerque 

Stu Hopkins 
NASA/AMES 

Alphonse Iacoletti 
Sandia Laboratory, Albuquerque 

Stan Jensen 
Lockheed Research Lab 

Thomas L. Jordan 
Los Alamos Scientific Laboratory 

Ralph G. Jorstad 
Boeing Computer Services Company 

Lou Just 

John Kammerdiener 
Los Alarnos Scier~tif"lc Laboratory 

Alan Karp 
International Business Machines 

Michael J. Kascic 
Control Data Corporation 

Michael J. Keskinen 
Naval Research Laboratory 

John Ki 11 een 
Lawrence Livermore Laboratory 

John Kimlinger 
Lawrence Livermore Laboratory 

Davis A. Kloc 
Air Force Weapons Laboratory, N.M. 



Jay Lambiotte 
NASA/Langley Research Center 

Richard Lancaster 
IPC 

B. Langdon 
Lawrence Livermore Laboratory 

Barbara Lasinski 
Lawrence Livermore Laboratory 

Robert Lee 
l..awrP.nce Livermore Laboratory 

Charles Leonard 
Sandia Laboratory, Livermore 

Robert Lyczkowski 
Lawrence Livermore Laboratory 

Steve McCormick 
Colorado State University · 

Michel McCoy 
Lawrence Livermore Laboratory 

B. Edward McUonald 
Naval Research Laboratory 

Brandan McNamara 
Lawrence Livermore Laboratory 

Lynn D. Maas 
Los Alamos Scientific Laboratory 

Neil Madsen 
Lawrence Livermore Laboratory 

Mary-Ann Mahaffy 
Los Alamos Scientific Laboratory 

J. Manickam 
Princeton University 

Alan Mankofsky 
Cornell University 

Thomas Manteuffel 
Sandia Laboratory, Livermore 

Barry Marden 
Sandia Laboratory, Albuquerque 

Alex Marusak 
Los Alamos Scientif1c Laboratory 

169 

Ken Marx 
Sandia Laboratory, Livermore 

Lawrence Marx 
NASA/Goddard 

William Mattheaus 
William and Mary 

T. C. Michels 
Lawrence Livermore Laboratory 

Gordon J. Miller 
Sandia Laboratory, Livermore 

R. H. Miller 
University of Chicago 

Barry N. Moore 
Austin Research Associates 

James R. Morris 
Lawrence Livermore Laboratory 

Paul J. Nikolai 
Wright-Patterson AFB 

Joseph Oliger 
Stanford University 

Carl Edward Oliver 
Air Force Office Science Research 

David Orbits 

Arthur Ortega 
Sandia Laboratory, Livermore 

Sam Paolucci 
Sandia Laboratory, Livermore 

Merre 11 Patrick 
Duke University 

Stu Patterson Jr. 
Gray Research 

Larry Patzer 
Air Force Weapons Lab, N.M. 

Charles Pfefferkorn 
NASA/AMES 

William G. Poole, Jr. 
Boeing Computer Services Company 



Jeffrey P. Qui.ntenz 
Sandia Laboratory, Albuquerque 

John Rettberg 
International Business Machines 

Clifford Rhoades 
Air Force Weapons Laboratory; N.M. 

Garry Rodrigue 
Lawrence Livermore Laboratory 

Tim Rudy 
Lawrence Livermore Laboratory 

Lawrence E. Ruqsinski 

Steven Sackett 
Lawrence L ·i verrnore La bora tory 

P. G.· Saffman 
Cal tech 

Theodore Salvi 
Air Force Weapons Laboratory, N.M. 

Ahmed Sameh 
University of Illinois 

James G. Sanderson 
Los Alamos Scientific Laboratory 

Melvin Scott 
Sandia Laboratory, Albuquerque 

J. S. Shang 
Wright-Patterson AFB 

Richard Simari 
Air Force Weapons Laboratory, N.M. 

Bruce F. Smith 
NASA/AMES 

Major Leonard Stans 
Air Force Weapons Laboratory, N.M. 

Kenneth G. Stevens 
NASA/AMES 

A. Stewart 
NASA/AMES 

Robert Stoeckly 
·Mission Research Corporation 

170 

William Sutcliffe 
Lawrence Livermore Laboratory 

Tokihiko Suyehiro 
Lawrence Livermore Laboratory 

Marvin Theimer 
Stanford University 

J. W. Thomas 
Colorado State University 

John Tomlin 
NASA/AMES 

samuel Thompson 
Sandia Laboratory, Albuquerque 

D. S. Trent 
Pacific Northwest Laboratories 

Phillip J. Trosin 
Informatics, Inc. 

Carol Tull 
Lawrence Livermore Laboratory. 

Walter H. Vandevender 
Sandia Laboratory, Albuquerque 

Richard Varga 
Kent State University 

Doug Vaughan 
Lawrence Livermore Laborator~ 

L. E. Voelker 
S<.1ndia Laboratory, Livermore 

H. H. Wang 
International Business Machines 

Osaki Watanuki 
University of California, L.A. 

V. Watson 

David Wexter 
System Development Corporation 

Paul P. Whalen 
Los Alamos Scientific Laboratory 

Greg Wojcik 
Weidlinger Associates 




