—

0
g/
117

SCIENTIFIC

COMPUTER INFORMATION
EXCHANGE MEETING

SEPTEMBER 12:131979
LIVERMORE-CALIFORNIA

THEME:IMPACT OF ADVANCED SYSTEMS ON
SCIENTIFIC COMPUTATIONS

PROCEEDINGS MASTER

SPONSORED BY:
DEPARTMENT OF ENERGY
OFFICE OF BASIC ENERGY SCIENCES

° LAWRENCE LIVERMORE LABORATORY

/1/((6

 CONF-790902

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITER

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.

NOTICE

“This report was prepared as an account of work
sponsored by the United States Government.
Neither the United States nor the United States
Department of Energy, nor any of their em-
ployees, nor any of their contractors, subcon-
tractors, or their employees, makes any warranty,
express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness
or usefulness of any information, apparatus,
product or process disclosed, or represents that
its use would not infringe privately-owned rights.”

NOTICE

Reference to a company or product name does
nol imply approval or reconunendation of the
product by the University of California or the
U.S. Department of Energy to the exclusion of
others that may be suitable.

Printed in the United States of America
Available from

National Technical Information Service

U.S. Department of Commerce

5285 Port Royal Road

Springfield, VA 22161

Price: Printed Copy $; Microfiche $3.00

Domestic Domestic
Page Range Price Page Range Price
001-025 S 4.00 326350 $12.00
026050 4.50 351-375 12.50
051-075 §.25 376-400 13.00
076 100 6.00 401 425 13.25
101125 6.50 426450 14.00
126150 7.25 451-475 14.50
151-175 8.00 476-500 15.00
176200 9.00 501-525 15.25
201--225 9.25 526--550 15.50
226-250 9.50 551-575 16.25
251-275 10.75 576—-600 16.50
276300 11.00 601—up =
301-325 11.75

l—//\dd $2.50 for cach additional 100 page increment from 601 pages up.

Work performed under the auspices of the U.S. Department of Energy, under
contract No. W-T4LO5-Eng-48.

....................

H T

s

........

................
.s .

o ee

CONF 790902

SCIENTIFIC
COMPUTER INFORMATION
EXCHANGE MEETING

SEPTEMBER 12-13-1979
LIVERMORE"-CALIFORNIA

THEME=IMPACT OF ADVANCED SYSTEMS ON
SCENTIFIC COMPUTATIONS

PROCEEDINGS

DISCLAIMER

This book was prepared as an acoount of work sponsored by an age: nw of the Uni led States Government,
v f thei mpl yem makes
b.m the

Neither the United States Govemme Nt nor any agency thereof, ny

warranty. exqress ar implied, or
or

represents that its use would

commercial product. process, o

scumot. av Icgo’ liak bltv

L or 3
i or favoring by the United
of authors expressed herein do not
any egency thereof.

not necessarily or i it
4] States Government or any agency thereof. The views and opinions
necessarily state or reflect those of the United States Governmens or

| SPONSORED BY:
DEPARTMENT OF ENERGY
OFFICE OF BASIC ENERGY SCIENCES

LAWRENCE LIVERMORE LABORATORY

...........

B N o
......................
seess theve *e evene o aseee Se b zreee TUeD pgene TSl seees U

" DISTRIBUTIAN OF THIS BOCUMENT 1S UNLIMIT

SCIENTIFIC COMPUTER INFORMATION EXCHANGE
MEETING ON IMPACT OF ADVANCED
SYSTEMS ON SCIENTIFIC COMPUTATIONS

Chairman: Sidney Fernbach
~Co-Chairman: ‘Bill Buzbee
Mal Kalos

Garry Rodrigue
Secretary: Maylene Wagner

Session Chairmen: Plasma Simulation - John Killeen
Atmospheric Modeling - Joe Knox
General Scientific Computation - Bill Buzbee -
Turbulence/Hydrodynamics — Stuart Patterson

PREFACE

The Scientific Computer Information Exchange
Meeting was held at the Lawrence Livermore Laboratory,
Livermore, California, on September 12-13, 1979. The
theme of the meeting was the Impact of Advanced Systems
on Scientific Computations. The meeting was sponsored by

the Department of Energy Office of Basic Energy Sciences’

and the Lawrence Livermore Laboratory. The papers
printed in these proceedings have been reproduced from
camera-ready manuscripts furnished by the authors. They
have not been refereed nor have they been extensively
edited.

Advanced computing systems such as the CDC-
STAR, CRAY-I, ILLIAC-IV, and TI-ASC have been on
the market and used by scientific institutes for several
years. Expcricnce has led to the realization that different
numerical and software techniques that fit these architec-
tures are required. The papers in this symposium were
presented by physical and computational scientists who use
advanced computers in their work. The sessions covered
plasma simulation, atmospheric modeling, turbulence and
hydrodynamics, and topics in general numerical algo-
rithms. '

i

The success of any meeting depends, of course, on the

work and support of the many people involved. It is my’

pleasure to thank Sid Fernbach, symposium chairman, for
suggesting the idea for the meeting and for his handling of
many of the necessary administrative decisions. The .ad-
ministrative support of Maylene Wagner and Virginia
DuBose was invaluable to the smooth running of the
meeting.

A personal thanks goes to the DOE sponsor of the
symposium, Jim Pool of the Applied Mathematics Divi-
sion of the Office of Basic Energy Science.

Finally, I am extremely grateful to my co-chairmen
Mal Kalos and Bill Buzbee for their advice and coopera-
tion, and to the session chairmen for their solicitation and
selection of papers and their skillful handling of the ses-

Gy Ny

Garry Rodrigue
Coordinating Chairman

wroma,

| THIS PAGE
WAS INTENTIONALLY
~ LEFT BLANK

CONTENTS
Preface L e e e e iti
‘Session I: Plasma Simulation L e 1
Session Chairman: John Killeen ‘
Vectorized PIC Simulation Code on the CRAY-1 ‘e e 3

D. W. Forslund, C. W. Nielson, and L. F. Rudsinski

Realistic 3D Resistive MHD Calculations on the CRAY-1 R 4
H. R. Hicks and B. Carreras '

Simulation of Gradient-Drift Striations on.the ASC e e e e 10 -
B. E. McDonald, S. L. Ossakow, S. T. Zalesak, and N. J. Zabusky

Numerical Experiments in the Dynamics of Galaxies on ILLIAC IV oL e e e 18
R. H. Miller and B. F. Smith

Particle Simulation on the VAP e e e e . 24
W. E. Drummond and B. N. Moore ’

A Vectorized Fokker-Planck Package for the CRAY-1 e 30
M. G. McCoy, A. A. Mirin, and J. Killeen

The CRAY-1 and MHD Stability Studies in Tokamaks e e e e 38

M. Manickam
Session II: Atmospheric Modeling F 45

Session Chalrman: Joe Knox

A Vectorized Three-Dimensional Operational Tropical Cyclone Model 47
Rangarao V. Madala and Simon Chang '

Implementation of Vectorizing Techniques on the CDC-STAR-100
for Speed Enhancement of GLAS GCM e e e e e 53

Lawrence Marx

The Use of the CRAY-1 in Simulating Hail Growth e 54
C. M. Berkowitz

Development of a STAR-100 Code to Calculate a Two-Dimensional Fast Fourier Transform 60
Jay Lambiotte

Session III: General Scientific Computation L e 69
Session Chairman: Bill Buzbee

Impact of Advanced Systems on LMEBR Accident Analysis Code Development 7l
F. E. Dunn and J. M. Kyser

Implementation of a Linear System Solver e 81
James G. Sanderson

Advanced Computers and Monte Carlo e e 85
Thomas L. Jordan

Detailed Vectorized Reactive Flow Simulation on the Texas Instruments ASC 92
: J. P. Boris, D. L. Book, T. R. Young, Jr, E. S. Oran, and M. J. Fritts '

v

Design Considerations for a Partial Differential Equation Machine
Arvind, and Randal E. Bryant

Vectorized Sparse Elimination L
D. A. Calahan

Parallel Algorithms for Solving Banded Toeplitz Linear Systems
Ahmed Sameh and Joseph Grear ’

An Experience with the Conversion of the Large-Scale Production :
Code DIF3D to the CRAY-1 e e

Keith L. Derstine

Session IV: Turbulence/Hydrodynamics L
Session Chairman: Stuart Patterson

Calculations of Water Waves and Vortex Arrays by Numerical Solution of
Integro-Differential Equations

P. G. Saffman, B. Chen, and R. Szeto

Steady High Reynolds Number Flow Past a Cylinder [
Bengt Farnberg

Vectorization Techniques for an Iterative Algorithm
Dennis V. Brockway and Fred Gama-Lobo

Evolution of the MHD “Sheet Pinch” U
W. H. Matthaeus and D. Montgomery

Numerical Solution of the 3-D Navier-Stokes Equations on the CRAY-I Computer
J. 8. Shang, P. G. Buning, W. L. Hankey, M. C. Wirth, D. A. Calahan, and W, Ames

Attendees of SCIE Meeting, September 12-13,1979 e T

—— T

PLASMA SIMULATION

® Vectorized PIC Simulation Code on the CRAY-1
® Realistic 3-D Resistive MHD Calculations on the CRAY-1

® Simulation of Gradient-Drift Striations on the ASC

® Numerical Experiments in the Dynamics ot Galaxies on ILLIAC IV
® Particle Simulation on the VAP

® A Vectorized Fokker-Planck Package for the CRAY-1

® The CRAY-1and MHD Stability Studies in TOKAMAKS

THIS PAGE
WAS INTENTIONALLY
LEFT BLANK

VECTORIZED PIC SIMULATION CODES ON THE CRAY-1

D. W. Forslund and C. W. Nielson
Los Alamos Scientific Laboratory
Los Alamos, New Mexico 87545

and

L. F. Rudsinski
Consultant

ABSTRACT

The PIC simulation code WAVE has been almost completely vectorized for the CRAY-1
and is being routinely used on a production basis. We discuss here the vectorizing tech-
niques for the particle mover and the field solver as well as the I/0 routines which re-
sult in the code being nearly CPU-bound. The procedure used to vectorize the particle
mover is to rewrite it in a series of small loops which then are readily converted by a
vectorizer program into special vector macros recognized by the FIN compiler at LASL.
This allows selective vectorization of different sections of code to determine the optimal
vectorization strategy. As is well known the interpolation technigue used in PIC simu-
lation for the fields, charges and currents is not vectorizable. We find that the optimal
strategy for the FIN compiler is to keep this interpolation process completely in scalar
mode. If we separate the scalar fetch and then vectorize the interpolation, we find a -
degradation of 30% in speed. On the CRAY-1 we obtain speeds of 5.5 s/particle for a 2-D
electrostatic mover, 11.5 s/particle for a 2 1/2-D (with all field quantities) non-
relativistic electromagnetic mover and 12.4 s/particle for a 2 1/2-D relativistic elec-
tromagnetic mover. We also use a fully vectorized Poisson solve algorithm which uses FFT
(Berglund real form) in one direction and tridiagonal solve in the other. Vectorization
is achieved in the direction normal to the transform or tridiagonal solve. A 256 x 256
Poisson solve takes 100 ms and a 64 x 64 Poisson solve takes 5.1 ms. The FFT takes 2/3
of the time and the tridiagonal solve takes 1/3 of the time. In order to sustain these
speeds for large problems, an efficient I/0 algorithm is needed on the CRAY-1l. The algo-
rithm we have implemented in production is triple-buffering with two disk channels.
Sustained transfer rates of 375,000 words/sec/channel are obtained which allow for nearly
complete overlap with the relativistic mover. Exploratory tests have shown that it will
be possible to obtain sustained rates of 450,000 words/sec on each of four channels
driven simultaneously and overlapped with computation. The size of the required buffers
to achieve this is dependent on the details of the operating system.

By acceptance of this article, the
publisher or recipient acknowledges
the U.S. Government’s right to
retain a nonexclusive, royalty-free
license in and to any copyright
covering the article.

g

REALISTIC 3D RESISTIVE MHD CALCULATIONS ON THE CRAY-1'

H. R. Hicks and B. Carreras?
Oak Ridge National Laboratory
P. 0. Box Y, Oak Ridge, Tennessee 37830

ABSTRACT

CPU times for nonlinear resistive MHD calculations are very strongly dependent on
the input variables. Although some regions of parameter space can be studied very
cheaply, the conditions that correspond to Tokamak plasmas are extremely time consuming
to study. Unfortunately, it is not possible to extrapolate reliably from the easy cases
to the interesting regime. 1In recent years we have improved the efficiency of our codes
by two ordcrs of magnitude. As a result it is now feasible for us to run some realistic
Tokamak cases on a CDC 7600. An additional factor of four reduction in run time is
obtained by going to the CRAY-1 where the most time consuming routines are vectorized.
This last factor makes a program of systematic studies feasible.

INTRODUCTION

The device which presently holds the
most promise for obtaining energy by
controlled fusion is the Tokamak.
Although there is much that is still not
understood about Tokamak confinement,
possible explanations of some Tokamak
observations have emerged from resistive
magnetohydrodynamic (MHD) calculations
during the last several years.

The ability of a Tokamak to confine
a plasma_is limited by the disruptive
behavior' of the plasma. In the case of
major disruptions (total loss of
confinement), damage to the device can
result from the sudden deposition of
energy to the walls. Plasma disruptions
are generally accompanied by MHD
activity. The observed timescale of the
major disruption (about 10 usec to 1 msec
in present Tokamaks) is of the order of
the linear tearing mode growth time.2
Further. analytic calculations” have shown
that the nonlipear growth time of these
resistive MHD modes, such as are seen as
precursors of the major disruption, is on
the order of the plasma skin time, Tp (a
fraction of a second to a few seconds).
This result has made it difficult to
identify tearing modes as the dynamical
mechanism of the major disruption.

All of these analytic results were
for large aspect ratio, low B (ratio of
the plasma energy to magnetic energy) and
single helicity. The low B assumption is
valid for present ohmically heated

Tokamaks. The single helicity
approximation is valid only in
cylindrical geometry and only when the
plasma equilibrium is linearly unstable
with respect to just one helicity.

The ear&iesg ?umerical
calculations®121%:7 a1s0 retained all of
these restrictions. The low B assumption
allows the number of MHD partial
differential equations (p.d.e.'s) to be
reduced, and, in the singleé helicity
approximation, the calculation ocan be
performéd in two dimensions (2D). The
resistive MHD p.d.e.'s are solved as an
initial value fluid problcm on a 2D
cylindrical grid. The initial condition
corresponds to a plasma equilibrium plus
a small perturbation. The single
helicity case has yielded a wealth of
results including posgible mechanisms for
internal disruptions, »9 Mirnov
oscillationsg’ 0 and disruptions during
the initia% stage of the Tokamak
discharge. 1 However, the explanation
of the timescale of the major disruption
remained elusive.

In nonlinear resistive calculations
it is necessary to follow events on two"
disparate timescales, the aforementioned
skin time Tp, and the poloidal Alfvén
time Ty,. In modern Tokamaks
TR/ Tgp = S = 107. Computation time
incregses strongly with S. As a result,
numerical efficiency is an important
issue if one wishes to consider realistic

values of S. Unfortunately, the results
of faster calculations (at, say, S=10")
can yield qualitatively different
results, making extrapolation in S a
questionable strategy.

We have speculated that a possible
mechanism for the major disruption
involves the interaction of 2 or more
linearly unstable modes of different
helicities, necessitating solving the
problem in three dimensions. This
approach has been quite fruitful, since
it has revealed that a timescale of the
. order of the linear growth can re-enter
the nonlinear problem”? when it is
generalized to 3D. Comparison of our
coupled helicity results with
experimental observations of the major
disruption has been favorable in the few
cases where sufficient data exists.
Moreover, by modifying the boundary
conditions we have determined that a
feedback circuit might be successful in
preventing major disruptions.

Resistive 3D MHD calculations have
also been carried out by Schnack . He
has directed his ‘work to reversed field
pinches where B is relatively high and S
is not as high as in Tokamaks. He has
dropped the large aspect ratio and low B
assumptions, but retained the single
helicity restriction.

THE EQUATIONS

We simplify 5:15:76 the full set of
resistive MHD equations by assuming.
Tokamak ordering and low B. We solve the
resulting equations in either a torus or
a periodic cylinder. To simplify the
presentation we write here the equations
in their cylindrical form:

ilP_=nJ _EW -9 13 13y 3 _ 3
ot z g 9rr 3 r 36 ar 3z’
U _1 3¢ 3U 9 129U
9t r 96 3r Or r 96

The functions ¥ (poloidal flux),
U(toroidal component of vorticity),
¢(velocity stream function) and
J,-(toroidal current) are scalar functions
of all 3 spatial coordinates as well as
of time. The cylindrical coordinates are
r, 6 and ¢ where [is the coordinate
along the cylinder. EY¥ and S are
time-independent scalars. The
resistivity, N, can be treated several
ways. Here we shall assume it is only a
function of radius and does not vary with
time. The numerical problem is to
integrate in time the two coupled
3-dimensional p.d.e.'s.

The boundary conditions are
appropriate to a rigid cylinder,

¢ (rya1n) = 0,

and either constant toroidal current,

A<Y>
e (Fwa1l) = 0

or conducting walls

U}(Pwali) = 0.

All functions are periodic along the
cylinder, e.g., '

v(g) = y(g + 2m) ,

and are regular at the cylindrical axis.

The poloidal flux function, y, is
initialized to correspond to a plasma
equilibrium (which is a function only of
radius) plus a small perturbation. The
perturbation is normally chosen to
approximate the sum of several linear
eigenfunctions. Under these conditions,
the earliest phase of the calculation is
characterized by the exponential growth
of the true eigenfunctions. Each
eigenfunction is of the form

¥(r,0,2) = Yo, (r) cos(md + nZ)

where m (n) is the poloidal (toroidal)
mode number. Any part of the initial
perturbation which does not project into
one of these growing solutions becomes
relatively insignificant and can be
ignored. At high values of S, this
exponential phase is followed by a clear
nonlinear phase of slow algebraic growth,
in agreement_with theoretical
predictions. In the 2D approximation

either the mode saturates, giving a new
non-axisymmetric equilibrium, or, through
reconnection, the mode is no longer
resonant in the plasma and a new
axisymmetric e?uilibrium is formed. In
the 3D case,g’ 2 under certain
conditions, the growing modes interact
nonlinearly generating other MHD modes
and accelerating their growth. The
number of modes caught up in this process
increases rapidly with time. The time

- scale of this phase is like that in the
earlier exponential phase. 1In agreement
with experiment, the toroidal current is
severely deformed in a way that the self
inductance of the plasma decreases and a
negative voltage spike is produced at the
plasma edge. The flux surfaces are

- destroyed over a large region in which
the magnetic field wanders stochastically
(Fig. 1).

QRKL-OWG 79-268% FED

T =TT sz,

S

Fig. 1. The magnetic field evolves from

a state of well defined flux surfaces to
a state with a large volume filled with a
stochastic field line.

During this phase there is a
transition from large scale phenomena to
small scale phenomena. At this point the
fluid model starts losing its validity
and the calculation should be stopped.
Except for this final phase, the
calculation is dominated by a small
number of modes. It is this feature
which leads us to the method RSF,
described in the next section.

NUMERICAL METHODS

The technique7’12'16 we employed in
implementing our first 3D computer code,
RS3, is the most obvious choice. The
functions are represented on a
cylindrical grid. Unequal spacing in
radius is permitted. Finite difference
expressions are*used for spatial
derivatives in all 3 directions. The
equations are advanced in time explicitly
except for the nJC term which is advanced
impliecitly.

This formulation has two problems.
Execution times, even for rather fast
cases, are so long that systematic
studies are impossible. This is
compounded by the fact that at the
singular points, where accuracy is most
important, the truncation error can have
a gignificaut effect.

Our second formulation, RSF, is
designed to eliminate the truncation
problem which originates from
discretization in the 8 and g coordinates
in RS3. The finite difference
approximations in those directions are
replaced with a Fourier series expansion
of the dynamical functions, e.g.,

p(r,8,7) = g% [wgn(r)cos(me + ng)

+ Y2, sin(me + ng)l .

Except for the end of our multihelicity
caleculations, each run is dominated by a
small number of terms in the series.
Therefore the series expansion is
actually a much more economical
representation. When the calculation
enters a stage where small scale
structures become important, both methods
are inadequate.

The code using the series expansion,
RSF, executes about 2 orders of magnitude
faster than RS3. The exact factor
depends on the problem being solved as
well as the accuracy desired. The '
nonlinear terms take the bulk of the
execution time in RSF, due to the
convolutions necessary to multiply 2
series expansions together.

At the time we started to develop
RSF, installation of a CRAY-1 at the NMFE
Computer Center was about 6 months away.
As we wrote Fortran code, we used a style
which could be largely vectorized by the
CRAY Fortran compiler. This was not
difficult and in fact probably resulted
in more readable (and thus easily
modifiable) code. However, the most time
consuming operation, the convolution,
appeared inherently difficult to
vectorize since it involves nonlinear
subscripting. For example:

F=0.
DO 100 LP=LPMIN,LPMAX
F=F

100 + G(LG(LP))*H(LH(LP))

However, since we retain a finite
difference grid in the radial direction
it is necessary to perform the above
calculation at each radial grid point.
Putting the loop over grid points on the
inside gives the vectorizable code

DO 102 J = 1,JMAX
102 F(J)=0.

DO 100 LP=LPMIN,LPMAX

DO 101 J=1,JMAX .
101 F(J)=F(J)+G(J,LG(LP))*H(J,LH(LP))
100 CONTINUE

In this form the convolution routine .
gains a factor of 5 in speed over the
unvectorized version.

A coupled helicity run can take as
little as a few minutes or as much as
several hours on the CRAY-1 depending
primarily on S and on the accuracy
desired. In addition, execution is
greatly slowed by inclysion of
temperature evolution'® (factor of 10)
and/or toroidal effects'? (factor of 10).
It is a general feature of our coupled
helicity runs that the time step drops
rapidly as the fast nonlinear effects
become important (Fig. 2).

ORNL-DWG 79-2994 FED
10-6
0 = 1 , I 3
5 e —
2 —
1w’ — _—
< 5 —
a:' — —
ul L _ —
[
»
w 2 1
=
= .
10-8 — &:
— -
— H
5 kS
- 4
2 -
109 | L 1
(0] L] -2 3

t(x 10°3)

Fig. 2. Finite difference timestep size
decreases significantly late in the run
when mode coupling dominates. Most of
the run time is concentrated at the end
of the calculation.

With the convolution routine highly
optimized for each machine, execution
time on the CRAY-1 is about one fourth as
long as on the CDC 7600. This factor has
made it possible for us to run the
necessary numerical validation runs and
to analyze a large number of initial
conditions. Without a computer in the
CRAY-1 class, a very large part of this
work could not have been done.

REFERENCES

'Research sponsored by the Office of
Fusion Energy (ETM), U.S. Department of
Energy under contract W-TU05-eng-26 with
the Union Carbide Corporation.

tVisitor from Junta de Energia Nuclear,
Madrid, Spain.

1.

E. P. Gorbunov, et al., At.

Energ. 15, 363 (1963)(Sov. At. 7.
Energy 15, 1105 (1963)]; .

L. A. Artsimovich, et al., At.

Energ. 17, 170 (1964)[Sov. At.

Energy 17, 886 (1964)];

L. A. Artsimovich, et al., in

Plasma Physics and Controlled 8.
Nuclear Fusion Research

(International Atomic Energy

Agency, Vienna, 1971), Vol. I,

p. 443;

S. von Goeler, et al., Phys. Rev. 9.
Lett. 33, 1201 (1974);

V. S. Vlasenkov, et al., Nucl,

Fusion Suppl. 1, 1 (1975);

L. A. Berry, et al., in Plasma

Physicas and Controlled Nuclear

Fusion Research (International 10.
Atomio Energy Agcncy, Vienna,
1977), Vol. I, p. U49;

I. Hutchinson, Phys. Rev. Lett.
388 (1976);

D. B. Albert, et al., Nucl. Fusion

17, 863 (1977);

S. V. Mirnov, et al., in Plasma 1.
Physics and Controlled Nuclear

Fusion Research (International

Atomic Energy Agency, Vienna, 12.
1977), Vol. I, p. 291; °

N. R. Sauthoff, et al., Nucl.

Fusion 18, 1445 (1978);

K. Toi et al., "Current Density

Profile Control by Programming of 13.
Gas Puffing and Plasma Current

Waveform in the JIPPT-I1 Tokamak,"

IPPJ-372, March 1979.

a7,

H. P. Furth, et al., Phys. Fluids

6, 459 (1963); oo
H. P. Furth, et al., Phys. Fluids

16, 1054 (1973).

P. H. Rutherford, Phys. Fluids 16,
1903 (1973).
_ 14,
B. V. Waddell, et al., Nucl. Fusion
16, 528 (1976);
D. Biskamp, et al., in Plasma
Physics and Controlled Nuclear
Fusion Research (International
Atomic Energy Agency, Vienna,
1977), Vol. I, p. 579.

M. N. Rosenbluth, et al., Phys. 15.
Fluids 19, 1987 (1976).

R. B. White, et al., in Plasma 16.
Phvsics and Controlled Nuclear

Fusion Research (International
Atomic Energy Agency, Vienna,
1977), Vol. I, p. 569.

B. V. Waddell, et al., in
Theoretical and Computational
Plasma Physics (International
Atomic Energy Agency, Vienna, 1978)
p. 79.

B. V. Waddell, et al., Nucl. Fusion
18, 735 (1978);

G. L. Jahns, et al., Nucl. Fusion
18, 609 (1978).

J. D. Callen, et al., in Plasma
Physies and Controlled Nuclear
Fusion Research (International
Atomic Energy Agency, Vienna,
1979), Vol. I, p. 415,

K. B. White, et al., Phys. Fluids
20, 800 (1977); :

B. Carreras, et al., "Poloidal
Magnetic Field Fluctuations in
Tokamaks", Nucl. Fusion (to be
published).

B. Carreras, et al., Nucl. Fusion
19, 583 (1979).

B. V. Waddell, et al., Phys.
Lett. 41, 1386 (1978);

B. V. Waddell, et al., Phys. Fluids
22, 896 (1979).

Rev.

J. A. Holmes et al., "Stabilization
of Tearing Modes to Suppress Major
Disruptions in Tokamaks," (to be
published in Nucl. Fusion);

H. R. Hicks et al.,
"Stabilization of Tearing

Modes: Feedback Stabilization and
Profile Tailoring," IAEA Technical
Committee Meeting on Disruptive
Instabilities, Garching, Germany,
February, 1979.

D. Schnack, "Nonlinear Numerical
Studies of the Tearing Mode,"
Ph.D. Thesis, Univ. of Calif.,
Davis, UCRL-52399 (1978);

D. Schnack, J. Killeen, Nucl.
Fusion 19, 877 (1979);

D. Schnack, J. Killeen, (to be
published in J. Comput. Phys.).

H. R. Strauss, Phys. Fluids 19, 134
(1976).

H. R. Hicks, et al., "Interaction
of Tearing Modes of Different Pitch

16.

17.

18.

19.

H. R. Hicks, et al., "Interaction
of Tearing Modes of Different Pitch
in Cylindrical Geometry,"
ORNL/TM-6096 (December 1977).

H. R. Hicks, et al., "Fourier
Transform vs. Finite Difference
Techniques in Nonlinear Resistive
MHD Codes," 8th Conf. on Numerical
Simulation of Plasmas, Monterey,
CA, June 1978, CONF-780614.

B. Carreras, et al., "Multiple
Helicity Tearing Mode Calculations:
Major Disruptions,”" International
Atomic Energy Agency Technical
Committee Meeting on Disruptive
Instabilities, Garching, Germany,
February 1979.

B. Carreras, et al., "Reduced Set
of Resistive MHD Equations in
Toroidal Geometry," Sherwood Theory
Meeting, Mt. Pocono, PA, April
1979; ,

H. R. Hicks, et al., "Effects of
Toroidicity on the Nonlinear

. Interaction of Tearing Modes,"

ibid.

SIMULATION OF GRADIENT-DRIFT STRIATIONS ON THE5%§§«(

’_.');’;

B. E. McDonald, S. L. Ossakow, and 6. T.
Plasma Physics Division
U.S. Naval Research Laboratory

Washington, D. C. 20375

Zalesak

and

N. J. Zabusky
Mathematics Department
University of Pittsburgh
Pittsburgh, Penn. 15260

ABSTRACT

The evolution of many artificial jonospheric plasma clouds is governed by a
simple two dimensional model consisting of a continuity equation and a variable
coefficient elliptic equation. This type of modcl applies also to some non-plasma
fluid flows. Despite the simplicity of the model, state-of-~the-art methods are
required to maintain integrity of the solution. These are explained in moderate
detail. Our one-level striation code is highly vectorized and achieves in excess
of 807% execution efficiency on the ASC. We give typical results and timings for

the code and point out areas of current investigations. [

INTRODUCTION

Artificial plasma clouds de-
posited in the ionosphere at al-
titudes of 140 km or greater are
observed to evolve in a matter of
minutes from an initially smooth,
roughly spherical shape to a state
of intense small. scale structure.l
The quasi-final state usually con-
sists of long parallel fingers of
ionization when viewed in the plane
perpendicular to the earth's mag-
netic field. The individual fin-
gers or striations point in the di-
rection of the neutral atmospheric
motion relative to the bulk ion
motion. Theoretical advances dur-
ing the last twelve years have
identified the driving mechanism
for this structure as the gradient
drift instability.2-4 Numerical
simulation capabilities for the
nonlinear equations of motion have
existed for approximately six
years.s'7 However some very recent
advances in numerical solution
methods8,11 and computing hardware
have greatly improved the simula-
tions.

EQUATIONS OF MOTION FOR THE
ONE. LEVEL MODEL

For many cases of interest, an
artificially produced plasma cloud
will possess a field-line integra-
ted cross—-field conductivity which
is scalar and which dominates that
of the background plasma. In
these cases the electrical currents
are largely contined within the
cloud, alleviating the need for
modeling remote regions. The high
ion mobility along the field two-
dimensionalizes the cloud to a high
degree. As a result, the cloud's
evolution is concisely described
by the following set of equations
in the plane (x,y) pergendicular
to the magnetic field: ’

9 = £ X 3 K 1
- B vV . pVdXz + V.XK(p)Vp (1)
V .p¥¢ = E .Vp)

In (1) and (2) p, ¢, B, and ¢ are
respectively the ion number densi-
ty, the speed of light, the con-
stant geomagnetic field strength
(with B = BZ), and the cloud-in-
duced electrostatic potential.

K and E_ are the cross-field plasma
diffusiSn coefficient and ambient
electric field. We choose coordi-
nates such that E = E y = con-
stant. Equation 1) if the plasma
continuity equation cast in coordi-
nates moving with the ambient plas-
ma drift at a velocity V_ = cE x
§_/B2 relative to the neufral °©
atmosphere. The diffusion coeffi-
cient K(p) is included to account
for single particle collisions be-
tween electrons and ions, and be-
tween charged particles "and the
neutral atmosphere. Although K
depends upon parameters of the
neutral atmosphere and the ion
cloud, we shall only note that
typically

K = 104

This model aésum&; a homogeneous
neutral atmosphere which is un-
affected by the plasma cloud.

The boundary condition for
the elliptic equation (2) is that
¢ should vanish at great distances
from the cloud. In practice boun-
dary cvonditions must be imposed at
a finite distance from the cloud.
We have chosen a Neumann condition
(3/9x = 0) in the direction of the
neutral flow (the x direction by
arbitrary choice) to allow plasma
to flow through the boundaries. 1In
the transverse direction (y) we im-
pose periodicity, which would be a
reasonable approximation for simu-
lation of a small portion of a
large striated region. For a sin-
gle isolated cloud the dipole na-
ture of the source term keeps image
effects small. This has been veri-
fied by tests in which the symmetry
of the images is reversed by im-
posing a Neumann condition in y.

Only minor differences were noticed.

Equation (1) is integrated as
an initial value problem in time
beginning with some specified dis-
tribution p(x,y) at t = 0. The
spatial boundary conditions for P
are the same as for ¢. It is per-
haps worth pointing out that egqgs.
(1) and (2) with minor modifica-
tions are descriptive of two di-
mensional incompressible flow prob-
lems not normally associated with

cmz/seé (3)

plasma physics. One example is
vorticity transport, in which p
would play the role of the vor-
ticity and ¢ the streamfunction.
Another example is stratified
porous medium flow, in which »p
would be the mass density and ¢
the streamfunction.

NUMERICAL METHODS

All work presented here has
been performed using NRL's two-pipe
Texas Instruments ASC. The simu-
lation code is written entirely in
IBM~-compatible Fortran (except for
parameter statements). The primary
impact of the ASC's configuration
upon our simulations has been to
select out one particular method as
being more efficient by at least
a factor of twoll than other meth-
ods currently available for solution
of the elliptic equation (2).

Thus the discussion in this section
is primarily devoted to the solu-
tion of (2).

ELLIPTIC EQUATION

As is the case for many models
requiring the solution of a varia-
ble coefficient elliptic equation,
our one level gradient-drift code
spends most of its time (60%Z or
more) solving eq. (2). Of the so-
lution methods currently available,
the most efficient method for the
ASC appears to be the ChebIchev
semi~iterative met:hod.lo’l 13
This choice results from the fol- -
lowing: (1) we have a good approx-
imation to ¢ (by extrapolation
from two previous timesteps in our
case); (2) the method vectorizes
completely on the interior of a
multidimensional domain; and (3)
good convergence can be attained
with 32 bit precision in some cases
where conjugate gradient methods
require 64 bit precision. We pre-
condition_(2) by multiplying both
sides by p~l yhere 7 is a five
point average of p to be defined
later. This results in a matrix
whose condition is not substan-
tially different from that of the
matrix for the discretized Poisson
equation. Although the Chebychev
method extends to non self-adjoint
matrices,l0,11 the pre-conditioned

equation (2) is self adjoint for the
inner product

(A,B) =.2' Ai,j
1,]

. . B, . 4

1,] 1,] ()
and suitable boundary conditions. In
(4) i and j are spatial indices dis-

cretizing x and y respectively.

In the results to be presented here,
a uniform spatial grid of 162 by 82
points was used, with the exterior points
being guard cells for boundary condition
purposes. Second order centered differ-
ences were used to represent (2). Since
p and ¢ are stored on the same spatial
mesh, the p values appropriate for use
on the left side of (2) are spatial
averages between two points used to eval-
uate ¢ derivatives. For computational
efficiency we uce the following pre-
conditioning divisor:

p. . =L (2pi j +

‘ 2
i,] j)/éx

+
Pit1,5" Pi-1,

2
. ,
@0y o+ 0y g Ry 5o/ 1 ¢s)

/C4/ex® + 4/6y2)

Thus the preconditioned representation
of (2) is .

Loy 7 5, ®
where L is the five point operator
— 2 -1
Loog,5 = @y 5 0x)
(@ian,5%%,57 @gan, 5705
TPy TP (0 g7) D)
—_ 2_ '
+ (2@0,j oy
(LTS TCRIRE NS
TPy Py, 51) (g 570 5p)
and the driving term is
= 5 —l -
S.’j Eo(2$>i,j dy) (pi,j+l pi’j_l)-(S)

The choice of E in (5) results in the
matrix L having constant diagonal ‘co-
efficient

2 2
Ldiag = -2/0% - 2/dy
Preconditioning with B also yields an
upperbound for the eigenvalues of L:

M

< max X IL_,l
i 3 +J

= 4/6x> + 4/by°,

which is identical to the maximum eigen-
value for Poisson's equation.

The Chebychev semi-iterative method
produces a sequence of iterates ¢0 con-
verging to the solution of (6) by the

following algorithm:
Let ¢° = trial solution
ot - o - bl g% - 8)
and ¢™ = F_((1-b) 6" -5) - ¢ 4",

n »> 0.

The updates ¢n+l.are defined on interior
mesh points from (13). Values on ex-
terior guard cells are then set to satis-
fy boundary conditions. The constants b,
F, and G, are calculated as follows. The
error vector L ¢% - S can be expressed as
a linear combination of eigenvectors of L
The Chabychev method guarantees conver-
gence for all eigenvector components of
the error whose eigenvalues A [all in

. the range

b+a & A < b-a,
where

b/a > 1,

providing

2 Tn(q)

F = ~———————T—T , and
n Tn+l(q) a

T
c = -noil
n T+l ()
where

(9

(10)

(11)
(12)

(13)

(14)

(15)

(16)

17)

q=- b/a

In (14) we have taken a and b to be nega-
tive since the operator L is nonpositive
for periodic - Neumann boundaries. 1In
(16) and (17) T, is the Chebychev poly-
nomial of degree n, which is calculated
from the recursion formulae

To(x) 1

1]
]

Tl(X)
T +l(x) = 2x Tn(x) - T l(x), n>0

For this application we have chosen

b

= —2/6x% —2/8y°

Ldiag
and
a=>b+e.
The asymptotlc convergence rate is then
(- 2€¥b) The choice of € will be dis-
cussed below. We have chosen (20) for b
for computational efficiency. This value
of b results in the matrix L-b in (13)
having zero diagonal. This reduces the
hasic operation count by approximately
16%, and in addition allows a 'hopscotch"
calculation in which ¢+l is updated only
on alternate gridpoints. This would
effectively double the computational
of the method. However, the results
sented here have not taken advantage
the "hopscotch" feature.

speed
pre-
of

ACCELERATION OF CONVERGENCE BY REGRIDDING

If we were to attempt to cover the
entire eigenvalue spectrum of L on a
single grid, we should take ¢ in (21) to
be minus the eigenvalue of least nonzero
magnitude. We estimate € roughly by
taking L ~ v2. Then for Neumann-periodic
boundaries on a mesh of Ny by Ny interior
gridpoints we take

2

21)

N 6x ’ N, oy

= Min (

For Che results presented here, (N ,N) =
(160,80), and 6x = 0y, so the asymptoglc
convergence rate per iteration is

1
]

c=2 /N
X

Thus the number of operations required to
attain a given error reduction is propor-

(18)

(19)

(20)

(21)

(22)

(23)

tional to N 2N For the present case,
the total opethlon count can be reduced
by a factor in the approximate range of

4 to 7 by solving for the long wavelength
components on a reduced grid of (n ,n) =
(Ny/4,Ny/4) points.ll

For the results presented here,
initial approximation to ¢ was taken
from linear extrapolation from the two
previous timesteps. The residual error
R = L¢-S was extracted on the fine grid
and placed on a coarse grid by taking
block averages of 16 fine grid point
values. The same averaging was used to
obtain p values on the coarse mesh. A
correction term ¢c was initialized to
zero on the coarse grid and improved by
72 iterations on the equation L¢¢. = R..
(subscripts ¢ denote coarse grid quanti-
ties.) These iterations used parameters
a,b, and € from (20) - (22) with 6x and
N, replaced by 46x and N./4, respectively.
Then ¢, was defined on the fine grid by
linear interpolation and subtracted from
the trial solution. Twelve follow-up
iterations were then performed on the
fine mesh with ¢ =-b/30. This proced-
ure resulted in typical rms residual
errors (normalized to the rms source
term) of a few parts in 104

an

CONTINUITY EQUATTON

We integrate eq. (1) forward in time
by the method of flux correction,
which combines a fourth order spatial,
second order temporal leapfrog scheme
with a first order donor cell method.
The resulting hybrid scheme maintains
high ordeér accuracy in regions where p
is smooth and monotonic, but reverts to
low order where p is sharply structured.
Effectively it is a prescription for add-
ing diffusion in a systematic, localized
way to prevent generation spurious os-
cillations.or anomalous extrema in p,
which could have disastrous consequences
for the electrostatic potential ¢. (Note
that (2) can be written as a modified
Poisson's equation, with polarization
charges proportional to Vp/p.)

In one dimension, the method of

flux correction may be represented as
follows:

(24)

n+1l S _ .
Py T T Py T oy 8fyoumag 044y o)

The superscripts and subscripts are re-
spectively temporal and spatial indices.
In (24), f.is a flux derivable from a
low order representation of (1) (e.g.
donor cell) which does not generate
. spurious extrema. The flux correction 6f
in (25) is such that f + &f is identi-
cally the flux derivable from a suitable
high order scheme (e.g. fourth order
leapfrog-trapezoidal for the present
case.) All ain (25) satisfy 0 s a =1,
One method of determining the « is to
require for each point i that neighboring
flux changes 0f tending to increase pj
be limited multiplicatively so as to pre-
vent a new maximum in p from being gen-
erated. Then neighboring flux changes
tending to decrease p; are limited to
praclude generation of a new miniwmum.
This procedure extends straightforwardly
to two dimensions8,9 without time-
step splitting.

Let us consider (1) as a special
case of the equation

Doy

< .o, (26)
where V(x,y) = (u (x,¥), v (x,¥)). The
low order donor cell fluxes in (24) are
obtained as follows. Let
u = ?.
u1+%’J (ui’j + "i+l,j?/ 27)
Then
= 6t =
Faag g Tox P MOy O
(28)
+ pi+1,lenCUi+%,j’o))

is a vectorizable expression for the x
component of the low order flux f =

(fx, fy). Equations (27) and (2§) ex-—
tend straightforwardly to the y component.

For the high order representation
of (1) we have chosen the spatially
fourth order leapfrog-trapezoidal
scheme. This scheme controls the com-
putational mode by appending a trapezoidal
integration step to the familiar leapfrog
scheme. Denoting fourth order spatial-

differences with coefficients(1/12,-2/3,0,
2/3,-1/12)by ny and Dy> define

n+s

-1
Pt = (o + "

ot

- A&t St (29
) 1(6)(DX+ Oy)

Dy)

ot Vi,

Then the spatially fourth order update
would be

p4n+l _ pn _

L. - + Fx
1,] 1,]

(30)

o3 ?

-Fx, . .
1+1’i93 1-73,]

e T Y

,J_Li"
where the high order fluxes are

e 1/
Piag,g T3 Ti,y T 2

bl

(31)

Tivsra,g ¥ Taan,y)e

and .

n+ks n

_ 6t
CPiyi,y Viel,;

Ti+1/2,j T 26x (32)

mHs gty

1,] 1,]
In (30) p4 is never computed, but serves
only to define the fluxes Fx and Fy.
Equations (31) and (32) extend straight-
forwardly to the y fluxes Fy. Having de-
fined high and low order fluxes, we de-
fine flux corrections '

§ fx

. = Fx, . - fx, .
its,] *i+, 3 *ith,3 (33)

fy. . = Fy. . - fy, |
O8Yy 54 = MiLgts T Pi, 5
for use in the two dimensional analog
of (25).

The flux limiting procedure (choice
of @ in (25)) is adequately discussed
elsewhere8:>7 and will not be detailed
here. Decisions necessary for the
limiting process require no scalar logic
on the ASC. They are made by proper use
of the vector functions AMIN1, AMAX],
and SIGN.

OPERATION COUNT AND RUNNING TIME
To illustrate the execution

efficiency of the code, we will compare
actual running speeds with theoretical

maxima obtained from bare operation
counts. The operation counts are con-
verted to machine cycles per gridpoint
per timestep through use of the values in
Table 1.

Table 1. Machine cycles required per
result for seven basic functions on the
ASC in 32 bit vector mode. Store and
fetch times are included.

Operation Cycles per operation
+,-,* 1
Aminl, Amaxl 1
Sign 4
/ 8

In Table 2 are presented theoretical

and actual timings for the run from which
results are presented below. The first
column gives operation count converted to
cycles per timestep per interior grid-
point for the main parts of the code.

The second column gives theoretical
running times obtained by multiplying the
first column by 1943 timesteps x 160 x 80
interior gridpoints x 40 nanoseconds per
cycle. (The NRL machine has a cycle time
of 80 nsec; however there are two pipes
delivering results simultaneously.) The
third column in Table 2 are the actual
running times of each portion of the
code. The results in Table 2 are typical
of all our experience with the code to
date. (The contour plots to be presented
below are out to 160 seconds, although
the full 1943 timestep run went to 240
seconds.)

Table 2. Operation counts, theoretical
and actual running time (scconds) for
major parts of the code.

Cycles Theoretical Actual
per cpu time cpu time
point
Driver 26 25.9 40.3
Continuity 142 141.3 154.3
eq.
Elliptic 288 286.5 352.1
eq. 456 453.7 546.7

From Table 2 we see that the code ex-
ecutes at 837 efficiency (without machine
coding). The operation counts in Table 2
apply only to operations executed on the
full grid (162 x 82) or the interior

grid (160 x 80). No allowance has been
made for boundary point calculation or

15

other operations which do not apply to

a fully two dimensional set of points.
Thus the true efficiency of the code is
somewhat higher than 83% since the actual
cpu times include all operations.

TYPICAL RESULTS

Figures 1-4 give contours of equal
plasma density at four times following
the release of a lkm-radius barium cloud
in the ionosphere at an altitude of 190km.
The barium plasma (ionized by solar radi-
ation) is subjected to a neutral atmo-
spheric drift of 100 m/secs to the right.
The geomagnetic field is directed per-
pendicularly out of the plane. The grid
interval for this calculation was 30
meters, so the dimensions of the rectang-
ular integration volume are 4.8 by 2.4
kilometrers. The initial condition is

2, 2,2
POOY) L) 4o ORY (1he(x,y)), B39

pO

where R = 1 km and e(x,y) is a random
phase perturbation of rms amplitude 0.03.
The contour values are evenly spaced from
1.0 to 4.5.

Fig. 1. Plasma density contours at
0 sec. The horizontal scale

has been compressed by 30%

-
.-

Fig. 2 Plasma density contours at
80 sec.

Fig. 3 Plasma density contours at
120 sec.

Figure 4 Plasma density contours at
160 sec.

‘I'hree areas of current investiga-
tion will receive brief description here.
All are oriented toward gaining knowledge
concerning the spatial and spectral prop-
erties of the "well developed" state.
First, we are interested in the degree to
which diffusion, a linear process, de-
termines minimum scale sizes. ~This has
been discussed elsewhere.l? We are also
interested in nonlinear saturation mech-
anisms which determine the point of
break-away from linear growth and help
dctermine the well developed state
(including its power spectrum).15 The
last area we will mention here concerns
an apparently anomalous mechanism which
causes some observed barium clouds to
"freeze up" after conforming to the model
(1) - (?) for snme ten to twenty growth
times. It may be possible to test vari-
ous candidate mechanisms within the
framework of our model by invoking anom-
alous transport coefficients or altered
conductivities.

ACKNOWLEDGMENT

This work was supported by the
Defense Nuclear Agency.

REFERENCES

1. T. N. Davis, G. J. Romick, E. M.

Westcott, R. A. Jeffries, D. M. Kerr,
and H. M. Peek Planet. Space Sci.,
22, 67 (1974).

2. G. Haerendel, R. Lust, and E. Reiger,
Planet. Space Sci., 15, 1 (1967).

3. L. M. Linson and J. B. Workman, J.
Geophys. Res., 75, 3211 (1970).

10.

11.

12.

13.

14.

15.

F. W. Perkins, N. J. Zabusky, and
J. H. Doles III, J. Geophys. Res.,
78, 697 (1973).

F. W. Perkins, N. J. Zabusky, and
J. H. Doles III, J. Geophys. Res.
78, 711 (1973).

F. W. Perkins, N. J. Zabusky, and
J. H. Doles III, J. Geophys. Res.
81, 5987 (1976).

A. J. Seannapieco, S. L. Ossakow,
D. L. Book, B. E. McDonald, and
S. R. Goldman, J. Geophys. Res.
79, 2913 (1974).

S. T. Zalesak, NRL Memo Report 3716
(1978).

S. T. Zalesak, J. Comp. Phys., 31,

. 335 (1979).

B. E. MgDonald, NRL Memo Report
3541 (1977).

B. E. McDonald, J. Comp. Phys. in

press.

B. E. McDonald, Proc. Ionospheric

Naval Research Lab. (1978).

R. S. Varga, '"Matrix Iterative
Analysis," Prentice-Hall, Englewood
Cliffs, N.J. (1962).

A. Grammeltvedt, MontHly Weather Rev.,
97, 384 (1969).: .

P. K. Chaturvedi and S. L. Ossakow,
J. Geophys. Res. 84, 419 (;979).

17

NUMERICAL EXPERIMENTS IN THE DYNAMICS OF GALAXIES ON ILLIAC IV
e —

e e ——
N A —————

R.H. Miller
University of Chicago
Dept. of Astronomy and Astrophysics
1100-14 East 58th Street
Chicago, IL 60637

B.F.

Smith

NASA-Ames Research Center
Theoretical and Planetary Studies Branch
Mail Stop 245-3
Moffett Field, CA 94035

ABSTRACT

Fully three-dimensional n-body integrations that run on ILLIAC IV have been in rou-
tine use for the past_three years in a variety of astronomical studies in the dynamics
of galaxies. Some 10~ particles move self-consistently under forces of Newtonian gravi-
tation. The particles themselves are the source of the gravitational forces. The dyna-
mical problem lends itself to a structure that fits the ILLIAC IV architecture very
naturally; it should fit other array processors as easily. The complexity of results,
coupled with their frequently unexpected nature, make graphic methods the only feasible

way to study the results of a calculation.

The programs and the astronomical problems

studied will be briefly described and motion pictures generated in some runs will be
showit. The motion pictures were produced as our usual method of studying the computa-

tional results.

I. SCIENTIFIC MOTIVATION AND
PROGRAM DEFINITION

A galaxy can be seen from only one
side; we cannot go around to look at it
from the other side. We cannot kick it to
see if it bounces. Galaxies devglop so
slowly (fast changes occur in 10~ years)
that no visible changes of shape occur in
human lifetime. Yet galaxies are known
to involve a complicated interplay of many
physical effects, and the processes that
determine the behavior of them are highly
nonlinear. These features necessitate
some kind of check on theoretical specula-
tions. Numerical experiments are the only
, substitute available to replace laboratory
experiments. The analogy between numeri-
cal experiment and laboratory experiments
may be pressed further--program checks
correspond to equipment checks and syste-
matic errors can be induced by numerical
effects or by leaving out some essential
physics. Notwithstanding these problems,
the study of galaxies is peculiarly sa-
tisfying because the real objects we study
are so beautiful and many of the objects
created in the computer are beautiful as

well. There is even a thrill of sorts to
watch these systems develop.

The self-consistent response of a
system of particles to forces of Newton-
ian self-gravitation underlies a variety
of astronomical problems ranging from
planetary formation in the solar system
through clusters of stars to galaxies
and clusters of galaxies. While some of
these systems display striking sym-—
metries, most lack exact symmetry and
some are quite irregular. A program to
study these objects cannot presuppose any
symmetry, especially if we are to under-
stand the reasons why some objects deve-
lop and maintain their beautiful symme-
tries. A fully three-dimensional program
is required.

Galaxies are self-consistent self-
gravitating collections of stars that are
held together by gravitational forces and
that are prevented from collapsing by
angular momentum and by random velocities
(which behave in some respect like a
hydrodynamic pressure). Structure, form,
stability, and evolution of galaxies must

be studied as a dynamical problem that is
best attacked by seeing what kinds of
steady-state solutions are preferred.

Two timescales show up in conven-
tional analyses of the dynamical problem.
We imagine the actual force field analyzed
into a smooth field and a fluctuating
part. The dynamical timescale is defined
by the orbital period of typical particles
moving in the smooth field. The fluctu-
ating part arises principally from two-
body interactions. The time scale over
which the fluctuating part causes a parti-
.cle to multiple-scatter away from the "un-
perturbed" orbit in the smooth field is
the two-body relaxation time, and usually
is simply called the relaxation time. It
is the second timescale. Relaxation times
in galaxies are typically around 1013 -
1015 years, as much as 1000 times the
Hubble time or the age of the universe.
The important processes in the dynamics of
galag}es proceed on a dynamical timescale,
(Gp) 2.

The number of particles needed in an
n-body calculation is determined by the
need to assure a clear separation of
dynamical and relaxation timescales.
two timescales are nearly the same for
particle numbers under 1000 and the ratio
of the timescales is logarithmic in the
number of particles. Because of the weak
dependence on particle number, n-body
calculations need 50,000 - 100,000 part-
icles to ensure that two-body relaxation
effects may safely be ignored. Even at
104 particles, the slower relaxation
timescale cannot yet be ignored. Experi-
mental checks verify that calculations
with 107 particles are on safe ground.

The

The parameters of a practical cal-
culation to study galaxies are determined
by physical considerations. Calculations
designed without sufficient attention to
these matters are difficult to interpret
and often yield misleading results.

Problems in the dynamics of galaxies
that are to be attacked by n-body inte-
grations are formulated as initial value
problems. Initial conditions are unknown
for true astronomical problems, and a
major puzzle is to determine what kinds of
initial conditions might have led to the
variety of galaxies we see today. A
guiding principle is that, because gal-
axies are more similar to each other than
initial conditions could have been, final
forms must be more or less independent of

19

details of initial conditions. A second
group of problems can be set up by sel-
ecting models like actual galaxies as
inital conditions. Stability, shapes,
and internal dynamics can be studied
this way. Stable systems remain similar
to the initial galaxy while unstable
systems change on a dynamic timescale.
Here again, a guiding principle is that
real galaxies must be straightforward to
nimic; they cannot require improbable or
difficult-to-set-up initial conditions.

A wide variety of problems can be
attacked with the code described here.
Questions of the stability of galaxy
models leads to studies of actual three-
dimensional shapes on the one hand and to
the suggestion that galaxies are actually
much more massive than had been thought
on the other. If so, there may be enough
mass in galaxies or in clusters of gal-
axies to close up the universe. Mass
density estimates for the universe fall
short of closure by a factor 30 - 100
unless there is some unseen mass to make
up the difference; massive dark halos
around galaxies provide one of the more
attractive possibilities. The suggestion
that galaxies must have massive halos
came from earlier stability studies based
o n-hody integrations in which the ini-
tial conditions were chosen to represent
actual galaxies. A list of problems
studied or under attack is included in
Sec. IV. The calculation is very similar
to plasma simulation codes.

II. PROGRAM DESIGN

Programs of the type described are
best designed around data structures that
represent the state of the problems. The
same physical problem, translated into a
program to run on a different processor,
should be programmed differently to make
use of a data structure that leads to the
best program design. That data structure
is dependent on the architecture of the
computer on which it is to run. We esti-
mate that about 707 of the design effort
for a new large program goes into the
design of the data structures. We make no
claim that the program designed for
ILLIAC IV could be rewritten to run de-
cently on other computers without major
redesign of the data structures. The
programs described here were designed
4% years ago, when ILLIAC IV was the
only large processor available to us. It
works nicely on ILLIAC.

Program design is incomplete without
provision of a method to analyze the re-
sults of computations and methods for
handling archival storage of output.
These programs were designed around the
use of motion pictureé for both purposes.
We return to this point in the next sec-
tion.

The three-dimensional n-body pro-
gram constructed for ILLIAC IV is de-
signed to be fairly general so it can be
used for a variety of problems of astro-
nopical interest. It can handle about
10" particles within a cubic volume, but
it is usually used with about 10° part-
icles. Forces are computed in a manner
that allows details down to 1/64 of the
linear dimension of the configuration
space to be resolved. Long~range effects
are correctly handled by the force
calculation.

Bach particle is represeunted by one
ILLIAC word. In addition to the config-
uration coordinates and velocities, 10
bits are allowed for other attributes.
These attributes may be defined in any
way necessary for the problem of inter-
est. For example,one bit can designate
whether the particle represents a star
or a gas cloud. Other bits can be used
to measure heavy element buildup in the
gas or stars. This use of particle
attributes leads to interesting and use-
ful simulations to study the evolution of
stellar populations in an evolving gal-
axy, wilh evldent consequences tor
studies in nucleosynthesis.

On the computational side, the pro-
gram designs are pleasing in the way they
fit the ILLIAC IV architecture and uti-
lize the parallel features of ILLIAC. It
is likely that they would fit other
architectures as easily; the transition
to less restrictive array processors
should be straightforward. The program
needs a machine like ILLIAC or a modern
array processor—-—-the sheer size of the
program demands a large machine and the
property of the calculation to admit
parallel processing makes it amenable to
treatment on ILLTIAC. With graphics sup-
port, this program produces useful scien-
tific results that also appeal to the lay
public. This program can give the public
an example of what scientific research is
all about and can help convey some of the
excitement of scientific research.

20

Like most large n-body programs,
that designed for ILLIAC IV consists of
two principal parts: the potential
solver, oxr subroutine in which the forces
are calculated, and the particle-pusher,
or subroutine in which the particle vel-
ocities and positions are advanced ac-
tording to the forces. The potential

. solver makes use of densities (or the

projection of the 'particle phase space
density onto the configuration space),
which are tabulated by the particle-
pusher as the new velocities and posi-
tions are computed. Output summaries
and generation of plot files are, handled
by other subroutines, as is the eslab-
lishment of starting conditions.

‘l'wo-dimensional calculations can be
core-contained; this is no longer pos-
sible for reasonably-sized three-
dimensional calculations. Forecco—vwvalues
and density counters must be in core
along with the particle data during the
particle-pushing part of the calculation.
There is no need to have all the particle
data available at once; data that refer
to one particle can be processed to com-
pletion without reference to other par-
ticles. Particle interactions take place
through the force-field. But there is
not even enough room for the entire
force field or density count in three
dimensions.

One way to handle a three-
dimensional calculation is to retain only
a portion of the force field and of the
density count in core At any one time.
All of the particles whose configuration
coordinates are within a limited region
are processed hefore moving on to
another region. Potential values and
density counters are also available for
this limited rcgion. Particle data may
be handled in any of several different
ways. If large data file I/0 is cheap,
several sweeps may be made through files
of particle data, selecting those parti-
cles whose coordinates match the other
data in core at each pass. An alterna-
tive is to pre-arrange particle data
before writing output files, to avoid
need for several passes. This is the
method adopted in the ILLIAC IV program
because disk I/0 is expensive. The pro-
gram is constructed around a pattern for
partitioning the data which fits the
ILLIAC IV architecture naturally, Match-
ing portions of the particle data, of the
force field, and of the density count are
in memory at the same time.

The cubic volume occupied by the
system of particles is divided into 64
subdivisions along each edge; the force
calculation returns values at the center
of each subdivision. Force values at ~
points other than the center are found by
linear interpolation. Densities are de-
termined from the count of particles in
each subdivision (NGP assignment is used,
but it is not required by program de-
sign). The cartesian coordinates are
designated as follows: The 64 subdivi-
sions along the x-coordinate are each
assigned to one of the 64 processing ele-
ments (PE's) of ILLIAC IV; each PE
handles particles whose x-coordinate is
equal to the PE number. All 64 subdivi-
sions of the y-coordinate and 8 of the 64
subdivisions of the z-coordinate are in
PE memory at the same time. Eight such
loadings are required to process the
entire set of z-values, and thus to pro-
cess the entire accessible configuration
space. With nonuniform particle distri-
butions in the configuration space,
unequal numbers of particles are in
volumes represented by different PE's;
this leads to some unavoidable ineffi-
ciency because some PE's may have
completed processing their load of part-
icles while others still have particles
left to work on. Particle data must be
reassigned to the correct PE after they
have moved in an integration step, and
they must be placed on disk so they will
be brought back in the proper band of z-
values on the next integration step.

This feature, along with the need for
frequent access to backup storage on the
ILLIAC disk, is the principal complica-
tion in the design of the particle-
pushing programs. Programming is made
more difficult by tight memory and by
the lack of an operating system to as-
sist with disk I/0 operations on ILLIAC.

A) THE POTENTIAL CALCULATION

The potential calculation is de-
signed to generate values of the poten-
tial at the center of each subdivision
from the new density data. Potentlals go
to zero at infinite distance, the boun-
dary condition that is appropriate for
the gravitational problem. The calcula-
tion proceeds through Fourier transforma-
tions and the convolution theorem. This
method of computing forces is necessary
to avoid the n“-dependence of exact force
calculations on particle number. Correct
values of the potential are returned at
the tabulation-points in the center of

2]

each cell. Linearly interpolated forces
are obtained in the particle-pusher by
interpolation on the potential

values.

Fourier transformations calculated
in a computer are discrete, and represent
periodic functions. The potentials
generated represent periodically repli-
cated density distributions. They can be
made to represent the gravitational po-
tential of an isolated system by doubling
the period in each spatial coordinate,
with a modification of the dependence on
distance of the potential around a single
particle (the potential must go to zero
beyond double the initial interval).

This is the procedure followed in the
ILLIAC program. ‘

The potential calculation utilizes
the architecture and parallelism of
ILLIAC IV fully. All PE's are on all the
time. Some 1552 words of the 2048-word

~ PE memory are used for data manipulation

in the potential calculation.

B) THE PARTICLE-PUSHER

The part of the program that handles
the actual integration (or particle-
pushing) is modular for readability, to
simplify debugging, and to facilitate
program development. As much as pos-—
sible, the overall supervision, the por-
tions that relate to moving particle data
data to and from the ILLIAC disk, and the
portions in which the actual processing
of particle data is carried out in sepa-
rate modules.

Like the main program, these modules
are designed around a certain allocation
of PE memory. To a lesser degree, they
are also designed around a certain map-
ping of particle data into a 64-bit
ILLIAC word. The major design feature
of the particle data is that all data
that refer to a certain particle (7
fields) are packed into a single ILLIAC
word.

The actual integration proceeds by
means of a time-centered leapfrog scheme.
Forces are obtained by interpolation of
potentials from neighboring grid-points.
All 27 neighboring values are used in a
quadratic interpolation of the poten-
tials.

C) PROGRAMMING

This problem was written and debug-
ged by 1 person. Writing and debugging
required about 1 calendar year. Be-
cause of other commitments a reasonable
estimate is about 1/2 to 3/4 of a man-
year. Both design and checking were
straightforward extensions from previous
experience with 2-dimensional (point

-particles on a plane) programs. .It was
essential to be near the machine and in
an environment where others were pro-
gramming for the same machine in order to
have ready access to help in learning how
to interpret dumps, idiosyncrasies of the
compilers and job submission procedures,
etc. The programs were written in CFD,

a FORTRAN-like complier written at Ames.
This complier does not hide the machine
architecture.

IITI. SCIENTIFIC RESULTS

A) EXPERIMENTS RUN

Nearly 200 distinct numerical ex-
periments have been run in the past three
years. These cover a variety of problems
in galaxy dynamics. The major groupings
of experiments are listed to give some
idea of the range of problems studies.
Fuller descriptions are being published
in the astronomical literature.

1. Collapse of initially spherical rotat-

ing configurations. A two-parameter
space was sampled: initial angular vel-
ocity of rotation and initial velocity
dispersion. Some of the models passed
through intermediate ring stages, but
the rings were short-lived nonaxisym-
etrically unstable forms. Other models
passed through short-lived sheet struc-
tures. All systems adopted a steady-
state barlike form rotating end-over-end
in space. These experiements showed
that bars are robust dynamically stable
forms and strongly suggest that the
three-dimensional forms of elliptical
galaxies must be barlike.

2. Rapidly rotating axisymmetric config-
urations. Eliptical galaxies have con-
ventionally been thought to be oblate
axisymmetric objects flattened by rota-
tion, rather than the barlike objects
suggested by our experiments. The checks
in this set of cxpecriments show that
stellar systems do not flatten as much
by rotation as had been expected, even
though some of our models rotate more

22

rapidly than had been thought possible.
This makes the case for the prolate (bar-
like) objects stronger because rotation
cannot account for the observed shapes

of elliptical galaxies, quite apart from
stability considerations.

3. Collapse of nonspherical rotating
configurations. This sequence was run to
test the sensitivity of the short-lived
intermediate forms to lack of symmetry

in the initial state. The sheets were
quite sensitive, but rings could tolerate
~ 107 asymmetries. All of these models
ultimately formed bars as well.

4. Internal dynamics of a bar. This ex—
periment used the bar at the end of one
of the experiments in (1) ahove as the
initial state in a study of the dynamical
properties of a bar in an attempt to un-
derstund the peceuliar atability of bars.
This led to the discovery of a surpris-
ingly large number of periodic orbits
within the bar, and of a forward fluid
streaming within the rotating bar pat-
tern.

5. Colliding galaxies. Two stable self-

consistent configurations were projected
toward each other to study the response
of fully self-consistent systems in
these circumstances. These experiments
led to the discovery of coherent flows
within each galaxy in response to the

‘force field of the other, which leads to

lavger energy transfer within a collision
than had previously been expected. The
galaxies contract momentarily at close
passage.

6. Anisotropic models. Several experi-

ments have been run in which models main-
tain nonspherical form by means of aniso-
tropic 'pressures". Thus far, none of
these models has achieved a true steady
state, but they are close.

7. Galaxy model in a bath of stars.

‘diffuse background.

These experiments are designed to study
some peculiar galaxies (multiple-core
cD's) in which several density condensa-
tions seem to survive within a larger
Such configurations
are difficult to understand dynamically.
The experiments verify that such dense
"cores" tend to diffuse on a dynamical
timescale in the presence of a sea of
low-density stars.

8. Protogalaxies. For these experiments,

particles represent either gas or stars.

The experiment starts from a purely
gaseous configuration. Stars form from
the gas according to preassigned rules.
Heavy element synthesis is a consequence
of stellar evolution, and is taken into
account in these models. Supernova out-
bursts stir up macroscopic motions in the
remaining gas. These experiments are
still in early stages but already they
show a possible mechanism for formation
of double radio sources symmetrically
placed around a galaxy. The radio
sources result from gas ejected from the
protogalaxy by energy from supernova
outbursts, which drives a pair of oppo-
sitely-directed jets.

9. Planetary formation. Gravitational
instabilities in particulate matter left
orbiting the sun in the early solar
nebula have been confirmed by experiments
in which our cubic volume is pictured as
being in orbit around the sun. Particles
aggregate into planetesimals as a result
of these instabilities. These experi-
ments are in progress.

10. Early universe. The origin of irre-
gularities in the very smooth early uni-
verse at ''recombination" is poorly under-
stood. Experiments are planned in which
growth rates, unstable modes, shapes left
when instabilities reach finite ampli-
tude, and so on, are studied.

B) ANALYSIS METHODS

This catalogue of projects under-
lines the need to consider means of
analyzing results as part of the program
design. These programs were designed
with graphics as the primary analysis
tool. Motion pictures are routinely
made as our primary output and archival
storage. We normally make motion pic-
tures of temporal development as seen
from three orthogonal view directions.
Other view directions or special co-
ordinates, velocities, and particle
attributes for about 2000 particles are
recorded in a plot file at each integra-
tion step and these files are used for
motion pictures, to view results on CRT
displays, or for numerical analyses.

We normally have little idea what
to expect in an experiment. Motion
pictures are a happy choice because unex-
pected results are more easily appreci-
ated visually than by almost any other
method. Even the fact that something
unexpected is happening can be missed

23

without such a powerful and general meth-
od. While production and quality control
problems are often annoying and turna-
round can be impossibly long (we've
experienced 6 months!" the power of the
method, the discovery of unexpected
results, and the beauty of the pictures
makes it worth the pain.

To stress the power, we mention
several discoveries made in these experi-
ments that would not have been found by
other methods. (1) The appearance of
sheets in the collapses of spheres. (2)
The discovery of the remarkable stability
of barlike forms. (3) The discovery of
the coherent responses in galaxy colli-
sions. (4) The discovery of oppositely
directed jets in the protogalaxy problem.
(5) The discovery of forward streaming
motions within rotating bars. In each
case, the coherent picture of changing
configuration, easily afforded by motion
pictures, is an essential part of the
discovery.

Motion pictures are an essential
part of this entire project. They are
not simply an appealing way of presenting
results that we could equally well have
found by other means. They are the tool
by which the important discoveries of
this project have been made. The fact
that discoveries made in these experi-
ments tend to relate to properties other
than those which the experiments were
designed to study (e.g., radio sources
when studying galaxy formation) under-
lines their unexpected nature and the
power of graphic presentation.

It is a pleasure to thank Margaret
Covert for assistance with the operation
of computer programs and ‘in handling
the data generated. Computations re-
ported were carried out on the ILLIAC IV
computer at the Institute for Advanced
Computation. Funds for partial support
of this study have be allocated by the
NASA-Ames Research Center, Moffett Field,
California, under Interchange No. NCA2-
OR108-902. R.H.M. received partial sup-
port from NSF grant AST 76-14289.

PARTICLE SIMULATION ON THE VAP

o
i 7

W. E. Drummond and B. N. Moore

Austin Research Associates
1901 Rutland Drive

Austin, Texas

78758

ABSTRACT

A report will be given of the status of hardware and software development ou the

JAP.

The VAP is designed as a floating point vector array processor of considerable

power and will be able to execute large vector programs at high speed in a stand-alone

mode.
data paths to a pipelined arithmetic unit.

memory with a total of 1 million words.
will be possible.
possible to program at the Fortran level.
discussed.

INTRODUCTION

Austin Research Associates is develop-
ing a floating point vector array processor,
the VAP.
motivated by the need for an inexpensive

This development was originally

high speed vector processor for large-scale

plasma simulations. However, the archi-
tecture of the VAP provides an extraordi-
nary degree of flexibility in vectorizing
algorithms encountered in the solution of
physical problems and, as a result, the
VAP should have a fairly wide applica-

bility.

The principal attributes of the VAP
are:

1. It executes large vector programs
at high speed.

For plasma simulation problems, it

is expected to be approximately three
times faster than a CDC-7600.

24

Other design features are multiple large fast data memories with independent

Four of these memories are vector (serial)
memories with a maximum size of 8 million words.

There is also a scalar (ram)

Practical operation at speeds of 12 mflops
A software package is under development which will eventually make it
Applications to plasma simulation will be

2. It has multiple, fast, data.
memories with independent data paths to
the pipelined arithmetic units. Four of
these memories are vector (serial)
memories and one is a fast scalar (ram)
memory.
have a total of 1.5 million words of fast

memory and can be‘eésily expanded to a

The initial configuration will

much larger total. memory.

For fully electromagnetic 2-1/2 D
plasma simulation problems, the
initial configuration handles 25,000
cells and 200,000 particles.

3. Programming is carried out using
a subset of standard Fortran statements
plus a few additional statements unique
to vector programming.

4, It is inexpensive--less than
4 percent of the cost of a Cray I or a
Star. '

In the following sections, the
organization of the VAP memories and data

flow logic will be described, together
with certain features of the VAP software
and utility packages.

MACHINE DESCRIPTION

The CPU of the VAP is a modified
Floating Point Systems, Inc. AP-120B array
The AP-120B is a high-speed
synchronous processor with a cycle time

processor.

of 167 nanoseconds and executes one instruc-

tion per cycle. The instruction word pro-
vides the capability of overlapping 10
independent operations in each instruction,
i.e., 10 independent instructions per
cycle. The floating point arithmetic
units consist of a pipelined multiplier
and a pipelined adder, each of which can
Thus, the

maximum execution rate for floating point

produce one result per cycle.
operations is 12 megaflops.

To write and debug optimized code for
the AP-120B requires assembly language
programming which is extremely tedious
because of the overlappluyg ol multiple
operations on each instruction. In
addition, because of data path and memory
conflicts, even carefully written assembly
language code does not make very efficient
use of the arithmetic pipelines. Finally,
there is only one data memory which is
limited to a maximum of a million words.
Even with these restrictions, however, we
have written plasma simulation codes on
the AP-120B which execute at approximately
the same speed as on the CDC-7600. Thus,
the AP-120B is a cost-effective processor
for many applications.

The VAP was designed to make use of
the many attractive features of the
AP-120B, while at the same time removing
the memory size and data path conflict
restrictions. The resulting hardware con-
figuration lends itself to vector process-
ing and the development of a vector
Fortran compiler removes the need for
With this
vector Fortran compiler, programming can

assembly language coding.

be carried out as easily as on a

standard Fortran processor and programs
execute approximately three times faster
than on a CDC-7600.

The principal modifications to the
AP-120B involve the addition of four
high-speed data and control paths to the
CPU, together with the expanded hardware
logic to facilitate the flexible use of
these additional data paths. The four
high-speed data paths are connected
through controllers to four high-speed
ram memories which are used as vector
(serial) memories. The use of ram memo--
ries avoids the latency problems asso-
ciated with CCD or bubble memories.

The resulting VAP functional diagram
is shown in Figure 1 and more details of
the array processor ‘section are given in
Figure 2. In summarizing machine features
and capabilities, it is convenient to
distinguish between those characteristics
of the conventional AP mode of operation
given in Table 1 and the extended VAP
mode given in Tahle 2, Under software
control, the VAP can operate either as
a vector array processor or in a con-

ventional AP mode.

SERIAL SERIAL SERIAL SERLAL
MEMORY 1 MERY 2 NEMORY 3 MIMDRY &

l l | I

SERIAL MEMORY INTERFACE

ARRAY PROCESSOR ALL'S
AD
MEMORILS

LoGic]
CONTROL

‘ INTERFACE J

HOST

Fig. 1. VAP Machine Organization

TO SERLAL MDWORIES

PROCRAM
STORAGE

LOGIC

38 84t Dats Lines

§ B8,

)
'
L}
1
lig 11 | 8 H
'
sTEr) st 1 !
)
STE? 2 hid '
sTE? 2 .
sTE 3 '
mem AL e a2 !
¥
Y
s ™
aza 1oory
ATE ““';
4w
)
l §
'
aaed

[

b
I

Fig. 2. Details of Array Processor CPU.

Table 1. AP mode features.

* 167 nsec cycle time.

* Independent pipelined floating
adder and multiplier.

* Pipelined access to as much as 512K
words of ram data memory at rates up

to 6 million words/second.

* Sixteen 16-bit integer scratch
registers with associated ALU.

% 2K table memory rom.

For large vector programs, the execu-
tion speed is primarily limited by the
maximum rate from the data memories to the
ALU. The addition of the four fast data
memories increases the data rate for the
VAP to 30 million words per second as
compared to 6 million words per second in
the AP mode.

26

-are, In fact, easily vectorizable.

Table 2. VAP features.

* All features of conventional AP
available.

* 4 (n x 64K) serial memories con-
figurable under program control as
inputs and outputs of arithmetic
units.

* Access rates of 6 million words/
second to each memory giving total
data flow rate of 30 million
words/second.

* Setup time for vector operations
= 4 microseconds.

The additional control logic incor-
porated in the VAP takes advantage of the
flexibilities provided by a mixture of
vector and scalar memories so that
scatter/gather operations which, in the
past, were not thought to be vectorizable,
For
plasma simulation problems, the scatter/
gather operations of interpolation and
allocation are thus materially speeded up.

SOFTWARE

Parallel development of software and
hardware is being undertaken in order
that hardware design options may be
realistically evaluated as they become
apparent. The earliest possible useful
production from the machine will also be
obtained. VAP software items can be
classified as support, e.g., compiler,
assembler, linker, etc., or as utilities.
Typical utilities include commonly used
vector arithmetic operations, as well as
specialized utilities for plasma simula-
tion problems. Figure 3 is a block dia-
gram indicating the stages required to
convert VAP Fortran source code into an
execution module. All of the support
software items appear in Figure 3. All

of the compiling, assembling, and linking

is done on the host computer and the
complete binary execution module is
shipped from the host to the VAP for
stand-alone execution. Results and diag-
nostic data can be returned to the host

during execution.

HOST VAP
TORTIAN PORTRAN
SOURCE SOURCE
vap
coPrLER

BOST

LINKER AP

ASSDGLER

VAP ‘
CENEAAL VAP
EXECUTIVE
LIBBARY LIBRARY LR
EXRCUTION - UTILITY
MODOLE LIBRARY
Fig. 3. Support software.

Programming is done principally in
terms of a subset of standard Fortran
statements with a few modifications unique
to vector operations. Variables are
declared as either vector or scalar varia-
bles and then used in the usual Fortran

syntax.

For example, if B, C & D are vectors
of the same length, located in different
vector memories, the Fortran statement

A=B*C+D

multiplies each element of B times the
corresponding element of C and adds the
product to the corresponding element of
D, to produce the resulting vector A,
which is stored in the remaining vector

memory.

Scatter/gather operations make use of
additional symbols but the same Fortran
syntax. E.g., if B, C & J are vectors

located in different serial memories, the

27

Fortran statement

A=B *'C + M <:J:>

multiplies each element of B by the corre-
sponding element of C and adds the product
to the contents of the scalar memory at
the address specified by the correspond-
ing element of J to give the resulting
vector A, which is stored in the fourth
vector memory. This scatter/gather vector
operation executes at the same speed as
the pure vector operation discussed

Table 3 lists the execution rate
of typical Fortran operations.

above.*

Table 3. .Execution rates for VAP Fortran

PP - |
statements and utilities.

Pure Vector Operations

1. A+B *C 6 Megaflops

2. A= (B +0) 6 Megaflops

3. A=B *C+D 12 Megaflops

4, A= (B+C) *¢D 12 Megaflopso
Scatter/Gather Vector Operations

1. A=B*C+M <J> 12 Megaflops

4 Megaflops

2. M<J>= M3y + A * B

Vector Utilities

1. A

SQRT(B) 1.5 Megaflops

2. A=1/B

1.5 Megaflops

aIn this table, A, B, C and J are vectors
located in different vector memory.

1y
memory location whose address is the

is the contents of the scalar

corresponding element of the vector J.

*
Other scatter/gather operations, e.g.,

scatter/gather operation No. 2 in Table 3
may run more slowly for two reasons:

The scalar memory is accessed twice for
the operations on each element; and if
adjacent elements of J have the same

value, i.e., if the same memory location
is addressed for two consecutive elements,

A critical element in any vector
processor is the setup time for vector
operations. For the VAP, this setup time
is between three and four
Since the basic VAP cycle
this means that the setup

microseconds.
time is 167 ns,
time for any
vector operation consumes approximately
20 cycles.

operations execute one vector element per

Since the most common vector

machine cycle, the overhead time, as a
fraction of the execution time, is simply
20 divided by the number of elements in
the vector. For vectors of length 200,
the setup time is thus 10 percent of the
execution time. For particle simulation
problems, the typical vector length is
2,000, and thus setup time amounts to only
1 percent of the execution time. As a
the utilization of the arithmetic
pipelines approaches 100 percent in the

VAP.

result,

APPLICATIONS

Although the VAP is being developed
because it is needed for a rather specific
problem, it will be capable of quite
general application. Some problems for
which the VAP will be useful are listed in
Table 4. Consideration of the 2-1/2 D
plasma simulation problem will illustrate
some of the features of the VAP, A 2-1/2 D
fully-electromagnetic, fully relativistic
e-beam simulation code has been in produc-
tion on the AP for some time and it will be
the first major code to be implemented on
the VAP. An estimated performance compari-—
son is given in Table 5. The VAP can
handle larger field arrays and particle
tables because of the serial memory

the write to this memory location from the
first of these elements would not be com-
pleted before the read of that same memory
To guard
against this possibility, the utility has
been slowed.

location for the next element.

For plasma simulation codes,
a special utility has been written for
this operation which executes at 6 mega-
flops. '

28

capacity, and the availability of opti-
mized Fortran operations and efficiently
coded vector utilities makes larger
pieces of the code run at the 12 megaflop
rate. With the VAP Fortran compiler,
programs will also be more easily modi-
fied and debugged.

Table 4. Applications.

* 2-1/2 D and 3 D plasma simulation.

* Hydrodynamic and magnetohvdrodynamic
problems.

3=

Simulation of diode operation.

%

General 2 D and 3 D partial
differential cquations.

OUTLOOK

An operating prototype of the VAP
with reduced data path width and skeleton
serial mcmory should be available by the
end of the year to perform tests of the
design. 1If all goes reasonably well at
that point, it is anticipated that a
fully operational machine will be working
hy the middle of next yecar.

Most of the software will be availa-
ble before the prototype VAP is opera-
tional, and work -will proceed on actual
code development.

Table 5. Comparison of the capabilities of the AP mode and the VAP mode for a 2-1/2 D
fully-electromagnetic, fully-relativistic, particle push program.

AP VAP
Number of particles 32K 200K
Number of cells 4K 25K
a b
Execution time per particle 81 usec/particle 21 usec/particle
N
Ease of programming Difficult Same as

Standard Fortran

aFor purposes of comparison, standard Fortran programming of the CDC-7600 gives an
execution time of about 80 microseconds per particle and standard Fortran programming
of the Cray I initially achieved an execution time of approximately 12-1/2 microseconds
per particle. However, more recent hand-optimized coding on the Cray I has led to a

~ significant reduction in this push time. (Private communication - D. Forslund)

b . ' ‘ ,
This result is not a measured result. However, since the processor is a synchronous
processor, it is believed to be accurate.

29

A VECTORIZED FOKKER-PLANCK PACKAGE
FOR THE CRAY-1*

M. G. McCoy, A. A. Mirin, J. Killeen
Magnetic Fusion Energy Computer Center
Lawrence Livermore Laboratory
P. 0. Box 5509
Livermore, CA 94550

ABSTRACT

A program for the solution of the time-dependent, two dimensional, nonlinear,
multi-species Fokker-Planck equation is described. The programming is written such
that the loop structure is highly vectorizable on the CRAY FORTRAN Compiler. A brief
discussion of the Fokker-Planck equation itself is followed by a description of the
procedure developed to solve the equation efficiently. The Fokker-Planck equation is a
second order partial differential equation whose coefficients depend upon momente of the
distribution functions. Both the procedure for the calculation of these coefficients
and the prucedure fotr the time advancement of the equation itself must be done
efficiently if significant overall time saving is to result. The coefficients are
calculated in a series of nested loops, while time advancement is accomplished by a
choice of either a splitting or an ADI technique. Overall, timing tests show that the
vectorized CRAY program realizes up to a factor of 12 advantage over an optimized
CDC-7600 program and up to a factor of 3.65 over a non-vectorized version of the same
program on the CRAY. :

INTRODUCTION
In the simulation of magnetically con- of the magnetic field. With these

fined plasmas in which the ions or electrons simplifications Rosenbluth, MacDonald and
are non-Maxwellian and where a knowledge of Judd(1) succeeded in expressing the

the distribution functions is important, equation in a form suitable for solution
kinetic equations must be solved. In both A a computer.

mirror and tokamak confinement devices

non-Maxwellian plasmas may be present. Subsequently, a number of computer
This may be due to the presence nf ex- programo have been developed(2)3(3) which
tensive loss regions in velocity space or solve this equation. These Fokker-Planck
to the presence of monoenergetic neutral codes are frequently incorporated in

beams. The kinetic equation to be solved larger codes which simulate additional

is the Boltzmann equation with Fokker- physical processes such as quasi-linear
Planck Coulomb collision terms. diffusion due to radio frequency heating(4)

and spatial diffusion of the plasma(S).
This nonlinear partial differential :

equation,which describes the evolution A problem encountered in these pro-
of the distribution functions of all grams has been the long run times required
charged species in the plasma,has seven to solve the Fokker-Planck equation, and
independent variables (three spatial this problem is aggravated in studies for
coordinates, three velocity coordinates which it is necessary to solve for the

and time). Consequently, a number of operator at a large number of spatial
simplifications must be introduced into points or when very high resolution is

the equation to allow any present day required.

computer to solve the problem. One can

reduce the number of independent variables With the arrival of the CRAY-1l, it has
to three by neglecting spatial dependence become possible to gain a full order of
and by assuming azimuthal symmetry of the magnitude savings in computer time with
distribution functions about the direction respect to a program optimized for the

30

CDC-7600 by casting the equations in a
tractable form and applying some vector-
ization techniques. The program is com-
piled on the CRAY using CFT. Provided that
careful attention is paid to "do loop"
coding, this program provides an example
of the capability of the compiler to
vectorize coding and improve performance.
A package, available to the community, has
been written which solves the Fokker-Planck
equation and has been incorporated in a
number of programs.(3),(4),(5)

THE FOKKER-PLANCK EQUATION

The Boltzmann equation for the dis-
tribution function of each plasma species

is given by
F Oof _<Bf)
a=(""a
at / ¢

oY)

m_ v
a ¥
where fa is the distribution function of

species type "a", F is a force field and

<§§> is the Fokker-Planck operator
c

representing the rate of change of the
distribution function due to Coulomb
collisions.

With the simplifying assumption that
the Fokker-Planck operator depends only on
the velocity, v, and not upon spatial
position, x, the ogerator as derived by
Rosenbluth et al.(}) has the form

@), bk 5
ot a ov, \a dv.
c i i ’
S R AL @)
v ov, a dv_,dv,
1] A 1]

where the usual summing conventions over
et msen

repeated indices "i'" and z are to be
used and where Pa = 4nzg e /mg. The
"Rosenbluth potentials'are written as
7 (%) -
= — ' ! '
8= Lz) W Aahf}b(z.)lx. v'|av
a
(3)
m Z 2
a+mb b
ha = E:-————— 7 fn A b
b ™ a a
t 1_1 v‘
'jfb<x>|x-xl dv'. (4)

31

The Coulomb logarithm which depends on both
interacting species is

ma+mb ZaCAD
n Aab = fn 5
ot/ e

2Ek &

1

* sup :
a,b

1/137 is the fine structure
AD Ee/6ﬂnee is the Debye

where o
constant,

length, Ex is the energy of species k, and
n, is the electron density.

If we assume further that the dis-
tribution functions f, are azimuthally
symmetric about the direction of the
magnetic field, the formulation given above
may be recast as a two dimensional problem
when written in spherical polar coordinates
(v,6,¢), where v is the speed, 6 is the
angle between the velocity vector and the
magnetic field, and ¢ is the azimuthal

angle. Equation (2) then becomes
]‘_E —LE.{. 1 E (5)
T at 2 Jv 2 . 6’
a c v v sinb
where
Bfa Bfa
Ga = Aafa + Ba ov + Ca 9 (6)
Sfa 3fa
Ha = Dafa + Ea‘ -5;—- Fa‘ —"""ae (7)
The coefficients A , B, C , D , E and F
. a’ "a’ “a’ "a’ "a
satisfy
3 2
f o8 T %8, 50,
a 2 3 2 ov ov
ov v
2 3
1978, 19784
TViz T2 2
Vv 8 3va0
2
cotb fél cotH 8a
v 96 2 9vab
v2 azga (8)
Ba T 2 %)
ov
3g 32g
-1 "a_1_"a
Ca= " 2v38 T2 3vae (10)

3 3 2

D = sinb i 8a | sind 0 8a 4 sinb 9 Ea
a 2v2 ae3 2 av%e v 9vdb
3¢ 2 aha
- L =2 4 cosb _ "a _ sin® .
2v”~ sinb 98 ‘2v2 362 36
(11)
2
B, = sind [Lt b a2)
2
2v LLs]
(1)

As suggested by Rosenbluth et al.
the "Roseubluth potentials' and the
distribution functions themselves may be
represented by expansious in Legendre

polynomials. For this purpose we let .

£ (v,0,t) = 3. yo (v,t) P, (cos®),

b P j |

. j=o
where
+1
V?(v,t) ALY f. (v,cosf,t)
] 2 b

-1

D Pj(cose) d(cosb)

The expansions for the potentials are

2
2 (%
ga(v,e’t) = L‘ é_! (z— 2/'[1 Aﬂh
j=o b a
. B (v,t) T, (cosf)
and 9
© m Z
ha(v’e’t) = E: z: _jitﬁl _ZP
j=o b ™ a
b
in Aab Aj(v,t) Pj(cose)

~

with coefficients

v j+2
b 4T (v') b s ,
AT I []; At Vj(v ,t) dv

®]
+ AL ST deI
j; (VV)J—]- J

?

(14)

(1.3)

(16)

(17)

(18)

32

b 4 Voyrydt2
B = - T
: 45 -1. Jo v

2
. _j-1/2 vh) b, , '
(1 37372 —;E—— Vj(v) dv

+[°°_ R P V.
JT3/2 (V,)Z
19)

It is convenient to define four

functionals

M) () =f wiy) vy gy (20

v

v -
HONOE f w(y) vy 4y (21)
. :

Jr v O &y @)

R (W) () = !
: M (4+3)
E;(w) (v) =f w(y) vy dy . o(23)
o)

Using these functionals,Eqs. (18) and (19)
become

b 4m -j-1 b
A, = oy N, (V,
i (234D [v 5y

o b ,
+ v Mj (Vj)] (24)

b 4T 1 -j-1 b
= 52a1 Y7oz 1a5% . V.
By T 23+ {(23+3> {" By Oy

j+2

b
+ v M. (Vj)]

J

1 1-3 b
@D [" N)

‘-I-vj Rj (V-?)}}

Evaluation of the coefficients defined

(25)

in Eqs. (8)-(13) requires derivatives of
the "Rosenbluth potentials”.
obtained through term by term differ-
entiation of Egs.
derivatives with respect to v requires

differentiation of the right hand side of
Egs.

These may be

(16)-(17). To obtain

(24)-(25) . This is done analytically,

The resulting expressions are

Eﬁg Al j-1 b
v = (234D [3 Ve oM
- (1) viT? N.(VP)] (2
J 1]
fﬂ_ 4 L {502y w3 . P
v (24D (@i |V 5 (V)
' -j=2 b
(j+1) v ' Ej(Vjﬂ
1 . 3-1 ' b
Wﬁﬂ[” Ry
- (3-1) v'ij<v§>]} 2
aZBb
i _ _4m (1) G#2) [-3-3 5 (b
52, (2541) | (2343) i
h| bl _3i(3-1 -j-1 b
*v Mj‘vj)] 5D [V Ny vy
+ 372 R, (vg’)]} , %
3.b
d Bj - 4o 1
339 (25+1) (2j+3)
. [j(j+l)(j+2) i1 M, (v‘j’)
- (341) (G42) (G4+3) vITH E, <v‘;)]

1 [epqyeaoy =373 o b
- @D [J(J 1)(3-2) v Rj(Vj)

- GHD () G- v

Derivatives with respect to 6 are also done
analytically.

SOLUTION PROCEDURE

The numerical finite difference
solution to the problem consists of two
separate parts: the first is concerned
with obtaining the coefficients A, through
F, (Eqs. (8) through (13)) while the second
is devoted to the actual time advancement
of the Fokker-Planck operator.

6)

7

8)

j-2 b
Nj (Vj)]} . (29)

33

COMPUTATION OF COEFFICIENTS

Since the structure of each of the
six coefficients is quite similar, we will,
for simplicity, consider the detailed
evaluation of only one of them, namely C

(see Eq. (10)).
Letting
& Sl 3 .
Cj (vk,ei) zvk BJ(V) 35 Pj(cosel)
(30)
+iif() 5P, (cosby)
2 v Y/ 38 T3 C08Vi)

we may, using-Eqs. (10) and_(16), express
C, in terms of the various b coefficients

a
2 (be

n A | —

b ab Za/

as:

Ca(vk,ei) =

(v,85) - (1)

M
~b
. C.
%J

Note that we have truncated the Legendre
series at M+l polynomials and have
introduced velocity and theta meshes

{ lmax and {6.} max Coefficients
k=l - if :

i=1
A? through F? may be similarly defined and

expressed.

The expressions for the coefficients
through F? are complicated (e.g. Eq. 30)

i
and these coefficients must be evaluated at
all of the mesh points. In fact, the
computation of these coefficients repre-
sents a high percentage of the total

number of arithmetic operations required;
consequently, it is necessary to calculate
these coefficients as rapidly ' as possible.
This is accomplished through a series of
nested "do-loops" which the CFT compiler
vectorizes.

b The coefficients AP (vy503) through

Fb (vk,041) are functions~of the four
lndlces llbll "J " Hk‘l and ".L", and
efficiency considerations dictate that the
species index '"b" and the Legendre index
"i" form the outer-most 'do-loops", since
"p" and "j" are never large Within these
two loops one must evaluate Eq. (30) for
all (vy,0i) mesh points. The procedure
may be outlined as follows:

1) Calculate the Legendre coefficients
VB (v, t)

the calculation of kmax 1-D integrals
over 0, and may be calculated in two
nested loops with the outermost loop . 3f 3G
over & ("i"). This will permit compiler 1l
vectorization of the entire procedure, r
since the inner loop over v ("k") is not
recursive. 9f 34

(2) Evaluate the functionals {MJ (V)(Vk)’ r ot 2 . 96
N5 (V) (v0) > Ry (V) (), E5 (VD) (vigf kha

(See Egs. (20) - (23)). Thls is accom-
plished in two separate 1oops over "k".
For the functional N (V Y(v), 1

the first loop we caiculate the temporary gotl _ en g+l
array TEM(k) = Vb(v) vy (2+3) Avy, where

follows:

i T fki Ak+]\1k+1 i-

n
Ak—l,i fk-l,.'

Equation (32) is discretized as

Both operator splitting and ADI methods
lmax (Eq. (15)). This involves have been used to solve this equation.
Consider the splitting scheme

(32)

(33)

n+1l

1

I At 2

Av, 1s a mesh 1ncrement while in a second a 2vk Avk

separate loop we add together these tempo-

raries to form the functional N-(V.)(vk).

This second. loop does not vectotize since . n+l
it is recursive. 1 n k+1,i

(3) Deterglne the coefflﬁlents
{ B, 55 BY (v, ete) (I (Bas. (24)-(29))
ThlS is accompllshed through a single

vectorizable loop over "k".

(4) Determine {A (vk,e) through

Fb(vk,e)} 1m§fi 3% 1t is evident from (fn _)
Eq (30) that the evaluation procedure is S\ el i+ k+l,i-1
vectorizable. We choose the theta ("i'") ZAGi

loop on the outside, since it is normally

much smaller than the velocity ("k") loop. n o

Thie Legendre polynomials and their ék_1,1+l B fk—l,i-l)
derivatives are time-independent and are ° 756,

stored quantities. As the coefficients

Ab - fg are calculated, they are simul-
LIRS

taneously summed over "j'" since it is the The coefficients Bktb i are simple

sum, ¥ C , that is required in Eq. (30). averages of By j and Byi) i, anghthe SV s
e sub-

j=o and A8's arc mesh increments.

script "a'" has been dropped.

(5) Evaluate the contribution of the bth

species to the Fokker-Planck coefficients

A (Vk’ ,t) through F,(v,0.,t) for all form

spec1es *n a" (see Eq(31)) %hls is n n+l n n+l
accompllshed within the two outer loops "Ak,i fk+1,i + Bk,i fk’i
over "b" and "j" and within a third

luop over "a'". The procedure easily n n+l
vectorizes. ~ St Tke1,1

TIME ADVANCEMENT

of the equation 1 1
3G H o+l nt
138 _1 a1 (5 Bt ™ Bt * R
I at 2 v 2 . v
a v v sin® ..

34

=D

n
k,i

(34)

This equation may be written in the

Employing a standard technique for solving

The second part involves the numerical tridiagonal systems(6), the problem is
integration of the finite difference analog Solved recursively. We have

(35)

where
Be,i ™ Ak,i/(Bk,i " %, Ek—l,i) (36)
Fe,i ™ (Dk,i Gy Fk—l,i)
(37)

/(Bk,i G Ek-l,i)

with F1 i, El i» and fkmai i
determined thfough’ boundary conditions.

The use of two dimensional matrices
for E and F permits vectorization of the
calculation. Clearly since the arrays
E and F are large, if there were no
intention of vectorizing the coding, one
dimensional arrays of length sup {kmax,imax}
could be used in place of E and F, thereby
saving storage,This is the case in the 7600
version of the program.

The calculation on the CRAY proceeds
as follows:

(1) Determine the matrices
is Fp g} ;TEEMEX mhis is
k,l’ k’1 i,k=1

accomplished in two nested loops with index
"k'" on the outside and "i" on the inside.
This ordering is forced if one wishes to
vectorize the inner loop since E and F are
defined recursively on index "k'".

1 kmax, imax
(2) Calculate {fk n (See Eq.(35)).
This too is vectorlzeg %y plac1n§ the loop
over "k" on the outside since fn

determined recursively in "k".

A similar procedure, with loops
reversed, is employed for the second half
of the splitting procedure. An ADI scheme
can also be used, but requires a little
more time due to the need to evaluate the
explicit terms.

It must be noted here that any
comparison between two programs, one
optimized for the CRAY-1 and the other for
the CDC-7600,must take into account the
different sizes and types of memories of
the two machines: = in particular the fact
that most of the 7600 memory, LCM, is slow
access. While it is possible to optimize a
7600 program with STACKLIB commands, and
efforts have been made to do so, one is
still forced constantly to swap back and
forth between SCM and LCM. Furthermore,
one is often inhibited from attempting
more STACKLIB or vector operations on the
7600 due to the increased memory

35

requirements in SCM needed for vector-
ization. For instance, on the 7600 the
arrays E and F defined in Eqs. (36) and
(37) are one dimensional. To add two more
arrays of length kmax by imax would be
prohibitive. This eliminates any
possibility of STACKLIB vectorization on
the 7600 of this particular solution
procedure, further increasing the
advantage of the CRAY-1 over the 7600.

TIMING RESULTS AND CONCLUSIONS

In order to determine the efficiency
of the vectorized program, a number of
timing tests for various mesh resolutions
were performed. Comparisons were carried
out between the vectorized program on the
CRAY-1 (CRV in column two of TABLE-I
below), the same program on the CRAY-1
with the vector option turned off (CRNV
below), and the STACKLIB optimized 7600
program (denoted by 7600 below). 1In
all of these examples, Fokker-Planck
equations for the distribution functions
of two charged species were time-advanced
in the presence of three background
Maxwellian species. A value of M=4 was
used for each of the two primary species,
whereas M=0 sufficed for the background
Maxwellians.

The immediate conclusion is that the
CRAY vectorized program achieves at least
an order of magnitude advantage over the
7600 version and, depending on mesh size,
a factor of from 2.86 to 3.65 over the
nonvectorized CRAY version. Separate
timings were carried out for the cal-
culation of the Fokker-Planck coefficients
and the time-advancement of the Fokker-
Planck operator. Of general interest
is the marked gain in efficiency which
results from the relatively simple pro-
cedure of vectorizing the operator
splitting or ADI section of coding. As
much as a factor of 4.4 has been achieved
over the non-vectorized version and a
factor of 14 over the 7600 version.

The effects of vectorization can be
readily seen in TABLE-II, where the
computer time per mesh point is given.
Note that the efficiency steadily
increases with increasing mesh size up
to a resolution of 64 x 45. There is a
small loss of efficiency at 65 x 45 due
to the increased overhead in vectorization
Overall peak efficiency is reached at
64 x 45 and little speed is gained at
higher resolutions.

The Fokker-Planck equation is a

fairly typical example of the type of com-

plicated nonlinear partial differential

equation being solved today.

The

procedure employed to optimize the
solution of this equation basically con-
sists of organizing the loop structure
so that the compiler can vectorize the

code efficiently._

It appears likely that

similar order of magnitude improvements
can be achieved with the use of no more
than CRAY FORTRAN in most programs which

solve equations of this type.

Table 1. CRAY-1 vs. CDC-7600 Improvement Factors

MESIH FACTOR FACTOR
(kmax x imax) TYPE SUBROQUTINF. OVER 7600 OVER CRNV
(32 x 13) CRNV Time Adv. 3.16 1.

" CRNV F-P Coefs 3.44 1

" CRNV Both 3.36 1

" CRV Time Adv. 110.03 3.17

" CRV F-P Coefs 9.49 2.76

" CRV Both 9.63 2.86
(46 x 19) CRNV Time Adv. N 3.22 1

" CRNV F-P Coefs 3.39 1.

" CRNV Both 1. 3.3 1

" CRV Time Adv. . 11.71 3.63

" CRV F-P Coefs 10.09 2.97

" CRV Both 10.53 3.15
(64 % 46) CRY Time Adv. 14.15 4.40

" CRV F-P Coefs 11.41 3.37

" CRV Both 12.18 3.65

Table 2. CRAY-1 Computation Time Per
Mesh Point

MESH Time (sec)
(kmax x imax) "Per mesh pt.
32 x 13 1.62 x 107°
46 x 19 1.37.x 10°°
64 x 45 1.09 x 10°°
65 x 45 1,15 x 1070
115 x 49 1.10 x 107
REFERENCES

1. M. N. Rosenbluth, W. M. MacDonald and
D. L. Judd, The Physical Review,
Second Series, Vol. 107, No. 1 (1957), L

2. J. Killeen, A. A. Mirin, M. E. Rensink,
Methods in Computational Physics, Vol. 16,
(1976) 389-432.

3. A. A. Mirin, “Lawrence Livermore
Laboratory Report, UCRL-51615 Rev. 1
(1975).

4, R. W. Harvey, J. C. Riordan, J. L. Luxon,
K. D. Marx, "Studies of Current Due to
RF Induced. Runaway in the DIIA Lower
Hybrid Experiment' presented at the
Annual Meeting on Theoreitcal Aspects
of Controlled Thermonuclear Research,
Mount Pocono, April 18-20, 1979.

5. A. A, Mirin, J. Killeen, K. D. Marx
and M. E. Rensink, Journal of
Computational Physics, Vol. 23, No. 1,
(1977), 23.

6. R. D. Richtmyer and K. W. Morton,
Difference Methods for Initial Value
Problems, John Wiley and Sons,

New York, (1967), 198.

*Work performed under the auspices of the
U.S. Department of Energy by the
Lawrence Livermore Laboratory under
contract number W-7405-ENG-48.

37

NOTICE

““This report was prepared as an account of work
sponsored by the United States Government.
Neither the United States nor the United States
Department of Energy, nor any of their employees,
nor any of their contractors, subcontractors, or
their employees, makes any warranty, express or
implied, or assumes any legal liability or respon-
sibility for the accuracy, completeness or
usefulness of any information, apparatus, product
or process disclosed, or represents that its use
would not infringe privately-owned rights.”

THE CRAY-I AND MHD STABILITY STUDIES IN TOKAMAKS

J. Manickam
Princeton Plasma Physics Laboratory
Princeton University
Princeton, NJ 08544

ABSTRACT

The stability of tokamak plasmas in reactor-like configurations to
linerarized magnetohydrodynamic modes is of great interest from the theo-
retical and practical point of view. Analytic studies can give general
dependencies in various approximations. Numerioal otudies are ncuessary
to describe the behavior of plasmas in realistic configurations of practi-
cal interest, and require large high speed computers. With the advent of

advanced computers, such as the CRAY-1l, such a study is now feasible. This
paper reviews the history of the computational study of MHD wmodes and
describes the implementation of one such code on the CRAY-I. It desarihes

the impact of Lhie increased memory and speed on the computational program
to study the dependence of these instabilities on various parameters of
interest. .

INTRODUCTION stability studies of tokamaks.

The aim of this paper is to 1. THE PHYSICAL MODEL
review the impact of advanced com- o
puter systems, specifically, the In the guest of achieving
CRAY-I on the computational study viable fusion reactors, the tokamak
of the MHD - Stability of Tokamaks. approach is considered to be one of
In order to do this, it is impor- the more promising. The tokamak is
tant to first review the background essentially a toroidal device, with
of the computational problem. This a strong externally generated
1s not meant to be an exhaustive toroidal magnetic field. The mag-
review, which may be found else- netic field lines are given a helical
where.!” 2 Here we intend to provide twistby apcloidal magnetic field gen-
a flavur uof the problems associated erated largely by the current flowing
with the computational study of MHD in the plasma in the torus. Figure 1
instabilities, and describe some of shows the genmetry of a tokamak in
the interesting techniques used to schematic form. The plasma in such a
overcome them. We then proceed to device is subject to a host of possi-
discuss the impact of the CRAY-I on ble instabilitics, however stable
one particular code. regimes can be found, where the insta-

bilities do not exist. Study of the

In the first sectionwe briefly nature of the instability often gives
describe the physics of the problem us a clue on howwe might be able to con-
and define a physical model. In Sec. trol or supress it. Of these insta-
2, we establish the numerical model bilities the most obvious and danger-
and outline the main features of ous ones are the gross MiD instabili-
the code. 1In Sec. 3, we discuss ties, associated with balance of the
the implementation of the code on various forces acting on the system.
the CRAY and compare it with the The complex geometry makes this a
implementation on the CDC 7600. difficult device to study analytically.
Section 4 contains the results in It is common to resort to approx-
the context of their impact on the imations based on various ordering
computational program to study the schemes. For example, one considers
MHD Stability problem. 1In Sec. 5, an ordering in aspect ratio, the
we present a summary and observa- ratio of major to minor radius.
tions on the future role of advanced Another parameter used for ordering
scientific computers in the is B, the ratio of material to

38

magnetic pressure supported by the
system. These give analytic tools
of some value, but we still lack an
accurate description of realistic
systems. Tokamaks of practical
interest are of small aspect ratio,
typically between 3 and 5. At these
values toroidal effects appear, that
have no analogue in the cylindrical
limit. Further from the reactor
point of view, the highest possible
B is preferable. In fact an impor-
tant aim of a computational program
to study the MHD behavior of
tokamaks, would be to determine the
dependence of B, the largest stable
B, on various parameters, such as
the geometry, and the pressure and
current profiles. Such a study
would then permit the design of an
optimal tokamak from the MHD stabil-
ity point of view.

z POLOIDAL MAGNETIC
FIELD By

MINOR RADIUS r

PLASMA CURRENTI

MAGNETIC
FIELD
LINE

ROTATIONAL
TRANSFORM
ANGLE ¢+

Fig. 1 A schematic diagram of a
tokamak. The upper half shows the
plasma current flowing clockwise,
the toroidal field is opposed to it,
and the lower half of the figure
shows the resulting magnetic field
line. The safetv factor g = 2n/\.

For numerical studies in
tokamak systems, it has been shown
that a relatively simple model, with
the plasma treated as a perfectly
conducting fluid, ignoring dissipa-
tive effects, such as resistivity,
viscosity etc., is adequate to
describe these instabilities. 1In
such a model, known as the Ideal MHD
model, we describe the system

through the equations,?

av _ _
pa-E— Vp+JXB
9B _
e - "V XE
E=-v x B
ap—’_. - .
xT " veVp pVev
oL _ _,. - .
3E = “V'Vp - pV-v (1)

these are essentially the Maxwell's
equations, ignoring the ‘displace-
ment current, equations of continu--
ity and motion. The fluid behavior
also reguires an_equation of state
and of course the necessary boundary
conditions. These equations are
usually linearized using a pertur-
bation expansion about the stationary
equilibrium defined by,

Vp = J x B
J=Vx2B
VeB =0 (2)

The linearized equations of motion
for the displacement vector £ are
given by,

2
p° == = V(£-7p° + yp°V-E)
t

[+5)]
oy

(s3]

+ (v x B®) x [V x (£ x B9)]
+ {v xl[v x (£ x B9)]} x B®

(3)

the quantities with the superscripts
are equilibrium quantities.

There are two commonly used
techniques to solve these equations.
One is basically the time advance-
ment of the linearized equations of
motion of the perturbed quantities.
The second method is essentially a
variational method based on an
energy principle.

The time advancement method
has been used extensively with
considerable success.® 3/ °®

This method faces a formidable
obstacle in the multiplicity of time
scales associated with the linear
MHD spectrum. These range over
eight to ten orders of magnitude.
Different methods have been used to
solve this problem with considerable
success. One technique involves
eliminating the fast time scale
analytically, generally accomplished
by considering various limiting
forms of the MHD equations. Another
interesting technique has been to
average over the fast time scale
numerically by the use of a partially
implicit scheme, on a dynamic grid.
This method has the virtue of pre-
serving phenomena on the fast time
scale. These time dependent methods
have the added advantage of being
easily extended into the non-linear
phase. For a more complete descrip-
tion of this approach, refer to the
work of Carreras and Hicks in these
proceedings.

The second approach uses the
Lagrangian associated with the
linearized perturbations, about an
equilibrium configuration to
formulate an eigenvalue problem.
Reference 7 gives a fine comparison
of three ma?or codes of this
class.® % '?" we describe here, the
implementation of one of them,” the
PEST (Princeton Equilibrium, Stabil-
ity and Transport) code, on the
CRAY-T.

2. THE NUMERICAL MODEL

In the Layrangian approach, we
seek normal modes of the system.
We denote the displacement vector
as £, then the Lagrangian L is given
by
iot

E(r,
L =

t)

sz (&,

= £(r)e

E%) - 6W (E, E*) (4)

where K represents kinetic energy,
and 6W the potential energy associated
with the perturbation. We adop the
Galerkin approach to the more
general Rayleigh-Ritz procedure, in
which the £'s are expressed as a
linear superposition of a subset of
a complete set of functions.

a ¢
m

£ = % m

40

Then the variational calculation is
reduced to the determination of the
eigenvalues and eigenfunctions of
the matrix eigenvalue problem,

2 * * _
% Lw <®m,|K|¢m>- <¢m,|6W|®m>]ahl— 0

(5)

This procedure has several nice
features. It assures convergence
from above, and therefore will not
give instability in an essentially
stable configuration, the numerical
approximations involve only square
integrable functions, so it avoids
singularities. The choice of
expansion functions is governed by
the boundary conditions, e.qg., the
kinetic energy norm must remain
finite, the normal component of the
perturbed magnetic field must be
continuous at the plasma-vacuum
interface and vanish at the vaccum
wall. For the expansion functions,
¢, we use Fourier serxries in the
poloidal direction and finite
elements in the radial direction.

The PEST code is composed of
three parts, an equilibrium section
which determines the equilibrium by
solving the Grad-Shafranov equation
obtained from Egs. (2) above, which
is essentially an elliptic partial
differential equation for the
poloidal magnetic flux, V¥

o
3 1 39 7Y

% % 3% v o+ = 27 x J (6)

3,2 ¢

This is solved by using double
cyclic reduction in a form quite
similar to the usual application to
Poisson's equation in cylindrical
coordinates. This in itself
constitutes a major part of the
problem. Figure 2 shows a typical
configuration for a plasma with an
essentially circular cross-section.
The next step is to map the
equilibrium flux function to a flux
coordinate system, better suited to
the decomposition of the expected
eigenvectors. This mapping section
is the second major part of the PEST
package. Finally the matrix
elements of the potential and
kinetic energy are computed, and the
matrix eigenvalue problem, Eg. (5)
is posed. The matrices are real,
symmetric and banded, a consequence

of the Hermitian nature of §W, the
symmetry, and the use of finite
elements. This is solved either by
a direct Gaussian elimination
scheme to obtain the entire eigen-
value spectrum, if the rank of the
matrix is small enough to fit into
the available memory, or by an
inverse iteration scheme, designed
to determine only the lowest eigen-
values, which are in fact the most
interesting. Extensive post
processing facilities are available
to examine the resulting eigen-
vectors.

S,

NN
R

-
T
e

BN,

Tm e ,."::’/f
-0} iy
" ,’"",I['l / /
P 'I,-" 'z
1.5 35
Fig. 2 A contour plot of the

poloidal flux at equilibrium,
showing a cross section of the torus.
The dark solid line shows the
position of the vacuum vessel.

3. THE IMPLEMENTATION ON THE CRAY

The PEST package is in an
overlayed format on the CDC 7600.
The three overlays consist of the
three parts described in Sec. 2,
the equilibrium, mapping and
stability. Thus a single run
covering all three parts can be
executed in one job step. This is
particularly convenient in simpli-
fying the file management, as the
data is in large part passed between
overlays through disk, and the CPU
requirements indicate that a batch
type production run is most
appropriate. Memory requirements
are set by the computational grid

41

dimensions in
program. The
are a 65 x 65

each part of the
appropriate figures
mesh for the equilib-
rium, mapping onto a 97 x 128 mesh
in the mapping section. 1In the
stability section the relevant para-
meters are the number of radial
finite elements, which can be up to
half of the number of surfaces, 97,
and the number of Fourier modes
permitted, typically about 30.
resulting eigenvalue problem
involves matrices of rank ranging
from 1500 to 4500. With this set
of parameters, the code essentially
uses all available memory on the
CDC 7600. Running times are
typically 5, 7, and 15 minutes,
respectively, for the three parts.
In practice it is necessary to make
several stability runs in order to
fit a convergence formula and extra-
polate to the true eigenvalue. Thus
a typical calculation to determine
one such point would require about
75 minutes. To determine the
dependence of a single instability
mode on any given parameter would
require several such runs, and in
practice there are several para-
meters which play an important role
in determining the stability of a
given configuration. Thus it is
impractical to attempt a serious
parameter survey. Fortunately the
CRAY provides, through its
increased memory and speed a
practical solution for this problem.

The

On the CRAY we found it
convenient to break up the code in-
to its three components. This was
dictated in large part to the
convenience of debugging, without
having to worry about complications
of the overlay structure. Since
implementation, the dramatic change
in CPU requirements has eliminated
the original purpose of the overlay
structure. The next major consider-
ation was to improve the vector-
ization. The PEST code does not
easily lend itself to vectorization,
as say a time dependent code would.
However there is room for optimiza-
tion. This has been accomplished
largely by increasing buffer
lengths in the inverse iteration
package for determining the unstable,
eigenvalues, eliminating logical
test statements within inner loops,
consolidating coding from functions

/

and subroutines into single sub-
routines where possible, and
reordering the internal storage to
take advantage of the increased
availability of memory and there-
fore reduce I/0. The increased
memory of the CRAY permits finer
computational meshes. The
equilibrium can now be obtained on
a 129 x 129 mesh, the mapping can
used a 145 x 128 mesh, and the
.resulting matrices are of rank up to
6500. Running times on the CRAY
with the modifications mentioned
above are significantly lower. The
equilibrium, mapping and stability
sections, now require, 1, 1, and
1.5 minutes for comparable para-
meters respectively. Further,
convergence improves with the
increased dimensionality and the
CPU requirements for one converged
point drops to about 8 minutes from
the 75 minutes on the CDC 7600. We
discuss the impact of these changes
in the next section.

4. IMPACT OF THE CRAY-I

In this section we discuss the
impact of the CRAY on the study of
Ideal MHD instabilities in tokamaks.
Such a study would in large part
reflect a parameter survey, with the
aim of optimizing the stability of
some idealized configuration. 1In
practice there are several different
kinds of instabilities, each requir-
ing a slightly different computa-
tional approach. The main features
identifying the instabilities are
the toroidal mode number n, the
helicity of the poloidal magnetic -
field expressed as a ratio of the
toroidal magnetic field, through a
quantity termed as the safety
factor g. The poloidal mode numbers
of interest then lie around m = ng.
n takes values 0,1, 2, 3,... etc.,
while g lies between 1 and 5 in
configurations of interest. The
ability to represent high m's is '
limited by the mesh size to be
about 40. The coupling of the modes
requires inclusion of several m's
on either side of the dominant m.
Thus with moderate g, we see that
the largest nallowed is about 5 or
6. Independent analytic theory,'!
inspired in part by earlier studies
from the PEST code for n = 3, has
revealed that the high n limit is

42

difficult to study.

more restrictive for an important
class of modes called ballooning
modes. The analytic theory is

for n = », which leaves a large

gap of intermediate values of n,
which are at the present time

In addition to
n and g, the boundary conditions are
important in determining the nature
of the instability. Figure 3, shows
an example of a particularly virulent
n =1, instability. The intricate
structure, of the displacement

pattern shown emphasizes the need
for a fine mesh to resolve the
details of the mode.
3 mode.

This is only
an m =

RN \‘§Q)
z Al
SR

Fig. 3 A free surface kink insta-
bility for n = 1, g = 3. The arrows
indicate the projection of the dis-
placement vector field, onto the x-
z plane. Note the complicated
structure of the mode, which
requires careful resolution with a
fine computational mesh.

In transferring the PEST code to the
CRAY, the major areas of change

have been in the ability to use
finer meshes, and the dramatically
reduced CPU times. The importance
of the grids is in determining the
accuracy and variety of modes that
can be study. 1In particular, near
the marginal point, greater accuracy
is needed and the singular behavior
of certain modés requires finer
meshes. This resulted in a moderate

boost in the value of n that can be
examined, and in the accuracy of
determining marginal points. These
are important effects but are not
quite as dramatic as the impact of
the reduced CPU requirements. The
change of CPU requirements has made
it possible to conduct extensive
parameter surveys which have been
hitherto impossible. In particular,
at this point in time we have studied
and understand the influence of
various geometrical effects on the
stability of the configuration.'?
This has in turn influenced the
design of future tokamaks. The
effects of other parameters, such

as the current and pressure profile
are much more difficult, and are now
being studied. Further, it is now
routine practice to use the code to
examine specific configurations of
interest for their stability
properties. In this last context
the code is being used as a design
tool by the engineers and
experimentalists.

5. SUMMARY AND OBSERVATIONS

We have reviewed the
computational study of Ideal MHD
instabilities in tokamaks. The
main conclusion is that the
nature of the problem is such that,
while it is possible to use a
machine such as the CDC 7600,
CRAY is really better suited.
the earlier studies on the 7600
should be viewed as preparation of
the code. The numerical techniques
are not particularly different from
those on smaller machines, except
that with the increased memory, and
more important, speed of the CRAY,
this field of study has matured.

The discussion in Sec. 4 shows that
even the CRAY is not adequate to
simulate some of the instabilities.
Different numerical approaches are
being studied to complete the

range of possible instabilities that
are represented.

the
Thus

In this discussion we have
restricted ourselves to consider-
ation of linerarized ideal MHD effects
only. This represents one important
part of the physics of tokamaks.

For completeness of an MHD study,
we would have to introduce non-ideal
effects and extend the study into

43

the non-linear phase. This would
best be done in a time dependent
model. We have earlier alluded to
the time scale problem that has

to be overcome. Extension to three
dimensions to account for non-
axisymmetric effects adds another
major degree of difficulty. Such
codes are being developed, their
effectiveness in realistic
configurations remains to be
demonstrated. In this area, even
computers of the CRAY-I class are
inadeéquate, and at best serve as a
developing tool, even as the CDC 7600
served to develop the linearized
ideal codes. Future, more powerful
computers will be needed to fill
the need in this area.

Finally we recognize that
these MHD codes carry us through
only a part of the time .evolution of
a plasma discharge in a tokamak.
They consider the equilibrium, and
the evolution of gross MHD
instabilities from the linear to
the non-linear phase. There remain
other major areas of consideration.
For example the slow evolution of
the system between quasi-equilibria
due to dissipation, is the subject
of transport codes. These codes
are also advancing, and are now
capable of studying the two-dimen-
sional evolution. With the in-
creased speed of stability codes,
we might consider coupling the two
together. " In practice one might
advance the transport code to
find a quasi-equilibrium and then
examine its stability and continue.
Such codes are under consideration.
Efforts are also underway to couple
transport effects into a time
advancement MHD code. We should
point out that this will not
present the ultimate code to
describe all the physics of the
tokamak. Indeed given the complex-
ity of the system and the various
processes that need to be con-
sidered, such a code remains a near
impossibility. However the future
of MHD studies of tokamaks remains
a promising and exciting field.

The continued development of
advanced computer systems assures
continued progess in our under-
standing in this very important
area of plasma physics.

REFERENCES

r. c. Grimm and J. L. Johnson
in Comp. Phys. Comm., 12, (1976) 45

2J. A. Wesson in Nuclear Fusion

18, (1978) 87.

3I. B. Bernstein, E. A. Frieman,

M. D. Kruskal, and R. M. Kulsrud

in Proc. Roy. Soc., A244, (1958) 17.

4G. Bateman, W. Schneider, and
W. Grossman in Nuclear Fusion 14,
(1974) 669.

5A. Sykes and J. A. Wesson in
Nuclear Fusion 14, (1974) 645.

®s. c. Jardin, J. L. Johnson,
J. M. Greene, and R. C. Grimm in
J. of Comp. Phys., 29, (1978) 1l01l.

44

7M. Chance, et. al., in J. of

Comp. Phys. 28, (1978) 1.

8R. C. Grimm, J. M. Greene, and
J. L. Johnson in Meth. of Comp.
Phys., E4. J. Killeen, 16, (1976)

253.

9p. Berger, R.. Gruber, and F.

Troyon in Proc. of 2nd European
Conference on Comp. Phys. (1976)
Paper C3.

10y, Kerner and H. Tasso in
Plasma Physics and Controlled
Nuclear Fusion Research 1, (1974)
475, -

11

Dobrott, et. al., in Phys. Rev.

Lett. 39, (1977) 943.

le. Todd, et. al., in Nuclear

Fusion Eg, (1979) 743.

ATMOSPHERIC MODELLING

® A Vectorized Three-Dimensional Operational Tropical Cyclone Model

® |mplementation of Vectorizing Techniques on the CDC-STAR-100 for
Speed Enhancement of GLAS GCM

® The Use of the CRAY-1 in Simulating Hail Growth

e Development of a STAR-100 Code to Perform a Two-Dimensional
Fast Fourier Transform

THIS PAGE
WAS INTENTIONALLY
LEFT BLANK

A VECTORIZED THREE-DIMENSIONAL OPERATIONAL TROPICAL CYCLONE MODEL

Rangarao V. Madala
Naval Research Laboratory

Washington, D.C.

and

20375

Simon Chang

JAYCOR

Alexandria, VA 22304

ABSTRACT

A three-dimensional numerical model to predict the intensification and movement of
tropical cyclones is under development at the Naval Research Laboratory using TI-ASC*

computer.

The physics of the model includes latent heat released in convective and non-convec-

tive clouds.
theory.

The atmospheric boundary layer is parameterized using generalized similarity

A newly developed fully vectorisable time integration scheme, split-explicit, is

used to integrate the governing equations.

initially expanded in terms of the natural eigen modes of the model.

In this scheme all the dependent variables are

The spectral equa-

tions governing the eigen modes are integrated using a time step which varies with each

mode.
required solution.

These modes are then recombined at regular intervals of time to obtain the
Use of this method has enabled us to reduce the computing time te-

quiremente by a factor of four compared to the conventional explicit schemes.

For a horizontally staggered 51x51x7 grid network with a horizontal resolution of
60 km, each computational cycle of the model requires 3.85 seconds when run in vector

mode and 15.25 seconds when run in scalar mode.

INTRODUCTION

Operational forecast of tropical
cyclones with numerical models has been
moderately successful. One of several
severe restrictions of operational models
is the time requirement within which the
model computation must be complete. There-
fore, operational models either have poor
spatial resolution or crudely para-
meterized physics. Current operational
models of tropical cyclone which have
limited skill on storm track forecast,
have no skill on intensity forecast.

It is generally believed that the
storm track cannot be determined solely by
the mean flow. There are important inter-
actions between the tropical cyclone and
the mean flow. The internal structure of

the tropical cyclone is an important
factor in the interactions. To have a
realistic model structure becomes a pre-
requisite for a good forecast model. Such
models should have good spatial resolution
and parameterized physics comparable to
some research models.

With the development of the advanced
computing systems, operational models with
adequate spatial resolution and physics
are feasible. One such model is now
being developed at the Naval Research
Laboratory.

With the vectorization of the code
and a new temporal integration scheme,
called split-explicit method, an efficiency
of 16 is achieved compared with the same
model using leapfrog method run on scalar
machine. This efficiency enables the

*Mention of a commercial product does not imply endorsement.

final version of the NRL tropical cyclone
to meet the Navy's requirement in an
operational mode.

We will present in the following
section governing equations, parameterized
physics and computational aspects of the
present version of the model. Model
structure and some preliminary results
from a series of hindcast will be dis-
cussed. And finally, we discuss the
future development of the model.

GOVERNING EQUATIONS AND MODEL PHYSICS

The governing equalions ineludu Lhe
primitive conservation equations for
horizontal momentum, mass, enthalpy, aud
water vapor. The system of equations is
hydrostatic, a normalized pressure (sigma)
is the vertical coorvdinate (Phillips,
1957).

The model physics include the sub-
grid-scale horizontal mixing, the cumulus
convection, the large scale precipitation,
and the subgrid-scale vertical mixing due
to surface friction.

The subgrid scale horizontal mixing
is parameterized by a kinematic eddy
coefficient. This coefficient consists
of a constant part and a part linearly
dependent on wind speed (Anthes et al,
1971). This form of eddy coefficient
yields suitable mixing in the initial as
well as the mature stages.

The cumulus convection is para-
meterized following Kuo's (1974) method.
Conditional instability and the boundary
layer convergence of water vapor initiate
the convection. Partitioniug of heating
and moistening depends on the relative
humidity of the air column. The vertical
distribution of heating is a function of
the conditional instability. Large scale
precipitation occurs when the air reaches
saturation in large scale lifting.

The surface friction is parameterized
based on a generalized similarity theory,
in which logarithmic-linear profiles in
the surface layer are '"matched" into the
mixed layer (Chang and Madala, 1979).
Universal functions involved are formulated
following Yamada (1976). Charnock's
formula is used to compute the roughness
of the ocean surface.

48

GRID NETWORK AND INTEGRATION SCHEME

The model atmosphere from P = Ps
(surface) to P = 0 is divided into seven
sigma layers. All prognostic variables
(such as u, v, T, q) are defined at the
center of each layer, all diagnostic vari-
ables (such as 0 and w) are defined at the
boundary of each layer. The momentum
points and mass points are staggered in
horizontal directions following Arakawa
scheme C.

The center—-in-space finite differ-
encing method is used for spatial differ-
cneing, Maes, momenftum, and enthalpy in
the model are conserved in finite differ-
encing form.

For the temporal integration, a newly
develouped split-cxplicit methond (Madala,
1979) 1s wused. In thic method, all the
dependent variables are initially expanded
in terms of eign modes of the model. The
linearized spectral equations governing
the eigen modes are integrated in leapfrog
fashion using a time step which varies
with each mode. Those modes are then
recombined at regular intervals of time
to evaluate the forcing function and non-
linear effccts. The overall computing
time are reduced by a factor of four
compared with the conventional explicit
methods.

There are 51 x 51 horizontally
staggered girld pointc and seven vertical
layers in current version of the model.
The unitform horizontal resolution is
60 km.

INITIALIZATION PROCEDURE

" A static initialization based on the
nondivergent compunent of obscrved wind
field is used. The procedures are as
follows:

(a) Vorticity is computed from the
observed wind.

(b) A Poisson equation is solved to
determine the stream function. Non-
divergent wind field is obtained from the
stream function.

(c) A second Poisson equation is
solved to determine the surface pressure
based on the non-divergent wind.

(d) A three-dimensional Poisson equa-
tion is solved for the geopotential or
temperature fields over the domain of the
model.

Additional restriction on the lateral
boundary is added in steps (a) and (b) to
ensure there is no net mass inflow or out-
flow at all levels. In above, a direct
fast elliptic equation solver (Madala,
1978) is used to solve the Poisson equa-
tions. -

STRUCTURE-OF THE MODEL TROPICAL CYCLONE

It is generally believed that the
forecast of the paths of tropical cyclone
is not just simply the transport of
isolated vortices by mean flow. There are
significant interactions between the
tropical cyclones and the mean flow.
internal structures of the storm have
great influence in these interactions.
Thus, to have a realistic model structure
becomes one prerequisite of a good fore-
casting model.

The

model structure at
we integrate the model

To examine the
quasi-steady state,
from a hypothetical asymmetric initial
vortex embeded in a tropical atmosphere
with zero large scale mean flow on an
f-plane over 28.5 C ocean water. The
model tropical cyclone, after the initial
dissipation stage, and the development
stage reaches quasi-steady state at about
60h. At 72h simulating time the minimum
central pressure is 980 mb and the maximum
wind is 40 m s-1.

The surface pressure analysis shows
an axisymmetric low pressure center with
concentrated pressure gradients near the
center (Figure 1).

Figure 2 shows the wind vectors and
isotachs in the lowest layer of the
tropical cyclone where the inflow and con-
vergence is the strongest. The wind field
is characterized by a mostly axisymmetric,
cyclonic circulation with high wind
velocities near the storw center. At the
storm center, the velocity is nearly zero.
The maximum wind speed occurs to the north-
east and the southwest of the center and
is believed to be associated with the
strong convective band.

49

SURFACE PRESSURE (MB) AT T- 60 HR

Y{x 60 KM}
%0 6.0

2.0

T T T T) T T T
0.0 5.0 10.0 15,0 20.0 25.0 30.0 350 0.0 150 S50.0

X% 60 KM}
Fig. 1. Analysis of the surface pressure
of a stationary tropical cyclone. The
interval between isobars is 4 mb. The

outmost circle is the 1016 mb isobar, the
minimum pressure is 981 mb.

VELOCITY (M/S) AT LEVEL 7 AT T- 60 HR

Y(x 60 KM

—r T ——— - g
65 50 100 %G 260 5.9 300 5.0 40.0 453 .9
X{< B0 kM)

Fig. 2. Analysis of the isotach and

the vectors of the surface wind field._l
The interval between isotachs is 5 m s ~.
The maximum wind is 41 m s~1.

Figure 3 shows the wind field at the [g B A < - z

outflow level just beneath the tropopause. M= < —
Contrary to wind field at the inflow level, i — ES C::::) —anazzi///;,_"
the wind field at this level is highly o

asymmetric, in agreement with observation. or
It features weak cyclonic circulation

near the center and anticyclonic with os- _\\\\\\‘\<————————————~—————”//”’—_—

SIGMA
e
»
—
3

high speed clrculation at large radii. ’ orr

The high anticyclonic wind speeds are ahi:::) ::::”
caused by the conservation of angular 09k . /,,__——;————__\\\ P
momentum in the outflow supported by the R I o T T B
conservation of angular momentum in the west—— . xiknh —— et

outflow supported by the warm core.

Fig. 4. The temperature change (°C) on a
VELOCITY (M/S) AT LEVEL 2 AT T- 60 HR eastwest cross-section through the storm
center.

The structure of the eye and the
eyewall is illustrated in Figure 5 by the
relative humidity (RH) on the same cross
cection as in Figure 4. The RH field
features (1) a very dry eye region due to
the descending motion, (2) relatively
moist eyewalls due to convection, (3)
very moist inflow due to sea-surface
evaporation, (4) very moist outflow
layer, and (5) relatively dry troposphere
outside the eyewalls due to general
descending motion.

SEIQ ™,
N

: '
N

Y(x 60 KM)
o=
e

fort e

s -

In general, the structure of the
wodel tropical cyclone is very realistic
as compared with the observations.

25.0 5. 10, . .0
X% 60 KM

%0

Fig. 3. Same. as Figure 2 except at the

outflow level. . o —— é%% —_—
03
The warm core character of the storm osr .
is depicted by the temperature change iy)
from the initial condition on an east- osf
west cross-section through the storm oaf
center (Figure 4). The warm core, with oal- ()

9,
70

maximum of 9°C at near 300 mb, is caused osp 1

by the exceed of the diabatic heating VRV, < /7 N T
over the adiabatic cooling. The cooling west -— Xtk st

on top of the tropopause is due to the

forced assending in a stably stratified Fig. 5. Same as Figure &4 except for the
environment and the geostrophic adjust- relative humidity (%).

ment there.

50

HINDCASE PERFORMANCE

A series of real data experiments
have been carried out on ten typhoon cases
in the 1976 and 1977 seasons to test the
forecast skill of the model. Two
current operational models, the Movable
Fire Mesh Model (MFM) of the National
Meteorological Center and the One-Way
Interaction Model (0I) of the Fleet
Numerical Weather Prediction Center, are
used for comparison.

Table 1 lists the averaged vector
position error (VPE) for these ten
typhoon cases. It is clear that the
present model has much less vector posi-
tion errors at 24 and 36 hr. The deteri-
oration of the forecast of our model at
48 hr is caused by the ad hoc boundary
conditions of our model as the typhoons
move close to the boundaries. Unlike the
mesh of the other two models in' comparison,
the mesh in the present model is not
moveable and is not nested into a coarse
grid. An effort to implement a moveable
nested grid work is now being undertaken.

Table 1. Averaged Vector Position
Exrror (n.m.)

12h 24h 36h 48h
MFM 63 130 158 200
o1 81 123 143 163
NRL 66 91 112 217

The persistance of our model forecast
is illustrated by the standard deviations
in the VPE for the 10 typhoon cases
~ (Table 2).

Table 2. Standard Deviations of the
Vector Position Errors

12h 24h 36h 48h
MFM 109 221 257 318
oI 102 196 194 261
NRL 83 113 133 245

5

SUMMARY

A three-dimensional numerical model
of tropical cyclone is under development
at the Naval Research Laboratory. This
model, when fully developed, will satisfy
the Navy's needs in operational forecast
of tropical cyclone.

As shown, the present version of the
model is capable of producing a realistic
structure of tropical cyclone. A series
of test runs shows the model has greatly
reduced the averaged vector position
errors in storm track forecast. Combining
the utilization of a new temporal inte-
gration scheme and the vectorization of
the computer code, an efficiency over
conventional models using conventional
computers of 16 is achieved. A 72 hr
integration of the present version
requires’ 50 min. of CPU time on a TI-ASC.

Before becoming fully operational,
there are several areas in the model that
need to be improved. One of the most
important improvements will be the
implementation of a moveable nested grid-
work. It is planned to construct a grid
network that has spatial resolutions of
20, 60, and 180 km. The two inner grids
will be able to move with the tropical
cyclone so that the center of vortex is
never far away from the center of the two
finer grid networks. Such a nested grid
work will give good enough resolution
at the finest grid for the detailed
structure near the storm center while
providing good interaction at the coarser
grid with the synoptic scale flow.

ACKNOWLEDGEMENTS

We thank Mr. Richard Hodour of the
Naval Environment Prediction Research
Facility for running the real data tests.
Mrs. Jane Polson typed the manuscripts.

The development of the model is
supported by grants ONR RR033-02-44,
NAVAIR 9F52-551-792, and NRL N0OQ173-78-C-
421.

REFERENCES

Anthes, R. A., J. W. Trout, and S. L.
Rosenthal, 1971: Comparisons of
tropical cyclone simulations with
and without the assumption of circu-
lar symmetry. Mon. Wea. Rev. 99,
759-766.

Chang, S. W., and R. V. Madala, 1979:
Use of similarity theory to para-
meterize the PBL of tropical cyclone.
NRL Technical Memorandum.

Kuo, H. L,. 1974: Further studies of the
parameterization of the infliuence of
cumulus convection on large scale
flow. J. Atmos. Sci., 31, 1232-1240.

Madala, R. V., 1978: An efficient direct
solver for separable aud non-
separable elliptic cquations.

Mon. Wea. Rev., 106, 1735-1741.

Madala, R. V., 1979t Computationally
efficient time integration methods.
Fourth Conference on Numerical
Weather Prediction of the American
Meteorological Society, October 1979,
Silver Springs, Maryland.

Phillips, N. A., 1957: A coordinate
system having some special advantages
for numerical forecasting.

J. Meteor., 14, 184-185.

Yamada, T., 1976: On the similarity func-
tions A, B, and U of the planeLary
boundary layer. J. Atmos. Sci, 33,
781-793. .

52

IMPLEMENTATION OF VECTORIZING TECHNIQUES
ON THE CDC-STAR-100 FOR SPEED ENHANCEMENT OF GLAS GCM

Lawrence Marx
Sigma Data Services Corporation
c¢/o NASA/Goddard Space Flight Center
Code 911, Building 22
Greenbelt, Maryland 20771

ABSTRACT

The Goddard Laboratory for Atmospheric Sciences nine-level global general circu-
lation model with variable horizontal grid resolution has been converted to run on the
CDC STAR 100.at NASA Langley Research Center. Vectorization programming has been em-
ployed to achieve enhanced computational performance including: (i) dynamic equiva-
lencing; (ii) a generalized development of vector expansion and masking techniques for
dealing with cloud distributions and other scalar dependent processes; (iii) the use of
high-speed vector kernel functions. These program enhancements have resulted in an '
overall 4.5 speed factor improvement over the same code run on the Amdahl 470V/6 at the
Goddard Modeling and Simulation facility.

53

THE USE OF THE CRAY-1 IN SIMULATING HAIL GROWTH ~)

C. M. Berkowitz - \ -
Battelle, Pacific Northwest Laboratory
P. 0. Box 999 4
Richland, WA 99352 ' pd
\._” i
ABSTRACT

A two-dimensional (x,z) Monte Carlo model of the hail growth zone was used to inves-
tigate the etfects of updraft tilt and width on hail production. To allow for selection
processes necessary to resolve the diff'erence betweén the c¢oncentration ul hailstone
embryos and the concentration of hailstones, the growth of a large number of embryos
had to be simulated. Development of this model on a CDC-7600 computer required extensive
tape and mass storage buffer operations to model the many growing particles. By modi-
‘fying the program to run on the newly available Cray-l. computer, most of the I/O
operations were no longer necessary, and computation times were greatly reduced. This
allowed for a more extensive investigation than would otherwise have been possible.

INTRODUCTION individual particles. Only one embryo
per time step could be processed, so
The large number of computations re- there was effectively no depletion of the
quired to simulate the growth processes of liquid water field and no interaction
hailstone embryos have greatly restricted among developing hailstones.
the investigation of -hail development
through the use of mathematical models. The second phase in the development
By use of fairly sophisticated I/0 soft- of the hail growth zone model was done on
ware, the CDC-T600 computer could be used the NCAR CDC-T600, a larger, much faster
to model such interactions in simple two- machine. At NCAR, hundreds of groups of
dimensional (x,z) models. With the advent embryos could be simulated per time step
of such systems as the Cray-1, cloud and processed, although core requirements
physicists now can spend more time on still required buffering intermediate
modeling the physics, and less time having blocks of data to disk, which would then
to develop software processes which circum- be buffered back later in the program
vent memory and speed limitations of when they were needed for further compu-
standard computers. tations. Using a series of such buffer
manipulations, it was possible to run the
At least two categories of physical model for some of the more simple cases
processes have to be identified when de- of interest, and barring hardware problems,
scribing the growth of hailstones. There obtain results within a day or two.
is, of course, the growth of the indivi- -
dual embryo, which is described by collec- Even in the 7600 though, core limi-
tion and heat budget equations. And, of tations forced development ot a hail
equal importance, there are processes growth model consisting of two programs;
resulting from the presence of other one to simulate the microphysics, and a
embryos within the cloud, competing with sepatrate code to actually evaluate the
each other for the available liquid water data. The first program produced a tape
required for growth. containing the size, density, and coordi-
nates of hailstones that were outside
Development of the simple kinematic the model grid. A second program would
flow model of hailstone growth which is perform an assortment of statistical
described in this paper began on a CDC- tasks on this first data set.
6400 at the University of Arizona, where
extensive use was made of time-consuming The hail growth model - was probably
mass storage read and write statements. one of the first programs to be modified
Work on the 6400 was, however, directed for operational use on the NCAR's Cray-1
primarily at developing a working FORTRAK system. Using the Cray, the hail growth
code which modeled the microphysics of program and the analysis program could

54

not only be combined into one deck (all of
the development was done in batch mode)

but no tapes or disk space was required to
circumvent the considerable memory overflow
problems encountered when running the Hail
Growth Analysis Packet on the 7600. The
turnaround time went from days to minutes,
making refinements in the code for the
microphysics orders of magnitude easier

to develop than they had been previously.

Given a computer of infinite memory
capacity and speed, each hailstone could
be individually modeled. Until such
descendents of the Cray-1 are developed
though, cloud physicists must be content
with processing groups of hailstones that
are defined by a common size, temperature,
density, location, and which contain a
specified number of particles per unit
volume. However, because any one particle
within these groups is treated in exactly
the same fashion as any other particle,
they will all compete for liquid water on
an equal basis--this is a result of the
grouping process, and has no physical
Justification.

In a series of experiments to investi-
gate the results of this numerical compe-
tition, Young! found that for a 60 m by
60 m sel of grids (defined by o homogeneous
liquid water content), the maximum number
of particles that could be contained in a
group was lOO/m3.~ With a concentration
greater than 100/m3 per group, numerical
competition was found to significantly
decrease the resulting mean hailstone size
of particles in a group.

By limiting the group concentration
to 100/m3 and specifying a 40 m x 40 m
grid that was assumed to be 1 m deep, up
to 160,000 particles - per grid conld com-
pete for the liquid water. Using the Cray-
1, up to 70,000 groups per time step
(spread throughout the model) could be
processed.

REVIEW OF THE PHYSICAL PROBLEM

THE HTSTORY OF A HAILSTONE

Observations of Knight and Knight?
suggest that the majority of hailstone
embryos in northeast Colorado are graupel;
that is, ice crystals which have collected
enough super-cooled water drops to obscure
the crystals' original structure. These
embryos are thought to begin their devel-
opment as hailstones within a convective
cell in updrafts that are just strong

55

enough to buoy them up but not so strong
that they are lifted out the top of the
cloud. As the embryos grow, they are

" thought to enter regions of stronger up-

drafts having higher liquid water content
(between 3 and T g/m3) than the weaker
updrafts. Because liquid water is a
prerequisite to hailstone growth, which
is primarily an accretion process, temper-
atures in this zone of strong updrafts
must be less than -40°C to avoid homogen-
eous freezing which, in turn, would ’
effectively remove liquid water available
to the growing embryos. An upper temper-
ature limit of approximately -20°C can
also be specified for this zone of strong
updrafts since warmer temperatures are
more likely to result in "soft" or spongy
hail, which would probably melt before
reaching the ground.

This highly simplified conceptual
model of embryos developing initially in
a zone of weak updrafts (called the Embryo
Formation Region, or EFR) and undergoing
most of their growth in a zone of strong
updrafts having more liquid water and a
fairly well defined temperature range
(called the Hail Growth Zone, or HGZ) is
consistent with observations made during
the National Hail Research Experiment
(NHRE)3,%, and the Alberta Hail Study
(ALHAS)®. It can apply to short-lived
convective systems by adopting a time
sequence for the transition from EFR to
HGZ. It can also apply to a longer last-
ing supercell with a fairly steady-state
circulation. In this latter case, the
EFR and HGZ would be spatially contiguous.

THE HEAT BUDGET OF A HAILSTONE

There are a few studies in cloud
physics which do not draw heavily on the
fundamental concepts of classical thermo-
dynamics. The theoretical development of
hailstones is no exception, and a heat
budget approach is the basis of a quanti-
tative theory of hailstone growth first
formulated by Ludlam® and reviewed
briefly here.

The temperature of a hailstone will
be determined by a balance between four
factors. First, sensible heat will be
lost to the environment by the hailstone.
Assuming a spherical particle of radius
Ths @ constant thermal conductivity of air
of K, and a factor to account for the
anisotropy of the temperature field the
particle is falling through, b, then the
heat transfer rate, dQg/dt, will depend

on the temperature gradient,

aQ 4T

_ S - 2 4L
e hnbrh Ko - (1)

By assuming a constant heat transfer rate,
and evaluating dT/dr at ry, this integrates
to

—= = —bnbrhK (Tm—Th) > (2)

where T is the environmental temperature,
and T, 1s the hailstone's surface tempera-
ture.

Similar arguments for the mass flux
away from the hailstonc can be used to
derive an expression for the water loss
by sublimation with resultant cooling:

= L Dc(ps,h - p b, (3)

where Ly is the latent heat of sublimation,
D is the diffusivity of vapor in air
(assumed constant), ¢ is & mass ventila-
tion factor, and the p's refer to the
saturation vapor density of water at the
hailstone's surface (Pg h) and the environ-
mental vapor density (p_).

Heat is gained by the accretion
process, whereby supercooled water droplets
(occurring with number density x) freeze
onto the hailstone, releasing their latent
heat of fusion, Ly. This heat source is
described by a collection equation for
collector particles of radius ry, moving
with speed Vn, colliding with smaller
particles of size category Jj and having a
velocity Vj:

an

—2 = 2 -

= L. mr, 2 (V, Vj) X; (1)
where it has been assumed that all parti-
cles in the sweep path of the hailstone

are collected.

The last term in this heat budget
expression is one describing the exchange
in sensible heat between the hailstone and
the accreted droplets,

dQe _ .2
praialiiian (vh - vj) xj (Th - Tj) c, . (5

These four expressions involve temp-
erature as a function of heat transfer rate,

56

fall speed (also a function of size and
air density, among other factors), liquid
water content and latent heats (which are
functions of particle temperature). The
growth of a hailstone from a small graupel
particle is obviously related to the envi-
ronmental characteristics and cloud height,
which will be continually changing.
Reasonable values for the ambient tempera-
ture, vapor density, and liquid water
field must be simulated, in addition to
vertical and horizontal winds. Hailstones
that develop in an environment where

aq daQ daQ dq

S m a C
—= 1 —_ 4 —
at T at o at 3 (6)

(sensible heat loss + sublimal cooling >
heat rclceased by freezing of droplets +
sensible heat transfer by droplets)

will loose heat fast enough to allow solid
ice to form on the surface, producing a
hailstone with a dilflerenl density than
one where the heat budget is described by
a reversed inequality sign in Eq. (6).

With so many interacting factors, it
is difficult to see how a population of
hailstones can be treated as a homogeneous
group. This, of course, necessitates
individual processing ol embryos, which in
turn necessitates use of computers such
as the CDC-7600 and Cray-1l.

COMPETITION AMONG HAILSTONES AND STOCHASTIC
PROCESSES

Early computer models of hail growth7
have assumed smooth trajectories of parti-
cles moving through the hail growth zone
that are basically determined by the ini-
tial size and location of the embryo.

With the addition of « perturbation com-
ponent to the mean velocity of a particle,
a unique trajectory for a given size parti-
cle beginning growth at a particular loca-
tion no longer exists. This mixing can
move larger particles from low, more
favored trajectories. Therefore, analysis
of model results must be done in a stati-
stical manner, and hence the need for a
second program to interpret the results of
the microphysical model on the CDC-T600.

Competition for available liquid
water has been suggested as a mechanism
for producing the interesting phenomenon
of "size-sorting". By simulating deple-
tion of cloud water by hailstones, Young
found that a high embryo concentration
would result in a "most favored trajectory"

for hailstone growth that was quite low
and short in length when compared to
"least favored trajectory" that would be
higher and longer, but would allow a
hailstone to encounter less liquid water
due to depletion by many lower trajector-
ies. In this situation, large embryos
would have a greater chance of developing
to hailstones since they would have a
more likely chance of following a lower
trajectory. This process would result in
the larger embryos falling out first--a
phenomenon Young called "negative size
sorting". With low embryo concentrations,
a higher trajectory would be the "most
favored", since there would be little
depletion of liquid water; thus, smaller
embryos would have a tendancy to produce
bigger hailstones and these hailstones
would fall out further from the EFR by
virtue of their longer path; this has
been labelled "positive size sorting".

Of importance here is that size-
sorting and "most favored trajectory"
are a result of the stochastic processes
and liquid water depletion. These two
features, Young concludes, must be
included among the interactive effects of
hailstone growth.

MODEL RESULTS AND CONCLUSION

By modeling heat budgets, perturba-
tion velocities and hailstone interaction
(via competition for liquid water), the
effect of updraft width and tilt on hail-
stone size and total mass was investigated.
Quantitative values of size and mass were
derived, but because of the extreme com-
plexity of the actual physical system
under consideration, with all its many
feedback processes, direct comparison of
model results with field observations is
difficult at best, and more probably
impossible at this stage of hail growth
models. The results are most useful in
helping to define isolated mechanisms of
hail growth.

The tilt (tangent of the updraft
angle from the vertical) and width of the
updraft were found to have significant
effects on the total hail mass produced
and on the sizes of hailstones. Because
a very broad updraft could buoy a develop-
ing hailstone up longer than a narrow one,
and an updraft that was more strongly
tilted would carry a hailstone through an
updraft core faster than a more vertical
one, it was not surprising to find that
the maximum and average hailstone size

57

increased linearly with the ratio of up-
draft width to tilt, W/T (Fig. 1). A
similar linear relationship between hail

" mass produced by the HGZ and W/T was also

found for W/T = 5 (Fig. 2). By plotting
the cumulative frequency of hailstone

size for assorted ratios of W/T (Fig. 3),
the model was found to decrease the total
number of hailstones for values of W/T > 2.
However, since the mean hailstone size
continues to increase with W/T, the effects
of increasing hailstone size and decreasing
hailstone numbers appear to balance, pro-
ducing a roughly constant hail mass. With-
out simulating depletion of the liquid
water field by hailstones of assorted
sizes, such results would not occur, and
the hailstone mass and size would continue
to increase with W/T values.

©1-02
e 1-04
a8 1-05
AT-006
07T1.08

RAOIUS (cm)

wh

Fig. 1. Maximum and average hailstone
radii as a function of the ratio of up-
draft width to tilt (W/T). Lines of

best fit for maximum and average radii
are also shown (r2=0.97 and 0.95 respect-
ively). Maximum updraft strength was

25 m/s in all cases.

Sulakvelidze? has proposed that the
largest hailstones to be produced by the
HGZ will be those having fallspeeds equal
or greater than the maximum updraft velo-
city. By modeling a tilted flow field and
including random horizontal displacements,
hailstones appear to be able to pass
through the updraft core without ever
achieving a balance with the maximum up-
draft. Should this "tunneling" phenomenon
be found to exist, then nomograms fore-
casting maximum hailstone size based on up-
draft strength, and temperature at which
the maximum updraft occurs?»10,11 youlg
require the addition of updraft tilt and

width in order to be complete. sidered, as can an even more complete
treatment of microphysical processes. Such
refinements, which are only now possible,

»0 would greatly facilitate studies into
* hailstone trajectories, feedback mechanism
o between hailstones and updrafts, and the
feasibility of cloud seeding for hail
o suppression.
H ACKNOWLEDGEMENT
; o 1-02 Funding for the development of the
o 1.04 variable updraft Monte Carlo model was
ol provided by NSF Grant SUB NCAR 55004 under
o108 the National Hail Research Program.
Current application and related research
was conducted on the MAP3S Scavenging
.] . | Program at Pacific Northwest Laboratory
¢ ¢ and is supported by the U.S. Department
wa of Energy under contract EY-TA-(-06-1830.
Fig. 2. Total hail mass per m® depo- The author would like to thank Dr.
sited on the ground as a function of Bryan Scott for his nseful comments on
the ratio of updraft width to tilt the original dralt of this paper.

(W/T). The total hail mass is the
amount of hail that would be left on
the ground by a storm which had passed
overhead, moving at 10 m/s. The total
mass demonstrates a linear dependence
on W/T for W/T < 5 (r2=0.96).

Dr. Ken Young of the University of
Arizona was principle investigator for NSF
Grant Sub NCAR 55004, under which this work
was done. Dr. Young's support and guidance
are very much appreciated.

REFERENCES

1. Young, K. C., 1978b: On the role of
mixing in promoting competition
between growing haillstones. J. Atmos.
Sci., 35:2190-2193.

N

Knight, €. A., and N. C. Knight, 1970:

Hailstone ehbryos. J. Atmos. Sci.,

27:659-666.

UMULATIVE NUMBER (m~2)

3. Browning, K. A. and G. B. Foote, 1976:
Airflow and hailgrowth in supercell
storms and some implications for hail

5 suppression. Quart. J. Roy. Meteor.

Soc., 102:499-533,

Browning, K.A., J.C. Fankhouser, P.J.
RADIUS (cm) Chalong, P.J. Eccles, R.G. Straoch,
F.H. Merrem, D.J. Musil, E.L. May and
W.R. Sand, 1976: Synthesis and impli-
cations for hail growth and hail
suppression. Structure of an evolving
hailstorm. NHRE Tech. Rep. T71/1, I1/
22.

Fig. 3. Cumulative number frequencies
for five different combinations of up-
draft width and tilt. All cases had

a maximum updraft of 25 m/s.

With the memory and speed of the
Cray—l, it may be possible to extend the 5. Chisolm, A.J., 1973: Alberta Hail-
two-dimensional model to a third dimen- storm: Part I. Radar casc studies

sion, allowing for recirculation of hail- and airflow models. Meteor. Monog.
stones. Also, an updraft profile that is 36:1-36.

time and height dependent can now be con-

58

10-

11.

Ludlam, F.H.; 1958: The hail problem.

Nubila, l:1-12.

Musil, D. J., 1970: Computer model-
ing of hailstone growth in feeder
clouds. J. Atmos. Sei., 27:474-482.

Young, K. C., 1978a: A numerical

examination of some hail suppression
concepts. Meteor. Monog., 38:195-21k.

Sulakvelidze, D. K., N. Sh. Bibilash-
vili, and V. F. Lapcheva, 1965:
Formation of Precipitation and Modi-
fication of Hail Processes. Program
for Scientific Translations, Jerusa-
lem, Tsrael, 208 pp.

.Diebert, R. J., 1976: Alberta hail

project field program, 1975: Alberta
weather modification Board, Three
Hills, Canada. 67 pp.

Dennis, A. S., and D. J. Musil, 1973:
Calculations of hailstone growth and
trajectories in a simple cloud model.
J. Atmos. Sci., 30:278-288.

59

DEVELOPMENT OF A STAR-100 CODE TO
==t

CALCULATE A TWO-DIMENSIONAL FAST
FOURIER TRANSFORM

-~

Jay Lambiotte
NASA
Langley Research Center
MS/125
Hampton, VA 23665

ABSTRACT

This paper describes the development of a computer code to perform a two-dimensional
fast Fourier transform (2-D FFT) for real data on the STAR-100. Since the 2-D transform
can be computed by performing successive 1-D transforms, the code has been built around
an existing STAR 1-D FFI' subroutine. Much of the complexity of this development effort
has resulted from the STAR hardware reguirements for vectors to be sufficiently long and
to reside in contiguous memory locations, from the need to compute the transform of large

.data sets which can exceed the available central memory of the STAR, and from the desire
to take advantage of the real property of the data. These particular requirements are
discussed and STAR-100 timing results are presented.

INTRODUCTION

The need to compute a two-dimensional,
discrete Fourier transform (DFT) arises in
a variety of applications such as data

. . .1
analysis, image processing , and spectral
approaches to solving partial differential

equationsg. This paper describes the
author's effort to develop a two-dimen-
sional fast Fourier transform (2-D FFT) for
the STAR-100 vector processing computer.
The 2-D FFT can be viewed as successively
performing the 1-D FFT of each of the rows
of data from a grid followed by the 1-D
FFT of the resulting column information.
Consequently, it a 1-D FFT code is avail-
able, the 2-D code is conceptually simple.
However, when one considers the vector pro-
cessing characteristics of the STAR-100,

CPU time for small grids which require no
paging (up to 128 x 128) but with enough
virtual memory considerations to permit
problems 4 to 16 times that number of
points to be computed with a moderate
amount of paging. The extra software com-
plexity does not increase the CPU time
more than a few percent. Alternative
vectorizations, which could significantly
reduce the paging at the expense of in-
creasing the CPU time, will be mentioned.

This paper will first examine the
equations and computational requirements
for computing a 2-D FFT. Then the specific
effects of the STAR-100 hardware on these
requirements are examined. FFT2DR is
described next followed by results of some
numerical experiments with the code and
suggestions for alternative vectorization.

the task becomes more complicated, especial-

ly in light of the computational require-
ment to transform both row and column in-
formation. In addition, the desire to
minimize the CPU time for a given computa-
tion can, at times, be in conflict with
the desire to minimize the amount of page
faulting by the virtual memory system of
the STAR-100 and vice-versa.

The code, FFT2DR, described here is a
compromise between these two objectives.
It is primarily directed at minimizing the

2-D DFT EQUATTONS

The 2-D Discrete Fourier Transform
can be expressed as

1 N-1 M- P ..gk
= — f Wl W (1)
Fj,k VMN E p,g N M
p=0 g=0

60

where

f are complex data defined for

P4 5 -0,1, .., N-1 and q = O,
1, .., M-1.

_ 2mi/M _ 2mi/N

WM = € and WN =e

F, x &re the complex transform of

J» f and are defined for j =.0,

>

1, .., N1l and k =0, 1, ..,
M-1.

The inverse discrete Fourier transform
(IDFT) can similarily be expressed as

= -pJ -gk
AN Fsxy i

with the obvious changes in the given de-
finitions. It is easy to see— that Eq.
(1) can be evaluated in the two steps:

1 M-1 ok
F = W (2)
p,k M b Pa M
for all p,k
and
_1N-
P k= A& Z R (3)

Now, for each of the N values of p, Eqg.
(2) is a 1-D DFT of the ptP row of gria
values, f , and for each of the M-

values of k, Eq. (3) is a 1-D DFT of the
k' column of grid values of F x+ Con-

2
sequently, the computation to be done
involves N independent FFT's over the row
of data followed hy M independent FFT's
over the columns of intermediate data.

When the input data are real, the
storage and computation can be cut in half
using the following well-known procedures

PROCEDURE 1

Given two real sets of data xj, yj,

N-1 with transforms Xj’ Yj’
N-1, let u, = x,
d J

j:o, l’ s

j=oa 1, .., +iy.-

J
Then use a standard FFT subroutine to com-
pute Uj = Xj + in. Given the fact that

61

x 1s real if, and only if, X is conju-
gate even (Xj = .), X and Y can be re-

covered through the equations

X. ==(Uu, +0_ . L
j 5 5 N_J) ()
and
1.,=
Y, = U0, . - U,

5= 50y - Uy (5)
Since X, Y are conjugate even, only Xj’
Yj, j=0,1, ..,(N/2) + 1 need be stored

or computed.

PROCEDURE 2

Similarly, given two complex data

sets, X and Y, which are conjugate even,
the IDFT can be computed by forming for
j=0,1, .., N/2
U, = X, + iY, (6)
J J J
0. . =X, - iy, T)
N-j J J (
After the IDFT of U
x. = Real (u,) (8)
J J.
‘y. = Imag (u,) (9)
yJ & J

PROCEDURE 3

Consequently, given a 2-D array of
real values with M rows and N columns, the
following steps can be used to compute the
2-D FFT assuming M and N are even:

(1) Perform3 M/2 1-D complex FFT's of
length N letting row i be the real part of
a complex data set Uj and row 1 + 1 Dbe

the imaginary part for i = 1, 2, .., M/2.
(2) Recover the M transforms using
Fauations (L) and (5) storing only the
first N/2 + 1 components of each trans-
form.

(3) Perform (N/2) + 1 independent FFT's
of size M from the columns of transformed
data.

The inverse 2-D FFT can be computed by:

(1) Perform (N/2)+1 1-D complex inverse
FFT's of length M over the columns of

transformed data.

(2) Using Egs. (6) and (7) on the rows
resulting from step (1), form M/2 complex
data sets of size N to be inverse trans-
formed.

(3)

(4) Recover the real data using Egs. (8)
and (9).

Perform M/2 FFT's of size N.

CONSIDERATIONS FOR THE STAR-100

The programming considerations for
Procedure ‘3 become more complex when one

considcrs the architecture of the STAR-100.

The characteristics of the STAR-100 most
relevant to coding a 2-D FFT are:

CPU_SPEED IS A FUNCTION OF VECTOR LENGTH

‘The CPU efficiency on STAR increases
as a function of vector length due to the
slarlup time associated with each vector
operation. A vector operation, op, of
length N has a startup time, Sop’ and

result rate, aop’ related to the total

time, T_ , by

op (102

T .
op
where all limes are in units of the STAR-
100 40 nanosecond minﬁr cycle. For the
vector multiplication™, S, = 159 and

uy = 1. For the addition, 5, = 69 and
o, = %z The vector length obviously has a

significant effect un the overall result
rate. For example, a vector addition of
length 60 generates 15 million results per
sccond, vue of length 3600 generates 48
million results per second and in the
limit as the vector length increases, 50

million results per second can be achieved.

From this it is clear that a vectorized
FFT algorithm that has vector lengths pro-
portional to only one dimension of a grid

or the other will not be particularly fast.

Two STAR subroutines exist at NASA's
Langley Research Center on the STAR Math
Library to perform 1-D FFT's. The first,
QUFFTV, is designed to perform the FFT of

.one, or a few, long data sets. Its
vectors are proportional to N, the size of
the data set. The other subroutine,
QUFFORMS, assumes there are M independent
FFT's to do and achieves average vector
lengths® of %M‘log2 N. Table 1

62

demonstrates the difference in the two sub-
routines. For the present application
QYFFORMS is superior. It assumes that the
M independent data sets of N complex

values are stored in 2*M*N contiguous loca-
tions as shown here for M = 3:

[XO (R), XO(I), YO(R), YO(I), ZO(R),

. ZN_l(I)]

is the real component of the

z (1), X

0 (R), Xl(I), .

1

where Xj(R)
j+1 element to be transformed and Xj(I)

is the corresponding imaginary component.

Table 1. Comparison between QUFFTV and
QUFFORMS
CPU times (microsecs) per
transform for M transforms
of size N)
M N QUFFORMS QUFFTV
1 64 3170 1080
32 n 147 430
256 6L 59 L30

-VECTOR CONTIGUOUS LOCATION REQUIREMENT

The vector arithmetic operations on
the STAR-100 require the source. operands to
be in contiguous locations. Consequently,
while QUFFORMS can do the FFT's of the rows
of a 2-D grid stored columnwise in the
computer, it cannot transform the columns
unless the matrix of data values is rear-
ranged so that it is stored consecutively
by rows. Consequently, a matrix transpose
subroutine is used to do the data movement.
As will be observed later, this is nol an
insignificant cost, being about 1/3 of the
FFT time for the cases run. The transposes
could be eliminatcd by using QLFFTV to .
transform the column data since that soft-
ware requires the data for each transform
to be stored consecutively. This alter-
native was rejected because QUFFORMS is
enough faster than QUFFTV for the problem
sizes of interest to more than make up for
the extra transpose time.

VIRTUAL MEMORY CONSIDERATIONS

The STAR-100 has a virtual memory
architecture. At Langley Research Center,
there are 8 large pages of central memory,
each page being 65536 64-bit words long.
In principle, the virtual memory system
can be used to do calculation on problems

whose storage requirements exceed the cen-
tral memory capability. .However, there
are examples of algorithms, or entire
codes, which must be reworked considerably
if they are to avoid excessive data move-
ment (paging) to and from central memory.

The subroutine QUFFORMS has been
found to have excessive paging if M*N >
45,000 = MAX. This relatively small value
of MAX occurs because:

(1) Temporaries of length MxN are required
for vector operations of that length.

(2) The programmer gave the most emphasis
in his design to reducing the CPU time;
for example, the implementation avoids the
hit reversal at the expence of an cxtra
storage array the size of the input array.

In order to permit the code to calculate
2-D FFT's of larger size, a partitioning
strategy is incorporated. If (K-1)#MAX <
MxN < K«%MAX, K separate steps are per-
formed. At each of the K steps, the
largest number of rows that QLFFORMS can
accommodate with no paging are moved to a
temporary array. The temporary array is
then transformed. Similarly, the smaller
number of transformed rows are manipulated
(e.g., the transposes taken, the two com-
plex transforms recovered from the single
complex set, etc.) prior to being inserted
into the large output array. With this
approach the only paging which occurs is
during the movement from the input array
to the buffer and possibly from the buffer
to the output array. Even this amount of
paging, however, is significant so that it
is desirable to keep the number of steps K
to a minimum.

MAXIMUM VECTOR LENGTHS

The maximum vector length allowable in
the STAR-100 hardware is 65,535. From the
standpoint of CPU efficiency this is an
unimportant restriction and rarely occurs.
But, on occasion, it gives rise to added
programming complexity. In this case the
code was originally written without thought
to the vector length restriction. There
are portions of the code'in which the oper-
ations on MP independent transforms of
size N involve vectors of lenglh 2x%MPxN,
meaning that instead of MPxN < 45,000 (the
restriction for paging), the code, as
originally written, had the vector length
restriction MP%N < 32,767. This had the
effect of increasing the partitions needed

63

and, hence, the paging. The code has been
reworked to divide each major step into
the minimum number of substeps necessary
to keep the vector lengths below 65,536.

CODE DESCRIPTION

This section describes FFT2DR as-
suming an input array A contains N columns
of real data, M entries per column. Fig-
ures 1 and 2 will be referenced frequently.
All arrays are stored consecutively by
columns. If a block in either figure has
an extra vertical line on the left, then
the dimensions given refer to complex data
entries. These figures do not show the
additional logic required to ensure the
vector lengths do not exceed 65535.

FORWARD TRANSFORM

There exists the choice to evaluate
the 1-D FFT of either the row or column
data first. Since QUFFORMS is ideally
structured to transform 2«MP rows of A as
MP complex FFT's of size N with no data
rearrangement, the rows of A will be
transformed first.

Fl. The code determines the number of
blocks, KK, that A must be partitioned
into. ZEach block contains MR = 2%MP rows
of data such that MPxN < MAX. Then for
each block of rows, Steps F2 thru FT are
performed.

F2. 1In subroutine TRBLK, the N columns of
MR values each are transferred to the
buffer array C. This transfer can be
accomplished via a DO Loop performing N
vector to vector transfers of length MR.
However, the TRANSMIT INDEXED LIST in-
struction in the STAR has a G-bit option
which allows groups of elements from A to
be moved to C. Here each group is taken
to be one of the N columns. The time for
this instruction is given as T3 + N{56 +
MR/2). This is superior to the DO Loop
approach which would require N(91 + MR/2)
plus the overhead for the loop and de-
scriptor generation. All paging occurs
during the steps involving TRBLK. Note
that since A is stored by columns, each
page on which A resides is referenced.

F3. The MP complex transforms of size N
are performed by QUFFORMS. The value of
MP has been chosen so that no paging is
required during this step. In order to
rearrange the complex data so that the
second sequence of 1-D transforms can be

performed,

the row-stored complex data

must be transposed.

N
. ONONONSONONN TR
* TRBLK
N
MPH C ‘1
: Q’d/F\FORMS
| c » 73(\
CMPRS
CR 1/
TRANSP 7
1 v

L
_MP TRANSP

1

MR /RECOVRI MR

CR N cl

=\

NP

=]

/XX ")~N\P

TRBLK
M y
C N
Q4FFORMS
C ¥

TRBLK

M
777777 A
‘B

Fig. 1. Forward Transform

Fk., To facilitate both the transpose pro-
cedure and the recovery of the transforms
of the two real data sets, the real and
imaginary components are compressed into
arrays CR and CI, respectively, in sub-
routine CMPRS. The real or imaginary part
can be obtained using the STAR COMPRESS
instruction with a bit vector which al-
ternates 1 and 0. Each will be of length
MRxN.

FS5. The arrays CR and CI are transposed
using subroutine TRANSP which makes
repetitive use of the STAR instruction
which transposes an 8x8 array. The trans-
posed arrays are stored in the upper and
lower halves of C, referred to as Cl and
C2 in Fig. 1.

F6. The MR complex transforms are re-
covered from the MP computed transforms in
RECOVRI using Egs. (4) and (5). The
vectorization involves vector udditions of -
length N/2 and vector miltiplications of
length N. The vector REVERSE instruction
is also used to reverse the components of
U as required in Eq. (4) and Eq. (5).

The first (N/2) + 1 (denoted N in Fig. 1)
components of each of the MR transforms

are stored back-into CR and CI.

F7. The real and imaginary parts of the
transform are merged together in sub-
routine MERGE using the STAR MERGE in-
struction with the alternating bit vector.
These are vectors of length N#MR. They
are merged into the B x M complex output
array B.

This completes all the operations on a
particular block of MR rows. After all
blocks are processed, the 1-D FFT's in the
other dircecction must be computed.

F8. Since the transformed data from the

rows of A has been transposed and now

resides in columns of B, it is the rows of
B which must be transformed. Because of
the conjugate even property, there are
only N such transforms of size M to be
performed.' Again, FFT2DR determines the
number of transforms, denoted NP, to be
included in a block and transfers the
NP%*M complex elements to C in TRBLK. The
vector ‘lengths are 2xNP.

F9. The NP complex transforms of size M
are computed by QUFFORMS and stored back
into C.

F10. The columns of C are stored back in-
to the original portions of the columns of
B using the TRANSMIT LIST INDEXED instruc-
tion with the G-bit option in a manner
similar to the step F2.

Having completed all blocks of B, the
forward transform is complete.

M
B
TRBLK
ﬂ !
NPl c J
|)
QAFFORMS
= "—j
NR TRANSP
/
x"
M1 cri

CONJ™—
v/ N XNP

.
\
/

. TRBLK
N /

MP C ¥l
Q4FFORMS
¥

¢ y
N T;;LK
" P
A

Fig."2. Inverse Transform

INVERSE TRANSFORM

The inverse transform procedure in-
corporates much of the software already
described. It expects an N by M complex
array B as input. The program flow is
illustrated in Fig. 2.

Il. FFT2DR computes the number of blocks,
KK, and the number of complex transforms
per block, NP.

I2. TRBLK is called to move the NP com-
plex data sets from B to C.

I3. The NP inverse FFT's of size M are
computed in QULFFORMS.

IL. The array C is transposed using
TRANSP into the M x NR array CRI which is
equivalent to the space CR and CI occupy.
Here NR = 2 x NP. :

I5. The array CRI now contains the data
in a form that allows the computation
indicated in Procedure 2 by Egs. (6) and
(7). - Initially, assume NP = N. Then, for
j=1, 2, .., NP the (2j-1) column of C
contains the real part of the jth component
of each of the N inverse transforms just
computed. The 2j column contains the cor-
responding imaginary parts. The subrou-
tine CONJ uses each pair of columns of C

as vectors to compute, first, the jth
component of each of the M/2 complex sets

(one such complex set is denoted U in

Eq. (6)) and then the (N-j)th component
(see Eq. (7)). If only a subset of the N
transforms are being performed, then the
components being computed are only a por-
tion of the total of N and are inserted
into B as shown in Fig. 2. The vectori-
zation in CONJ uses vectors of length M/2
or M to compute each of the M/2 complex
quantities. An alternating patterned bit
control vector is required since the com-
plex result vector has real and imaginary
parts interspersed. After all KK blocks
of B have been processed, B contains M/2
complex data sets of size N which have
been combined as in Procedure 2.

I6. The final steps require only perform-
ing the M/2 1-D FFT's after moving a block
of MP complex data sets from B into C (see
'Fig. 2). The resulting MP transforms are
then moved to the corresponding part of A.

I7T. The resulting real data is recovered
using Eqs. (8) and (9). However, the

” storage used means that the real data set

X is a row of A and y is the next row of

A, If the inverse transform on B is per-
formed with no filtering or manipulation
of B after the forward transform, the re-
sulting matrix A is the original input
data.

RESULTS

A number of cases were executed on the
STAR-100 and are summarized in Table 2.
The FFT time is, as expected, the most
dominant as it requires 53% of the time
for a 6hx6h grid and the percentage in-
creases for larger grids. The transpose
time is also significant as it requires
approximately 20% of the total time. The
extra work required to recover the two
transforms in RECOVRI and to combine the
two complex data séts to be inverse trans-
formed in CONJ appears to be well worth
the efforl. As M and N incrcase this
extra work becomes less lmpurtant. There
are bwu reasons for this: first, for
M = N, the computation in these two sub-
routines is O(N°) whereas the overall re-
quirements are O(N2Log2N) and secondly,
since the vector lengths are O(N), in-
creases in the problem size by a factdr of
2 do significantly increase the vector
result rate. Q4FFORMS, in contrast, in-
creases its share of CPU time as problem
size increases and for essentially the
same two considerations: first, its part
of the total computation dominates that
total more and more, and second, its vector
lengths are sufficiently large for the

problems shown that increases in vector
length, are not noticeably increasing the
result rate. A close estimate for the FFT
times in Table 2, based on published
timing”, is given by .08x(N+M) + .0001L #
N #* M % Logo(N % M). Twice this estimate
is then an overestimate to do the entire
computation.

As previously mentioned, paging occurs
in TRBLK when the data base is so large
that it cannot reside fully in memory.
each block of partial columns are trans-
ferred between A and C, the entire A array
is referenced. It is for this reason that
it is important to keep the numher of par-
titions of A %o a minimum. For example,
setting MAX = 40000 caused KX = L4 for the
512 x 512 grid and resulted in 183.page
faults instead of 139.

As

ALTERNATIVES

1t is c¢lear that Tor the larger pro-
blem sizes the paging time (approxi-
mately .3 second/page fault) dominates the
overall time. There are alternative
approaches that will reduce the paging at
the expense of increasing the CPU time:

a. Write a more memory conscious FFT sub-
routine.

QUFFORMS could be rewritten to perform the
bit reversal at completion of the FFT pro-
cessing. This would reduce the inter-
mediate storage and increase the size of

Table 2. FFT2DR statistics® for M x N array of real values

M 6L 128 128 256 256 512 512

N 6k 6k 128 128 256 256 512
Total time 31.6 51.6 90.4% 16L4.0 307.7 670.0 1393.0
(millisecs) .
TRBLK (%) 7.1 7.1 6.3 6.1 5.7 6.0 5.9
QLFFORMS (%) 53.0 56.9 55.9 58.5 58.7 61.7 63.7
COMPRESS + 3.5 3.8 4.2 4.6 4.6 4.3 k.1
MERGE (%)
TRANSP (%) 19.8 17.5 20.9 19.5 21.2 20.7 20.1
RECOVRI + 15.5 13.9 12.6 10.9 9.7 7.3 6.1
HERMCON (%)
No. of partitions 1 1 1 1 1 2 3
No. of page 0 0 0 5 16 50 139

a - The table entries are the total Tor a forward transiorm

verse transform

66

and an in-

MAX. It is also possible to write FFT
software which is specifically designed
for out-of-memory problem sizes! so that
no partitioning of A or B is performed at
all.

b. Eliminate the B array.

The array B could be eliminated by storing
the transformed data back into a slightly
enlarged A. This would have the effect of
reducing the paging at each step by making
the working set smaller. In addition,
study shows that the number of calls to
TRBLK would be reduced by 1/3. However,
since all data is stored columnwise (when
considered as a matrix of input data),
twice as many transpose operations would
be required, significantly increasing the
CPU time.

Very little increase in CPU time has
resulted from the efforts to generalize
the code to the extent shown in Figs. 1
and 2. The only penalty suffered by the
partitioning is that when none is required,
there is no need to transfer the data from
A or B to C as in TRBLK. From Table 2,
approximately T% could be saved. Logic to
recognize this situation is currently
being implemented.

Aun allernabtive whiclh was considered
during the code design, but rejected, was
.computing the FFT of a real data seté of
size N as the FFT of a complex set of size
N/2. It was rejected because the savings
in CPU time to perform M FFT's of size
N/2 as opposed to M/2 of size N is only
minimal (approximately 33% for the M = N =
64 case and less for larger values of M
and N). In addition, storage incompat-
ibilities with QhFFORMS, and more complex
pre- and post-processing would offset the
modest gains in FFT time.

SUMMARY AND CONCLUSIONS

The STAR-100 code, FFT2DR, which per-
forms a two dimensional FFT of real data,
has been described and analyzed. It is
shown that for an M x N grid of real data,
the CPU time in milliseconds for a forward
transform followed by the inverse trans-
form is bounded by 2x(.08(M+N) + .0001k x
M * N % LOG2(M * N)). The code has been
designed primarily to minimize the CPU
time but a partitioning strategy has been
included to prevent the virtual memory
system from "thrashing" during the FFT
calculation for larger problems (MxN >
90,000). This strategy adds only

67

approximately 10% of overhead CPU time and
while it does permit problems of any size
to be done without thrashing, there are
still unacceptable amounts of paging for
some problem sizes of interest. Alterna-
tives are discussed which will both in-
crease the maximum size of a problem which
can be done with no paging at all and will
reduce the total amount of paging once it
occurs.

While it is both desirable and
aesthetically pleasing to write a code for
a virtual memory system which will handle
the large problems efficiently but at no
cost to the smaller ones, it is frequently
difficult to do. Persons using a code
such as FFT2DR to do 64x6L transform
thousands of time do not want the overhead
of the partitioning regardiess of how
relatively small its cost. Persons
wanting to do a 1024x1024 transform con-
sider an extra second or two of CPU time
insignificant if some other approach will
substantially decrease the paging. It
appears that even with a virtual memory
system it is still necessary, for some
types of problems, to have different codes
to handle different problem sizes.

ACKNOWLEDGEMENT

The auther would like to achknowlecdge
the many useful discussions with Dr.
George Ioup of the University of New
Orleans about the 2-D FFT and its compu-
tation. . :

REFERENCES

lAndrews, H. C., Computer Techniques in
Image Processing, Academic Press, 1970.

2Fornberg, B., J. Comp. Phy. 25, 1
(1977).

3Cooley, J. W., Lewis, P. A., and Welch,
P. D., J. Sound Vib. 12, 315 (1970).

hControl Data Corporation, STAR-100
Instruction Execution Timing Manual, Pub.
60440600, Arden Hills, Minn. 55112.

5Korn, D. G. and Lambiotte, J. Jr.,
Math. of Comp. 33, 977 (1979).

6La.mbiotte, J. Jr., NASA TM X-3512
(1977)."

Tsingleton, R.-A., CACM 10, 647 (1967).

68

GENERAL SCIENTIFIC
COMPUTATION

® |mpact of Advanced Systems on LMFBR Accident Analysis
Code Developmert

® |mplementation of a Linear System Solver
® Advanced Computers and Monte Carlo

® Detailed Vectorized Reactive Flow Simulation on the Texas

Instruments ASC

e Design Considerations for a Partial Differential Equation Machine
® Vectorized Sparse Elimination
® Parallel Algorithms for Solving Banded Toeplitz Liner Systems

® An Experience with the Conversion of the Large-Scale Production Code
DIF3D to the CRAY-1

THIS PAGE
WAS INTENTIONALLY
LEFT BLANK

IMPACT OF ADVANCED SYSTEMS ON
LMFBR ACCIDENT ANALYSIS CODE DEVELOPMENT

F. E. Dunn and J. M. Kyser
Reactor Analysis and Safety Division
ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue
Argonne, IL 60439 U.S.A.

" ABSTRACT

In order to investigate the ability of an advanced computer, using currently avail-
able software, to handle large LMFBR accident analysis codes, the SAS3D code has been

run on the NCAR CRAY-1.

SAS3D is a large code (56,000 Fortran cards) using many differ-

ent physical models and numerical algorithms, no one of which dominates the computing

time.
required to run it on the CRAY-1.

Even though SAS3D was developed on IBM computers, remarkably little effort was
Making limited use of the CRAY-1 vector capabilities,

it runs a factor of 2.5 to 4 times faster on the NCAR CRAY-1 than on the ANL IBM 370-

195.
is achieved.

With minor modifications, an additional 20-307 speed improvement on the CRAY-1
In the current process of completely re-writing SAS3D to make SAS4A, much

of the coding is being vectorized for the CRAY-1 without sacrificing IBM, CDC 7600, or

UNIVAC performance and portability.
faster on the.CRAY-1 than on the IBM 370-195.

An initial SAS4A test case runs a factor of 7.1

On either computer, this SAS4A case runs

appreciably faster than a corresponding SAS3D case, indicating that there can be sig-

nificant benefits from using vectorizable coding, even on a non-vector computer.

It

appeare that even though the one—~dimensional models in SAS3D strain the capacity of
ANL's current computers, an advanced computer such as a CRAY-1 would make it feasible
to replace many 1-D models with 2=D or 3-D models.

INTRODUCTION

The SAS series of computer codesl
2,3,4 are used to analyze hypothetical
accidents in Liquid Metal Cooled Fast
Breeder Reactors (LMFBRs), as well as Gas
Cooled Fast Reactors (GCFRs). All of the
existing codes in the SAS series, except
for the original SAS1A, have been capable
of representing a reactor core with a
quasi-three-dimensional treatment which
uses coupled one-dimensional models to
approximate the real three-dimensional
system. The current representation is
adequate for many cases; but for some
phenomena, local two-dimensional or three-
dimensional effects occur which can not be
handled adequately with the current SAS
one dimensional models. More detailed
two- or three—-dimensional models would
probably require significantly more com-
puter time than the current models. Even
with the current models, a detailed whole
core analysis with the SAS3D code can
strain the capacity of the current IBM
370-195 and IBM 3033 computers at Argonne
National Laboratory (ANL); indicating
that it may be desirable or necessary to

71

consider the use of more advanced com-
puters if more detailed models are needed.
Therefore, an effort was undertaken to
address two main questions. First, how
much effort would be required to get the
SAS3D code, which is the current produc-—
tion version in the SAS series, to run on
an advanced computer? Would extensive
re-writing of the code be necessary?
Second, since the next SAS code, SAS4A,

is currently being written from scratch,
as opposed to adding new modules onto
SAS3D, can SAS algorithms and coding be
modified so as to vectorize on a vector
machine without sacrificing IBM, CDC 7600,
or UNIVAC performance or portability?
Under a grant from the National Center

for Atmospheric Research, computer time
on the NCAR CRAY~-1 computer was available
for this project.

SAS CODES

GENERAL DESCRIPTION

The SAS codes have been developed

to analyze the initiating phases of hypo-
thetical accidents in LMFBRs or GCFRs.
SAS3D starts with steady-state calcula-
tions to determine the initial conditions
in the reactor, usually normal operating
conditions. Then transient accident cal-
culations are made for a user-specified
event, such as loss of power to the pri-
mary coolant pumps, or insertion of
reactivity at a user specified rate.

In an LMFBR or a GCFR, the reactor
‘core contains long, narrow fuel pins,
which are steel tubes (cladding) con-
taining fuel pellets plus a gas plenum
above or below the fuel to hold the gas-
eous fission products released during ir-
radiation of the fuel. The fuel pins are
arranged in hexagonal arrays within fuel
subassemblies, with coolant flowing in the
axial direction between the pins. ‘'lhe
subassemblies have steel, hexagonal shaped
outer duct walls. The ducts are somewhat
longer than the fuel pins to allow room
above and below the pins for flow orifices
and instrumentation. Typically, there are
217 fuel pins, each 1/4 inch in diameter
and about 8 feet long, in a fuel subassem-—
bly which is about 12 feet long. There
are between 75 and a few hundred subassem-
blies in a reactor core.

The geometry used by SAS3D to repre-
sent the reactor core consists of a number
of "channels'", where each channel repre-
sents a fuel pin and its associated
coolant. Usually a SAS channel is used
to represent a subassembly or a.group of
similar subassemblies. In this case, the
fuel pin represents an "average' pin in
the subassembly. Coolant flow in a SAS
channel is only in the axial direction,
and heat flow in a pin is calculated only
in the radial direction. Because of the
very large length-to-diameter ratio of the
fuel pins, axial heat conduction within
the fuel pin or the coolant is negligible.
The coolant removes heat by convection.

Each SAS channel is divided into a
number of axial nodes. Typically about 20
axial nodes are used to represent the
fueled part of the pin, and another 10-15
nodes are used to represent the rest of
the subassembly. At each axial node in
the fuel section, about 10 radial nodes
are used in the fuel and 3 radial nodes
are used in the clad. One radial node is
used for the coolant, and onc or two
radial nodes are used for the "structure',
which represents both the subassembly duct
wall and the wrapper wires or grid spacers

72

which keep the pins in position. Above
and below the fueled section, only a few
radial nodes are used.

With this channel treatment, SAS3D
calculates steady-state and transient tem-—
peratures in the fuel, clad, coolant, and
'structure. Sodium boiling; clad melting,
relocation, and freezing; fuel melting,
relocation, and freezing; and interactions
between molten fuel and liquid coolant are
calculated. Also, the stresses and strains
in fuel pins prior to pin failure, the
amount of fission product gas in the fuel
and its contribution to fuel relocation
after pin failure, and the pressures and
flow raten of tho geclant in the core and
around the primary coolant loop are cal-
culated.

ADVANTAGES AND LIMITATIONS OF THE SAS
CHANNEL RFEPRESENTATION

One big advantage of the SAS chauuel
representation is that it provides a
detailed, three-dimensional representation
of the reactor core even though only one-
dimensional equations are solved; and the
solution of one~dimensional equations is
usually much faster than the solution of
multi-dimensional equations. Detailed
radial and axial temperature profiles in
the fuel pin are obtained by solving a one
dimensional radial heat transfer equation
at each axial node. Coolant tcmperatures
and flows are obtained by solving one
dimensional equations for the axial
direction. Fuel and cladding reloca-
tion are calculated in the axial direc-
tion. Different subassemblies or groups
of subassemblies can be represented by
different SAS channels, providing detailed
axial descriptions at a number of radial
and azimuthal locations in the core.

SAS3D only accounts for limited
coupling between SAS channels, but this
corresponds to the limited interaction
between subassemblies in a reactor. The
duct walls prevent coolant flow between
subassemblies, except that the subassem-
blies all receive their coolant from a
common inlet plenum and all discharge
their coolant into a common outlet plenum.
The common inlet and outlet plenums are
accounted for in SAS3D. The different
parts of the core are coupled neutroni-
cally, and this neutronic coupling is
accounted for in the SAS3D neutronics
calculations. There is some heat flow
between the duct walls of adjacent
subassemblies, whereas SAS3D uses an

adiabatic boundary at the outside of the
SAS "structure'". Accounting for heat
flow between subassemblies by computing
heat transfer between the structures in
different SAS channels could be done in
a fairly straight-forward manner without
changing the basic SAS channel represen-—
tation.

The main limitation of the SAS chan-
nel representation is that it does not
account for any differences between fuel
pins or coolant sub-channels within a
subassembly. In reality, there are often
power skews across a subassembly, the
coolant sub-channels next to the duct
walls are somewhat larger than those in
the interior of the subassembly, and the
duct walls have heat capacity and tend
to act as limited heat sinks during a
transient.’ The net result is that the
interior of a subassembly is usually
hotter than the edge, and sometimes one
side is hotter than another.

The use of an "average pin'" represen-
tation in SAS3D tends to average-out many
of the variations within a subassembly and
often gives good results. For instance,
predictions of the boiling model in SAS3D
usually agree reasonably well with the
regulte of multiple-pin boiling tests.”,6
On the other hand, it is often necessary
to account for radial incoherence within
a pin bundle to obtain satisfactory agree-
ment with clad melting and re-location
experiments.7 A really adequate treatment
of fuel relocation probably also requires
accounting for radial incoherence within
a subassembly.

POSSIBLE IMPROVEMENTS AND COMPUTER LIMITA-
TIONS

Because of the above mentioned limita-
tions of the current SAS3D "single pin"
representation of a subassembly, it would
be desirable to have a "multiple pin"
representation in which a subassembly is
represented by a number of pins or pin
groups with connected coolant channels.

One problem with developing multiple
pin models for whole-core accident analysis
is that even the one-dimensional single pin
models in SAS3D strain the capacity of the
current ANL computers. A 33 channel SAS3D
case can take 6 hours of computer time on
the IBM 370-195 or IBM 3033. It also
requires about 3 megabytes of memory on
an IBM computer. Even a 1 channel case
requires about 800 kilobytes of memory.

73

On a CDC 7600 the same 33 channel case
would require about 3 hours and almost
400,000 words of LCM storage. These
computer times are almost entirely CPU
times, since SAS3D does relatively little
I/0 in a big run. If multiple-pin models
were used, the running times would proba-
bly increase at least linearly with the
number of pins used per subassembly, and
the increase may be proportional to the
square of the number of pins.

Some computer codes already exist
for treating some aspects of intra-
subassembly incoherence. Because of com-
puter limitations, these codes are usually
limited to treating single subassemblies
instead of whole cores, and they are lim-
ited in the phenomena that they treat.
For instance, both the COBRA-3 code8:9 and
the COMMIX-1 codel® can compute detailed
coolant temperature distributions within
a subassembly. Either steady-state or pre-
voiding transient calculations can be made
by these codes. On the IBM 370-195 it is
estimated that COMMIX-1 would require about
2.5 hours to compute the steady-state tem-—
peratures in all of the coolant sub-channels
of a 217 pin subassembly. COBRA-3 can take
20 minutes to calculate steady-state coolant
temperatures for 12 coolant sub-channels.

Because of the above mentioned com-
puter limitations, it is unlikely that
many pin (217 pin) models will be used in
whole-core LMFBR accident analysis codes
in the near future, even if significantly
faster computers are used. On the other
hand, a reasonable increase in computer
speed would make it feasible to use "few
pin" models for whole-core analysis. A
well developed model using 2-5 pin groups
to represent a subassembly would probably
be quite adequate for most purposes.

NUMERICAL ALGORITHMS AND CODING ASPECTS

SAS3D is a relatively large code, and
SAS4A will be larger. The source deck for
SAS3D contains about 56,000 FORTRAN cards.
The main reason that SAS3D is large is
that it contains a number of separate, but
coupled, modules for computing different
aspects of an accident: heat transfer,
coolant flow, fuel pin mechanics, sodium
boiling, clad relocation, fuel relocation,
fuel-coolant interactions, and neutromics.

The equations solved by these mod-
ules are all different, but there are some
aspects that are common to most of the
modules. Finite differencing in both

space and time is used. A number of
discrete nodes are used to obtain spatial
variations, and the transient time behav-
ior is obtained using discrete time steps.
Typically, the algorithms are set up to
determine the conditions at each node at
the end of a time step, starting from
known conditions at the beginning of a,
time step. In general, the equations
solved are non-linear, although they are
linearized across a time step. Semi-
implicit or fully implicit schemes are
often used, leading to the simultaneous
solution of linear equations with coef-
ficients that are re-calculated each time
step. The resulting matrices are banded,
often tri-diagonal. The calculation of
the coefficients usually takes longer than
the actual solution of the matrix equa-
tions. A significant amount of computer
time is used in obraining physical and
thermal properties as a function of tem-
perature, and sometimes as a function of
pressure or other variables, by linear
interpolation from tables or by the
evaluation of numerical correlations.

Since the SAS channels are only loosely
coupled, SAS3D works on one channel at a
time, completing a time step for one or
more modules for one channel before going
on to the next channel. The arrays used
for each channel are stored in a few "data
packs". The data packs for a channel are
moved into working memory while the code
is doing the calculations for that channel,
and then moved out to a storage area.

Thus, every time step the data packs for
each channel are moved into and out of the
working area a few times, and each code
module is entered at least once for each

. channel in which the module is active.
They are often 1000 or more time steps in
a run.

On an IBM or CRAY-1 computer, the

" storage area is in maln memory. On a CDC
7600, working memory is in SCM, and the
storage area is in LCM. There are about
9000 words per channel in the data packs.
In principal the storage area could be on
disk, but in practice it is best to have
the whole calculation core-contained.
Storing either coding overlays or data
packs on disk adds tremendous amounts of
I1/0 time and increases the total running
time by about an order of magnitude.

One important aspect of SAS3D is that
no one small area of the code accounts for
the bulk of the computing time, and no one
subroutine accounts for more than about 15%

74

of the total time on the IBM 370-195. The
computing time is spread through many mod-
ules and many subroutines. Therefore, dra-
matic improvements in running time can not
be obtained by improving a single algorithm
or a single subroutine. In order for the
code as a whole to run well, a large number
of subroutines must each run well.

"CODE PORTABILITY

SAS3D is currently being used by many
organizations in the U.S and abroad on CDC,
IBM, and UNIVAC computers. Therefore, it
was written with fortability in mind. ANSI-
standard FORTRAN!! is used almost entirely,
and machine-dependent features are avoided.
The few machine-dependent features that are
required are mainly isolated in a few sepa-
rate subroutines.

The UPDAT Code. One feature that contrib-

utes to both the portability and the main-
tainability of SAS3D is the use of the
UPDAT code to modify the SAS3D source files.
UPDAT, which was written at ANL by R. George,
has many of the features of CDC's UPDATE
code,12 such as inserting and deleting
cards, and inserting COMDECKS. 1In the

SAS3D source, the COMMON blocks are listed
only once, and the COMDECK feature is used
to insert the common blocks in each sub-
routine where they are needed. UPDAT is
also used to make corrections or modifica-
tions to the code. ’

Programs with features similar to
those of UPDATE have been available on
IBM computers, but the IBM codes and CDC's
UPDATE use different directives and require
different input. The UPDAT code, which
was written in FORTRAN, runs on IBM, CDC,
and UNIVAC computers, and all versions use
the same input. Therefore, the same UPDAT
input deck can be used to modify or cor-
rect the IBM, CDC, and UNIVAC versions of
the code.

RUNNING SAS3D ON THE CRAY-1

Considering the size of the SAS3D
code, it was relatively easy to get the
code running on the NCAR CRAY-1. A few
routines known to be machine dependent had
to be modified, but the modifications were
straight-forward. Also, the Cray Fortran
Compi].er13 (CFT) would not compile a few
statements, but these were mainly cases of
violating the ANSI FORTRAN standards.

The actual process of putting SAS3D
on the NCAR computer and running it was
all done from ANL using a remote batch
terminal. The main steps in this process
were as follows.

1. A FORTRAN source tape was written at
ANL and sent to NCAR.
3 files. The first file was the source
for the UPDAT program. The second file
contained the SAS3D COMMON blocks, and
the third file was the SAS3D source file.

2. The UPDAT program was compiled after
the necessary modifications to the UPDAT
source were made using the system UPDATE
utility.

3. UPDAT was used to insert the common
blocks into the SAS3D routines and to
make modifications to the SAS3D source.

4. The resulting SAS3D source code was
compiled, and both the source file and
the object file were stored in permanent
datasets on the CRAY-1 disks.

5. Sample SAS3D cases were run, and
the results were compared with IBM and
CDC results.

‘'he CDU version ot the export ver-
sion of UPDAT was sent to NCAR. Some
changes to this code were required to
get it to run on the CRAY-1l. Frist,
some machine-dependent constants had
to be changed to account for differences
in word length and data representation.
The CDC 7600 uses ten 6 bit characters
per 60 bit word, whereas the CRAY-1 uses
eight 8 bit characters per 64 bit word.
Fortunately these constants were all set
at the same place in DATA statements, so
it was easy to change them. Second, in
one spot the CRAY-1 version required the
FORTRAN function SHIFTR instead of the
SHIFT function used in the CDC version.
Third, the UPDAT directive *END happens
to correspond to a NCAR control card, so
in UPDAT this directive was changed to
*EEND by changing one DATA statement.

The CDC 7600 version of SAS3D was
sent to NCAR. This version is overlayed,

with a special overlay routine that stores

overlays in LCM rather than on disk.
Since the NCAR CRAY-1 has plenty of main
memory, and no LCM, the CRAY version of
SAS3D was not overlayed. Thus, all of
the OVERLAY and CALL OVERLAY cards were
removed, as well as subroutine OVERLAY.

This tape contained

75

Another known machine-dependent aspect
was the data pack storage area and the rou-
tines that store and retrieve data packs.
On the CDC 7600, the routines READEC and
WRITEC, written in COMPASS, are used to
store blocks of data in LCM when they are
not being used, and to put them back in
SCM when they are needed. On the ANL IBM
machines, the data packs are stored in main
memory, using specially optimized FORTRAN
versions of READEC and WRITEC. On the
CRAY-1, the data packs are stored at the
end of blank common, using simple FORTRAN
versions of READEC and WRITEC. The CRAY
FORTRAN compiler (CFT) automatically vec-—
torizes these versions of READEC and WRITEC.
Since the CRAY loader loads coding from the
bottom of memory up, with blank common at
the end of the coding, and since I/0 buffers
start at the top of memory and work down,
any unused memory is between the end of
blank common and the bottom of the I1/0
buffers. Therefore, the effective length
of the data pack storage area at the end
of blank common can be set at run time by
specifying the total job memory size to
correspond to the size of the problem being
run.

Another machine-dependent aspect of
SAS3D is the timing routine TLEFT. For
the CRAY-1, a TLEFT routine that sets TLEFT
to 1,000,000-100.*SECOND(1.0) was used,
where SECOND is the elapsed CPU time.
This version gives the correct timing of
various parts of the code, but it does not
give an accurate warning when the code is
approaching a time limit.

Some accumulated SAS3D modifications
were also incorporated into the CRAY-1
version. These modifications are minor
items that correct some known non-standard
usages in the code.

The first attempt to compile SAS3D
on the CRAY-1 turned up only 6-8 FORTRAN
errors. One error was in a DATA statement
in subroutine RESTAR. The IBM version of
this statement uses a 4H specification,
the CDC version uses 10H, and the CRAY
version requires 8H. The other errors
were all cases of non-standard separators
in FORMAT statements. The CRAY compiler
does not allow two consecutive comma
separators or ,/, in a FORMAT statement.
Apparently the IBM and CDC systems ignore
spurious commas in FORMAT statements.

After SAS3D compiled, the first at-
tempt to run a case turned up one last
problem. Subroutine WRITEI is a multiple-

entry routine, even though it should have
been written originally as two separate
single-entry routines. The CRAY compiler
uses an IBM~type convention for passing
arguments to multiple entry points,
whereas the CRAY version of SAS3D started
as a CDC version, with a different treat-
ment of multiple entry points.

After the entry point problem was
corrected, a number of SAS3D cases have
been run successfully without encountering
any additional problems.

Linear Interpolation Routines

Although the Cray Fortran Compiler
will automatically vectorize part of the
SAS3D coding, the FORTRAN coding in three
linear interpolation routines, INTIRP,
INTERP, and INTRP, will not vectorize.
These routines provide an area in which
moderate improvements in CRAY performance
can be achieved with relatively little
effort, since they are small routines
that account for a moderate fraction of
the total running time.

INTIRP scans a table'of Y as a func-
tion of X. It obtains the result Yj,
corresponding to the input value Xj, by
linear interpolation between the appro-
priate table values. INTERP is the same
as INTIRP, except that INTERP is passed
an extra parameter, IFUEL, the fuel type;
and the tables used by INTERP contain
entries for each fuel type, i.e., the Y
array has two subscripts, Y(J, IFUEL).
INTRP takes a whole array of input vari-
ables, Xj(I), and an array of fuel types,
IFUELI(I), and it computes a whole array
of output resules, Y (I).

Timing studies on both the IBM 370-
195 and the CDC 7600 have shown that
INTIRP and INTERP spend more time scanning
the tables to find the appropriate table
entries than they do in the actual inter-
polation. INTIRP and INTERP always start
scanning from the start of the table.
INTRP starts scanning at the start of the
table for the first variable in the input
array.
INTRP starts scanning the table at the
location where it found the previous value.

The table scanning loop in these rou-
tines was written in a somewhat convoluted
manner in order to get into loop-mode on
the IBM 370-195, since significant speed
improvements are often achieved in loop-
mode. A simple DO loop containing an IF

For later values in the imput array,

76

statement that jumps out of the loop when
the appropriate table location has been
found will not run in loop-mode on the 195.
The logic required to achieve loop-mode on
the IBM machine degrades the performance
on CDC and CRAY computers, both of which
will run the simple DO loop version as a
simple in-stack loop.

The Cray Fortran Compiler uses only
scalar instructions to compile either the
convoluted scanning loop or the simple
scanning loop in the interpolation rou-
tines. Therefore, CAL verisons of these
routines were written to use the vector
compare instructions on the CRAY-1. Also,
the CAL version of INTRP performs the ac-
tual interpolation calculations in vector
mode.

Timing Results for Interpolation Routines.

For timing purposes a simple driver pro-
gram was written to call the interpolation
routines with the proper arguments. The
tables used for this program had a length
of 20, which is typical of the tables used
in SAS3D. An array of 12 values of Xj(I)
was used, and these values were distributed
fairly evenly over the tables. The values
used for IFUEL were 1,1,1,1,2,2,2,2,3,3,3,3.
For timing INTIRP an inner DO loop in the
driver made 12 separate calls to the rou-
tine using the appropriate values for Xj
and IFUEL. For timing INTRP, one call was
made to obtain an array of 12 results. 1In
order to obtain running times large enough
to measure, an outer DO loop was used to
call INTRP 1000 times or to execute the
inner loop for INTIRP 1000 times. Thus,
the measured times are for 1000 calls to
INTRP or 12,000 calls to INTIRP. Since
LNTERY is very similar to INTIRP, it was
not timed.

Table 1 lists the running times mea-
sured for these routines. The simple DO
loop for scanning does somewhat better
than the original coding on any computer.
One call to INTRP with an array of 12
values takes less time than the correspond-
ing 12 calls to INTIRP, partly because sub-
routine linkage overhead accounts for a
moderate fraction of the total INTIRP time,
and partly because of the more efficient
table scanning in INTRP. The FORTRAN ver-
sions of these routines run a factor of
2-2.5 times as fast on the CRAY-1 as on
the IBM computers. The use of the vector
compare instructions, as well as generally
tighter coding, in the CAL version improves
the CRAY speed by an additional factor of
3-4.

Table 1.
routines.

Timing results for interpolation

Computer, CPU time (seconds) for

Compiler 12,000 results
INTRP INTIRP
original simple
coding scanning
DO loop
IBM 370-195 .165 .366 .320
FTH,2 OPT=2
IBM 3033 .160 .305 -———=
FTH, OPT=2
CDC 7600 .121 .224 .165
FTN4,P OPT=2
CRAY-1 .067 .178 .127
CFT
CRAY-1 .021 ———= .032
CAL

8IBM's Fortran H compiler

beDC's Fortran Extended, Version 4 com-
piler, as implemented on the Lawrence
Berkeley Laboratory Computers.

SAS3D TIMING RESULTS

Timing comparisons for the SAS3D code
are complicalted by two factors. First,
there is no one small section of the code
that accounts for the great bulk of the
computing time. It is necessary to run
the whole code, or a significant fraction
of the code, in order to get meaningful
timing comparisons. Second, there are
many types of cases in which it is not
possible to get exactly the same results
on different computers. In many cases,
differences in running times between com-
puters are due to both differences in com-
puter speeds and differences in computa-
tional paths.

Three different SAS3D cases were run
on the CRAY-1. The first case was a
limited case which exercised only part of
the code, but it was a case for which the
same computed results are achieved on all
computers, so that exact timing compari-—
sons are meaningful. This was the first
300 time steps of a l-channel low power
boiling case (LOWBLA). This run was ter-
minated before boiling initiation, so it
only tested the pre-boiling parts of the
code.

7

The second case was a more extensive
l-channel case: 1000 time steps for chan-
nel 1 of a 33-channel CRBR transient under-
cooling case (l-channel test). This case
gets into sodium boiling, clad relocation,
and fuel relocation (SLUMPY). The results
obtained on different computers for this
case were not identical, but they were
quite similar; and the computational paths
were quite similar.

The third case was the standard SAS3D
3-channel test case (3-channel test). This
case was run mainly to test the code rather
than to get timing comparisons. This case
tests most of the options in the code. It
is an extremely touchy case with an appre-
ciable amount of positive feed-back. Any
small deviation, due to factors such as
round-off error, tends to grow as the run
progresses, and it is not possible to get
the same results for this case on different
computers. Even the IBM 370-~195 and the IBM
3033 give different results for this case.

Table 2 gives the running times on
various computers for these cases. Also,
given in parentheses are the relative
speeds, with the IBM 370-195 speed defined
as 1 for each case.

Table 2. SAS3D timing comparisons.
CPU time, seconds
Computer (Relative speed, 1/CPU time)
LOWBLA, 1 channel 3-channel
1 channel, test, test?
300 steps, 1000
no boiling steps
IBM 370/ 44,1 333.3 740.0
195 (1.0) (1.0) (1.0)
IBM 3033 43.8 309.1 ————-
(1.01) (1.08) =
CDC 7600 19.4 162.9 453.9
(2.27) (2.05) (1.63)
CRAY-1 11.8 129.6 186.2
CFTb (3.73) (2.57) (3.97)
CRAY-1 9.7 95.5 = —-———-
CALC (4.55) (3.49) ———-

4Timing comparisons are not very
meaningful for the 3-channel test case.
bAll-Fortran version.

CCAL versions for three interpolation
routines, everything else Fortran.

SAS3D runs slightly faster on the
IBM 3033 than on the 195, about twice as
fast on the CDC 7600 as on the 195, and
a factor of 2.5 to 4 times as fast on the
CRAY-1 as on the 195.

The only area in which performance
improvement for SAS3D on the CRAY-1 was
investigated was the three linear inter-
polation routines. Use of the CAL ver-
sions of these routines led to an improve-
ment of 20% - 35% in the overall running
time of SAS3D.

SAS4A

‘'he initial version of SAS4A contains
mainly steady-state and pre-voiding tran-
sient heat transfer and coolant flow rou-
tines. Other modules are being added as
they are developed, but this initial ver-
sion is the only one that has been run on
the CRAY-1.

There are two main differences be-
tween these SAS4A pre-voiding routines and
the corresponding SAS3D routines. First,
the pre-voiding SAS4A module contains rou-
tines that have been especially tailored
for prevoiding transient calculations,
whereas in SAS3D the corresponding routines
are generalized routines that handle the
whole transient. Second, the algorithms
used in the pre-voiding routines were modi-
fied somewhat to promote vectorization.
This did not require major changes in
algorithms; mainly it involved re-ordering
of calculations and sometimes the saving
of arrays of interim results. Also, some
changes in programming style were required
to eliminate cases where the basic algorithm
allowed vectorization but programming style
precluded it.

Most of the pre-voiding transient
coolant calculations vectorized easily.
These calculations consist mainly of obtain-
ing coolant properties at each axial coolant
node by evaluating parametric fits. The
fits are all single range fits containing no
branching, and properties for all coolant
nodes can be calculated in parallel. Also,
since typically about 30 coolant nodes are
used, vector lengths of about 30 were
achieved.

In cases where a complete calculation
could not be vectorized, part of the cal-
culation often could. For instance, the
calculation of the coolant pressure at node
J requires the value from node J-1, so the
calculation could not be vectorized. In

78

.this case, the calculation of the node-

to-node pressure differences would vec-
torize, and this calculation accounts for
most of the computing time in this area.
Then a small non-vectorized loop sums the
differences to give the final results.

Vectorizing the heat transfer rou-
tines was more difficult. For each axial
node, the temperatures at all radial nodes
are solved for simultaneously by solving
a tri-diagonal matrix equation. Many of
the calculations used to obtain the coef-
ficients of the matrices were vectorized,
but the vector lengths were usually no
longer than the number of radial nodes,
which typically ranges from 4 or 5, above
and below the fueled region, to about 17
in the fueled region. The tri-diagonal
matrix solution itself does not vectorize
in the pre-voiding mdule, although in the
voiding module the corresponding matrix
solution might be vectorized by solving
for all axial nodes simultaneously. In
the pre-voiding calculation, the computed
coolant temperature at axial node J is
needed to obtain some of the coefficients
for node J+1; but in the voiding module,
the coolant temperatures are calculated
separately in the coolant routines, and
in the fuel pin heat transfer routines
there is no coupling between axial nodes.

SAS4A TIMING RESULTS

A non-voiding case with 1000 time
steps was timed using the initial version
of SAS4A. In addition to total running
times, a timing distribution by subroutine
was also obtained. For the timing distri-
bution, the CFT timing trace was used on
the CRAY-1, the PROGLOOK feature was used
on the ANL IBM 370-195, and a combination
of the SNOOPY routines plus a number of
calls to SECOND was used on the CDC 7600.
For this case, the steady-state initial-
ization accounts for less than 1% of the
running time, so it was mainly the pre-
voiding transient routines that were timed.
Tables 3 and 4 give these timing results.

These timing results indicate that
SAS4A runs about six times as fast on the
CRAY-1 as on the IBM 370-195; with CAL
versions of the interpolation routines,
the speed ratio increases to seven. The
CDC 7600 version also runs appreciably
faster than the IBM version, but the CRAY-1
version still runs a factor of 2.1 to 2.5
times as fast as the CDC 7600 version.

Table 3. SAS4A timing comparisons.

Computer CPU time Relative speed
seconds 1/CPU time

IBM 370-195 43.6 1.0

IBM 3033 46.5 .94

CDC 7600 15.49 2.8

CRAY-1, CFT2 7.37 5.9

CRAY-1, CALP 6.14 7.1

4Al11-Fortran version.
bCAL versions of interpolation routines,
CFT for rest of code.

Table 4. Detailed breakdown of SAS4A
timing.
CPU time, seconds
(percentage of total)
Program IBM CDC CRAY-1
area 370-195 7600 CFT CALA
heat transfer, 9.98 4.54 2.01 2.01
except (23%) (29%2) (27%) (33%)
matrix
solution
matrix 1.81 1.41 .51 .51
solution (4%) (9%) (7%) (8%)
interpolation 4.38 3.46 1.91 .68
routines (10%Z) (22%) (26%) (11%)
coolant 2.03 1.19 .42 .42
routines (5%) (8%) (6%) (7%
log, exp, xY 6.85 1.84 b b
- (167%) (12%)
READEC, 9.22 .56 .32 .32
WRITEC, (217) (&%) (4%) (5%)
data pack
movement
formatted 1/0 8.41 2.38 2.10 2.10
(19%) (15%) (29%) (34%)
other .92 11 .10 .10
(2%) 1% (1% 2%)
total 43.6 15.49 7.37 6.14
(100%) (100%Z) (100%) (100%)

d4CAL versions of INTRP, IINTIRP, CFT for

rest of code.

bIncluded with coolant routines.

79

Comparisons with the LOWBLA times in
Table 2 for 300 pre-voiding steps show that
SAS4A runs 1000 steps in about the same
time that SAS3D requires for 300 steps.
About 1/3 of the SAS3D time for this case
was accounted for by the DEFORM module,
which has not been incorporated into SAS4A
yet; but the remaining 2/3 of the time is
in routines corresponding to the SAS4A
routines. This indicates that the heat:
transfer and coolant routines in SAS4A run
about twice as fast as the corresponding
SAS3D routines. On the CRAY-1, the SAS4A
speed improvement is greater than a factor
of two.

Formatted I/0, mainly printing tran-
sient results, accounted for an appreciable
fraction of the total CPU time for this
case. In 6 seconds of computing on the
CRAY-1, this case printed 213 pages of
output. For longer runs, it will be
necessary to reduce greatly the amount of
print-out per second of computation.

The log and exponential functions are
called by the coolant routines. On the
IBM and CDC computers, and maybe on the
CRAY-1 also, they account for the bulk of
the time spent in the coolant routines.
The coolant routines vectorized well on
the CRAY-1, and this shows in the relative
coolant calculation times. On the CRAY-1,
the coolant routines, including the log
and exponential functions, run about 21
times as fast as on the IBM 370-195, or
about 7.2 times as fast as on the CDC 7600.

The data pack movement is quite a bit
slower on the IBM 370-195 than on either
the CRAY-1 or the CDC 7600. This reflects
the relatively slow speed of the main
memory on the IBM 370-195.

'SUMMARY AND CONCLUSIONS

The SAS3D code was run on the CRAY-1
computer with only minor modificaitons to
the code, and it ran reasonably well. On
the CRAY-1, SAS3D runs 3.5 to 4.5 times as
fast as on the IBM 370-195, or about twice
as fast as on the CDC 7600. The IBM and
CDC compilers that are used with SAS3D are
highly developed compilers that produce
well optimized object code, so the perform-
ance of SAS3D on the CRAY-1 is a reflection
of the basic speed of the CRAY-1 hardware,
as well being an indiciation that the CFT
compiler produces moderately efficient
object code.

Writing new pre-voiding heat transfer
and coolant flow routines for SAS4A, using
new algorithms and coding that would vec-
torize where possible, led to significant
speed improvements on all three computers.
The CRAY-1 version of SAS4A runs about
2.5 times as fast as the CDC 7600 version,
which runs 2.8 times as fast as the IBM
370-195 version. Even the IBM version of
SAS4A runs about twice as fast as the cor-
responding IBM version of SAS3D. Some of
the improved speed of SAS4A, as compared
to SAS3D, was probably due to the use of
somewhat better algorithms and the elimina-
tion of some unnecessary calculations, but
much of this improvement is probably due
to the fact that coding that vectorizes
on a CRAY-1 tends to run efficiently on
an IBM 370-195 or a CDC 7600. Therefore,
new coding for the SAS codes should be
vectorizable where possible, even if it
is not expected that these codes will be
run extensively on vector machines in the
near future.

The performance attained by SAS3D and
SAS4A on the CRAY-1 was partly due to the
ability of the CRAY-1 to use short vectors
effectively. Many of the vector lengths
in these codes are in the range from 10-20,
and some are as small as 3 or 4. Other
than block transfers, none of the vector
lengths is currently greater than 48. The
SAS codes probably would not perform well
on a computer designed for long vectors.

The computing speed attainable on a
CRAY-1 computer should make it feasible to
develop "few pin" models for whole core
accident analysis, if the models are
carefully developed and coded so as to
optimise computer pertormance. -Such cal-
culations may even be feasible on a CDC
7600. Even on a CRAY-1l, detailed many pin
(217 pins per subassembly) models would
probably still be restricted to limited,
single subassembly cases because of running
time considerations.

ACKNOWLEDGMENTS

We would like to thank L. Rudsinski .
for obtaining computer time on the NCAR
CRAY-1 for this project, and also for his
assistance in getting SAS3D to the NCAR
computer. This work was performed under
the auspices of the U. S. Department of
Energy.

80

10.

11.

12.

13.

REFERENCES

D. R. MacFarlane, J. C. Carter,

G. J. Fischer, T. J. Heames, N. A.
McNeal, W. T. Sha, C. K. Sanathanan,
and C. K. Youngdahl, ANL-7607 (1970).

F. E. Dunn, G. J. Fischer, T. J.
Heames, P. A. Pizzica, N. A. McNeal,
W. R. Bohl and S. M. Prastein,
ANL-8138 (1974).

M. G. Stevenson, W. R. Bohl, F. E.
Dunn, T. J. Heames, G. HOppner, and

L. L. Smith, Proceedings of the Fast
Reactor Safety Meeting, Beverly Hills,
CA, (1974), CONF-740401, p. 1303.

J. E. Cahalan, D. R. Ferguson, H. U.
Wider, C. H. Bowers, L. L. Briggs,

F. E. Dunn, J. M. Kyser, L. Mync,

A. M, Tentner, and W. L. Wang, ANS/
ENS International Meeting on Fast
Reactor Safety Technology, Seattle,
Washington, (1979).

G. ngpnér, W. L. Chen, F. E. Dunn,
and M. A. Grolmes, Trans. Am. Nucl.
Soc., 18, 213 (1974).

I. T. Hwang, T. M. Kuzaz, W. W. Marr,
and K. J. Miles, Trans. Am. Nucl. Soc.,
28, 443 (1978).

M. Ishii and W. L. Chen, Trans. Am.
Nucl. Soc., 28, 442 (1978).

D. S. Rowe, BNWL-1522-4 (1971).

W. W. Marr, ANL-8131 (1975).
W. T. Sha, ANL-7796, NUREG/CR-0785
(1979).

"American National Standard Program-—
ming Language FORTRAN,'" ANSI x3.9-1978.

Update Reference Manual, Control Data
Corporation Publication No. 60342500,
Minneapolis, Minnesota, (1978).

CRAY-1 FORTRAN (CFT) Reference Manual,
Cray Research Publication No. 2240009,
Bloomington, Minnesota, (1977).

IMPLEMENTATION OF A LINEAR SYSTEM SOLVER

James G. Sanderson
Los Alamos Scientific Laboratory
P. 0. Box 1663
Los Alamos, New Mexico 87544

ABSTRACT

We will discuss the use of a line relaxation scheme to solve a five point differ-
ence approximation to the radiation diffusion equation. The matrix solver has ‘been
vectorized for the CRAY-1. We will also discuss the use of a column convergence test
and column iteration decision to speed computation.

,

In addition, the implementation of a multigrid routine in one of two dimensions is
mentioned.

INTRODUCTION PROBLEM
We seek a solution to the radiation We first set up the matrix of cou-
diffusion -equation over a region contain: pling coefficients. Since several mate-
ing numerous materials and moving material rials may be contained in each cell and
boundaries. One approach [1] leads to the each material requires table lookups, the
implicit difference scheme computational cost is extreme. Having

constructed the matrix and right hand side

(n+1) _ (n+1) (n+1) _ (n+1) (n+l) _ (n)

KTy “Tig-r 7 7 Gy - Gl - Gy T KTy 2
where n represents the time step, T the we are ready to iterate using SLOR. To be
fourth power of the temperature, and Ci specific consider the following example .
and K, are the coupling coefficients. “In with i = 60, j = 129.

matrix form (1) is the usual symmetric
five point difference matrix under the
natural ordering.

Various methods exist to solve (1). .
In [2] Buzbee, et. al., describe the use of .
successive line over relaxation (SLOR).
They choose to adopt an odd-even ordering
of lines. Hence the tridiagonal systems j
associated with odd (even) lines are
mutually independent and can be solved : -
simultaneously. By solving the systems Fig. 1. A 60 x 129 problem.

simultaneously vectorization was achieved.
As in the problem here the region was Using the natural ordering , the resulting
embedded in a rectangle. matrix can be written as

We will study the strategy suggested
by Buzbee and also study the use of an old
convergence test and column iteration de-
cision to speed convergence.

81

Both the initial factorization of

AL Dy X] B | Aj and the backsolves are vectorizable.
D X B
2 %2 2 g TIMING
Ay - (2) -
D The algorithm described above was
129 implemented in FORTRAN and run on the
L Di2g Aj2g Lxlzg Byag CRAY-1 using the XFC compiler, OPT = 1
pu . L =

at Los Alamos Scientific Laboratory.
The same routine was then vectorized
using the MCA vectorizer [9] and executed

Where A; is a symmetric tridiagonal
The routine consists of set-

matrix, 60 X 60 and Dj is a diagonal
matrix of dimension 60 X 60. Let Xj be
the solution vectors of length 60 and let
Bi be the vectors representing the right
hand side.

similarly.
ting up the matrix from stored coeffi-
cients, the initial factorization of the
matrix and the SLOR iteration for the

60 x 129 problem.

ALGORITHM “ , TARLE I

TIMING IN SECONDS OF CPU TIME

0 s
Let Xi()be some initial guess at

the solution. Using Buzhee's suggestion FORTRAN VERSION VECTORIZED VERSION
write Initial Factorization .009721 .001725
~ Time/lteration 10453 L0381
(ll+l) (n) Time/Tridiagonal Solve:
A, X3 = D. X: 1 Even (64) .06366 .001562
J] j - 0dd (65) .06465 002053
() Entire Routine:
n - 91 i .4306 .34958
Dj+1 XJ+l + BJ (3) 6 terations’ 2,278 1.823
Timing studies under CFT are forthcoming.
x(L) (x(“ D x(my)
J J OLD CONVERGENCE TEST
+ Xj(n) In an ancient LASL code which used

We will solve (3) simultaneously for all
the odd values of j and update the guess
Xi as in (4) for the odd-values of j. We
then repeat (3) for the even values of j.
Then (4) for the even values of j. The
procedure described constitutes one
iteration. It will suffice to note that
@ is computed every 12 iterations by a
prescription described by Carré [3]. See
also [4-8] for advice on computing w.

Several observations can be made.
Since the matrixes Aj do not change from
one iteration to the next, we can factor
each Aj and store“the factors. It is
necessary then only to backsolve to
arrive at X;. Initially w is chosen to
be 1.375. The entire iteration is ter-
minated when the sum of the squares of
the updates in each column is less than a
prescribed tolerance. Finally note that
the solution estimate is changed only
after each odd (or even) sweep is com-
pleted.

a variation of SLOR an interesting line
convergence test and iteration decision
was implemented. Simply stated, a
column will not be iterated on if it has
converged and both its neighbors have
converged. Consider the following exam-
ple where the three middle columns have
converged under the sum of the squares

test previously described. See Fig. 2.
12345 67
A e
>g <g >e

Fig. 2. Columns 3, 4 and 5
have converged.

The routine continues to iterate on
columns 1-3 and 5-7. Since a column is
converged if and only if its immediate

neighbors are converged. As the itera-
tion proceeds more columns will converge
and the work load in scalar mode will de-
crease. Note that a converged column may
become ''unconverged" on subsequent itera-
tions.

Since the column iteration test in-
volves a FORTRAN IF test within the back-
solve loop it is not readily vectorizable
and thus there is no need to choose the
odd-even ordering. The matrix factoriza-
tion is still vectorization. Time per
iteration will vary since a different
number of columns will be iterated on in

general. However, total run times were:
9 iterations .41585
52 iterations 1.086

for the respective cycles in Table I.

It should be noted that if most of
the columns are converged then each
iteration 1s quite inexpensive. In prob-
lems with local disturbances or front
propagation problems either column or line
convergence tests could save time.

MULTIGRID APPROACH

The multigrid method [10] users
Gauss-Seidel iterations on levels of fine
or coarse meshes to accelerate conver-
gence. In the problem discussed here the
cost of recomputing the coefficients
would prove prohibitive. However, it is
quite possible to describe a two level
multigrid technique in one of two dimen-

sions. It is best described by Fig. 3.
(a) (b)
Fig. 3. (a) is the fine mesh,

(b) is the coarse mesh.
Note that the same number of
columns are used. :

For the mesh in Fig. 3 (b), the
coupling coefficients to neighboring cells
are simply the average or sum of the ap-

83

propriate coupling coefficients origi-
nally computed for the fine mesh shown

in Fig. 3 (a). The number of rows is
reduced in the coarse iteration and the
number of columns remains unchanged. The
method combines the use of multigrid and
the vector solver while minimizing
coefficient.computation cost.

ACKNOWLEDGMENTS

The author wishes to thank Billy
Buzbee of LASL for his support and en-
couragement. Discussions with Seymour
Porter and Richard Varga were also
helpful.

REFERENCES

[1] J. G. Sanderson, "An Implicit
Scheme for the Solution of the
Nonlinear Radiation Diffusion
Equation," Los Alamos Scientific
Laboratory, 1979.

[2] B. C. Buzbee, L. D. Boley, and

S. V. Parter, "Application of
Block Relaxation,' Society of
Petroleum Engineers Fifth
Symposium on Numerical Simulation
of Reservoir Performance,

B. A. Carré, "The Determination
of the Optimum Accelerating
Factor for Successive Over-
Relaxation," The Computer
Journal, Vol. 4, 1961.

(3]

G. E. Forsythe and J. Ortega,
"Attempts to Determine the
Optimum Factor for Successive
Over-Relaxation,'" Info, Proc.,
UNESCO, Paris, 1959.

[S] H. E. Kulsrud, "A Practical
Technique for the Determination
of the Optimum Relaxation Factor
of the Successive Over-Relaxation
Method," Comm. Assoc. Comput.
Mach., Vol. 4, 1961.

[6] J. K. Reid, "A Method for Finding
the Optimum Successive Over-
Relaxation Parameter,' The
.Computer Journal, Vol. 9, 1966.
(7] A. K. Rigler, "Estimation of the
Successive Over-Relaxation
Factor,'" Math. Comp., Vol. 19,
1965. -

[8] L. A. Hageman and R. B. Kellogg, [10] R. A. Nicolaides, "Om Multiple

"Estimating Optimum Over-Relaxation Grid and Related Techniques for

Parameters,' Math. Comp. Vol. 22, Solving Discrete Elliptic

1968.- Systems,'" J. Comp. Phys. 19,
1975.

[9] Massachusetts Computer Associates.

84

ADVANCED COMPUTERS AND MONTE CARLO

Thomas L. Jordan
Los Alamos Scientific Laboratory
P.0. Box 1663
MS 265
Los Alamos, New Mexico 87544

ABSTRACT

High-performance parallelism that is currently available is synchronous in nature.
It is manifested in such architectures as Burroughs ILLIAC-IV, CDC STAR-100, TI ASC,
CRI CRAY-1, ICL DAP, and many special-purpose array processors designed for signal pro-
cessing. To our knowledge, this form of parallelism has not been of significant value
to many important Monte Carlo calculations. Nevertheless, there is much asynchronous
parallelism in many of these calculations. A model of a production code that requires
up to 20 hours per problem on a CDC 7600 is studied for suitability on some asynchronous
architectures that are on the drawing board. The code is described and some of its prop-
erties and resource requirements are identified to compare with corresponding proper-
ties and resources of some asynchronous multiprocessor architectures. Arguments are
made for programmer aids and special syntax to identify and support important asynchro-
nous parallelism.

INTRODUCTION very elaborate geometries. Because of
the computer time required, these codes
Monte Carlo calculations predate are used most frequently whenever more
their computation with electronic compu- accuracy and/or geometric reality is re-
ters. An interesting aid for doing quired than can be provided by one- and
Monte Carlo calculations was invented by two-dimensional transport codes. Prob-
Enrico Fermi. 1In 1946 S. Ulam proposed lems requiring many hours of CDC-7600
a statistical approach to study neutron time are not uncommon. Monte Carlo would
behavior in various materials and geo- be used more frequently if the method
metries. Shortly thereafter, John were not so costly.
von Neumann developed an algorithm with
anticipated use of the ENIAC. Delays How has this method faired rela-
in availability of the ENIAC, due to its tive to other types of calculation, say
move to Aberdeen, caused Fermi to think solving partial differential equations,
about a substitute. He designed the during recent periods of increasing com-
13-inch long, hand-operated mechanical puting power? Once we began getting
computer shown in Fig. 1 to perform speed through synchronous parallelism
these computations. It was built by (on computers such as the CDC STAR-100,
L. D. P. King. Neutron sample sizes of CRI CRAY-1, TI ASC, ICL DAP, and
100 were used to develop neutron his- ILLIAC IV), Monte Carlo calculations have
tories and statistics. The operator not kept pace. Efforts to vectorize our
needed tables of random numbers and mass Monte Carlo codes have not been very
constants to operate this '"computer." successful to date. Although some suc-
Blestronts crbutorBevitiohlly dres cess has occurred with the simplest of
models, a success verdict is not yet in

vided the speed and decision-making capa-
bility necessary for any realistic model-
ing of serious simulation of probalistic
events. The study of particle physics
(neutrons, photons, etc.) has provided

a classical setting for the Monte Carlo
method. Flexible Monte Carlo codes exist
to study detailed particle physics in

on the big codes. As a consequence, the
ability to perform this kind of compu-
tation is not keeping pace with a grow-
ing need for yet more detailed simula-
tion.

To better understand what is re-
quired for Monte Carlo codes, we de-

85

153 o G 10

veloped a model of a production code to
compare its properties and resource re-
quirements with those of some asynchro-
nous multiprocessor architectures.

CODE CHARACTERISTICS

The code does not lack for paral-
lelism; in fact, the total computation
is almost completely parallel. The
tracking of each particle and its prog-
eny is independent of all other his-
tories. Only the accumulation of sta-
tistics and the use of statistics in
sample biasing couple one particle to
another. This is not to say that the

86

Fermi's hand-operated mechanical computer.

computation performed on each history

is the same. The randomness and variety
of possible events make it very difficult
to develop and process queues of similar
computations. Today's codes are fraught
with conditional and case statements
that define the many possible reactions
in complex and varied geometries. Given
the physical input parameters, the whole
calculation is a function of a single
random variable.

One must be careful not to extra-
polate this computational independence
to all codes that might use the Monte
Carlo method. As particle dependence
or coupling between particles increase,

the lengths of the chains of independent
computation may decrease. This will in
turn decrease the efficiency of multi-
processing. At another extreme some prob-
lems in which there is tight coupling

(for example, a many-body problem in
which one particle's behavior affects
every other one similarly). have been
highly vectorized.

The code is an ideal example of
asynchronous parallelism. In an environ-
ment of n asynchronous multiprocessors,
the code could be easily modified so that
each proggssor could independently pro-
cess 1/n of all the particles before
rejoining to accumulate statistics.

When the processors have finished their
tasks, one or more processors could be
used to accumulate total statistics. We
believe it is feasible, with little addi-
tional work, to perform this calculation
on four CDC 7600s coupled only through

a common file system. Only concern for
total system reliability deters one from-
doing this in order to speed up the cal-
culation for the more time-consuming
problems.

A SIMPLE MODEL

To present the flavor of this Monte
Carlo code, an extremely oversimplified
model is presented in the form of a flow
diagram in Fig. 2. This code accumulates
statistics on the behavior of a photon
source in a cylindrical drum of carbon.
This code is of value only for bench-
marking and analysis.

To study the efficiency of this
problem on an n-processor system, we
took a small number of particles (&024);
partitioned them into subsets of 2,

k = 0,1,...9; and timed the computation
of the subsets. If t 1s the maximum
time for all subsets 0% size 1024/2° and
t ota% is the sum of these times, then

the ‘efficiency is

2k-t -

t
max total

ttotal

The results are shown in Table 1. Hence,
we conclude that for particle numbers
of interest that the problem efficiency

@.[INCREASE PARTICLE COUNT AND TEST

I GENERATE A NEW PARTICLE

©

INTERPOLATION:

TRACK: COMPUTE DISTANCES TO CELL BOUNDARIES
TABLE LOOK-UP: LOCATE ENERGY IN TABLE

FIND X-SECTION VALUES
COLLISION: COMPUTE DISTANCE TO COLLISION

NO l
TALLY JQ—'[1S IT IN THE SYSTEM? J

YES

[ROLL DICE FOR PHYSICAL CASES]

'

COMPTON
SCATTERING

YES H NO YES

COMPTON
TALLY ANGLE

© ©

Fig, 2. Flow diagram of a simple Monte

' 1

PAIR PHOTO-ELECTRIC
PRODUCTION ABSORPTION

NO .
- (o)
DIRECTION .

Carlo model.

87

Table 1. Mu&tiprocessor efficiency for 1024 particles distri-

buted over 2~ processors.

No. of No. of Particles
k . Processors No. of Processors Efficiency
0] 1 1024 1.0
1 2 512 0.97
2 4 256 0.95
3 8 128 0.95
4 16 64 0.90
5 32 32 0.91
6 64 16 0.85
7 128 8 0.74
8 256 4 0.70
9 512 2 0.22

would be very high., TIn that sense the
problem has ideal asynchronous paral-
lelism.

" ASYNCHRONOUS SYSTEMS AND THE PRODUCTION

CODE

A number of commercially available
asynchronous processor systems appear
likely to emerge in the not too distant
future. Will these systems provide the
speed and facilities needed for the
Monte Carlo Production code? To get at
this question, we will describe some
properties of the code that will help
determine the adequacy of various archi-
tectures to support this computation.

Note that in our crudely coupled
system of four CDC 7600s, the total code
and data have been replicated entirely.
The only benefit to using such a system
is to reduce the total elapsed time. Of

‘

coursc this could be sufficient justifi-
cation for using such a system despite
the four-fold amplification of all other
costs. In particular our memory require-
ments have grown from 0.5M words to 2M
words. Most of the data, x-section or
probability data, is read-only data ex-
cept for problem initialization. It is
read relatively infrequently and can re-
side in a comparatively slow bulk memory.
However, disk storage is too slow. A
typical storage requirement might be as
given in Table 2. ’

Obviously only one copy of the read-
only data is needed even though all
processors must access it. Replication
of all data would unduly burden systems
with many processors.

One of the important character-
istics of this problem is that the data
memories are very randomly accessed.

Table 2. A classification of storage requirements.

Complexity
Amount Level Based on Data
Type (words) Replication

A. x-sections and

constants (read-

only) 400,000 0 (all)
B. code (read-only) 30,000 1 (all but A)
C. tally (read/write) 20,000 2 (all but A + B)
D. other (read/write) 4,000 3 (D only)

88

This helps to avoid memory conflicts.
However, it decreases the advantages of
cache and virtual memories. Caches for
code instructions will be increasingly
important as the number of processors
grow. However, there are comparatively
few DO loops in this kind of code. Con-
sequently, any local piece of code has a
relatively low duty cycle. Even in the
code concerned with geometry (particles
intersecting surfaces), one heavily used
DO loop simply controls access to formulas
for different types of surfaces. Hence
the code selected here 1s usually dif-
ferent each time through the loop.

The group responsible for the actual
production code ran a sampler to identify
the calculations ‘that consume the most

time. Some are included in Table 3.
Table 3. Times for various subroutine
calculations.

Function Percent
Find minimum distance to cell surfaces 3
Compute x-sections and locate isotopes 2
Find new cell particle entered 1

Tally contributions to detectors
Table look-up of energy
Subroutines: RANF, EXP, LOG, SQRT

Total 85.

WPRWOoOOW
« v s s e e
OMhWAUNWO

wn
w

Finally, we note that MIPS (millions

" of instructions per second) are more
important to this problem than MFLOPS
(millions of floating point operations
per second). Table 4 contains dynamic
measurements of the utilization of
various classes of instructions on a
CDC-7600 computer. Tom Keller of the
LASL Computer Science and Services
Division used an on-line instruction
monitor to obtain the statistics tabu-
lated in Table 4.

Table 4. Operation Mix (dynamic measure-
ment).)

Operation class Percent
Increment 54
Jumps 12
NO OP 9
Boolean 5
Shift . 4
Other (including floating point) 16
Total 100

89

HARDWARE

Asynchronous multiprocessors appear
most promising for this particular pro-
blem. Carnegie Mellon University's CM*
is a working research model of such a
computer. Siemens of Germany has a work-
ing prototype and has plans for a machine
called the SMS-3., At least two of the
machines proposed for the Numerical
Aerodynamic Simulation Facility (NASF)
can operate asynchronously. The pro-
posed Burroughs computer can use its pro-
cessors either in lockstep or independ-
ently. The Texas Instrument (TI) pro-
posal is based on the data-flow principle,
which in theory is a complete captor of
parallelism. They have a working
4-processor model. A few other manufac-
turers have discussed plans for asyn-
chronous computers. However a descrip-
tion of theilr computers is not yet in
the public domain.

There 1s insufficient information
on a large scale TI machine to determine
whether their computer is appro-
priate for this Monte Carlo problem.
Hence we are able to analyze only the
Burroughs NASF and the SMS-3 for feasi-
bility. We do so relative to a ‘
system of four CUU 7600s and supply some
relevant data in Table ‘5.

The SMS-3 does not appear to be
useful for this problem. The amount of
memory directly accessible to each pro-
cessor is at best marginal for code and
read/write data. We see no way to make
the read-only data directly accessible
to each processor. This computer ships
data between processors in synchronized
or phased bursts. This method of trans-
ferring data is not at all suitable for
the random accesses required of the
x-section data. Despite the asynchronous
operation of the processors, this com-
puter still seems most useful for syn-
chronous parallelism or, at least, a prob-—
lem processing data in a regular manner.

The Burroughs NASF machine appears
to be suitable for this problem. How-
ever, more work will have to be done than
would be necessary for a 4-CDC 7600
system. Note that with 50M words of mem-
ory available in the NASF machine, the
problem will not fit a 512-processor
system with O-level of replication (all
data and code replicated). Hence, the
operating environment would have to be

Table 5. Comparative data of some multiprocessor systems.
Burroughs Siemens
4 CDC 7600s NASF SMS-3
No. of Processors 4 512 128
Total speed (MFLOPS) 16 1000 18
Local Memory/Processor 512K 32K 64K (BYTES)
Global Memory DISK 3M HOST

modified to reproduce certain variable
storage and not others. Less than 100
processors could be used if all data
were replicated. This allows at uost
20% efficiency in using the system in
this manner.

PARALLELISM AND SYNTAX

What snrt of parallelism do we ex-
pect to capture with asynchronous multi-
processor systems not capturable with
synchronous devices? 1Isn't there com-
petition between what might be called
local parallelism and global parallelism?
To get at these questions, let us first
try to identify some easily recognized
forms of parallel activity.

1. Array Computation
DO I =1, N
x(I) = £(1)
2. Local Independent Task

a. z = u*v + x*y

b. x
y

u*vy
wkz

c. bookeeping overlapping
computation

3. Global Independent Tasks
a. JOB A, JOB B
b. Monte Carlo type problem

We assume there are no fundamental
differences in parallel processes when
expressed in term of a dependency graph.
All of the independence exists in the
total graph. However, we must believe
that if we have finite resources to per-
form various parallel tasks that there
will be competition for these resources
by the different independent tasks. Will
the right subgraphs be selected? We
doubt very seriously that much efficiency

90

will be gotten from this problem for
many years with an approach other than
level-0 replication unless there is some
new syntax in which the programmer can
tell the 6pérating system how to tapture
the important parallelism. Consequently,
we must think about language features
that are needed to direct the operat-

ing system.

In éontrast to what is done today,
we do not want to spend our resources on
the inner loops or local portions of
this problem. Instead it is the big
outer loop with largest payoff. -In fact,
it is not a DO loop at all. Hence the
dependence on the loop index is absent
and, therefore, implicit.' Certainly
global compilation is required if such
global parallelism is to be captured
automatically.

Somehow we must make it easy to in-
crease the dimensionality of a code.
Currently, we introduce DO loops and in-
crease the rank of dimensionality of the
appropriate variables as a convenience
to the compilet only to have the compiler
remove them. This is not practical over
a code that requires 30,000 words of
instructions. This kind of requirement

- merely reinforces the long overdue need

for an array syntax. Not only must the
dimensionality of the data be increased
but that of the code itself if different
coples of the code are required for each
processor. This is just task spawning.
What do we need to specify in a task
spawning statement? Once many tasks are
active they must be told to rejoin and
collapse to sequential mode.

Tallying is the major obstacle to
achieving full parallelism and is repre-
sentative of the more general problem
associated with vector reduction opera-
tions. If the tally data is replicated
and only later do we tally the sub-
tallies, then we have vastly simplified

the problem. This is the case for rep-
lication levels 0, 1, and 2. If for °
storage reasons we cannot afford this
replication, then the tallying process
must be done by a single processor if
only one copy of the tally data is al-
“ lowed. In such cases it would appear
that re-entrable programs may be needed
to allow queueing of tallies without
choking the system at this point.

CONCLUSIONS
Given only a glimpse of future

asynchronous architectures and a Monte
Carlo application that has ideal asyn-

91

chronous parallelism, we are yet unable
to estimate the effort that'will be re-
quired to fit the problem to the machine.
We have observed that memory requirements
may be exorbitant in those cases where
the processor count is large. In ad-
dition, it is unlikely that the more
profitable global parallelism will be
discovered and selected automatically by
the compiler. We believe that new syn-
tax will be needed to assist the pro-
grammer: (1) in describing the paral-
lelism available to the compiler and

(2) making it easier to increase the
dimensionality of the problem without
rewriting code.

\ DETAILED VECTORIZED REACTIVE ,FLOW SIMULATION
ON THE TEXAS INSTRUMENTS ASC

J. P. Boris, D. L. Book, T. R. Young, Jr., E. 5. Oran
and M. J. Fritts
Laboratory for Computational Physics
Naval Research Laboratory, Washington, D. C. 20375

ABSTRACT

Detailed modelling, also known as numerical simulation, provides a description of a
reactive system by solving nmumerically the governing time-dependent conservation equa-
tions for mass, momentum and energv with sonree and sink tarmo, Empirical subuosdels dre
only incorporated when the quantities required must be derived from more fundamental
models or theories. This is the case for chemical rate -constants, for Lhermal ¢onducti-
vity coefticients, and for other thermophysical and thermochemical data in a detailed
reactive flow calculation. There are four kinde of problems in simulating accurately
the propagation of a shock or a flame front in a reacting mediwm. One stems from the
widely different tlme scales characteristic of the interacting fluid and chemical pro-
cesses. Another arises because conventional numerical methods are unable to resolve
accuralely the characteristically steep spatial gradients in pressure, density, and tem-
perature. Two others are associated with the twin problems of physical and geometric
complexity, which can cause calculation times to increase by orders of magnitude compared
with idealized or empirical models. The approach taken in the Reactive Flow Modelling
program at the Naval Research Laboratory is to treat the fundamental processes of the
problem individually and then to combine them with due concern for the way they interact.
This operator-split design philosophy requires "asymptotic technigues" when there are
short time scales which we do not wish to resolve.

Numerical techniques developed at.NRL following this modular "asymptotic" approach
include CHEMEQ,1 for the solution of stiff ordinary differential equations, the Slow
Flow? and ADINC3 algorithms for handling flame propagation probhlcms where it is Loo cum-
bersome and costly to treat sound waves explicitly, and DFLUX2 tor the accurate solution
of coupled multi-species mass diffusion fluxes. ADNIC and Flux-Corrected Transport
(FCT)*, an explicit transport algorithm technique developed to handle supersnnic flow,
solve counveclive e%uations with near-optimum resolution of steep gradients and fine
structure. .SPLISH’, a Lagrangian two-dimensional triangular grid technique for de-
scribing flows over complicated surfaces, has been developed .o enahle solution of prob-
~lems In complex geometries.

In this paper, these algorithms will be discussed briefly and references to more
detailed discussions will be given. Implementation in working codes will be discussed,
with particular attention to vectorization and achieving maximum efficiency with NRL's
Texas Instruments ASC. Illustrations will be drawn from combustion modelling work cur-
rently being pursued at NRL.

REFERENCES
1. T. R. Young, Jr. and J. P. Boris, "A J. Chem. Phys., 81, 2532, 1977T;
Numerical Technique for Solving Stiff "Flame - A Alow-Flow Combustion Model",
Ordinary Differential Equations Asso- by W. W. Jones and J. P. Boris, Naval
ciated with the Chemical Kinetics of Research Laboratory memorandum report
Reactive-Flow Problems", J. Phys. Chemn., No. 3970, July 1979.

81, 2u2k, 1977.
3. J. P. Boris, "ADNIC: An Implicit La-

2. W. W. Jones and J. P. Boris, "Flame grangian Hydrodynamic Code", Naval
and Reactive Jet Studies Using a Self- Research Laboratory memorandum report

Consistent Two-Dimensional Hydrocode', No. L4022, June 1979.

92

L.

J. P. Boris and D. L. Book, "Solution
of Continuity Equations by the Method
of Flux-Corrected Transport", Methods
in Computational Physics, 16, p 85,
Academic Press, 1979.

M. J. Fritts and J. P. Boris, 'The

Lagrangian Solution of Transient Prob--

lems in Hydrodynamics Using a Triangu-
lar Mesh", J. Comp. Phys., 31, 173
(1979).

93

Design Considerations for a Partial Differential Equation Machine("

Arvind, and Randal E. Bryant
Laboratory for Computer Science
Massachusetts Institute of Technology
Cambridge, Massachsetts 02139

Abstract

Partial differential equation (PDE) simulation provides an attractive
The regular and static structures of these problems and the limited data

parallel computer systems.

area for the app'lication ot highly

dependencies allow them to be mapped onto a system consisting of many interconnected processors. This

paper presents an
compressible fiuid,

analysis of a program for simulating the hydrodynamic motion and heat flow
Based on this analysis, some of the issues in designing programming languages and

in a

computer architectures for PDE simulations are discussed. The data flow model of computation is seen to

provide an attractive means for managing the complexity of highly parallel systems.

Data flow concepts

can be applied to relatively simple architectures specifically designed for PDE simulation.

introduction

Partial differential equation (PDE) simulation
has often been proposed as an ideal area for the

application of highly concurrent computer
-architectures. The high computational
requirements of these problems provide an

incentive for high speed computation, while the
regularity'and minimal data dependencies provide
hope that this speed can be achieved through
parallelism.

Highly paralle! computer architectures diverge
from traditional, sequential computers'to different
degrees and in a variety of different ways. This
paper examines how a computer architecture and
high level programming language can be developed
to achieve high performance at a reasonable cost,
while maintaining programmability. Some of the
architectural considerations include: how the
processing resources are allocated, how the
activities of the processors are synchronized, and
what forms of communication are allowed between
processors. Other potentially important decisions
such as mechanisms for achieving fault tolerance
and for input and output will not be considered.

(1) This research was supported by the National
..Science Foundation under grant MCS-7902782,
and by the University of California, Lawrence
Livermore Laboratory under contract no. 8545403.

94

While the above-mentioned design issues are
directed toward the computer architecture, they

will also strongly influence the design of the
programming languages suppotted by the
architecture. To provide reasonable

programmability, the architecture must support
some abstract model of computation which can
form a basis tor a high level programming language.

For example, traditional architectures can be
viewed as performing a sequence of updates to a
set of memory cells, forming the basis for
languages such as FORTRAN. Highly parallel
architectures, however, must diverge from this
model and hence will require new forms of
programming languages. Thus we will discuss
computer architectures and the languages for

these architectures together.

We will assume the system consists of a
number

of processing elements (or simply
"processors"), each capable of storing and
exccuting a program and of storing data.

Examples of such systems include the Irvine data
flow architecture [3, 8], and the Utah data flow
architectures [5, 10]. This model does not
encompass the MIT data flow architecture [7] in
which the functions of program storage, instruction
execution, and data storage are performed by
separate units. Nonetheless, much of the analysis
should apply to this system as well.

The SIMIPLE Code

As a focus for the study we have been
studying the SIMPLE code [4]), a 1500 fline
FORTRAN program developed at Lawrence
Livermore Laboratories. The SIMPLE code is a

simplified version of a program for simulating both
the hydrodynamics, or mechanical motion, and the
heat flow, or the conduction of heat between
regions of a compressible fluid. Most of the
simplifications serve only to decrease the total
size of the program without decreasing the
complexities of the numerical model. In comparison
to other PDE simulation programs, such as for
weather simulation or aerodynamic modeling, this
program simulates systems undergoing very rapid
changes with extremes of temperature and
pressure and also with many shocks. As a result
this simulation requires a more complex numerical
model. The SIMPLE code may present somewhat of
a "worst case" example in terms of potential
concurrency and regularity of computation.

Although mechanical motion and heat
conduction procead simultaneously in the physical
system, SIMPLE separates the two during each
time step, simulating first the hydrodynamics and
then the heat tlow. The fluid is represented in a
two-dimensional, Lagrangian formulation. A block
diagram for the program is shown in Figure 1.
During the hydrodynamics phase of a cycle, the
program uses the positions x, and velocities v of
the node points and the pressures p, artificial
viscosities (1) g, and densities p of the zones to
compute new positions x” of the nodes by an
explicit difference method. Then new values for
density Q0 and artificial viscosity q° are calculated
along with intermediate values of energy €. The
heat conduction phase takes these intermediate
enerqgy values and transfers energy between
zones to represent the flow of heat resulting in
new enerqgics €’ by an alternating-direction implicit
difference method. It aiso c.omputes a new set of
zone pressures p’ based on the energy. Finally, a
value for the size of the next time step At is
calculated. Thoe time step must be kept small

enough to maintain the stability of the computation

[11]. This requires calculating the allowable time
step for each zone and finding the minimum of
these values over the entire mesh. Following the

(1) Artificial viscosity [11] is a computational
technique used to smooth out shocks

95

time step caiculation a new cycle can begin.

Inherent Parallelism and Computational

Requirements

An analysis of the SIMPLE program reveals
the quantity of computation required and the forms
of parallelism allowed for a typical PDE simulation.
In SIMPLE the amount of concurrency and the data
dependencies vary greatly in the different phases
of the computation, because of the different
numerical methods used. These data
dependencies have important implications for
exploiting the potential concurrency of the
program.

Figure 2 shows the par\tial ordering on the
program variables imposed by the data
dependencies. This diagram omits those arcs
implied by transitivity. As can bhe seen, the data
dependencies impose a nearly linear ordering on
the computations. Most of the variables, however,
are two-dimensional arrays. If we consider the
array elements as individual values to be computed
we can study their data dependencies as well.
Figure 2 shows four classes of dependencies:

array element (k,/) depends only
on elements (k/) of the other
arrays.

local:

array element (k,/) depends on
elements (K1), (k+1.), (k-1.0),
(kJ+1), (kJ-1).

neighbor:

global: a scalar value depends on all
elements of the arrays.
scalar; every array element depends

on some scalar value.

As can be seen, most zone and node computations
depend only on values from neighboring nodes and
zones. In fact, many computations are fully
localized. In only a few cases must the results of
one computation be received from the neighbors
hefore another computation can proceed. This
does not take into account any sharing of program
or constant cdata between zone computations to
reduce the total storage requirements.

Figure 3 depicts the potential concurrency
and computational requirements graphically for a
100 by 100 zone mesh assuming that the two
equation of state calculations for each zone take

two iterations on average to converge. This figure
shows how the computation for one time step
would proceed if unlimited processing and
communication resources were available. The
ahscissa shows the elapsed time in units of
floating point operation times (all operations are
assumecd to require the same time.) The ordinate
shows the total number of operations proceeding
concurrently, typically a small constant times the
number of concurrent zone computations. The area
of each shaded region then shows the total number
of operations for each section of the program.

As TFigure 3 demonsttates, with unbounded
processing capability the heat conduction section
would require 86% of the elapsed time, even
though it represents only 5% ot the total number of
.operations due to the restricted concurrency of
this section. This analysis is somewhat misleading,
howaover, because even the heat conduction
section would allow approximately 220 operations
to proceed concurrently. While this is substantially
less than the 24,000 to 48,000 concurrent
operations allowad by other sections of the
program, it still exceeds the capacity of any
existing concurrent architecture. The desire for
higher concurrency may ultimately call for a
different numerical method, but this conclusion
should not be reached too hastily. Figure 3 also
does not show the possible overlapping of
calculations for two time steps. In SIMPLE this
possible is limited, because the At calculation
requireé the resuits from one time step before
allowing the next time step to begin.)

Irregularities in the Computation

In most sections of SIMPLE, an identical set
of operations is performed for every zone. These
sections couid be carried out by a set of
processors coxecuting identical, or at least very
similar, instruction streams. Certain aspects of the
program, however, perturb this reqularity, requiring
a different set of operations for some of the
zones. Any programming language or computer
architecture which cannot deal with these
irrcgularitics efficiently may exact a large penalty
in programmability or performance.

Boundary calculations always cause
irreqularities in PDE simulations. SIMPLE only

allows a limited class of time-invariant boundary
conditions, and the boundaries must correspond to’

the edqges of the rectangular state variable arrays.
Nonetheless, these bhoundary calculations differ in

their form and data dependencies from the
calculations for internal zones and typically require
more computation. In more complex programs, a
variety of time-varying boundary conditions may be
specified, and the boundaries may cause the
logical representations of the state variahles to
have irregular perimeters and holes. Calculations
for boundary conditions will prove the downfall of
any language or architecture which requires an
identical set of operations over an entire array or
vector.

Any part of the program for which the flow of
control depends on data-dependent decisions may
also cause irreqularities in the program. For
example, in two sections ot SIMPLE the root of an
aquation is computed iteratively for each zone.
The number of iterations required for convergence
will differ from zone to zone. Each iteration
requires a significant -amount of computation,
causing large variations in the amount of
computation per zone. Similarly, another section of
the program approximates a function with a
piecewise-polynomial curve. Computing this
function first . requires searching a table for the
appropriate sat of coefficients with a

~data-dependent search time. Finally, whenever an

exceptional condition is encountered in the
computation, such as a quantity exceeding some
upper or lower limit, the program must take steps
to correct this condition. Thus, the
data-dependent decisions in the program can
cause both small and large irregularities in the
overall structure of the computation.

Programming Languages for PDE Simulation

Once the difference equations for a PDE
simulation have been specified, their coding in a
FORTRAN-like language proceeds without difficulty.
The array data structures and DO loop control
structures provide adequate expressive power for
mast applications. These programs, however, do
not run efficiently on existing high performance
computers such as the Star-100, Cray-1, or
fMiac IV. The programs must be carefully hand
coded (often in assembly language) and optimized
before the potential of these machines can be
realized. Snmrart compilers have failed to bridge the
agap from traditional languages to high performance
machines.

This disappointing performance of FORTRAN
programs stems largely from a mismatch of
language and high performance architectures. A

-FORTRAN program specifies the computation in
terms of a sequence of updates to individual
memory locations. Array and pipeline computers,
however, aperate most efficiently when working
with entire arrays or vectors. Thus, the compiler
.(usually augmented by a human) must try to
combine and restructure sections of code to make
full use of vector instructions. {f vectors must be
stored contiguously in the memory, further
complications arise.

The difficulties in programming existing high
performance machines is further compounded by
their restrictive architectures. To support high
level languages cfficiently an architecture must
lend itself to a process of abstraction in which the
exact size, configuration, and speed of the
hardware components are masked. The
architecture must then have the fiexibility to
achieve reasonable performance even with less
than optimal programs. Unless the architecture
supports some abstract model consistently and
cfficiently, the programmer will be forced to resort
to machine-level coding to take full advantage of
the machine's power.

We Dbelieve the data flow model of
computation [A] provides a suitable basis to be
supported by highly concurrent architectures and
upon which high level languages can be built. As a
basis for high level Ianguagc, the data flow model
allows programs to be written which express the
maximal concurrency allowed by an algorithm.
Control is based solely on the availability of data
rather than on the sequential ordering of program
statements. Hence, only data dependencies
constrain the program's concurrency.

The data flow model supports functional
programming languages in which program
statements define functions from the input

operands to the output values. In a functional
language a statement can bhe executed (i.e. the
function evaluated) as soon as the input operands
have been computed. Functional languages
contrast with imperative languages in which each
statement defines a command for altering some
memory location. and statements must in general
be executed sequentially. With imperative
languages concurrency can be achieved only by
‘removing the unnecessary sequencing constraints
in the program, whereas such constraints never
appear in functional programs. Functional
languages which have been designed with the data

flow model as their basis include Id [3] and Val [1, .

97

2]

Functional programming languages have been
stereotyped as amusing diversions for
acadamicians . rather than serious tools for
expressing production scientific programs. The

syntax and data structures of languages such as
Lisp seem foreign to most scientific programmers.
Such difficulties arise not from their functional
nature but rather from the purposes these
languages are intended to serve. We believe that
functional languages for scientific programming can
he developed which will actually simplify the task
of coding and maintaining programs. Attempts at
reprogramming SIMPLE in Irvine dataflow (Id) have
proved quite successful

Architectures for PDE Simulation

Some high performance computer
architectures, such as the Cray-1, have achieved
remarkable success while maintaining the basic
single sequence control. Others, such as the
Star-100 and lliac IV have failed to live up to their

expectations. While the success of the Cray-1

can be ascribed largely to the quality of its
engineering, it also results from a greater
tolerance of the lerequiarities in the program

structure. The llliac IV operates efficiently only
when performing an identical operation over an
entire array, while the Star operates efficiently
only on long vectors. Sections of the program
requiring scalar or short vector operations move at
a much slower pace. As a.result, programs must he
painstakingly reworked to maximize their regularity,
often to a greater extent than is called for by the
algorithm. For example, the holes and irregular
perimeter of the mesh may he filled with "null"
zones to rectangularize the state variable
descriptions. The Cray-1, on the other hand,
achieves reasonable performance with scalar and
short vector computations. As a result, it can
tolcrate partially vectorized programs.
Nonectheless, it too requires careful optimization to
achieve maximum performance.

All
achieve

existing architectures have tried to
high performance by maximizing the
requtarity in the program and then exploiting the
allowed by this regularity. This
always force the programmer to’
carefully think in terms of how the program fits -
onto the machine. This tevel of thinking requires
machine-level coding to provide the necessary
degree of control. Furthermore, many programs

paralleliam

approach wilt

.simply do not lend themselves to highly regular
structuring. Future architectural developments
must follow a new path if they are to achieve
significantly higher performance and
programmability.

As we have seen, PDE simulation programs
potentially allow a high degree of concurrency in
their execution. To exploit this concurrency
_effectively. a computer must be capable of
concurrently executing different instructions on
different data. Within
choose from a vhriety of schemes for processor
synchronization, resource allocation, and processor
interconnection. These design decisions result in

trade-otts betweeh cost, performance, and
programmability.
Precessor Synchronization

The processors in the system must
synchronize with one another in order to

communicate. With control-driven synchronization,
the processors transmit and accept values at
points in time determined by external control
signals. For example, with lock-step
synchronization the processors are periodically
synchronized by a central controller for the
purpose of exchanging data. Between
synchronization points each processor execttes a
small code segment based on the newly received
With lock-step synchronization, a
time-consuming computation for one portion of the
mesh will cause most of the system to remain idle
until this computation is completed.

data.

In a systewm based on data-driven
synchronization the processors independently
execute their own instruction streams waiting only

"when data is needed from some other processor. A
processor sends data to another as soon as it has
hbeen computed in a "packet” containing the data
value and some identification of the data.
Data-driven synchronization allows greater
autonomy of processors ‘and greater asynchrony in
their operation. Smali irregularities can be
absorbed by nearby processors rather than cause
alobal inefficiencies. Of course, data-driven
synchronization docs not guarantee that all
processors will he fully utilized, but it provides an
important step.

Data-driven synchronization also helps
provide the flexibility of operation needed to
support high level languages. By removing the

this framework, one can-.

98

global synchronization of processors we decrease
the severity of the penalty paid by nonoptimal
program implementations. ;

Processor Allocation

A large scale computer system contains a
variety of resources for processing, storage, and
communication. These resources must be allocated
both in time and in space, with the optimal.
allocation depending on the configuration and
specd of the system components as well as on the
program itself. Thus, the subject of resource
allocation is large and complex. For the purpose of
this paper we will consider mainly the allocation of
processing resources.

The spalial sllucalivn of processors involves
mapping the different activities to be performed
onto the processors of the system. With static’
mapping. the spatial allocation is fixed before the
program execution begins. PDE simulations, with
their regular and well-defined structures suggest a
variety of static mapping schemes such as one
zone and/or one node per processor, or one row of
zones per processor. As long as the size of the
problem matches the size of the system, and the
amount of computation per processor can be
reasonably well 'equalized. this approach seems
quite attractive.

With dynamic mapping the activities of the
program are assigned to the processors as the
exacution This approach would in
principle maximize the utilization of the processors
and allow for highly irregular and dynamically
changing program 3tructures. However, the
difficulty of effectively mapping tasks onto
processors and the overhead needed to perform
this allocation may neg¢ate the potential benefits.

proceeds.

In addition to mapping the operations onto the.

processors, the opcerations of each processor must

he ordered in time. This scheduling of tasks within

each processor can occur either statically or
dynamically. Static scheduling occurs in
conventional processors where the order of

instruction execution is fixed in advance. While
this approach leads to simpler processor design, it
is vulncrable to the same problems as lock-step,
synchronization when applied to multiple processor-
systems. lUnless operations can be scheduled so
that data arrives hefore the operation which needs
them is initiated, a processor will sit idle even if it
has other tasks to perform. Static scheduling

within a processor would require a detailed timing
analysis of the program and would faii when
computations exceed their expected time. A
dynamic scheduling scheme, on the other hand,
involves simply maintaining a task list and
executing those tasks for which the data Is
present. The increased fiexibility and performance
of dynamic task scheduling within each processor
will easily offset its overhead.

Processor lnterconnection Schemes

A variety of interconnection schemes have
been proposed for multiple processor systems [3,
7. 9]. Rather than discussing the details of each
of these designs, we shall explore some of the

properties of these interconnection schemes in the.

context of the prthem at hand.

Some interconnection schemes such as trees,
rings, and Cartesian grids favor local over
long-distance communication, whereas others such
as the routing networks of the MIT data flow
machine [7] require the same communication delay
between any pair of nodes. Those favoring focal
communication typically require fewer components
(switches and wires) and allow faster
communication in the local case but are slower in
the long-distance case.

As was seen in Figure 2, the SIMPLE program
great deal of locality between zone
computations.

shows a

data from only neighboring zones. Thus a potential
does exist for exploiting the locality of
communication. The mapping of operations onto
processors, however, must match the locality in
the program to the locality in the communication
system. The degree to which this can be achieved

depends on the activity mapping scheme and the’

type of interconnection network.

With static spatial mapping, one can eas'ily
imagine mapping adjacent zone computa'tions onto
adjacent processors. If the program size and
not match the system size and

structure does

structure, however, compiete locality cannot be.

maintained. For example, if the program has a 60
by 160 zone mesh, it cannot be mapped onto a
100 by 100 array af processors while maintaining
the locality of the program and utilizing as many
processors as possible. If resources are allocated
dynamically, on the other hand, the assignment

function must map operations which are likely to

Many computations depend only on
data local to the zane while many others require,

99

Jinto a well-defined bady knowledge.

communicate onto nearby processors. This would
greatly complicate the resource allocation problem.

Finally, even SIMPLE requires some global
communication for finding a minimum over all zones
and' for distributing scalar values. One may also
want to restrict the number of redundant copies of
data or code to save storage, thereby increasing
the long-distance communication requirements.
Thus, the «delay incurred by long-distance-

communication cannot he too great, although no

quantitative requirements have been derived yet.

the structure SIMPLE code at
first glance suggests a simple interconnected
array of processors. Such a scheme would
minimize the cost and naturally reflect most of the
data dependencies of the algorithm. After further
study, however, one realizes that global
communication would probably take too long with
such a scheme. and the configuration would not

In summary,

tolerate program structures and processor
assignment schemes which do not match this
connectivity. Nonetheless, a fully uniform

interconnection scheme does not seem to be
required, nor could its inability to take advantage
of locality be tolerated. Some elaboration on an
interconnected array of processors seems the
most cost effective. ’

Conclusion

Research in data flow has been inspired
largely by theorelical models of computation and
languages. Hence, programming languages have
been studied thoroughly, and greater consensus
has been reached on their design. Exercises in
programming scientific programs such as SIMPLE in
high fevel data flow languages have proved quite
promising in terms of hoth ease and the amount of
concurrency which is shown. It has hecome clear
that programming languages for highly concurrent
systems must away from the sequential
maemory update of the Von Neumann
computer and allow programs to be
maximally concurrent, functional

hreak

maodel
instead
aexpressed in a
form,

Resecarch in architecture to support the data
flow mocdel, on the other hand, has not coalesced
Most efforts
have been directed at specific architectures with

particular biases in terms of generality,
performance, and cost. In studying the range of
possible architectures for partial differential

equation simulation, it has become apparent that
data flow concepts can and indeed should be
apptied at a variety of different levels. At the
lowes! levels, the architecture would be
specialized toward the types of problems to be
solved in terms of configuration, processor
allocation, and interconnection but would employ
data-driven control and a dynamic scheduling of
activities within processors. These classes of
machines would still require a certain amount of
effort in mapping a program onto a machine but
wowld at ieast allow a much more abstract view
than do existing high performance machines. At
higher levels of sophistication the architecture
would support a very abstract data flow mode and
dynamically handle all problems of resource
allocation, ihese maclines would allow more
general classes of programs and would be less
affected by irregular program structures and less
than optimal code. Which type of machine should
be built depends largely on the nature of the
problems to be solved., the sophistication of the
user community, and the acceptable cost of a
machine. For PDE simulations, with their high
computational requirements and statically-defined,
reqular structures, a specialized machine with
static activity mapping and limited processor
interconnections indeed prove the best
choice.

may

Acknowledgements

Our work has been aided greatly by the help
given by John Myers as a consultant to the MIT
Laboratory for Computer Science. We are aiso
gmtef(ul to Chris Hendrickson, Tim Rudy, and John
Woodruff of Lawrence Livermore Laboratory for

tirst develaping the SIMPLE program and then
explaining many of the fine points of PDE
simulation.
References
[1] Ackerman. W.. "Data Flow Languages,”

Proceedings of the 1979 National Computer
Conference, AFIPS (1979).

Ackerman, W., and J. Dennis, "VAL -- A
Value-Oriented Algorithmic Language:
Preliminary Reference Manual," Computation
Structures Group, Laboratory for Computer
Science, MIT, Cambridge, Mass. (1979).

100

(3]

(4]

[5]

(6]

(8]

(9]

[10]

(1]

Arvind, K. P. Gostelow, and W. Plouffe, 4An
Asynchronous Programming Language and
Computing Machine, University of California
Irvine Technical Report TR-114a (December,
1978).

Crowley, W. P., C. P. Hendrickson, and T. E.
Rudy, The SIMPLE Code, Internal Report
UcCin-17715, Lawrence Livermore
Labaratories, Livermore, Ca. (Feb., 1978).

Davis, A. L., "A Loosely-Coupled Applicative
Multi-Processing System,”" Proceedings of
the 1979 National Computer Conference,
AFIPS (June, 1979).

Dennis, J. B., "First Version of a Data Flow.

Procedure Language," Programming
Symposium: Proceedings, Collogue sur la
Programmation, (B. Robinet, Ed.), lecture
Notes in Computer Science 19 (1974),
362-376.

Dennis, J.- B, and D. P. Misunas, "A
Preliminary Architecture for a Basic
Data-Flow Processor," The Second Annual
Symposium on Computer Architecture:

Confercnce Proceedings, (January, 1975),
126-132.

Gostelow, K. P., and R. E. Thomas,
Performance of a Data-Flow Computer,
University of Californla Irvine Technical

Report TR-127 (April, 1979).

Gritton, E. C., et al, Feasibility of a Special
Purpose Computer to Solve the.
Navier-Stokes Equations, Rand Technical
Report R-2183-RC, Rand Corporation, Santa
Monica, Ca. (1977).

Keller, R., S. Patil, and G. Lindstrom, "An
Architecture for a Loosely-Couvaed Parallel
Processor," Proceedings of the 1979
National Computer Conference, AFIPS
(1979).

Richtmyer, and Morton, Difference Methods
for Initial Value Problems, - Wiley
Interscience, New York (1967).

Figure 1. Block Diagram of SIMPLE

X, v,p,q Hydro - X',p' Heat
‘ dynamics ‘ Conduction
p, € p,E
—
Pt -
S ,}At‘hy'dro LA_theot

minimum
At

st i
- —~
AL ~ PAN
g P €
1 D
(- !
| ol
o4)
[}
Ab '-__—_:*‘;_ ____________________ Y
vai/\r* ? < = *

S

101

. Figure 3,

Potential Concurrency :
SIMPLE Code, 10,000 zones

50 Typically:
g 100,000 time steps
Ja—Conductances illion f
: (24 / zone) | 400 billion f.p. ops.
40 é
, g Energy:
of 30 g Table Lookup
-Operations (32 /zone)
x 103 \-.-

20 Hydrodynamics

({360/z0ne)

implicit Temperature
” Calculation (22/zone)

ool ol dondnnln ol et ettt it

3]/////[{///[/I/E&Z/////[///]//'/Zl/jjrfjﬂ '/////7l7/]///T/ g
0 2 4 6 8 12 14

Time (unit = 100 floating point add times)

Assumptions:
kmx, Imx = 100.
All fioating point operations take one time unit.

102

VECTORIZED SPARSE ELIMINATION

D. A. Calahan
Department of Electrical and Computer Engineering
University of Michigan

Ann Arbor,

MI

48109

ABSTRACT

Vectorizable sparse equation solution algorithms are classified by

the matrix structure which they favor.
of .relatively dense systems is then reviewed.

The state-of-the-art for solution
A hybrid vector construct

is defined for the increasingly common structure of both moderate local

matrix density and global matrix regularity.
1 speedup achievable with this construct.

studied as an example.
INTRODUCTION

Direct solution of sparse
systems has enjoyed wide applica-
tion to simulation of lumped phy-
sical systems described by ordin-
ary differential eguations. Also,
the last decade has seen a move-
ment toward implicit solution of
partial differential equations
away from explicit procedures. An
excellent example is Navier Stokes
aerodynamic simulation codes,
which have changed from the purely
explicit, through hybrid explicit-
implicit:and now purely implicit
procedures®.

The vectorization of direct
solution portions of large codes
has an immediate aspect related to
the recoding of specific equation
solvers for a particular architec-
ture. Although most vector archi-
tectures have at least a minimal
provision for sparse vector opera-
tions, an overhead is inevitably
incurred in reduced memory band-

width and/or the loading of assoc-

iated bit maps and linked lists.
It is the goal of research in’
sparse matrix algorithms to reduce
this overhead by re-organization
of the computation either (1) to
obtain longer vectors, or (2) to
reduce data flow, and thus achieve
an overall speedup.

This paper (1) classifies
sparse matrix characteristics
amenable to vector processing,
reviews the state-of-the-art in
solving certain of these problems,

(2)

103

Estimates are made of CRAY-
A finite différence matrix is

and (3) presents new results in
the detection of vectors in pat-
terned sparse systems. All of the
experimental results were obtained
from the CRAY-1; even the algorithm
classifications to be made are
useful only for a memory-hierarchi-
cal processor of the CRAY-1 class
with a range of scalar, short
vector, and long vector capabili-
ties.

CLASSIFICATION

Consider the linear system
Ax = b solved by triangular fact-
orization of A into L and U. As-
sume that the factorization has
proceeded by outer product column-
row operations so that an nxn un-
reduced system remains. The struc-
ture of this unreduced system--
which includes fill from the com-
pleted portion of the reduction--
then becomes the principal issue
in determination of the sparsity
algorithm to be used during the
remainder of the reduction. This
is an important generalization
beyond examination of only the
structure of A, since it suggests
the use of different algorithms
(polyalgorithms) as the reduction
proceeds and f£ill increases the
density of the unreduced portion.

Four sparsity structures will
be considered at various parts of
this paper; they are listed below
to assist in unifying the later
discussion. These distinguishing

attributes are related to local
and global sparsity characteris-
tics:
(a) locally and globally
dense, partitioned;
(b) locally dense, globally

unpatterned;

(c) locally dense, globally
patterned; ‘ ’

(d) locally -sparse, globally
patterned;

(e) locally sparse, globally
unpatterned.
The last is the least vectorizable.
Its scalar solution is probably
amenable to speedup_only by using
a MIMD architecture3 and so will
not be discussed further.

BLOCK-ORIENTED SPARSE SOLUTION

INTRODUCTION

Two classes of relatively
dense matrices benefit from solu-
tion by a general sparse solver
which is oriented toward the solu-
tion of block structures. Al-
though algorithmically less
challenging than the sparser case
to be studied later, such struc-
tures are becoming more common due
to the aforementioned increasein the
implicitness of PDE solution codes.

THE DENSE, PARTITIONED CASE

The utility of a general
sparse solver in the analysis of
full, banded, and other dense
systems arises from vector length
limitations of the processor,
which in turn results from a rela-
tively small cache memory in a
hierarchial memory system. Such
dense systems must be block-
partitioned; in the case of the
CRAY-1, these partitions must be
limited in one dimension to 64,
the maximum vector length of the
machine. Using a general solver
avoids the writing of specialized
assembly language routines for
dense systems with globally dif-
ferent density patterns but -which
are partitioned into locally sim-
ilar 64-length or smaller dense
blocks.

The processing of such large
blocks with a sparse solver can be
carried out on the CRAY-1 with

>99.9% of the solution time in
numeric kernels, and with <.1% in
processing of lists resulting from
the general sparsity assumption.

A variety of common compressed
storage schemes can also be accom-
odated?.

LOCAL DENSITY

Moderate-sized dense blocks
occur naturally from the represen-
tation of variable and equation
coupling, from nodal coupling in a
grid, and from coordinate trans-
formations, among other causes,

In the absence of other vectoriza-
tion strategies (to be discussed
shortly), it becomes necessary to
reduce the system a block at a
time with dense matrix kernels of
a bluck=ovriented gparse svulver.
Descriptors of the location and
size of the block suffice to 2uide
the solution of such a system®.

The overhead of list process-
ing of the blocks may be compen-

.sated by finely-tuned numeric

kernels, with the net result that
a general solver can execute at a
higher rate than a conventionally-
coded specialized solver®.

The execution rate is of
course highly dependent on the
matrix sparsity structure. How-
ever, a timing model of the num-
eric kernels and the list process-
ing overhead? allows the esta-
blishment of MFLOPS bounds for
matrices of constant block sizes
but arbitrary block sparsity
patterns. Such bounds are given
in Table 1 for the CRAY-1l. The
minimum rate is achieved with a
single off-diagonal block (e.g.,
block tridiagonal) and the maximum

‘with r off-diagonal blocks (Figure

l), as r—w,

LOCALLY DENSE, GLOBALLY PATTERNED
SPARSE SYSTEMS

INTRODUCTION

Table 1 shows that processing
block sizes with dimensions below
10 utilizes a small fraction of
the CRAY-1 processor speed. To
regain a high processing rate,
another structural property be-

MFLOPS

Block
sizes range
2 1.9 - 7.6
3 5.0 - 17.
4 10. - 26.
6 21. - 43.
8 32. - 60.
12 54. - 84.
16 69. - 98.
32 102. - 124.
64 126. - 141.
Table 1. Performance of general

block sparse system
solver on the CRAY-1

-3 r blocks

Diagonal
block
®
)
)
°®

r
.)
blocks

Model of block pivot
step

Figure 1.

sides density should be exploited.
It is proposed to utilize global
similarities or patterns to length-
en density-related vectors. These
will be termed hybrid vectors and
are the subject of the remainder of
this paper.

A "bottom-up" approach will be
used. After defining and illustra-
ting the model hybrid problem, it
will first be demonstrated that the
CRAY-1 .can achieve considerably
higher execution rates on hybrid-
related kernels. Then it will be
shown how such hybrid vectors can
be achieved with common finite

difference (or finite element)
structures. .
GLOBAL vs. LOCAL PROPERTIES

In establishing the hybrid
vector concept, it will be useful

105

' to use the notion of the graph of

a matrix.

The non-zero structure of a
matrix A, where A is structurally
symmetric, has a convenient graph .
theoretic formulation. Assume
that aiiyfo, i=1,2,...n. Let V =
{vyi,va,...vh}, with the v; termed
vertices and V the vertex set.
Define a set P of ordered pairs of
V, called edges, by (vj,v:)EP if
and only if aj40 and k#j.~ Then
G=G(V,P) is cazled the graph of A.
Note that, because the matrix is
structurally symmetric, (vi,vj)E p
if and only if (Vj,vi)e P.

To illustrate the relation-
ship between local and global pro-
perties, consider the subgraphs
G) and Gy of Figure 2(a). These
subgraphs are possibly connected
by paths through vertices not
shown, but are assumed to be not
directly connected. If the assoc-
iated equations are arranged in
the numbered order, the partial
matrix structure of Figure 2(b) re-

sults. This structure is locally
dense (contrast full) but globally
sparse, since the two dense sub-

matrices are not coupled in the
northwest matrix partition. If

‘"the equations are reordered so

that similarly-connected nodes are
consecutively ordered, then each
of the resulting 16 partitions is
either a diagonal or a null sub-
matrix (Figure 2(c)). Because
most sparse blocks are coupled to
other sparse blocks by diagonal
coupling blocks, ‘the matrix struc-
ture is now termed glcbally dense.
(It may be noted that the local
density pattern of each dense
block of Figure 2(b) is identical
to the global density pattern of
Figure 2(c).) The factorization
of the northwest corner of the
system matrix may utilize any algo-
rithm, independently of the algo-
rithms used to reduce the remain-
der of the matrix.

If the connection symmetry
between the two sets of nodes
undergoing reduction extends to
their interconnections to other
unreduced nodes as in Figure 3(a),
and if these unreduced nodes are
properly ordered as shown, then
the northeast and southwest parti-

graph

G

G

1 2

arbitrary graph

] .
density
), 9 arbitrary
6 1 density 2
« 8 ‘ 3 4 10
(a) Similar ‘subgraphs (G, and G.)
1 2 5 6
. 8

(a) Similar subgraphs and connect-
- ions (o-node undergoing reduc-

1
4

- - tion; e-unreduced node).

X X X X

X X X

X X

X X X
X X X X - -
X X X 12345¢6 78 9 10
X X
SOOI Y

(b) Locally dense, globally sparse | T - - - 7T, - - - - ==

. aﬁiiiiiiy_;_H I i%%
|

corner (:::) arbitrary
. (3::> (::2) density
~ 15263748 - (b) Associated matrix

Figure 3. Similar subgraphs with
similar connections to
rest of graph.

tions can be made to contain simi-
lar diagonal coupling matrices
(Figure 3(b).

arbitrary
| density ——— % j KERNEL STUDY
(c) Locally sparse, globally In solution of large sparse
dense corner. systems, the multiplication/accum-
ulation (M/A) kernel dominates
Figure 2. Relationships between other numeric kernels. Elimina-
local, global matrix tion of a strip of row and column
properties blocks symmetrically coupling a

diagonal block to r other diagonal
blocks (Figure 1) requires (a) fac-

106

torization of a diagonal block,

(b) r block forward and back sub-
stitutions, and (c) r2 multiplica-
tions/accumulations. For r=3 (a
common number for dissected finite
element and finite difference
grids), 69% of the operations are
of the M/A type. The M/A kernel
therefore warrants principle study.

The nature of the M/A model
kernel with both local diagonal
sparsity and global density is
illustrated in Figure 4. It is
proposed to study the execution of
the kernel

+ A*B (1)

where A, B, and C are illustrated
in the figure.

B—>r blocks

VOB

diagonal
block

&

&

&
%
&
DX
D

@@@ &>

A
DHH S
r : __v—J
blocks - unreduced
matrix partition
Example of model

Figure 4.
- problem

The preference for processing
hybrid kernels can be expected to
arise from the interconnection or,
more generally, the data flow pro-
tocol of the processor. For the
CRAY-1, two recursive features of
the vector registers permit high
performance M/A kernels.

4-Matrix M/A. The pattern illus-
trated by the matrix multiply

107

-
X X b'e X '
117x X x 117x Xy
X X X X X X
X A .,X X X X X
X 217x X b'e X X
pYe x X x X x_1(2)
X X X X X X
X b4 X X
x 317x X, X, X X
L Tx X xJd L Tx x *x]

represents, on equation reordering,
the simultaneous multiplication of
four 3x3 full matrices. It is
proposed to ‘implement the assoc-
iated accumulation kernel by form-
ing

F - PC - PA -
'lj 1j 1K
3 . -
Coi | <[Ca3] ¢ kgl By |Axk | 3
C3j C3j A3k
e - b - - -
i.e., by accumulating a column of

diagonal blocks of C. To perform
each term of the summation by a
single chained multiply-add vector
operation with the CRAY-1 requires
chain replications of the 4-length
B4 to & l2-length vector so that
the overhead of the replication
does not seriously impact the over-
all timing.

The basis of this replication
is the recursive feature of the
vector logical pipeline, whereby,
if the same vector register is both
operand and result register--
usually prohibited in register
allocation--data will be delayed
four clocks in the pipeline and
the desired replication achieved.
Figure 5 gives the CAL instruction
sequence and the clock level report
of a part of the accumulation loop,
as reproduced by a CRAY-1 timing
simulator?.

Table 2 gives the execution
rates of a complete 4-matrix mul-
tiply, in comparison with the rates
of two full matrix multiply kernels
previously studied. The standard
full kernel for short vectors pro-
duces large gaps in the floating
point pipelines due to the chain-
ing The high-performance
matrix multiply kernel avoids
chaining and the consequent gaps

but suffers from register and pipe-
line reservations and addressing
overhead resulting from four sep-
arate invocations of the full mat-
trix multiply. Table 2 shows that
nearly three times the execution
rate is achieved for multiplication

of four 4x4 matrices with the spec-

ialized kernel, in comparison with
the standard CAL kernel.

8 Matrix M/A. A similar recursive
feature of the addition pipeline
allows the rapid accumulation of

8-length vectors and consequently

" the simultaneous multiplication of

8 matrices. This is a well -known
feature described in [8] and will
not be discussed here. It suffices
to note in Table 2 the extraordin-
ary speedups achievable with very
small matrices. However, the
execution rate has a large dis-
continuity between n=7 and n=8,
due to the nature of the algorithm,
and is less desirable beyond n=7
than a 4-matrix multiply.

T FFF V., REG BRSRRR 6 8. REG A A. REG
A INSTRUCTION Fo-ANNR CF FRPFUYY SCRKKK R R
G X/ &4 01234567 FLARC AQ1234%5467 AQL2345467
5 VUl »A0-A0 540 628107 B0 00 1m0 ! 4 ! !
65 A3 AOHAZ - 540 629107 PS00 00 15 : 4 ! b !
430102 B0 00 1S] 4 Lé & '
7 A3 A34A1 550 63110 PE0 00 1S 14 4 ! 7 !
8 VL AR SER ARR1O0 FB0 00 1S ! v 7 ;
2 A0 AO+AS 550 63310 B0 00 1S ! S :
A A5 AStA6 551 63410 B0 00 15 H 199 Ao
63510 PS50 00 15 ' Y &
B AS AO+AS 566 63610] 0 ! ! ' B
C V0O +A0:AQ S6R 63710 W 0 It ! 'R B
‘ 63810 0 0 iC ! ' !
463910 cs 0 IC ! ' !
6401 e 0 IC ! ! !
6411 cH o It ! ' !
V3 VU3IV18UM 560 6421 n o cnno ¢ ! ' H
6431 n ocon o e ! H !
644, o iChn " ' ' '
645 o ICh D i ! ' '
E V4 VU3XRVO0 561 6460 E N ED FEE 'c] ! !
F A0 A0t+A4 574 647! E I ED EE c ' S .
5 A4 A4+Al G7R G488 E O 1EDR FE I ' IFF G !
6490 E NI YED FE H o | G 3 !
6500 F 0 ED EE ™ ' H '
651 E N IED EE ™ ! ' '
4520 E N YED FE ™ ! ! i
653 E I YED FE i ! ! '
6540 E D IED EE ' ! ! !
H V&6 VU7+FV4 57C GGG IHE T tED EM HH!IC ! ! '
T V. Al 570 HHGIHE N VED EH HHIC ! ! H
SE7IHE O YED EH HHILC ' ' '
GEBIHE I IED FEH HHIC ! ! !
HHPIHE It YED EH HHIC !] !
HGHOVHE It JFED EM HHIC ' ' '
661 HE T IED FEH HHILC ' ' !
HO62VHE It YED EH HHIC] ! :
HGH&ZIHE I ED EH xH!C H ' '
664HE T IED EH HHIC ! ! !
704!HE D {ED EH HHIC H ! !
ZO05MHE It YED EH HH! ' ']
J V1L A0YAD H0A JO6IHE D (EJ FH HH!Y ' ' '

Figure 5.
quence for VL

64.

Simulator output for 4-matrix
V1l is replicated into V3 with VM

108

accumulation instruction se-

0077..78.

Full High- 4- 8~
matrix Stand. perf. matrix matrix

size full full hybrid hybrid*

2 7.6 8.7 17.2 22.1

4 19. 30. 54.0 55.7

6 NT* NT 76.3 88.5

8§ 43. 64. 90.2 72.5
10 NT NT 97.8 90.8
16 88. 102. 119. --

* Not tested
** Positive accumulation only

Table 2. Execution rates (MFLOPS)
of matrix multiply ker-
nels. Subroutine entry
and exit overhead is not
included.

AN ALGORITHMIC OVERVIEW

An important algorithmic pro-
perty of the above hybrid vector
construct is that the kernel vector
length is proportional to the pro-
duct of factors related to (1) the
local matrix density and (2) the
global matrix patterns. In less
precise terms, one may claim the
length is the product of local
coupling and global decoupling.

In solution of large init-
ially sparse patterned systems,as
the reduction progresses fill
causes the coupling to increase
and the decoupling to decrease,
leaving the possibility that their
product remains a relative constant.

Such a result could produce a
very useful generalization of
previous work (ref. [9][10]) where
vector lengths were assumed a func-
tion of the local density only or
global patterns onlyll. To length-
en vectors by increasing local
density, previous algorithms were
inevitably driven to an increase
in the arithmetic computational
complexitylO.

The following study can be
considered an initial investiga-
tion into the production of hybrid
vectors for finite difference grids.

A number of algorithmic questions
will be left unanswered, a topic
for continuing research.

GENERATION OF HYBRID VECTORS

INTRODUCTION

Given the graph of a matrix,
it is proposed to perform opera-
tions on this graph which yield
hybrid vectors in the matrix re-
duction with either no increase or
a determinable increase in the
arithmetic operation count. The
example of a 5-point 2-D finite
difference grid will be used to
illustrate the procedure, because
of its connection regularity and
because its solution by nested dis-
section is characterized by exploi-
tation of decoupling to achieve a
reduced arithmetic operation count
for large grids. The reader is
assumed to be familiar with this
dissection processlzf

FOLDING AND ROTATION

The (diagonal) nested dissec-
tion of a 5x5 grid proceeds by re-
cursively dividing the grid into
quadrants until each quadrant con-
sists of a single node. This div-
ision is performed along diagonal
separators, which are lines of
nodes whose removal divides the
graph into unconnected parts.

It is clear from Figure 6(a)
that, since the quadrants have a
similar structure, "similarly-pos-
itioned" vertices not on a separator
may be eliminated simultaneously
with vector operations, without
increasing arithmetic computation.
These vectors will be of length
four, as required for the 4-matrix
kernel of Figure 5.

"Similarly-positioned” nodes
can be generated by overlaying the
quadrants so that a single node in
the overlay represents 4 nodes.
This single-quadrant representation
of the 4 gquadrants may be achieved
by folding or rotating the original
graph. This rotation process is
illustrated in Figure 6(a)-(b); a
recursive folding process - which
generates vectors of decreasing
length ~ is discussed in ref. [14].

Because the non-separator
nodes are eliminated first in the
nested dissection process, these
interior nodes are represented by
the northwest corner of the system
matrix; this corner is consequent-
ly guaranteed to consist of 4x4
blocks with either diagonal or null
structure.. The southeast corner
of LU, representing the reduction
of the separator nodes, is dense
and can be reduced at execution
rates exceeding 100 MFLOPS. The
northeast and southwest partitions,
however, represent coupling between
the separators and the interior
nodes of the quadrants. Asymptoti-
cally in the grid dimensions,
operations involving these two
partitions consist of approximate-
ly 30% of the total, so that the
choice of a proper kernel is im-
portant (Figure 7). Irregularity
in these coupling matrices results
in part from the separator nodes
shared by Q1 and Q4 (nodes #1, #7
and #13 in Figure 6(a)) in the
rotation sequence., The regularity
may be restored by cutting the
graph along the boundary, adding
nodes and associated unknowns, and
adding equations that relate the
new nodes to the originally shared
ones. This cutting process 'is il-
lustrated in Figure 6(c)-(d).

The structurc of L and U re-
sulting from application of such
cutting to a 17 x 17 finite dif-
ference grid is shown in Figure
8 (b). The conventional nested
dissection ordering for the same
matrix yields the LU map of Figure
8(a). Coupling in the northwest
partition appears as 4x4 diagonal
blocks, as predicted; coupling in
the northeast and southwest par-
titions appears as 4-length stripes,
but not necessarily as 4x4 diagonal
blocks. Thus a somewhat modified
4-matrix accumulation kernel would
have to be used. The addition of
the 8 nodes along the cut also in-
creases each dimension of the dense
southeast corner of LU by approxi-
mately 25%. The total increase in
computation resulting from cutting
is as yet undetermined.

SUMMARY

Vectorization and data flow

(a)

(b) 3,15,23,11
1,5,25,21 2,25,21,1

13

cut

(c)

(d) 3,15,23,11
1,5,25,21 5,25,21,26
> 13

Rotation of quadrants (a)
into single-quadrant
representation (b); ro-
tation with cut and
creation of nodes ((b)-

(c)).

Figure 6.

for a memory hierarchical process-
or add two new issues to be con-
sidered in the development of codes
for the direct solution of 2-D
finite difference grids. What is
a single algorithm class--nested
dissection--for a scalar machine
now divides into subclasses of
algorithms, of which the above
proposal is only one. Checker-
board and related ordering strat-
egies are also attractive; pre-
liminary estimates indicate such
codes will exigute over 100 MFLOPS
on the CRAY-1"~, which can partial-
ly compensate for increased arith-
metic computation.

accum: 4-matrix
$ opns: 50
MFLOPS: Table 2

accum: ? accum: dense
$ opns: 30 % opns: 20
MFLOPS: ? MFLOPS: >100
(Table 1)
L -

*Approx. percent of total arith-
metic operations. '

7. Estimated asymptotic
perf. of polyalgorithm
to perform nested dis-
section in four matrix
partitions.

Figure

SPARSE, PATTERNED SYSTEMS
As the coupling in A, B, and
C of Figure 4 decreases, each
approaches a diagonal matrix.
accumulation then involves at least
two vector loads (and usually one
vector store) for each floating
point M/A operation and sufficient
list processing to locate at least
two of the matrices in memory. An
accumulation kernel written for

the CRAY-1l, including list process-
ing and a vector store for each
accumulation, executes at the rate

(et
T + 31.3/%

The

MFLOPS = 53.3)

.

111

with the maximum value of 35.8 for
2 = 64. This is less than 1/4 the
asymptotic rate of a dense accumu-
lation. The kernel is memory bound
and involves significant start up
time for the relatively small float-
ing point computation involved.

CONCLUSION

While the speed of vector
processors encourages the formula-
tion of denser systems, their in-
creasingly parallel design favors
the construction of longer vectors
that can be distributed across
many pipelines operating concur-
rently. In this paper, the vector-
lengthening advantages of the hy-
brid vector construct have been
shown at the kernel level and
methods have been proposed to pro-
duce such vectors directly from
the problem structure.

From the algorithm viewpoint,
the direct relationship between
problem and processor structure
offers novel insight possibly use-
ful in developing a family of
equation ordering techniques
based on [uldiuny, rubation,etc.

It is also hoped that a high per-
formance software package may be
developed for specific 2D grid
geometries.

From the viewpoint of process-
or architecture, this paper has
quantified the motion that the
less dense the system, the more
data flow and other accumulation
kernel overhead is required. A
patterned system may permit the
lengthening of vectors - which re-
duces the influence of overhead -
but does not significantly alter
the data flow problem.

ACKNOWLEDGMENT

The author acknowledges the
programming assistance of M.
Yatchman, and the insight provided
by a CRAY-1 simulator developed by
D. A. Orbits. This work was spon-
sored jointly by the Mathematical
and Information Sciences Director-
ate of the Air Force Office of
Scientific Research, and by the
Air Force Flight Dynamics Labora-
tory, Wright Patterson AFB under

»
4 -
‘ " =

. .

\ ! =

. i s
o . L
] ih
L "
an
(i "5,

Figure 8(a). Matrix of dissected

17x17 5-point finite difference grid;
before rotation.

.

112

Figure 8(b). Matrix of dissected 17x17 S5-point finite difference grid;
after rotation.

113

Grant 75-2812.
References

lR. W. MacCormack, "An Efficient

Numerical Method for Solving the
Time-Dependent Compressible Navier-
Stokes Equations at High Reynolds
Number," NASA Report TMX-73.129,
Ames Research Center, Moffett
Field, CA, (July, 1976).

2R. M. Beam and R. F. Warming, "An
Implicit Factored Scheme for the
Compressible Navier-Stokes Equa-
tions II: The Numerical ODE Conn-
ection," Paper No. 79-1446, AIAA.
4th Computational Fluid Dynamics

Conf., Williamsburg, VA., (July,
1979).
30. wing, and J. W. Huang, "An Ex-

periment in Parallel Processing

of Gaussian Elimination of a
Sparse Matrix," Proc. IEEE 1976
International Symposium on Circuits
and Systems, Munich, Germany
(April, 1976).

4D. A. Calahan, "A Block-Oriented
Sparse Eguation Solver for the

CRAY-1," Proc. 1979 Intl. Conf.
on Parallel Processing, Bellaire,
MI. (August, 1979).

5

D. A. Orbits, "A CRAY-1 Simulator,"
Report #118, Systems Engineering
Laboratory, Univ. of Michigan,
(Sept., 1978).
6D. A. Orbits, and D. A. Calahan,
"A CRAY-1 Simulator and Its Use
in Development of High Performance
Algorithms," Proc. Workshop on
Vector and Parallel Procegsing,
Los Alamos Scientific Laboratory,
42-56, (Sept., 1978).
7W. G. Ames, et al, "Sparse Matrix
and Other High Performance Algo-
rithms for the CRAY-1," Report
#124, Systems Engineering Labora-
tory, Univ. of Michigan (January,
1979).

8CRAY—l Reference Manual, Pub.
#2240004, Cray Research, Inc.,
Chippawa Falls, Wisc.

114

9D. A. Calahan, "Complexity of

Vectorized Solution of 2-Dimen-
sional Finite Element Grids,"
Report #91, Systems Engineering
Laboratory, Univ. of Michigan,
(November, 1975).

loA. George, W. E. Poole, Jr., and

R. G. Voigt, "Analysis of Dissect-
ion Algorithms for Vector Compu-
ters," ICASE Report 76-17, NASA
Langley Research Center, Hampton,
VA (June, 1976).

llD. E. Barry, C. Pottle, and K. A.
Wirgan, "A Technology Assessment
Study of Near Term Computer Capa-
bilities and Their Impact on Power
Flow and Stability Simulation Pro-
yrams," Final report on Researc¢h
Project EPRI TPS 77-74Y, General
Electric Co., Schenectady (June,
1978).

12 .
A. George, "Numerical Experiments
Using Dissection Methods to Solve
n by n Grid Problems," SIAM J
Numer. Anal., vol. 14, 161-179
(April, 1977).

13P. T. Woo, 8. J. Roberts, and F.

G. Gustavson, "Applications of
Sparse Matrix Techniques in Rcs-
ervoir Simulation," SPE 4544 48th
Annual Fall Meeting of Soc. of

Pet. Engrs., Las Vegas, Nevada
(1973) .

14
D. A. Calahan, and W. G. Ames,

"Vector Processors: Models and
Applications," (To be publishcd,
Trans. IEEE on Circuits and
Systems, Fall, 1979).

15D. A. Calahan, W. G. Ames, and

E. J. Sesek, "A Collection of
Equation-Solving Codes for the
CRAY-1," Report #133, Systems
Engineering Laboratory, Univ. of
Michigan (August, 1979).

PARALLEL ALGORITHMS FOR SOLVING BANDED
TOEPLITZ LINEAR SYSTEMS

Ahmed Sameh
Joseph Grcar
Department of Computer Science
University of I1linois at Urbana-Champaigni
Urbana, I11inois 61801

ABSTRACT

Such systems of linear algebraic equations arise in many applications such as the
numerical solution of partial differential equations using finite difference descreti-
zation. We present several algorithms for the solution of these systems, and compare
their efficiencies and numerical stabilities on a model parallel computer with a small
number of processors. Assuming unlimited parallelism, however, we show that a positive
definite Toeplitz system of order n and bandwidth m<<n can be solved in time O(m]ogzn)
using 0(mn) processors.

115

AN EXPERIENCE WITH THE CONVERSION OF THE LARGE-SCALE PRODUCTION
CODE DIF3D. TO THE CRAY-1

Keith L.

Derstine -

Argonne National Laboratory
Applied Physics Division

9700 s.

Cass Avenue
Argonne, Illinois

60439

ABSTRACT

Optimized iteration methods for the solution of large-scale fast reactor finite-

difference steady state neutron diffusion theory calculations are presented.

The methods

utilized include the Chebyshev semi~iterative method applied to accelerate the outer fis-—
sion source iteration and an optimized block successive overrelaxation method for the

within-group iterations.

The theoretical basis and the computational and data management

considerations that enter into the formulation of the overrelaxation method are dis-

cussed.

A vectorized variant of the overrelaxation method is discussed.

The conversion

to the CRAY-1 of a computer code employing these methods is discussed and the performance
of vector and scalar algorithms on vector and scalar computers is compared for a benchmark

problem.

I. INTRODUCTION

Much effort has been devoted to the
development of optimized iterative methods
and convergence acceleration techniques
for application to the finite-differenced
form of the multigroup neutron diffusion
equationl™3. A powerful multidimensional
multigroup diffusion code DIF3D% employs
these techniques for fast breeder reactor
(FBR) design at ANL; typical FBR problems
require from 5x10° to 1.6x10® space
energy unknowns.

In recent years the advent of
advanced computing systems capable of exe-
cuting upwards of 40 million floating point
operations per second (megaflops) has stim-
ulated the development of parallel algor-
ithms exploiting the newly available vec-—
tor processing capabilities. Recognizing
the potential for vastly improved perfor-
mance, a study has been conducted to
determine the impact of the CRAY-1
advanced computing system on the DIF3D
computational and data management strate-—
gies as optimized for the IBM 370/195 and
the CDC 7600 computers; investigations
concerned with vectorization achieved by
appropriate algorithm modifications
requiring minor program modifications were
included.

116

Results of the study indicate that
the unmodified scalar algorithms in DIF3D
aided by an optimized CAL assembler rout-
ine can achieve a 3 fold increase in com-—
putation speed over machines such as the
CDC 7600 and the IBM 370/195. Minor modi-
fications in which a key algorithm is vec-—
troized yield a nearly 6-fold performance
gain. Analysis of the CFT compiler code
generation iudicvales that an 8-fuld per-
formance gain is highly probable with sui-
table CAL optimization to a single vector
subroutine.

In Sec. II of this paper, the finite
differenced form of the multigroup neu-
tron diffusion equations is presented,
along with a review of the properties of
these equations which permit the applica-
tions of the iterative methods discussed
in subsequent sections. The theoretical
aspects of the iteration methods used for
the inner (or within-group) iterations are
described in Sec. III. Section IV con-
sists of a discussion of the computational
considerations that strongly influence the
manner in which these iteration methods
are implemented in this optimized itera-
tion strategy. Because of the massive
amount of data that must be dealt with at
each iteration cycle in large FBR problems,
the data management requirements of a

particular iteration strategy have a
strong influence on the efficiency of that
strategy. Section V of this paper de-
scribes the data management considerations
that have had a significant impact on the
form of the iteration method described in
this paper. The relatively rapid conver-
sion of DIF3D for implementation on the
CRAY-1 is discussed in Sec. VI. The minor
programming changes required to achieve
significant vectorization of inner itera-
tions are discussed in Sec. VII. Section
VIII concludes with a comparison of the
performance of DIF3D variants of both vec-—
tor and scalar algorithms on vector and
scalar computers.

II. THE FINITE DIFFERENCED MULTIGROUP
DIFFUSION EQUATION

The time-independent multigroup neu-
tron diffusion equations can be written as

—u- D (Z > r, > >
v g(r)Vq>g(r) + zg(r)q)g(r)

s > +>
> RTCOTINC)
g'#g

G
1 Fog
= —;)\(g Z \)Zgl(;)Q)g,(;), g=l’2’...’G.
g'=1

)

The symbols used here and elsewhere in
this paper that are not defined locally
are defined in the Nomenclature.
Boundary conditions for Eqs. (1) are of
the type

a ->
ngﬂ(—”mg(mg(%) = 0, Ter, (2)
- n

9

where T is the boundary of the region of
solution R.

Equations (1) are discretized in
space by first subdividing the region R
into a regular array of subregions or mesh
cells. Then, using either the mesh—-cell-
centered method>:657 or the mesh cell-
corner method,8 the actual finite differ-
ence cquations for the appropridtely
defined cell-averaged fluxes are obtained.
For energy group g,the resulting equations
can be written in matrix form as

G

> > >

+ - X =L Y F 3

g Tgfs T oes'fs’ T Wg Z e'ls
8'<g g 3

>
D
g?

<>
where 9, is the vector of (approximate)
fluxes on the finite difference mesh. The
matrices & , T ,, F ,, and X_ are N * N
g g8 g g
diagonal matrices, where N is the number
of cells in,the finite difference mesh.
The vector 9,, of length N, consists of
the neutron flux values in each of the
mesh cells consistent with the method used
to finite difference the equations. For
purposes of this,paper, it is assumed that
the unknowns in ¢, are ordered in a lin-
ear fashion, row §y row and plane by plane.
Given this linear ordering, the N X N
matrix D, contains three, five, or seven
nonzero stripes for one-, two-, or three-
dimensional orthogonal geometries, respec-—
tively. It operates on %, to yield the
net leakage across the faces of each mesh
cell. Note that in Eq.{(3) and throughout
the remainder of this paper, it has been
assumed that no upscattering is present,
icee, Tgor =0, g' > g

The G Eqs. (3) can be condensed into
the single matrix equation,

> 1 >
ué = yBe ()

where M and B are square and of order N*G
and ¢ = col[¢l, ¢2,..., ¢G]. The matrix

M is given by

Al 0
0 0
A T, 0
M = 2, - 2l :
o - . .
A Ac) L Ter Te2e+Tg,6-1 O
(5)

where Ag(EDg + Zg) is the leakage-plus-—

removal matrix operator and O is the null

matrix. By defining the N*GxN matrices,
F = col[Fy, F2,..., Fgl (6)
and
XK= col[Xl, Xgyeoes XG] , (1)

the matrix B can be written as

B = x FT | (8)
where superscript T denotes the transpose
of a matrix.

The matrices used in Egs. (4) through
(8) possess a number of properties that
provide a sound theoretical basis for the

iteration methods discussed in Sec. III.
For any physically realistic set of
assumptions, the diagonal matrices ngv,
xg? and F, are non-negative matrices.

It has been shown9 that the matrices Ay
are irreducible Stielt jes matrices and
that the inverse of each A, has all posi-
tive entries, i.e., A31>0.° Because of
these properties, the matrix M is nonsing-
ularl0 and the eigenvalue problem Eq. (4)
can be written as

re = M1iB} (9)

Under quite general conditions, Froehlichll
has shown that Eq. (9) has a unique posi-
tive eigenvector $1 and a corresponding
single positive eigenvalue)j greater than
the absolute value of any other eigenvalue
of Eq. (9). Furthermore, any positive
eigenvector of M71B is a scalar multiple
of 31,

The properties of B permit a reduc-
tion of the matrix eigenvalue problem that
must be solved to obtain); from one of
order N*G[Eq. (9)] to one of only order
N (Ref. 12). Advantage is taken of this
fact in obtaining the outer iteration
method presented in Sec. III, which is
used to obtain)j and 31. This reduc-
tion is accomplished by first noting that
M~1B is of order N*G and therefore
has N*G eigenvalues. However, the rank
of ¥ is only N, thus making the rank of
M~1B only N. Hence, (G — 1)*N of its
eigenvalues are zero. The nonzero eigen-—
values can be determined by considering
the reduced but equivalent problem of
order N.

Following Ref. 12, but considering a
full down-scattering matrix, this reduc-
tion is accomplished by first defining the
fission source vector, ?, as

$=FT$=2G:F$ (10)
) g=lgg’
and the N*GxN matrix L as
L = col[Lj, Lp,eee, Lgl = M71x > (11)

where the NxN matrices Lg are defined as

L
g

ATl + Z T ,L)) (12)
8 78 i, 888

These definitions plus Eq. (4) permit the
group flux vector, ¢g, to be written
as

$ o= Lp¥ (13)
g Xg

Premultiplying Eq. (9) by FT and using
Eqs. (8) and (10) yields the reduced
problem

Wo- g (14)

where
T G.
= FL = FL . (15
? 20 Ty (15)
g=1

If ¢ and » are an eigenvector and corre-
ypouding nonzero eigenvalue of M~1B, then
¥ and A must be an eigenvector and eigen-—
value of Q and vice versa. Furthermore,
by making use of a simi}grity transforma-
tion, it has been shown that the non-
zero eigenvalue spectrum of Q is identical
to the nonzero spectrum of M™1B and that
any non-negative eigenvector,of Q is

" either a scalar multiple of ¥ or else

sorresponds to a zero eigenvalue, where
Wl corresponds to Al’ Thus the two
eigenvalue problems, Eqs. (9) and (14) are
equivalent.

III. ITERATION METHODS: THEORY

The solution method presented in this
paper utilizes two levels of iteration,
the outer or fission source iteration and
the inner or within-group iteration. The
outer iterations seek to getermine the
fundamental eigenvector, ¥;, and corres-
ponding eigenvalue, Ap, gf Eq. (14) or the
fundamental eigenvector ¥;, and A of

Eq. (9).

Fast reactors tend to be tightly
coupled with relatively small nonfission-
able regions. In addition, the data man-
agement requirements associated with
accelerating the flux vector are at least
an order of magnitude greater than those
associated with the fission source for the
10 to 30 energy groups that are typically
for fast reactor calculations. Both of
these factors tend to favor the use of an
outer iteration procedure based on fis-
sion source vector acceleration.

In the method reported here, approxi-
mations to)} and wl, the funda-
mental eigenvalue and eigenvector of Q,
are obtained by the well-known power iter-
ation method. It is assumed that the
eigenvalue spectrum of Q satlsfles
A1”>-A2 > A3 2s.+> AN and that wl is
the eigenvector associated with jj. The
power method proceeds as

l .
*(n) _ ->(n-l)
v = ¥ (rea)
and
A o (D) uw()Hl , (16b)
> (n-1
Iy %

where n is the .outer iteration index and
1°11 denotes the Lj norm. The actual
computation of the product QW(H'l in
e.g., Eq. (16a) ivolves another level of
iteration, and is discussed later in this
section.

Because the largest (in modulus)
eigenvalue of Q is real and simple, the
power method is guaranteed to converge for
ang arbhitrary non—negatlve initial vector

to A1, and CTl, where ¢ is
some positive constant. If it is assumed
that the eigenvalue esimates A(0) are
suff1c1ently well converged to A1 and
that w(O can be expanded in terms of
the Wl, the eigenvectors of Q, then the
rate at which w(n) converges to Wl
depends on the separation of); from the
other eigenvalues of Q (Ref. 9). This
convergence rate depends on the dominance
ration, g, given by

5 = maxlril

i#l Al

(17)

with the convergence rate ultimately being
controlled by (o)™

Dominance ratios for recent large fast
reactor designs are typically on the order
of .95 or larger, implying relatively slow
convergence of the iterative process given
by Eq. (16). In addition, typical
fast reactor multigroup representations
are characterized by nearly full downscat-
tering matrices. The group—-by-group cal-
culation of the scattering source required
for each outer iteration becomes a
costly input/output-bound calculation
when such representations are used in
large multidimensional calculations.

Both of these factors motivate the use of
an efficient outer iteration acceleration
technique in fast reactor diffusion theory
calculations.

The Chebyshev semi-iterative method
is utilized to accelerate the outer fis-—
sion source iteration given by Eq. (16).
Its application is based on the assump-—
tions that the eigenvalues of Q are real
and non—negative and are ordered as

A1>A2X32,..2A\?0 and that the eigenvec-
tors wl of Q form a basis for the
N-dimensional vector space. The basic
power iteration is accelerated by choosing
a linear gombination of the eigenvector
iterates ¥(n) such that

T (nk P 3 (&4 5 :
\y(n +P) = Ea- \y(n +J) (18)
4 Jp
j=0
where n* is the outer index where this

acceleration begins and p successive fis-
sion source iterates are employed. The
objective is to choose the coefficients

i(n*+p)

closely than does

approx1mates ¢l more
P (n*+p)

such that

Ref. 4 outlines the derivation that
leads to the accelerated iterative proced-
ure for p2l:

Jarp) | 1§ (atpm1)

A(n*+p-1)
%(n*+p) - %(n*+p-l)
+ ap[q(n*+p) _ §(nxp-1))
+ g (P _ (D)))
where
% = 2 —, 81=0,
2 -0
o, = 4 coshi(p - 1)¥] |
p b cosh[pY]
o
Bp = 1 - 7 O - 1. (20)

To apply the iteration schemes given
by Egs. (16) and (19), the dominance ratio
0 must be obtained and a suitable con-
vergence criterion must be applied to

measure convergence; the theoretical
aspects of these estimates are discussed
in Ref. 4.

The inner iterations ars required in
carrying out the operation Qw(n' on
the right side of Eqs. (16a) and (19a).

From Eqs. (12) and (13), Qw(n-l) can
be written as
Q¢(n-l) - ﬁi L @(n-l)
(n-l)E: »(n) (21)

where

*(n) - 1 +(n-1)

4" = oD (22)

>(0) > (n-1) >(n)

Civen the ¢p °, Q¥ and hence Y
can be e381%y obtained. The definition of
Ly, Eq. (12), defines a series of linear
equations:

Ageg™ = BEM, g =1, 2,...,6, (23)
which can be solved for the group flux

vectors $én). The source Eé“) is given by

2 T G+
g'<g

For multidimensional problems,the direct
inversion of Ag matrices in Eq. (23)

is not practical. The iterative inver-
sion of A8 for each group comprises

the inner iterations.

>(n-1)

B = ¥ 24

1
(n-l) Xg

Because of its sound theoretical
basis and computational simplicity (see
Sec. IV), the line successive overrelaxa-
tion method has been chosen for the solu-
tion strategy reported here. The matrix
A in Eq. (23) (dropping the group sub-
script) is split aslt

A = D-E-F, . (25)
where D contains the diagonal of A, plus
those off-diagonal coefficients that repre-
sent coupling between cell fluxes in each
row, E contains those blocks of A that lie
below the diagonal blocks placed in D, and
F contains those blocks that lie above
the blocks in D. The line successive
overrelaxation procedure is then given by

S = L ggm 4 R, (26)

120

where

L, = (- wE)"l[wF + (1 - w)D] (27)
and

kg = (@ -wE)lub, . (28)

The matrix Ly is the line successive over-
relaxation iteration matrix and @ is the
overrelaxation factor; both are group de-
pendent. Because A (for each group) is an
irreducible consistently ordered two-—
cyclic Stieltjes matrix for the finite
differencing schemes used here, the itera-
tion procedure given by Eq. (26) is con-
vergent for 1%w<2 (Ref. 8). Furthermore
there is an optimum value of W, say Wy,
for which the convergence is the most
rapid. This group-depcndcnt value of

Wy is given by

2
1+ [1-p(Ly))L/2°

Wy = (29)

where P(L;) is the spectral radius of Ljp,
the associated Gauss—-Seidel iteration

matrix, which can be obtained from Eq.
by setting W=l.

(27)

Following the procedure outlined in
Ref. 15, the value of Wy can be deter-—
mined to arbitrary accuracy because the
A matrix for each group has the properties
;isted above. For such matrices, if

0)>0 and if
x@ = 1 x@1) (30)
and
NCYI. l;(m)’#;(m)] ’ (30)
(x(m), x(m-1)]
then
linm 8¢ < p(L]) - (31)
m->co
Furthermore, if xgm'l) # 0 and if
5(m) " ™
= . 8 = . 1
VD 2 S ey - O

then
g(m) > p(Ll) > 6(m)’

sm) 5 s(m) 5 s(m)

and
lim 3™ = 1im g(“‘) = p(Ly) - (33)
m>co M->oo

The spectral radius (Lj) can be computed
by carrying out the 1terat10n %1ven by

E% (30a), computing g§{m) and
m) and observing their’ convergence to

one another. The computational details
involved in implementing this procedure
for computing y} are discussed in Sec. IV,

ITERATION METHODS: COMPUTATIONAL
CONSIDERATIONS

Iv.

In Sec. III, the theory underlying
the iteration methods for the solution
strategy here has been presented. In this
section, the computational considerations
that determined the details of their
implementation in the DIF3D code are dis-
cussed. The inner iteration procedures are
presented here, preceded by a summary of
the outer iteration procedures.

- The obvious ultimate goal of the
outer iteration procedure is to be able to
apply the Chebyshev acceleration procedure
given in Eqs. (19) with accurate estimates
of both_); and ¢g. However, since neither
A1 nor g are known when the outer itera-
tions are commenced, a "boot—strap” pro-
cess is required. As reported in Refs. 12
and 13, it has been found advantageous to
perform a limited number of power itera-—
tions, Eq. (16), initially to provide a
resonable estimate of)] and an initial
estimate of g, which is generally quite
low. A series of low=-order extrapolation
cycles is then utilized, during which the
higher overtones are rapidly damped out
and more accurate estimates of g are
obtained. Only when all but the first
overtone mode are essentially damped out
are high—order cycles based on accurate
estimates of g utilized. The precise
algorithm is described in terms of four
basic parts in Ref. 4.

Computational considerations arise
concerning three aspects of the inner
iterations. These are the computation of
the optimum overrelaxation factor wp for
each group, the determination of the num-
ber of inner iterations that should be
carried out for a given group at a parti-
cular outer iteration, and the actual

121

procedure used to solve the tridiagonal
matrix equations that characterize the
line successive overrelaxation method.

It has been shown in Sec. III that
the optimum overrelaxation factor for a
given group can be computed if the spec-—
tral radius of the line Gauss—Seidel
matrix, P(L1), is known. The procedure
outlined in Eqs. (30), (31), and (32)
provides a rigorous method for deter-
mining P(Ly). With the coding to carry
out the inner iterations using the line
successive overrelaxation method already
in place, the implementation of this pro-
cedure is trivial, since Lj is equal to
Ly, with @ set to unity. The vector k
in e.g., Eq. (26) also has to be set to
the null vector.

To ensure that the actual outer and
inner iterations are as efficient as poss-
ible, this computation of the overrelaxa-
tion factors is done prior to commencing
the first outer iteration. Starting with
gn arbitrary non-negative initial guess
x{ the iteration in Eq. (30a) is
carried out for m = 1 to 10. Following
each 1terat10n for m > 10, the quanti-
ties &(m m) and 5(m) are_computed.
The related quantltl?f w(m) W(m

and Eﬂm), defined by
wlm) = 2
14 [1-8m)1/2°
o(m) = 2
1+ [1-8m)1/2
and
wm) = 2 (34)

1+ [1-8(m)1/2°

are also computed. The iterations for a
given group are terminated when

2 - w(m)
5

<

w(m) - w(m) (35)

and W, for that group is set equal to
w(m), " The test given by Eq. (35) forces
tighter convergence as P(Ly) increases.
The amount of central processor unit
(CPU) time required to precompute the Wy
is typically on the order of one to two
outer iterations.

The theory presented in Ref. 4 on
the Chebyshev acceleration method impli-
citly assumes that the matrix equation

for each group, Eq. (23), is solved
exactly during each outer iteration. For
multidimensional problems, this is not

the case. It has been shownl3 that the
effect of solving Eq. (23) iteratively to
less’ than infinite precision for each
group is to modify somewhat the system of
equations being solved. Although both
systems share the same fundamental eigen-
value and eigenvector, the dominance ratio
of the modified system is larger than the
original system, Eq. (14). Some of the
eigenvalues of the modified system may be
negative or complex, which would slow con—
vergence of the outer iterations.

The most practical solution to this
problem is to do a sufficient number of
inner iterations for each group during each
outer iteration, so that the effect on the
dominance ratio is not appreciable, yet no
more than this. It has been determined
experimentally for a range of typical fast
reactor problems that this can be achieved
most economically by doing a fixed number
of iteratioms, m,, for each group during
each of the outer iterations. This elimi-
nates the need for any convergence check-
ing during the inner iterations and thus
eliminates the costly divides that would
have to be done to determine relative con-—
vergence on a component—by-component basis.

This number, mg, is determined for
each group by requiring that the norm of
the continued product of the iteration
matrices for that group during each outer
iteration be less than some desired error
reduction factor. This ensures that the
norm of any of the components of the
error vector is greater than or equal to
this error reduction factor during each
outer iteration. For a variant of the
line-successive overrelaxation method of
Eq. (26), where a single Gauss-Seidel
iteration precedes (m - 1) successive
overrelaxation iterations, the norm of
the continued product of the iteration
matrices is given byl®

Ly
Wb

My = (t%m—l + t%m)l/z, m>1, (36)

= (op - 1)@ DL/2 [5(1q)]1/2

x (1+ (m- {1 - [pL)]1/2}).

122

The single Gauss—Seidel iteration is
applied because the norm in Eq. (36) is
then strictly decreasing for m 2 1.
Letting €;,, be the desired error reduc-
tion factor and given Wy and P (Ly) for a
group from the optimum overrelaxation fac-
tor calculation just described, Eq. (36)
is solved to determine that value of m
such that

™l <e. . 37
Wy 12 in (37
The value of m so obtained is the fixed
number of inner iterations, mg, that are
done for group g for every outer iterationm.

Experience has shown that choosing
€in ¢ 0.04 will result in no adverse
impact on the outer iteration convergence
rate for typical fast reactor problems.
For problems with dominance ratios >0.85
(large reactors), a value of €, as
emall ae 0.0l is cometimeco nceccosary. It
is quite obvious when a value of €;, that
is too large for the problem at hand has
been chosen. The domihance ratio estimates
being obtained from the outer iterations
grow too large, and oscillatory behavior
of the acceleration cycles generally
results.

A large percentage of the total CPU
time required to solve large problems with
this solution method is spent in the inner
iterations. In implementing the algo-
rithms used to carry out these iterations,
it is essential that the full capabilities
of the present-day large-scale scientific
computers are utilized. The impact of
vector processing capabilities is con-—
sidered in Sec. VII. A feature shared by
some of these computers is the high-speed
instruction stack, from which significant
gains in execution speed can bhe obtained
when repetitive instruction sequences can
be contained in this stack. Multiple
functional units and instruction segmen-
tation permit parallel execution of sev-—
eral arithmetic operations, loop indexing,
and the storing and fetching of data.

The requirements for utilizing these
features efficiently include the following:

1. compact coding for loops

2. no conditional branching per-
formed within the loop

3. avoiding divisions whenever
possible

The one-line successive overrelaxation
method was chosen in part because it is
simple and can be coded compactly. Per-—
forming a fixed number of inner iterations
for each group eliminates the need for the
divides and conditional branching that
usually accompanies convergence checking.
Finally, by utilizing the procedure out-

lined below, it is possible to eliminate y. = L : (42a)
all divides and conditional branching from 1 e '
the innermost loops of the inner iteration
algorithm and reduce those loops to a few
lines of machine language coding that Si = i+1'i
easily fit within the instruction stack on
an IBM 370/195 or the CDC 7600.
i = 1, 2, «ee, I =1 42b
For a particular line of fluxes that e ? > (420)
are computed simultaneously during each 1
inner iteration, the equations that must T = e —48 >
be solved are of the form i ii-1
+(m+1) _ .l; +e ;(m'f'l) +c E(m) i = 2, 3, se, I. (AZC)
ik : jk =1k ¥ j-1k ik ¥ j+1k
J J J J J The Y; values are saved for subsequent use
o+ in the inner iterations by storing over the
+ BJk l¢(1) + BJk¢(Ell , (38) ej valygs, Zhlch are no longer needed.
Given sjk % r one inner iteration, the
N forward sweep on it is given by
Al = almd) 39
L %) s s (43a)
*(m+l) " L +
¢g{l<1 1) - wb[¢,(m 1) - ¢(m)] + ¢(
= T+ n
(40) "y Yilsg 4y
where j and k are the row and plane indices ' i = 2.3, ... I (43b)
of this line and Ajx is a tridiagonal i > >
Stieltjes matrix given by where s; is the i'th component of S jk+ A
) - second loop then performs the remainder of
e, —dy the work on line j, k according to
"y ey T3 '
. . . u = 0,
Ajk = . . . s (41)
Ce @) _ () Y
¢I ¢I + wb [uI ¢I 1, (44a)
dr-1 €1-1 79
- = n,+
| dp eg M I ¢ dis1Yi%i410
where I is the number of mesh cells in the i = I -1, «uu, 2,1 (44b)
line. The diagonal matrices Cjx and Bjk »7
are the off-diagonal coefficients that
represent coupling between cell fluxes in +
neighboring rows. ¢$m - ¢Fm) +w [¢$m)],
g g i i b i i
The solution of Eq. (39) utilizes a i = T =1, vee. 2.1
forward-elimination backward-substituion ’ r (44c)

algorithm similar to Gaussian elimina-
tion. The forward elimination on the
matrices Ajk is performed only once,
prior to the beginning of .the outer
iterations, in such a fashion as to

in computing the ¢ jk+ The backward
sweep and overrelaxatlon are then com-
bined into a single loop to save mem-
ory fetches and stores.

The forward elimination on Ajk is
.given by '

This procedure permits extremely'effi-
cient use of the scalar arithmetic cap-—
bilities of high—speed computers.

123

V. DATA MANAGEMENT CONSIDERATIONS
Strong consideration must be given
to the data management implications of
any solution method that is contemplated
for use in a code capable of treating
problems where the number of space-energy
unknowns can exceed 106. From the previ-
ous sections, it is obvious that such con-
siderations have influenced the form of
the solution method presented in this
paper. These considerations are summar—
ized in this section.

The primary goal.of the solution
strategy described here is to reduce the
number of outer iterations to a minimum,
even at the expense of investing relative-
ly greater effort in the inner iterations
performed during each outer iteration. By
minimizing the number of outer iterations,
the number of scattering source calcula-
tions (one per group per outer iteration)
is kept at a minimum. These scattering
source calculations necessitate the trans-—
fer of large amounts of data from periph-
eral storage to core memory for problems
utilizing ten or more energy groups, yet
there is little arithmetic to be done
while these data transfers are taking
place. As a result, CPU utilization can
be quite low during the scattering source
calculations, even if efficient asynchro-
nous data transfer methods are utilized.

Data management considerations also
led to the decision to apply the Chebyshev
polynomial acceleratiog technique to the
fission source vector ¥ rather than the
flux vector d. ‘lhree complete fission
source or flux vectors, depending on which
are to be accelerated, have to be stored
on peripheral storage devices and trans-
ferred to core to carry out the accelera-
tion procedure for each outer iteration.
Again, there is little arithmetic asso-
ciated with this acceleration method, so
that CPU utilization can again be low if
large amounts of data have to be trans-
ferred. Since the fission source vec-
tors are only (1/G) as long as the flux
vectors, a significant reduction in data
transfer requirements is achieved by
accelerating the ¥ vector.

VIi. CONVERSION OF DIF3D TO THE CRAY-1
The implementation of the entire
DIF3D code (43000 cards) on the CRAY-1
at the National Center for Atmospheric
Research (NCAR) was accomplished with
relative ease. DIF3D is designed with

124

portability in mind, and to this end a
simple preprocessor activates or de-
activates coding appropriate for the
intended host computer.

Among the available options coding
for a longword single level memory hier-—
archy machine was selected for implemen-
taion on the CRAY-1l. Several changes to
this source code included ENTRY point
syntax and removal of overlay calls.

The CDC FTN4 ENTRY point syntax invoked
by the longword coding was modified to
the IBM compatible syntax supported by
the CFT compiler. One million words is
ample storage for the problems likely to
be considered presently, so that the
overlay option has not yet been invoked.

Miscellaneous compiler and machine
dependent items requiring change included
several utility functian (END-QF-FILE sta-=
tus and word address) names and a machine
dependent routine that invokes thc MEMORY
macro to dynamically increase user memory.
Dynamic allocation of arrays is performed
in a storage container adjacent to the
last word of user code.

DIF3D is organized to take advantage
of asynchronous random access I/0 on
machines which support these features.

All unformatted binary I/0 is isolated

in a few standard I/0 subroutinesl’ to
facilitate local adaptions where standard
FORTRAN performance is unacceptable. Only
synchronous 1/0 has been attempted with
DIF3D on the CRAY-1.

The data management strategy in DIF3D

is dynamically selected based on the

available memory for the problem at hand.
A variety of regimes are permitted; two
are of interest here. First, large two—
or three—dimensional problems require
that only one of the typically 20 to 30
energy groups of data be core contained
during the inner iterations on a group
flux. Second, depending on the user
supplied container size, three—-dimensional
problems may be forced inte a concurrent
inner iteration strategy that requires
data for only a fraction of the total
number of mesh planes in a group be

core contained. Consequently an un-
limited number of mesh planes with a
plane size of nearly 33000 mesh cells

is permitted on the CRAY-1 with one
million words of memory. The corres—
ponding limit for two-dimensional
problems is nearly 90000 mesh cells

in a plane.

VII. VECTORIZATION of SLOR

The recursive aspect of the solution
algorithm for solving the tridiagonal sys-
tem of equations, Eq. (39) can be avoided
by adopting an odd/even line ordering!8,19,
When solved simultaneously, the mutually
independent blocks of lines yield a vec-—
torization with vector length equal to
half the number of lines under considera-
tion. The recursions now become recursions
on vectors of length equal to the number
of systems being solved.

For computational convenience an odd/
even ordering on a plane was implemented
in DIF3D. The theory of Sec. III is
readily shownl% to apply to this reordered
system of equations so that the computa-
tional equations of Sec. IV remain
unchanged except for their order of appli-
cation to the mesh lines. The reordered
algorithm for mesh plane k successively
solves Eqs. (39), (43) and (44) simultan-—
eously for the odd numbered lines on plane
k. The process is then repeated for the
even numbered lines on plane k. The
results in Sec. VIII show that computa-
tion speeds between 20 and 30 megaflops
are achieved.

VIII. PERFORMANCE RESULTS

The fact that 757% of DIF3D execution
time on the IBM 370/195 computer is
accounted for by the scalar SLOR algorithm
Eqs. (38), (39) and (40), led to the crea-
tion of a DIF3D kernel that largely con-
sists of two small subroutines (SORINV
and ROWSRC) at the heart of the optimized
algorithm.

To assess relative computing speeds
of selected large scale scientific compu-
ters for this algorithm, a benchmark model
with a 50x50 mesh using 25 inner iterat-
ions was repeated ten times for a total of
625000 mesh cell iterations with 13 float-
ing point operations per mesh cell itera-
tion. Several optimized SLOR algorithm
options were compared: (1) Vectorized
FORTRAN coding (odd/even ordering);

(2) Scalar FORTRAN coding; (3) Scalar
FORTRAN coding with an assembler optimized
SORINV. The relative computing speeds are
illustrated in Table .I.

Analysis of the code generated by the
CFT compiler indicates that CAL assembler
optimization of the vectorized SORINV
subroutine could obtain execution rates of

125

33 megaflops compared to the 22 megaflops
presently achieved.

To assess the performance of the
entire DIF3D code, a sample two-dimensional
two group problem with a space mesh of
170x170 (57800 unknowns) was chosen.
Problem results are displayed in Table II.
A three-dimensional two group problem
with a space mesh of 34x34x75 (173400
unknowns) was also solved. Problem results
are displayed in Table III. The relatively
short vector length in this realistic three
dimensional problem significantly reduces
the megaflop rate. The vector length could
be doubled in this problem by reorienting
the spatial dimensions; thereby attaining
a corresponding increase in speed.

Although the spectral radii of the
inner iteration matrices were comparable
for both scalar and vector SLOR algorithms,
the effect on the outer iterations was
noticably different. In vector mode, the
two—-dimensional problem required about 19%
fewer outers and the three-dimensional
problem required about 10%Z more outers
than their respective scalar counterparts.
It is hypothesized that an alternate
strategy utilizing an odd/even ordering
of lines in three-dimensions, not just on
a plane, would improve the Chebyshev
acceleration of the outers and at the same
time yield significant performance advan-
tage due to the increased vector lengths.

In conclusion, these preliminary
experiences with DIF3D on the CRAY-1 indi-
cate that a code designed primarily for
optimal scalar performance can be effi-
ciently implemented on the CRAY-1l in both
scalar and vector mode, achieving 10 mega-
flops in the former and 20-30 megaflops in
the latter mode for realistic size pro-
blems. More extensive algorithm modifica-
tions and careful optimization has the
potential for reaping improved performance
at the possible expense of portability.

Table I. Kuornel problem relative execution rates fn units of 4.2
megaflops.

METHOD/MACHINE CRAY-1 IBM 370/195 CDC 7600
Vector Fortran 5.4 1.05 1.09
Scalar Fortran 1.7 0.98 1.13
Scalar Fortran with
Assembler SORINV 3.3 1.0 .4

Table 11. 2-D sample problem execution rates in units of 3.9
megaflops.

HMETHOD/MACHINE CRAY-~1

1M 370/195 CDC 7600
Vector Fortran 4.4 (5.3)a _ 0.83 -
Scalar Fortran 1.6 - V.97
Scalar Fortran with
Assembler SORINV 2,7 1 -

‘(5.3) denotes the acrual speed advantage due to 19X fewer outer
iteration.

Table I1l. 3-D sample problem execution rates in
units of megaflops.

METHOD /MACKINE CRAY-1 1BM 370/195

Vector Fortran 1. _ -

Scalar Fortran 2.98
REFERENCES

IR. S. VARGA, Matrix Iterative
Analysis, Prentice-Hall, Inc., Englewood
Cliffs, New Jersey (1962).

2E. L. WACHPRESS, Tterative Solution
of Elliptic Systems and Applications to

the Neutron Diffusion Equatione of Reactor
Physics, Prentice-Hall, Inc., Englewood

Cliffs, New Jersey (1966).

3R. 5. VARGA, TRE Trans‘Nch Soce»
NS-4, 52 (1957).

4D. R. FERGUSON and K. L. DERSTINE,
"Optimized Iteration Strategies and Data
Management Considerations for Fast Reactor
Finite Difference Diffusion Theory Codes,"”
Nucle. Seze Eng. 64, p. 593 (1977).

5R. W. HARDIE and W. W. LITTLE, Jr.,
"3DB, A Three-Dimensional Diffusion Theory
Burnup Code,” BNWL-1264, Battelle-Pacific
Northwest Laboratories (1970).

6D. R. VONDY, T. B. FOWLER, and
G. W. CUNNINGHAM, "VENTURE: A Code Block
for Solving Multigroup Neutronics Problems
Applying the Finite-Difference Diffusion-

Theory Approximation to Neutron Transport,”

ORNL-5062, Oak Ridge National Laboratory
(1975).

’T. A. DALY et al., "The ARC System
Two-Dimensional Diffusion Theory
Capability, DARC2D,"” ANL-7716, Argonne
National Laboratory (1972).

8R. S. VARGA, Matriz Iterative
Analysis, Chap. 6, Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey (1962).

R. s. VARGA, Proc. Symp. Appl.
Math., 11, 164, Amctlcan Mathematical
Society, Prov1dence, Rhode Island (1961).

10G, BIRKHOFF and R. S. VARGA, J.
Soc. Ind. Appl. Math., 6, 354 (1958).

11R. FROEHLICH, "A Theoretical
Foundation for Coarse Mesh Variational
Techniques,” Proc. Int. Conf. Research
Reactor Vitalization and Reactor
Mathematics, Mexico, D.F., 1, 219
(May 1967).

121, A. HAGEMAN, “"Numerical Methods
and Techniques Used in the Two-Dimensional
Neutron Diffusion Pragram PDQ-5,"
WAPD-TM-364, Bettis Atomic Power
Laboratory (1963).)

13L. A. HAGEMAN and C. J. PFEIFER,
"The Utilization of the Neutron Diffusion
Program PDQ-5," WAPD-TM-395, Bettis Atomic
Power Laboratory (1965).

14R, S. VARGA, Matriz Iterative
Analysis, Chap. 4, Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey (1962).

15R. S. VARGA, Matrix Iterative
Analysis, Chap. 9, Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey (1962).

16R. S. VARGA, Matrix Tteralive
Analysis, Chap. 5, Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey (1962),

17R. DOUGLAS O'DELL, “"Standard
Interface Files and Procedures for Reactor
Physics Codes, Version IV," LA-6941-MS,
Los Alamos Scientific Laboratory (1977).

18, BUZBEE, Los Alamos Scientific
Laboratory, personal communication.

19p, L. BOLEY, "Vectorization of
Block Relaxation Techniques Some
Numerical Experiments,” Proceedings
of the 1978 LASL Workshop on Vector and

Parallel Processors, LA-7491-C, p. 166
(1978).

NOMENCLATURE

Any symbol not defined in the Nomen-
clature is defined locally in the text.

Scalars
g = index number of the energy group
G = total number of energy groups
" ¢g = scalar neutron flux [n/cm2s)]
in enercy group g
Dg = diffusion coefficient for neu-
trons in group g (cm)
T
Ig = macroscopic removal cross
section for group g
r a s
tg = L ¥ .Z: Ig'g
g =8
EZg' = macroscopic scattering cross
section from group g" to group g
zg = macroséopic absorption cross
section in group g
xg = fission spectrum in group g
£
vIg = average number of neutrons per
fission times the macroscopic
fission cross section in group g
A = keff of reactor
N = total number of finite difference
mesh cells
(n) _ . . _
A estimate for Ay at outer itera
tion n
n = outer iteration index

Matrices and Vectors

¢g = scalar neutron flux vectors,
group g

Dg = three—, five—, or seveén-stripe
diffusion matrix for group g

Ig = diagonal removal matrix for
group g

ng' = diagonal scattering matrix, group

g' to group g

127

Xg

= diagonal fission spectrum matrix,
group g

= diagonal production matrix,
group g

= leakage plus removal matrix
operator, group g

= fission source vector

= outer (fission source) iteration
matrix

= eigenvector of Q corresponding to
ns
i

>
= estimate of Y, at outer
iteration n

>
= estimate of ¢g at iteration n
ACKNOWLEDGMENTS

The author is indebted to Larry

Rudsinski for initiating the project
which provided access to the CRAY-1 at

NCAR

and to Floyd Dunn for providing

optimized CAL and COMPASS versions of
SORINV,

Thies work was performed under

the auspices of the U.S. Department
of Energy.

TURBULENCE/
HYDRODYNAMICS

Calculations of Water Waves and Vortex Arrays by Numerical
Solution of Integro-Differential Equations

Steady High Reynolds Number Flow Past a Cylinder
Vectorization Techniques for an Iterative Algorithm

Evolution of the MHD ““Sheet Pinch”

Numerical Solution of the 3-D Navier-Stokes Equations on
the CRAY-1 Computer

PAGES 129 0130

WERE INTENTIONALLY
LEFT BLANK

CALCULATIONS OF WATER WAVES AND VORTEX ARRAYS BY NUMERICAL SOLUTION
OF INTEGRO-DIFFERENTIAL EQUATIONS

P.G. Saffman, B. Chen, R. Szeto
Department of Applied Mathematics 101-50
California Institute of Technology
Pasadena, California 91125

ABSTRACT

Steady gravity-capillary waves of permanent form on deep water and the shapes of

vortices in a linear array are calculated nurerically.

For the waves, it is shown that

finite amplitude waves can bifurcate and new types of steady waves exist in which crests

ard troughs may be of unequal height.
calculated.
separation.
properties of the array are determined.

Gravity-capillary waves of maximum height are

For the vortices, the shapes are found for various values of the size/

It is found that there exists a maximm size for given separation and

The non-linear equations were solved by Newton's

method using the CDC STAR-100 computer at the CDC Service Center in Minneapolis.

INTRODUCTION

Steady solutions of the inconpress-
ible Fuler edquations (inviscid Navier-
Stokes equations) are of considerable in-
terest for many fluid mechanical problems
because of the insight they can provide
into some of the physical processes that
govern the behavior of fluids of small
viscosity and constant density. If the
- flow is everywhere irrotational, i.e. free
of vorticity and circulation, then the
calculation of the flow field reduces to
finding solutions of Laplaces equation
with suitably given boundary conditions.
This class of problems is of limited in—
terest. But if the flow contains vorti-
city, either continuously distributed or
- concentrated into sheets or both, then the
mathematical problems become more
challenging and the physical relevance may
be significant. A large part of the
mathematical difficulty, which is directly
connected with the physics, arises from
the fact that the position and strength of
the vorticity are in general unknown and
are to be determined. Thus even in those
parts of the flow where the motion is
irrotational and governed by Laplaces
equation, the shapes of the boundaries are
unknown and one faces a free boundary value
problem. The problems tend to be strongly

This research was supported by Control Data
Corporation, the Department of Energy
(EY-76-5-03-0767) and the U.S. Army Research
office, Durham (DAAG 29-78-C-0011).

131

nonlinear, and relatively little has been
found so far using the classical methods
of perturbation theory Or the qualitative
concepts of functional analysis (including
catastrophe theory) apart from indications
of possible trends of suggested classifi-
cations. This is not enough, because
existence and uniqueness prcblems are now
not academic niceties, but real physical
questions, and there some exact analytical
solutions available to show that existence
and uniqueness cannot be taken for granted.
The study of the bifurcation and limit
point behavior associated with the lack of
uniqueness, and the investigation of the
stability of the flows to small distur-
bances, require actual numbers and quanti-
tative details for a proper qualitative
understanding to be cbtained, especially
if application to real flows is to be
made. Numerical solution in an appropriate
way of the equations seems to be the most
powerful tool currently available for the
discovery of new qualitative behavior,

and the fact that it gives the numbers at
the same time is an invaluable bonus.

We shall discuss here two examples
to support this statement. The problems
to be described are-capillary-gravity
waves of permanent form on deep water and
the structure of an infinite array of uni-
form vortices. The first has been of
mathematical interest since the work of
Stokes in 1840 and applications to ocean

engineering and extraction of energy from
the sea has led to a present high level of
interest in water waves. The second is
related to the recent discovery of organ—
ized structures in turbulent mixing layers
and the idea that turbulent transport and
mixing might be understandable in terms of

the interaction of two—-dimensional vortices

of finite size. (A review of vortex in-
teractions is provided by Saffman and
Baker!.) For both problems, we wished to
use a method which would uncover quali-
tative properties, .as well as provide the
quantitative details, and moreover would
work if the steady flow is unstable.
Newton's method proved ideal. However,
the calculations would not have been
possible without the availability of time
on a large, fast computer because of the
relatively large nurber of variables.

Our computations were performed on the
Control Data Corporation STAR-100 Computer
located at the CDC Scrvice Center in
Minneapolis, Minnesota. We are grateful
to Control Data Corporation for making the
maching available to us, and: for giving us
the opportunity to demonstrate how new
insights can be obtained by the use of a
sufficiently powerful computer.

WATER WAVES

We consider periodic, steady or
permanent, one dimensional, inviscid
irrotational, progressive water waves of
finite amplitude on deep water. The
crests are supposed parallel and straight,
and the problem is to determine the wave
profile, i.e. the shape of the free sur-
face, and the speed of propagation as
functions of the wave height or average
slope. The mathematical probleém is to
find a solution of the Euler equations,
which in this case reduce to Laplaces
equation, such that the unknown free sur-
face is a streamline relative to an ob-
server moving with the wave on which the
pressure is constant. Generalizations to
water of finite depth, or interfacial
waves between fluids of different density,
or waves on a uniform shearing flow, are
in principle straightforward but remain to
be studied in detail. There are several
mathematical formulations of the problem.
We used one based on the concept that the
free surface can be regarded as a vortex
sheet between the water and the air.

Chen and Saffman® showed that this leads
to a complex singular integro-differential
equation for the parametric equations

x = x(0), vy =y(0) of the free surface,
which can be written

132

*
- 9L 2\ dz
(1 nc? M2t eR) a0 Tt)
_ _ip2em z (6)-z(01)
= 5o Pfo t———-z—-—- do;
for 0 <o < 2w. Here, z=x+1y, ¢

is the acceleration due to gravity, k is
the surface tension, L is the period of
the motion, c¢ *is the unknown wave speed,
P denotes Cauchy principal value, and R
is the radius of curvature of the free
surface

3
1_or o d’zdr oz
R L do® do / |do
The actual physical coordinates are ob-
tained by multiplying x and y by
L/2m, and the origin is chosen to be in
the mean level of the surface. A periodic
solution (modulo 2m) is required so that

(2)

z(o+2n) = z(g) + 2m . (3)

The trivial solution is z = &, in
which the surface is flat. This solution
bifurcates with infinite degeneracy (the
so-called primary bifurcation) into in-
finitesimal or linear progressive waves
of complex amplitude a

z =0 + aie™° + 0(a?) . (4)
2nc? 1 . 4m3k 2
9T _E+WN+O(a) , (5)

where N 1is an arbitrary positive integer
which specifies the wavelength A = L/N
(i.e. the distance between crests) or the
nurber of waves in the window of length

L.

Finite amplitude numerical solutions
were calculated by solving a discrelized
form of Eq.(1). A uniform mesh in © was
introduced and equations for the values of
z at the mesh points were obtained as
follows. The derivatives in Egs. (1) and
(2) were replaced by a sixth order finite
difference formula. To evaluate the in-
tegral, an integration mesh was intro-
duced midway between the first mesh, the
values of z were evaluated on the inte-
gration mesh by a sixth order interpola-
tion formula, and the integral was then
evaluated on the mesh by the trapezoidal
rule. The set of non-linear transendental
equations that results from satisfying
Eq. (1) were solved by Newton's method,
conbined with Euler continuation in the
wave height or an equivalent parameter to
construct a branch of solutions. The
linear solution given by Egs. (4) and (5)
was used to give the initial guess for

small amplitude waves. Bifurcation and
limit point behavior was treated for by
monitoring the sign of the Jacobian in the
Newton iteration. Keller's® method of
pseudo arc length continuation was used to
follow branches in the neighborhood of
critical points.

The infinitesimal waves are all
symmetrical about crests and troughs, and
without loss of generality the argument
of a can be fixed so that o =0 1is a
crest. It has been proved that waves of
given height and wavelength are unique and
symmetrical provided 4m°k/gL? # 1M,
where M 1is an integer greater than one
and the height is sufficiently small. In
the first instance therefore, we supposed
that the waves of finite amplitude were
symmetrical about o =0, i.e.

*
z(0) = -z (-0) . (6)

Each branch corresponding to a pér—
ticular. value of N is then well defined
for small amplitude and- continuation to
finite anplitude was straightforward.

One little trick was, however, useful.
When the waves become steep, they tend to
be cusped at the crests and resolution
there is impaired. We then replaced ©
for calculation on a particular branch by
a new independent variable o', defined
by '

= '—g 1 '
c=0 § Sin No (7)

and used a uniform mesh in ¢'. By choos-
ing o Jjust less than 1, points are
concentrated in the neighborhood of the
crests.

In the calculations we used 40 and
80 mesh points. For the smaller value, it
took about 1 sec. to compute and invert
the Jacobian. Four iterations were
usually sufficient to reduce the residuals
to 0(10 9.

It may be asked why it is necessary
to calculate on branches with different
N, since surely solutions on the different
branches are similar because a wave with
surface tension xk, wavelength L and
speed c 1is the same as one for which
these quantities are k/N?, L/N and

c/N%. Thus the first branch N = 1 should
give all the other branches. It turns out
that this is only true when the waves are
small.

The branches with N > 1 bifurcate,

and new branches exist at finite amplitude
which cannot be found just by considering
the continuation of the ‘N = 1 branch to
steep waves. We wish to emphasize that
these secondary bifurcations were found by
numerical solution and were completely
unsuspected by analytical theoreticians,
although in retrospect it becomes clear
that they are associated with the special
behavior when 4w2k/gL? = 1/M and can be
analyzed for capillary-gravity waves by
perturbation theory when this condition
is approximately satisfied?®.

GRAVITY WAVES

Pure gravity waves (i.e. k = 0)
have been calculated in recent years by
several authors and their properties
along, in effect, the N =1 branch have
been studied from infinitesimal waves to
the wave of greatest height h/L = 0.141
(h = vertical distance from trough to
crest) for which thg crests are cusped
with a slope of 30° (see, e.g. Cokelet").
The results display some curious features.
For instance, the wave speed and wave
energy are not monotonic functions of the
wave height and the maximum slope can
exceed 30 . We calculated the N =1
branch with our method, to check the
approach and search for bifurcation. Our
results agreed to at least 4 significiant
figures with the most reliable of the
others, and more significiantly no criti-
cal points were discovered.

Results for computation along the
branches N =2 and N = 3 are shown
in Figures 1-4.

0.78 (

REGULAR -
WAVE

077 -

BIFURCATED
WAVE
0.76

0.75
0.75

1 1
0.85 090
b

1 J
095 1.00

1
0.80

Figure 1. Wavespeed vs. heighil, N = 2.

A

b=.94997 030 .
~ 300

i i
W

=) w o
-0.30t
b = .89997 0.30

-0.30%
be = 879687 Q.30

VAN

=66 \@00 0y o

-0.30~

Figqure 2. Waves on new branch, N = 2.
The origin has been displaced
to 0 =7 and the mean
water level.

134

634

REGULAR

631
WAVE

628 |-

——

625+
622+
BIFURCATED *
WAVE

619

616

.] |)
085 090 095
b

6

13 [
075 0.80

Figure 3. Wavespeed vs. height, N = 3.

b = .99023 020

NG AT AN A I o
-0.20t
b = .95023 020r

IO\ Z00/ 166 N0/ 160 \&o0 /356"
. -0.20t
be = .87902 0.20

00 \260 100 \0| .
' . -o20l
b = .83023 0.20r
™\
-3.00 -1.00 0 1.00 100
-0.zot

b=.78023 %0

TR/ 160 \ |/ 160 20366

-0.20%

Figure 4. Waves on new branch, N = 3.-

The wave speed has been made dimen-
sionless by taking g=1 and L = 2m.
The parameter b " is a dimensionless
measure of the height at o =0; b=0
is the flat surface and b + 1 when the
crest at o = 0 peaks. Keller's® method
enabled us to follow the new branches
without trouble. The term regular wave
refers to the branch that is the scaled

N = 1 branch. The crests of waves on the
bifurcated branches are of unequal height.
The decrease in b along half the new
branch does not mean that the wave is
getting flatter, but that the heighest
crest is not at 0 = 0. Actually for

N = 2, the waves on each side of the new
branch are identical, the difference is a
horizontal displacement of XL.

The dotted line of Figqure 3 shows the
result of a calculation -in which the
possibility of bifurcation into unsymmetri-
cal waves was studied. As is clear from
Figure 4, the new waves for N = 3 are
not symmetrical about all crests. The
calculation picked up the waves of Figure
4 referred to an unsymmetrical crest.

No completely unsymmetrical waves have
been discovered, but it remains an open
question whether they can exist. The
stability of these waves to small dis-
turbances and the bifurcation properties
of branches with N > 3 remains to be
investigated.

GRAVITY CAPILLARY WAVES

The richness of bifurcation behavior
in this case is too great to be surmarized
succinctly and in fact has not yet been
properly classified. In Figures 5-7, we
show some examples of capillary-gravity
waves found by following branches. The
waves of greatest height for k # 0 are
limited by the surface touching itself and
enclosing a bubble. Continuation in «
shows that the limit k = 0 is singular
and gravity waves cannot be obtained as
the continuous limit of a capillary-gravity
waves as K - 0. For further details, see
Chen and Saffman®.

VORTEX ARRAYS

: As a second example, we consider the
problem of calculating the equilibrium
shapes of a linear array of equal uniform
two—dimensional vortices of finite size.
This problem has become of practical im~
portance in recent years because of the
discovery of 'big eddies' or coherent
structures in the turbulent mixing layer
(Roshko®) we suppose that each vortex has
strength T and area A. The centers lie
on a straight line, distance L apart.
The vorticity inside each vortex is con-
stant of value T/A.

Iet Z(s) = X(s) + iY(s) denote
the surface of the vortex whose center is
at the origin. Then it can be shown’

135

x :.050039

x =.050033

x = .050027

x = 050016 ‘
« = 050005 W\N
x = 049987 \/_\/W
x = 04996 \/M
x = 049934

& = 049920

x = 049913

Continuous transition from
N=4 to N=5.

Figure 5.

B.01341, c- 0943

35 30 28 20 -3\ 08

Dsoms ¢ = 1.063I 3[

b
$-o00761, c- L8l -
!I !& -Q! -20 l I-O -05 DI l.ﬂ l! IJO !l 0 J)J

?
B.o.0a19, c-11040 o

N

u a0 2.8 2.0 T

2-0.0179, c=1.0935

539 93 20 Feoos 08 © 035 1.0 -3 20 25)0 15
¢

The branch N =

Figure 6. 1 for « =.19.

that Z(s) . is a solution of the egquation

*
Im {g-g) log|simr(Z—Z')/L|dZ'}= 0. (8

For A/L? << 1, it can be shown that

.!
K = 0.4925, c=0.9855 '[

L 1 2 N I . L " n L .)
2330 23 20 15 - 0.5 035 AL 1S 20 1S 310 38

x=03158, c=

L . " i h " " " N A J
233490 285 20 18 O 15 20 25 10 38

x=0.2195, c=

L N A, N N N N N A s
33 A8 23 20 - 15 20 23 10 a8

x=0.1805, c=

09431

43 \0_ 05 Yo o3 0/ 15 20 23 30 33
— |~

1320 23 20

[RERCR)
v or

K®0.1628, ¢ * 0.9375
o -

n

R S \ .
330 2.3 20 -43\-18 05 Yo 05 10/ 15 2.0 1235 3.5 s
. L
eL

Waves of greatest height,
N =1, for various K.

Figure 7.

. the appfoxinate solution.is

_ A% 16 -1 A
zZ= (ﬁﬂ e (1 + 37 T2 cos26) (9)
The problem is to determine the shape for
finite values of A/L”.

We restrict attention to shapes with
the same symmetry as those of Eq.(9),
i.e. elliptical with one axis (in fact the
major axis). along the line of centers.
A polar coordinate representation was

Rele

used for the shape; 2 = where
. N
= T .
R a, + i a2ncoszne. (1.0)

Substitution into Eq. (8), and evaluating
the integral by the trapezoidal rule at
the mesh points’

0. =

]
gives N non-linear, transcendental equa-
tions for the (N+1) unknown Fourier
coefficients. Putting the area equal to
A closes the system.- .

mj/2(1), j=1,2,...,N (11)

Again Newton's method and Euler
continuation in

L
A%/, was used to construct solutions,
with the solution of Eq. (9) giving a
first guess for small

136

A%/L. Critical points were again detected

by monitoring the Jacobian of the Newton
iteration and handled without difficulty
by pseudo-arc length continuation. For

N = 80, each iteration took about 3 sec.
Typical shapes (normalized on L = 1) are
shown in Figure 8.

<7

0.5

(1
\\/ / 0.3
N

-o5L

Figure 8. Shapes of vortices in an array.
A continuous branch of solutions
exist for 0 < a/L < 0.5, where 2a is
the length of the major axis. At
a/L = 0.5, the vortices touch and the
continuation of the branch is a family of
connected vortices which end up in a
uniform vortex sheet of finite thickness,
as shown in Figure 9.

os[

Figure 9. Shapes of connected vortices.

In Figure 10, we show a/L and
b/L (b = semi minor axis) plotted against

A%/L. The full line shows the properties
of isolated vortices. The dotted line
described the connected continuation.
(The dashed line is the prediction of an
approxlmate analytlcal model by Saffman
and Szeto’).

05 \
]
]
]
1
1
/
/
/
/
4
4
4
|
~
o
)
~
o a
S
b g
H
0 —
0 0.5
NI
Figure 10. Dimensions of the vortices.

In this problem, no bifurcations
were detected, but there is limit. point
behavior as the figure clearly shows that
there is an upper limit on the value of

A%/L for steady, symmetrical solutions to
exist. The existence of this upper limit

was guessed at by Moore and Saffman®, and

used by them to propose an explanation for
the coalescence of coherent structures in

the turbulent mixing-layer.

The stability of the vortices to
small disturbances is of interest. We
repeat that the convergence of Newton's
method is independent of the stability of
the flow. Fortunately, a qualitative
argument of Lord Kelvin enables us to make
predictions about stability by calculating
the energy of the configuration and avoids
the necessity of calculating the eigen-
values of small disturbances. The excess
energy per unit length (i.e. the
difference in energy of the configuration
and a vortex sheet of the same strength
.and zero thickness) is shown in Figure 11.
The excess energy is a minimum for the

137

vortex of maximum area. According to
Kelvin's argument, the more circular or
less deformed shapes with A < A are
therefore stable to two-

dimensional disturbances, whereas the more
deformed and connected vortices are un-
stable.

-005

g€ -0I10

-015

-020

Figure 11. Energy excess of the arréy.

REFERENCES

!p.G. saffman and G.R. Baker, Ann. Rev.
Fluid Mech. 11, 95 (1979).

’B. Chen and P.G. Saffman, Stud. App.
Math. 60, 183 (1979).

3H.B. Keller, Applications of Bifurcation
Theory p. 359. Academic Press (1977).
“E.D. Cokelet, Phil. Trans. Roy. Soc.
A286 183 (1977).

B. Chen and P.G. Saffman, New types of
gravity waves and finite amplitude
steady capillary gravity waves. Stud.
App. Math. (to appear).

®A. Roshko, A.I.A.A.J. 14, 1349 (1976).
’P.G. Saffman and R. Szeto, Structure of a
linear array of uniform vortices.
Submitted to J. Fluid Mech.

®D.W. Moore and P.G. Saffman, J. Fluid
Mech. 69, 465 (1975).

STEADY HIGH REYNOLDS NUMBER FLOW
PAST#A CYLINDER

Bengt Fornberg
Department of Applied Mathematics 101-50
California Institute of Technology
Pasadena, California 91125

ABSTRACT

Viscous flow past a circular cylinder becomes unstable around Reynolds

number Re = 40,

With a new numerical technique, based on Newton's method,
steady (but unstable) solutions of high accuracy have been obtained up to

Re = 300,

A new trend in the solution was found when the Reynolds number was increased

above 260.
is convected back towards the body.

The - wake bubble begins to decrease in-length as vorticity in the wake
The numerical calculations were performed

on the CDC STAR-100 computer at the CDC Service Center in Minneapolis.

INTRODUCTION

Viscous steady flow past a cir-
cular cylinder at high Reynolds numbers
has become one of the classical prob-
lems in numerical fluid mechanics.
There are several reasons for the con-
tinuing interest in this problem. One is
that it forms a good model problem for
flows around other bodies of more prac-
tical interest. Steady solutions for
Reynolds numbers (based on the dia-
meter) higher than 40 may in the future
be achieved by flow control methods.
This may give rise to flows with prac-
tical applications. Complete, steady
flow fields have so far only been ob-
tained numerically up to around
Re = 100. The first reference! gives
a brief. survey of previous work and
describes also this present work in
some detail,

Contradictory suggestions have
been made for the limit of Re — w.
" Brodetsky? suggests a solution with
vortex sheets bounding an infinite wake
region containing stagnant flow.
Batchelor® suggests a limit which has
a finite wake with piecewise constant
vorticity and no drag on the body. Up
to Re = 100, all evidence has been in
'support of a wake growing approximately
proportional to Re. We will see a

_ This research was supported by
Control Data Corporation and ERDA
(Grant No. 04-3-767).

138

quite sudden reversal of trends around

Re = 260, which casts definite doubt on
Brodetsky's solution ('the free stream-
line' model).

Our numerical calculations were
performed on the Control Data Corpora-
tion STAR-100 Computer located at the
CDC Service Center in Minneapolis,
Minnesota. We wish to express our
gratitude to Control Data Corporation
for making this system available to us.
The solution of large banded linear
systems was the most time-consuming
part of the present calculations. These
solutions ran about 200 times faster on
the CDC STAR-100 than on the Caltech
IBM 370/158 (which was used for some
preliminary tests and the graphical
output).

MATHE‘MATICAL FORMULATION

With a unit cylinder and Re based
on the diameter, the Navier-Stokes
equations take the form

AT + w =20 (1)
Re 3y 8w 08y A dwy _
swt+ = {ax 9y ~ Ay Bx} =0 (2)

In most of the work we use

Yx,y) = ¥(x,y) -y (3)

instead of w. This variable y gives
the streamlines of the perturbation
from free stream.

The main problems that earlier
investigators have encountered are

1. Boundary conditions for ¢ at
large distances.
2. Boundary condition for w at the

body surface.

3. Convergence rate of numerical
iterations.

4., Convergence to a smooth solution
without a loss of accuracy that
goes with upwind differencing,

5. FEconomical choice of computa-
tional grids.

Our numerical method, described in the

next section, was designed specifically

to overcome these difficulties, if
necessary at the price of a high com-
putational cost per iteration.

NUMERICAL METHOD

All/v,o,rticity is concentrated on
the body surface and in a quite thin
streak downstream of the body. Out-
side this region, we can use the much
simpler equationo

w =0

-------------- ;

_____ |

20i P '

ot |

o 1

T o ,

5/ ||
IR 3 I L) 3) A, b
55 0 5 0 200 30 &0 %0 80 70 .80 90

Fig. l. Conformal mapping of the

inner region.

The top part of Fig. 1 shows a region
which includes all the vorticity. This

(4)
(5)

139

will form the inner of the two compu-
tational regions we will be using. The
rest of Figure 1 illustrates the steps in
a conformal transformation to a rec-

tangle. The steps are
1 p = x1/3
2. z = c(p-%) (constant ¢ = .2)
3. ¢ =50+ 2%)
¢ .

The inverse transformation can also be
expressed explicitly.

The Navier-Stokes equations
were transformed to this new coordi-
nate system (also stretched to increase
boundary layer resolution at the surface)
and approximated numerically in a
straightforward way (centered, second
order accurate approximations).
Newton's method was then used to solve
this system together with the boundary
conditions. There are two conditions
for ¢ on the surface (no fluid passing
the surface and no slip), and

%:.@2—‘: 0
dy y

on y = 0. On the curved upper side
of the region, we have w = 0 and we

require dw _ 0 on the far right

edge. Theax physics require no infor-
mation on w from the outflow side.
This freedom can be used to eliminate
the possibility of staggered mesh
oscillations for w, a frequent compli-
cation with centered approximations for
the vorticity transport equation at high
Reynolds numbers. To find ¢ on the
upper and right sides, an outer compu-
tational region has to be introduced and
an iteration between the grids will be
performed.

A polar coordinate system can be
introduced by

§+in=%—r In (x + iy) (6)

and refined in the wake by

n o=k (M

Fig. 2.

Outer and inner computational
grids.

We express now equation (1) in
£,7n'-coordinates and solve for y by

'black-red'-ordered SOR. Figure 2
shows the two computational grids
superimposed. In the actual calcula-
tions, the grids had twice the illustrat-
ed densities.(The inner grid had

65x114 points, the outer grid 129x132
points. Both extended to 600 radii from
the cylinder). The outer boundary con-
dition for on this last grid has been
discussed in detail’. It was found that
the usual free stream (y =0) was very

unsatisfactory but that %g = 0 worked

successfully at low Reynolds numbers.
At high Reynolds numbers, a satisfac-
tory condition of the form

%Q = f(y) was found.
3

Our final complete method was
a repetition of the following four steps:

1. Perform one Newton iteration on
the inner grid.

2. Interpolate w to the outer grid.

3. Solve for y on the outer grid.

4. Interpolate y-values back to the
edge of the inner grid.

Although step 1 in itself is quadratically
convergent, this inner-outer iteration
scheme converged only linearly. The
convergence was nevertheless very
rapid, about a factor of 10 per each
cycle of the four steps. Six to eight

140

cycles were sufficient in all cases,
each costing ‘about one minute of com-
puter time,

Structure of the Jacobian
matrix.

Fig. 3.

Figure 3 shows the structures of
the Jacobian matrix that entered as
coefficient matrix in Newton's method.
Here, denotes a vector of w-values
on the first grid line (body surface),

Y, the y-values on the next grid line

etc. The right-hand-side contains the
residuals in the diffcrent cquationo and
boundary conditions. The particular
vrdering shown gives a structure that
allows immediate simplification. With
use of suitable multiples

of the equations in the top half, all
entries in the bottom right corner can
be eliminated. We are left with a
banded system confined to the dotted
region in the bottom left corner. It
will contain only 13 non-trivial dia-
gonals. Table 1 shows its size and
the cost to solve it by Gaussian elimi-
nation.

L wy | [R‘Vz
| V2 | Rty
| V3 | RV
| Ya | | :
O R¥iy-1
Yna] __ [FBOW
WN_ - R(Uz
“N | Rwy
Wy i _RU4
[.
“'4: ['
5 i _R"‘N-i
i) (A8
N-1 _RBN’"

size of
inner grid

M*N = 65%114

system band

width 4¥M-7 = 253

number of
equations

CPU-time on
CDC STAR-100

(M-2)3*(N+1) = 7245

LU-decomp. 29.3 s

Back Subst. 1.3 s

estimated time

on IBM 370/158

LU-decomp 1 hr. 40 min.
RESULTS

The flow results are illustrated
‘in Figures 4-14 below. The most
-prominent feature is the recirculation
.of vorticity starting around Re = 260.
It affects quite dramatically some flow
quantities (like the length and width of
the wake bubble) but leaves others
(like the drag coefficient, pressure
distribution etc) quite unaffected. The
calculations were not carried beyond

Re = 300 since higher Reynolds numbers

would have required a still finer grid.
A grid twice as dense would have been
too costly at the present time.

Fig. 4. Streamlines at Re = 2,4,10,
20, 40, and 100.

Fig. 5. Streamlines at Re = 200,230,
260, 290, 295 and 300.

30 3% £ 3 0
] » 0 I} 0
30 » < el 0
20 35 “© 3 "
£ 33 0 > ES)
A=
drz s) 5 20 £ £ £ o 3 E)

Fig. 6. Lines of equal vorticity at
) Re = 2,4,10,20,40 and 100.
(The first three cases were
obtained by a different method)..

Fig. 7. Lines of equal vorticity at
Re = 200, 230,260,290,295
and 300.

141

Position of
end of
wake bubble
40|
e~
3
/// ‘x
//‘
30 |- -
T
rd
7
i
20} P
re
rd
‘/
e
10 | Re
rd
‘/
x’/
1 1 J—| 1 1 1 Lil -
O 20 40 00 20U 23U 260 230300 Re
Fig. 8. Position of end of wake
bubble.
Width of
wake bubble
4 -
X
3+ 4
XK
7
o
’K/
/K’/
i —
-x -7
.//
1+ 7
x/
1 1] | i L L1l
0 20 40 100 200 230 260 290 300 Re
Fig. 9. Width of wake bubble.

142

Vorticity
-15

Fig.

10.

Pressure

Fig.

Vorticity distribution on the
body surface. :

11.

Pressure distribution on the
body surface.

Pressure at front
stagnation point

]
.4

6F) S e ol -
X=x-x —limit .5—

oL 11 [U U D

1 i 1
12 & 10 20 40 100 200 400 1000 Re

Fig. 12, Pressure at the front stag-
nation point.

Pressure at rear
stagnation point

-4}

oL) S VY SN N S S |

1 1
b2 4 10 20 40 100 200 400

g

Re

Fig. 13, Pressure at the rear stag-
nation point (on the body).

143

1 L J1l

1 1
20 40 100 200 230 260 290 300

Fig. 14. The drag coefficient.

REFERENCES

1. Fornberg, B., A numerical study

of steady viscous flow past a
circular cylinder. Submitted
to JEM.

2. Brodetsky, ‘S. Proc. Roy Soc.

London Al02, 542 (1923).

3. Batchelor, G.K., JFM 1, 338 (1956).

Re

VECTORIZATION TECHNIQUES FOR AN ITERATIVE ALGORITHM

Dennis V. Brockway
Fred Gama-Lobo
Los Alamos Scientific Laboratory
P. O. Box 1663
Los Alamos, New Mexico 87545

ABSTRACT

A major vectorization effort on a large complex hydrodynamics code on the CRAY-1l was
recently completed, resulting in a factor of 10-speed increase over the original code on

the CDC-7600.

To accomplish this required vectorizing an iterative algorithm.

sSome new

techniques were developed to do this, which will be described in detail.

INTRODUCTION

A major effort was completed recently
to vectorize a large 2D Lagrangian hydro-
dynamics code for the CRAY-l. This parti-
cular code was chosen because it was the
largest consumer of computer time at. LASL.
When this code was first converted from
the CDC-7600 to the CRAY-1l, which was just
a straight FORTRAN conversion with minimal
changes, it gained a factor of 2.5 in speed.
The initial target of the vectorization
effort was to get up above a factor or 4
over the CDC-7600. The result of the vec-
torization was a factor of 10 speedup over
the CDC-7600 (or a factor of 4 over CRAY-1
scalar code).

The reason our initial target was so
low was that approximately 40% of the ex-
ecution time of the code was spent solvind
an iterative algorithm that did not appear
at first analysis to be vectorizable. As-
suming we got a factor of 10 for the sec-
tion of the code taking 60% of the time and
remained at a factor of 2.5 for the sec~-
tions of code taking 40% of the time, then
the overall factor F can be computed from

1/F=0.6 x (1/10) + 0.4 x (1/2.5)
resulting in F=4.5.

We did, however, develop a successful
technique for vectorizing the iteration,
which will be described in what follows.
As a result, we were able to vectorize
about 95% of the code so that we actually
got a factor of 10

OVERALL VECTORIZATION EFFORT
CODE REWRITE

To vectorize the hydro code we rewrote

144

nearly all of the computational section of
the code. This was done by restructuring
the code into simple DO loops based on the
basic guidelines for vectorization describ-
in Chapter 4 of the CRAY-1 FORTRAN (CFT)
REFERENCE MANUAL! and in the paper How To
Get More from Your Vector Processor.? We
went beyond these basic techniques in vari-
ous places in the code, and this paper de-
scribes some of those.

CFT COMPILER

The vectorized code was written mainly
in standard FORTRAN using the CFT Compiler,
which automatically generates vector in-
structions for simple DO loops. The main
exception was the use of the conditional
vector merge statements available in CFT.
These are equivalent to simple IF state-
ments, and whenever they were used in the
code, they were preceeded by a comment de-
scribing the equivalent IF.

SAMPLE

We made an extensive use of a routine
called SAMPLE, which determines the distri-
bution of time during code execution and
produces a histogram of time used per sub-
routine and for locations within each sub-
routine. 3 Initially, the distribution of
time in the code was fairly flat with no
single subroutine taking a large percent-
age of the time, which prompted our deci-
sion to rewrite the entire computational
section of the code. After we vectorized
a major portion of the code, we used
SAMPLE to locate those places that still
took significant amounts of time and were
candidates for fine tuning.

OVERALL EFFORT

The overall effort was considerable

due to the size and complexity of the code.
It took 3 people 6 -months to complete the
effort, which was actually quite a bit less
manpower than early projections predicted.
This was due to some extent to the people
being quite familiar with the code to begin

with and the use of mostly standard FORTRAN.

The people who did the work were Dennis
Brockway, Fred Gama-Lobo, and Karl Wallick
of Group TD-9 at LASL. We would also like
to acknowledge the work of Alex Marusak and
Don Willerton of C-3, who wrote SAMPLE.

VECTORIZATION OF THE ITERATIVE ALGORITHM
CODE DESCRIPTION

The hydro code calculates motion in
an object represented by a 2D mesh of quad-
rilaterial zones. All mesh variables are
held in doubly dimensioned arrays and in
each computational cycle a time step is
taken; all the hydrodynamics calculations
are performed on these variables in double
DO loops. To vectorize the code it has to
be rewritten so that all inner loops are
simple calculational loops that satisfy the
conditions for vectorization in the CFT
compiler.l

TTS ITERATION

The iteration that took up 40% of the
execution time in the scalar code is called
Temporary Triangular Subzoning (TTS).* For
TTS each quadrilateral zone is divided into
four triangles. For each triangle the in-
ternal energy is computed from the equation

E(triangle) = EO-0.5 x (P(triangle)+P(zone))
X DTAU(triangle)

All qguantities in this equation can be
computed directly except for the Energy and
Pressure of the triangle, which are both
functions of Temperature and Density. These
functions are defined in Egquation of State
(EOS) Tables. The Density is known, but
the Temperature is not, so an iteration '
must be performed to find a Temperature
such that E(triangle) and P(triangle) sat-
isfy the above equation.

EOS TABLE LOOKUP

The EOS table lookup does not require
a table search since values are equally
spaced based on logarithms of base 2. Given
a Temperature and Density, indices to re-
trieve values for Energy and Pressure from
the tables can be calculated directly using
the LOG function. For each table lookup

145

the code needs to do a LOG to compute in-
dices to the table, fetch 8 quantities

from memory by indirect addressing (gather),
and do 2 exponential interpolations requir-
ing 2 calls to EXP.

The reason the TTS is so time consum-
ing is because of the great number of times
that the EOS table lookup must be done and
that each table lookup regquires a LOG, 2
EXP's and 8 gathers. The table lookup must
be performed for each iteration for each
of the 4 triangles for each of the zones.
In a typical problem there are 7000 zones,
and it takes 3 iterations on the average
for the TTS equation to converge. That
means that for each computational cycle the
table lookup is done 3x4x7000 (or 84,000
times).

TTS FLOW

The following is the flow of the TTS
iteration in the original scalar code:

DO 100 K=1,70
DO 100 1~=1,100
DO 100 ITRI=1,4

‘Step 1. Compute EO , PZONE , DTAU"

Step 2. Compute initial guess of
Temperature T

Step 3. Call EOS to look up ETRI and
PTRI

Step 4. Test for convergence -

ENG = EO - 0.5 * (PTRI + PZONE) * DTAU
TEST = ABS ((ENG - ETRI) / ENG)
IF (TEST .LT. 1.E-5) GO TO 100

Computé new guess of tempera-~
ture T

Step 5.

GO TO Step 3
100 CONTINUE
VECTORIZATION OF TTS

The first step in speeding up the TTS
was vectorizing the table lookup, which
consisted of writing a routine producing
arrays of results rather than a single re-
sult.. The new routine is a factor of 4
faster than CRAY scalar per table lookup.
The main reason for the speedup is that
the vector LOG and EXP functions can now . |
be used. These functions are provided by
CRAY Research in their library supporting
the CFT compiler. They are used by refer-
encing. ALOG and EXP just as is done in

standard FORTRAN. If the references to the
functions are in a DO loop which otherwise
satisfies the CFT conditions for vectori-
zation, the compiler will automatically
generate calls to the vector functions.
These functions are approximately a factor
of 15 times faster per element than their
CRAY scalar counterparts. We were disap-
pointed that we were unable to speed up the
gathers in the routine, but the speed in-
crease in LOG and EXP still allowed us to
make a very good gain overall for the EOS
table lookup.

The next step was to vectorize the
iteration itself. This consisted of com-
puting all the terms in the TTS equation
in vector loops, calling the table lookup
routine to get arrays of values for E(tri-
angle) and P(triangle) based on an array of
initial guesses for Temperature, and then
computing the difference between the left
and right hand sides of the equation in a
vector loop. This difference is used for
testing convergence. An array IDOESIT is
used to keep track of convergence. For a
set of iterations being done in vector
loops, we set IDOESIT(L)=1 if this itera-
tion for zone L did not converge and set
IDOESIT(L)=0 if this iteration converged.
Then we check this array to see if any
iterations have not converged; and if any
have not, new guesses for Temperature are
computed from appropriate derivatives and
the process is repeated until all itera-
tions converge.

VECTORIZED TTS FLOW

The following is the flow of the vec-
torized TTS iteration:

DO 100 ITRI=1,4
DO 100 X=1,70

DO 10 L~1,100

Step 1. Set IDOESIT(L)=1 for zones

flagged for TTS
10 CONTINUE

DO 20 I~1,100

Step 2. Compute EO(L) , PZONE (L)
DTAU(L) in vector loop
Step 3. Compute guess of Temperature

T(L) in vector loop
20 CONTINUE

Step 4. Call up vectorized EOS to look

up arrays ETRI and PTRI

146

DO 30 L=1,100

Step 5. Compute convergence criteria

in vector loop
NG = B - 0,5 % FRIWL + PANEWD * DTAUD
TEST(L) = ABS (B (L) - ETRIW)) /7 B

Step 6. Set IDOESIT(L) = 0 if

convergence -
IDOESITCL) = QMHP (IMESITCL) , 0, TESTL) - L.E-H)

Note: The above CFT conditional vector

merge statement is equivalent to
the following IF statement -
"IF (TEST(L) .LT. l.E-5) IDQESIT(L) = O
30 CONTINUE
DO 40 L=1,100

Step 7. Check if any iterations have

not converged -
IF (IDOESIT(L) .NE. Q) GO TO 50
40 CONTINUE
GO TO 100
50 DO 60 1~1,100

Compute new gdess of empera-
ture T(L) in vector loop

Step 8.

60 CONTINUE

GO TO Step 4
100 CONTINUE
LOOP LIMITS

After vectorizing the TTS by the above
method, we merely broke even with the sca-
lar code. The reason was that on the ave-
rage it takes 3 iterations for the TTS
equation to converge, but there are usually
some triangles in the inner loop that take
twice as many or more iterations to con-
verge. Some anomalous triangles may take
20 to 30 iterations to converge. In the
above method all the calculations in the
inner loops are done for all the triangles
as many times as it takes for the worst
triangle to converge. This meant that the
vector code was doing at least twice the
calculations of the scalar code, which
wiped out any gains due to using vector

. operations. :

To get around this problem we varied
the limits of the inner loops each cycle
of the iteration to avoid doing most of the
unnecessary calculations. The way this was
done is to use the array IDOESIT and set
limits based on the ranges of non-zero
values in the array. .Suppose IDOESIT has
the following set of values:

000111119911109907909011190
4 8 11 13 2325

For this case the code would set up 3 sets
of limits, 4-8 and 11-13 and 23-25, and the
inner loops would be repeated for these 3
sets of limits. The code will actually go
up to 4 sets of limits. If there are more
than four, it will bridge all but the 4
largest gaps of zeros. It will also bridge
a gap of zeros smaller than 10% of the size
of the array. Therefore, in the above ex-
ample the zeros in positions 9 and 10 would
be bridged and the code would actually only
set up 2 limits, 4-13 and 23-25.

FLOW FOR VECTORIZED TTS WITH VARYING LIMITS

DO 100 ITRI=1,4
DO 100 K=1,70

DO 10 I=1,100

Set IDOESIT(L) = 1 for zones

flagged for TTS

Step 1.

10 CONTINUE

DO 20 I~=1,100

Step 2. Compute EO(L) , PZONE(L) ,
DTAU(L) in vector loop
Step’ 3. Compute guess of Tempera-

ture T(L) in vector loop

20 CONTINUE

Step 4. Set up limits based on
IDOESIT. N is the number of
limits, LIM1l is the array of
lower limits, and LIM2 the
array of upper limits.

25 DO 35 I=1,N
T Ll = LIMI(I)
L2 = LIM2(I)

Step 5. Call vectorized EOS to look

up arrays ETRI and PTRI for
L values L1 to L2.

147

DO 30 L=L1,L2

Step 6. Compute convergence criteria

in vector loop -

ENG(L) = EO(L) - 0.5 * (PTRI(L) * PZONE(L)) * DTAU(L)

TEST(L) = ABS ((ENG(L) - ETRI(L) / EMNG(L))

Step 7. Set IDOESIT(L) = O if conver-

gence -

IDOESIT(L) = CVMGP (IDOESIT(L) , O, TEST(L) - 1.E-5)

30 CONTINUE |
35 CONTINUE
DO 45 I=1.N

LIM1(I)
LIM2 (1)

Ll
L2

DO 40 L~L1,L2

Step 8. Check is any iterations have

not converged -
IF (IDOESIT(L) .NE. 0) GO TOISO
40 CONTINUE
45 CONTINUE
GO TO 100
50 CONTINUE
Reset limits based on IDOESIT

Step 9.

DO 65 I=1,N

Ll
L2

LIM1(I)
LIM2(I)

DO 60 I~L1,L2

Step 10. Compute new guess of tempera-
ture T(L) in vector loop.

60 CONTINUE
65 CONTINUE
GO TO 25
100 CONTINUE
USE OF THE VECTOR MASK

After putting in the varying limits,

-we got a speed increase over a factor of 2

over scalar. Use of SAMPLE’ indicated that
a significant amount of time was still be-
ing spent in some remaining scalar loops
that had previously been ignored and in the
scalar calculation of the limits described
above. The calculation of the limits re-
quired a scalar search of the array IDOESIT
for non-zero elements. The way we vectori-
zed this process was to write an assembly:
language routine to create a vector mask
from the array IDOESIT. If IDOESIT has the
values in the example used before, the vec-
tor mask would consist of a single word
with the bit pattern:

00011111001110000000001110 ... O

The CFT functions LEADZ (tally of leading
zeros) , SHIFTL (left shift) -, and COMPL
(bit-by-bit) logical complement)1 are then
used to successively count zero and non-zero
bits in the mask and thus s$et up the limits.

SUMMARY

After eliminating most of the remaining
scalar code in inner loops, the TTS ran a
factor of 3.8 faster than scalar. The gains
in the rest of the code averaged above a
factor of 4 so that the overall gain was a
factor of 4 over CRAY-1l scalar {(or a factor
of 10 over the CDC-7600).

REFERENCES
1. CRAY-1l FORTRAN (CFT) Reference Manual,

Manual #2240009, Cray Research, 1Inc.,
1/79.

2. Brian Q. Brode, How To Get More OQut Of
. Your Vector Processor, Massachusetts Com-
puter Associates, 9/78.

3. Alex Marusak and Don Willerton, Deter-
mining Distribution of CPU Time Used on The
CRAY-SAMPLE, LASL Program Library writeup,
7/79.

4. Philip L. Browne and Karl B. Wallick,
The Reduction of Mesh Tangling in Two-
Dimensional Lagrangian Hydrodynamics Codes
By the Use of Viscosity, Artifical Viscos-
ity, and TTS (Temporary Triangular Sub-
zoning for Long Thin Zones), LASL Document
LA-4740-MSm 11/71.

148

EVOLUTION OF THE'EEP "SHEET PINCH"
==

W. H. Matthaeus and D. Montgomery
Physics Department, William and Mary
Williamsburg, VA 23185

ABSTRACT

A magnetohydrodynamic (MHD) problem of recurrent interest for both astrophysical and
laboratory plasmas is the evolution of the unstable "sheet pinch", a current sheet across
which a dc magnetic field reverses sign. We follow the evolution of such a sheet pinch
with a spectral-method, incompressible, two-dimensional, MHD turbulence code. Spectral
diagnostics are employed, as are contour plots of vector potential (magnetic field lines),
electric current density, and velocity stream function (velocity streamlines). The non-
linear effect which seems most important is seen to be current filamentation: The concen-
tration of the current density onto sets of small measure near a magnetic "X point." A
great deal of turbulence is apparent in the current distribution, which, for high Reynolds
numbers, requires large spatial grids (> (64)2%). :

INTRODUCTION and the magnetic field reverses sign twice,
once across either current sheet. The box
We report a numerical.solution of the size, in our units, is 27 units of length.
problem of an evolving MHD "sheet pinch":
a topic which has generated a voluminous The velocity field v and the magnetic
literature, but about which unanswered field B are in the xy plane and the vector
questions remain. The problem is inher- potential a = aéz is normal to it.

ently a turbulence problem, involving

) . . . B=Vaxg, andv=Vy x &, where y is
spatial excitations over a wide range of ~ z’ ~ 4 2z’ v

spatial scales, thus requiring high spatial the stream function. The vorticity is in
resolution. Our grid size (64 x 64) is at the Z direction, and has magnitude
the lower limit of what is required to com- w = -Vzw, while the vector potential and
pute the phenomenon accurately. We utilize current density j are also related by
a two-dimensional,incompressible MHD code Poisson's equation:- V%a = -j. The direc-
of the Orszag-Patterson1 spectral type tion of the current density is along the
(Galerkin approximation), employing perio- 2z axis. The time evolution comes from ad-
dic boundary conditions. The periodic vancing the (Fourier-transformed) pair of
boundary conditions demand certain compro- equations: -
mises with the physics, but the gain in
computational simplicity is great. %%_+ veVa = uva)
TEXT
Jw s 2
The initial magnetic field line geome-- 5€-+ Y'Vw - BV =W (2)
try for all runs is shown in Fig. 1. The
periodic boundary conditions require two We have used the dimensionless units of
current sheets, into and out of the xy Fyfe et al,2 whose papers should be con-
plane, parallel to the xz plane. All sulted for a detailed description of the
variables are assumed z-independent. If method. In these units, the dimensionless
the two current sheets are far enough magnetic diffusivity YU and dimensionless
apart, their interaction should be minimal, viscosity V are the reciprocal magnetic
and we do not believe the evolution to be and mechanical Reynolds numbers. The case
significantly different than it would be of most physical interest is the case
for a single current sheet. The basic where Y and v are small but non-zero.

square is 64 x 64 cells, with a maximum-
to-minimum wave number ratio of 32. The
current sheets are about four cells wide,

149

The initial dc magnetic field can be
well represented by the Fourier modes with
kx 0 and ky 11,%3,%5, ,¥15. Ve

call these the "sheet pinch modes", and
after t = 0, allow their Fourier coeffi-
cients to advance on the same footing as
all the others. The unstable growth is
initiated by adding small random values to
the Fourier coefficients of the non-sheet
pinch modes. This random initial noise is
small enough that the non-sheet pinch
Fourier amplitudes are typically down from
the sheet pinch Fourier amplitudes by fac-
tors of <107 3.

After several tens of time steps, some
of the non-sheet pinch modes have tempo-
rally growing components which emerge from
the initially rather unsystematic MHD
activity observed at the outaset. The most
rapidly growing k modes move slowly out to
values of the order of k = 10, but do not
gel near the maximum k of 32. Systematic
growth of both the kinetic energy and non-
sheet pinch magnetic energy are observed
for a few thousand time steps. Most of
the magnetic excitation is initially, and
remains in the modes with k% = 1. The
modes g = (0,*1) are sheet pinch modes and
those with k = (*1,0) are non-sheet pinch
modes., Except for a very slow drain of
the (0,*1) modes by the (*1,0) modes, the
growth of the kinetic energy and non-sheet
pinch magnetic energy appears to have
ceased by about 5000 time steps even for
u=v=0 (an unphysical case, but nonetheless
an instructive one, to be discussed pre-
sently). For finite p, v, the saturation
occurs even sooner, and the total energies
decay throughout the run, as predicted by
Egs. (1) and (2). This decay can be kept
small by keeping U and v small enough.

It is instructive to consider first
the (unphysical) case u=v=0. Fig. 2 shows
the time evolution of the non-sheet pinch
magnetic energy, the total mean square
current, the total mean square vector po-
tential, and the total kinetic energy.
During the growth phase, the most active
Fourier modes are in the range k = 10.

The growth qualitatively speeds up at
approximately time step 1000, and saturates
near time step 5000. Late in the run, it
is necessary to halve the time step in
order to preserve the conserved quantities.
After saturation, the spectrum appears to
be heading for an absolute equilibrium
spectrumz, but does not reach it over the
times we compute: strong anisotropy in k
space remains. Rather surprisingly, the
state in the region of limiting non-sheet

150

pinch magnetic energy bears considerable
similarity to that for the finite dissipa-
tion cases. Fig. 3a shows the contours of
constant current density J in xy space at

t = 0. Fig. 3b shows the j contours after
2000 time steps. The current distribution,
close to a uniform sheet in Fig. 3a, has
filamented, and has concentrated itself in
sets of small measure near a magnetic field
zero of the "X point" type. This eflfecl
appears to be fundamental.

Since we are working with a finite,
discrete representation of the fields, the
various pointwise invariants (or "topolo-
gical" invariants) of ideal MHD are not
conserved. Contrary to what is sometimes
asserted, this non-conservation is not
connected with dissipation. The present
system is non-dissipative,

At a still later (lme (L4500 time
steps), Fig. 30 chowo that the j contours
have scattered randomly and essentially
homogeneously over the square; this fea-
ture is not observed at finite W and V.
Much less activity is visible in the con-
tour plots of constant vector potential
a (magnetic field lines, in two dimensions)
for the same three times in Figs. 1, la,
and 4b. The vector potential spectrum is
dominated by the longest wavelength terms,
and in that part of the spectrum, strong
anisotropy persists.

Figs. 5a, b, ¢ are contour plots of
constant P (vclocity streamlines) at times
t = 0, after 2000 time steps, and after
4500 Lime sleps. TFig. 5b shows a charac-
teristic "jetting" of the magnetofluid:
the fluid is rather violently expelled
loterally trom the weak pair of corners
at the X point in the magnetic field.

This has been seen also in a very differ-
ent kind of computation by Sato and
Hayashi.® Finally, Fig. 6 shows the
directionally averaged B and y field
spectra to which the configuration has
evolved, by the end of the run. This is
not an absolute equilibrium spectrumz,

and considerable anisotropy has been ob-
scured by the directional averaging. Solid
lines are equilibrium spectra.2 '

The preceding results cannot claim
accurately to represent the physics, but
they do anticipate some of the conclusions
for finite y and v. Table 1 lists some
important parameters for both the run
u=v=0 just described and for u=v=.0025,
the other case for which we shall present
results here (a more extended presentation
will be given elsevhere"). Fig. 7 shows

the time history of the bulk quantities
(non-sheet pinch magnetic energy, mean
square current, etc., as in Fig. 2) for
U=v=,0025. Figs. 8a, b show the contours
of constant j at time steps 2000 and 5500.
The finite Y, most effective at high k,
has wiped out much of the short wavelength
activity apparent in Fig. 3c; the sheet
pinch geometry remains visible to the end
of the run. Figs. 9a, b show the magnetic
field lines (which give little indication
of the disordered activity shown in Figs.
8a, b) at time steps 2000 and 5500. In
all runs carried out, single magnetic
"islands'" were always the end product, as
far as magnetic structure was concerned.
The filamentation of the current and the
jetting of the velocity field were also
always observed. Figs. 10a, b show stream
function contours at time steps 2000 and
5500, and show a strong persistence of the
jetting, or horizontal magneto-fluid ex-
pulsion, to the end of the run.

! A qualitative physical picture of the
unstable development and filamentation
might go as follows, keeping in mind the
fact that in two dimensions, the contours
of constant vector potential a are magne-
tic field lines, and both j and B are
expressible as spatial derivatives of a.
The magnetic volume force on an element of
fluid can be shown to be (VxB) x B = jVa.
Moreover, J generates a through Poisson's
equation, V%a = -j. “Thus, even though
electric current distributions are not
"frozen in" to the fluid, two fluid ele-
ments carrying currents in the same direc-
tion attract each other. Current filaments
distributed around a magnetic "O" point (a
maximum in a, if j is out of the paper)
will feel a force toward the O point, but
the fluid elements cannot move toward the
0 point because the velocity field is di-
vergenceless; effectively, collapse toward
an O point is prohibited by the mechanical
pressure which builds up. No such prohi-
bitions occur concerning collapse toward
an X point, since Va points toward the X
point on the strong magnetic field sides
of the X point, and away from it on the
weak magnetic field sides. An X point is
a saddle point in a. Current elements feel
a force on the strong magnetic field sides
of the X point which accelerate fluid ele-
ments toward it. Eq. (1) shows that for
small Y, the field lines of B will be
dragged with the fluid element. They will
be stretched in the process, raising the
local value of j. This obviously is a
self-enhancing effect, and is not compen-
sated by the fact that fluid elements are

151

simultaneously being accelerated away from
the X point at the weak magnetic field
corners: there are fewer field lines there
and they are not in general stretched by
the expulsion. Fig. 11 shows the essential
orientation of the relevant vectors.

Something similar to this filamenta-
tion appears to be visible in Fig. 7 of
Orszag and Tang.1

The collapse of the current distribu-
tion would appear to be limited by the
finite p, which becomes effective at the
smaller spatial scales. The local dissi-
pation rate varies as ujz, which contri-
butes a larger total integral, for a given
total current, as that current becomes
concentrated into a smaller and smaller
area. The collapse ceases when the dissi-
pation becomes great enough to balance the
magnetic energy which can be dragged into
the region. This is difficult to estimate
analytically.

It is significant that the kinetic
energy of the dissipative magnetofluid is
never more than 0.05% of the magnetic
energy. The high ratio of mean square
vector potential to magnetic energy (the
ratio at t = 0 is 0.8836, while the maxi-
mum value the ratio can have is 1.0)
effectively locks most of the energy into
the magnetic field for a long time.

What is not entirely clear is whether
the growth we are seeing is a linear in-
stability of the kind proposed by Furth,
Killeen, and Rosenbluth®’®’7 or a non-
linear coalescence involving the inter-
action between perturbed current distri-
butions. It seems clear that the satura-
tion mechanism is highly nonlinear.

ACKNOWLEDGEMENTS

We would like to thank Drs. J. Drake
and C. S. Liu each for a valuable discus-
sion, and to Dr. Dennis Bushnell for making
the NASA-Langley computational facilities
available to us. This work was supported
in part by NASA under Research Grants
NsG-7416 and NGL-16-001-043, and in part
by the U. S. Department of Energy.

Table 1 and Key

H=v=0 u=v=,0025
time step 0 2000 4500 2000 5500
€g (s.p.) 2.7489 2.552 " 2.199 2.499 2,216
€5 2.7503 2.702 2.6259 2.5018 2.231
€, 8.74x107° 4.64x107? 1.29x107! 2.75x10°" 2.26x10°*
3 . 8.936 16.62 4. 78 b.7L 313
A 2.4307 2.h285 2.h251 A 2.32h 2.153
9 .1.00 12.59 40.52 2.73x1072 1.7hx1072
Ky 1.06 1.055 1.0k1 1.037 1.018
kV 10.7 16.5 . 10.5 8.77
K, * * * 34.59 31.68
L ® s * 9.67 8.6k
EB = total magnctic enérgy
€5 (s.p.) = magnetic energy in "sheet pinch modes"
€v = +total kinetic energy
J = total mean square current
A = tqtal mean square vector potential
€ = total mean square vorticity (enstrophy)
k; = EB/A = {mean magnetic wave no.)2
ki = Q/ev = 'kmean kinetic wave no.)?
g 1/
k‘J = |(dEB/dt)u 3 = magnetic dissipation wave no.
'kv = |(d€v/dt)v—3|‘/“ = kinetic dissipation wave no.

Time step size At = (256)7!, both runs; (becomes (512)7F, late in dissipative run).

152

Figure Captions

Fig. .l. Mapgnetic field lines (contours of constant vector potential a) for the initial
sheet pinch configuration. B passes through zero at each sheet.

Fig. 2. Time evolution, for the non-dissipative run,.of non-sheet pinch magnetic energy
EB (nsp), mean square current J, mean square vector potential A, and kinetic energy ev.
Fig. 3a. Contours of constant current density j for non-dissipative (and dissipative)
run at t = 0. Compare with Fig. 1.

Fig. 3b. Contours of constant j at 2000 time steps, for u=v=0.

Fig. 3c. Contours of constant j at 4500 time steps, for u=v=0.

Fig. 4a. Vector potential contours (p=v=0) after 2000 time steps.

Fig. Ub. Vector potential contours (p=v=0) after L4500 time steps.

Fig. 5a. Contours of constant stream function (velocity streamlines) for p=v=0 at t = O.
The velocity field shown is essentially infinitesimal random noise.

Fig. 5b. Stream function contours for pu=v=0 at 2000 time steps.
Fig. 5c. Stream function contours for u=v=0 at 4500 time steps.

Fig. 6a,b. Modal B and vy energy spectra (directionally averaged over all k vectors
corresponding to a given k?), averaged over time steps L4500 to 5000, for u=v=0.

Fig. 7. Time history of EB(nsp e o €, for Yu=v=0.0025 run. The same gquantities for
zero dissipation, starting from the same initial conditions, are plotted in Fig. 2.

Fig. 8a. Constant j contours at 2000 time steps for p=v=0.0025.

Fig. 8b. Constant j contours at 5500 time steps for p=v=0.0025.

Fig. Qa. Constant a contours at 2000 time steps for p=v=0.0025.

Fig. 9b. Constant a contours at 5500 time steps for u=v=0.0025.

Fig. 10a. Stream function contours at 2000 time steps for u=v=0.0025. [The t = O
contours are shown in Fig. 5a.]

Fig. 10b. Stream function contours at 5500 time steps for u=v=.0025.

Fig. 11. Schematic diagram showing the direction of the accelerations, for j > 0, in the
neighborhood of a magnetic X point. Field lines dragged toward the X point from the high

field sides are stretched. Footnotes
l>S. A. Orszag, Stud. Appl. Math. 50, 293
(1971). 4 W. H. Matthaeus and D. Montgomery, sub-
G. S. Patterson and S. A. Orszag, Phys. mitted to Phys. Fluids, 1979.
Fluids 1k, 2358 (1971).
S. A. Orszag and C. -M. Tang, J. Fluid 5 -
Mech. 90, 129 (1979). H. P. Furth, J. Killeen, and M. N. Rosen-
=3 bluth, Phys. Fluids 6, 459 (1963).
8 D. Fyfe and D. Montgomery, J. Plasma 6 ;
Phys. 16, 181 (1976). E. M. Barston, Phys. Fluids 12, 2162
D. Fyfe, G. Joyce, and D. Montgomery, (1969) .
ibide AT, 3LT AI9TT).
D. Fyfe, D. Montgomery, and G. Joyce, T 5. F. Drake, N. T. Gladd, C. S. Liu, and
ibid. 17, 369 (1977). C. L. Chang, '"Microtearing Modes and
Anomalous Transport in Tokamaks',
3 1. sato and T. Hayashi, Phys. Fluids 22, University of Maryland Plasma Preprint
1189 (1979). (This paper also con- PL #79-026 (April, 1979).

tains a rather more complete biblio-
graphy of the astrophysical background
of this problem than we present here.)

153

- sl ek e B SR RO
. E{;J“J%Dn150

\<

W
3 ForRga s e
—‘_———’_,// /
T ‘—// lr T T T T 1
1 RpNE R S Lh /
THOUSANDS OF TIMESTEPS

: NO A\ S

d
B < (:75 S =
D I
- o/ \ &
DAV IQZATY;

Fig. 3a

154

=

PN E e 4 = !/Jc:r =\ r@
VAT Ot 2 sJ (@)
YRS RO %ﬁ(?%{

2 .-i %;

Fig. 5b
o 1o o e o l}/@@
< 5 (’ 'r) | |
. AES C:ESL, s
NS 5 A
0 < :
5 ci} D of QLEEFT a)
<> A (;
@ < ‘r)—b' 3 Cl
o c& ,\ :
e
5] 5= ey]
ls\‘ OO %ﬁ/g
3
N ﬂ
e L, n
)
=¥ v
T DY o«@é\
| r;r- l I[\CP g JQ' I
Fig. Sc

Fig. 6a

L3IG B(K) 5@
: -2.00 -1.00
=
b-S

-3.00
<
=
=
=

.00
Ty

T
D.0oa a.5g B

J

0.00

=,/80

-2.00

Fig. 6b

-3.00
x
%

SE
*
=
=
x
=
=
>
*
R

-4.00
=
=
3
=
=
f
%

1
b
4
=
®»
»
e
=
P
2

w

LOG V(K)
-5.00 x

1

-5,00

.‘_3—7‘0(3

"so 2 oo 2 50 3 oo 3

156

Fig. 8b
jL

Fig. 7

6431S3NIL 40 SONHSMDHL
R < e,

L 1 1 1 1 1 L |

]

1

[l e ——
611" 1%M
g4le

\\

HOS* (4ShyRs 2

1

0

Fig. 9a

157

7\l [

= ———

— = 4
L—\J—_
e ;
w
e e e
_——————
W - g
e e

Fig. %o Fig. 10b
Sfronngnde
o ¥
K N\
(i
o
\ /
' /
i— — e o e e

‘ 7 SR e
/// \\\
6\ = ,}\ % ﬂ:\\@[Strong B side

Fig. 10a Fig. 11

apIs g ypom
apIs g yoam

158

)

NUMERICAL SOLUTION OF THE 3:Q‘N§VIER—§;OKES
EQUATIONS ON THE CRAX—l'COMPUTER“*

* X% *
J. S. Shang, P. G. Buning, W. L. Hankey
* k%
M. C. Wirth, D. A. Calahan and W. Ames

ez

=

k%

*Air Force Flight Dynamics Laboratory
**University of Michigan

ABSTRACT

A three-dimensional, time dependent Navier-Stokes code using MacCormack's explicit

scheme has been vectorized for the CRAY-1 computer.

Computations were performed for a

turbulent, transonic, normal shock wave boundary layer interaction in a wind tunnel

diffuser.

The vectorized three-dimensional Navier-Stokes code on the CRAY-1 computer

achieved a speed of 128 times that of the original scalar code processed by a CYBER 74

computer.
computer by a factor of 8.13.

numerical simulation is also made.

Def

ey

NOMENCLATURE

Speed of Sound
Deformation Tensor
Specific Internal Energy
cVT + (u? +v2 + wz)/z

Vector Fluxes, Equation (15)

" Differencing Operator

Mach Number

Static Pressure

Rate of Heat Transfer
Reynolds Number Based on Run-
ning Length pmumx/uoo

Static Temperature

time

Dependent Variables in Vector

. Form (p, pu, pv, pw, pe)

Velocity Vector

Velocity Components in
Cartesian Frame

Coordinates in Cartesian
Frame

Transformed Coordinate System,
Equation (14)

Density

Stress Tensor

INTRODUCTION

In the past decade, computational fluid
dynamics has become firmly established as
a credible tool for aerodynamics

researchl’2

Aided by some rather crude

and heuristic turbulence models, success
has been achieved even for complex turbu-

lent flows3-8,

In spite of all these con-

vincing demonstrations, the objective of a

159

The vectorized version of the code outperforms the scalar code on the CRAY
A comparison between the experimental data and the

wide application of computational fluid
dynamics in engineering design has yet to
be achieved. The basic limitation is in
cost effectiveness. A lower cost and
systematic methodology needs to be
developed9.

The present analysis addresses one of
the key objecfives in obtaining efficient
numerical processing. To achieve this
objective, two approaches seen obvious;
either develop special algorithms designed
for a particular category of:problems
according to the laws of physics or utilize
an improved computer. In the case of
special algorithms, a better understanding
of the generic structure of the flow field
is required. In general, these attempts
have been successful and have achieved an
order of magnitude improvement in comput-
ing speed. On the other hand, a class of
computers designed for scientific computa-
tions; the CRAY-1l, STAR 100 and ILLIAC IV
among others, has become available. The
most significant advance in computer hard-
ware related to computational fluid dyna-
mics is the vector processor which permits
a vector to be processed at an exceptional
speed. This option gives a new perspec-
tive; i.e., a drastic reduction in comput-
ing timelO, 11,

A three~dimensional time dependent
Navier-Stokes code using MacCormack's
explicit schemel3 has been vectorized for
the CRAY-1 computer. The selection of
this particular finite differencing scheme
is based on its past ability to perform a
large number of successful bench mark
runsz‘7, its proven shock-~capturing capa-

bility, and the inherent simplicity of the
basic algorithms. The Cray-1 computer was
chosen because at the present time, among
all the available general purpose scienti-
fic prbcessors, it provides the highest
potential floating point computation rate
in both the scalar and the vector model%.
The combination of the selected algorithm
and the CRAY-1 computer provides a bench
mark for future development and a tool for
current engineering evalution.

The problem selected for evaluating the
CRAY-1 performance was the experimental
investigation of Abbissl®,16 of a three-
dimensional interaction of a normal shock
with a turbulent boundary layer in a square
wind tunnel diffuser at a Reynolds number
of thirty million and Mach number of 1.51.
The primary purpose of the paper is to
determine the computational speed of the
code, although a comparison with -experi-
mental data is presented to demonstrate
the wvalidity of thc colution.

GOVERNING EQUATIONS
The time dependent, three dimensional

compressible Navier-Stokes equations in
mass—averaged variables can be given as

Ip . (aTY =

W + V (pU) "'_O (l)
20U L g i~ T) = 0 (2)

ot

W4V (pei-GTHD =0 (3

The turbulent closure of the present
analysis is accomplished through an eddy
viscosity model. The effective thermal
conductivity is also defined by the turbu-
lent Prandtl number (Pry = U.Y). 'The equa-
tion of state, Sutherland's viscosity law
and assigned molecular Prandtl number
(0.73) formally close the system of govern-
ing equations.

\

DIFFUSER
NIRMAL SHOCK
VIAVE SYSTEM

SEILIG
CHAMBER

ADIUSTARIE
SONIC THROAT

Figure 1. Flow Field Schematic

160

Since the wind tunnel flow field con-
sisted of four symmetrical quadrants, only
a single quadrant was computed. The boun-
daries of the computational domain contain
two intersecting wind tunnel walls and two
planes of symmetry for which the associated
boundary conditions are straight forward
(Figure 1). 1In order to develop upstream
conditions equivalent to the experiment a
separate computation is initiated with a
free stream condition and permitted to
develop a three-dimensional boundary
layer along the corner region until the
boundary layer duplicates the experimental
observation (6 = 4.0 cm, x 316 cm)ls.
Then, the computed flow field at this
streamwise location is impnsed as the up-
steam condition for the interaction com-
putation. On the wind tunnel walls, the
boundary conditions are go-slip for the
velocifty components and a constant sur-
face temperature. The wind tunnel wall
pressure is obtained by satisfying the
momentum eyualivn al the solid surface.

On the planes of symmetry, the symmetrical
boundary conditions are given for all de-
pendent variables. The normal shock wave
across the wind tunnel is then specified
according to the Rankine-Hugoniot condi-
tions. The far downstream boundary con-
dition is the well known no-change con-
dition. In summary:

INITIAL CONDITION:

U, &, n, ¢) = Q” (9
UPSTREAM CONDITION:
Ue, 0, n, ¢) = U (10)
DOWNSTREAM :
%% =0 (11)
X > XL
ON_PLANES OF SYMMETRY:
%% = 0 and %g =0 (12)
y =y) z =z
ON WIND TUNNEL WALL:
u=vs=w=20 (13a)
Ty, = 313.79°K- at y, z =0 (13b)
VeT=0

A coordinate system transformation is
introduced to improve the numerical resol-
ution in the viscous dominated region.

g = x/xL (14a)
n = 1/k In[l +(5 - 1) y/y,) (14b)
£ = 1/k In[1 +(eX - 1) 2/2] (Ldc)

The governing equations in the transformed
space are of the following form:
3U 3F 3G 3H
—_— — _+Z _— =,
e Ve BE T I Ny o T ik 3 70
(15)

where Ex’ ny and CZ are the metrics of the

coordinate transformation. The definition
of the conventional flux vectors F, G, and
H can be found in Ref. 7.

NUMERICAL PROCEDURE
AND DATA STRUCTURE

The basic numerical method is the
time-split or factorized scheme originated
by MacCormack. The finite difference form-
ulation in terms of the difference operator
can be expressed as

7z

n+

G2y be oo e
0 = n g IL G L)

3

At At
I, G Il G (16)

Each difference operator contains a
predictor and corrector. During a specific
numerical sweep, the flux vectors are appro-
ximated by a central, forward, and back-
ward differencing scheme in such a fashion
* that after a complete cyrle of the pre-
dictor and corrector operations all the
derivatives are effectively approximated
by a central differencing scheme. A
graphic representation of these operations
is given by Figure 2.

CORRECTOR

o d_

PREDICTOR

DIFFERERCING
OPERATOR

4

Grid Points Involved in the
Time Step Sweep

Figure 2.

When investigating flows with strong
shock waves, it is necessary to employ
numerical damping in a shock-capturing
scheme. Fourth-order pressure damping was
utilized which generates an artificial
viscosity-like term.17 2

AtAgi B vl +c 37p, 30

] i=1,2,3
agi 4p agi agi

161

The approximation of second order central
differencing for the corrector step
required additional grid point information
beyond the immediately adjacent planes.
The damping terms, however, are effective
only in the presence of shock waves where
the numerical resolution is degraded.

From the symmetric differencing opera-
tor sequence of predictor and corrector
steps, one detects that the dependent vari-
ables in the predictor level can be com-
pletely eliminated by retaining only the
three cyclic pages currently in use
(Figure 3). For a flow field requiring a
large amount of data storage, this reduc-
tion in memory requirement is substantial.
Meanwhile, the paging process is reduced
from two sweeps to one. The predictor
and corrector sequence is performed with-
in one sweep by overlapping the corrector
operation during one fractional time step.

PRIDECTOR

CORRECTOR

Figure 3. Data Storage and Data

Flow Diagram

Once the planar or page storage is
adopted, the vector length can be deter-
mined. Separate vectors are constructed
for n and ¢ directions, yielding vector
lengths approximately equal to the number
of grid points in each direction. 1In
order to keep all solutions in the same
page (n - ¢ plane), the streamwise sweep
(£ sweep) is vectorized in the T direction.

For the present problem, the computa-
tional domain with the dimension of
356.3cm x 45.5cm x 45.5cm is partitioned
into two streamwise sections of 64 pages
each. Every page contains 33 x 33 grid
points in n and 7 coordinates respectively.
The problem is solved in two steps. The
first computational section generates a
three-dimensional boundary layer over a
corner which becomes the in-flow boundary
condition for the following shock-boundary
interaction domain. Both contain
64 x 33 x 33 grid points, but a finer
streamwise mesh spacing Ax = 1.27 cm was
used for the interaction zone to gain a
finer numerical resolution of the shock-

boundary layer interaction. The ratio
between the fine and coarse streamwise
grid spacing is 0.3063 of the local
boundary-layer thickness (4.0cm)15. The
cross flow plane grid-point distribution,
however, remains identifical between the
two overlapping segments. The memory
requirement for each is about 0.545 mil-
lion words.

The numerical solution is considered
at its steady state asymptote when the
maximum difference between two consecutive
time levels of the static pressure in the
strong interacting zone is less than 0.2
percent. In the leading computational
domain the convergence criterion is
established similarly but is based on the
velocity profiles instead of pressure.

TIMING RESULTS

A portion of the present effort 1is
aimed at making internal comparisons of
the relative times for various types of
functional unit processing and memory
loading (I/0) for the vectorized code.

A knowledge of relative time expenditure
information is important to provide some
insight into the program execution rate.
Although this type of data is code depend-
ent, the present example is deemed typical
of a large class.of Navier-Stokes solvers.
The timing information is measured by vec-
tor operation countsll and shown in Figure
4. .1t is obvious that the relative usage
of the memory path and functional units is
dominated by memory loadings (34.6%) and
floating point multiplication (33.3%).
Within the functional units, the relative
usage of the floating point addition and
multiplication has the ratio of two to
three. The relative usage of the recipro-
cal approximation is extremely rare, i.e.
less the 2%. 1In spite of the high per-
centage of memory loading, a portion of
the vectorized Fortran code has achieved
an execution rate of 42.9 MFLOPS11,
Further improvements still can be made
either in Fortran or assembly language
versions of the present code. However, we
feel an overall execution rate greater
than 60 MFLOPS on this size problem is
unlikely.

A basic dilemma exists for the com-
parative investigation; namely in the pro-
cess of vectorization significant changes
were made either om the amount of computa-
tion performed or on the number of sub-
routine calls made. The final vectorized
program usually bears little resemblence
to the original scalar code’, 11, sub-

162

has also been reported.

stantial improvement in performance of
the vectorized code on a scalar machine

However, this
improvement in performance can be consid-
ered as a contribution due to the vector-
ization process.

P
RECIPRCCAL
APPROXIMATOR

Vector Operation Counts in
Percentage

Figure 4.

Tn order to perform the comparative
study, a criterion must be established.
The ultimate evaluation of data processing
rate is the computing time. The complete-
ly duplicated computations for an ident-
ical fluid mechanics problem are usually
prohibited by the incore memory and the
indexing limitations for various processors.
Therefore, one has to accept the rate of
data processing as the criterion. The
rate of data processing is commonly defined
as
RDP = CPU Time/(Total Number of Grid
Points x Total Number of Iterations)

The particular rate of data processing is
most suitable for numerical programs with
similar algorithms and convergence rate.
If the ratio between field grid points
and boundary points can be maintained
between two programs then the comparison
is particularly meaningful.

In Table 1, the comparison of timing
results between the scalar code and
vectorized code on the CRAY-1 is presented.

Table 1
The Comparison of Scalar and

Vector Processing on CRAY-1

VERSION OF CODE RDP(Sec/Pts, ITERATIONS)
4.761 x 10°%

4.861 x 10

Scalar

Vector

The vectorized program outperforms the
original scalar code by a factor of 8.13.
In Table 2, the timing results of the
scalar code and vectorized code perform-

ance for four different computers are
given.

Table 2

Comparative Timing Results

COMPUTER () D J——,
RDP

CYBER 74 Scalar 7.48x107> 1.0

CDC 7600 Scalar I.45x107> 5.2

CRAY-1 Scalar 4.76x10°% 15.7

CRAY-1 Vector 5.86x107° 127.7

CRAY-1 Assembly 5.19x107° 144.2

A brief description of each running
condition for which the timing results
were obtained may help with the interpre-
tion of the data. The computations con-
ducted on CYBER 74 and CDC 7600 with a
grid point system of (17 x 33 x 33) were
performed in the early phase of the pre-
sent task’/. On the CYBER 74 computer the
data storage problem was overcome by a
data manager subroutine in conjunction with
a random access disk file. The computation
carried out on CDC 7600 used large core
memory for all the dependent variables.
The 1/0 requirement is substantial, par-
ticularly for the computation performed on
the CYBER 74.

FORTRAN VS. ASSEMBLY LANGUAGE

The multiple functional units and mem-
ory hieracrchy of the CRAY-1 can be dif-
ficult for the Fortran compiler (CFT) to
wanage efficiently. Consequently, CRAY
Assembly Language (CAL) versions of a num-
ber of subroutines which account for up to
787% of the computation time were written
with the aid of a simulator [18]. These
kernels were also vectorized in Fortran
with the CRAY-1 architecture and compiler
features in mind; however, non-ANSI stan-
" dard utility functions [19] and unusual
Fortran constructs [20] were not employed.

The principle timing results follow.

1) Among 9 kernels, assembly language
speedups ranged from 117 to 29% with
vector lengths of 33 (= a grid dimen-
sion).

2) An overall speedup of 14.2% was
achieved (Table 2), including the

common 227% Fortran.

163

3) A detailed simulator-produced evalua-
tion of a subroutine which accounts
for = 207 of the total computation
time is given in [21]. The execution
rate of ¥ 50 MFLOPS is 1/3 of the
maximum practical rate of the proces-
sor. However, the memory path is
busy 70% of the time for the Fortran
code for a vector length of 63, and
up to 90% for the CAL code, indicating
the memory bound nature of the algor-
ithm on the CRAY-1., 1Indeed, the 90%
busy time is viewed as an excellent
indicator of the optimality of the
CAL code.

A more detailed comparative study of this
code is given in [21].

COMPARISONS WITH EXPERIMENTAL DATA

In Figure 5, several velocity profiles
across the wind tunnel at a Reynolds number
of 3.0 x 107 are presented. This location
represents the flow field condition at the
end of the leading segment of the computa-
tional domain which is also the upstream
condition for the following interaction
zone. The present results agree reasonably
well with the data of Seddonlb®. The data,
however, were collected at a Reynolds num-
ber one decade lower than the present con-
dition and at a slightly different Mach
number (1.47 v.s. 1.51). At the range of
Reynolds numbers considered, the Reynolds
number dependence should be scaled out by
the boundary layer thickness. An inde-
pendent boundary-layer calculation using
the exact simulated condition was per-
formed that verified this contention. It
was found that the difference in magnitude
of velocity is a few percent. The present
result underpredicts the measured boundary
layer thicknessl3 by about eight percent

M e 150 REY o 3.0x10° 3= 0 UM
2
" %“ 1,5 0 0.018 0007 0.0907
12 GOATA OF SEDDON l
Y
" g
08 8
08
04 &
&/
02
P " 1 1
0 02 04 05 08 10. 0 02 04 05 0810
0 02 04 05 08 10 0 02 04 06
Ulte

Velocity Profiles Along
the Tunnel Wall

Figure 5.

A direct comparison of several velocity
distributions between the data of Abbiss
et alld and the present calculation is
presented in Figure 6 for the interaction
region. The data are displayed for fixed
x/8 and y coordinates away from the corner
domain. The coordinate x is taken in the
streamwise direction along the tunnel floor
and y normal to the floor.
ment between the data and calculation is
observed for the regions either deeply
imbedded within the boundary layer or com-
pletely contained in the inviscid domain.
The maximum discrepancy between data and

calculation is in the lambda wave structure.

The maximum desparity between data and
calculations is about 10 percent.

[
wl oo~y o
Te
v W 00 O_O__ﬂ g
oy WPy u o
W e teana S0
D00 0000 BY gy
X pe —— e e
\O—G_@\ Ye i3em)
- ~ .
:-
A0 o . h
w S 00 oo LRE"PY
00 1
o - © 90 0
‘ 06
o
w - ° 2 Y Qo ‘:‘j
X0 - ODATA OF ABRiSS AL
L o
. - 1, 1. A 1. L, 1 1 1
Rt W 2 19 0 12 o 10 w 17

LN

Comparison of the Flow Field
Velocity in the Interactive
Region

Figure 6.

In Figure 7 the Mach number contour is
presented in an attempt to compare with
the flow field structure given by Abbiss
et all> in Figure 8. The bifurcation of
the normal shock wave is clearly indicated.
The calculation nearly duplicates all of
primary features of the experimental
observation. However, a difference can
be discerned in the dimension of the
embedded supersonic zone between the
experimental observation and calculation.
The local supersonic zone emanates from
the expansion due to the total pressure
difference between the normal shock and
the lambda shock structure and the rapid
change in the displacement surface. A
few percent disparity in predicting the
magnitude of velocity lead to the dis-
tinguishable discrepancy in the definition
of the embedded supersonic zone. A
similar observation may be made for the
work of Shea?? in his ,investigation of the
two-dimensional normal-shock wave turbu-
lent boundary layer interactiom.

164

Excellent agree-

r

Bus 151 "
. By = 30210
& by-wnun

BATA OF ABBISS EIAL

e
—
e

iy o
-~ SONIC LINE
-

«}

zvr /! /
20} w=1349703 7102,
A P i o et
L - -3
S, <7 -I-

| o X B
L i \ CUTER £CGF 57
BOUSDARY LAYER
1 I 1 I3 L] 1 L J.])
3 <0 40 6 10 20 30 49
Xig

Figure 7. Experimentally Measured Flaw
Field Structure in the Plane

of Symmetry

. M, =1.51

8.0 4 7
Rey = 3.0 x 10

§ = 40 mm

4.0 1

x/é
Figure 8. Computed Number Contour in the
Plane of Symmetry

In Figure 9, the velocity distribution
parallel to the wind tunnel side is given.
A reverse flow is observed beneath the
lambda shock wave system. The separated
flow region begins about three boundary-
layer thickness upstream of the normal
shock and terminates at five boundary layer
thickness downstream. The length of the
separated domain is similar to the measure-
ment of Seddonl® and the numerical simula-

‘tion by Shea22. :

Xjp =45

Figure 9. Computed Velocity Field in the

Interaction Region

The entire flow field structure is pre-
sented in Figure 10 in terme of density con-
tours at various streamwise locations. The
shear layer over the corner region, the
strong inviscid-viscous domain, and the
subsequent readjustment of the flow field
are easily detectable. A clear indication
of substantial growth of the shear layer
over the wind tunnel wall is also obvious.

CONCLUSIONS

A three-dimensional time dependent
Navier-Stokes code using MacCormack's
explicit scheme has been vectorized for

the CRAY-1 computer achieved a speed of
128 time that of the original scalar code
processed by a CYBER 74 computer. The
vectorized code outperforms the scalar
code on the CRAY-1 computer by a factor of
8.13.

The numerical simulation for a turbu-
lent, transonic, normal shock-wave bound-
ary-layer interaction in a wind tunnel has
been successfully performed using a total
139,400 grid points. The numerical result
indicates sufficient resolution for engine-
ering purposes. Additional increase in
speed by up to an order of magnitude
through algorithm requirement also seems
attainable.

ACKNOWLEDGEMENT

The authors wish to acknowledge the
assistance of S. Arya and E. Sesek of the
University of Michigan in preparation of
the CRAY-1 program. This work was pre-
pared in part under the auspices of Grant
AF AFOSR Grant 75-2812. The authors also
wish to express their appreciation to
Cray Research, Inc. and Lawrence Livermore
Laboratory for the use of their computer
facility.

il

\
VA S

T

Figure 10.

165

M, = 1.51
Rey = 3.0 x 107
§ = 40 mm

Perspective View of Density Contours

REFERENCES

1. Chapman, D. R., Drydent Lectureship in
Research Computational Aerodynamics Devel-
opment and Outlook, ATAA Paper 79-0129,
January 1979.

2. Peyret, R. and Viviand, H. '"Computa-
tion of Viscous Compressible Flows Based
on the Navier-Stokes Equations,' AGARDo-
graph, No. 212, September 1975.

3. Knight,lD. D., "Numerical Simulation
of Realistic High-Speed Inlets Using the -
Navier-Stokes Equations,'" AIAA J., Vol. 16,
June 1978. .

4, Levy, L. L. "Experimental and Computa-
tional Steady and Unsteady Transonic Flow

About a Thick Airfoil," AIAA J., Vol. 16,

June 1978.

5. Mikhail, A. G., Hankey, W. L. and
Shang, J. S., "Computation of a Supersonic
Flow Past An Axisymmetric Nozzle Boattail
with Jet Exhaust,” AIAA Paper 78-993,

July 1978.

6. Hung, C. M. and MacCormack, R. W.
"Numerical Solution of Three-Dimensional
Shockwave and Turbulent Boundary-Layer
Interaction,'" AIAA J., Vol. 16, No. 10,
October 1978.

7. Shang, J. S., Hankey, W. L. and Petty,
J. S., "Numerical Solution of Supersonic
Interacting Turbulent Flow Along a Corner,”
AIAA Paper 78-1210, July 1978.

8. Pulliam, T. H. and Lomax, H., "Simula-
tion of Three-Dimensional Compressible
Viscous Flow on the Illiac IV Computer,"
AIAA Paper 79-0206, January 1979.

9. '"Future Computer Requirements for Com-
putational Aerodynamics,' A Workshop held
at NASA Ames Research Center, Oct 406, 1977,
NASA Conference Proceeding 2032.

10. J. S. Shang, Buning, P. G., Hankey,
W. L., and Wirth, M. C., "The Performance
of a Vectorized 3-D Navier-Stokes Code on
the CRAY-1 computer, AIAA Paper 79-1448,
1979.

11. Buning, P. G., "Preliminary Report on
the Evaluation of the CRAY-1 as a Numerical
Aerodynamic Simulation Process,' Presented
at ATAA 3rd Computational Fluid Dynamics
Conference, Open Forum, June 1977.

166

12. Smith, R. E. and Pitts, J. I., "The
Solution of the Three-Dimensional Compres-
sible Navier-Stokes Equations on a Vector
Computer,'" Third IMACS International Sym-
psium on Computer Methods for Partial Dif-
ferential Equations,'" June 1979, Lehigh
University, PA, and Private Communication.

13. MacCormack, R. W., "Numerical Solu-
tions of the Interactions of a Shock Wave
with a Laminar Boundary-Layer," Lecture
Notes in Physics, Vol. 8, Springgr—Verlag,
1971.

14. Calahan, D. A., "Performance of Linear
Algebra Codes on the CRAY-1, ""Proceedings
SPE Symposium on Reservior Simulation,
Denver, CO, 1979.

15. Ahiss, TI. B,, Fast, T.. F., Nash, C. R.,
Parker, P., Pike, E. R. and Swayer, W. G.,
"A Study of the Intcraction of a Normal
Shock-wave and a Turhulent BRanndary Tayer
Using a Laser Anemometer," Royal Aircraft
Establishment, England, TR 75151, February
1976.

16. Seddon, J., "The Flow Produced by
Interaction of Turbulent Boundary-Layer
with a Normal Shock Wave of Strength Suf-
ficient to Cause Separation," Royal Air-
craft Establishment, England, Rand M 3502,
March 1960.

17. MacCormack, R. W. and Baldwin, B. S.,
"A Numerical Method for Solving the Navier-
Stokes Equations with Application to Shock-
Boundary Layer Interactions,'" AIAA Paper
75-1, January 1975.

18. Orbits, D. A., "A CRAY-1 Simulator,"
Report #118, Systems Engineering Laboratory
Univ. of Michigan, September 1, 1978.

19. CRAY-1 Fortran (CFT) Reference Ménual,
Pub. #2240009, Cray Research, Inc., 1978.

20. Higbie, Lee, 'Speeding Up Fortran (CFT)
Programs on the CRAY-1," Technical Note Pub.
#2240207, Cray Research, Inc., 1978.

21. Ames, W. G., Arya, S. and Calahan, -
D. A., "An Evaluation of the Fortran Com-
piler on the CRAY-1," Report #134, Systems
Engineering Laboratory, University of
Michigan, October 1, 1979.

22. Shea, J. R., "A Numerical Study of
Transonic Normal Shock-Turbulent Boundary
Layer Interactions," AIAA Paper 78-1170,
July 1978 and Private Communication.

ATTENDEES OF SCIE MEETING
September 12-13, 1979

Larry Ablow
SRI International

" Bill Alzheimer
Sandia Laboratory, Livermore

G.W. Anderson
Sandia Laboratory, Livermore

Arvind
Massachusetts Institute of Technology

John Avila
NASA/AMES

Pat Bailey
EPRI

Robert Barton
Lawrence Livermore Laboratory

Marsha Berger.
Stanford University

Stanley A. Berger
University of California, Berkeley

Carl Berkowitz
Pacific Northwest Laboratories

Richard Blaine
International Business Machines

David L. Book
Naval Research Laboratory

Jay P. Boris
Naval Research Laboratory

Dennis Brockway)
Los Alamos Scientific Laboratory

Ingrid Bucher
Los Alamos Scientific Laboratory

Pieter Buning
NASA/AMES

Bi11 Buzbee _
Los Alamos Scientific Laboratory

167

D. A. Calahan
University of Michigan

David Ceperley
Lawrence Berkeley Laboratory

Simon W. Chang
Jayeor

W. J. Cody
Argonne National Laboratory

Mark Cotnoir
Systems Development Corporation

Keith L. Derstine
Argonne National Laboratory

Ronald J. Detry
Sandia Laboratory, Albuquerque

Jack Dongarra
Argonne National Laboratory

Paul Dubois
Lawrence Livermore Laboratory

Floyd E. Dunn
Argonne National Laboratory

Jim Edwards
General Electric

Ted Einwohner
Lawrence Livermore Laboratory

Raymond Ellis :
Sandia Laboratory, Livermore

Kenneth Eppley
Lawrence Livermore Laboratory

Albert M. Erisman
Boeing Computer Services Company

Vance Farber

Mike Farmwald
Lawrence Livermore Laboratory

Michael D. Feit
Lawrence Livermore Laboratory

Sidney Fernbach
Lawrence Livermore Laboratory

Horace Flatt
International Business Machines

Kirby W. Fong
Lawrence Livermore Laboratory

Bengt Fornberg .
California Institute of Technology

Paul Fredrickson
Los Alamos Scientific Laboratory

Alex Friedman
University of California, Berkeley

Verlan K. Gabrielson
Sandia Laboratory, Livermore

Fred Gama-Lobo
Los Alamos Scientific Laboratory

W. Morven Gentleman
University of Waterloo

Willjam E. Gifford III
AFWL, Kirkland

Eric Gilbert
Lawrence Livermore Laboratory

Dick Giroux
Lawrence Livermore Laboratory

Joseph Grcar
University of I}]inois

Anne Greenbaum
Lawrence Livermore Laboratory

John Greenstadt
International Business Machines

William Gropp
Stanford University

Louis A. Hageman
Bettis Atomic’ Power Laboratory

Karen Haskell
Sandia Laboratory, Albuquerque

168

Gerald Hedstrom
Lawrence Livermore Laboratory

Leland C. Helmle
Informatics - PMI

Richard Hickman
Lawrence Livermore Laboratory

H. Richard Hicks
ORNL

Lee Higbie
Cray Research

Lee E. Hollingsworth
Sandia Laboratory, Albuquerque

Stu Hopkins
NASA/AMES

Alphonse lacoletti
Sandia Laboratory, Albuquerque

Stan Jensen
Lockheed Research Lab

Thomas L. Jordan
Los Alamos Scientific Laboratory

Ralph G. Jorstad
Boeing Computer Services Company

Lou Just
John Kammerdiener
Los Alamos Scientific Laboratory

Alan Karp
International Business Machines

Michael J. Kascic
Control Data Corporation

Michael J. Keskinen
Naval Research Laboratory

John Killeen
Lawrence Livermore Laboratory

John Kimlinger
Lawrence Livermore Laboratory

David A. Kloc _
Air Force Weapons Laboratory, N.M.

Jay Lambiotte
NASA/Langley Research Center

Richard Lancaster
IPC

B. Langdon
Lawrence Livermore Laboratory

Barbara Lasinski
Lawrence Livermore Laboratory

Robert Lee
l.awrence Livermore Laboratory

Charles Leonard
Sandia Laboratory, L1vermore

Robert Lyczkowski
Lawrence Livermore Laboratory

Steve McCormick
Colorado State University -

Michel McCoy
Lawrence Livermore Laboratory

B. Edward Mcbonald
Naval Research Laboratory

Brandan McNamara
Lawrence Livermore Laboratory

Lynn D. Maas
Los Alamos Scientific Laboratory

Neil Madsen
Lawrence Livermore Laboratory

Mary-Ann Mahaffy
Los Alamos Scientific Laboratory

J. Manickam
Princeton University

. Alan Mankofsky
Cornell University

Thomas Manteuffel
Sandia Laboratory, Livermore

Barry Marden
Sandia Laboratory, Albuquerque

Alex Marusak
Los Alamos Scientific Laboratory

Ken Marx
Sandia Laboratory, Livermore

Lawrence Marx
NASA/Goddard

William Mattheaus
William and Mary

T. C. Michels
Lawrence Livermore Laboratory

Gordon J. Miller
Sandia Laboratory, L1vermore

R. H. Miller
University of Chicago

Barry N. Moore
Austin Research Associates

James R. Morris
Lawrence Livermore Laboratory

Paul J. Nikolai
Wright-Patterson AFB

Joseph Oliger
Stanford University

Carl Edward Oliver
Air Force Office Science Research

David Orbits
Arthur Ortega
Sandia Laboratory, Livermore

Sam Paolucci
Sandia Laboratory, Livermore

Merrell Patrick
Duke University

Stu Patterson Jr.
Cray Research

Larry Patzer
Air Force Weapons Lab, N.M.

Charles Pfefferkorn
NASA/AMES

William G. Poole, Jr.
Boeing Computer Services Company

Jeffrey P. Quintenz
Sandia Laboratory, Albuquerque

~ John Rettberg
International Business Machines

Clifford Rhoades

Air Force Weapons Laboratory, N.M.

Garry Rodrigue
Lawrence Livermore Laboratory

Tim Rudy
Lawrence Livermore Laboratory

Lawrénce E. Rudsinski
Steven Sackett
Lawrence Livermore Laboratory

P. G. Saffman
Caltech

Theodore Salvi

Air Force Weapons Laboratory, N.M.

Ahmed Sameh
University of I1linois

James G. Sanderson
Los Alamos Scientific Laboratory

Melvin Scott
Sandia Laboratory, Albuguerque

J. S. Shang
Wright-Patterson AFB

Richard Simari

Air Force Weapons Laboratory, N.M.

Bruce F. Smith
NASA/AMES

Major Leonard Stans

Air Force Weapons Laboratory, N.M.

Kenneth G. Stevens
NASA/AMES

A. Stewart
NASA/AMES

Robert Stoeckly
-Mission Research Corporation

170

William Sutcliffe
Lawrence Livermore Laboratory

Tokihiko Suyehiro
Lawrence Livermore Laboratory

Marvin Theimer
Stanford University

J. W. Thomas
Colorado State University

John Tomlin
NASA/AMES

Samuel Thompson
Sandia Laboratory, Albuquerque

D. S. Trent
Pacific Northwest Laboratories

Phillip J. Trosin
Informatics, Inc.

Carol Tull .
Lawrence Livermore Laboratory

Walter H. Vandevender
Sandia Laboratory, Albuquerque

Richard Varga
Kent State University

Doug Vaughan
Lawrence Livermore Laboratory

L. E. Voelker
Sandia Laboratory, Livermore

H. H. Wang
International Business Machines

Osaki Watanuki
University of California, L.A.

V. Watson
David Wexter
System Development Corporation

Paul P. Whalen
Los Alamos Scientific Laboratory

Greg Wojcik
Weidlinger Associates

