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Abstract

One of the fundamental constants of nature is the baryon asymmetry of the
universe - the ratio of the number of baryons to the entropy. This consiant is
about 10~!!. In haryon-number conserving theories, this was just an initial con-
dition. With the advent of grand unified theories (GUTs), barvon number is no
longer conserved. and this asymmetry can be generaied dynamically. Unfortu-
nately. however, there are reasons for preferring another mechanism. For example,
GUTs predict proton decay which. after extensive searches, has nol been found.
An alternative place to look for baryogenesis is the electroweak phase transition.
described by the standard model, which posses all the necessary ingredients for

baryogenesis.

Anomalous baryon-number violation in weak interactions becomes large at
high temperatures, which offers the prospect of creating the asymmetry with the
standard model or minimal extensions. This can just barely be dane if certain
conditions are fulfilled. C'F violation must be large, which rules out the minimal
standard model as the source of the asymmetry, but which is easily arranged with
an extended Higgs sector. The haryon-number violating rates themselves are not

I AN . . .
exactly knqwn; and they Inust be pushed to their theoretical limits. A more ex-

iv



act determination of these rates is needed before a definitive answer can be given.
Finally, the phase transition must be at least weakly first order. Such phase tran-
sitions are accompanied by the formation and expansion of bubbles of true vacuum
within the false vacuum. much like the boiling of water. As the bubbles expand,
they provide a departure from thermal equilibrium, otherwise the dynamics will
adjust the net baryon number to zero. The bubble expansion also provides a bias-
ing that creates an asymmetry on the bubble surface. Under optimal conditions.

the observed asymmetry can just be produced.
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1. Introduction

With the advent of grand unified theories, there arose the hope of dynami-
cally generating the barvon number of the universe, a quantity that had to be set
by initial conditions in barvon-number conserving theories. Baryon-number vio-
lation alone, however. is not sufficient fo generate a net baryon asymmetry. As
first pointed out by Sakharov''. there are two more necessary conditions. The
theory must have C and C P violation. otherwise equal numbers of barvons and
autibarvons are produced. giving no net increase. There must also be a depar-
ture from thermal equilibrium. otherwise the dynamics drives the system to equal
mixtures of barvons and antibaryons. GUTs naturally violate baron number and
P, The phase transitions are tvpically strongly first-order, so a departure from
thermal equilibrium is easily achieved. One can usually produce the observed ratio
of barvon number to entropy. § = ng/s ~ 1071, This is one of the atiractive
features of GUTs. There 1s. however. one problem that cannot be overlooked: the
proton has no! yet been observed to decay. This completely rules out the mini-
mal ST7(5) theory. That theory has other problems, the most notable being the
hierarchy problem. The minimal supersymmetric extension solves the hierarchy
prablem and gives a protou life time consistent with observation. However, super-
<vmmetric GUTs have their own set of problems. Furthermore. many non-minimal
extensions soon hecome rather contrived, and the number of free parameters be-
comes 50 large. explaining one ratio al such a price is unsatisfying. In addition,
the temperature range between the GUT and the weak scale is large enough that
haryon-number violation proceeding through the clectroweak anomaly will wash

out any asyvmmelry, unless the initial 8 — L is non-zero. While grand unification



is a very beautiful idea. these nontrivial problems are motivation for an alternative

method of baryogenesis.

The weak scale in minimal extensions of the standard model turns out 10 be
a promising place to lack. The standard model naturally possesses two of the
three necessary conditions for baryogenesis: baryon number is not conserved (due
to the axial vector anomaly) and CP violation is amlomatic. If the weak phase
transition is not too weakly first-order, then a large erough departure from thermal
equilibrium can be achieved. This is the case if the Higgs mass is not too large.
It is clear, however. that (P violation will be too small in the minimal standard
model 1o produce any thing like the observed asymimetry, But there are many
extensions of the standard model. such as multi-Higgs theories. supersymmetric
theorics, technicolor theories, or the like. with ample C I? violation. Ti then becomes
a quantitative question as to whether the actual barvon-number violating rates

themselves are large enough.

I this thesis, [ examine the necessary conditions under which the haryon asym-
metry may be generated at the weak scale. The key point is that a time-dependent
Higgs ficld biases the baryon production and generates an asymmetry, the sign of
which is determiined by the sign of the C'P violating parameter. The expansion
of bubbles of true vacuum during a first order phase transition can generate this
time dependence, as well as a sufficient departure from thermal equilibrium.
the baryon-number viclating rates are not too small. the observed asymmetry can
be produced this way. This is the subject of chapter 3. In chapter 1 [ illustrate
the general techniques with a simple I + 1 dimensional madel. | also show why a

two-Higgs mode] will not yield anything like the observed asymmetry. In chapter



5 1 find an upper bound on the Higgs mass by requiring that once the asymmetry
is produced, the baryon-number violating rates turn off fast enough so as not to

erase it. This is a relevant bound for minimal extensions of the standard model.

I will end this chapter with a briefl review of baryon-number violation in the
standard model. This is standard material and a nice review can be found in Refl.
3]. Due to the presence of axial couplings, baryon and lepton number are not

conserved. The barvon-number current satisfies

2 AT

. _ON ~
3+ Ty = S t(FF), (1.1)

where Ny is the number of flavors, and the dual field strength is defined as Fuv =
-1;:,,,,“,; i Integrating (1.1) and discarding the surface terms of the baryonic

current gives a change in the barvon number

N .
AB =16—_f frf*r tr(FF) (1.2)
:.\',/(ﬁx A" {1.3)
=..\-',fda#1\"t (14)

where the last surface integral is taken aver a large three-sphere, S,, of infinit~

radius. and the Chern-Simons current is given by

o

wr= 3 was A (8. Ag — gig AaAg)}. (1.5)

7l

e 7]

1 will work in the static A” = 0 gauge. in which the only non-zero component of the

Chern-Sirmons curcent is A%, For Rnite-action gauge field configurations. F = 0 at

» Luse the conventions: ¢y, = +1; also, rlements of the gauge group & are parametrized by
u{r) = expliga(r) - t]. the covariant derivative is D, = 8, — igA2%, and a general gauge
transformation on the gauge fields is given by A, — wA ™! ~ é(’)uu u™!



spatial infinity. Using this restriction in (1.4) gives
AB = N [Neglt = +20) = Nyt = —o0)] = Ny A0, (1.6}
where the ("hern-Simons number for a field configuration A(x) is defined by

ig?

2r?

NulA] = /d3x (At A AR (1.7)

Vacuum configurations A, = ;— Vu u™! define a natural map S, — & when
restricted to a{x) — 0 as |{x| — oc. With this rcslri(‘\tion. points in space can
be thought of as lving on a three-sphere, and the induced vacuum map is stmply
x — u{x) € (. The Chern-Simons number for these configurations is just the
homotopy or winding number of this induced map. For semi-simple groups, such
vacuum configurations can then be laheled by an integer. and the trne quantum
mechanical vacuum state is a linear superposition of the corresponding perturbative
wave funetionals, which each Lave support only aver a definite winding number.
The above restriction to classical vacuum configurations in which @ -—= 1 at spatial
infinity can be justified e posteriort. since tunneling only mixes such states among

themselves'.

"t Hooft"first calculated the tunneling rate between adjacent perturbative
vacua in the standard model to be ~ ¢=4%/™¢ ~ 197184 . which is to say. it
never happens. This small number can be understoad in terms of the very large
potential barrier, of height ~ My /aw ~ 10 TeV. separating the perturbative vacna
of definite winding number, In Ref. [9]. it was shown that there exist static, un-

stahle solutions to the ficld equalions with one negative mode. These solutions are



calied sphalerons and represent saddle points of the patential-energy functional in
field space. Fig. 1 illustrates the basic vacuum structure of a pure gauge theory.
This interpretation of the sphaleron is further justified since it has a Chern-Simons
number half way between that of the successive perturbative vacua flanking the

sphaleron.
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Figure 1. Vacnum structure of a gauge theory. The maxima represent sphaleron

configurations.

In chapter 3 T will discuss the high temperature limi.. It is quitc probable that
under these extreme conditions, gauge field configurations can simply sail over the
harrier rather than tunnel through it, and then baryon-number violalion becomes
unsuppressed. The question is then whether this erases any previously gencrated

asymmetry. or ereates an asymmetry of its own.



2. Finite Temperature Field Theory

Because the calculations which follow involve field theory at finite tempera-
tures. I will briefly review relevant aspects of the subject. The aim is to establish
finite temperature Feynman rules and to use them to investigate symmetry restora-
tion. ln particulac [ will calculate the free energy to one loop. Finally. I will give
a quick review of bubble formation in first order phase transitions, since this is a

crucial ingredient of chapter 3. The results of this chapter may be found in Ref.

6,

Consider a field theory with a Lagrangian L£(9¢, ¢), where ¢ includes all the
fields in the theary, bath fermionic and besonic. The statistical average of an

operator . at temperature ::?_l» is defined as

T e PR o)

The usual tinw- ordering is performed. and O(z,.7,. ..., x3) is understood to be in
the Heiscuberg representation. This means that, formally, the factor e=#¥ acts
as an imaginary-time development operator. In eflect, it translates the system by
—2.7 units of imaginary time, It is not hard to show that in the in the imaginary-
time direction, the statistical average is periodic (with period 8) for boson fields
and antiperiodic for fermion fields. For simplicity 1 will only consider O(z) =
o(.r)o(0). where ¢ may be either a boson or a fermion. First analytically continue

to Fuclidean space by defining @g(r) = ¢4(t)[t——ir. Take 7 < 3, and since the



Euclidean time development is given by ¢g(7) = e”74(0)e~7H,

Trfe 7 ¢.(7)6(0)]

— Tr[euﬂ” CHT¢(O)C‘-HT ¢(0)]

< Og(r) >p Tr[e"ﬂ”]

= +Te[¢(0) ™ 5(0)e= 1)
= £Tr[p(0)é(r — 3) =]
= +Tr[e ¥ T, 6(r — 3)8(0))

=+ < Op{r— 8) >z Trle ?4),

where Ty is the Luclidean time-ordering operator, and the plus sign is for bosons
and the minus sign for fermions. The Feynman rules take on a particularly sim-
ple form for operators that are analytically continued to imaginary time, which 1
denote by Og(x, 7). If real-lime correlation functions are needed, analytic contin-
uation may be performed back into Minkowski space. However, this procedure is
delicate since the Euclidean Greens functions are only culculated approximately.

The Feynmau rules are most easily derived from the path integral approach, in

which
Do c3E O, ”
< 05 >ﬂ = fD@ B—SE (..,3)
where the Euclidean action is given by
8 —id
S = /drfd% Ly = —i/dt/d31 Lhi=ur. (2.4)
0 0

and the hose(fermi) fields are taken to be periodic(antiperiodic) with period 3.

The finite temperature Feynman rules in Fuclidean space are formally similar to



the usual zero temperature ones. For simplicity I will consider A¢* theory: £ =
%(6@)'2 —~ U{¢) with,
A

n«s“. (2.5)

1
Ulg) = 5m?é* +
Fach four-point interaction veriex has an associated factor of —A. Fach internal

propagator of momentum py, = (wy.p) and mass m takes the form

1
Aglpn) = (2.6)

f.‘:';z—l-p"!-i-m2 ’

where w, = 27T for bosons and (2r + 1)77T for fermions. The appropriate spin
structure must also be included in more general propagators. For example, in a
fermion propagator, there is an additional factor of f, + m, where the gamma
matrices are new Euclidean. e, {4#.9%} = =28, For each internal loop of

!

momentum py, = (uy,.p). there is an integral-sum of the forin

. d'p .
! Z /W (2.7)

==

and at each vertex there is an energy-momentum conserving delia function of the
form 3278 (p, — P: )}, o By comention, an overall delta function ﬁ(?n’)3

6‘:”(p,'., — Pout) 15 factored out of the momentum-space Greens functions. These

rules are easily obtained [rom the generating functional
ZlJ) = N /“Do (s Ce ¥ [y de (2.8)

3 S ,
where f, = [7dr [d®x. and the normalization is chosen so that Z[0] = 1. The

connected Greens lunctional is defined by W[/ = In Z[J). Toinvestigate symmetry



restoration it is useful to define the classical field

alr) = < ¢(x) >p
14 (2.9)
sJ{z)

In calculating {2.9), the Euclidean action is given by Sz — 5, — fd Jo, and ¢y
is then a functional of J{z). If this classical field is nonvere for J = 0. then
spontaneous symmelry breaking persists at finite temperature. To investigate this
further, it is helpful to introduce the effective action defined by the functional
Legendre transform of H{J):

Tow) = WiJ] - /Jod. {2.10)

3

In the above, equation (2.9) is to be inverted to give J(x) = J{dq: x]. That is 1o
sav. J is a junctional of o as well as a function of r. 1t is casy to show that

6r
6051(1") B

~J{x). (2.11)

Therefore, nonzero solutions to 8I'féo; = 1) signal spontaneous symmetry breaking
at finite temperature. The one-point-irreducible (1P1) Greens functions are defined

by

1
”.C"cl] = Z g// I‘(m)(-Tl oo ) Ot} ol a), (2.12)
m 3 P

a . ) o
where [, = fo dri [ d*xi. 1t is also useful to eapand T in powers of derivatives:

Mfod] =/dr/d"x[—n(csd) + Z(a)(@usa) + -] (2.13)
0

 is called the effective potential, and at the minima, it is the thermodynamic

potential density of the system. For zero chemical potential. however, this is just



the frec-energy density. For a translation invariant ground state. éq(r) = const.
and it is sufficient that there exists a nonzero solution to d)fdé. = 0 for the
persistence of symmetry breaking. The momentum space 1PE Greens functions T

are defined by

F(.!'] .1,” FZ/ d p] .. Z/d Pm flzpl-I; 13( ) “)(Z p)

b0 T, .. pm)
(2.14)

where oy = (7%, 0. w = 3wy and &0 = 1 if w = 0 and vanishes otherwise, All
inner products are with a Fuelidean metrie. From here on 1 will drop the subseript

fromt o when no confusion will arise. Expanding P p, . p) in a momentum

power series and writing .1('-.’7.')"(?[:”(2 p:) b= fd arnT gives
1.
Q==Y —I"™ho)s(r)™. 2.1
Z: m![ (0){o(r)] (2.15)

Iir nongzera nr, the 1P1 Greens funetions in Aé? theory at zero momenta are given

by
) d*p —A m
1‘ )= S, TS [ 4P [~—— ) (2.16)
X %4/ (2z) |pi + m?
where S5 = (227 (2m ) is the symmetry factor associated with the number

of wayy of leaving the graph fixed upen interchanging external legs. In finite
temperatire field theory there is one more graph to consider: the noninteracting
closed loop tm=0). At zero temperature this graph contributes an infinite constant.,
Lt at finite temperatare it also gives a tewperature dependent correction. This

boop may be calealated by hest eaiculating the noninteracting partition function

10



and then using the refation @ = —Tin Z/V,

InZfree = 1In detg(&* + m*)
1., d:lp 32, 9 " (DN
_Elu Z/ or) In{3=(p;, + m*)].

So, up to onc loop. the free encrgy takes the form

T 4 5 A T G,Jp [ G, 2 >
0 E:n*o' + ch + 5 Z / el n[3*(p, + m7)] +
- L

o!/2 > 1x
In{l + T m—]] (2.18%)

T d’p C R »
?Z/‘ (-_)_1‘.).] ltl[.‘)"(p,‘, +inT + r\O'/l)].

1

Define & a-dependent frequeney and mass by xﬁ(o) =p> +m? + \o? /2= p* +
miio). 1 will be useful in performing the frequency sum to get rid of the logarithm
using the identity (Kapusta in Rel. [6])

(.‘j../,,)"
N ., 10* 4
n{ (] + = / ——((—KT + In(l +(2n7)7). {2.19)

The second term in (2.19) just gives a temperature independent contribution to
! I [ P
the partition function and mayv be dropped. The frequency sum may be performed

using the following relation (Kapusta in Refl. [6]):

e
1 wlcot mr — cot my] o
Z (n—.r](n—-z)= y—or ' 2.
n=—r J ‘ N

[
Ny
=

—_—

After some algebra. the one-loep correction becomes

(Fuip)?

T o d,}p H“JP Jwy iy .
EZH:/(_ / I OM), = 1/(2”3 [ 5o+ I =7 L e




[t is convenient to split the free energy as @ = V¥ + Vi, where:

L1 A 1. a*p 1 \
Vo = —m &+ 41¢ '/(2’7)3 §w,, (2.22}
o0
Vo = 5o fd.r.r In(1 —e™*), {2.23)
—l O
with « = (0% 4 y3)"2 = 3p and y = Bm(4). Notice that Vy is just the zero

temperature effective potential to one loop. This is apparent since up to an infinite

o-independent constant

dw Aet /2 1
. - S} =3 9 9,
/ 2 In [] + w? 4 p.’ + m? -2"‘;1"‘ (.....1)
Thercfore.
1 A " dp, Ag?/2
T2 ' 7l 295
b 2" ol 1'0 * (27 ) n [I * pr+m? (2.25)

This is just the usunal one-loop effective polential for Ao? theory. Since Vi is
finite, (T is renormalized with the same counter terms as the zero temperature
effective potential. This is a general feature of finite temperature Greens functions.
If there were ferimions coupled to the sealars. then appropriale sign changes must
be performed. For a general number of kosons and fermions, the finite temperature

contribntion to 1the effective potential is

. T ’
V= F[ ;!}bl—(.‘/b) + ;!uh(!u)]. (2.26)

where g, (gg) is the number of degrees of freedam associated with a given bason

(fermion) type. and y(yy) is the associated d-dependent rescaled mass, and [ is

12



defined by

)
Ix(y) = :I:/n’.r 22 (1 F e, (227
0
with « = (% + y2)% If the zera temperature potential Ly is chosen to give

spontancons symmetry breaking. L.e. a minimum at a nonzero o. then it can be
arranged that finite temperature eflfects restore the symmetrv above some critieal

temperature o,

This illustrates the main technical points. For most of this thesis. however, |
will be concerped with the standard model. or minimal extensions. [ will work in a
gauge in which there is one real component of the Higgs field (hat takes a vacunm
expectation value (VEV] of ¢ =248 GeV. Including heavy fermion effects, the zero

temperalure effective potential to one loop is

: o, A 68, *
li._—_-—’—_‘,—(l-b—‘\—)o';T(]—’—f)o"-yl}o"ln(o——_). {2.2%)
2 ) - ; rd

where

| 3 M, ! A ' My 4
= H— — | -4 — 2 20
= [’( . ) +( ; ) ‘( . ) ] (2.20)

2

with ay = ¢* /17 = 1/30. The Higgs mass is related to the VEV by M3 = 2A0%,
where v = p/vV/A In equation (2.29), ¢ is the SI'{2) gange coupling constant
and M, 1s the top quark mass. The W and 7 gauge hoson masses are refated by
My = .”l,_qv and M; = M. /cos0,. For a top mass My ~ 160 GeV and a Higgs

mass M, ~ 50 GeV, B ~ 0,001 and A ~ 0.02. Quantum corrections are then some

13



what important since 48/ ~ 0.2. The renormalization conditions are

75(1!) =0 (2.30)
%(1-) = M, (2.31)
The nnite temperature polential now becomes
7
Vi = 53 GF_(yw) + 3 (yz) + 120 ()| (2.32)
where 4, = Me/eT. This is a general expression (up to one loop), valid for

anv temperature at which non-standard-model physies is unimportant. It is often
usefnl to make a high temperature (sinall ) expansion of (2.32). The first two
terms of the Tavlor series expansion in y? are casy to find. lowever, there is a
subtlety i the g term. The functions {4+ are not analytic at g = 0. and the Taylor
series expansion breaks down in the third term. There is a simple pole in 7 (y)
and a logarithmic singularity in both f5(y). This suggests there are cubic and
logarithmic terms in the expansion. Dolan and Jackiw of Ref. [6] use a clever trick
for dealing with this non-analyticity. They calculate J{(y) at a non-zero but small
argument and then integraie twicc'..using the known values of 1+(0) and 7L{0) to

fix the integration constants. The result of this calculation is

]
-

1 7T, T, 1

I_(y) = _;_,5 + ﬁy‘ -y - ﬁj‘lny"’ + - (2.33)
7l o, I, 3
It = =Sfe + g0 + gy’ + o (2.31)

+ This convention differs some whal from Shaposhnikoy in Ref [15] in which Lhe self coupling

15w defined to absorh the quantun eorrections.

14



Using the above expansions in {2.32) gives an eflective potential

1 2 2y ey A 63
0= *%9' + AT -THe' - 6Te* + ;(1 -
: L A
+ B 4ln(‘d—"i) -2 o2 My 41 LAY + 5 ax
@ 2 G2 A7 n T (2.39)

AV A VA ANY M
2200 -8 = .
( r') ”(v'l‘) S( r')l“(r’f‘)

where ¢" = Ny + g‘\’/. and

AT A My
4=~ |9 =L + | = 2= 236
‘ \M) k)*()] (240
M, B ] i 3
&= i{;’(—) + (3’—) ] (2.37)
IR b
g2 Mif 1B
[[, = ?(l _,\_) {.’.»;h)

Above a enitical temperature T which T will soon determine. the misimnm occurs
at zero Higgs field. and svmmetry is restored. This is a natural initial condition in
a hot Big Bang scenario. As the universe expands and the temperature drops. a
relative minioum appears. and at temperature 7. it hecomes degenerate with the
original. Then at some temperature. given by Ty above. the potential develops a
relative maximum at zero and is qualitatively similar to the usnal zero temperature
Mexican hat potential. Since zero Higgs field is a relative minimum down to
temperature fy. and there is a potential barrier between the false and true vacua,
the phase transition is not instantancous. Instead, it proceeds via bubble nucleation
due 1o quantum tunneling and thermal fluctnations of the Higgs field in small

regions of space. M a bubble of true sacmun apprars with a radius larger than

15



0-0,

Figure 2. A typical temperature evolution {in arbitrary unlts} for a first order transi-

tion The free energy al zero field has heen subtracted off.

sotne critical value. the bubble of Higes field expands. Its evolution is determined
classically. and at some temperature 7. typically greater than 7q. all the bubbles
collide tilling up space. This. in effeet, produces one large bubble of Higgs field
it the mivimnm of the potential. During bubble expansion. the change 1 the
Hiees ficld is much faster than the expansion of the nniverse. However, after Ty,
the Higgs field changes with the minimem of the potential. which is of order the
Hulible parameter and henee quite small, This point s very important for weak
stale baryogenesis and will he elaborated on i the next chapter. In any event,
phase transitions of this type are called first order. and a typical temperature
evolution of the potential is shown o Fig. 2.

1wl now find the eritical temperature 7,0 negleeting all logarithmic terms.

I erear. caracy s needed. then muperical techniques can be nsed and the

16



logarithins kept. From (2.35), there is a non-zero minimum at

1267 Mh T2 6p 1'/*
R T - -0 - : 2.39)
= X TeB [l [ o5 1~ 790~ 1) ] (239
The eritical temperature is where this minimum disappears:
T 96 -
=1l - —— . 210
fe="Ta [ A1 = mm)] 240)

Notice that T, ~ Ty ~ v/h. where h is the larger of the gauge coupling ¢ or the
top Yukawa coupling f;. This means that the high temperature expansion near
the critical temperature is only valid in the weak coupling limit. lu particular. for
heavy top ~ 100 GeV. the expansions (2.33) and (2.3:4) are unreliable. and (2.32)

must he used directly.

Finally, | give a brief sketch of bubble formation. Again. this is standard ma-
terial and can be found in Ref. [8]. The general theory of vacunm instability
at zero temperature was developed by Callan and Coleman in the previous ref-
crence. Given a metastable state, such as the false vacuum. its energy develops
an imaginary part which can be calculated using instanton methods. The decay
rate is then proportional to e, where S, is a four dimensional Euclidean ac-
tion assoriated with the so-called “bounce™ solution. Similar to an instanton. the
baounce is a classical solution to the Fuclidean equations of motion. While an
instanton interpolates between different perturhative vacua. the bounee connects
the metastable false vacunm and the true vacuum and then bounces back to the
metastable state once again. It is quite reasonable that bounce states of least ac-

tion are (1) symmetric. This means the equations of motion are really ordinary
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differential equations with boundary conditions, a problem well suited to numerical
techniques. Linde applied these arguments to finite temperature field theory™ . As
was shown i (2.2), finite temperature field theory is equivalent to Fuclidean field
theory cnoa evlinder of circumference & in the time direction. If the temperature
i= increased sufficiently. the cvlinder radius hecomes smaller than a typical O(4)
bubble, This rmueans one may take the bounce solutions to be constant in Euclidean
tme and 213) symmetric instead. The vacuum tunneling rate is then proportional
to e Y0 This three dimensional action has the interpretation of free energy, and
this formalism then agrees with the theory of boiling” ™. There is also a prefactor in
Ahe bubble formation rate that involves a determinant of smafl luctuations ahout
the bounee solution. This is typically very diffienlt to calculate. bt fortunately
1 may be estimated using dimensional analysis. The complete expression for the

Lihhke formation rate per unit volume was found by Linde in Rell [8] o be:

S g fdet (=00 017
llhubl j) = 7" " [‘ - ( L IOJ ¢ =%

27T det (== + O"[y)

where det’ means that the zero modes ave been removed. and the three dimen-

sonal action is defined by

3
& = / ," "‘, [éfVm"-f—Q(o.']‘]]. (2.12)

The Q3 syvmmetrie bounee solution st be used 1 the above action:

/" y 2 I
5—.Lf + 25 o). (2.13)
IR rdr

. B .
where the bomndare conditions are o — O as v — . and o — B as r — . Since

the ter nre sets the seales the prefactor in (2,11 st he roughly proportional

X
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to T* by dimensional analysis. This means one can use the approximation

G
~ P03 N3/2 -85 LY
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Figure 3. A typical ¢ mperature evolution of S,/T.

Vor a given potential (o, T'). a numerical solution to (2.43) satislying the appro-
priate boundary conditions can be found, the three dimensional action caleulated.
and the bubble production rate found. Fig. 3 illustrates a typical temperatnree
evolution of the bounce action. It was produced by nnmerically solving for the
bounce with a Higgs mass M, ~ 50 GeV and with a light top. Right after the
phase (ransition. the high potential barrier separating the false and true vacua
(see Fig. 1) produces a very large action, but as the nniverse cools and the bar-

rier drops, the action decreases exponentially. This means the bubble production
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increases quickly on a macroscopic scale, and the false vacuum is gone soon after
the first bubbles appear. Roughly speaking, when the rate within a volume of 773
becomes comparable to the Hubble parameter., all of space fills up with bubbles of
true vacuum. To be more precise, bubble formation is a Poisson process. and when
the hubbles form they begin to expand with some speed vy, Eventually the bubbles
collide filling all of space. Guth. in Ref. [8]. derives the following expression for

the Mraction of lalse vacuum left at time 1:
!
A Py ity v ' R
.f[i):"xl’[_T/(ii Uaut{7 )1/([;[)]~ (2.45)
{.

where f, is the eritical 1ime associated with 7o, and

o 1P
Vi) = [pﬁl.'(!)fﬁf“—)} . (2.46)

1
This last expression is the volrme that a bubble prodnced at time i occupies at 2
later time 1 due to both the expansion of the umverse and the bubble expansion
itsell. lu the Standard Model. by matcring the pressure gradients across the bubhle
wall. it can be show that the bubble expands al non-relativistic speeds: vf ~ af /A
Podefine the bubble temperature. Ty, as the temperature at which Inf = =1,
at which p~int the false vacnun s mostly gone. Since [ changes so abruptly,
the Lubble temiperature is very insensitive to the wall velocity 5. Even for non-
relativistic velacities, since the Hubble parameter #f ~ 107" GeV at the weak
scale, the hubble expansion rate is much larger than the expansion rate of the
universe. As will be sl ownnin the next chapter. such a rapidly changing Higgs field

hiases th T pvon-number violation in a given direetion. As the bubiles expand,
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baryons are produced in the outer walls, and with any luck the observed ratio
nafn, ~ 10719 wil) be preduced. As it turns out, if the CP violating phases are
not small. this can just barely be done. This marginal produciion places some
stringent constraints on the theory. In particular, the Higgs boson cannot be too
heavy. After the bubbles collide, the rate of change of the Higgs field is set by
the Hubble parameter. Baryon-number violation is then no longer biased in a
particular direction, and unless the Higgs mass is small enough, any previously
produced baryons get viped out. This is the subject of Chapter 5. In the following
chapter 1 will examine baryon production rn the bubble surfaces in more detail
and derive a somewhat general bayron rate equation in the presence of a changing

Higgs field.
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3. Baryon Production from Higgs Biasing

In this chapter { will discuss the adiabatic production of barvons in a rather
general manner, [ will consider an arbitrary field theory with (" F violation and an
anomalous barvon current. This could be the standard model or some extension
of it, the one most relevant for this discussion being the minimal supersymmetric
extension. This is because C'F violation in the standard model is too small to
reproduce the correct barvon asvinmetry, but minimal extensions can have much
lavger ) violating phases and thereby stand a chance of producing the observed

harvon asvimmeltry.

I bas tong been kuown that bacvon and lepton number are not conserved in the
standard model, as a consequence of anomalies!™. States of difforent barvon nurmmher
are ~toot Iy connected to one another throngh different configerations of the gauge
and Hiegs ficlds, but they are sepavated by a very large energy barrier of order
My o ~ 10 TeV o which makes zero temperatnre tuuneling an extremely unlikely
provess. In the last few vears. however, it has become elear that barvon number is
Laddyv viotnted at remperatures much above My (with 2= L heiog (-nnsr-rv(-d)iyﬁ”).
The Tl proof of this is quite involved . but the following heuristic argument
provices ~ome fnsight inta the situation. At Ligh tetaperatures. the sesten is well
deserthed by classical statistical niechanies. At remperatures helow e weak phase
transition, the lowest energy barrier separating barvon-number states is called the
sphaleron this ts a static, unstable solution to the field equations. It has one
negative made and represents a saddle point in the field sparnl-']. The rate for

Larric: peactration Is essentially the Boltzimann factor associated with forming a

Lo
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sphaleron:

I ~ (—BAUH'/OWT‘ (BAR

where B iz a number which depends rather weakly on the Higgs mass, varving
between about 3 to 6. Above the weak phase transition, the situation is equivalent
to a Lhree dimensional field theory with no small dimensionless parameter. On

dimensional grounds, however. the rate must be given hy

I' ~ &(ongy ! it [3.2°

[14 .
Lol very reasonable that the barvon-

A recent simnlation gives & = 0.01 — |
number violation rate becomes unsuppressed. since gauge confignrat ions nzav easily

pass over the barrier,

While no single classical configuration dominates this rate. a hewristic deserip-
tion in terms of instanton trajectories can be given, It is generally believed that the
three dimrensional field theory has a mass gap. oo T where o is a number of order
unity. Correspondingly. the corretation length of the high temperature theory (the
so-called magnetic screening length) is £ = (aaw 7)™ Consider now instantons
in the high temperature theory, These will exist with arbitvary scale size. from
p=010p~ & Theinstanton represents a particular tunneling trajectory through
configuration space. The barrier height associated with such a trajectory is neces-
sarily of the form 7, = ¢fayp. where ¢ ~ 1. Clearly, then. the smallest barriers
are associaterd with the largest possible values of poie. p ~ € Sach conlignrations

have a Boiltzmanu factor of order nuity. while the prefactor is of order 1.
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The large rate of baryon-number violation has important implications for any
harven number produced at very early times. For example, if no net 2 - L is pro-
duced at early times, the baryon {and lepton) numbers will completely disappear.
[t also raises the intriguing possibility that the observed baryon number could arise
al temperatures of order the seale of weak interactions. This could have signifi-
caut itenlications for our understanding of cosmology. [0 pacticular. in inflationary
maodels. one usually reguives significant rehealing after inflation in order to produce
barvon=. This would not be necessary if barvons could be produced at such low

temperatinres.,

I he possibility that the harvon asvmmetry might be produced at the weak
phose transition was first disenssed by Kuzmin, Rubakov and Slmposlmil-:n\'fmlan(l
heas been most oxtensively explored in subsequent papers of Shaposhnikoy and
cotliboratorst . Other wnportant works on the subject are those of MeLerran'.,
Turok and Zadvorny ™7 and of Calen. Kaplan and Nelson"™ . The main poiut s
that 3 the phiase transition in the Welnberg-Salam model i< at Jeast mildiv first
order. then the three conditions enumerated hy Sa]\'h;lI‘U\‘[]]ll('('('ﬂ.\'éll‘)' to ohtain a net
asvanneiny are satisfied. Barvou monber violation is provided by the SU2?) gange
steractions themiselves, CFP violation s already present in the standard modell and
eatensiots of the <tandard model. cuch as nlti- Higes svstems, supersymmetry or
tedhncolor tend ro vield larger violations of 1. Deviations from equilibrinm will

altorneal i(';«||_‘.' arise if the transition is {irst order,

Many of the speailic proposals which have been made for the arigin of the
Barvon asvimmetes at the weak plisse transition are based on the minimal ~tan

dard model. Tois elear from the start, however, that unless the dynamies of the

ot
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Figure 4. General loop diagram contributing to the CP violating dimension six operator

cansidered in the text.

high temperature theory exhibits certain bizarre features", CP violation in this
theory is simply too small to vield anything like the observed asymmetry. what-
ever the details of the phase transition might be. Moreover, as recently stressed in
Ref. {19}, there is another strong constraint on any such picture of baryon-nurmber
production. which almost rules out the minimal standard model. Once the phase
transition is completed, the Higgs field will have some expectation value ¢(T). The
corresponding sphaleron (free-) energy is proportional to v{7). If this VEV is teo
small. the rate of sphaleron-induced B-violating transitions (commonly called the
“sphaleron rate”) wil] be larger than the expansion rate and any baryon-number
produced during the phase transition will be washed out. This almost certainly
requires that the Higgs boson be so light that it would have shown up in recent

LEP experiments. 1 will have more to say about this in chapter 5.
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Since there are numerous possihle extensions of the standard model, it is nee-
cssary to make a foew simplifving assumptions. The assumptions | make here are
not essential. and the analysis is casily extended to a wide variety of situations,
including supersvmmetry, technicolor, and multi-Higgs theories. In particular, 1
will assume in the discussion which follows that the new physics responsible for
CP violation is associated with energy scales large compared to 7., the transition
temperature. and that the effective theory at T contains the usual quarks and
leptons, and a Higgs doublet. o, For reasons which will become clear shortly, |
will also allow for the possihility of an additional scalar singlet, s, In the effective
lagrangian. CP will be broken not only by the usual phase in the KM matrix. bt
also by various non-renorimnalizable operators. [ will focus on the dimension-six

operator

. I g | .
= Wmh’l’ rr = —m(ﬁ,!@”'(ﬁ,, (3‘)

Here 74 is the barvon current. and T have used the anomaly eqnation (1.1) aud
integrated by parts. In theories with singlets, [ will consider the dimension-5

operator

!
¢ = _:1_'.170“""7/’“ {3.4)

hithe ninimal supersvmmetric standard model, for example, @ would be generated
at utie loop by a diagram with geaginos and liggsinos in the intermediate state, as
ihistrated in Fig. 4. The coefficient 17317 would ts be of order some combination
of U] vioiating phases, &, divided by some typical supersymmetry hreaking mass-
squiated.  There are wo <trong hmits o &0 Inoa non minimad supersymmetric

model with a conmplex gage singlet lieid. S0~ could be some commbonent of this



field. 1t could possess tree-level. CP violating couplings to the higgsino fields. The

coefficient 1/A!' would be of order 6 divided by a supersymmetry breaking mass.

Already. the potential for baryon-number creation is present. | will consider
two extreme cases. First | will examine a slowly changing Higgs field. so that the
system can respond adiabatically, in the sense that at each instant the baryon-
number violation rate, I'(¢.T). is that appropriate to the value of the temperalure
and Higgs field at that moment. Then I close this chapter by examining rapidly
changing Higgs fields. Surprisingly. this does not yield a substantial increase in
the baryon number. Since the dominant processes are associated with gauge boson
wavelengths of order €. rapid change means change on a time scale much shorter
than £ A simple model of the barvon-tnmber violation rate it

[(o.T) = ploeTy T > Ty 3,50

0 T <Tly

where the cut-ofl temperature Ty is given by golTw) ~ oy Ty At this temperatire,
the Boltzmann lactor for sphaleron-like configurations becomes of order unity:
Eop ~ MulTy)/anTy ~ 1. Tor temperatures less than 75, the rate is Boltzmann
suppressed. so 1 approximate it by zero. The rate in this region may still be
mugch larger than the Hubble parameter, in which case any baryon asymmetry gets
washed out. which places an upper bound on the Higgs mass. There 3s another

nistification for this sinple model. Place the system in a box of length ~ £ Tor

« This may be seen as follows, The seattering eross section for particles of such momenta on
one another 1s of order o €7 However. the nmnher density of such particles is of order
their energy slensity times £; the prodiet is of order £74.

t For large o. the rate bas been computed in Ref. [30]. For mnyp ~ . and small o, their
resadt s sinndar Lo the o = O result with 5 ~ 3

L
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large temperatures the system is classical. and since there 15 a mass gap of order

71 the gauge fields of wave length £7) obey an equation of the formn

[ + 70 4 (g0 ) A, (k) = e 677V 4 et Al (3.6)

where o and o0 are of order one. and the left hand side has an implicit an integral
over Fourier modes. Far o = 0. the system hecomes non-linear for A ~ €172
However for g > a7 the equation becomes linear. Sphaleron-hike configurations
that pass over the barrier are associated with non-linearitics of the field equations,
~<ov when £1.6) becomes linear. the barvon mumber violation rate turs off. No
Turther passage over the barrier can ocem: the barrier has simply “grown”™ and
there i~ not enough energy available 11 these modes, Thus the process turns off
hoth for slow and rapid changes in ¢ at abont the same value of o. [n cach case,
the relevant value of the Higgs field is very ciall. For Ty ~ 100 GeV. for example,

the vate tarns off when o ~ 5 GeV.

I will pow derive a barvon-nmmber violating rate equation for the adiabatic
it Let Py obe the sphaleron rate per anit volume of increase in the Chern-
Stinons munber Vo and correspondingiy let U2 be the rate of decrease in Neg.
fn Fig. 1 the hottom axis may represent Chern-Simons nunber, and then 'y -
i~ the sphaleron rate over the barrier 1o the left and right. respectively, Exactly
Leosw the system approaches equidibriim depends npon the initial configuration.
For straphiatys T wilb assmme there s initally no barvon or lepton number. In the
stancdard nodel theve are 21 tepes of fermions which Tdenote by ¢ == ¢ w0 B, 3ed,

aned he corresponding mnmber densities by s Due to sphialeron transitions and
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the axial vector anomaly,

dn; I .. . -
d—t25(1+—]_). (3.7)

Left handed doublets of cach family must be involved in a single sphaleron tran-
sition. This 1s because the corresponding zero modes must be eaten in the path
integral for the amplitude of the process. This is why the rate above is family
independent. But even though each doublet must be produced. there is onlyv a fifty
percent chance that the fermion has a specific isospin. This gives the lactor of one
half. Actually, there ts an ixospin prelereuce in sphaleron transitions. but since
Iam only interested in order-ol-magnitudes, for simplicity | assume [, = £1/2
are cqually likelv. [ should also consider constraints sueh as ciectric charge and
tsospin conservation. but this only complicates things. and {1.7) contains 1he es
sential physics. Given the initial conditions n,{0) = 0. all the fermion densities
are equal at subsequent times: w2,(t) = n(t). Taking Ny flavors, the lepton and

barvoen-number deusities are defined by

n, = E fres+ g =2Nrn
i) -
1 IBE]
=g E [tage + mgpe} = 2N 1.
34
where the sum is over flavors and/or colors. and [ have uzed a <hort hand notatio
i g to represent the density of isospin —1/2 fermiens of flavor . and a similar

notation Tor other fermions. T will now usze detailed balance 10 constrain the rates

- . sy o~ h21) e . . .
Fooin 327077 Tn equilibrium. T2 satisfy

N Nt 12
l‘+HP(~l_—f) = l‘_HP(mﬂt_—/—), Cha
H



where the probability of producing N fermions is

N 1
7—"(1—,) = const ¢ V1, (3.10)
with Fy being the fermionic free energy. Since the system is adiabatic and not too
far from equiltbrium. [ will apply this equilibrinm constraint to the right hand side
of rate cquation (3.7). Letting I = I'y + I'~, and after some algebra. to fiest order

in the number densities,

dn, Ny aly .
— = - 4 —, 311
di N Z i, ( )
J
For a free fermi gas of number density v Fr = —»w T o+ 30317 where & s

a constant depending on the nummber of light particle species. The (7] violating

aperator O produces a shift o the minimum of the free energy:

r

3 . — [yt
Fr=)Y F+0= > . 7—,_,”') : (3.12)

Phe mintmim must be found according to the onstraint w,, = 2.¥y 1. Defining
O g v ¥ . NIRRT,
nho=2Np and using the form of the CP violating operator {3.3) gives

. T+ T+

) TR 0 . . .
L= ——— o) 0, = ———fhys 303
i 12112 RIS M 120 l { )
for the doablet or singlet case. respecetively. T have dropped the spatial gradient of
the Hiees ficld, This is nstified sinee I am working in the adiabatic limit where

gradients of the Higps ield on the expanding hubble walls is not too steep. Using
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(3.12) in (3.11) gives the baryon-number violation rate equation

dng 6Ny o )
o = T(rnp —n,). (3.4

Because of the four powers of ay, appearing in I'. ng can be neglected relative 1o
7%, on the right hand side of this cquation. provided dr%/dt is large enough. 1 will
shortly demonstrate that this is the case lor a broad range of model parameters.

Substituting the expression for ng. and using the simple model (1.3) for T" vields

the barvon numher

3”&' 5 3“?&' ared
Ng ~8———1" Ny~ K | 315
Ji} "2_(]‘!.’”'! H '-)_(I.”' ( )

for the doublet and singlet respectively. Hereo in the singlet case, T have assumed
O g - v * al

that g8 ~ au T when baryon-number violation turns off.  These numbers need

not be so small. In the singlet case, if the CP vielating phase is of order one, and

—Ay

M ~ 7. then the baryon to photon ratio is of order 10 [n models with only

doublets. this result is suppressed by an additional power of a.. These estimates
are rather rough. It is already clear. though, that potentially one can obtain a
baryon asynimetry as large as that which is observed.

_~

0 sl . - a, AT o
I »Y, 1+ changing much more slowly in times 2 (0 = p500 i) T heromes

exponentialle small. In this case. one obtains a resull suppressed by more powers

of . due to the time derivative in 2%, The extreme case of this type arises if

the transition is second order. Then the asymmetry is suppressed by the Habhle

[re]
constant

= Whether or nat this is the case depends on the details of the phase transition. One ean

vasily imagine that S ~ o, for examgple
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Before deseribing the case where the transition occurs suddenlv. it is helplul
to understand these results in another way, Consider the operator ¢ written in
the form containing FF. As in the heuristic discussion above. consider a single
instanton trajectory. and treat the usual instanton time, 7. as parameterizing a
path in ronfiguration space. T = 0 corresponds to the top of the barrier. 1f the
gange ficld in the lagrangian is replaced by its classical value as a fanction of 7.

then the fagrangian for 7 {Tor small r) is of the form

. ) 1= T v!Tff)] ) .
Lirf)=c—7" + —F=7". (3.16)
a-p e

where g~ Cis the instanton seale size, and o) and 6y are coefficients of arder unity.

For <tall 7. 3 has the Torm

O = ("_JI\O_IL (3.17)

Sdwp

amd similarly for @', In the adiabatic imit, where the field ¢ is essentially constant,
7 and 7 will be Boltzmann distributed a1 cacl instant. The canonical momentam
receives a o-dependent contribution from O, eqn. (3.17). This has the effect of
skewing the velocity distribution. giving rise to an excess flux over the barrier in one
direction. Beeause of the anomaly, this corresponds 1o a net production of baryons
or antibarvous, depending on the sigy of &, Praceeding in this way one obtains a
tate equation of the form eqn. (3.7). In particulur, this hieuristic argument gives
the correct dependence on ay..

This preture is readily adapted to the ragse where the field o changes suddenly.

Doxpite the fact that this corresponds to a more violent departure [rom equilibrinm,

f T here as sonme asbitrariness by these defimons, sinee thoe pesnlt depenids on vhe gange choier
for the mstanton Here § have indieated the Tactor of 4x connng from the angular tntegration.

32



it does not in general Tead to a much larger production of baryons. Before the
transition, one has a Bollzmann distribution for 7 and 7 ., and this distribution
remains essentially unchanged as ¢ changes. However, the system receives a “kick™
from the sudden change in o. In the time ¢ changes from 0 to op. the value at
which barven-inmber violation turns off. the velocity changes by an amount:
A= /df deag Joby oy’ o (3.18)
di cylbr? Af2 ey 16w M2
A7 has a definite sgn. 10 is lavge compared to the initial velacity, it will send
the syvstem over the barrier in the direction corresponding to the production of
(sav) barvous rather than antibarvous. 1 it is small compared to thiz velocity, it
will have no effect on the barvon number. The fraction of the distribution with

veloeities 7 < A7 s simply of order A70 1 A7 is the time i takes for the Higgs

firdd 1o vise 1o on over a correlation volume, £7%. the final barvon mumber i< of
order the prodinct of this fraction. A4 and T
rolou|”
T .
1, ~ ,‘_:__U—-V-'“":Ail . (}lq)

Here [ lave attempted to keep track of ¢'s and 17 's, but not (nnknown) cocflicionts
of urder anitv, Since gog ~ oy 70 this result s comparible 1o that obtained in
the ~adiabatic” caze only if A~ £ N ~imilar expression halds in the case of the
operatur . The pieture deseribed here is elose to that deseribed in Kefo 7L

whete the hehavior of particular field contigurations is considered,

Al the igredients 16 estimate 1he barvon asymmeiry are in places onee the

hebavior of the Hipgs field i« known as o Tunetion of tine, Jua list order pliase



transition. haryon number will be produced near the bubble walls, where the Higgs
ficld is changing in time. In order to compuie the asymmetry, it is thus necessary
to know about the shape and velocity of the walls. Here | simply illustrate some of

lml

the posstble behaviors by considering the minimal standard model™ ", even though

¥

this cannot be a realistic model of baryon generation 7w Higgs masses smaller
than M. the transition is first order. Ignoring the heavy top contribution for the

moment. for small seif-coupling A and setting sin® 0y = 0 to simplify the writing,

the effective potential for the o lield as a lunction af temnperature is given by

. o 2 3y e 1 A
Vio = M4 = Zred 4 To'. (3.20)

where M T = l""TIl — 2. The discussion to follow is only meant 1o give a quafi
tative Havor. o (3.20} will suffice for now. This potential should be contrasted with
the more complicated forms (5.2) and {5.6) (5.9). which [ use for a ¢uantitative
analvsis. When the phase irausiiion oceurs, the coefficient of the quadratic term is
extremely small. M2(T) ~ a 72/A: otherwise the potential has only a minimum
at the onigin, 1 can make a crude estimate of the bubble wall velocity and size
(well after the bubble forms) by vequiring that in the rest frame of the wall, the
pressure is coustant. This pressure receives an extra coitribution from the motion
of the gas in this frame. The momentum change of a particle passing through the
wall can he estimated by assumning that rhe particle’s energy ts conserved. while ils
mass changes due to the change in o, This gives ©f ~ AVfAE, where AP and AL
are the changes in pressurve and internal energy across the wall, From eqn. (3.20),
)

i~ ad fA The shape of the wall can be inferred from similar considerations. For

A iF— 1., . -
amal! o, one finds 0 ~ ¢ M where M o~ (n',."./,\)? T Axaresnll. if Ads not oo

A4



small, the scalar field is changing rather slowly in space and time and the system
is in the adiabatic reginie described earlier. For such a field, 1% is changing quickly
cnough that the approximations leading to egn. (3.15) are valid. As one fnereases
A. and the transition heeomnes more second order, the amount of barvon nuinher is
reduced: decreasing A brings the svstem 1o the “sudden” regime. Considerationg
of this type apply as well 10 the mimmal supersymmetric standard model, where

the guartic couplings are of order 4%, and the scalar masses are of order M,

In other model. the transition might be strongly first order. with bubbles ox-
panding ai neaity the speed of light, and with a wall of microscopic dimensions,
This is the regite of rapid change of the Higge field. Hereo what 1s needed is an
estimate of the time AL appearing iu equ. (3.10)0 required for the zero mormentum
muode of the fieid in v corerelation volumme, £, 2o reach op. Ina mult-Higes maodel,
one might expeet this time to be of order oy times some microscapic {mass) paran:-
cter in the lagrangian, Since the characteristic Lime for barvon-number vielation

is rather long (£). this may be a source of additional suppression.

I summary. it is possible to think that the baryon number of the nniverse
was created at the electroweak plase transition. in some modest extension of the
standard model. However, there are uncertainties in the calculations deseribed
here. particularly in the actual caleuiation of the rate I, Detailed studies of the
phase transition in particular models are also essential. including not only the
structure of the bubble wall ut also flow of baryon number across the wall. One
shiould also reconsider models sucl as that of Refl (18] in which there are other
sources of leptan number violation 1w the theory, but in war o e mechanisms

deseribed here mav also operate efficie ntiy,
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4. 141 Dimensional and Two Higgs Models

The 1 + 1 dimensional Abelian Higgs model coupled to fermions has been
widely studied as a model for four dimensional baryon-number violation. Indeed,
many features of this model are similar to the standard model. There are anomalies,
instantons, and sphalerons. and “harvon-number violation™ is enhanced at high
temperatures.  As will now be scen, this model, and variations on it, provide
an extremely simple illustration of the issues in weak scale baiyogenesis. 1 first
consider the case where the theory contains, in addition to the gauge hoson and
Higgs boson. o. of charge ¢. two Dirac fermions of charge «0 v and v, and a
peendoscalar. a. The Lagrangian contains gauge invariant kinetic terms and the

couplings

£ = Mév + Mayasu. (4.1)

Note that the field » is massive, with mass M. while \ is massless. The standard
anomaly argument. or a simple one loop caleulation. leads to a coupling of the

“axion”, a, to the “photon™, in the cffective action al scales below 3,

A

Ac
TP LS (4.2)
Az
Lit 1his madel. the current j' = T1*4"\ plays the role of the baryon current.
Choosing the A" = 0 gauge. it is easy 1o see that a constant background A, field
is equivalent. up 1o a factor of . tu a chemical potential for the corresponding
charge. (A convenient choice for the gammma matrices in this model is 4% = a4,

5V = —imy. and 55 = 3 with this choice the connection is obvious), It is helpful,
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here, to recall some well-known facls aboul the vacuum structure of this theorv.
As shown in the introduction, the classical vacua are labeled by an integer n
representing the winding number of the ficld configuration. At the classical level.
these states are separated from one another by a barrier. and are degenerate in

energy.  Examining the Dirac equation for the field y in such an A ficld. it is

)

easy 1o see that changing n by one unit changes the “barvon number,” ny =
by two units” Quantum mechanicallv. states with different values of Ay differ in
cnergy. This is not surprising. since they contain different numbers of baryons (a
gange-invariant notion). This encrgy differcuce may be computed, either at zero
or finite temperature, either by calenlating the contribution at zero momentum of
the field y 1o the ) two-puoint Tunction. or equivalently by introducing a chemical
potential for n= and caleulating the free energy in textbook fashion.

Suppose now there is a slowly virving hackground a field. at a temperature T
AT This leads to a barvon number which can he computed in cither of two wavs,
If the scalar field changes slowly enough, the svstem will respond adiabatically.
At temperatures well below M. the minimunm of the free energy rax be found by

using {he anomaly equation to make the replacement

G F P = A jE i4.3)

iy
I @ ts coustant in space. iniegrating by parts gives a term in the effective action

A
_m(}uﬂ s, (1.4}

> For a nice review. see Ref, igui

i Such a field violates P 10 be cosmiologically relevant, this presupposes 2 violatios either
it the fundamental lagrangian or in the clioice of ground state. Gtherwise, different regions
af the universe, as will b elear balis , would acquice different signs of (e barvon nueber.
and the baryou-mnber averiged over several horizon lengths would be zero.
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Note that a factor of ¢/27 has disappeared. With the adiabatic assumption, it is
simply necessary to minimize the lree energy with this term. This yields for the
“barvon asvinmelry,”

g 2A 3 15
hy = m(uﬂ. ( )

This resnlt may be understood in a different. yet equivalent way. Instead of
using the anomaly equation. the coupling of eqn. (1.2) can he viewed as a source

for AL Iutegrating by parts gives a coupling

4

~

= 11(‘)()(!.“1. (’16)

r

At high temperatures, the potential for Ay is quadratic. A one-loop caleulation of

the polarization vields

(1.7)

The coupling of equ. (L.6) shifts the minimum of the A potential. Ap quickly
settles to the minimum of this potential: how quickly depends on the coupling
of Ay 10 the thermal bath, (For example, by choosing the charge and mass of
the scalar field appropriately, it is possible to arrange that ;s underdamped
or overdamped.) This corresponds to the appearance of a chemical potential. or
cauivalent]ly to a non-zero barvon density, The coefficient of the term lnear in the

chemical potential is H—’\“T()IJ(I;L

This fucus on A may not appear to be gauge invariant. However, a completely

gange invariant caleulation may he formulated by computing the term in the free
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Figure 5. Diagram leading to chermical potential for the field x. The blob denotes the
full dressed propagator for the gauge boscn.

energy: linear in the chemical potential for y.  The corresponding Feynman diagram
is drawn in Fig. 3.
The blob in the figure denotes the full propagator for the field A,. evaluated at zero
mornentum. Up to a factor of e. this just cancels the x loop indicated explicitly
in the figure. Thus a term in the free energy linear in the chemical potential is
directly oblained. precisely as above. I[n either case. an elementary calculation
gives a result in agreement with eqn. (4.5) for the density at the minimum of the
free energy.

In this model. it is not too difficult to delermine what happens as the mas-
M is decreased. 1 am interested here in a problem in real time. The imaginary-

time formalism. however, provides a clue as to how to proceed. Parity violating

couplings of the gauge fields to the scalar fields are of interest. Since, in both
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two and four dimensions, the theors without fermions preserves parity, fermions
must playv a crucial role. In the imaginary-time approach, if one is considering
phenomenon at low mamentum and zero frequency. the effects of fermiors may be
represented by local aperatars. Sinee T am now interested in a real time-dependent

o general, this

problem at finite temperature. T use the real-time formalism®
formalism s rather complicated. There is no simple Feynman diagram expansion,
and 1t 1 not Imunediately obvious what the role of the effective action is. In the
real-lime approach. the linear response of a system at equilibrium to a perturbation
is tvpically calealated, In the present context, for example, one might ask the value
of 1) as a function of time in the presenee of a time-varving v, In the textbook
ireatinents of this suhj(-(‘l[“l. the required Green's funetions are obtained by first
evalizating them for imaginary frequency and then analytically continuing. Now
constder some complicated Fevrmman «iagram, containing fermion loops. If one s
interested in continuing to a region where the external frequencies and momenta are
small. then the analytic continuation of the fermion loops is irivial. since possible
cuts are far away from the momenta. The frequencies are simply replaced by their
small {real) values, The fermion propagators may now he expanded in powers
of the external frequencies and motnenta, and thus the fermion loops may still

be replaced by local operatars. The resalting effective action should be gauge

invariant. These remarks apply eguatly 1o 1wo or fonr dimensions.

Now consider the two-dimensionsl model. Suppose M.ro < T, The effect of
the fermion, ¢, can. by the argunmients above, be absorbed into a gauge invariant.
local operator, The lowest dimeusion operator allowed by the surviving symmetries

is simply O = a bl



aq ———

Figure 6. One loop diagram vielding coupling of the field a to the gauge boson.

I the present framework. the computation of the cocflicient is elementary.
The one-loop diagram of Fig. 6 is calculated using the vsval (Euclidean) finite
temperaiure Fevnman rules. but with the exterpal lines carrving a small imaginary
frequenicy, gg. It is simplest 1o do the integral over spatial momenta. followed by

the discrete frequency sums. The result is

TC(3) tAeM

P

Tt (1.8}

7

Now the thermodynamics of the system 1s simply that of a model with the operator
QO in the Hamiltonian. In particular. the equilibrium configuration can be found

by precisely the arguments previously given for the case of large M. This gives the
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minimum of the free encrgy at

don. {4.9)

As an analog for the standard model, the model described so far is not com-
pletely satisfactory in a number of respects. Most important. in the standard
model. the same field is responsible for the breaking of SU/(2) x [7{1} and for giv-
ing mass to fermions. This is important for the generation of the baryon asymmetry
at the phase transition. This mitation is casily remedied. Consider a theory with
gaege group {7(1) and with a single scalar. ¢. of unit charge. Suppose also the
theory contains a left moving fermion. ¥+, of charge ¢, a right moving lermion, ¥,
of charge —{q + 1}. and another eft moving fermion, v, with Qi =1- 2¢. With
these charge assignments, the theory is anomaly free. The potential for ¢ is chosen
so that ¢ has a non-zero expectation value, This breaks the gauge symmetry. It is

now possible to write a Yukawa coupling,
‘CY = z\OU'le']e +cc. (410)

The VEV for ¢ leads to a mass, Af = A < 6 > for v*, and ¥,. Thus it is natural
1o combine them into a two-companent field, ¥+, and rewrite the Yukawa conpling
as

Ly = Mpey + ia0yse). (1.11)

where o = p+ ia.

By varying A and ¢. we can vary the masses of the fermion and the gauge

boson. It is interesting to consider varions limits. We will be interested in the
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case where the gauge boson mass is much smaller than the temperature, Suppose.
first. that the fermion mass, M, is much larger than the temperature. Then the
fermions can be integrated out, giving a Lorentz invariant effective lagrangian for
the remaining fields. The one loop diagram of Fig. 6 vields a coupling

_ Ae(2g+1)

= e 12
Lan sr|M| (1.12)

This coupling is not gauge invariant, since ¢ transforms non-linearly under a gauge
transformation. lowever. at scales below A7. the effective theory contains only the
fermion y. and appears to be anomalous. The coupling of eqn. (4.12) is precisely
what s needed to cancel the anomaly, and render the complete theory gauge in-
variant. To make the analogy with the standard model complete, imagine for some
peried the fields p and « are changing in time. In this {imit. the above analysis
cat easily be repeated. or equivalently that of Ref. [26]. to compute the resulting
asymmetry. In particular. the minimum of the free energy at a given instant can bhe
obtained by any of the following methods: using the anomaly cquation to replace
€ F* by the “haryon eurrent”™ (in this case the y-number eurrent}, and reading
ofl the linear term in the baryon density; by determining the value of A resulting
from the coupling in equ. (4.12); or by coruputing directiy the lincar term in the
chemical potential. from a diagram analogous to that of Fig. 5. Again, ecach of
these calenlations vields the same result,

Now consider the case that M <« T, As discussed above, tn this limit the
effeets of the Termions © can be deseribed by a local operator. In the present case.
as stressed Ly the authors of Refl [25]. the possible operators are not restricted by

the vequirement of Lorentz invariance. In order to create a baryon asvnninetry in
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this model, I am interested in operators which involve @a and the Chern-Simons

density A, The diagram of I'ig. 6 indeed yields such a coupling;
L = i(r’ + 1K 3) f) aA 4.13
o = (2 e A, (4.13)

{Here Af = AJ¢l.) Unlike the large mass case, I cannot appeal to any anomaly

argumient here to explain away any non-gauge invariance in this effective action.
Instead it must be possible to write this result in a gauge invariant fashion. Indeed,

it is easy o see that this coupling is one term which would arise from a coupling

7 Med
Line = Lama = 7320+ D) gD Do + he), (1.14)

where [y and £y are the usual gauge covariant derivatives. It is straight{orward to
cheek that the other couplings implied by this teem in the effective lagrangian are
indeed generated. For example, the diagram of Fig. 6 gives the required ApA;|of®
coupling.

[ can no longer use the anomaly to replace the operator appearing in eqn.
(1.11). On the other hand, using the various techniques described up to now, it is
easy L6 determine the barvon-number created in a time-varyving e field (or, stated
in a gauge invariant way, in a ficld confliguration for which Dy # 0). One can, as
before, either determine. in a fixed gauge such as Coulomb gauge, the minimum
of the Ay potential, or one can ('onlpllt,(;ﬂm term in the free energy linear in gy,

Again. both calculations are elementary and vield the same result:

T .
2+ 1 ¢03) oy iha. (-1.15)

Nole the final result for low mass is suppressed, not by 7', but by #7°. This lowers,

1y =

| ~1

by an order of magnitude., some of the estimates presented in Ref. [26].
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I will close this chapter by returning to four dimensions and considering the
problem of producing the baryon asyminetry in multi-Higgs inodels, where the only
new sources of O violation are the termsin the Higgs potential. The simplest such
model. studied in Rels. [28] and [17]. is the two Higgs doublet model. However, it
is casy to see that such models can not yield a large enough asymmetry. Consider
first the quadratic terms in the Higgs potential. Calling the two Higgs fields 1)

and M. these take the form
Vound = M7+ 03| 17 + (0F 2 s + cc). (1.16)

By a field redefinition. g can always be taken real. Thus. ignoring KM phases and

quartic couplings of the scalars. there is ne CP violation.

What does this mean for the barvon asviumeley? As previonsly stressed, the
barvon-number violating processes essentially turn ofl once o2 ~ a7, But for such
small ¢. the quartic terms in the potential can be neglected, 1o a good approxi-
mation. in considering the (essentially classical) evelution of the Higgs field. This
means that any CP violation in this evolution is suppressed by at least two powers
of o As discussed in Ref, [28}. the operator relevant to barvon-nunb or ereation

in the two Higes model is
On = (o' T Dulo X, {(1.17)

Using the equations of motion. these authors indecd find that this operator is of

1

order of. Asx a result. the asymmetey is of arder of, x &, where A s again some

measure of CP violation: four powers of ay come from the rate, Tonr from the
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four powers of ¢. Again, the coefficient can he computed, as suggested by the
two dimensional model. from thermodynamic arguments. The result obtained is
in qualitative agreement with Ref. [28]. wrillen in terms of the scalar field é.
However. o must be understood as being of order o T, rather than as the value
of the scalar field after the phase transition. As a result, the asymmetry in such

maodels is unacceptably small, no matter how large the CP violation.

The sittation can be improved by considering models with larger number of
Higgs particles. Once there are three or more iggs. the quadratic terms in the
potential do violate CPOOf course, if multi-Higgs models are to be taken seriously,
flavor changing neutval currents must be suppressed. T will not explore here the
question of simultancously obtaining a large barvon asymmetry and satisfying this

conditiorn.



5. Baryon Persistence and Higgs Mass Bounds

In an tmportant serics of papers, Shaposhnikov and collaborators have pointed
out that there is an important constrainl on any schemne to produce the observed
asymmelry at the electroweak transition (at least any scheme with zero B — L)m].
lmmediately after the phase transition, the baryon number violation rate due to
sphaleron transitions may be large compared to the expansion rate of the universe.
If this is so. any asymmetry produced during the transition will be quickly wiped
out. The demand that the transition rate be low enough that this nat occur places
constraints on models. In the minimal standard model, the authors of Ref. [24]
argue Lhat a lliggs mass of about 12 GeV cannot be exceeded. The basic idea is
quite simple. One computes the sphaleron energy as a function of Higgs mass and
temperature. and from this the transition rate. As the Higgs mass increases, Lhe
transition hecomes more and more weakly first order, so the Higgs field after the
transition is smaller. as is the sphaleron energy. Since Lthe expansion rate at these
times is guite small in microscopic terms, the sphaleron rate quickly becomes large

compared to the expansion rate.

The Himit obtained in Rel. [21] is pariicularly striking when comp. sed with the
recent limits on Higgs particles reported from LEP[m(M” > 48 GeV). Moreover,
this limit is relevant to models other than the minimal standard model. First,
as noted in Refs. [26] and [28], unless some rather exotic physics is operativem],
there is no hope for producing a large cnough asymmetry in the minimal model.
However, even in & model with a single doublet, uew physics could provide new
sources of CP violation. Morecover, even in models with multiple doublets, the

effective theory at the phase transition often involves only a single doublet.
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In fact, in the supersymmetric standard model, the phase transition is similar
to that in the minimal standard model. As will now be shown. requiting the
Higgs expectation value to be large after the phase transition {orces one into a
narrow range of parameters in which the model at zero temperature contains one
light and one heavy doublet. This is certainly a theory with additional sources of
CP vioiation: it also has two doublets. The potential for the doublets is highly
constrained. In particular, the quartic couplings are completely fixed. The full
zero-temperalure polential has the form

Viwsy =mi|H P+ m3 o) + 42 (M Ha 4 ec) +
93 oo i 2 232 13-1)
—S“—(H, olfy — Hor H3)™ + E—(l”][ — 1Haf" ).
As is well known, this potential is subject to various constraints. Either m% or in3

must be positive. Requiring the energy be bounded below gives
] 2 . 2 -
my + s —2p° > 0. {5.2)

. . 9 9 . .
while if both m3; and 3 are greater than zero, demanding that the Higgs mass

matrix possesses a negative eigenvalue vields

-
n
BV

—

22 4
iy < i

In this model. the phase transition occurs near the point where the temperature-
dependent effective mass of one of the doublets nearly vanishes. At this poini. the
second doublet is generically much heavier. and to first approximation can he ig-

nored. The corresponding effective theory is then that of a single doublet with a
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quartic potential (plus temperature dependent corrections). In order to make the
Higgs VEV after the phase transition as large as possible, the quartic caupling
must be as small as possible. To determine this coupling, return first to the zero
temperature potential, eqn. (5.1). Ignoring quark Yukawa couplings, and 2 it-
self, 4> does not receive finite temperature corrections while m? and m3 do. ‘The
temperature dependent mass matrix has a zero eigenvalue at the point where the
condition of eqn. (3.3) is an equality. At this point, it is straightforward to find
the effective quartic coupling of the massless field. It is given by

V=
8 (mi+ )

where ¢ is the light field, and the masses appearing in this equation are the tem-
perature dependent ones. In order to have a large Higgs VEV after the phase
transition, this quartic coupling must be as small as possible, i.c. one requires
mi & u®. This in turn means that m? ~ m%. Combined with the conditions on
the zero temperature masses above, and recalling that there are no finite tempera-
ture corrections to p?, it is easy lo see that one is forced into a situation in which
the zero-temperature theory also has a single very light Higgs and one massive

Higgs. But this is precisely the situation under consideration.

Because the transition rate depends exponentially on the sphaleron energy,
small errors in the energy density can lead to large changes in the rate. Thus I
wish to examine carefully the analysis of Ref. [24] to determine whether or not
there still exists a window of allowed Higgs masses for which it might be possible to
obtain the observed haryon-asymmetry. There are several sources of uncertainty

which [ examine here. First, it is important to include all finite temperature effects
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in the effective action. This includes both terms in the effective potential. as well
as derivative terms. Corrections to the effective potential are relatively easy o
incorporate. One can simply compule the sphaleron solution appropriate to the
corrected potential, and calculate its energy. Derivative terms turn out 1o be more
complicated. To compute these requires summation of an infinite sct of diagrams,
and I know of no general way of accomplishing this. Study of some particular
diagrams suggests that the resulting corrections to the sphaleron energy are of
order 10— 20% for the parameter range of interest. Again, since this uncertainty is
exponentiated. this is an important effect. Previous analyses have also not taken
into account the likelv farge value of the top quark mass. Including this cffect
(i.e. the large Yukawa coupling of the top quark to the Higgs) also tends to yield

substantial corrections.

The sphaleron transition rate is proportional to e~ /T Determining the
proportionality constant requires evaluation of a certain determinant in the three
dimensional field theory which describes the classical thermodynamic limit Y This
prefactor also introduces significant uncertainties. For certain values of the quartic
coupling, this prefactor has been evaluated numerically in Ref. [30]. There are.
however, a number of problems with using these results. These authors noted a
drastic dependence on the Higgs sell-coupling A, and realized that this could be
explained. at least in pari, by the need to use a corrected sphaleren solution. In
the range of parameters which will be important to us, these corrections cannot be
treated perturbatively. 1 will deal with this problem by making a simple estimate
of the determinant which is at least consistent with the results of Ref. {30]. To be

more specilic, when My < T < M, fa,, the baryon-number violation rate takes
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the form ™

.y N o -
= 4#_(]&'\4.‘.\*101.\‘”.‘" [v(,]‘ ]] 7“1 [ E’P"/T. (-55)

where v(77) is the minimum of the effective potential, Aty and A, are factors asso-
ciated with translational and rotalional zero modes respectively. « is the frequency
of the unstable mode of the sphaleron in units of gv(T), and ~ is the functional
determinant associated with fluctuations about the sphaleron. It is the factor &
that involves the large uncertainties mentioned above. In this work. [ continue to
use the numerical values for the zero mode and frequency factors found in Ref.
[30}. This is Justified since the primary uncertainty lies in . At the high end. 1 es-
timate & ~ 107!, For a lower hound, absorbing the uncertainties of the derivative

contributions to the effective action into this factor, & ~ 107! ¢~02Ea/T o 1079,

Finally. there is another important efflect which must be taken into account. In
Ref. [21]. 1 was assumed that the phase transition occurs at the temperature, Ty,
where the effective Higgs mass vanishes. However. the transition actually occurs
at a higher temperature, and as a result the Higgs expectation value is somewhat
smaller after the transition. This tends to increase the sphaleron rate. Onee
all of these eflects are taken into account, and allowance is made for the various
uncertainties. [ find that indecd a small window of Higgs mass remains: the Iiggs
can possibly be as heavy as 53 GeV. without leading to a significant reduction of

the baryon asymmetry.

Now I consider each of the points mentioned ahove in greater detail. First,
the form of the effective potential, and some aspects of the phase transition are

discussed. T am interested in relatively weak Higgs conpling: however, account
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must be taken of the relatively large value of the top quark mass. In the standard
model, the phase transition accurs near the temperature where the mass of the
Higgs doublet vanishes™ . If this temperature is sufficiently high. then for small

values of the Higgs ficld, the patential has the form
’ ; n g d 9 3 /\ 4 oo
Ve, T)=~{T" - 15)e" — &To” + 7 15.6)

where
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T = K (5.9)

The temperature Ty is where the curvature at ¢ = 0 changes sign. Without the
cubic term. T is simply the critical temperature, and the phase transition is second
order. However. even for a small cubic term. the transition is al least weakly first
order. This means that for temperatures slightly larger than 7y, ¢ = 0 kecomes a
relative minirzum. At a temperature 7, this relative minimum becomes degenerate
with the true minimum, and at temperatures greater than T, it becomes the true

minimum.

In practice. these statements require some modifications. First. the top qnark
is likely to be quite heavy. Typically the minimim of the potential occurs al values
of o for which the effective top quark mass, b is of order Ty or larger. (Here fry s

the top quark Yukawa coupling). As a resalt. one cannot make the approximation

o
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of small ¢ for the top quark contribution to the free encrgy. and it is necessary to

use the exact resuft. The one-loop finite Lemperature correction from gauge bosons

ol o quarks s
T
Vr == [61_(;/‘.‘) + 30 (y) + 1214 (9)], (5.10)
where g, = Mio/eT . and
x>
I={y) = :i:/(!r 2l T Ve ). (5.11)
1]

Fur the nmmerical work., Ifit the abeve integrals to a tenth order polynomial in y.
Fhs 1o the first and second derivatives were alse performed. These are essential in
solving the sphaleron rate equations. The second derivative is needed for numerical
progranis that solve the rate equation using relaxation methods in which a solution
i mitially guessed and then relaxed lo an approximale solution. These fits are
given in the appendix,

[t is also necessary to include the first order quantum corrections to the zero
temperature potential. These turn oul to be as inportant as the top quark finite-
temiperature correetions. I write the effective potential as V7 = 14 + V. where 14
is the zero temperature potential, and V¥ is the finite temperature correction. The
zero lemperature potential takes the form

, 2 B ., A 67 ,
h,=—%—(|—T)o-+—(1——)o‘+3¢

@ -
5 1 3 In{=). (5.12)

where

. 1 4 £\ 1
5= -j_‘ [2 (_!LL) + ('1_"5) —4 (.1_[') ] (5.13)
o= I P v

The stmpler form of the potential. (5.6). still gives the qualitatively correct



behavior to the more cxact expressions (5.10)-(3.13). The temperature at which
the curvature vanishes is now given by Tg = (M2/49)(1 — 48/)). Between the
critical temperatures T and Ty, there is a potential barrier separating the true
and false vacua. Thermal fluctuations of the Higgs field produce hubbles of true
vacuum. which then expand and collide to fill space. The rate of bubble nucleation
can be computed using the methods of Ref. [31]. One calculates the action of a
three dimensional bounce: the nucleation rate is then roughly the exponential of the
bounce action. i.e. Tpgp ~ 1™ (So/275T)¥? ¢753/T The bubbles then expand with
a certain velocity, This velocity can be estimated by requiring that the pressure
difference between the inside of the bubble and the outside be compensated by the
force exerted by the bubble on the particles just outside. This gives a veloeity.
v ~ ag /A, The fraction of false vacuum left at time 00 f(f). is given by (2.15)
and (2.16). As previously stated. the bubble temperatire. 7y, is defined to be
the temperature for which In f = —1. at which point the false vacnnn is mostly
gone. Stnce the harsier separation between the true and false vacua is rather Jarge
at first. bubble formation is suppressed until the temperature drops sufflicientiy
low. At such a point. due to the exponential behavior of (2.15). space fills up
with bubbles rather quickly on a macroscopic scale. This means that the hubble
temperature is in fact rather insensitive to the wall velocity oy, In integraling
(2.43). it is convenient 1o change variables to & = 1 — T/15 using 14 = ny f2ht.
where b = (1739, /45)'/% (1 1ake go = 100). § also 1ake 2 ~ M2, the scale factor in
a flat, hot Raobertson-Walker universe. 1 have numerically deteriined the bounce
action and then mtegrated (2.15) to determine the hubble temperature for several

values of the Higgs mass.  This is illustrated in Fig. 7. This curve is actually a i
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10 ten Higgs mass points. cach of which were numerically determined in the above

manner:

b, = 0.0104 = 0.00111 M, + 0.00000799 A2, (5.14)

where My, is given in GeV.
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Figure 7. The temperature, expressed as &, = 1 — T3 /T, at which space fills up with
bubbles of troe vacuum as a function of Riggs mass for M, = 120 GeV.

Typically. Ty is only slightly below 7. The reason for this is easy to understand.
At the time of the phase transition, the Hubble constant is of order H ~ 10~
GeV. This corresponds to a very long Lime in microscopic terms. A typical bubble
expands for a finite fraction of the Hubble time. Thus an extremely low bubble
nucleation rate, of order F37T . is sufficient to fill the universe with bubbles. The

fact that the temperature is higher than Ty tends to decrease the upper limit on

L)
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the Higgs mass over that in Ref. [24], since the expectation value of the scalar field
is correspondingly smaller, as is the sphaleron energy. Howeve r, as will he secn.

there are a variety of effects which work in the other direction.

In actually computing the sphaleron energy, one should also use the full ef-
fective polential. This fact has already been discussed in Ref. [30]. These an-
thors computed the determinant numerically beginning with a solution of the
t~mperature-dependent potential including only the quadratic and guartic pirces,
They note that their resull contained a severe A dependence. and that this could
be at least partially accounted for by treating as a perturbation the ¢® term in
the potential displayed in eqn. (5.6) above. Indeed. the determinant caleulation
of these anthors can only vield a good approximation to the correct answer il this
cubic termy can be treated perturbatively, This is certainly not the case in the
range of temperatures of interest here, where the eflective mass of the Higgs field

is very small. and where the o terms is at least as important.

In view of this fact. | have obtained the sphaleron solution for the full effeciive
potential. including all effects 1o one loop. particularly the top quark. The ne
effect of this is 10 increase the sphaleron energy as a function of A Starting {rom
the bubble temperature. T have integrated the barvon-number rate equation 16
determine the suppression Tactor. the fraction of harvon sumber finally eft, ax a
function of the Higgs mass.

The arguments of Ref. [9] are casily generalized to incnde the linite temper-
ature effects, For simplicity T will set the Weinberg angle to zero and consider an
SE°12) gange theory with a Higes doublet 4. Apart from this, everything else i

identical to the standard model. 1 will work in the A" = 0 gage. and it is conve-



nient to make the following resealings for the position vector, the gange fields and

the Higgs field:

v — {/ge(T)

A —e(T)A (5.15}

& — o(T)o
where #(T)/+/?2 is the minimum of the Iliggs field @. It is also useful to work with
the real scalar 6 = V2 |®]. which simply takes the value (7)) at the minimum. As
pointed out in Ref. [9]. there is an unstable. static solution to the classical field

cqualtions given by the parameterization

§ (5.16)
o =7 h(€} f T Uips

where u,,, = (0.1) and 7% = ¢*/2. When the ansatz (3.16) is substituted into the

eflective finite temperature action. the energy functional becomes
({f dh .4
/ [ )+ ,[fu— ne + £(~—)~

(1 = )] + €2 2(h.T)],

Qg

(5.17)

where the rescaled frec energy is defined by Q(h) = 2{®)/g*v*(T). This is a rather
long. hut straightforward exercise. Static solutions extremize the energy, so the

sphaleron field equations simply become

d*h = gg’i < 1 2 @
- te" =g
(5.18)
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Figure 8. The sphalcron solution for tlie one-loop finite temperature potential for
M = 120 GeV and M,, = 52 GeV.

£ — oc. Fig. 8 shows a typical solution to this boundary value problem.

Now. in the adiabatic regime, the baryon number satisfics an equation of the

form

dn -
—(f = _CT_3["D - n(,’i]. (.19}

where ¢ ~ 10. The exact value of this constant depends upon the initial mixtures
of baryon and lepton number. It is not crucial since nncertainties in 1" are [a
more important ([ take ¢=10 for definiteness). The term n',‘, ~ dy|é]*. and it
reflects a bias in the [ree energy gencrated by a changing Higgs ficld. On the
boundary of the expanding bubble walls, where the Higgs field is rapidly changing,
the second term in (5.19) dominates, and baryons are procluced. However, when

the bubbles finish colliding near temperature Tj, the Higgs field changes with the

a8



Hubble rate. and now the second term must be dropped.  Unless the baryon-
number viatation rate falls quickly helow the Hubble expansion rate, any previously
produced baryon number will be eaten. The sphaleron energy was computed as a
function of temperature for about ten values of the Higgs mass. Equation (3.19) was
then integrated, and the asymptotic form of 11,(figrge ) /15(0) = S was determined.
The fit to this suppression factor is shown in Fig. 9 for x = 10! and x = 1071
and is given by

- N - 9 s - 2 I
—In~= Toop “¥Pi- 110 +3.42 M, = 0.0219 M . (5.20)

where My, s in GeVl Tt is apparent thai a Higgs mass greater than about 55 GeV

cannot be tolerated.

s T [ T T T T T T T T T
L ..
L} —
L -
I J
I —
o i 1
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£
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APPENDIX A

In this appendix | briefly sketch for completeness the method of performing the
frequency sums found in the main body of the text. A nice frature of this methed
is that the zero temperature contribution is casy to locate. I wish to perform the

following 1wo fermion sums,

Z [‘;+a_ (A1)

](a)—- Z o +(1] (A

where &, = {2n + 1)7. The basic trick is to write the sum as a coutour integral of
a function with poles at &y, [ will first concentrate on the more general expression
5= fliw). where f(z) is a function with no poles or branch cuts along the real axis.

A simple calculation gives

(Ah

2 |
i
1y

Zf(‘::rt)z’—z %tani

",

where the contour (' is a small circle centered at @, with orientation shown in
Fig. 10. The small circles may be joined to form two lines. one above and one
below the real axis, and then these contours may be closed. as shown in Fig. 10
If the function f(z) has poles in the complex plane. the residue theorem may be
used to evaluate the integral. For the sums (A .1) aud ( A .2), there are dauble

poles at tia, which give two equal contributions. After some algebra,

GO



Figure 10. Contour deformation for the integral { A .3).

1 a I a
If{a) = i tanh s - == sech2§ (A.4)
If(a)——l— tanh9-+-l— sech?= (A.5)
U 4a 28 2’ '

Doson loops have even frequency sums, @n = 2nx. Denoting the boson sums

corresponding to ( A .1) and ( A .2) by I® and I?, it is easy to show that

1 a 1 a
Jlg) = — -y 22 6
I {a) Pe coth 7 + 3a? csch 7 (A.6)
1 a 1 a
fig) = — — .= 2z AT
I{(a) = o:oth2 3 csch 5 (A7)
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APPENDIX B

In this appendix I present the fits used in the text, A high temperature (small
y) expansion of (5.11) was performed by Dolan and Jackiw, of ref. {6]. This is what
is usually done, and it leads to a potential like {5.6). However, a heavy top brings
the critical temperature down too low for such an expansion to remain valid. 1 am
then forced to evaluate fi(y) with numerical techniques. I do this at 100 points
in the interval y = 0 to y = 3. and then fit to a tenth order polynomial. Fits to
the first and second derivatives with respect to y were also performed. The first
derivative fits were nceded in solving the sphaleron field equation, and the second
derivatives were needed in the differential equations program. 1 list them here for

completencss.

I_(y)=—2.165 + 0.0091952 y + 0.8193 y° — 0.4958 y* + 0.2017 y°
— 0.08131 y° + 0.03264 y° — 0.01062 4™ + 0.002372 y°

— 0.0003133 3° + 0.00001831 y'°
(B.1)

{:(y) =~ 1.894 — 0.0001938% + 0.4144 y° — 0.02774 y* — 0.1152 3
+ 0.08152 »° — 0.03468 4% + 0.01065 y* ~ 0.002267 4*

+ 0.0002928 3° — 0.00001699 4'°.
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Py)= 000001204 + 1642y — 1512y + 08868 y° — 0.5530 »*
+ 0.3582 4% — 0873 4% + 006916 7 — 0.01646 4
+ 0.002261 y* — 0.0001358 "

]

|

Iy =~ 0.00004219 + 0.8251 5 — 005914 y* — 05399 »* + 05522 y

0.3683 17 + 0.1361 y* — 0.06761 ¥* + 0.01608 5°

— 0.002217 y" + 0.0001337 y'".

(B.2)
My = 164 — 3074y + 3.001 5° — 3298 5 + 3.733 41
- 3230 5% + 19354 — 0.7615 47 + 0.1901 5F
- 0.02692 ¥° + 0.001652 '
(B.3)

Py = 08229 ~ 0.06742 y — 1961 3° + 3.296 y* — 3.787 4*
+ 32355 - 1.927 4% 4 0.7628 y' — 0.1901 4®

+ 0.0270 3° — 0.001656 »'°.
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