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ABSTRACT

An energy principle is used to obtain the solution of the
magnetohydrodynamic (MHD) equilibrium equation IxB - Vp=0 for nested
magnetic flux surfaces that are expressed in the inverse coordinate
representation ¥ = ¥(p,0,¢4). Here, © and ¢ are poloidal end toroidal f1lux
coordinate sngles, respectively, and p = p(p) labels a magnetic surface.
Ordinary differential cquations in p are obtained for the Fourier
amplitudes (moments) in the doubly periodic spectral decomposition of ¥. A
steepest descent iteration is developed for efficientiy solving these
nonlinear, coupled moment equations. The existence of a positive-definite
energy functional guarantees the monotonic convergence of this iteration
toward an equilibrium solution (in the absence of magnetic island
formation). A renormalization parameter A is introduced to ensure the
repid convergence of the Fourier series for %, while simultaneously
satisfying the MHD requirement that magnetic field lines are straight in
flux coordinates. A descent iteration is also developed for determining

the self-consistent value for A.



I, INTRODUCTION

The  global snalysis of  finite-aspect-ratio, high-beta,
three-dimensional (3-D) toroidal configurations with complex external coil
configurstions of the type envisioned for fusion ieactcr applications
generally requires numerical methods. The variational formulation of MHD
equilibrial+2 provides 8 mathematically efficient prescription for treating
the truncation or closure of an approximate finite-series solution of the
nonlinear equilibrium equations. Also inherent in any energy principle is
en iteration scheme for obtaining the solution of this truncated set of
equations, which is based on seeking the minimum energy state.

The practical application of veristional principles for obtaining
numerical equilibria has progressed recently, so that there are currently

fully 3-D codes based on either Eulerian®

or Lagrangian* formulations.
Both of these methods sre numerically inefficient in comparison with moment
methods that have been applied to two-dimensional (2-D) problems arising in
systems with an ignorable spatisl coordinate® or that result from averaging
3D equilibria.‘ This has prompted the present formulation of 3-D moment
equilibria, as well as an alternate approach’ based on the variational
principle of Grad.?

The moment, expension of the plasma equilibrium results in a finite set
of coupled, nonlinear, ordinary differential equstions for the Fourier
empliludes of the inverse mappinga T = %(p,0,8), where (p,0,&) sre flux
coordinates, p lebels the flux surfaces (constant pressure contours), and ©

end § ere poloidal and toroide!l angle variables, respectively. In the

present paper, a steepest descent procedure is developed for solving the



non|inear moment equations that arise in MHD equilibrium problems. This is
the Fourier space formulation of the numerical scheme used in Ref. 4.

The success of moment methods is attributable in part to the rapid
convergence of the Fourier series for the inverse equilibrium coordinates.
In the present formulation, this convergence property is ensured by
introducing a renormalization parameter (Sec. II) to distinguish between
the geometric and the magnetic poloidal angles (the latter describes
straight magnetic field lines).

The WHD energy principle1 is used in Sec. IIT to obtain the
equilibrium equations in 8 conservative form. It is shown that the
variational moment equations correspond to the spectral coefficients of the
covariant components of the MHD force. In Sec. IV, the Fourier
decomposition of the inverse mapping is introduced, and the steepest
descent method of solution for the moment amplitudes is derived. The
boundery conditions at the magnetic axis and at the plasma boundary are
discussed in Sec. V, and the descent algorithm is generalized to include a
vacuum region surrounding the plasma. A geometric interpretation of the
moment representation in three dimensions is given in Sec. VI. The moment
solution of an exact 2-D equilibrium is discussed in Sec. VII to clarify
the role of the poloidal angle ©. Some details of the numerical techniques
used to solve the inverse equations sre given in Sec. VIII. A Galerkin
method for treating the magnetic axis and plesma shift is described in
Sec. IX, and some numerical results sre presented in Sec. X.

The equilibria calculated here have a single magnetic axis. By
spplying magnetic perturbations of the form B=vx A“EO. where
Ay = m?n Amn(P)exp[i(m® - ng)], it is possible to investigate the stability

of these equilibria to 2 more general class of (tearing) perturbations.



IT. EQUILIBRIUM EQUATIONS IN FLUX COORDINATES

The equations describing MHD equilibrium of 8 static (no fluid flow),

isotropic plasma are the force balance equation and Ampére’s and Gauss’s

laws:
Fe-ixBa+vp=0, (1s)
VxB=pl, (1b)
vedB=0, (ic)

where p = p(p) is the pressure and p is a radial coordinste labeling a
magnetic flux surface. The quantity f is the residual MHD force, which
must venish in equilibrium. For the nested toroidal flux surface geometry
considered here, flux coordinate angles © and & may be introduced, where ©
is a poloidal angle (A9 = 2% once the short way around the magnetic exis)
and ¢ is 8 toroidal angle (A = 2% once the long wsy sround the torus).
The conditions B * Vp=0 and V o B = 0 con be satisfied by writing B in

contravarient form es fol low_:?

B=vexvy+wxve

= B%e + Bgtg » (2)

where 2nx(p) and 2nd(p) ere, respectively, the poloidsl and toroidal
magnetic fluxes enclosed between the magnetic surface labeled p and the

magnetic axis (p = 0, where Vx = 0),

o* =0+ A(p.0,%) (3e)



is the pcloidal angle that makes the magnetic field |ines sbraight° [i.e.,
the local rotation number B ve*/é * V§ is @ function of p alone in the
(p.6%,¢) coordinate system], and N is a periodic function of 8 and & with
zero average over a magnetic surface, ff d® d§ A = 0. The contravariant
basis vectors are &/ = Vo;, where d = (p,6,84), and the covariant basis
vectors are §; = 9%/oc; = ¢§3j x 8k, where fi,j,k) forms a positive triplet
and Vg = (Vo » V0 x V&)~1 is the Jacobian. Thus, from Eq. (2), the

contravariant components of the magnetic field are Bi =8 - 20, where

B =L (v - o BN | 3b
m (x 5 (3b)
B§=—1—¢'(1+%3-) , (3¢)

vg

B = 0, end the prime denotes 8/8p. The covariant components B; = B . L

are related to B! through the metric tensor 9ij =3, 3j:

B; = B%g; + BSa; . (3d)

as can be verified by taking the scalar product of Eq. (2) with éi.
Although the function A(p,0,8) in Eq. (32) can be el iminated® by
taking O = 0%, its retention here provides flexibility in specifying the
poloidal angle 6. The role of the poloidal angle in the moment expansion
of equilibria is to yield rapidly convergent’ Fourier series for the
spatial coordinates ¥(p,0,5). Since only truncated series are used in
practice, a proper choice for © is necessary to provide adequate accuracy
in the approximete moment solution. In general, this value for © is

incompatible with the requirement that magnetic field lines ere straight in



(6%.¢) coordinates. The inclusion of A therefore generates a convergent
resummation of the inverse equilibrium Fourier moment expansion. In this
context, A assumes the role of a renormalization parameter.

Inserting Eq. (2) into Eq. (la) yields

[ prp + Faé , (49)

where
Fo = Vg (4$8® - J988) + p7 , (4b)
Fp= P (4<)

3 = Vg(B5ve - BeV§) and 38 =7 ¢ Vo; = uﬁlv . (§ X Vui). There are only
two independent components of f, since the component B-F= p’§ V=0
is already incorporated into the representation of B in Eq. (2). (Writing
Ji in terms of the covariant components of B yields expressions for the

forces in terms of the flux functions, x’, ¢°, and p’, and the metric:

o OB
Fp=p.0( °+B€ap * VB,) + p” . (4d)

o8
F _m (%S 9 (4¢)

Here, for any scalar A, the derivative along a magnetic field line is

] =96A+ QA;_
B vzl Bﬁag . (41)
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In the 2-D exisymmetric case,® -8 Fﬁ = 0 can be integrated to yleld
B = F(o) - (62)

Noting that 98¢ = 9p¢ = 0 and BA/3¢ = 0, due to saxisymmetry, and B =
Bg/ggg with Gee = R2 (where R is the major radius, see Fig. 1), Eq. (4d)

becomes the inverse Grad-Shafranov equation:

’

Foo X' [B (X%ey B (X'8p8y  FFr . 5b)
p“o\/g[gar\/g)a\\/g)] |J-oR2p (

From Eqs. (3c,d), note that Eq. (52) can be written ($°R2/Vg)(1 + BA/BO) =
F(p), which yields ¢’ (p) = <\/g/R2)F(p) and

BA = _!SZ_R_?__ 1 . 5
8 " ¢gRD (6e)

Here, the angle brackets denote a normalized © average.

Equation (5c) shows that in 2-D geometry, the straight magnetic field
line system for A = 0 is one for which \/g/R2 is constant on a magnetic
surface. Consider an equilibrium that is approximated by shifted,
el liptical flux surfaces for which the cylindrical coordinates (R,Z) have
the low-order Fourier  representation R = Ry(p) + Ry(p)cos € ,
Z =1Zy(p)sin 6. Analysis® of this configuration indicates that to leading
order in the inverse aspect ratio, the condition 8(R%/Vg)/38 = 0 in the
(0.8) coordinate system leads to an unphysical inward shift
A =Rp(0) - Ry(p) < 0 which is independent of the plasma pressure. The
retention of A allows for the surface variation ot \./g/R2 in the (p,B)



coordinate system, where the low-order Fourier series representation for
(R,Z) is appropriste. It also yields the correct variation® of Ro(p) with
pressure. An explicit analytic calculation of A illustrating this behavior

is given in Sec. VII.
IIT. ENERGY PRINCIPLE IN THE INVERS: COORDINATE REPRESENTATION

A varistional principle! for obtaining the equilibrium equation (1) is

based on the piasma energy

w:j(.%.;«»:‘_g_f) #x (6)

where ~ 2 0 is the adiabatic index. Equation (8) can be shown to be
stationary with respect to virtua! dispiacements of B and p that preserve
the magnetic flux and mass density profiles.!:® For ~ = 0, W reduces to the
Lagrangian (a nondefinite form) introduced by Grad.2

The scalar invariance® of W can be used to compute it directly in flux
coordinates. It is then natural to introduce the inverse representation,
for which the real space coordinates ¥ are considered to be the dependent
varisbles and the flux coordinates & = (p,0,8) are treated as independent,
variables during the variation of W. In this representation, the flux and
mass conservation constraints must be incorporated into the expressions for
B and p. Equation (2) already conserves the magnetic flux profiles x"(p)
eand ¢’(p). The adiabatic conservation of mass between neighboring flux

surfaces requires1

plp) =M (V))TV, @



where V' (p) = ff d6 d§ |vVg| is the differential volume element. Here, the
mess function M(p) is fixed during the variation of p(p) in Eq. (8),
whereas V’(p), which depends on the geometry of the flux surfaces, may

vary. Thus, the energy evaluated in fiux coordinates is

2 1
where
87 = 8'8; = (8%7gp + 28%Sgp + (B9)%gq . (80)

da = dp d® d§, and the outermost flux surface is p = 1. Summation over
repeated Roman indices is implied.

For the toroidal configurations under consideration, a cylindrical
coordinate system ¥ = (R,4,2) is appropriate, where R is the major radius,
¢ is the toroidal angle, and Z is the height above the midplane (Fig. 1).

It then follows that the metric tensor elements are

where R; = BR/Ba;, etc., and (aj,a9,a3) = (p,6,8). The Jacobian is

vg = R det(G;;) . (9b)
Bx:
G "5; (8¢)

where (x1,x9,x3) = (R.$,Z). Henceforth, it is essumed that vg 2 0 (i.e.,



there is only a single magnetic axis). Inserting the metric elements into

Eq. (8b) yields e cylindrical representetion for |B|2,

2 _ bﬁ + sz% + b%
(vg)?

|B|

’ (10)

where b, = vbé Wy = b® (Ox;/08) + bS (0x;/88) are the cylindrical poler
components of B and (be,bg) = Jb(Be,Bg).

To perform the variation of W, suppose that in addition to being
functions of the flux coordinates, the cylindrical coordinstes ¥ and the
renormalization parameter A also depend or an artificial time parameter b.
Then, for any scalar function S(¥,A), 85 = 85/3t = (85/3x;) ¥; + (8S/0M) A,

and the "time derivative” (i.e., variation) of W in Eq. (B) becomes

-l e

1
Hova

o+

(bRbR + RPbgby + brbz + RER)] dPa . (11)

Here, M(p)., X (p), end &’ (p) were held fixed in deriving Eq. (11).

The variation of the polar components of B is:

. X ; BX: oo Ox; e, Ox:
_ 9 0
bj-b ﬁ-+ bg_a—g-L+b -&L+ g-a—gal-, (129)

where ;a(h) = b“(i). Next, the variation of the Jacobian can be obtained

by differentisting Eq. (9b):
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[ ] ® m'
%Vtg:%/g + Vg %J'.E;Ji.) , (12b)

where (Vg/R) aai/axj is the classical adjoint of Gij (transpose of the

cofactors), which is (vVg/R) times the inverse of Gij’

[ do% - dcdo  ReZo-Ro%e  Rode - Redp |
va 9%
Forc| &% %% Rk -Rd R R | (129

_4’929"4’929 RoZo - RoZo Rp¢9'R9¢pJ

Using Eq. (12) in Eq. (11) yields

M- [ Fi3; - [Fph da
- p£1 |val %’i— d%;* p)¥; d6 dg . (13)
Here, the WHD force components F; are
Fi = '5% [Ival ;L (J§J03+ P)] + w5 1valv < [(A;B » vx))B]

2 . 2
+5;1ﬂ,§lﬂ2§‘lg+p_32_@u7‘@_] , (14a)

where Ay = A3 =1, Ag = R%2 [the index (i) is fixed and not summed in
Eq. (14a)], end
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Fa = ¢’|vglFg (14b)

The last term in Eq. (18) is the energy change due to the moving plasma
boundery. In Eq. (14), each of the quantities |B|2, Vg, and Baj/Bxi is to
be expressed In inverse coordinates as given by Eqs. (8)-(10) and (12¢),
end (Fy,Fg,Fg) = (FR,F¢.FZ). Also, ¥ is to be considered a function of d.
For example, 8. Vx; is given explicitly efter Eq. (10).

The identity V (ny'/R) = 0, which can also be written

= ({gg‘%) -0, (1)

may be used to express F; in terms of the forces Fp and Fp previously

defined in Eq. (4) (here &Y' = B¥/ax;):
) )
Fi = -|s/9| %—x&in + (bg-a?i—- b® %'—)Fp] . (18)

It follows from Eqs. (4a) and (18) that -Fi/|¢§| is the covariant component
(in the cylindrical coordinate basis) of the MHD residua! force.

For the toroidal systems under consideration here, ¢* # O (except at p
= 0). It is then possible to choose* ¢ = &. This choice for the magnetic
toroidal angle, which is adopted here, simplifies the algebraic structure

of Eq. (14), effectively yielding a 2-D Jacobian,

Vg = RG , (17a)

G = RgZ, - RoZg . (17b)
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and thus reduces the complexity of solving Eq. (14) numerically. In
particuler, no ¢ derivatives appear in vig once ¢ Is fixed. In addition,
the equation F¢ = 0 is redundent, since it follows from Eq. (18) that for
vg # 0, Fp and Fﬂ are Iinea: combinations of Fg and F; when & = §. Thus,
for @ fixed boundary plesme, W is stationary when the MHD equilibrium
equations Fp = Fﬁ =0 are satisfied. This proves the energy principle in
inverse coordinates for the toroidal angle choice ¢ = &.

Two-dimensional inverse equilibrium equations F; = 0 were originally
derived from 8 variational principle in Ref. 5 in a form similar to
Eq. (18) with FB = 0 and were subsequently generalized to three dimensions
in Ref. 7. There are, however, several advantages associated with
retaining the conservative form of F; given in Eq. (14). Since F;, is a
second-order differential operator in flux coordinates, s conservative
finite-difference representation for F. (in p) is readily derived by
integrating Eq. (14) on a radial mesh. Spectral analysis of F; is
facilitated by integrating Eq. (14) by parts in © and ¢ (see Sec. VIII).
In this way, no derivatives of R, Z, or A higher than first order are
required for the numerical evaluation of F;. Finally, the boundary
condition at a free boundary (p = 1), which requires the continuity of the
total pressure, is easily implemented when F; is in a conservative form.

In contrast to the sxisymmetric cese, where F) = 0 may be analytically
integrated [cf. Eq. (6a)], in three dimensions it is necessary to solve
this equation numerically. From Eq. (4e), it is apparent that the relation
Fp =0 isa linear elliptic equation for A on each fiux surface. As noted
previously, by introducing A in Eq. (2), the number of Fourier harmonics
required for an accurate inverse representation of ¥(p,0,8) is reduced.

Since the Fourier coefficients of ¥ satisfy moments of the nonlinear
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equetions F; =0 (see Sec. IV), the Introduction of A ectually simplifies
the solution of the equilibrium problem by accelerating the convergence of
the Fourier series for ¥, even though additional Iinesr equations must be
solved.

With the magnetic toroidsl angle & chosen equal to the geometric
toroidal angle ¢, the conservative expressions for the two force components

FR and F7 become particulariy simple:

Fr= g5 (%6P) -5 (ZP) + g [y (€%R) + 5 (BStp)]

. GEE- (sz"] ’ (18s)
Fz= - 55 (RoP) + 35 (P + 45t gy B%p) + & (B8] . (180)

where P = R(p + [B|2/2ug) snd b; is defined after Eq. (10). This result
can also be derived by taking components of the MHD residusl force (see
Appendix A). The significance of the present variational derivation will
become evident in the fol lowing sections.

Note from Eqs. (14b) and (18) that when the angle renormalization
parameter A is retained, the equations for R, Z, and A are dependent, since
there are only two independent MHD forces Fp end Fg. This
underdetermination is resolved by specifying the poloidal angle variable ©.
The choice of © adopted here, which is dictated by the economization of the
finite Fourier expansions for R and Z and is different from previous angle

4,57

specifications, is described in Appendix B.
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IV. STEEPEST DESCENT METHOD OF SOLUTION FOR THE MOMENT EQUATIONS

The inverse mapping ¥ = ¥(p,0,8) can be expressed as an explicit

function of the flux coordinates as fol lows:

R = Ro(p) + pr(p.8.¢) , (199)

Z=2Zy(p) + pz(p,0.9) . (19b)

Here, Pj (for j = 1,8) are periodic functions of the angles, that is,
JT do dg Pj = 0. The moment representation of the equilibrium results from
expanding pj end A in Fourier series. Defining (x1,x9,x3) = (R,A,Z), where
A now replaces the fixed toroidal angle ¢ = ¢ as e coordinate, and the

associated complex Fourier amplitudes X", Eq. (19) becomes

xj= L X["(p)exp[i(md - ng)] . (20)

The reality of x; implies XT” = (ij"")*. Since A is periodic, Xgo = 0.

Using the representation of X given in Eq. (20), the variation of the

energy In Eq. (13) becomes (neglecting the surface terms)

g O )
where
FIn = (v))7 [[ Fjexpl-i(m@ - n¢)] dO dg , (21b)

Fi = FR. Fg=Fy, Fg=Fz and dV = V" dp. The volume factor V' = 8V/dp

normalizes the force coefficients to ensure the correct asymptotic
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dependence on p at the magnetic axis (p = 0) and in practice is chosen to
be the differential volume V{ corresponding to the initial plasme state,

The Fourier coefficients FT" = (ij"")’ ere the variational forces
that must venish in equilibrium.8+7 By considering the moment amplitudes
XT" as independent trial functions in 8 Ritz method (subject to the reality
constraint), it is seen that the equations FT" = 0 represent the most
sccurate system for determining the XT" that result from e finite
truncation of the series in Eq. (20). Previously, this system of
nonlinocar, second-order, ordinary differential equations has been solved in
two dimensions by direct Jacobian inversion methods.®:7 In three
dimensions, the larger number of moment amplitudes needed to describe an
equilibrium can significantly decresse the efficiency and numerical
stability of such direct methods. Therefore, an iteration method is now
developed for following the path, in the phase space of the moment
smplitudes, along which W decreases at a maximum rate.

Since W is bounded from below due to flux and mass (p'/7) conservation
end is positive definite for A > 1, the equilibrium corresponds to a
minimum energy state.! Thus, by finding the path along which W decreases
monotonically, an equilibrium will eventually be reached. To minimize W in
Eq. (212), note that IJF}:j dv|? jjz IFj|2 dv sz |§j|2 dvV, with
equality pertaining if snd only if X; = kF;, where k is an arbitrary real

J J
constant (k = 1 here). Thus, the descent path is

IA

ax1n

-t =" (220)

and the maximum rate of decrease in W slong this path is given by
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oy P2 gy 92b
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Equation (22) comprises the descent equations for relaxing W to its minimum
energy stete. It is the Fourier space analogue of the descent equations
derived in Ref. 4. Note that N=0if and only if FT" =0 for oll j, m,
and n (that is, when all the equilibrium equations are satisfied
simultaneously).

Since FT" correspond to second-order differential operators in p, the
descent equetion (22a) comprises a set of parabolic differential equations.
The convergence to an equilibrium solution is prohibitively slow!®:1! for
an explicitly differenced version of Eq. (22a). Implicit schemes,'! which
remove the small! time step required for stability of explicit schemes, are
Impractical here since the forces FT” are strongly nonlinesr functions of
the amplitudes XT". The convergence of these equations can be accelerated,
while retaining an explicit form for the forces, by converting them to

hyperbolic equations'® (the second-order Richardson scheme):

X1 ;X"
o+ —_—
at2 T Bt

. (23)

The parameter 7 > 0 has little effect on the stability of the numerical

scheme!®

and can therefore be chosen to maximize the decay rate of the
least damped mode of Eq. (23), thereby minimizing the number of iterations
required to reach steady state. The optimum value for 7, leading to

critical damping in Eq. (23), is'®
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1 ,_d 2

2 = ni2 . .
where [ |FI? dv = | j,%.n |FT | dv. There 1is an energy principle
associated with the second-order system equation (23). Multiplying
Eq. (23) by Vf(iT“)*, taking complex conjugates, and using Eq. (21a) for W
ylelds

Lo+ W) = -2, (25)

where Wy = [ |X|2/2 dv is the kinetic energy. Thus, for T > 0, the sum of
the kinetic and potential energies, which is bounded from below, decays

monotonically until Wy = 0 and equilibrium is attained.
V. BOUNDARY AND INITIAL CONDITIONS

The megnetic axis (p = 0) is a singuler curve of the coordinate system
where Vx = 0. For toroidally nested surfaces, this corresponds to the one
parameter space curve R = Rp(S), Z = Zy(8). The geometry of the magnetic
axis is determined by Taylor expanding x in x =R -~ Rg and y = Z - Z:

X = a(@)? + 28()xy +(&)y2 + ... (26)

where oy - B2 > 0 for elliptical surfaces encircling the magnetic axis. In

terms of the moment amplitudes this implies (for j = 1,8):

XT"(p =0,t) =0; m#0 . (272)
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In fact, if V(p) = jg V’ dp is the volume inside & flux surface, then
XT” ~V/2 35 5 + 0. Since the magnetic axis corresponds to an extremum of
the flux (or pressure) contours, the radial variation of [Rg(4), Zg($)]

must be second order near p = 0. Hence, for j = 1,3:

dxdn
— P =0.4) Fl;rg V(o) . (270)

For the typical case when p ~ W, Eq. (27b) reduces to (X?“)' = 0. For
] = 2(xg = A), the origin boundary condition may be deduced by noting from

Eq. (4e), together with the fact that Rg and Zy both vanish at the magnetic

axis, that

VimAg =—Y2 1 . 97
Va0 0 ¢ vg d6 (27¢)

Equations (27a) and (27b) imply R = Ry(&) + p[ri(¢)cos © + ro(g)sin O] +
O(pz). with a similar expansion for Z, and hence
vg = V' [gg(s) + Vl/zgl(e,g)]. Since gp(¢) is independent of ©, Eq. (27¢)
yields ®X3"(p = 0,t)/36 = 0. This boundary condition given here differs
from those in Ref. 4, due to the polar representation used there.

Now consider two types of boundary conditions that may be imposed at

the plasma edge.

A. Fixed boundary
In this case, the shape of the outermost flux surface (p = 1) is fixed

for all times. When the poloidal angle renormalization parameter A is
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reteined, this is equivalent to preseribing the individual Fourier

harmonics of both R and Z st p = 1 (see Appendix B):
XTn(p = 1,t) = XTE (28)

for j = 1,3. No boundery condition is needed for xg = A, since FA is local
in p (there are no radial derivatives of A in Fp). In this representation,
the angle coordinste A accounts for the rotation of the magnetic field

lines in the poloidel direction during the minimization of W.

B. Free boundary

The position of the free plasma boundary is determined by the
continuity of the total pressure |B|2/2p0 +p at the plasma-vacuum
interface (p = 1) and by the vanishing of the normal component of the
vacuum field over this surface. These boundary conditions can be

Incorporated into the varistional principle! *

by appending the vacuum
magnetic energy to the plasma energy wpl given in Eq. (8). The total

energy functional then becomes:

W - W, = 8% , _ 1wl® g,
S plgsma (2""0 p) £ vai’:‘uum A T (29)

where §v = -V is the vacuum magnetic field. (This representation for Ev
conserves the total plasms and vacuum coil currents.) The minus sign in
Eq. (29) guarantees the continuity of the total pressure at the
plasma—vacuum interface. In the plasma, where the magnetic flux is
conserved on each flux surface, a change in the position of the boundary

produces @ reciprocal variation in the energy. [Thus, there is & minus
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sign in the last term of Eq. (13).] In general, the vacuum region will
contain current~carrying coils surrounded by a conducting wall. The vacuum
integral in Eq. (29) must then be separated into regions bounded by the
coil surfaces, with appropriate jumps in v to account for the coil
currents.

Tuking the time derivative of Eq. (29) and using Eq. (13) to evaluate

the plasma energy change yields

dz:-—f Flii daa +|J61 f l.JFU dax - f Siii dedg
vacuum p=1
~ugt ([ 0B, -8 - [ B, -dd), (30)
p=1 wall
where
2 2
S; = [lval -g% (-IQ—JE:L.T+ p “'V?“j]ﬁ—)]p=1 (312)

is the pressure jump at the plasma-vacuum interface, |B]? is the magnetic

field strength in the plasma given by Eq. (8b), d§p = Volvg| d6 &, and

F,=-v -8, = (31b)

is the vacuum "force.” The last term in S; represents the vacuum energy
change due to the motion of the free boundary. Thus, the descent equation

for the vacuum potential is
U= Fy - (31¢c)

Equation (30) is a minimex principle for the plasma-vacuum equilibrium

configuration. The physical boundary conditions, which reguire
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ﬁv . d§p =0endS; =08t p=1and ﬁv < d$ =09t the conducting wal!l,
ere 8lso natural boundary conditions for the extremization of W. The
solution of Eq. (3lc) using @ Fourier series expansion for v is discussed
in Appendix C.

Now, consider the initial conditions needed to integrate Eq. (23).
Both XT" and iT" must be prescribed at the beginning of the descent. To
guarantee that W will decrease st t = 0, it is convenient to take

XT" = aFT" . (329)
In practice, a~ 0 provides a sufficiently well-behaved start for the
descent equations. The initial profiles XT"(p) sre chosen consistent with

the boundery conditions at p = 0 and p = 1. From Eqs. (27) and (28), it
follows that for j # 2:

v(p)XTB m#0
X1"(p,0) = (32b)

where XTQ are the initial boundary data. For j =2, A™ = XB%(p, 0) = 0 is
used in practice.

In Eq. (32b), v(p) is a monotonic function of p satisfying v(1) =1
and v(0) = 0. [A small boundary layer near the magnetic axis where
XT" ~ VT2 g neglected by the ansatz in Eq. (32b).] Geometrically, v(p) is
simply related to the initial plasma volume in an equivalent

infinite-aspect-ratio system (R + ®):
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v(p) = EE;(TTTﬁJ ' (32c)

where Vo, =R, /G d® d5 . Here, G is the 2-D Jscobian defined in
Eq. (17b), and Rm is the mean radius of the magnetic axis. The radial grid
can be adjusted by choosing the functional form for v(p). For example,
v(p) = p identifies p with the the usual polar radius, whereas v{p) = pt 72
makes p a measure of the volume inside a f|ux surface.*

There are other possible ways of choosing p. For tokamaks and

stellarators with strong uniform toroidal magnetic fields, &(p) s

monotonic and a magnetic prescription

p = Eg{%}% (32d)

can be used. In Refs. 5§ end 7, —p was chosen to be the cos © harmonic of
R. The poloidal flux x’(p) was then determined from the surface-aversged
force balance equation, (Vpr> = jj JQFp d® d§ = 0, which results from
varying the energy with respect to x at fixed ¢t(x) and p(x). This equation
is not, however, independent of the other moment equations FT“ = 0.

Indeed, Eq. (18) can be used to show that
o> = - T [OEN FEN® + 03N (FIN*]

Thus, the various prescriptions for p are related, but only those given by
Egs. (82c,d) preserve the symmetry of the descent equations.
Once the radial coordinate is specified, the initial magnetic and

pressure profiles can be chosen so that the surface-averaged pressure
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balence equation <¢§Fp> =0 will be sstisfied st t = 0. (In the 2-D
problem considered in Ref. 5, the average pressure balan:« was sstisfied at
al! times by changing from magnetic flux to current flux .ariables. This
procedure does not, however, generalize t« three dimensions.) For example,
for fixed ¢ and p profiles, the woroidsl flux ¢ may be rescaled with

respect to p so that the average pressure balance

<(Vgd * V&) (VgB + VB> - <(Vg) + VB) (VB * V&)> + wgp’V’ = 0, (33)

where <A> = j] d0 d¢c A and V’ =<J/g>, is satisfied. This generally
improves the convergence rate of the descent algorithm. Using the explicit
forms for B and BS given in Eq. (3), integrating the Ag .and Ag derivative
terms by parts, and assuming Fg » 0, Eq. (33a) becomes:

XIS - 73§ + wgpV = 0, (33b)

where Jg = </gl + VB> = BB/Bp and UL = <Vgd * VO = B<Bg>/Bp are the
current fluxes. Equation (33b) is exact when Fg=0 or A=0. Assuning
thet the pressure and rotational transform profiles are prescribed
functions of the initial volume v(p), so that x” =2(v)d’ and
p” = (0p/dv) (dv/3p), Eq. (33b) becomes a linear first-order differential
equation for h(p), where $’(p) = (dv/8p) [2h(p)]}2 and h is regular at
p=0,

% [(:2800 + 21dpe + Bee)h] + (2800 + 20:86¢ + B + Hop,V” = 0 .

(34)
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Here, §;; = (8v/3p) <9ij/V@>. py = Bp/dv, end Vg = R (8v2 /80) G(6,¢).
Equetion (33b) provides a practical numerical criterion for the

convergence to an equilibrium. Forming the quantity

X"Jg - 8708 + wop’V’
[x*9¢l + (&3] + polp (V-

q

(36)

note that a converged equilibrium is attained when Q is Jless than the

spatial discretization error.
VI. GEOMETRIC CONSTRAINTS ON THE FORM OF THE INVERSE REPRESENTATION

The terms of the Fourier series comprising the moment expansions of R
and Z in Eq. (20) are determined both by the shape of the magnetic flux
surfaces and by the symmetry, or periodicity, of the plasma confinement
geometry. In two dimensions, it is well known? that the first few terms in
the moment expansion can be related to certain specific geometric
properties of the flux surfaces such as the major axis Shafranov shift,
ellipticity, triangularity, bean-shapedness, etc. In addition, since R and
Z are individually Fourier expanded, it is possible to represent
"non-starlike” domains for which r> =R +22 is not single-valued
function of the real poloidal angle ©° = tan‘12/§. [Here, R =R - Ro-
Z=12- Z, are coordinates centered at the position of the magnetic axis
(Rg.Zp) -]

To extend these concepts to three dimensions, consider the possible

transformetions of a flux surface as it rotates in the toroidal direction.
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Specifically, consider the near-asxis expension of a helically invariant

equilibrium:

M - blrlcos(le - N$) = (r'o)2 , 728a)

where by << 1 is related to the helical current strength, N is the toroidal
field period, and © = ©°. To first order in by, Eq. (38a) cen be written:

r? = (rg)? + Blcos(la - Np) . (38b)

Thus, for Bl = 0, the surfaces are circles, which have the moment expansion
R= -rgcos 6, Z= rosin 8. Since © only enters this moment representation
83 8 parameter, it can, in principle, be replaced by sny function é(e,¢o
without affecting the surface shape. However, @ is determined uniquely (up
to an arbitrary periodic function of B©) by periodicity and symmetry
constraints. First, since r =r5 is obviously axisymetry, aé/a¢ = 0.
Second, since R (and Z) must be periodic with period 2w, B=0+ p(6)
results. (This precludes stretching transformations of the form 6 = ko for
integers |k| > 1.}

Now, consider the transformations of the magnetic surfaces embodied in

Eq. (36b) when 5, #0.
A. Toroidal ripple
This case (£ = 0) corresponds to a circular cross-section tokamak with

N finite toroidal field coils. The flux surfaces in the axisymmetric limit

are now modulated in minor radius at the spatial wave number ¢y = Né:
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R = -rocos (1 + agcos dy) , (372)

Z = rgsin 8(1 + opcos dy) . (37b)

where ag = 50/2(r0)2. The moduletion of more complex cross-sectional
shapes can be modeled by multiplicative factors depending on ¢y es in
Eq. (i, at, in addition to cos © (or sin 0) terms, the Fourier
series for R .  , now contains cos(6 t dy) [or sin(6 2 dy)] terms as

well.
B. Helical magnetic axis

For £ =1, there is 8 shift of the magnetic axis that varies

periodically in the toroidal direction:

R = -ajcos ¢y - rgcos © (38a)

Z = aysin ¢y + rosin 0, (38b)

where o) = 81/2r0 is the helical shift. Note that even though Rand Z are
not helically invariant functions by themselves, they do combine to form

flux surfaces ry = const that depend only on the angle combination 28 - No.

C. Rotating elliptical cross section

When £ =2, Eq. (38b) represents an ellipse with elongation
k= (1-ap)/(1+ag), where ag = by/2ry:

R = -rocos 8 - agcos(8 - dy) (39a)
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Z =rgsin® - agsin(® - 8y) . (30b)

In three dimensions, the helically invariant rotations considered so
far must be generalized to account for effects due to (i) changes in the
flux surfece shape as the toroidel engle is traversed or (ii) s
differential rotetion rate (with ¢y) for the various poloide! harmonics
composing R and Z. As an example of the former effect, which is
characteristic of helically wound toroidel systems where some poloidal
harmonic mixing invariably occurs due to the dependence of the major redius
R on©, a flux surface may deform continuously from an elliptical cross
section into a triangular, D-shaped one as ¢y incresses. Both effects can
be inco~norated into the moment representation by tasking 0 <m<M and
N<n<N, where M3 is sufficient to describe a8 wide variety of
cross-sect.ion shapes end N { 2 can account for many effects of nonuniform

toroidal rotation and changing cross-section shapes.
VII. MOMENT ANALYSIS OF SOLOV’'EV EQUILIBRIUM

An exact analytic solution of a 2-D equilibrium problem12 in the
inverse coordinate representation will now be considered. This will
emphasize the importance of distinguishing between the geometric angle ©
appearing in the Fourier representation of the flux surfaces and the
magnetic angle ©% =© + A [Eq. (3a)], which describes straight magnetic
field lines. A solution of the axisymmetric Grad-Shafranov equation!? when

the magnetic field is represented as B = X'V& X Yo + F(p)V¢ is
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& =% 25 + GO0 - )] (40

where x" =259 (p is the normalized poloidal flux, 0<p <1),
p(p) = By(1 - %), end F? = R3(1 - 4B;p2).  The toroidel field s
normalized to wunity if Ry is identified with the mean major radius. Note
that R = R, is the magnetic axis, which is determined by the boundery curve
p=1. The spectral analysis of Eq. (40) is triviel in terms of the

variables u = RZ and Z, yielding

U= R% - x°(8/50)1/2p cos O , (41a)

Z = (xp/Rg)PT 2p sin © . (41b)

Here, 6 is a geometric angle yielding e repidly convergent Fourier
expansion for R and Z, which is not equal to the magnetic angle 6% in which

field lines are straight. To show this, note that the Jacobian is

va X (PEQBT)W" . (42)

0

Thus, Vg/R2 is not a function of p alone, as Eq. (5¢) requires for A = 0.
Therefore, even though the geometric solution given in Eq. (41) satisfies
the equilibrium Grad-Shafranov equation, it epparently fails to
simultaneously satisfy JP=Fg=0 when A =0. By introducing the angle
renormalization parameter A, the angle © can be chosen for its geometric
properties while the constraint Fg = 0 is satisfied by A. For the present

example, it is easy to evaluate A explicitly from Eq. (5c):
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1 g2)172
ro =it (430)

where a(p) = xO(S/ﬁo)i’zleg <1. Thus, A= L Agsin md, where
m=1

- _ a2y172.m
R R L (43b)

Note that for a2 < 1, Ap decays exponentially with m. Similarly, the

magnetic flux profile is found to be:

R N UL )
x'—q(p)-R%[_fB—(;El_(l—az ). (44)

The results in Egqs. (42)-(44) provide an analytic basis for testing the
computational methods developed here (see Sec. X). They slso reveal the
fundamental incompatibility, in the absence of angle renormalization,
between an economical Fourier description of the flux surface geometry and

the MHD constraint, JP = 0.
VIII. NUMERICAL METHQD

In this section, some numerical aspects of solving the descent
equations are considered. First, the time discretization of Eq. (23) s
discussed, and an estimate for the maximum stable time step is obtained.
Then, the spatial discretization of the forces F™ is performed, including

J
the incorporation of the boundary conditions considered in Sec. V.

A. Time discretization
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The descent equations (23) for the plasme can be written

%S(t);('}'" = S(t)FI" , (45)

where S(t) = exp f¥ +1 dt’. Integrating Eq. (45) from t = tn—1/2 to
t = tn+1/2‘ where t, is the time at the nth iteration, yields

i'}'"(tn,,l /) = (1= b)XIN(e g ) + (1 SETRI LIRS (462)

where At = ‘bn+1/2 - tn_1/2,

. X1 (¢, - X0 (¢
x'}‘"(tn+1/2) X "*I)M I (bn) + 0(At?) (48b)

is the discretized "velocity," and

b, = 1 ~ exp(- | :jg L 4t) (48c)

is the incremental damping factor. Using the expression for 1/T given in
Eq. (24) eond adding a small minimum damping rate (T_l)min (to guarantee

convergence near the energy minimum®) yields

bp=1-y,(1 = bpip) » (48d)

where yo = min(<F2> /<P, 1, <FB>. 1 KFD),  bpig = (7)) pia8t,  and
<F2 =f |F(tn)|2 dv. Mith this form for b, Eq. (462) reduces to the

'conjugate gradient” procedure used in Ref. 3. In practice, since b, is
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proportional to the algebraically largest eigenvaiue of ¥, ¥ should be
overaged* over several iterations to reduce the effect of 8 mixture of
eigenvectors. Since the longest damping time scales es NpAb, where Np is
the number of radial mesh points, an average over Np previous iterations is
approximately equivalent to averaging over one e-folding decay time.

The maximum stable time step At may be estimated from a von Neumann

enalysis!! of the linearized version of Eq. (482). The result is:

4 172
M, = (m;r) . (47

where |Amax' is the modulus of the algebraically smallest eigenvalue of 3
Equation (47) is (|)\ma,‘|)1’2 >> 1 times larger than the stable time step
for an equivalent first-order time scheme.

To estimate Ap,,, consider the eigenvalues of the spatially
discretized and |inearized operator 3 Noting that the shortest radial

wavelengths in the Fp and F; operators will determine A we can

max’
approximate the eigenvaiue condition using only the highest-order p
derivatives in Eq. (18). Denoting the kth eigenvector by (R, Z),

Eq. (18) reduces in the short-wavelength [imit to

DRRRﬂ' - DRZZQ' = —AkRk . (483)

DrARk” + DzzZk” = -AyZy » (48b)

where Dpp = Z3dy. Dz = ZgRgdg. Dzz = RBdg, dg = R|B|Z/(GVipg), and
G = Vg/R. For short-wavelength modes, the diffusion coefficients in
Eq. (48) can be treated as constants (in a WKB sense). The spatial

discretization for the second-order derivatives in Eq. (48)is taken to be:
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o Rens1) - 2R(ey) + Rlppg)

R*“(p = Pn) (30)?

, (49)

and similarly for Z°*, where Ap = p, - pp_1 is the uniform rédial grid
spacing. Letting R, (n) = Roexp(inBy), where £y is a real phase factor, it
is apparent that R(’(n) = —4Rk(n)sin2(6o/2)/(Ap)2. Using this result and
applying Gerschgorin’s theorem'! to account for a nonuniform p dependence

of the diffusion coefficients, it follows from Eq. (48) that

Max [Nl < Vg § [Max (Ogg, 02)] " [Ok&? + D713

4
(8p)% P
g%% e (50)
where §og = 2Rgee/(GVf). Obviously, A;l is related to the time for an
Alfvén wave to travel across the radial mesh. Note that Ap = (Np - n-t,
which implies Maxlkkl ~ N%. When the cylindrical nature of the
eigenfunctions of Eq. (48) is accounted for, it is found that Ap in
Eq. (50) is replaced by (Np + M/2 - 1)1, where M is the maximum poloidal
mode number.

It is now possible to make a heuristic comparison between the steepest
descent method and the Jacobian inversion methods used pr~eviousl_y5'7 to
solve the equilibrium. moment equations. The Jacobian methods involve
inverting the linearized F operator and hence determining all the
eigenvalues of this operator. In contrast, the steepest descent method
requires only an estimate for the largest eigenvalue of F. When the number

of eigenvalues is large (i.e., for a stiff system), an accurate inversion
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of ¥ becomes prohibitively time-consuming, and the saccelerated descent

method seems preferable.
B. Spetial discretization of the forces

The continuous expressions for the MHD residual forces obtained in
Secs. IIT and IV may be transformed into discrete forms by numerical
integration of W.!2 Discrete conservative forms for the Fourier-transformed
forces are then obtained by varying the individual nodal amplitudes.4 The
esymptovic behavior of the solutions near the magnetic axis is used to
appropriately modify these nodal equations in the vicinity of p = 0.

The angle integrals in Eq. (8) are replaced by discrete sums as

fol lows:13

W= [do [[w(p.0,8) db d¢

Nt Nz
+ [ .21 Zl w(p.0i_1/9,8j-1/2) 80 BS , (51a)
= J‘:

where AB = 2x/Ny, AS = Qﬂ/NZ (NT and N; are the number of discrete © and §
mesh points, respectively), 9&-1/2 = (i - 1/2) 8o, $j-1/2 = (j - 1/2) 8¢,

and

_pe(lB®, Py
W_RGWP- +‘1_1, (51b)

Is the energy density functional evaluated at the angular half-mesh points,

where Vg = RG, p = M(p) (V")~}, and
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V' (p) = ?%Jg(p‘ei—lﬂ'gj-l/?) A6 A¢ . (51e)

A rectangle integration rule accurate to second order in AB and A¢ wes used
fn Eq. (518). Because this rule preserves the discrete orthogonality of
the trigonometric functions, it is more accurate!® in the present problem
than certain nominally higher-order schemes (e.g., Simpson’s rule or
Gaussian quadrature). If there are M theta modes and N zets modes in the
spectrum of R, Z, and A, then Ny = 2M + 1 and NZ = 2N + 1 are the minimum
number of points required in the sum in Eq. (51a). (This estimate assumes
that the modes are consecutive and counts M 2 0, N 2 0.)

The Fourier analysis of the coordinates R, Z, and A appearing in the

energy density w permits an exact evaluation of w at the half-mesh points

(ei—1/2' 91—1/2)‘ It is this interpolation property of the trigonometric
functions, together with the application of fast transform techniques, that
makes harmonic analysis desirable even for the very nonlinear equilibrium
problem under consideration here.1®

What remains in Eq. (5la) is now a one-dimensional integration in p.
Consider the set of Np discrete radial mesh points (nodes) p, = (k - 1)Ap
fork =1, ..., Np, where Ap = (Np - 1)1, The Fourier coefficients
X = pg) for a= (R,A,Z) will be denoted X3"(k). They are the nodal
amplitudes, which are to be obtained as the solution to the discrete force
equations. In analogy with the angle discretization in Eq. (61), it is
useful to introduce the radial half-mesh points Pk+1/2 = (Pk + pk+1)/2, for
k=1, ..., Np - 1. Then, the p integration in Eq. (5la) becomes

-1 Ny

L El 2 "(pk+1/2-9i-1/2.$j-1/2) 8P 4O A . (52)
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Henceforth, for brevity, the angular subscripting is suppressed. To
evaluate w at the radial half-mesh points, central sum and difference
formulas’® can be used: Xo(k + 1/2) = [Xa(k) + X (k + 1)]/2 end
Xa(k + 1/2) = [Xy(k + 1) - X4(k)]/Bp. Since w depends only on X, and X,
but no higher-order radial derivatives, these relations are sufficient to
discretize w.

The discrete forces are obtained by taking the time derivatives of the
nodal emplitudes X3"(k,t) appearing in the discrete form for W, in exact
analogy with the procedure deveioped in Sec. III for the continuous case.
The result is not unique, since several radial discretizations «f w, all of
which agree to 0(Ap?), are possible. The particular discrete form for w
used here was chosen to minimize the radial coupling between the nodal
amplitudes, which is desirable both for numerical stability and for
minimizing truncation errors.®* In the pressure contribution to W [the
second term in Eq. (B1b)], V’ is differenced to conserve the volume, thus
preserving the feature that the MHD forces depend on p only through dp/dp.
This is accomplished by introducing U = R2/2 and writing

k+1/2

Vo(k +1/2) = 22 (uez‘D - upze) 80 &, (53)
I

where each term on the right of Eq. (53) is evalusted individually at

Pk+1/2} for example, Ug(k + 1/2) = RRg(k) + RRg(k + 1).

The quantity vg|B|? appearing in the magnetic field energy Wg = W - Wo

Is evaluated at Pk+1/2 2S fol lows:

+ 2 k+1/2
alal) 2 - [%)G)q / A0 +gi(k + 1)y (540)
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where

G(k + 1/2) = (RgZ,, - sze)k”/?, (54b)

b*(k) = (b38ep + 2bgbeBoe *+ b%ggg)k , (B4c)

gij(k) = gij(k)/R(k) are the normalized metric  coefficients,
bg(k) = 2(k) - Ag(k), bg(k) =1+ MNg(k), and (k) is the discrete
rotational transform profile. The ratio ¢”/G, which is proportional to the
toroidal magnetic field, has been differenced on the half-grid to preserve
the stowly varying radial behavior of this physical variable.

Using these expressions to complete the discretization of W in

Eq. (51a) and teking a time derivative yields

P T a0 - 08,00 + 106, 00Vipg 00 0005, (55)
i,

where ¥ o = exp[i(mei_l/Q - ngj_1/2)]. The coefficients A, B, and C at

interior radial mesh points are

(Zep)k+1/2 _ (ZeP)k'1/2

AR (K) = = + (RZg)*p* (k)

- SLEg - 0] (55
BR(K) = - 2{ZP) /2 4 @ P12+ (bgip)¥ (56b)
CR(K) = (bebR)* (56c)

k-1/2 _ (ropyk+l/2
0 = L BP T g (500
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B7(k) = 5[ RPY+1/2 + RPYE1/2] 4 (bgbp)¥ (58e)
Cz(k) = (bgbz)k , (667)
M) =0, (66g)
B\ (6) = By Coeleg + befeo) (58h)
CA(k) = -a’k(begee + bggeg)k . (bBi)
Here,
o =721‘5%[£4%L2‘]k+1/2 . [q’é—(—)i]k—m% ' (57a)
. - _ L k+1/2 L, k-1/2
b =.4’}7[(<:>')k Y2, oY &) 8 ) (57b)
oF k
b(K) = zriy (beRe + beRe) (57¢)
oF k
bz(k) = zriy{beZe + beZe) (57d)
pk+1/2 =71}.—0[(%")2]k+1/ 2 020K + B2(k + 1)] . (67e)
The discrete variational procedure yields ¢§, instead of $k' in

Eqs. (56h,i). This departure from the rigorous variational result is
introduced to preserve the correct asymptotic behavior for the discretized
Aasp 0.

At the origin, the correct discrete expressions for the forces can be
obtained by integrating Eq. (18) fromp = 0 to p = Apf2. The asymptotic
forms for R, Z, and A at the magnetic axis, which were derived in Sec. V,

can then be used to obtain the following expressions:
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3
2(ZgP)2
Ap(l) = -573;2-+ ¢} Sec(l) 1] . (68a)
ot
CR(1) = griy Re(D) (585)
3
2(RgP) 2
Az(1) = & (68¢)
o]
where
~2. 3
o} ='§SJ{£9622F? (68¢)

and P2“2 is given by Eq. (57e) for k = 1. Note that b%(1) = 8es(1), and
Br(k) end Bz(k) do not contribute to the m = 0 force components [since they
are multiplied by (im) in Eq. (55)]. The result in Eq. (58) differs from
the veriational discretization by the extra factor of 2 appearing in the
radial derivative terms of Ay and A;. This discrepancy can be traced to
the inadequacy of the differencing scheme for |B|2 in Eq. (54a) as p » 0.

At the plasma boundary py = 1, either R and Z are prescribed for o
fixed boundary equilibrium, or P(b) = R(b)|V¢12(b)/2p0 (where b denotes the
boundary) can be used in Eq. (568) for @ free boundary equilibrium. The A
force may be obtained by extrapolating the value of the toroidal field to
the boundary. Then B, end Cy have the forms given in Eq. (56), with ék
replaced by
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é(b) = ST (69)

where ¢’} = 1.5¢’(Np - 1/2) - 0.54>’(Np - 8/2), G(b) = Re(b)ZP(b) -
Rp(b)Ze(b), where Zp(b) 2 ijNp - 1/2) end Rp(b) LY Rp(Np - 1/2).

Comparing Eqs. (58)-(58) with Eq. (18), it is apparent that A, srises
from the p derivative terms in the MHD forces (together with the
centrifugal force in FR), and B, end C, srise from the total 6 and §
derivative terms, respectively. The coefficient of ig"(k) in Eq. (65)
yields the following nodal equations for the discrete Fourier-transformed

MHD forces:

(VOFIN(k) = AT(k) + imBI"(K) - inCON(K) , (80)

where AT (k) = .Z‘ Au(k)w;n 40 A§ is the discrete Fourier transform of

A (K). !

IX. GALERKIN METHOD FOR MAGNETIC AXIS

Because of the singular behavior of the force equations in the
neighborhood of the magnetic sxis, it was necessary in the previous section
to give special consideration to the discretvization process es p » 0. As
the number of Fourier mode ampliludes increases, there is 8 greater
sensitivity to smaell numerical errors in the position of the axis, as well
as the plasma shift, so that the convergence of the descent algorithm is
adversely effected. Improved numerical stability of the descent iteration
can be realized by applying the Galerkin method to the axis shift

components,
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Ro(6.p) == [R 0 = TRM(p)exp(-ing) (61a)
n

29(6.p) T4 [Z 0 = T 2OMp)exp(-ing) (616)
n

comprising the m = 0 Fourier components of R and Z. The method consists of
expanding the Fourier amp!itudes ROM and 207 in o polynomial ~.ries in p,
rather then discretizing them on a radial mesh. The improved numerical
properties associated with this Galerkin procedure arise from two features
of the method: (i) the magnetic axis Rp(¢,0), Zp(¢,0) is nw determined by
an average force balance over p, rather than by the force at the singular
point p = 0 alone; and (ii) the radial variation of RO'ZO will be smooth as
a function of p, thus guaranteeing a well-behaved Jacobian Vg (which is
strongly effected by the radial gradients of Ry,Zp).
Let X?" denote ROM or 20N for j =1or 2, respectively. Then

XI) = L clyucle) . (620)
. ko ¥
where u,(p) = V(4k + 1)Po(p) and Py, is the Legendre polynomial of order
2k. This choice of basis functions was motivated by noting that wu((0) =0
satisfies the boundary condition Eq. (27b) at the magnetic axis. The u,
are orthonormal polynomials on the interval p = [0,1] with unit weight
function. Since the boundary condition X?"(l) = X?B may be prescribed, the
clk are not independent bu? satisfykgo V(4k + 1)ef) = X?n(l). Using this
relation to eliminate clg yields an unconstrained Galerkin expansion for
On.

XJ :
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X{"(e) = x{"(1) + L el Ok (P) (62b)

where 0, (p) = V(4k + 1)[Po,(p) - 1]. Inserting this expansion into
Eq. (212) for ﬁ yields descent equations for c*k:

&y = j; 0,9 av . (63)

Obviously, the expension coefficients are determined by radially weighted
averages of the MHD residual forces.

For the exemples discussed in the next section, the GCalerkin method
hes been used when mode convergence studies, requiring meny Fourier modes,
were performed. In all instances examined so far, the Galerkin approach
has been as saccurate as, but more stable than, the discretization method
when increesing numbers of Fourier modes are retained. Also, good radial
resolution is generally achieved by retaining only two or three expansion

coefficients in the series, Eq. (62b).

X. NUMERICAL EXAMPLES

Some numerical results obtained using the method described in the
previous sections are now presented. In all the examples, the effect of
the angle renormalization parameter A is substantial. A symmetry property
of particular prevelence in stellarator designs, which permits a
substantial reduction in the number of equilibrium equations, has been used
to obtain these numerical results. Many systems of practical interest
possess a8t |east one toroidal plane (¢ = 0, specifically) where the coil
symmetry imposes a flux surface shape with vertical symmetry. In this

plane, R(p,0,0) = R(p,-8,0) and Z(p,0,0) = -Z(p,-H,0). By analytic
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continuation, this symmetry property implies the following Fourier series

for R,Z for al| velues of ¢:

R(p.8,¢) = L R™(p)cos(md® - nd) , (84a)
m,n

Z(p,0,0) = L Z™(p)sin(md - n¢) . (84b)
m,n
Thus, half the possille terms in the general Fourier expansion of R,Z have
been eliminated by symmetry. Furthermore, by examining the structure of

the FA operator defined in Eq. (14b), it is possible to infer that

Ap.8,4) = L A"(p)sin(mb - n) . (B4c)
m,n

Figures 2-4 show the flux surfaces, normalized Fourier amplitudes, and
residual decay, respectively, for the particuler 2-D Solov’ev equilibrium
discussed in Ref. 4. With a radial mesh of 10-20 points, a discretization
error of less than 0.1% in the value of Ry(0) (which should be 4) was
obtained using more than two harmonics for R, Z, and A. For the example
shown, 8 total of 12 harmonic ampiitudes was retained (although e minimum
of 8 harmonics produces essentially the same flux surface configurations).
In Fig. 2, the solid lines represent the magnetic surfaces and the dashed
lines correspond to constant © contours. Note that after the first 100
iterations the energy has already converged to within three significant
figures, whereas the residuals |F?| = f F2 dv (which are normalized to W)
continue to decay at a more or less uniform rate.

Figures 5-7 illustrate the same features for a high-beta (B> = 3%),
axisymmetric, D-shaped plasma. The pressure profile was taken to be

p=pgll - p%)2 and the rotational transform was given by 2 = 1 - 0.870°.
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Because the Jacobian for the D-shaped configuration is not wuniform with
respect to the poloidal angle O, there is a substantial decrease in the
rate of residual decay in this cese compared with the Solov’ev equilibrium
for which 8/g/86 = 0 [see Eq. (42)]. The figures correspond to a total of
12 poloidal harmonics, although convergence has been achieved with up to 80
harmonics. This limited convergence study indicates that sfter a certain
minimum number of harmonics is present, the values of the lowest order
harmonics seem to remain invariant to the addition of further harmonics.
Figures B-10 present the flux surface and residual decay for the

heliotron model configuration,® which has an outer boundary (p = 1)

=4
il

10 - cos © - 0.3 cos(® - P&) , (685a)

N
]

sin 6 - 0.3 sin(6 - P¢) , (85b)

where P = 19 is the number of field periods. A total of 18 mode amplitudes
(6 modes each for R, Z, and A, corresponding to all combinations of m = 0,
1, 2 and n = 0, P) was used to obtain the equilibrium configurations shown.
Here, the pressure is p = py(l - p2)2, and ¢ = 0.5 + 1.50%. The low-beta
result shows the approximate vacuum topology, whereas at high beta
(B> = %), @ substantial Shafranov shift A~ 0.2 is apparent. To obtain
the residual decay shown in Fig. 10 for <> = 2§ took about 32 s of cpu
time on the CRAY computer. The results of a beta scan are summarized in
Fig. 11, where the average toroidal shift AR = (Rgg - 19) is displayed vs
<$>. This is in approximate agreement with the free boundary calculations
reported in Ref. 18.

Finally, Figs. 12 and 13 represent the flux surfaces for the Advenced
Toroidal Facility (ATF)!” model configuration, with an outer boundary
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R=2.06-10.29 cos © + 0.09 cos(0 - P¢&)
+ 0.125[cos 20 - cos(20 - PS)] , (662)

X Z=0.29sin©+0.09 sin(d - P&)

+ 0.00875[sin 20 - sin(20 - P&)] , (66b)

where P =12, The pressure was chosen to be p = pp(l - 02)?, and
1 =0.35+0.850%. In Eq. (88), the (cos ®, sin®) terms produce an
axisymmetric circular plasma and the [cos(B - Pg), sin(® - Pg)] terms
represent a helically varying elliptical distortion. The last terms in
Eq. (88) describe the D-shaped distoriion of the plasma most notable in
Figs. 12 and 13 at P§ = m. At the higher < value, a marked helical
distortion (cos PO, sin PO terms) of the magnetic axis develops, even
though there is no pure helical modulation of the boundary surface.
Figure 14 shows the mean toroidal axis shift AR = (ROO ~ 2.05) vs <p> for
this ATF model, which is in good agreement with the results obtained in
Ref. 17.
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APPENDIX A: ALTERNATIVE CALCULATION OF THE MHD FORCE

The MHD residual force F defined in Eq. (1a) can be decomposed as

E:V(p +.LB_L2_) _M_

2 H
o 8P 1.0 9B 3B
—VQI&T—EE(B 56"" Bga) ’ (Al)

where & = (p,6,4) and P =p + |B|2/2u;. The contravariant cylindrical
ccordinate basis vectors are 31, where 3R = WR = cos $i, + sin ¢i

- V¢ = (-sin ¢i, + cos i
Cartesian vectors in the R,Z plane. Then, the covariant components of 3

are &, = R&! x 81, For example, 8 = VR. Thus,

y)R'i, and 3¢ = VZ. Here, iy and iy are fixed

FREWR « F
oP 008 ey 3. B 5 8 ?
_.5.'.&_ _( Y) B EBEVR' (A2)

For the choice of toroidal coordinates & = ¢, note that dVR/6@ = 0 and
BVR/BS = RV4. Thus, Eq. (A2) becomes "‘

o8 aB &) 2
B RS w

Multiplying Fp by —/g, using Eq. (12e) for the adjoint components da;/dR,
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and noting thet V « B = 0 implies B(vgBY)/36 + 8(VgBS)/88 = 0 yields the
expression for FR given in Eq. (18a).
An expression for FZ in agreement with Eq. (18b) is obtained in o

similar menner by considering the 87 = VZ component of F.
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APPENDIX B: OPTIMAL CHOICE FOR THE POLOIDAL ANGLE

The rate at which a magnetic flux surface is traversed in the poloidal
direction can be independent of its shape. This leads to the
interdependence of the MHD forces Fp, F7, and F) when the renormalization
parameter A is introduced. This degeneracy may be resolved by specifying
the poloidal angle 8. Several choices for © have been discussed in the
literature.*+5: 7,18 1p this appendix, it is argued that the requirement of
rapid convergence for the Fourier moment expansions of R and Z selects a
particular angle © that has not been previously considered.

One choice* for 6 is a polar representation for which 6 = tan~* (Z/R),
where (R, Z) are local Cartesian coordinates (in the plane ¢ = const)
measured from the magnetic axis. In this system, Eq. (18) is replaced by a
single equation P~ Fp, where r = (% + Z2)'"2 is the polar radius.
Because r(p,0,&) must be a single-valued function of the flux coordinates,
this representation is limited to starlike domains (or boundsry shapes that
can be mapped into starlike domains) and cannot describe, for example,
strongly pinched surfaces that might appear in a plasma preceding the
development of magnetic islands. In addition, the polar angle © may not
lead to a rapidly convergent Fourier expansion of r. (This difficulty
poses no problem in Ref. 4, where Fourier analysis is not used.) For
example, an eiliptical flux surface R + 22/K? = 1 becomes (for . 2 1) r =
1 -(1-x2)sin?8]"1"2, which develops a significant Fourier spectrum as
k departs from unity. The same problem exists for certain other angle
choices. For example, the angle producing equal arc lengths around a f1ux
surface requires dggg/0® = 0 but cen lead to 2 substantial Fourier spectrum

even for the simplest noncircular geometric shapes.
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To savoid the restriction to starlike domains imposed on the polar
system, the cylindrical system (R,$,Z) was introduced in Sec. III. In this
system, a natural unique choice’ +*® for the poloidal angle is © = 6%, where
e* is the angle that, together with § = ¢, defines a straight magnetic
field line coordinate system. Although this choice for © is adequate in
the context of Ref. 18, where the MHD equilibrium equations are solved on e
Lagrangian grid, it is generally inappropriate for use in conjunction with
Fourier analysis. (An explicit analytic example of this is given in
Sec. VI.) The poor convergence properties associated with 6% may be
understood by considering a fixed plasma boundary with the following finite

parametric representation:

Mp  Np

Rp(6,) = L L R™cos(m® - ng) , (Bla)
m=0 n=-NR
Mz Nz

Zp(0,8) = L L Z™sin(mo - ng) . (B1b)
m=0 n=-N;

It is assumed that Eq. (Bl) is the most economical series representatica of
the boundary, in the sense that any periodic displacement of © increases
the total number of harmonics, MgNg + MN;. Note that the shape of the
boundary, at a fixed toroidal angle &, is invariant to such displacements,
which merely change the rate at which the boundary is traversed as ©
increases. In general, the parametric (geometric) angle © in Eq. (Bl) does
not coincide with ©*. (Even if © and 8* agreed initially, it would be
impossible to guarantee 4heir equality as the plasma evolved toward
equilibrium. This is because the operator F,, which determines the

evolution of 6%, depends on Vg, which is not a function of the boundary
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coordinates alone.) Thus, in terms of 0% = 8 + AD(6*,¢), where A} is o

periodic function, Eq. (Bla) becomes (with a similar result for Zy)

Rb(e",g) = ¥ T RMeosm(6* - }‘;) - ng]
Mg NR
=Y @ . RMNcas (m0* - ne) , (82)
m=0 n:—NR

where MﬁNE + MENE > MpNp + MAN7.  Not only is the number of Fourier
harmonics in general (substantially) increased in the 6% system, but also
the boundary coefficients RE" are no longer fixed during the energy
minimization even for a fixed boundary equilibrium. Rather, they undergo!®
periodic Lagrangien displacements along the boundary curve that are of the
form B8Ry, = Rei and 8Z, = Zei, with A = -Fg- Thus, simply to conserve the
outer boundary shape requires a large number of harmonics in the e* system.
For these reasons, it is preferable to transform to the geometric
coordinate system 6 = 6% - A}, where the boundary Fourier coefficients can
be fixed and where the number of harmonics is minimized. Because of the
large number of harmonics generated by the transformation to ©% in
Eq. (B2), it may be concluded that the development in Ref. 7, though
technically correct, is of little practical importance.

Having transformed to © at the boundary, it becomes necessary to
extend this coordinate system into the plasma. This is exactly what
Eq. (3a) accomplishes. The coefficients (R™, 7Z™) in Eq. (Bl) are
specified boundary values. This yields 8 unique transformation from 0* to
© at the boundary. However, the transformation equation (3a2) is not unique
in the plasma interior, where the same flux surface can have an infinite

number of parametric representations under the family of transformations
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given by Eq. (3a). This underdetermination of © is irrelevant in practice
where only finite Fourier expansions are used to represent the equi!ibrium
solutions. For finite-term series expansions of R and Z, there exists o
unique poloidal angle © (the geometric angle) that leads to the most
accurate solution of the inverse equilibrium problem in the sense of
convergence in the mean. (This conclusion concerning series economization
follows from the Fourier-Bessel theory of finite-series approximation). We
now demonstrate that the variational principle given in Sec. III is capable
of determining the geometric poloidal angle as a result of the minimization
process (with fixed boundary conditions). That is, the variational
principle automatically performs the series economization when the angle
renormalization parameter A is retained. As a consequence, no constraint
between the Fourier harmonics need be imposed ab _initio whenever a
finite-series approximation to R and Z is sought.

To prove this remarkable property of the variational equations it
suffices to show that when A # 0, the equations for ﬁ and 2 are independent
whenever finite Fourier series approximations for R and Z are used.
Without loss of generality it may be assumed that F) = 0 can be satisfied
by an appropriate choice of A. Then Eq. (18) yields

R = Zgf, . (B3a)

Z = -RgF, . (B3b)
where Ep = RFp is the 3-D inverse Grad-Shafranov operator. In the infinite
mode number (continuous) !imit, the underdetermination of © is manifested
in Eq. (B3) by the fact that R and Z are not independent. equations.

However, for a finite-series expansion of R and Z, and hence of Rg and Zg,
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the Fourier moments of the variational equation (B3) needed to extract the
appropriete hermonics of R and Z yield exactly the correct number of
independent equations for determining each of the harmoniecs of R -ud Z.
This is due to the mode coupling produced by Zg and Rg in Eq. (B3). (It is
assumed that because of the strong nonlinearity of F,, the harmonics of Fp
are independent at |east up to a mode number equal to the sum of the R and
Z mode numbers. Also, since vg # 0, Rg and Zg do not both vanish.)

Because Eq. (B3) is indeterminate in the continuous Ilimit, it is
probably ill-conditioned for finite but large mode numbers. Limited mode
convergence studies (see Sec, IX) suggest that lack of uniqueness does not
seem to produce any deleterious numerical effects when used in conjunction
with the steepest descent method. This is probably due to the fact that
the initial guess for (R™, Z™") js sufficient to yield a unique descent
path and thus determines a unique poloidal angle even when many modes are
present (up to 30 mode amp!itudes have been successfully converged).

When 8 unique poloidal angle choice is desired, it is possible to
scale A from its value at the plasma boundary (which is unique) into the
plasma. For example, A™ = p™P" satisfies the boundary conditions for A
at p=0and p=1. In this way, the renormalization features of A are

retained, while Eq. (B3) is no longer ill-conditioned.
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APPENDIX C: DESCENT METHOD FOR THE VACUUM MAGNETIC FIELD

The consideration of the free plasme boundary in Sec. V.B led to the
descent equation (3lc) for the vacuum potential, with the boundary
conditions §v . dgp =0 at p=1 and ﬁv o d§ =0 at the conducting wall.
Equation (3lc) is a 3-D parabolic equation for v with homogeneous "flux"
conditions on a moving boundary. The numerical problem of solving this
equation in a8 time-varying, irreguiar domain can be overcome by
transforming the cylindrical coordinates (R,$,Z) in the vacuum region to
polar coordinates {r,0,4) with ¢ = ¢. Here r = 0 corresponds to the plasma
boundary [R;(8,¢) = R(p = 1,6,8), Z;(6,¢) = Z(p = 1,8,¢)] and r = 1 is the
coil (or wall) surface [R.(8,8), Z,(6.$)]. Thus,*

R =Ry(6,8.t) + r[R.(6,8) - Ry(6,8.t)] , (Cla)

Z=121(08.1t) ~r[Z.(8¢) - Z,(6.6.t)] . (C1b)

Note that the polar radius r is considered an independent variable in
Eq. (C1) and therefore does not change during the variation of W,. In this

vacuum polar coordinate system, the variation of the vacuum energy becomes

“ﬁv = —u61 It dr f do dg ngFuﬁ7 + 7 e W)
cugt [ @+t WE, - a5, (2)
r=0

where dgr = Vr¢§v do d¢§ = dgb. The surface contribution to S; and the wall

term in Eq. (30) are both unchanged by this coordinate transformation and

have been omitted from Eq. (C2) for brevity. Now, U =3u/dt is taken at



33

fixed (r,0,&), and the convective speed due to the coordinete motion is

VeVUr=f VevO= é, and ¥ * V& = 0, where

vev=RA-1) g2 _Rel (C3a)
vy
$evo=- BilT'll (ZRy - R.Zy) (C3b)
. gv

and Ry and 21 are determined by the descent equations for the plasma moment

amplitudes and the appropriate boundary conditions discussed in Sec. V. In

the vacuum,

oR oR
Re:(l-l‘)-%l-'*f‘-a-eg-- (Cde)
R. =R, - Ry (Cab)
(similar equations pertain for Z), and the Jacobian is
vay = R(ReZ,. - R.Zg) - (Cac)

Denoting the polar coordinates (r,0,4) = (uq,ug,ug), the 3-D Laplacian

transforms in @ conservative form as

1 d ij Ov
v va, du; (Vavy auj

where the inverse metric tensor elements in the vecuum are
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g},j = Vu; VUj

Bu: du: 1 Bu; Qu: Bu; du;

= l-sﬁ-.’.R—?-w#-’-szL# ((‘Ae)

Explicit expressions for i in terms of derivatives of R and Z with
P p By

respect to uj are [note that gii = (§51)1i):

9y9y' = R + A ' (C5)
9,9,% = R%grq - }\egl\rg ' (C5b)
99y = Avohas - (Cbe)
9,922 = Rgp + A% (C5d)
gvfﬁl8 = “Arghre (C5e)
9,82 = Ag . (c5%)

Here, 9|'| = RiRj + ZiZj' A'j = Rizj - RjZi , and \/gv = —RA'.e.

From Eq. (C2), the steepest descent equation for the vacuum potential,

written in the polar coordinate system, becomes
g%rv-w:ﬁ,. (c8)
and the boundary condition -év edS=0at r=0andr=1can bewritten

\/Svgv. 3 -0 (CTe)

Since Eq. (C7a) is just the argument of the i = 1 (uy = r) derivative
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appearing in F,,, it Is simple to incorporate this boundary condition into
the finite-difference scheme for the vacuum. Similarly, the vacuum

pressure term appearing in Eq. (31a) becomes

3 ik
[Ival 38;% (J%’-loi)]p _ 1= [RePR + RRebjz) I %‘{E%i—%( (e

14

where Eq. (C7a) was used to eliminate 8y/dr and gij = gaj - 93i93J/9$1 may

be explicitly evaluated as follows:

532 = "‘5‘§;¥§i ’ (C8a)
vy

23 g

9, = g_ggn , (C8b)
vIv
300

Q?fa = ; 7 . (C8¢c)
vy

The solution of Eq. (C8) may be obtained in polar coordinates by

expanding v in a Fourier series:

v = _;:i (190 + 1%) + T v™(r)expli(n0 - n¢)] . (C9)

Here, IS = pal J ﬁv . d76 =f 3. Vé/g dp dO is the net toroida! plasma
current and I° = pﬁl i) §v . d}g is the poloidel current flowing in external

conductors that intercept the plane Z = 0. These currents are fixed during
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the variation of v and should be chosen initially so that the
surface-averaged toroidal and poloidal magnetic fields in the plasma and
the vacuum are continuous at p =1 (assuming p venishes at the plasma
edge). This choice will suppress the development of surface currents.

Thus, from Ampdre’s law, Eq. (1b), it foliows thst

oIS = J‘z“ By dO , (C10a)

wot® = jﬁ" Be d¢ (C10b)

where Bj are the covariant components of B evalusted at p=1 1In
equilibrium, it follows from current conservation and JP =0 [Eq. (4e)]
that IS and I® as defined in Eq. (C10) are indeed constants, independent of
both & and 6. Initially, however, By and By may not satisfy Eq. (4e), so
the remaining angle averages should be performed in Eq. (C10). When the
currents IS and I° are prescribed, Eq. (Cl10) can be inverted to determine
¢ (1) end x°(1). The matrix of coefficients relating the currents to the
fluxes (the inverse inductance matrix) is found from Eq. (C10) and Eq. (3)
to be (2w/u0)<gij/vg>. where (i, j) € (6%, ¢) and the angle brackets denote
a double angle average. Note that the relationship between total current
and total plasma magnetic flux given in Eq. (C10) pertains only in the
absence of surface currents. 1In general, since both the plasma fluxes and
the currents are constant during the variation of W, a change in the
inductance matrix implies vhe generation of surface currents needed to
satisfy Ampére’s law 8t p = 1.

Inserting Eq. (C9) into the vacuum energy descent equation (C2) yields
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dum“%;.tz = FM0 _ [ exp[-i(m6 - n¢)]¥ * Vv d6 d¢ , (Clla)

where

FO0 = (vo(r)]-t [ vgyexp[-i(m® - n¢)]F,, d@ d¢ (C11b)

and V’(r) = JT d® d vg,. In Eq. (Clla), the convective terms are to be
evalusted using Eq. (C9), noting thet du/d0 includes IS as we!l as periodic
terms. Similarly, Ve contains a term arising from 1°, Neglecting the
surface terms in W, which are zero for the natural boundary conditions,

and using the descent equation (Clla) for the potential yields
dW 1
y _ siemn)2
_Jt‘_-mzn fo V- IFDN% dr . (C12)

Therefore, the vacuum potential energy is maximized and reaches a steady
state if and only if the vacuum force FI)" vanishes and the natural boundary
conditions are satisfied.

The present treatment of the vacuum fields as a maximization probiem
coupled to the internal plasma equilibrium differs from the approach in
Ref. 4. There, the vacuum pctential is relaxed quasi-statically for each
shape change of the plasma boundary. 1In addition, here the currents IS and
19 are fixed during the descent of v. If IS and 19 were allowed to vary in
time in Eq. (C2), the additional term —(ing + ia¢v)/(2wuo) would arise in
iv' where x, and &  are the total poloidal and toroidal vscuum fluxes,
respecbively. Therefore, in general, the maximization of the vacuum energy
is inconsistent with fixing the vacuum fluxes when the representation

-5
Bv = -Vv is used.
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FIGURE CAPTIONS

Fig.
Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.
Fig.
Fig.

1
2

10
11
12

Toroidal-cylindrical coordinate system.

Flux surfaces for Solov’ev equilibrium (R/4)% = 1 - (p/2)cos 6,
Z = (V10/2)sin ©, p = (1 - p%)/8, and x = .

Normalized profiles ﬁm = Rmo/R; and Zm = ZmO/Z; for Solov’ev
equilibrium, where R§ = 3.999, R} = 1.028, R = 0.088, Z} = 1.58,
and Z§ = 0.01.

Residual decay and change in energy as a function of iteration
number for Solov’ev equilibrium,

Flux surfaces for high-beta, D-shaped plasma, <B> ~ 3%, with
Ry, = 3.51 - cos © + 0.108 cos 20 , Z, = 1.47 sin © + 0.18 sin 26.
Normalized profiles Ry = Rpg/R% and Z, = Zo/Z% for high-beta,
D-shaped plasma, with R} = 3.97, R} = 1.00, R} = 0.107, Z} = 1.47,
and Zj = 0.18.

Residual decay and change in energy as a function of iteration
number for the high-beta, D-shaped plasma.

Low-beta (<P = 0.1%) flux surfaces for heliotron model
configuration; Rp =10 - cos © - 0.3 cos(® - P§), Zp = sin 6 -
0.3 sin(0 - P¢), with p = 19.

High-beta (<p> =2%) flux surfaces for heliotron model
configuration.

Residual decay for the high-beta heliotron configuration.

Toroidal shift AR vs <> for heliotron configuration.
Moderate-beta (<f> = 2§) flux surfaces for ATF  model
configuration; Ry = 2.05 - 0.29 cos © + 0.09 cos(® - P§) +
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0.0126[cos 20 ~ cos(26 - P§)], Zy = 0.29 sin & + 0.09 sin(6 - Pg) +
0.0087[sin 20 - sin(26 - P&)], with P = 12.
Fig. 13 High-beta (<B> = 8%) flux surfaces for ATF mode! configuration.
Fig. 14 Toroidal shift AR vs <> for ATF configuration.
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