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Abstract 

One of the fundamental constants of nature is the baiyon asymmetry of the 

universe - the ratio of the number of baryons to the entropy. This constant is 

about. 1 0 - 1 1 . In baryon-number conserving theories, this was just an initial con­

dition. With the advent of grand unified theories (GUTs), baryon number is no 

longer conserved, and this asymmetry can be gcneraied dynamically. Unfortu­

nately, however, there are reasons for preferring another mechanism. For example. 

GUTs predict proton decay which, after extensive searches, has not been found. 

An alternative place to look for baryogenesis is the elcctroweak phase transition, 

described by the standard model, wliich posses all the necessarv ingredients for 

baryogenesis. 

Anomalous baryon-number violation in weak interactions becomes large at 

high temperatures, which offers the prospect of creating the asymmetry with the 

standard model or minimal extensions. This can just barely be done if certain 

conditions are fulfilled. CP violation must be large, which rules out the minimal 

standard model as the source of the asymmetry, but which is easily arranged with 

an extended Higgs sector. The baryon-number violating rates themselves are not 

exactly knqwn: and" the}'must be pushed to their theoretical limits. A more ex-
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act determination of these rates is needed before a definitive answer can be given. 

Finally, the phase transition must be at least weakly first order. Such phase tran­

sit ions are accompanied by the formation and expansion of bubbles of true vacuum 

within the false vacuum, much like the boiling of water. As the bubbles expand, 

they provide a departure from thermal equilibrium, otherwise the dynamics will 

adjust tlie net baryon number to zero. The bubble expansion also provides a bias­

ing that creates an asymmetry on the bubble surface. Under optimal conditions, 

the observed asymmetry can just be produced. 
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1. Introduction 

Willi the adyent of grand unified theories, there arose the hope of dynami­

cally generating the baryon number of the universe, a quantity that had to be set 

by initial conditions in baryon-number conserving theories. Baryon-number vio­

lation alone, however, is not sufficient to generate a net baryon asymmetry- As 

first pointed out by Sakharov . there are two more necessary conditions. The 

theory must have C and CP violation, otherwise equal numbers of baryons and 

ntitiharvons are produced, giving no net increase. There must also be a depar­

ture from thermal equilibrium, otherwise the dynamics drives the system to equal 

mix! urcs of baryons and antibaryons. GUTs naturally violate baron number and 

CI'. The phase transitions are typically strongly first-order, so a departure from 

thermal equilibrium is easily achieved. One can usually produce the observed ratio 

of barvon inimber to entropy, tj = nB/s ~ 10 . This is one of the attractive 

features of Gl'Ts. There is. however, one problem that cannot be overlooked: the 

proton has not yet been observe*! to decay. This completely rules out the mini­

mal Sl'(")) theory. That theory has other problems, the most notable being the 

hierarchy problem. The minimal supersymmetric extension solves the hierarchy 

problem and gives a proton life time consistent with observation. However, super-

<ymmetric Gl 'Ts have their own set of problems. Furthermore, many non-minimal 

extensions soon become rather contrived, and the number of free parameters be­

comes so large, explaining one ratio at such a price is unsatisfying. In addition, 

the temperature range between the Gl 'T and the weak scale is large enough that 

baryon-iuimber violation proceeding through the electroweak anomaly will wash 

out any asymmetry, unless the initial B — L is non-zero. While grand unification 
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is a very beautiful idea, these nontrivial problems are motivation for an alternative 

method or baryogenesis. 

The weak scale in minimal extensions of the standard model turns out to be 

a promising place to look- The standard model naturally possesses two of the 

three necessary conditions for baryogenesis: baryon number is not conserved (due 

to the axial vector anomaly) and CP violation is automatic. If the weak phasn 

transition is not too weakly first-order, then a large enough departure from thermal 

equilibrium can be achieved. This is the case if the Higgs mass is not too large. 

It is clear, however, that CP violation will be too small in the minima! standard 

model to produce any tiling like the observed asymmetry. But there are many 

extensions of the standard model, such a.s mull i-Higgs theories, supersymmetric 

theories, technicolor theories, or the like, wilh ample CP violation. Ii. then becomes 

a quantitative question as to whether the actual baryoti-mimber violating rates 

themselves are large enough. 

In this thesis, I examine the necessary conditions under which the baryon asym­

metry may be generated at the weak scale. The key point is that a time-dependent 

Higgs field biases the baryon production and generates an asymmetry, the sign of 

which is determined by the sign of the CP violating parameter. The expansion 

of bubbles of true vacuum during a first order phase transition can generate this 

time dependence, as well as a sufficient departure from thermal equilibrium. If 

the baryon-number violating rates are not too small, the observed asymmetry can 

be produced this way. This is the subject of chapter H. In chapter 1 I illuslrate 

the general techniques with a simple i + 1 dimensional model. I also show why a 

two-Higgs model will not yield anything like the observed asymmetry. In chapter 
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5 t find an upper bound on the Higgs mass by requiring that once the asymmetry 

is produced, the baryon-mimber violating rates turn off fast enough so as not to 

erase it. This is a relevant bound for minimal extensions of the standard model. 

I will end this chapter with a brief review of baryon-number violation in the 

standard model. This is standard material and a nice review can be found in Rof. 

[H]. Due to the presence of axial couplings, baryon and lepton number are not 

conserved. The baryon-numbcr current satisfies 

d-Ja = ^lr(FF), (1-1) 

whore .Yf is the numher of flavors, and the dual field strength is defined as F1'" = 

Yiu'n.iF" • Integrating ( l . l ) and discarding the surface terms of the baryonic 

current gives a change in the baryon number 

±B=^£ Jd*x\T[FF) (1.2) 

=.\f J J*r d^K" (1.3) 

=Nf Idfff.K", (1.4) 

where ihe last surface integral is taken over a large three-sphere, S3, of infinite 

radius, and the Chem-Simons current is given by 

A'" = f - <*>><»> trlArid.Ag - \ig AaAg)}. (1.5) 

1 will work in the static A° = 0 gauge, in which the only nonzero component of the 

f'hern Simons current is A'". For finite-action gauge field configurations. F = 0 at 

» I use (lie conventions: f„,-„ - +1; also, elements of I lie gauge group C arc parametrized by 
u(j-) = exp[/^((x] • t], the covariaiit derivative is Du — d„ - igA^f. and a general gauge 
transformation on tile gauge fields is given by A„ — uA^u-1 ~ -d^u u~' 
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spatial infinity. ( s i n g this restriction in (1.4) gives 

A f l = Nf [Nc,{i = +00) - Nca(t = - 0 0 ) ] = Nf « \ . " , , . (1.6) 

where the Chern-Simons number for a field configuration A ( x ) is defined by 

A'«IA] = ^ - j d \ t"k tr(.4" A' Ak). (1.7) 

Vacuum configurations A,,„ r = '- Vw w - 1 define a natural m a p 5 3 —» CI when 

restricted to r>(x) —> 0 as jx| —» 00. With this restriction, points in space can 

be thought of as lying on a three sphere, and the induced vacuum m a p is simply 

x >-* u(x) g (7. The Chcrn-Simons number for these configurations is just the 

homotopy or winding number of this induced map . For semi-simple groups, such 

vacuum configurations can then be labeled by an integer, and the t rue quan tum 

mechanical vacuum s ta te is a linear superposition of the corresponding pcr t i i rbat ive 

wave functionals. which each have support only over a definite winding number . 

T h e above restriction to classical vacuum configurations in whiih ;: ~» 1 at spatial 

infinity can be justified a posteriori, since tunneling only mixes such states among 

themselves . 

"t Hooft first calculated the tunneling rate between adjacent per turba t ive 

vacua in the s tandard model to be ~ c-**/n*' ^ ] 0 ~ 1 6 4 which is to say. it 

never happens. This small number can be understood in terms of the very large 

poiential barrier, of height ~ A/v 4 jrtw ~ 10 TeV. separat ing the per turba t ive vacua 

of definite winding number. In Ref. [9]. it was shown that there exist s ta t ic , un­

stable solutions to the field equations with one negative mode. These solutions are 
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called spha/erons and represent saddle points of the potential-energy functional in 

field space. Fig, 1 illustrates the basic vacuum structure of a pure gauge theory. 

This interpretation of the sphaleron is further justified since it has a Chern-Sirnons 

number half way between that of the successive perturbative vacua flanking the 

sphaleron. 

T 

N a = l / 2 
spha le ron 

N „ = 3 / 2 

A(X) 

Figure? 1. Vacuum slrncVuru of a gauge theory. The maxima represent sphalcron 

configurations. 

In chapter 3 I will discuss the high temperature limii.. It is quite probable that 

under these extreme conditions, gauge field configurations can simply sail over the 

barrier rather than tunnel through it, and then baryon-number violation becomes 

unsiippressed. I'hp question is then whether this erases any previously generated 

asymmetry, or creates an asvmmetri' of its own. 
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2. Finite Temperature Field Theory 

Because the calculations which follow involve field theory at finite tempera­

tures. I will briefly review relevant aspects of the subject. The aim is to establish 

finite temperature Feynman rules and to use them to investigate symmetry restora­

tion. In particular [ will calculate the free energy to one loop. Finally. I will give 

a quick review of bubble formation in first order phase transitions, since this is a 

crucial ingredieni of chapter 3. The results of this chapter may be found in Ref. 

K 

Consider a field theory with a Lagrangian C(d$,(fr), where <j> includes all the 

fields in the llioory, both fermionic and boson ic. The statistical average of an 

operator O. at temperature J~l, is defined as 

TrfT e-0i'O\ 

The usual tiitu- ordering is performed, and 0(X,.T2 .r„) is understood to be in 

the lleisenbcrg representation. This moans that, formally, the factor e~&^ acts 

as an imaginary-time development operator. In effect, it translates the system by 

—i.i units of imaginary time. It is not hard to show that in the in the imaginary-

time direction, the statistical average is periodic (with period B) for boson fields 

and antiperiodic for fermion fields. For simplicity 1 will only consider O(x) = 

c(.r)o(0). where p may be either a boson or a fermion. First analytically continue 

to Euclidean space by defining <? E(T) = 4>„{l)\t ,>. Take r < 0, and since the 
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(2.2) 

Euclidean time development is given by 4>E(T) = erI14>{Q)(~~Tli, 

< OE(T) > / 3 Tt[e~M] = Tt[c-ffa 4>E(r)<f>(Q)} 

= TVIe-"" e"T<f>(0)e'"T 0(0)] 

= ±Tr[tf>(0) c< ' -" , / <*(0)c- T ' / ] 

= ± T r [ 0 ( O ) ^ ( r - / ? ) c - 3 A ' ] 

= ±7r\e-<"1 TT<P(T - W ( 0 ) ] 

= ± < C ? / / { T - , # ) > ^ Trje-" ' 7 ] , 

where 7V is the Euclidean time-ordering operator, and the plus sign is for bosons 

and the minus sign for fermions. The Feynman rules take on a particularly sim­

ple form (or operators that are analytically continued to imaginary time, which 1 

denote by 0 £ ( x , r). If real-time correlation functions are needed, analytic contin­

uation may be performed back into Minkowski space. However, this procedure is 

delicate since the Euclidean Greens functions are only calculated approximately. 

The Feynman rules are most, easily derived from the path integral approach, in 

which 

<0'>"= /lie-* ' < 2 ' 3 > 
where the Euclidean action is given by 

a -ia 

Ss = I AT IfxZs = -i fdt Id3x £|,=_< r ! (2.-1) 
o o 

and the bose(fermi) fields are taken to be periodic(antipcriodic) with period j3. 

The finite temperature Feynman rules in Euclidean space are formally similar to 



the usual zero temperature ones. For simplicity I will consider A<j54 theory: C = 

±(d<3)- - U{4>) with, 

l / ( » = i m V + ±4*. (2.5) 

Each four-point interaction vertex has an associated factor of —A. Each interna! 

propagator of momentum p„ = (u; n,p) and mass m takes the form 

Ml>«)= • » , ! , , 2 . (2-6) 
w,- + p - + m"5 

where ..'„ = 2m:T for bosons and (2w + 1)^7' for fermions. The appropriate spin 

slnicliire must also be included in more general propagators. For example, in a 

fennioii propagator, there is an additional factor of f>n + in, where the gamma 

matrices are new Euclidean, i.e. {")''•""} = —'ZS1'". For each internal loop of 

momcii! inn p„ = (_o'„.p). there is an intogral-surn of the form 

-~~ J l^) T > . / ^ J • (2.7) 
7i = — ^ 

and at each verlex there is an energy-momentum conserving dell a function of the 

form ^(2-) 'V , ' 1 , (p 1 — P J ) ^ - ! . ^ , . By contention, an overall delta function /V(27r)3 

c' ! , (Pni - Puui) is factored out of the momentum-space Greens functions. These 

rules are easily obtained from the generating functional 

Z[J] = :V fVO (-I» CF + f>J* , • 8 ) 

where fj = /jj dr f <l3x. and the normalization is chosen so that Z[0] = 1. The 

connected Greens functional is defined by H'[,/] = In Z[J). To investigate symmetry 



restoration it is useful to define the classical field 

4>ci(x) = < 4>(x) >js 
JVF_ (2.9) 

"" SJ{x)' 

Jn calculating (2.9), the Euclidean action is given by SE —+ SK — f^ J<j>, and 4>d 

is then a functional of J{x). If this classical field is nonwrw for ./ = 0, then 

spontaneous symmetry breaking persists at finite temperature. To investigate this 

further, it is helpful to introduce the effective action defined by the functional 

Legendre transform of 11'[J]: 

r[©w] = irp] - j Jocl. [2.10) 

In the above, equation (2.9) is to be inverted to give ./(.T) = ,/[<jr[;.r]. That is lo 

say. J is a junctional of o f/ as well as a function of x. It is easy lo show that 

-jJL- = - J ( . r ) . (2.1!) 

Therefore, nonzero solutions to Sr/60ri -• 0 signal spolil ;i neons symmetry breaking 

at finite temperature. The one-point-irreducible (1PI) C:'?ens functions are defined 

bv 

where j d = _f0 dr, J ( / 3 x, . It is also useful to expand Y in powers of derivatives: 

0 
nOd) = j dr Jd3x[ - Q(d,d) + Z{4>d){d^tl)2 + • • • ] . (2.13) 

o 

Q is called the effective potential, and at tfie minima, it is the thermodynamic 

potential density of the system. For zero chemical potential, however, this is just 



the free-energy density. For a translation invariant ground s ta te . (? r ;( j) = const. 

ami it is sufficient that there exists a nonzero solution to <iS}/rfcVf — 0 for the 

persistence of symmetry breaking. The momentum space 1PE Greens functions I' 

are defined by 

(2.14) 

where J , = ( r , . x , ) . ~ = Yl"-'>- m K ' e_ = 1 if Li,- = 0 and vanishes otherwise. All 

inner products are with a F.uclidean met lie. From here on I will drop the subscript 

from o,i when no confusion will arise. Expanding r ' 7 n ' ( p , ... pm) in a momentum 

power sr-rit-s find writing -i(2r) AM i](J^ Pi) <*„• = J,)C'*-,P'T' S ' v e s 

O = -T—jim\0)[o(x)]m. (2.15) 

lor IIC>IIZ<M'U m. tiic 1PI Greens funrtions in Ad throry at zero inomonta are given 

(2.16) 

where -Sn = (2iif | ' . / - ' " ( - ' " ) is the symmetry factor associated with the number 

of ways of leaving the graph fixerl upon interchanging external legs. In finite 

t empera tu re field theory there is one more grapli to consider: the noninteract ing 

closed loop lin = f)J. At zero t empera ture this graph contr ibutes an infinite constant . 

I>ui al finite t empera tu re it also gives a tempera ture dependent correction. This 

loop may be calculated bv first calculating the noninloracfing parti t ion function 
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and then using the relation Q = —Tin Z/V, 

in Zfrc( = In detg[d" -f m') 

So, up to one loop, the free energy takes the form 

Mi + 4 ^ 1 Ci is) 

r + f E / | ^ H ^ p ; U ^ + Ao^ )!• 

Define a o-dcperident frequency and mass by -.'^(o) = p" + »i~ -*- \o~/- = p " + 

w*(<>). 11 u'ill be useful in pei forming i lie fierjiieiH y sum to get rid of : he logarithm 

using the identity (Kapnsta in Hef. [6]) 

!^„); 

! 

The second term in (2.19) just gives a t empera ture independent contribution to 

the part i t ion funetion and may he dropped. The frequency sum may be performed 

using the following relation (Kapusla in Ref. [6]); 

E 1 jr[rot 7TX — cot iry] 
(n-x)(n-y) >/ - ,r 

(2.20) 

After some algebra, the one-loop correction becomes 

2 ^ / (2^)3 J 

3 " r dO' 
0 J + (2717T)'-

7 f d>p 
J (2*) 3 

/?w» 
-f- + )n ( l - f -/J~V . (2.21 



It is convenient to split the free energy as fi = V'o + VV\ where: 

, , 1 i .-, A , / <i 3p 1 
2 4 

fJh 
J O j s ^ ' 

71' f dxx2\n(l - c " ' ) . 

(2.22) 

(2.23) 

w i t h i = (.)•" l '/2 , .r = .?/) and y = 8m{<f>). Notice that Vo is just tlie zero 

temperature effective potential to one loop. This is apparent since up to an infinite 

^-independent constant 

/ 
(L 

1 + 
Ao-'/2 

*•- + p- + >n-
1 

I hereFure. 

1 , , A 
in = -in'O' + —%0 W£ <iXV, 

+ — 
A^/2 

PI + ")-

(2.21) 

(2.25) 
• I ! " ' J ( 2 - ) 4 

This is just the usual one-loop effective polenlial for Ao theory. Since Vj is 

finite, il(l') is renormalized with the same counter terms as the zero temperature 

effeel ive potent ial. This is n general feature of finite temperature Greens functions. 

If there were fermions coupled to the scnWs. then appropriate sign changes must 

he performed. For a general number of hosons and fermions, the finite temperature 

coiit riiiiit ion lo 1 he effective potent ial is 

\r = 
7 ^ 

(2.26) 

where gi (tjf) is the number of degrees of freedom associated with a given boson 

(feriiiion) type, and mXuj) i s the associated tj-dependent rescaled mass, and / T is 

\2 



I^iy) = ± [ dr .T2 1,1(1 T f " ) , (2.271 

tl 

with ( = (.r- + y - ) 1 / 2 . If the zero t empera ture potential \'n is chosen to give 

spontaneous symmet ry breaking, i.e. a minimum at a nonzero o. then it ran be 

arranged that finite t empera tu re effects restore the sytrmielry above sortie critical 

t empera tu re /<•• 

This illustrates the main technical po;n!>.. Kor most of this thesis, however, ! 

will be concerned with the s tandard model, or minimal extensions. I will work in a 

gauge in xvhi'-h there is one real component of the Higgs field I hat takes a vacuum 

expectat ion value (VKV) of r ~ 2 I ^ dVV. Including heavy fermion effects, the zero 

t empera tu re effective potential to one loop is 

l ( 1 = 4 ( 1^^^ ( 1_^ ) 0U/io'ln(4). (2.38) 
' A -1 A i -

where 

«^K")'+(-)'-<(-)]- - . 
with (i„- = (j1 J Air ss 1/30. The Higgs mass is related to the VKV by Mft = 2Ae'-\ 

where r = /f/v-V ]n ec|iiation (2.29). <j is the SI (2) gauge roupling constant 

and Mi is the top quark mass. The 11' and 7. gauge boson masses are related hy 

Mn- = hgt' and Mz — A/iv/cosfl,,.. p'or a top mass A/, ~ 100 f!eV and a Higgs 

mass M„ ~ oO C!eV, B ~ 0.001 and X ~ 0.02. Quan tum corrections are then some 

13 



what impor tan t since 4B/X ~ 0.2. The renormalization conditions are 

2 " < " 
= A/,:. 

(2.30) 

(2.31) 

The unite temperature potential now becomes 

VT = 
2 T T 2 

6/_(3/ 1v) + 3/-(jfc) + ] 2 / + ( i „ : (2.32) 

where i/, = M,o/rT. This is a general expression (up to one loop), valid for 

anv t empera tu re at which non-standard-model physics is un impor tan t . It is often 

useful t<j make a high t empera tu re (small i/) expansion of (2.32). T h e first two 

terms of the Taylor series expansion in //" are easy to find. However, there is a 

subtlety in the ;/' t e rm. The functions l± are not analytic at y = 0. and the Taylor 

.series expansion breaks down in the third t e rm. There is a simple pole in I'!_(y) 

and a logarithmic singularity in both I'±[y). This suggests there are cubic and 

logarit hmic I erms in 1 he expansion. Dolan and Jark iw of Hef. [6] use a clever trick 

for dealing witli this non-analyticity. Hiey calculate I±{y) at a non-zero bu t small 

argument and then integrate twice, using the known values of /±(0) and /±(0) to 

fix the integration constants . The result of this calculation is 

M ' / ) = ~l5 + T2V' ~ ?/ " h y 4 ] n y i + 

/+(;;) = - ~ + wry1 + T7.y^"u2 + •-• Slo 21 16 

(2.33) 

(2.31) 

] Ins ((.iivcnlioii dilfi rs sonic wlial from Sliauoslinikov in IM [15) in vvliirli Lhc self roupling 
is -• Arhiu-ii lo absort. I tic quantum rorrtTl ions. 
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I'srrig the above expansions in (2.32) gives an effective potential 

.III -1 /A 

where g' = Xt 4- gA ; / . and 

Above <i critical t empera tu re 7' r . which I will soon determine, the minimum occurs 

al zero Higgs field, and symmetry is restored. This is a n«tnri*I initial condition in 

a hot Big Hang scenario. As the universe expands and the t empera tu re drops, a 

relative minimum appears , and at t empera ture Tr. it becomes degenerate with the 

original. Then at some tempera ture , given by 7'u above, the potential develops a 

relative maximum at zero and is qualitatively similar to the usual zero t empera tu re 

Mexican hat potential . Since zero Higgs field is a relative minimum down to 

t empera tu re 7'n. and there is a potential barrier between the false and t rue vacua, 

the phase transi t ion is not instantaneous. Instead, it proceeds via .bubble nuclcation 

due to quan tum tunneling and thermal fluctuations of the Higgs field in small 

regions of spare. ][ a bubble of t rue vacuum appears with a radius larger than 

lo 

(2.*)) 

(2,:t(i) 

(2.:S7) 

(•2.38) 



1 I ' V ' I ' ' ' ' I ' ' / ' i 

Figure 2. A lv|>ic;il Itiupr-ratiln- rvohllion |in arlntrJirv mills) for ft Jirsl orcirr transi-
!ir>n I h- frt'f rn^r^y al z'-ro lirM lias been subtracted off. 

some c r i t i ca l value, ( l ie bubb le of l l iggs f ield expands. I ts evo lu t i on is de te rm ined 

classic a l ly , and at some t e m p e r a t u r e 7},. t y p i c a l l y greater t han '/'«. al l t he bubbles 

co l l ide l i l l i ng up space. T h i s , in effect, produces one large bubb le o f l l i ggs f ield 

al i l i c m i m i n n m of the po ten t i a l . D u r i n g bubb le expans ion , t in - change in t he 

HiE.gs l ie ld is much fj isler i h a n the expansion of the universe. However , a f ter 7 j . 

the l i iggs held changes w i t h the m i n i m u m of the p o t e n t i a l , wh i ch is of o rder the 

Hubb le pa rame ie r and hence q u i t e sma l l . Th i s point is very impo r t aril for weak 

sr;dc baryogenesis and w i l l be e labora ted on in the next chapter . In any event , 

phase t rans i t ions of th is t ype are cal led first order , and a t yp ica l t e m p e r a t u r e 

evo lu t i on ol the po ten t ia l is shown in F ig . 2. 

I v. i l l now f ind t l " c r i t i ca l t empe ra tu re '/). neglect ing all logar i thmic ' te rms . 

If great- '•nracy is needed, then numer ica l techniques can be used and the 
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logarithms kept. From (2.35), there is a non-zero minimum at 

T h e critical t empera tu re is where this minimum disappears-. 

r--r-\\ - 9* 

Notice that Tr ~ 7n ~ t://t. where h is the larger of the gauge coupling (/ or t he 

lop Yukawa coupling lit. This means that the high t empe ra tu r e expansion near 

the critical t empera ture is only valid in the weak coupling limit. In part icular , for 

heavy lop ~ 100 CcV. the expansions (2.-i'i) and (2.:?!) are unreliable, and (2.T2) 

must he used directly. 

Finally. I give a brief sketch of huhhle formation. Again, this is s tandard ma­

terial and can he found in Ref. [$]. The general theory of vacuum instability 

at zero tempera)UTC was developed by ( a l l a n and Coleman in the previous ref­

erence, (liven a metas table slate, such as the false vacuum, its energy develops 

an imaginary part which can be calculated using instanton methods . The decay 

rale is then proportional to f-'"". where 5 , is a four dimensional Euclidean ac 

lion associated with the so-called "bounce" solution. Similar to an iiislanlon. the 

bounce is a classical solution to the Euclidean equat ions of motion. While an 

itistanion interpolates between different per turbat ive vacua, the bounce connects 

the metas lab le false vacuum and the t rue vacuum and then bounces back to I he 

meta.s1 able s la te once again. It is cpiite reasonable that bounce states of least ac­

tion are Q( I) symmetric . This means the equations of motion are really ordinary 
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de fe ren t ia l equat ions w i t h bounda ry cond i t ions , a p r o b l e m wel l su i ted to numer i ca l 

techniques. I. inde app l ied those arguments to f in i te t e m p e r a t u r e field t heo ry ' . As 

was shown in (2 .2) . f in i te t empe ra tu re f ie ld theory is equ iva lent to K.url idean f ield 

theory t,ri a cy l i nde r of c i rcumference $ in the t i m e d i rec t i on . I f t he t e m p e r a t u r e 

is increased suf f ic ient ly , the cy l inder rad ius becomes smal ler t h a n a t yp i ca l G{A) 

bubb le . Th i s H U M U S one may take the bounce so lut ions to be constant, in Euc l idean 

U m i ' and 0 l - 5 ! sy in met r ic ins tead. The vacuum t u n n e l i n g ra te is then p ropo r t i ona l 

i n r " . ['his three d imens iona l ac t ion has the i n t e rp re ta t i on o f free energy, and 

l l i i ^ i u im . i l ism I hen agrees w i t h t lie theory of bo i l i ng ' ' . There is also a prefactor in 

,i lie bubb le f o rma t i on rate that involves a de te rm inan t of sma l l f l uc tua t ions about 

the b u m u e so lu t ion . Th is is t y p i c a l l y very d i f f icu l t l o ca lcu la te , but f o r t una te l y 

il may be es t ima ted using d imens iona l analysis. T h e comple te expression for the 

bubb le fo rma t ion ra le per uni t vo lume was found by L inde in Kef. [8] l o be: 

i w n = n — V-' .t'(-r- + s>"u 
•i-r' [ de i ( - v - - f !»"|„) 

- I / - ! 
•;iS; 

(2,11) 

where <|el' means that the zero modes have been removed , a n d the th ree d imeu -

Motial acl ion is defined bv 

/ f ^ f [ . W + ft[o/n]. (2,12) 

I he (.>(:)) syn imct rii bounce so lu t ion musl be used in I he above acl ion : 

«;•- r <lr 
(2.1.1) 

where 1 f>•• - boundary cond i t ions are o —> 0 as r —• : c . and o' —> fl as r —> (i. Since 

1 he i. ni • ' l i r e sets 1 he scale, the prefac lor in (2.11 ) must be rough ly p ropo r t i ona l 

IK 
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to T* by dimensional analysis. This means one can use the approximation 

TM~n£pf)V3e-'f5>- (2,11) 

n 
m 

108 

T—r—1—1—1—1—1—I—r-

^ 
t-i . . . . 

i:B l i s 

T 

F i g u r e 3 . A typical i: inppratnrr pvolntioii of SJT. 

!,ror a given potential Q(Q,T). a numerical solution to ("i.-ti!) satisfying the appvo-

priate boundary conditions ran be found, the three dimensional action calculated, 

and the bubble production rate found. Fig. :i illustrates a typical temperature 

evolution of the bounce action. It was produced by numerically solving for the 

bounce with a lliggs mass A/„ ~ 50 fi<?V and with a light top. Right after the 

phase transition, the liigli potential barrier separating the false and true vacua 

(see Fig. '!) produces a very large action, but as the universe cools and the bar­

rier drops, the action decreases exponentially. This means the bubble product ion 
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increases quickly on a macroscopic scale, and the false vacuum is gone soon after 

the first bubbles appear. Roughly speaking, when the rate within a volume of T~ 

becomes comparable lo the Hubble parameter , all of space fills up with bubbles of 

t rue vari imn. To be more precise, bubble formation is a Poisson process, and when 

the bubbles form they begin to expand with some speed i%. Eventually the bubbles 

collide filling all of space. Gu th . in Ref. [8], derives the following expression for 

the fraction of false vacuum left at t ime i: 

/ ( M = ex t <P - ~ i<l('\\ui,{T')V(t; t') {2.45) 

where t, is the critical l ime associated with 7' r . and 

iv.0 
V 

(2.46} 

I his lasl expression is the volume that a bubble produced at t ime t' occupies a t a 

later t ime / due lo both the expansion of the universe and the bubble expansion 

itself. In the Standard Model, by matt r ing I he pressure gradients across the bubble 

wall, it can be show that t he bubble expands al non-relativistic speeds: cf' ~ a^,./A. 

1 ileline the bubble t empera tu re . 7'j. as the t empera tu re at which h i / = —I, 

at which p"int the false vacuum is mostly gone. Since / changes so abruptly, 

the bubble t empera tu re is very insensitive to the wall velocity vi,. Even for non-

relativistic velocities, since the Hubble parameter / / ~ l O - 1 4 GeV at the weak 

scale, the bubble expansion rate is much larger than the expansion rate of the 

tiiiiver-.c. As will be si own ill t he next chapter, such a rapidly changing Higgs fi(4d 

biases l! • ' rvon-riumber violation in a given direction. As the hubbies expand, 

•2(1 



baryons are produced in the outer walls, and with any lurk the observed ratio 

nBjn^ ~ 10~ 1 0 wj]) be produced. As it turns out, if the CP violating phases are 

not small, this can just barely be done. This marginal production places some 

stringent constraints on the theory. In particular, the Higgs boson cannot be too 

heavy. After the bubbles collide, the rate of change of the Higgs field is set, by 

the Hubble parameter. Baryon-number violation is then no longer biased in a 

particular direction, and unless the Higgs mass is small enough, any previously 

produced baryons get viped out. This is the subject of Chapler "i. hi the following 

chapter 1 will examine baryon production r'!i the bubble surfaces in more detail 

and derive a somewhat general bayron rate equation iti the presence of a changing 

Higgs field. 
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3. Baryon Production from Higgs Biasing 

In this chapter I will discuss the adiabalic production of baryons in a ra ther 

genera! manner . I will consider an arbitrary field theory with (' P violation and an 

anomalous baryon cur r rn l . This could be the s tandard model or some extension 

of it. the one mosl relevant for this discussion being the minimal supersymrnetr i r 

extension. This is because CP violation in the s tandard model is too small to 

reproduce the correct baryoti asymmetry, but minimal extensions can have much 

larger (" / ' violating phases and thereby stand a chance of producing the observed 

baryon asymmetry. 

ll lias ioug been known tliat baivon and leptoii number are not conserved in the 

slainliird model, as a consemienceof anomalies ' . St ates of different baryon number 

arc si i niul lily connected to one a not her I h rough different con fi "era I ions of the gauge 

and [liggs fields, but they are separated by a very large energy barrier of order 

•WII /"•••. ~ I" TeY. which makes zero I em petal lire tunneling an extremely unlikely 

i i iu.rss. In I he last few years, however, it lias become clear thai baryon number is 

badly violated ai I em petal ures much above .1/ , , (with I) — I. being conserved) 

The lull proof of this is «piite involved' . bill the following heuristic argument 

pro viiii- xji ue insight into t lie si I nation. At high t empera tu res . I lie system is well 

described by classical statist ical mechanics. At t empera tu res below I he weak phase 

transi t ion, llie lowest energy barrier sepaial ing baryori-niiinher s la tes is called the 

spliali'ion this is a sialic, unstable solution to llie field equations. It has one 

neuative mode and represeuls a saddle point in the field space . The rate for 

barrier penel i a! ion is essentially I lie Boll >miaiin factor associated with forming a 



sphaleron: 

whore / i is a number which depends rather weakly on tin- Higgs mass, varying 

brlwceu about 3 to 6. Abovr the weak phase transit ion, the si tuation is equivalent 

to a three dimensional field theory with no small diniensionloss parameter . On 

dimensional grounds, however, the rale must he given by 

I ' - M o n - ' / ) 1 . t:(.J' 

A recent simulation gives « = 0.01 — I . It is very reasonable that the bnryon-

iiiimher violation rate becomes imsuppressed. sirtr-e trance corifrgruvit ions n iayeasd i 

pass over 1 he hairier. 

While no single classical eon figuration dominates this rale, a heuristic descrip­

tion in terms of instant on trajectories can be given. It is generally believed that the 

three dimensional field theory has a mass gap. anlrT, where a is a number of order 

unity. Correspondingly, the correlation length of the high t empera tu re theory (the 

so-called magnetic screening length) is £ = (<7o„ 7 ) _ 1 . Consider now instantons 

in the high tempera ture theory. These will exist with arbi trary scale size, from 

p = 0 10 p ~ f. The inslanton represents a particular tunnel ing trajectory through 

configuration space. The barrier height associated with such a trajectory is neces­

sarily of the form Ep = cjnn-p. where <• ~ 1. Clearly, then, the smallest barriers 

are associated with the largest possible values of p. i.e. p ~~ £. Such configurations 

have a Boi tmiann factor of order unity, while the profactor is of order £ - " ' . 
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T h e large ra le of ba r yon -m imbe r v io la t i on l ias i m p o r t a n t imp l i ca t i ons for any 

baryon m i i nbe r produced at very ear ly t imes . For examp le , i f no nel H — L is pro­

duced at ear ly l imes , the baryon (and lep ton) numbers w i l l comp le te ly d isappear. 

It also raises the i n t r i g u i n g poss ib i l i t y that t he observed baryor i number cou ld arise 

at tempera tu res of order the scale of weak in te rac t ions . This cou ld have s igni f i ­

cant imp l i ca t i ons for our unders tand ing of cosmology. In pa r t i cu la r , in i n f l a t i ona ry 

models , one usual ly requires signif icant reheat ing af ter in f la t ion in o rder to produce 

barvons. Th i s wou ld not be necessary i f baryons cou ld be produced at such low 

tempera ! ures. 

I he poss ib i l i ty that the baryon a s y m m e t r y might be produced at the weak 

pl i . i -e n a n s i t i o i i «'ii- first discussed by K u / m i n . R u b a k o v a n d .Shaposhri ikov. and 

ha> been most extensive ly exp lored in subsequent papers o f S l iaposhn ikov and 

cu ih i ' io ra io i ' s ' ' . O the r impor tan t works on the subject are those of M c L o r r a i i 

l u r o k and Zadrozuy ' '. and of Cohen. Kap lan and Nelson I lie ma in point is 

tha i 'f the phase t rans i t i on m the Wei i iborg-Sala in i in jdel is at least m i l d l y first 

order , t hen '. he t luce i ondi t ions enumera ted Iiv Sakharov necessary to ob ta in a net 

a s y m m e t r y arc sat isf ied. I t a i you uni i iber v io la t ion is p rov ided by the Sl'{'2) gauge 

::,r era el ions t l ieu i solves. ( " I 1 v io la ! ion is a l ready present in t he s tandard m o d e l , and 

••Meiisioiis of t he s tandard m o d e l , such as m u l l i l l iggs systems, supe t sym ine t i v or 

lei hu i ro lo r lend ' o y ie ld larger v io la t ions of ( ' ] ' . Dev ia t ions f rom e q u i l i b r i u m w i l l 

an t iH I ia I ical ly arise if t he t ransi t ion is first order . 

M a n \ . j | I he spi'i i l ic proposals which have been made for the or ig in of the 

h a n o n a s v m m e l r y at (he weak phase t rans i t i on are based on the m i n i m a l s iau 

d a i d mode l . Il is clear f rom the s ta r t , I i oueve i . l l ia l unless the d v n a m i c s uf the 



t* f 

/ \ 

Figure 4. Genera! loop diagram contributing to the CP violating dimension six operator 
considered tn the text. 

high temperature theory exhibits certain bizarre features , C) J violation in this 

theory is simply too small to yield anything like the observed asymmetry, what­

ever the details of the phase transition might be. Moreover, as recently stressed in 

Ref. [19]. there is another strong constraint on any such picture of baryon-numfoer 

production, which almost rules out the minimal standard model. Once the phase 

transition is completed, the Higgs held will have some expectation value f(7"). Tin-

corresponding sphaleron (free) energy is proportional to v(T). If this V EV is too 

small, the rate of sphaleron-induced B-violating transitions (commonly called the 

"spbaleron rate") will be larger than the expansion rate and any baryon-number 

produced during the phase transition will be washed out. This almost certainly 

requires that the Higgs boson be so light that it would have shown up in recent 

LEP experiments. ] will have more to say about this in chapter 5. 
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Since there are numerous possible extensions of the standard model, it is nec­

essary to make a few simplifying assumptions. The assumptions I make here are 

not essential, and the analysis is easil}' extended to a wide variety of situations, 

including supersymmetry. technicolor, and multi-Higgs theories. In particular, 1 

will assume in the discussion which follows that the new physics responsible for 

(.'I1 violation is associated with energy scales large compared to 7' r. the transition 

temperature, and thai the effective theory at Tc contains the usual quarks and 

leptoiis. and a Higgs doublet, o. lor reasons which will become clear shortly, I 

will also allow for (he possibility of an additional scalar singlet, .1. In t he effective 

lagramdati. C I ' will lie broken not only by the usual phase in ihe KM matr ix, but 

also by various noii-renoniiali/able operators. I will focus on the dimension-six 

operator 

Mere J',', is the barvon current, and I have used Ihe anomaly equation (1.1) and 

integiated by parts. In iheories with singlets, I will consider Ihe dimension-.1! 

operator 

In t he minimal super svmmel ric standard i nor lei. for example. O would be generated 

at oiie loop by a diagram with g;>:.igiiios and higgsinos in the intermediate state, as 

i!!u-tra!ed in |''ig. -1. The coefficient | / . l / " would llius be of order some combination 

ol < P violating phases, e. divided by some lypical supersymmel ry breaking mass-

-'| i i ; i :eii. I here are no strong hunts on t. In a non minimal supersymmet ric 

modi] with a complex gauge singlet held. >', .» could be some com joneul of this 



field. It could possess tree-level. C P violating couplings to the tiiggsino fields. The 

coefficient 1/A/' would be of order 6 divided by a supersymmotry breaking mass. 

Already, the potential for baryon-numbcr creation is present. I will consider 

two ext reme cases. First I will examine a slowly changing Higgs field, so tha t the 

system can respond ariiabatically, in the sense tha t a t each instant the baryon-

number violation rate, T(if>, 7*), is tha t appropr ia te to the value of the t empera tu re 

and Higgs field at that moment . Then I close this chapter by examining rapidly 

changing Higgs fields. Surprisingly, this does not yield a substantial increase in 

the baryon number. Since the doniinant processes are associated with gauge- boson 

wavelengths of order £. rapid change means change on a t ime scale much shorter 

than {. A simple model of the barvon-nimiber violation ra te is 

„. ..,, UK.' /I 1 ; T>TH 

1 0 : T < T„ 

where the cnt-ofr temporal me T„ is given by go(T„) ~ n,, '/ ' , , . At ibis t empera ture , 

the Boltzmann factor for sphaleron-like coiifigiirations becomes of order unity; 

/•..,,, ~ Mw[T„)lawTB ~ I. for temperatures less than T„. I lie rate is Bolt/miann 

suppressed, so ] approximate it by zero, '['lie rate in ibis region may still be 

much larger than the Hubble parameter , in which case any baryon asymmetry gets 

washed out. which places an upper bound on the Higgs mass. There is another 

i>e<liiiralioti for ibis simple model. Place (lie system in a box of length ~ (. J-'or 

* This infiv \><' -S<'cii as follows, 'It]*- sc^t tt-ring cros* s<'tiion for pnrtulrs of SIKII moin*-hta on 
onr- anollif-r is of onl*T o l t .£ J Howevpr. thf nmiilier lionsilv of Mich particles is of ur^l'T 
(licir i-nrrgy <l<usily tiiiK-s £; I he product is of ortl'T (~'. 

t For large' o. the rate lias Ipeen rriiui'iilcrl in Ref [.'10]. For m u -» I/IIV. ari-i small o. 11 n-ir 
result is similar lu ll><- o = 0 result willi K ~ ) 
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large tempera tures the system is classical, and since there is a mass gap of order 

s ~ ' , (he gauge fields of wave length £ obey an equation of the form 

[iij + C' + lgofl-W = < 1C v ,.-t- + ^ r ' , . v ' . (:i.fi) 

win ii- i , a iii I c. are of order one. and I he left hand side has an imp he it an integral 

over Fourier modes. For 0 — (t, the system becomes nun-linear for .1 ~ £ ' " . 

However, for (jo > n.i 7 ' t h e equal ion becomes linear. Sphaleron like configurations 

t hiii pass iivei I he harrier ;ire associated with non linearil ies of I he field equations, 

•»n when ii.fi) becomes linear, the baivon number violation ra te turns off. No 

further passage over the barrier can o o n i : I he barrier has simply "grown" and 

there F not enough energy available i'i these modes. Thus the process turns off 

boih lor slow and rapid changes in o ai about the sarne value of o. In each case, 

1 he relevant value of the lliggs held F very small. For /'„ ~ 100 ( ieV. for example . 

I he rate turns ofr when o -- r> (ieV. 

I will now derive a barvon-number violating rale equal ion for the adiahat i r 

limit l.i-i \'+ be the sphaleron rate per unit volume of increase in I he Chern-

Siiuous uumber A,.,. .LIICI correspondingly let ['_ be the ra te of decrease in A'c.i-

in big. I. the bot tom axis may represent ( 'hern-Simons number, and then l' + ,_ 

i» the >phaleron rale over the barrier to the left and right, respectively. Kxactly 

Low i l f system approaches <"fj 111!iIiriuni depends uprjii the initial configuration. 

Fui simpln ily. 1 will assume there is initially no baryon or leploti number . In I he 

-I.IIM1.IK! model, t ln ' i i ' i i ic '.'. 1 types of fcrmions which I denote by 1 —- 1 . i'. in. '-til, 

and 1 111 11 1 01 'responding number deiiMi ics by 11,, Due to sphalenui t ran sit ions and 

http://ii.fi
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the axial vector anomaly. 

Left handed doublets of each family must be involved in a single sphaleron tran­

sition. This is because the corresponding zero modes must be eaten in I he path 

integral for the ampl i tude of the process. This is why the rate above is family 

independent . But even though each doublet must be produced, there is only a fifty 

percent chance that the fermion has a specific isospin. This gives the factor of one 

half. Actually, there is an isospiu pref"ieuce in sphaleron I ransitions, but since 

1 am only interested in order-uf-magnil udes. for simplicity ! assume /, = ± 1 / 2 

are equally likelv. I should also consider constraints such as electric charge and 

isospin conservation, but this only complicates things, and (.'1.7) contains I he es­

sential physics. Given the initial conditions r»,(0) = 0. all the fermiou densities 

are equal at subsequent times: n,(f) = " ( ' ) • 'I'aking :Xf flavors, I he lepton ant! 

barvou-number densities are defined by 

/ 
! (:i..si 

where the sum is over flavors and /o r colors, and I have used a short hand not at ion 

if, J lo represent the density of isospin —1/2 fermions of flavor f. and a similar 

notation for other fermions. I will now use detailed balance lo constrain the rates 

I ' - in ['•]']' '. In equilibrium. I ' - satisfy 

i i 



where the probability of producing \ fermions is 

PC—) = const (~:iVFi. (3.10) 

willi l-'f being the fermionir Tree energy. Since the system is adiabat ie and not too 

far from equil ibrium. I will apply this equilibrium constraint lo the right hand side 

of rate equation (3.7). Letting P = ]'+ + I '_ . and after some alp-bra. lo first order-

in t he number densit ies. 

(It -•^'••'I.r1- <:l 

iS *-— an, 

For a free i'errni gas of number density n. if = —K '/"' 4- \iirjl'~. where K is 

a constant depending on the number of light particle species. The CI' violating 

opera! or O produces a shift in t he mini muni of the free energy: 

/ • > 

3(». - n [ ' ) J Z^^E^r^- (:U2J 

I'he minimimi must be found according to the .>nstraint n H = 'ISf n. Defining 

(/,', = 'J.Vy u". and using the form of I lie ( ' ! ' violating operator (3.3) gives 

" 12.1/-' • ' 12A/' ; 

fur the doublet or singlet case. respect ively. 1 have dropped I he spat ia] gradient of 

the Higgs held. This is instilled si iue I am working in tlie adiabaiu limit when' 

gradients of the lbggs held mi the expanding bubble walls is not too steep. 1'sing 



(3.12) in (3.11) gives the baryon-numhcr violation rate equation 

-jj- = — ^ j - r ( 7 7 „ - n B ) . (3.11) 

Because of the four powers of a H appearing in I \ nE can be neglected relative to 

ri°. on the right hand side of this equation, provided du°B/dl is large enough. I will 

shortly demonst ra te that this is the case for a broad range of model parameters . 

Subst i tut ing the expression for na

B, and using the simple model (3.5) for V yields 

the barvon number 

for the doublet and singlet respectively. Here, in the singtel case, i have assumed 

that gS ~ o „ 7 ' when baryon-number violation turns off. These numbers need 

not be so small. In the singlet case, if the CI ' violating phase is of order one. and 

M' ~ T. then the baryon to photon ratio is of order 1 0 _ H ! In models with only 

doublets , this result is suppressed by an additional power of o,,-. These est imates 

are ra ther rough. !t is already clear, though, that potentially one can obtain a 

baryon asymmetry as large as that which is observed. 

If i'" is changing much more slowly in t ime, vH(l) == » " ( 0 until Y heroines 

exponentially small. In this case, one obtains a result snppres.-ed by more power* 

of On. due to the t ime derivative in t))t. The ext reme case ol this type arises if 

the transition is second order. Then the asymmetry is suppressed by the Hubble 

constant 

» WIKIIKT or nol this is the rasi- cin^i'iid* on the details of tin- |I1I;L*<> irniis'tiion. Our <\ui 
easily imagine that .s,' ~ \o\-. for > xauir.l'' 
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Before describing the case where [he transition occurs suddenly, it is helpful 

lo understand these results in another way. Consider the operator O writ ten in 

ihi" form containing FF. As in the heuristic discussion above, consider a single 

instaulon trajectory, and treat the usual instanton t ime, r. as parameterizing a 

path in configuration space, r = 0 corresponds to the top of the barrier. If the 

gauge lield in the lagrangian is replaced by its classical value as a function of r. 

then the lagrangian for r (for small r ) is of the form 

trl> </V' 

when- /i -«• i" is t he instant on scale size, and c\ and b\ are coefficients of order unity, 

l o r small r . Ĉ  has the form 

. 1 / - -iTTp 

and similarly for O'. In the adinbatic limit. where the field o is essentially constant , 

T and T will be Boltxmann (list ribuled at each instant . The canonical momen tum 

receives a ^-dependent contribution from 0. eqn. (3.17). This has the effect of 

skewing t lie velocity disl ribut ion. giving rise to an excess fiu.x over t he barrier in one 

direction, Because of the anomaly, this corresponds lo a net production of baryons 

or aul ibarvons. depending on the sign of c. Proceeding in this way one obtains a 

rate equation of the lorm e<|ii. (•!."). In particular, this heuristic argument gives 

the coricrt dependence on o , v . 

I his picture is readily adapted to the case where I lie held o changes suddenly. 

Despite l he fact I hat 1 his corresponds to a more violent depar ture from equilibrium, 

t 'I li'-rr- is si,me ftH.'ilninncss in llirw tMjjuliijiis. sinn- tin- n'sull ijrpruijs un I he ;•;)•))•'' <"))oi0'' 
(<>t 111'' i list anl oh Jlcf I hav in,tirat<'rt l Ip- faH'jr of 47T 'uining frrmi til'' angular iiitf^raticiu. 



it docs not in general lead to a much larger production of baryons. iicforc the 

transi t ion, one has a Bollzmanu distr ibution for r and f . ami this distribution 

remains essentially unchanged as 4> changes. However, the system receives a "kirk" 

from the sudden change in e>. In the t ime p changes from 0 to On- the value al 

which baryon-iiumbor violation turns off. the velocity changes by an amount : 

/
</ cur | r t p , rtti2 oi 

dt c\ luir- Al- C] l(i;r- M-

A T has a definite siliii. If it is large compared to the initial velocity, it will send 

the system oxer the barrier in the direction corresponding to lho production of 

(say) baiyoiis rather than ant ibaryous. If it is small compared to this velocity, it 

will have no effect on the barvun number. The frail ion of the distribution with 

velocities f < AT is simply of order .Af. If A^ is the t ime it takes for the lliggs 

lield to vise to on over a t o n elation volume. £ - ' . the linal baryon number î  of 

order I he product of this fraction. A/ , and I : 

" , - T ^ — o t A f / ' 4 . (.II!)) 

Here [ have a t t emp ted to keep (rack o( <i s and - | - ' s , hut not (unknown) coefficient s 

of urilcr uuitv. Since (J0it "- n „ V. this result is comparable to that obtained in 

t In- "adiabal ic" ' asc only if A/ -~ £• ^ "-miliar expression holds in t he case of t he 

operator O'. I he picture described here js close to that described in Kef. [17]. 

wheie the behavior of particular lield configurations is considered. 

All i In in»ier!ii-nts to esiimati- 1 ri• - baryoii a.-yinmei rv are in place, once th'-

b<lia\i(ir of I he lliggs iiehl is known a> a function n| l ime. In a liisl order pltase 



t ransi t ion, baryon number will be produced near the bubble walls, where the Higgs 

field is changing in t ime. In order to compute the asymmetry , it is thus necessary 

to know about the shape and velocity of the walls. Here I simply i l lustrate some of 

the possible behaviors by considering the minimal s tandard model ' , even though 

this cannot be a realistic mode! of baryon generation ">r Higgs masses smaller 

than ,1/i,-. the transition is first order. Ignoring the heavy top contribution for the 

moment , for small seif-coupliiig A and sett ing sin'* 0m = 0 to simplify tb>' writ ing, 

the eirective potential for the p lie]cl as a function of t empera tu re is given by 

1 "(o. / ' ! = .U-'i7 V " - ~ T o : i + - V . (320) 

where M'[ 7'i = -^ in'. The discussion to follow is only meant to give ;t quali 

tat i-,e ilavor. so (3.20) will suffice for now. This potential should be contrasted with 

the more complicated forms !•'">.2) and (3.(0 (o.fJ). which { use for a quant i ta t ive 

analysis. When the phase transition occurs, the coefficient of the quadra t ic term is 

extremely small. .V-(Y') ~ n'J 7'"/A: otherwise the potential has only a minimum 

at the origin. 1 can make a crude es t imate of Ike bubble wall velocity and size 

(well after the bubble forms) by requiring tha t in the rest frame of the wall, the 

pressure is constant . This pressure receives an extra contribution from the motion 

of the g;is in this frame. The momentum change of a particle passing through the 

wall can be es t imated by assuming I hat the part irle's energy is ron.served, while its 

mass changes due to the change in o. This gives e£ ~- A / ' / A / v . where A / J and A/:' 

are the changes in pressure and internal energy across the wall. 1'Vum cqn, (3.20), 

r l "" °"i-/A- The shape of (he wall can be inferred from similar considerations, [-"or 

Miiail o. one finds o ~ f A/o-ii.i where M ~ (r>',',./A) > !'. As a result, if A is not too 
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small. the scalar held is changing rather slowly in space and l ime and the system 

is in the adiahatic regime described earlier. For such a field, nj, is ci:.»'igiiig quickly 

enough that the approximations leading to eqn. (3.15) are valid. As one increases 

A. and the transition heroines more second order, the amount ofbaryon number is 

reduced: decreasing A brings the system to the '"sudden" regime, ('onsideirit'ons 

of this type apply as well to the minimal suporsymmetric standard model, where 

the quart ie couplings are of order i/-. and the scalar masses are of order . l / „ . 

In other model-., the transition might be strongly firs! order, with bubbles ex­

panding a; neaiiy the speed of light, and with a wall of microscopic dimensions. 

This is the regime of rapid change of the Higgs field. Here, what is needed is an 

esl imate of I he i imc _\l. appearing in emi. (3. i l l ) , required for I he /ero :nomenl urn 

mode of the field in a correlation volume. £*. to reach Oti. In a mult i-lliggs model, 

one might expect this t i n v to be of Older o„- times some microscopic (mass) param­

eter in the lagrangiau. Since the characteristic time for baryon-number violation 

is rather long (£). ibis may be a source of additional suppression. 

In stimmarv. it is possible to think that the baryon number of the universe 

was created at the electrowc.ik phase transition, in some modest extension of I he 

standard model. However, there are uncertainties in the calculations described 

here, particularly in the actual calculation of the rate V. Detailed studies of the 

phase transition in particular models are also essential, including not only the 

structure ol I he bubble wall but also flow of baryon number across the wall. One 

should also reconsider models such as Oial of Ref. [IS], in which there are other 

sources of lepton rnmibei violation in the theory, but in \v,n n me mechanisms 

described here may also operate- eflii i' ntiy. 
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4. 1 + 1 Dimensional and Two Higgs Models 

The \ + 1 dimensional Abelian Itiggs model coupled to ferrnions has been 

widely studied as a model for four dimensional baryon-number violation. Indeed, 

many features of this model are similar to the standard model. There are anomalies, 

instanlons, and sphalerons. and "baryon-number violation" is enhanced at high 

temperatures. As will now be seen. I his mociel, and variations on it, provide 

an extremely simple illustration of the issues in weak scale baiyogcnesis. I first 

consider the case where the theory contains, in addition to the gauge boson and 

Higgs Itoson. o. of charge <. two Dirac fcrmions of charge r. c and \ , and a 

pseudosralar. a. The l.agrangian contains gauge invariant kinetic terms and the 

couplings 

£ = M7'V + \ia7")r>*'- (4.1) 

Note that the field t'' is massive, with mass .) / . while \ is massless. The standard 

anomaly argument, or a simple one loop calculation, leads to a coupling of the 

"axion". a, to the "photon", in the effective action at scales below M, 

T^ry <n„„r"". (4.2) 

In this model, the current j£ = T V V \ plays the role of the baryon current. 

Choosing the A" = 0 gauge, it is easy to see that a constant background ,4i field 

is equivalent, up to a factor of <, to a chemical potential for the corresponding 

charge. (A convenient choice for the gamma matrices in this model is 7 = rr\. 

- ' = — itT'i. and ~r, = IT.I; with this choice the connection is obvious). It is helpful. 



here, to recall sortie well-known facts <tbout the vacuum s t ruc ture of this theory. 

As shown in the introduction, the classical vacua are labeled by an integer n 

representing the winding number of the field configuration. At the classical level, 

those states are separated from one another by a barrier, and are degenerate in 

energy. Examining the Dirac equation for the field \ in such an A\ field, it is 

easy to see that changing n by one unit changes the "baryon number ," ii<-, = j ? 

by two units* Quan tum mechanically, s lates with different values of A\ differ in 

energy. This is not surprising, since they contain different numbers of baryons (a 

gauge-invariant notion). This energy difference may be computed , either at zero 

or finite tempera in re. either by calculating ihe contribution at zero momen tum of 

the held \ in the ,-11 two-point function, or equivalent ly by introducing a chemical 

potential for n-. and calculating the free energy in textbook fashion. 

Suppose now there is a slowly varying background a field, at a t empera tu re T <£ 

A/, i ln> lead- to a baryon number which can be computed in either of two ways. 

If the scalar field changes slowly enough, the system will respond adiabal ically. 

At tempera tures well below . 1 / . the minimum of file free energy may he found by 

using the anomaly equation to make the replacement 

If a is constant in space, integrating by parts gives a term in the effective ait ion 

- 7 j j M > « » - (•'••!) 

» For n nice review, see K<T. J2'JI. 
i Such :i (ii'lif violates P. lo be crjxiiiolo^ifall} relevani. this prrMipprtqe* / ' violation either 

ill th'- futiriamerilal iH^rai^inii or in the ''lioicr of ground state. Otherwise, different regions 
of ttie- universe, its will Ii" ejeur liel,n\. wonlil aniuire different >IJ;IIS of Uie haryon luitnlier-
antl the haryon-uuniher ;iveriige(| over M-MTIII horizon lengihs wouM !»• zero. 
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Note that a factor of <"/2TT has disappeared. With the adiabatic assumpt ion, it is 

simply necessary to minimize the free energy with this te rm. This yields for the 

"'barvon asymmetry," 

This result may be understood in a different, yet equivalent way. Instead of 

using the anomaly equation, the coupling of eqn. (1.2) can be viewed as a source 

for . l ' . Integrating by pa i l s gives a coupling 

- ^ ' V . - t i . ('1.6) 

Al high tempera tures . I lie potenlial for . l | is quadrat ic . A one-loop calculation of 

I lie polarization yields 

\-{A)=^-A]. (-1.7) 

I he coupling of equ. (•!.(>) shifts llie minimum of the .1] potent ia l . A\ quickly 

settles to the minimum of this potential : how quickly depends on the coupling 

of ,-1| to the I hernial hath. (For example, by choosing the charge and mass of 

the scalar held appropriately, it is possible to arrange I hat .4] is underdainped 

or oveidamped. ) This corresponds to the appearance of a chemical potential , or 

eqitivaleiitly to a non-zero baryon density. The coefficient of I lie te rm linear in the 

chemical potential is .-^-p-rJij"/'-

This focus on ,'li may not appear lo be gauge invariant. However, a completely 

gauge invariant calculation may he formulated by comput ing the term in the free 



« o^^o 
Figure 5. Diagram leading to chemical potential for the field \, The blob denotes the 
full dressed propagator for the gauge boson. 

energy linear in the chemical potential for \ . The corresponding Feynman diagram 

is drawn in Fig. 5. 

The blob in the figure denotes the full propagator for the field . 4 | . evaluated at zero 

momentum. Up to a factor of e. this just cancels the \ loop indicated explicitly 

in the figure. Thus a term in the free energy linear in the chemical potential is 

directly obtained, precise!) as above. In either ca.se, an elementary calculation 

gives a result in agreement with eqn. (4.5) for the density a1 the minimum of I lie 

free energy. 

In this model , it is not too difficult to determine what happens as the mass 

M is decreased, ] am interested here in a problem in real t ime. The imaginary 

t ime formalism, however, provides a d u e as to how to proceed. Pari ty violating 

couplings of the gauge fields to the scalar fields are of interest. Since, in both 
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two and four dimensions, the theory without fermions preserves parity, fermions 

must play a crucial role. In the imaginary-time approach, if one is considering 

phenomenon at low momentum and zero frequency, the effects of frrmions may be 

represented by local operators. Since 1 am now interested in a real time-dependent 

problem at finite temperature. I use the real-time formalism . In general, this 

formalism is rather complicated. There is no simple Fcynman diagram expansion, 

and it is not immediately obvious what the role of the cflVclive action is. In the 

real -I ime approach, the linear response of a system at equilibrium to a perturbation 

is typically calculated. Ill t he present context. for example, one might ask the value 

of .1] as a function of time in the presence of a time-varying a. In ihe textbook 

treatments of this subject " . the required Green's functions are obtained by first 

evaluating them for imaginary frequency and then analytically continuing. Now 

cuiMdcr some complicated Feymuau diagram, containing ferminti loops. If one is 

interested in continuing to a region where the external frequencies and momenta are 

small, then the analytic continuation of the fermion loops is t r iv ia l , since possible 

cuts are far away from the momenta. The frequencies are simply replaced by their 

small (real) values. The fennion propagators may now be expanded in powers 

of the external frequencies and momenta, and thus the fermion loops may still 

be replaced by local operators. The resulting effect ivc action should be gauge 

invariant. These remarks apply equally to I wo or four dimensions. 

Now consider the two-dimensional model. Suppose M.io <g. '!'. The effect of 

the fermioti. i \ can. by the arguments above, be absorbed into a gauge invariant, 

local operator. The lowest dimension operator allowed by I he surviving symmetries 

is simply O = «/•"". 

10 
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Figure 6. One loop diagram yielding coupling of the field ci to the gauge boson 

In the present framework, the computation of the coefficient is elementary. 

The one-loop diagram of Fig. 6 is calculated using the usual (Euclidean] finite 

temperature Feynman rules, but with the external lines carrying a small imaginary 

frequency, qc,. It is simplest lo do the integral over spatial momenta, followed by 

the discrete frequency sums. The- result is 

m^w. f.,8) 

Now the thermodynamics of the system is simply that of a model with the operator 

0 in the Hamiltonian. In particular, the equilibrium configuration can be found 

by precisely the arguments previously given for the ca.se of large M. This gives the 

41 

http://ca.se


minimum of the free energy at 

As an analog for the s tandard model, the model described so far is not com­

pletely satisfactory in a number of respects. Most impor tan t , in the s tandard 

model, the same field is responsible for the breaking of SU(2) x 1/(1) and for giv­

ing mass to fermions. This is impor tant for the generation of the baryon asymmetry 

al th: ' phase transit ion. This limitation is easily remedied. Consider a theory with 

gauge group ( (1) and with a single scalar. 0. of unit charge. Suppose also the 

theory contains a left moving fermion. I 'V. of charge fy, a right moving fermion, ?/>„, 

of charge — {q + 1). and another left moving fermion, \ , with Q^ = ] - 2q. Wi th 

these charge assignments, the theory is anomaly free. T h e potential for <j> is chosen 

so that o has a non-zero expectat ion value. This breaks the gauge symmetry. It is 

now possible to write a Yukawa coupling, 

Cy = XOH'LK'H + «•. (4.10) 

The VKV for o leads to a mass, M = A < 6 > for t/'t and t/'n- Thus it is natural 

to combine them into a Uvo-coi upon rut field, v\ and rewrite t he Yukawa coupling 

as 

Cy = Mn'^'i' T iuVfM'). (111) 

where o = p + ia. 

By varying A and f. we can vary the masses of the fermion and the gauge 

boson. It is interesting to consider various limits. We will be interested in the 
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case where the gauge boson mass is much smaller than the t empera tu re , Suppose. 

first, tha t the fermion mass, .V/, is much larger than the t empera tu re . Then the 

fermions can be integrated out , giving a Lorcntz invariant effective Jagrangian for 

the remaining fields. The one loop diagram of Fig. 6 yields a coupling 

C a n = Sn\M\ a ^ F • ( 1 1 2 ) 

This coupling is not gauge invariant, since a transforms non-linearly under a gauge 

transformation. However, at scales below . 1 / . the effective theory contains only the 

fermion \ . and appears to he anomalous. The coupling of eqn. (4.12) is precisely 

what is needed to cancel the anomaly, and render the complete theory gauge in­

variant. To make the analogy with the s tandard mode! complete , imagine for some 

period the fields p and a are changing in t ime. In this l imit, the above analysis 

can easily be repeated, or equivalently that of Ref. [26]. to compute the resulting 

asymmetry, hi particular, the minimum or the free energy at a given instant ran be 

obtained by any of the following methods: using the anomaly equation to replace 

fpvF1"' by the "baryun current 1" (in this case the \ - n u m b e r current ) , and reading 

off the linear term in the baryoii density; by determining the value of A\ resulting 

from the coupling in eqn. (-3.12); or by comput ing directly the linear term in 1 he 

chemical potential , from a diagram analogous to I hat of Fig. 5. Again, each of 

these calculations yields the same result. 

Now consider the rase that M -C '/'. As discussed above, in this limit the 

effects of I hi' fi-rmious (.'• can be described by a local operator . Jn the present case, 

as stressed by the authors of Ref. |'J-S]. the possible operators are not restricted by 

the requirement of borentz invariaiire. In order to create a baryoii a symmet ry in 
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this model, I am interested in operators which involve doa and the Chem-Simons 

density . ' 1 | . The diagram of Fig. 6 indeed yields such a coupling: 

Ca_A = -L(29 + lK(3)^£daa A,. (4.13) 
16 KZI -

(Here M ~ -\|<A|) fn l ikc the large mass case, I cannot appeal to any anomaly 

argument here to explain away any non-gauge in variance in this effective action. 

Instead it must be possible to write this result in a gauge invariant fashion. Indeed, 

it is easy to see tha t this coupling is one term which would arise from a coupling 

£,-,„, - Cu-A = ^-(2,1+ l ) < ( : i ) ^ ( / W f t i O + /«:). (.1.14) 

where On and D\ are the usual gauge covariant derivatives. It is straightforward to 

check that the other couplings implied by this term in the effective, lagrangian are 

indeed generated. For example, the diagram of Fig. 6 gives the required /lo/1]|<?|* 

coupling. 

I can no longer use the anomaly to replace the operator appear ing in eqn. 

(I .I 1). On the other hand, using the various techniques described up to now, it is 

easy to determine the baryon-nuinber created in a t ime-varying a field (or, s tated 

in a gauge invariant way, in a field configuration for which DQ4> ^ 0). One can, as 

before, either determine, in a fixed gauge such as Coulomb gauge, the minimum 

of the A i potential , or one can compute the term in the free energy linear in / i v . 

Again, both calculations are elementary and yield the same result: 

7 , A/A , 
nx = - ^ / r l C(:S) - ^ fha. ( U r >) 

Note the linal result for low mass is suppressed, not by 7 \ but by T'L'. This lowers, 

by an order of magni tude, some of the estimates presented in I{ef. j2(j]. 



I will close this chapter by returning to four dimensions and considering tfie 

problem of producing the baryon asymmetry in multi-Higgs models, where the only 

new sources of CP violation are the terms in the- Higgs potent ial . T h e simplest such 

model, studied in Refs. [2S] and [17]. is the two Higgs doublet model. However, it 

is easy to see that such models can not yield a large enough asymmetry . Consider 

first the quadrat ic terms in the Uiggs potential . Calling the two Higgs fields Ii[ 

and Hi. these take the form 

W = »' |UU' + "<IJ|//j|-' + \t>2lhU, + re). (1.16) 

Ry a held redefinition, ji ran always be taken real. Thus , ignoring KM phases and 

quart ic couplings of the scalars. there is no C P violation. 

What does this mean for the baryon asymmetry? As previously stressed, the 

baryou-number violating processes essentially turn ofT once o ~ n„•'/ ' . But for such 

small o. the quart ic terms in the potential can be neglected, to a good approxi­

mation, in considering the (essentially classical) evolution of the lliggs held. This 

means that any {']' violation in this evolution is suppressed by al least two powers 

o f o l v . As discussed in Ref. [28]. the operator relevant lo baryoii-nuiub T creation 

in the two liiggs model is 

On = <,jko'-"lhl),oFujk. (-1.17) 

I sing the equations of motion, these authors indeed find that this operator is of 

order o'. As a result, the asymmetry is of order r>*. x i*. where c is again some 

measure of CI ' violation; four powers of n,,- come from the rale, four from the 
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four powers of <5. Again, the coefficient can he computed , as suggested by the 

two dimensional model, from thermodynamic a rguments . T h e result obtained is 

in quali tat ive agreement with Ref. [28]. writ ten in terms of the scalar field <p. 

However, o must be understood as being of order owT, ra ther than as the value 

of the scalar field after the phase transit ion. As a result, the a symmet ry in such 

models is uuacccptably small , no ma t t e r how large the C P violation. 

1 he situation can be improved by considering models with larger number of 

lliggs particles. Once there are three or more Higgs. the quadra t ic terms in the 

potential do violate ( ' ] ' . Of course', if multi-Higgs models are to be taken seriously, 

flavor changing neutral currents must be suppressed. [ will not explore here the 

question of simultaneously obtaining a large baryon asymmetry and satisfying this 

condition. 
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5. Baryon Persistence and Higgs Mass Bounds 

In an impor tant series of papers , Shaposhnikov and collaborators have pointed 

out that there is an impor tant constraint on any scheme to produce the observed 

asymmetry at the elect roweak transition (at least any scheme with zero B — /,) . 

Immediately after the phase transit ion, the baryon number violation rate due to 

sphalcrou transit ions may be large compared to the expansion rate of the universe. 

If this is so. any asymmetry produced during the transit ion will be quickly wiped 

out. 1 he demand that the transition rate be low enough that this not occur places 

constraints on models. In the minimal s tandard model, the authors of Ref. [24] 

argue lliat a lliggs mass of about 12 CeV cannot be exceeded. The basic idea is 

qui te simple. One computes the sphaleron energy as a function of Higgs mass and 

t empera tu re , and from this ihe transition rate. As the Higgs mass increases, the 

transition becomes more and more weakly first order, so the Higgs field after the 

transit ion is smaller, as is the sphaleron energy. Since the expansion rate a t these 

t imes is quite small in microscopic terms, the sphaleron rate quickly becomes large 

compared to the expansion rate . 

The limit obtained in Ref. [2-1] is particularly str iking when comp :cd with the 

recent limits on Higgs particles reported from LEP " (M„ > 48 GeV) . Moreover, 

this limit is relevant to models other than the minimal s tandard model . First, 

as noted in Refs. [26} and [2S], unless some rather exotic physics is operat ive , 

there is no hope for producing a large enough asymmet ry in the minimal model. 

However, even in a model wilh a single doublet , new physics could provide new 

sources of OP violation. Moreover, even in models with multiple doublets , the 

effective theory at the phase transition often involves only a single doublet . 
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In fact, in the supersymmetric standard model, the phase transition is similar 

to that in the minimal standard model. As will now be shown, requiring the 

Higgs expectation value to be large after the phase transition forces one into a 

narrow range of parameters in which the model at zero temperature contains one 

light and one heavy doublet. This is certainly a theory with additional sources of 

CP violation: it also has two doublets. The potential for the doublets is highly 

constrained. In particular, the quarlic couplings are completely fixed. The full 

zero-temperature potential has the form 

V» u, v =m]\th I" + m2

2\H2f + f'2{'h lh + «•) + 

f (//fr,,//, ~ IhrJIl? + f (I//.I2 - |tf2i2)2. 

As is well known, this potential is subject to various constraints. Kithcr m\ or mz 

must be positive. Requiring the energy be bounded below gives 

77?" + )»l -'Ifl2 > 0. (5.2) 

while if both n?j and in., are greater than zero, demanding that the Higgs mass 

matrix possesses a negative eigenvalue yields 

n?J»i7.] < /i . { T . ' J ) 

In this model, the phase transition occurs near the point where the temperature-

dependent effective mass of one of the doublets nearly vanishes. At this point, the 

second doublet is generically much heavier, and to first approximation can he ig­

nored. The corresponding effective theory is then that of a single doublet with a 
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quartic potential (plus temperature dependent corrections). In order to make the 

Higgs VEV after the phase transition as large as possible, the quartic coupling 

must be as small as possible. To determine this coupling, return first to the zero 

temperature potential, eqn. (5.1). Ignoring quark Yukawa couplings, and fi2 it­

self, /£2 does not receive finite temperature corrections while m2 and m? do. The 

temperature dependent mass matrix has a zero eigenvalue at the point where the 

condition of eqn. (5.3) is an equality. At this point, it is straightforward to find 

the effective quartic coupling of the massless field. It is given by 

where <j> is the light field, and the masses appearing in this equation are the tem­

perature dejjendent ones. In order to have a large Higgs VEV after the phase 

transition, this quartic coupling must be as small as possible, i.e. one requires 

m\ « ft2. This in turn means that my « m^. Combined with the conditions on 

the zero temperature masses above, and recalling that there are no finite tempera­

ture corrections to n2, it is easy to see that one is forced into a situation in which 

the zero-temperature theory also has a single very light Higgs and one massive 

Higgs. But this is precisely the situation under consideration. 

Because the transition rate depends exponentially on the sphaleron energy, 

small errors in the energy density can lead to large changes in the rate. Thus I 

wish to examine carefully the analysis of Ref. [24] to determine whether or not 

there still exists a window of allowed Higgs masses for which it might be possible to 

obtain the observed baryon-asymmetry. There are several sources of uncertainty 

which I examine here. First, it is important to include all finite temperature effects 
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in the effective action. This includes both te rms in the effective potential , as well 

as derivative te rms. Corrections to the effective potential are relatively easy l-o 

incorporate. One can simply compute the sphaleron solution appropr ia te to the 

corrected potent ia l , and calculate its energy. Derivative te rms turn out to be more 

complicated. To compute these requires summat ion of an infinite set. of diagrams, 

and I know of no general way of accomplishing this. Study of some part icular 

diagrams suggests tha t the resulting corrections to the sphaleron energy are of 

order 10 — 20% for the parameter range of interest. Again, since this uncertainty is 

exponent ia ted, this is an impor tant effect. Previous analyses have also not taken 

into account the likely large value of the top quark mass. Including this effect 

(i.e. the large Yukawa coupling of the top quark t o the Iliggs) also tends to yield 

substantial corrections. 

The sphaleron transition rate is proportional to e~ ' * . Determining the 

proportionali ty constant requires evaluation of a certain de terminant in the three 

dimensional field theory which describes the classical the rmodynamic limit . This 

prefactor also introduces significant uncertainties. For certain values of the quart ic 

coupling, this prefactor has been evaluated numerically in Hef. [30]. There are. 

however, a number of problems with using these results. These authors noted a 

drast ic dependence on the Higgs self-coupling A, and realized that this could be 

explained, at least in part , by the need to use a corrected sphalcron solution. In 

the range of parameters which will be important to us, these corrections cannot be 

t rea ted perturbatively. ] will deal with this problem by making a simple es t imate 

of the determinant which is at least consistent with the results or Hef. j-10]. To be 

more specific, when A/ l v < 7' < A7n-/f>n-, the baryon-numbcr violation rati ' lakes 
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, 1 f t>°] tlie iorm : 

I — H7igtiu:.XTOi. V/riiti 
v(T) 

T 
j -4 C-E,P>IT_ ( 5 5 ) 

where v{T) is the minimum of the effective potential , A v and A'rot are factors asso­

ciated with tratislational and rotational zero modes respectively, a.' is the frequency 

of the unstable mode of the sphaleron in units of gv{T), and K is the functional 

determinant associated with fluctuations about the sphaleron. It is the factor K 

that involves the large uncertainties mentioned above. In this work. I continue to 

use the numerical values for the zero mode and frequency factors found in Ref. 

[M)]. This is justified since the primary uncertainly lies in K. At the high end. I es­

t imate h- -~ 1 0 _ 1 . For a lower bound, absorbing the uncertaint ies of the derivative 

contr ibutions to the effective action into this factor, K ~ I 0 _ l ; - ' ' - ^ . W 7 ^ ] 0 ~ 4 . 

Finally, there is another important effect which mus t be taken into account. In 

Ref. [21]. it was assumed that the phase transition occurs at the t empera tu re , To, 

where the effective Higgs mass vanishes. However, the transition actually occurs 

at a higher t empera ture , and as a result the Higgs expectat ion value is somewhat 

smaller after the transit ion. This tends to increase the sphaleron rate . Once 

all of these effects are taken into account, and allowance is made for the various 

uncertaint ies. I find thai indeed a small window of Higgs mass remains: the Higgs 

can possibly be as heavy as 55 GeV. without leading to a significant reduction of 

the baryon asymmetry. 

Now I consider each of the points mentioned above in greater detail . First , 

the form of the effective potential , and some aspects of the phase transition are 

discussed. I am interested in relatively weak Higgs coupling: however, account 
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must be taken of the relatively large value of the top quark mass. In the s tandard 

model , the phase transition occurs near the t empera tu re where the mass of the 

Higgs doublet vanishes . If this t empera tu re is sufficiently high, then for small 

values of the Higgs field, the potential has the form 

V[d>,T) = 'l{T--'Io)cr - STo3 + - o \ (o.O) 

where 

M-
7,r = f . (5.0) 

The t empera tu re 7o is where the curvature at o = 0 changes sign. Without the 

cubic t e rm. TQ is simply the critical t empera ture , and the phase transition is second 

order. However, even for a small cubic le rm. t he transit ion is al least weakly first 

order. This means 1 hat for tempera tures slightly larger than 7'o, 0 = 0 becomes a 

relative minii.nim. At a t empera tu re Y'r, this relative minimum becomes degenerate 

with the t rue minimum, and at tempera tures greater than T, it becomes I he t rue 

min imum. 

In practice. I hese s ta tements require some modifications. First, the top quark 

is likely to be quite heavy. Typically the minimum of the potential occurs al values 

of o for which the effective top quark mass. hto. is of order '/» or larger. ( Here h, is 

the top quark Yukawa coupling). As a result, one cannot make the approximation 
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of small <fi for the top quark contribution to the free energy, and il is necessary t o 

use the exact result. The onp-loop finite t empera ture correction from gauge bosons 

.i: •: :<,•;• quarks is 

J-4 
\T = G/_(j7l,-) + 3 /_{ i r I ) + I2 / + ( S r , ] 

" h e i r ,(/, = \],6/rT. am] 

M j ) = ± / r f i - . r - | n ( I T r ^ 7 

(5-10) 

(5.11) 

I'm i he numerical work. I fit I lie above integrals to a tenth order polynomial in y. 

Fits to I lie first ami .second derivative* ivere also performed. These are essentia! in 

solving the sphaleron rate equations. The second derivative is needed for numerical 

programs tlial solve the rate equation using relaxation methods in which a solution 

is initial!;' guessed and then relaxed (o an approximate solution. These fits are 

given in the appendix. 

It is also necessary to include the first, order quan tum corrections to the zero 

t empera tu re potential . These turn out to be as impor tan t as the lop quark finite-

tempera ture corrections. I write the effective potential as I - = IQ + l':/ . where VQ 

is the zero t empera tu re potential , and Vy is the finite t empera ture correction. The 

zero t empera ture potential takes the Torm 

l{, = _ £ ( 1 _ *"tf + -±{1 _ Wtf + fl^,„ ( £ ) , (5. i 2 ) 

where 

B = W + ffl'-ft (.5.13) 

The. simpler form of the potential . (o.G). still gives the qualitatively correct 
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behavior to the more exact expressions (5J0) - (5 .13) . The t empera tu re at which 

the curvature vanishes is now given by Tfi = (A/jj/-t-y)(1 — \Bj\). [Jetween the 

critical tempera tures Tc and Jo- ' he re is a potential barrier separat ing the t rue 

and false vacua. Thermal fluctuations of the Miggs field produce bubbles of true 

vacuum, which then expand and collide to fill space. The rate of bubble nucleatioti 

ran he computed using the methods of Ref. [31). One calculates the action of a 

th ree dimensional bounce: (fie nuclead'on ra te is then roughly the exponential of I he 

bounce action, i.e. Vj,ub ~ T* [S}/2irT) '~ r - ' " ' 3 ' . The hubbies then expand with 

a certain velocity. This velocity can be est imated by requiring that the pressure 

difference between tiie inside of the bubble and (lie outside be compensated by the 

force exerted by the bubble on the particles just outside. This gives a velocity. 

r£ ~ Q ; J / . \ . The fraction of false vacuum left at t ime / . fit), is given by (2.15) 

and (2.16). As previously s ta ted, the bubble t empera ture , 7 j . is defined lo be 

the t empera tu re for which h i / = — 1 . at which point the false vacuum is niostlv 

gone. Since the barrier separation between the t rue and false vacua is ra ther large 

at first, bubble formation is suppressed until the t empera tu re drops sufficiently 

low. At such a point, due to the exponential behavior of (2.15). space lills up 

with bubbles ra ther quickly on a macroscopic' scale. This means that the bubble 

t empera tu re is in fact, rather insensitive lo the wall velocity i-j. In integrating 

(2.45), it is convenient to change variables to b = 1 — TfTr using '/'- = titj,i/2hf. 

where h = ii^'f/./ib)^2 (J laker / . = 100). 3 also lake R ~ / ' / - . the scale factor in 

a flat, hot Robertson-Walker universe. I have numerically determined the bounce 

action and then integrated (2.15) to determine the bubble t empera tu re for several 

values of the Uiggs mass. This is illustrated in f ig . 7. This curve is actually a lit 
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1o (en Jliggs mass j>oints. cadi of whidi woro immt-rirally (Ic'trrmiiier] in I he above 

manner: 

hb = 0.010-1 - 0.0011 \ Al„ + 0.00000799 A/;), (5.14) 

where Mfi is given in CieY. 

0009 

0OO4 
ft 

* o 

E) tX» 

« SO 52 M M SB « 

Figure 7. The temperature, expressed HH fib = 1 — Tt/Tt, at which space fifls up with 
luilililrs of I rue varuum as a finirtiuii of" !li)(gs mass for .U, = 120 GeV. 

Typically. J\ is only slightly below Tr. The reason for this is easy to unders tand. 

At the t ime of the phase transit ion, the Hubble constant is of order / / ~ 10™1 1 

( ! e \ \ This corresponds to a very long lime in microscopic te rms. A typiral bubble 

expands for a finite fraction of I he Hubble t ime. Thus an extremely low bubble 

mirlealion rate, of order / / ' / ' . is sufficient to fill the universe with bubbles. T h e 

fail l hat the t empera tu re is higher than '/'„• tends lo decrease the upper limit on 
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the Higgs mass over that in Ref. [24J, since the expectat ion value of the scalar held 

is correspondingly smaller, as is the sphaleron energy. liowev* r, as will lie seen, 

there are a variety of effects which work in the other direction. 

In actually comput ing the sphalcron energy, one should also use the full ef­

fective potential . This fact has already been discussed in Ref. [3(1]. These au­

thors computed the determinant numerically beginning with a solution of (he 

t•"•niperalurc-depeiident potential including only the quadrat ic and quart ic pieces. 

They note that their result contained a severe A dependence, and that this could 

be at least partially accounted for by treating as a per turbat ion the O'1 term in 

the potential displayed in eqn. (5.0) above. Indeed, the determinant calculation 

of these authors can only yield a good approximation to the correct answer if this 

cubic term can be treated pertuibat ivelv. This is certainly not the case in the 

range of t empera tures of interest here, where the effective mass of the Higgs field 

is very small, and where the o ' terms is at least as impor tan t . 

In view of this fact. I have obtained the spbalcron solution for the full el feci ive 

potential , including all effects lo one loop, particularly the top quark. The net 

effect of this is to increase the sphaleron energy as a function ul' A. Star t ing frnni 

t he bubble t empera tu re . I have integrated the baryon-number ra le equation to 

determine the suppression factor, the traction of baryon number finally left, as a 

function of the Iliggs mass. 

The arguments of Hef. [9] are easily generalized to include the Unite temper­

a tu re effects. For simplicity 1 will set the Weinberg angle to zero and consider an 

S('(2) gauge theory with a Higgs doublet <f>. Apart from I his. everything rtsc is 

identical to the s tandard model. 1 will work in the A1' = 0 gauge, and it is conve-
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nienl to make the following rescalings for the position vector, the gauge fields and 

the Iliggs field: 

r - , Hav{T) 

A — e(7') A (5.15) 

* — v{T)$ 

when' v{T)/\/2 is the minimum of the Uiggs field <t>. It is also useful to work with 

the real scalar 6 = \r2 |4>|. whirh simply takes the value r[T) at the minimum. As 

pointed out in Ref. [9J. there is an unstable, static solution to the classical field 

equations given by the parameterization 

Z (5.16) 

where (/,,, = (0. 1) and T" = a" j2. When the ansaU (5.16) is substituted into the 

effective finite temperature action, the energy functional becomes 

n (5.17) 

{h(\-f)f+(!n[h.T) , 

where (IK1 rescaled free energy is defined by P.(li) — U{9)/g-v4(T). This i.s a rather 

long, hut straightforward exercise. Static solutions exlremize the energy, so the 

sphaleron field equations simply become 

drh 2 dlt 2 , , , dQ ^ = - ^ V l ( 1 - / ) _ + ̂  
(5 J 8) 

^ 7 = | / d - / } ( ! - 2 / ) - | / r ( l - / ) . 
The boundary conditions are taken to be /,/*—» 0 as £ —* 0 and f,h —» 1 as 



h 

/ l 

0 5 10 15 

Figure 8. Tlic spheuYron solution for the one-loop finite temporatnrp potential for 
Mt = 120 GcV and M„ = 52 GeV. 

£ —» oc. Fig. 8 shows a typical solution to this boundary value problem. 

Now. in ihe adiabatic regime, the baryon number satisfies an equation of tlie 

form 

where c ~ 10. The exact value of this ronstant depends upon the initial mixtures 

of baryon and iepton number- It is not crucial since uncertainties in I' an ' fa; 

more important (1 take c=10 for definiteness). The term i>% ~ dt,\6\'. and it 

reflects a bias in the free energy generated by a changing Higgs field. On t he-

boundary of the expanding bubble walls, when- the Higgs field is rapidly changing, 

the second term in (5.19) dominates , and baryons are produced. However, when 

the bubbles finish colliding near t empera tu re 7 j , the Higgs field changes with the 
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Hubble rate, and now the second lerm must be droppcrl. Unless tlir baryon-

tiuiitber violation rate falls quickly below the Hubble expansion rate , any previously 

produced baryoii number will be eaten. The sphaleron energy was compuled as a 

function of t empera ture for about ten values of the Higgs mass. Equation (-5.19) was 

tlien integrated, and the asymptot ic form of nu(fiargr)/nB((\) = S was determined. 

'I'lit* fit to this suppression factor is shown in Fig. 9 for K = 1 0 " ' and K = 1 0 - 4 

anil is i>iven bv 

iUob • I n S = r - ^ r f x p [ - 110 + 3.12 M„ -0 .021!) Mf, (5.20) 

where M,i is in (5eY. It is apparent thai a Higgs mass greater than about 55 GeV 

cannot be tolerated. 

^T —\ 1 T" 

*=10~* 

M„ 
Figure 1 9. The suppression factor versus lliggs mass. 
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APPENDIX A 

In this appendix I briefly sketch for completeness the method of performing the 

frequency sums found in the main body of the text. A nice feature of this method 

is that the zero lempcrature contribution is easy tc locate. I wish to perform the 

following two fermion sums, 

V(«)-EpJTPp , A 1 ) 

71 = —OO L " ' 

vvliere 2-n — (2n + 1 )z. The basic 1ri<k is to write the sum as a contour integral of 

a function with poles at oi„. I will first concentrate on the more general expression 

52 /(••'" )• where f{z) is a function with no poles or branch cuts along the real axis. 

A simple calculation gives 

£/<*'..) = - £ / ^ tan ̂  /(--). (AM) 

where the contour C„ is a small circle centered at d>„, with orientation shown in 

Fig. 10. I he small circles may be joined to form two lines, one above and one 

below the real axis, and then these contours may be closed, as .shown in Fig. ]!). 

If the function / ( ; ) has poles in the complex plane, the residue theorem may be 

used to evaluate the integral. For the sums ( A .1) and ( A .2), there are double 

poles at ±/«. which give two equal contributions. After some algebra. 
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Figure 10. Contour deformation for the integral ( A .3). 

'/(«) = ^ J t a n h j h - L s e c h ^ 

!{(") = - t a n h | + i s e c h ^ . 

(A.4) 

(A.5) 

Boson loops have even frequency sums, <Dn = 2nx. Denoting the boson sums 

corresponding to ( A .1) and ( A .2) by /* and /*, it is easy to show that 

1 t a 1 
if (a) = - ^ coth ° + ^ r csch2" 

/ / ( „ ) = - c o t h - - - c s c h - . 

(A.6) 

(A.7) 
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APPENDIX B 

In this appendix I present the fits used in the text, A high temperature (small 

y) expansion of (5.11) was performed by Dolan and Jackiw, of rcf. [6]. This is what 

is usually done, and it leads to a potential like (5.6). However, a heavy top brings 

the critical temperature down too low for such an expansion to remain valid. 1 am 

then forced to evaluate I±(y) with numerical techniques. I do this at 100 points 

in the interval y = 0 to y — 3, and then fit to a tenth order polynomial. Kits to 

the first and second derivatives with respect to y were also performed. The iirst 

derivative fits were needed in solving the sphaleron field equation, and the second 

derivatives were needed in the differential equations program. I list them here for 

completeness. 

/_(#) = - 2 J 6 5 + 0.0001952 y + 0.8193 v~ - 0.1958 ;/' 4 0.2017 / 

- 0.08131 if + 0.0326-1/ - 0,01062 y 7 + 0 .002372/ 

- 0.0003133 y9 + O.O000IS31 j/ '° 

(H.l) 
!+{y} = - 1.89-1 - 0.0001938s + 0.4144 y2 - 0.02774 y3 - 0.1152 if 

-f 0.08152 / - 0.03468 if + 0.010C5 y7 ~ 0.002267 if 

+ 0.000292S y9 - 0.00001699 </10. 

(12 



I'j.y)- 0.00001201 + 1.012.1/ - 1.512.r/2 + 0-SSfiS f - 0.5530 1/' 

+ 0.3582 ty5 - 0 . 1 8 7 8 / + O.fifiOlG ;/7 - 0.QI61G f 

+ 0.002261 / - 0.0001358 f" 

/+(;/) = -0.00001211 + 0.S25--I IJ - 0.059M if - 0.5309 f + 0.5522 yA 

- 0.3GS3 i/' 4- O.ISO-I if - 0.0G7GI if + 0.01G08 if 

- 0.002217 f -f 0.0001.337 if". 

/ " ( ; / )= 1.011 - 3.071.v + 3.001 f - 3.298 f + 3.733 f 

- 3.239 f + 1.935 ?/G - 0.7015 ,f -f 0.1901 j / 8 

- 0.02G92 i/D + 0.001652 i / n 

/+(.</) = 0.8229 - 0.06712 ,i/ - 1.9G1 f + 3.296 f - 3.787 y 4 

+ 3.235 .)/ - 1.927 / + 0.7G2S if - 0.1901 if 

+ 0.0270 T/9 - 0.001656 yli\ 

(B.2) 

(B.3) 
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