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ABSTRACT 

An energy principle is used to obtain the solution of the 

magnetohydrodynamlc (MHD) equilibrium equation J x S - Vp = 0 for nested 

magnetic flux surfaces that are expressed in the inverse coordinate 

representation f = Tt(p,0,£). Here, 9 and £ are poloidal and toroidal flux 

coordinate angles, respectively, and p = p(p) labels a magnetic surface. 

Ordinary differential equations in p are obtained for the Fourier 

amplitudes (moments) in the doubly periodic spectral decomposition of A 

steepest descent iteration is developed for eff iciently solving these 

nonlinear, coupled moment equations. The existence of a positive-definite 

energy functional guarantees the monotonic convergence of this iteration 

toward an equilibrium solution (in the absence of magnetic island 

formation). A renormalization parameter A is introduced to ensure the 

rapid convergence of the Fourier series for t , while simultaneously 

satisfying the MHD requirement that magnetic f ie ld lines are straight in 

flux coordinates. A descent iteration is also developed for determining 

the self-consistent value for A. 

v 



X. INTRODUCTION 

The global analysis of finite-aspect-ratio, high-beta, 

three-dimensional (3-D) toroidal configurations with complex external coil 

configurations of the type envisioned for fusion reactor applications 

generally requires numerical methods. The variational formulation of MHD 

equilibria1'2 provides a mathematically efficient prescription for treating 

the truncation or closure of an approximate finite-series solution of the 

nonlinear equilibrium equations. Also inherent in any energy principle is 

an iteration scheme for obtaining the solution of this truncated set of 

equations, which is based on seeking the minimum energy state. 

The practical application of variational principles for obtaining 

numerical equilibria has progressed recently, so that there are currently 

fully 3-0 codes based on either Eulerian8 or Lagrangian4 formulations. 

Both of these methods are numerically inefficient in comparison with moment 

methods that have been applied to two-dimensional (2~D) problems arising in 

systems with an ignorable spatial coordinate5 or that result from averaging 

3-D equilibria.8 This has prompted the present formulation of 3-D moment 

equilibria, as well as an alternate approach7 based on the variational 

principle of Grad.2 

The moment expansion of the plasma equilibrium results in a f inite set 

of coupled, nonlinear, ordinary differential equations for the Fourier 

ampliludes of the inverse mapping8 t = tf(p,0,£), where (p,9,£) are flux 

coordinates, p labels the flux surfaces (constant pressure contours), and 6 

and £ are poloidal and toroidal angle variables, respectively. In the 

present paper, a steepest descent procedure is developed for solving the 

l 
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nonlinear moment equations that arise in MHD equilibrium problems. This is 

the Fourier space formulation of the numerical scheme used in Ref. 4. 

The success of moment methods is attributable in part to the rapid 

convergence of the Fourier series for the inverse equilibrium coordinates. 

In the present formulation, this convergence property is ensured by 

Introducing a renormaIization parameter (Sec. I I ) to distinguish between 

the geometric and the magnetic poloidal angles (the latter describes 

straight magnetic f ie ld lines). 

The MHD energy principle1 is used in Sec. I l l to obtain the 

equilibrium equations in a conservative form. I t is shown that the 

variational moment equations correspond to the spectral coefficients of the 

covariant components of the MHD force. In Sec. IV, the Fourier 

decomposition of the inverse mapping is introduced, and the steepest 

descent method of solution for the moment amplitudes is derived. The 

boundary conditions at the magnetic axis and at the plasma boundary are 

discussed in Sec. V, and the descent algorithm is generalized to include a 

vacuum region surrounding the plasma. A geometric interpretation of the 

moment representation in three dimensions is given in Sec. VI. The moment 

solution of an exact 2-D equilibrium is discussed in Sec. V I I to clari fy 

the role of the poloidal angle d. Some details of the numerical techniques 

used to solve the inverse equations are given in Sec. V I I I . A Galerkin 

method for treating the magnetic axis and plasma shi f t is described in 

Sec. IX, and some numerical results are presented in Sec. X. 

The equilibria calculated here have a single magnetic axis. By 

applying magnetic perturbations of the form B = V X A|(Bq, where 

AH = E A_n(p)exp[i(m0 - n£)], i t is possible to investigate the stabi l i ty 
" m, n 

of these equilibria bo a more general class of (tearing) perturbations. 
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I I . EQUILIBRIUM EQUATIONS IN FLUX COORDINATES 

The equations describing MHD equilibrium of a stat ic (no fluid flow), 

isotropic plasma are the force balance equation and Ampdre's and Gauss's 

laws: 

F = -J x 3 + Vp = 0 , ( la) 

V x 3 = MflJ . (lb) 

V • B = 0 , ( lc) 

where p = p(p) is the pressure and p is a radial coordinate labeling a 

magnetic flux surface. The quantity ? is the residual MHD force, which 

must vanish ir. equilibrium. For the nested toroidal flux surface geometry 

considered here, flux coordinate angles 0 and £ may be introduced, where 0 

is a poloidal angle (A0 = 2ir once the short way around the magnetic axis) 

and £ is a toroidal angle (A£ = 2n once the long way around the torus). 

The conditions B • Vp = 0 and V • B = 0 can be satisfied by writing B in 

contravariant form as follow^:1 

3 = x Vx + W> x V0* 

= B % + ^ , (2) 

where 2nx(p) and 2irt>(p) Bre, respectively, the poloidal and toroidal 

magnetic fluxes enclosed between the magnetic surface labeled p and the 

magnetic axis (p = 0, where = 0) , 

0* = 0 + A(p,0,$) (8a) 



A 

is the polo?del angle that makes the magnetic f ie ld Iines straight9 [ i . e . , 

the local rotation number • is a function of p alone in the 

(p,0*,<a) coordinate sysUm], and X is a periodic function of 6 and £ with 

zero average over a magnetic surface, / / d6 d<; A = 0. The contravariant 
« 

basis vectors are = Vaj, where dt = (p,0,<5), and the covariant basis 

vectors are = = Vg Ĵ x where ( i . j . k ) forms a positive t r ip le t 

and Vg = (Vp • VQ x is the Jacobian. Thus, from Eq. (2), the 

contravariant components of the magnetic f ie ld are 

B' = 3 • V . where 

B® = Gc' - V . (3b) 

BP = 0, and the prime denotes 3/9p. The covariant components Bj = B • 

are related to B' through the metric tensor gj j = • t j : 

Bj = Begei + B ^ , . (3d) 

as can be verified by taking the scalar product of Eq. (2) with . 

Although the function A(p,0,£) in Eq. (3a) can be eliminated9 by 

taking 0 = 0*, i ts retention here provides f l ex ib i l i t y in specifying the 

po'oidal angle 0. The role of the poloidal angle in the moment expansion 

of equilibria is to yield rapidly convergent5 Fourier series for the 

spatial coordinates t (p ,9 ,£ ) . Since only truncated series are used in 

practice, a proper choice for 0 is necessary to provide adequate accuracy 

in the approximate moment solution. In general, this value for 0 is 

incompatible with the requirement that magnetic f ie ld lines are straight in 
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(9*,<;) coordinates. The inclusion of A therefore generates a convergent 

resummation of the inverse equilibrium Fourier moment expansion. In this 

context, X assumes the role of a renormalization parameter. 

Inserting Eq. (2) into Eq. (la) yields 

? = FpVp • F ^ , (4a) 

where 

Fp = N/g(j$B0 - JeB$) + p' , (4b) 

Fp = JP . (4c) 

? = >/g(B£V9 - and J1 = J • Va; = hq 1 ? • (B x Votj). There are only 

two independent components of F, since the component 5 • F = p'B • Vp = 0 

is already incorporated into the representation of 3 in Eq. (2). Writing 

J1 in terms of the covenant components of B yields expressions for the 

forces in terms of the flux functions, x'» 8nt* P'» an(* the metric: 

FP = MO* ( B 9 ^ - B ^ - § • VBp) + p" . <4d) 

< 4 e ) 

Here, for any scalar A, the derivative along a magnetic f ie ld line is 

va = b 0 | a + B $ ! | . (4f ) 



• p 

In the 2-0 axisymmetric case, ' Fp = 0 can be integrated to yield 

= F(p) . (6a) 

Noting that gg^ = g ^ = 0 and 8A/8£ = 0, due to axisymmetry, and B̂  = 

B^/g^ with g ^ = R2 (where R is the major radius, see Fig. 1), Eq. (4d) 

becomes the inverse Gr8d-Shafranov equation: 

p ^P v/g 8 0 s/g [xqR2 

From Eqs. (3c,d), note that Eq. (5a) can be written (4>'R2/\/g) (1 + 8A/89) 

F(p), which yields 4>'(p) = <Vg/R2>F(p) and 

0 0 <\/g/R > 

Here, the angle brackets denote a normalized 9 average. 

Equation (5c) shows that in 2-0 geometry, the straight magnetic field 

line system for \ = 0 is one for which Vg/R2 is constant on a magnetic 

surface. Consider an equilibrium that is approximated by shifted, 

elliptical flux surfaces for which the cylindrical coordinates (R,Z) have 

the low-order Fourier representation R = RQ(P) + R^(p)cos 9 , 

Z = Zj(p)sin 0. Analysis8 of this configuration indicates that to leading 

order in the inverse aspect ratio, the condition 8(R2//g)/99 = 0 in the 

(p,0) coordinate system leads to an unphysical Inward shift 

A = RQ(0) - RQ(P) < 0 which is independent of the plasma pressure. The 

retention of A allows for the surface variation of i/g/R2 in the (p,0) 



7 

coordinate system, where the low-order Fourier series representation for 

(R,Z) is appropriate. I t also yields the correct variation5 of Rg(p) with 

pressure. An explicit analytic calculation of A i l lustrating this behavior 

is given in Sec. V I I . 

I I I . ENERGY PRINCIPLE IN THE INVERSE COORDINATE REPRESENTATION 

A variational principle1 for obtaining the equilibrium equation (1) is 

based on the plasma energy 

where > 0 is the adiabatic index. Equation (6) can be shown to be 

stationary with respect to virtual displacements of § and p that preserve 

the magnetic flux and mass density profiles.1,8 For ^ = 0, W reduces to the 

Lagrangian (a nondefinite form) introduced by Grad.2 

The scalar invariance5 of W can be used to compute it directly in flux 

coordinates. I t is then natural to introduce the inverse representation, 

for which the real space coordinates t are considered to be the dependent 

variables and the flux coordinates <t = (p.6,<£) are treated as independent 

variables during the variation of W. In this representation, the flux and 

mass conservation constraints must be incorporated into the expressions for 

3 and p. Equation (2) already conserves the magnetic flux profiles x'(p) 

and ^'(p). The adiabatic conservation of mass between neighboring flux 

surfaces requires1 

P(P) = * ( p ) ( v n . (7) 
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where V'(p) = / J d© is the differential volume element. Here, the 

mass function M(p) is fixed during the variation of p(p) in Eq. (6), 

whereas V' (p) , which depends on the geometry of the flux surfaces, may 

vary. Thus, the energy evaluated in flux coordinates is 

w = Ĵ f w d'a * / V̂ dp • t®8) 
where 

|B|2 = B'Bj = (B0) 2
g e e + 2BeB?g^ + ( B ^ ) 2 ^ , (6b) 

= dp d0 and the outermost flux surface is p = 1. Summation over 

repeated Roman indices is implied. 

For the toroidal configurations under consideration, a cylindrical 

coordinate system t = (R,4>,Z) is appropriate, where R is the major radius, 

4> is the toroidal angle, and Z is the height above the midplane (Fig. 1). 

I t then follows that the metric tensor elements are 

Sij =R }Rj + R 2 < M J * («0 

where Rj =9R/9aj, etc. , and (aj.ouj.ag) = (p,0,£). The Jacobian is 

>/g = R det(G;j) . 

d*j 

where (*i»*2'*3) = Henceforth, i t is assumed that \/g > 0 ( i .e . . 

(9b) 

(9c) 
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there is only a single magnetic axis). Inserting the metric elements into 

Eq. (8b) yields a cylindrical representation for |B|2, 

, 10 b j U R2b£ *• b% 
B = — % 1 , (10) 

where bj = >/gB • Vx, = b9 (axj/89) + b* (8x;/8<$) 

are the cylindrical polar 

components of 3 and (b®,b$) = \/g(Be,B^). 

To perform the variation of W, suppose that in addition to being 

functions of the flux coordinates, the cylindrical coordinates it and the 

renormal i zation parameter X also depend or. an ar t i f ic ia l time parameter t . 

Then, for any scalar function S(*,A), 8S = 8S/8t = (9S/8x;) X| + (8S/8A) 

and the "time derivative" ( i . e . , variation) of W in Eq. (8) becomes 

- T - CbR̂ R + * bzbz + R b $ ] d3a . (11) 

Here, M(p), x'(p)» and 4>'(p) were held fixed in deriving Eq. (11). 

The variation of the polar components of B is: 

• a 8* ; 9*; *o 9*; 8x; bj = b <12a> 

• • 

where ba(A) = ba(A). Next, the variation of the Jacobian can be obtained 

by differentiating Eq. (9b): 
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(12b) 

where (/g/R) 9aj/9*j is the classical adjoint of Gjj (transpose of the 

cofactors), which is (>/g/R) times the inverse of G;;: 

-

(jfcẐ  - (Ĵ Zq R^Z© - RQZ^ R ^ - R̂ j)Q 

¥ P " V * " V P R ^P " R P^ 

4>pZe - 4&Zp ReZp - RpZe -

Using Eq. (12) in Eq. (11) yields 

(12c) 

dW 
dt = - / F , S f d 3 a - /FAA d3a 

(13) 

Here, the MHO force components F: are 

F i - " K f t W I + W ' I M • 

(14a) 

where Aj = Ag = 1, A2 = R2 [the index (i) is fixed and not summed in 

Eq. (14a)], and 
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:A = 4>'Ug|Fp (Wb) 

The last term in Eq. (13) is the energy change due to the moving plasma 

boundary. In Eq. (14), each of the quantities |B|2, and daj/dx; is to 

be expressed In inverse coordinates as given by Eqs. (8)-(10) and (12c), 

and ( F ^ ^ ^ g ) = (Fp,?^,F^). Also, t is to be considered a function of fit. 

For example, 5 • Vxj is given explicitly after Eq. (10). 

The identity V • («f>'/R) = * h i c h C8n a l s o be written 

% ffrsjJ -0 • <"> 
may be used to express Fj in terms of the forces Fp and Fp previously 

defined in Eq. (4) (here t f * 1 = 9t/axj): 

I t follows from Eqs. (4a) and (16) that -Fj/|Vg| is the covariant component 

(In the cylindrical coordinate basis) of the MHD residual force. 

For the toroidal systems under consideration here, 4>' / 0 (except at p 

= 0). I t is then possible to choose4 $ = This choice for the magnetic 

toroidal angle, which is adopted here, simplifies the algebraic structure 

of Eq. (14), effectively yielding a 2-0 Jacobian, 

\/g = RG , 

G = ReZp - RpZe , 

(17a) 

(17b) 
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and thus reduces the complexity of solving Eq. (14) numerically. In 

particular, no £ derivatives appear in %/g once £ is fixed. In addition, 

the equation F^ = 0 is redundant, since i t follows from Eq. (18) that for 

Fp Bnd Fp a r e I inear combinations of FR and Fz when tj> = Thus, 

for a fixed boundary plasma, W is stationary when the MHD equilibrium 

equations Fp = Fp = 0 are satisfied. This proves the energy principle in 

inverse coordinates for the toroidal angle choice <J> = 

Two-dimensional inverse equilibrium equations Fj = 0 were originally 

derived from a variational principle in Ref 5 in a form similar to 

Eq. (16) with Fp = 0 and were subsequently generalized to three dimensions 

in Ref. 7. There are, however, several advantages associated with 

retaining the conservative form of F; given in Eq. (14). Since F; is a 

second-order differential operator in flux coordinates, a conservative 

finite-difference representation for Fj (in p) is readily derived by 

integrating Eq. (14) on a radial mesh. Spectral analysis of Fj is 

facilitated by integrating Eq. (14) by parts in 6 and £ (see Sec. V I I I ) . 

In this way, no derivatives of R, Z, or A higher than first order are 

required for the numerical evaluation of Fj . Finally, the boundary 

condition at a free boundary (p = 1), which requires the continuity of the 

total pressure, is easily implemented when Fj is in a conservative form. 

In contrast to the axisymmetric case, where F̂  = 0 may be analytically 

integrated [cf. Eq. (58)], in three dimensions it is necessary to solve 

this equation numerically. From Eq. (4e), i t is apparent that the relation 

F̂  = 0 is a Iinear el Iiptic equation for A on each flux surface. As noted 

previously, by introducing A in Eq. (2), the number of Fouri 

er hartnon i cs 

required for an accurate inverse representation of is reduced. 

Since the Fourier coefficients of t satisfy moments of the nonIinear 
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equations F| = 0 (see Sec. IV), the introduction of A actually simplifies 

the solution of the equilibrium problem by accelerating the convergence of 

the Fourier series for t , even though additional linear equations must be 

solved. 

With the magnetic toroidal angle £ chosen equal to the geometric 

toroidal angle <j>, the conservative expressions for the two force components 

Fr and F;? become particularly simple: 

F z = - & < w - m ( Rpp ) + tf & < A z ) + £ 0 * 2 ) ] < ( 1 8 b ) 

where P = R(p + |B|2/2mq) and bj is defined after Eq. (10). This result 

can also be derived by taking components of the MHD residual force (see 

Appendix A). The significance of the present variational derivation will 

become evident in the following sections. 

Note from Eqs. (14b) and (16) that when the angle renormaIization 

parameter X is retained, the equations for R, Z, and A are dependent, since 

there are only two independent MHD forces Fp and Fp. This 

underdetermination is resolved by specifying the poloidal angle variable 6. 

The choice of 9 adopted here, which is dictated by the economization of the 

finite Fourier expansions for R and Z and is different from previous angle 

specifications,4'6,7 is described in Appendix B. 

fR = & W> -If (V + tf ft <B%> + ^ 
(18.) 
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IV. STEEPEST DESCENT METHOD OF SOLUTION FOR THE MOMENT EQUATIONS 

The inverse mapping It = t(p,0,£) can be expressed as an explicit 

function of the flux coordinates as follows: 

R = W + PRCP'0'*) ' (19fl) 
Z = ZQ(P) + pZ(p,E,<5) . (19b) 

Here, pj (for j = 1,3) are periodic functions of the angles, that is, 

J J d0 d£ pj = 0. The moment representation of the equilibrium results from 

expanding pj and A in Fourier series. Defining (x1.x2.x3) = (R,A,Z), where 

A now replaces the fixed toroidal angle £ = <f> as 8 coordinate, and the 

associated complex Fourier amplitudes X^", Eq. (19) becomes 

xj = E Xf(p)exp[i(m9 - n<$)] . (20) 
* m, n * 

The reality of xj implies Xjn = (XJ1"'-")*. Since A is periodic, xj)0 = 0. 

Using the representation of Xj given in Eq. (20), the variation of the 

energy In Eq. (13) becomes (neglecting the surface terms) 

where 

FJ" = (V')-1 / / Fjexp[-i(me - n$)] d9 d$ . (21b) 

F1 = FR' F2 = FA' F3 = FZ- a n d dV = V ' T h e v o l u m e f 8 c f c o p V ' = 
normalizes the force coefficients to ensure the correct asymptotic 
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dependence on p at the magnetic axis (p = 0) and in practice is chosen to 

be the differential volume Vf corresponding to the initial plasma state. 

The Fourier coefficients Fjn = (Fjm'~n)* are the variational forces 

that must vanish in equilibrium.8'7 By considering the moment amplitudes 

Xjn as independent trial functions in a Ritz method (subject to the reality 

constraint), i t is seen that the equations F^n = 0 represent the most 

accurate system for determining the X "̂ that result from a finite 

truncation of the series in Eq. (20). Previously, this system of 

nonlinear, second-order, ordinary differential equations has been solved in 

two dimensions by direct Jacobian inversion methods.5'7 In three 

dimensions, the larger number of moment amplitudes needed to describe an 

equilibrium can significantly decrease the efficiency and numerical 

stability of such direct methods. Therefore, an iteration method is now 

developed for following the path, in the phase space of the moment 

amplitudes, along which W decreases at a maximum rate. 

Since W is bounded from below due to flux and mass (p1/^) conservation 

and is positive definite for ^ > 1, the equilibrium corresponds to a 

minimum energy state.1 Thus, by finding the path along which VI decreases 

monotonies Ily, an equilibrium will eventually be reached. To minimize W in 

Eq. (21a), note that |J Fjxj dV|2 < J E |Fj|2 dV / E |xj |2 dV, with 

equality pertaining if and only if ?j = kFj, where k is an arbitrary real 

constant (k = 1 here). Thus, the descent path is 

SXTn 

t H T ' (22o) 

and the maximum rate of decrease in VI along this path is given by 
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- E J |FJ«|« dV . ( B k ) 
j,m,n 

Equation (22) comprises the descent equations for relaxing W to its minimum 

energy state. I t is the Fourier space analogue of the descent equations 

derived in Ref. 4. Note that W = 0 if and only if F*n = 0 for all j , m, 

and n (that is, when al l the equilibrium equations are satisfied 

simultaneously). 

Since F̂ j"1 correspond to second-order differential operators in p, the 

descent equation (22a) comprises a set of parabolic differential equations. 

The convergence to an equilibrium solution is prohibitively slow1 0'1 1 for 

an explicit ly differenced version of Eq. (22a). Implicit schemes,11 which 

remove the small time step required for stabi l i ty of explicit schemes, are 

impractical here since the forces F^0 are strongly nonlinear functions of 

the amplitudes The convergence of these equations can be accelerated, 

while retaining an explicit form for the forces, by converting them to 

hyperbolic equations10 (the second-order Richardson scheme): 

^ X f " i 8Xfn _„„ 
J - + - — J - = F ? n . (23) 

at2 T at J 

The parameter r > 0 has l i t t l e effect on the stabi l i ty of the numerical 

scheme10 and can therefore be chosen to maximize the decay rate of the 

least damped mode of Eq. (23), thereby minimizing the number of iterations 

required to reach steady state. The optimum value for T, leading to 

cr i t ica l damping in Eq. (23), is1 0 
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(24) 

where J |F|2 dV 5 J . E n |Fjn|2 dV. There is an energy principle 

associated with the second-order system equation (23). Multiplying • * • 
Eq. (23) by V[(Xjn) , taking complex conjugates, and using Eq. (21a) for W 

yIeIds 

^ • ( W K + W ) = - | M k , (25) 

where Vfy = / |X|2/2 dV is the kinetic energy. Thus, for T > 0, the sum of 

the kinetic and potential energies, which is bounded from below, decays 

monotonically until = 0 and equilibrium is attained. 

V. BOUNDARY AND INITIAL CONDITIONS 

The magnetic axis (p = 0) is a singular curve of the coordinate system 

where Vx = 0- toroidally nested surfaces, this corresponds to the one 

parameter space curve R = RQ(£), Z = ZQ(£). The geometry of the magnetic 

axis is determined by Taylor expanding x ' n * = R - Ro anc' Y = ^ - ZQ: 

X = at*)*2 + 20($)xy + 0,(5)y* + . . . . (26) 

where cq - > 0 for elliptical surfaces encircling the magnetic axis. In 

terms of the moment amplitudes this implies (for j = 1,3): 

Xjn(p = O.t) = 0 ; m t 0 . (27a) 
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In fact, if V(p) = J^ V' dp is the volume inside a flux surface, then 

yrpn „ ym/2 8 S p ^ o. Since the magnetic axis corresponds to an extremum of 

the flux (or pressure) contours, the radial variation of [RQ("»)» ZQ(^)] 

must be second order near p = 0. Hence, for j = 1,3: 

dxQ" 
- g i - (p = 0 , t ) ~ lim V'(p) . (27b) 

For the typical case when p ~ yfl, Eq. (27b) reduces to (X9")' = 0. For 

j = 2(X2 = A), the origin boundary condition may be deduced by noting from 

Eq. (4e), together with the fact that RQ and Zg both vanish at the magnetic 

axis, that 

l i m A e = — 1 . (27c) 
V+0 f Vg d9 

Equations (27a) and (27b) imply R = R0($) + p ^ O ^ c o s 0 + r2 (^)sin 9] + 

0(p2), with a similar expansion for Z, and hence 

Vg = V'[g0te) + V 1 / 2
g i ( 0 , $ ) ] . Since g0(^) is independent of 0, Eq. (27c) 

yields 9X?Jn(p = O,t)/90 = 0. This boundary condition given here dif fers 

from those in Ref. 4, due to the polar representation used there. 

Now consider two types of boundary conditions that may be imposed at 

the plasma edge. 

A. Fixed boundary 

In this case, the shape of the outermost flux surface (p = 1) is fixed 

for a l l times. When the poloidal angle renormaIization parameter A is 
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retained, this is equivalent to prescribing the individual Fourier 

harmonics of both R and 2 at p = 1 (see Appendix B): 

for j s 1,3. No boundary condition is needed for *2 ~ since F̂  is local 

In p (there are no radial derivatives of X in F^). In this representation, 

the angle coordinate A accounts for the rotation of the magnetic field 

lines in the poloidal direction during the minimization of W. 

B. Free boundary 

The position of the free plasma boundary is determined by the 

continuity of the total pressure |b | 2 / 2^ + p at the plasma-vacuum 

interface (p = 1) and by the vanishing of the normal component of the 

vacuum field over this surface. These boundary conditions can be 

incorporated into the variational principle1,4 by appending the vacuum 

magnetic energy to the plasma energy Wpj given in Eq. (8). The total 

energy functional then becomes: 

conserves the total plasma and vacuum coil currents.) The minus sign in 

Eq. (29) guarantees the continuity of the total pressure at the 

plasma-vacuum interface. In the plasma, where the magnetic flux is 

conserved on each flux surface, a change in the position of the boundary 

produces a reciprocal variation in the energy. [Thus, there is a minus 

(28) 

(29) 

where = -Vi/ is the vacuum magnetic field. (This representation for By 
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sign in the last term of Eq. (13).] In general, the vacuum region wil l 

contain current-carrying coils surrounded by a conducting wall. The vacuum 

integral in Eq. (29) must then be separated into regions bounded by the 

coil surfaces, with appropriate jumps in u to account for the coil 

currents. 

Taking the time derivative of Eq. (29) and using Eq. (13) to evaluate 

the plasma energy change yields 

£ = - / F , ! , d'a + Mo J f*„d*K- J S|5| d9d<; 
vacuum p_j 

- \iq ( J uBv • d?p - J vBv • dS) . (30) 
p=l wa11 

where 

is the pressure jump at the plasma-vacuum interface, |B|2 is the magnetic 

f ie ld strength in the plasma given by Eq. (8b), d3p = Vp|>/g| d6 d£, and 

Fv = -V • §„ = V2v (31b) 

is the vacuum •force." The last term in Sj represents the vacuum energy 

change due to the motion of the free boundary. Thus, the descent equation 

for the vacuum potential is 

v = F„ . (31c) 

Equation (30) is a minima* principle for the plasma-vacuum equilibrium 

configuration. The physical boundary conditions, which require 
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§y * d^p = 0 end S; = 0 at p = 1 and • dJa = 0 at the conducting walI, 

are also natural boundary conditions for the extremization of W. The 

solution of Eq. (31c) using a Fourier series expansion for v is discussed 

in Appendix C. 

Now, consider the in i t ia l conditions needed to integrate Eq. (23). 

Both Xjn and Xjn must be prescribed at the beginning of the descent. To 

guarantee that W wil l decrease at t = 0, i t is convenient to take 

Jyn _ aprpn ( 3 2 a ) 

In practice, a ^ 0 provides a sufficiently well-behaved start for the 

descent equations. The in i t ia l profiles Xjn(p) are chosen consistent with 

the boundary conditions at p - 0 and p = 1. From Eqs. (27) and (28), i t 

follows that for j # 2: 

( v(p)XyC m jiO 

Xyn(p,0) = 1 (32b) 

f XJQ m = 0 , 

where Xjjj are the in i t ia l boundary data. For j = 2, Amn = Xj"(p, 0) = 0 is 

used in practice. 

In Eq. (32b), v(p) is a monotonic function of p satisfying v( l ) - 1 

and v(0) = 0 . [A small boundary layer near the magnetic axis where 

Xj" M V r / 2 is neglected by the ansatz in Eq. (32b).] Geometrically, v(p) is 

simply related to the in i t ia l plasma volume in an equivalent 

infinite-aspect-ratio system (R ®): 
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V (o 0) 1 / 7 v(p) = feW • <32c> 
where Va = Rm / G d8 d<; . Here, G is the 2-D J&cobian defined in 

Eq. (17b), and Rm is the mean radius of the magnetic axi l . The radial grid 

can be adjusted by choosing the functional form for v(p). For example, 

v(p) = p identifies p with the the usual polar radius, whereas v(p) = p 1 ^ 

makes p a measure of the volume inside a flux surface.4 

There are other possible ways of choosing p. For toknmaks and 

stellarators with strong uniform toroidal magnetic f ields, 4>(p) is 

monotonic and a magnetic prescription 

P - (32") 

can be used. In Refs. S and 7, -p was chosen to be the cos & harmonic of 

R. The poloidal flux X'(P) * A S THEN determined from the surface-averaged 

force balance equation. <\/gFp> = J J VgFp d0 d£ = 0, which results from 

varying the energy with respect to X at fixed L(X) and p(x)- This equation 

is not, however, independent of the other moment equations Fjn = 0. 

Indeed, Eq. (16) can be used to show that 

WgFp> = - m E n [ (XRn)' (FRn) * * ( X f ) ' ( F f ) *] . 

Thus, the various prescriptions for p are related, but only those given by 

Eqs. (32c,d) preserve the symmetry of the descent equations. 

Once the radial coordinate is specified, the in i t ia l magnetic and 

pressure profiles can be chosen so that the surface-averaged pressure 
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balance equation <VgFp> = 0 wil l be satisfied at t = 0. (In the 2-D 

problem considered in Ref. 6, the average pressure balan^ was satisfied at 

a l l times by changing from magnetic flux to current flux .ariables. This 

procedure does not, however, generalize t.<\< three dimensions.) For example, 

for fixed v and p profiles, the toroidfal flux 4> may be rescaled with 

respect to p so that the average pressure balance 

<(v/gj • V$) (̂ gB • V9)> - <(\/gJ • V0) (v/gB • V$)> + |x0p'V' = 0 , (33a) 

where <A> = J J d9 d£ A and V' = <Vg>, is satisfied. This generally 

improves the convergence rate of the descent algorithm. Using the explicit 

forms for B® and B^ given in Eq. (3), integrating the AQ and A^ derivative 

terms by parts, and assuming F^ £ 0, Eq. (33a) becomes: 

- «>M6 + MoP'V' = 0 , (33b) 

where Jq = <VgJ • V0> = -9<B^>/9p and J^ = <v/gJ • V£> = 9<Be>/9p are the 

current fluxes. Equation (33b) is exact when Fp = 0 or A = 0. Assuming 

that the pressure and rotational transform profiles are prescribed 

functions of the in i t ia l volume v(p), so that x ' = and 

p' = (9p/9v)(9v/9p), Eq. (33b) becomes a linear first-order differential 

equation for h(p), where ^'(p) = (9v/6p) [2h(p)] 1 / 2 and h is regular at 

P = 0, 

£ [(*2fle0 + + + ^ e e + + s y h + ^ P v v ' = 0 • 

(34) 
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Here, = (9v/fcp) <gjj/i/g>. pv ^ 9p/9v, and Vg = R (9v2/Dp) G(0,$). 

Equation (33b) provides a practical numerical criterion for the 

convergence to an equilibrium. Forming the quantity 

. x'jj - rjj • hqp'v 

Ix'J^I + | * 'J$| + moIP'IV ' 

note that a converged equilibrium is attained when Q is less than the 

spatial discretization error. 

VI. GEOMETRIC CONSTRAINTS ON THE FORM OF THE INVERSE REPRESENTATION 

The terms of the Fourier series comprising the moment expansions of R 

and Z in Eq. (20) are determined both by the shape of the magnetic flux 

surfaces and by the symmetry, or periodicity, of the plasma confinement 

geometry. In two dimensions, i t is well known8 that the f i r s t few terms in 

the moment expansion can be related to certain specific geometric 

properties of the flux surfaces such as the major axis Shafranov sh i f t , 

e l l i p t i c i t y , triangularity, bean-shapedness, etc. In addition, since R and 

Z are individually Fourier expanded, i t is possible to represent 

"non-starI ike" domains for which r 2 = F? + Z2 is not a single-valued 

function of the real poloidal angle 0' = tan~lZ/R. [Here, R = R - Rg, 

Z = Z - ZQ are coordinates centered at the position of the magnetic axis 

(R 0 ' z o )3 

To extend these concepts to three dimensions, consider the possible 

transformations of a flux surface as i t rotates in the toroidal direction. 
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Specifically, consider the near-axis expansion of a helically invariant 

equiIibri um: 

r2 - b/AosC/e - N4>) = (r0)2 , '?6a) 

where bf « 1 is related to the helical current strength, N is the toroidal 

field period, and 0 = 0'. To f irst order in by, Eq. (36a) cBn be written: 

r 2 = (r0)2 + b/cos(/6 - N<t>) . (86b) 

A 

Thus, for by - 0, the surfaces are circles, which have the moment expansion 

R = -rpcos 0, 1 - rpsin 8. Since 9 only enters this moment representation 
A 

as a parameter, i t can, in principle, be replaced by any function 0(0,<|>) 
A 

without affecting the surface shape. However, 0 is determined uniquely (up 

to an arbitrary periodic function of 0) by periodicity and symmetry 

constraints. First, since r = rQ is obviously axisymmetry, 90/0$ = 0. 

Second, since R (and Z) must be periodic with period 2ir, 0 = 0 + p(0) 
A 

results. (This precludes stretching transformations of the form 0 = k0 for 

integers |k| > 1.) 

Now, consider the transformations of the magnetic surfaces embodied in 

Eq. (36b) when by # 0. 

A. Toroidal ripple 

This case ( I = 0) corresponds to a circular cross-section tokamak with 

N finite toroidal field coils. The flux surfaces in the axisymmetric limit 

are now modulated in minor radius 8t the spatial wave number ({̂  = N<(>: 
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R = -rQCOS 0 (1 + ogees 4>fg) , (37a) 

Z = rgsin 0(1 + ctgcos 4ft) , (37b) 

where ag = bQ/2(rg)2. The modulation of more complex cross-sectional 

shapes can be modeled by multiplicative factors depending on 4ft as in 

Eq. at, in addition to cos 0 (or sin 0) terms, the Fourier 

series for R y, j now contains cos(0 ± 4ft) [°r sin(8 ± 4ft)] terms as 

well. 

B. HelicaI magnetic axis 

For i = 1, there is a shift of the magnetic axis that varies 

periodically in the toroidal direction: 

R = -^cos 4ft - rgcos 0 (38a) 

Z = ajsin 4ft + rgsin 0 , (38b) 

where aj = *>I/2PQ is the helical shift. Note that even though R and Z are 

not helically invariant functions by themselves, they do combine to form 

flux surfaces rg = const that depend only on the angle combination £Q - N4>. 

C. Rotating el Iiptical cross section 

When / = 2, Eq. (36b) represents an ellipse with elongation 

K = (1 - ot2)/(l + o^), where cu> = 

R = -rgcos 0 - ot2cos(0 - 4ft) » (39a) 
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1 - PQsin 9 - O2sin(0 - 0N) . (30b) 

In three dimensions, the helically invariant rotations considered so 

far must be generalized to account for effects due to ( i ) changes in the 

flux surface shape as the toroidal angle is traversed or ( i i ) a 

differential rotation rate (with for the various poloidal harmonics 

composing R and Z. As an example of the former effect, which is 

characteristic of helically wound toroidal systems where some poloidal 

harmonic mixing invariably occurs due to the dependence of the major radius 

R on 9, a flux surface may deform continuously from an e l l ipt ica l cross 

section into a triangular, D-shaped one as cjty increases. Both effects can 

be inco"oorated into the moment representation by taking 0 < m < M and 

-N < n < N, where M £ 3 is sufficient to describe a wide variety of 

cross-section shapes and N £ 2 can account for many effects of nonuniform 

toroidal rotation and changing cross-section shapes. 

V I I . MOMENT ANALYSIS OF SOLOV'EV EQUILIBRIUM 

An exact analytic solution of a 2~D equilibrium problem12 in the 

inverse coordinate representation will now be considered. This wil l 

emphasize the importance of distinguishing between the geometric angle 0 

appearing in the Fourier representation of the flux surfaces and the 

magnetic angle 0* = 0 + A [Eq. (3a)] , which describes straight magnetic 

f ie ld lines. A solution of the axisymmetric Grad-Shafranov equation12 when 

the magnetic f ie ld is represented as 3 = X Vp + F(p)V$ is 
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p ' ^ m ^ w - m - (40) 

where x ' = 2pxo (p is the normalized poloidal f lux, 0 < p < 1), 

p(p) = PoC1 - P 2 ) . a n d F2 = Rg(l - 4j3jp2). The toroidal f i e l d is 

normalized to unity i f Rg is identified with the mean major radius. Note 

that R = Rm is the magnetic axis, which is determined by the boundary curve 

p = 1. The spectral analysis of Eq. (40) is t r i v i a l in terms of the 

variables u = R2 and Z, yielding 

u = - x o W ^ P c o s e ' (41«) 

z = (Xo/Ro)Pl1 / 2P s l n e • (41b) 

Here, 0 is a geometric angle yielding a rapidly convergent Fourier 

expansion for R and Z, which is not equal to the magnetic angle 0* in which 

f ie ld lines are straight. To show this, note that the Jacobian is 

t 4 2 ) 

Thus, Vg/R2 is not a function of p alone, as Eq. (5c) requires for A = 0. 

Therefore, even though the geometric solution given in Eq. (41) sat isf ies 

the equilibrium Grad-Shafranov equation, i t apparently f a i l s to 

simultaneously satisfy JP = Fp = 0 when A = 0. By introducing the angle 

renormalization parameter A, the angle 0 can be chosen for i t s geometric 

properties while the constraint Fp = 0 is sat isf ied by A. For the present 

example, i t is easy to evaluate A expl ici t ly from Eq. (5c): 
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,2\l/2 
• I1-', i s 8 " 1 • < « 0 

where a(p) = X o ( 8 / W P/Rm < ** T h u s ' * = E \ n s i n m0« * h e r e 

m=l 

Note that for a2 < 1, decays exponentially with m. Similarly, the 

magnetic flux profi le is found to be: 

' - , , X 0 R L / I - F U Y -

X "M 

The results in Eqs. (42)-(44) provide an analytic basis for testing the 

computational methods developed here (see Sec. X). They also reveal the 

fundamental incompatibility, in the absence of angle renormalization, 

between an economical Fourier description of the flux surface geometry and 

the MHD constraint, JP = 0. 

V I I I . NUMERICAL METHOD 

In this section, some numerical aspects of solving the descent 

equations are considered. First, the time discretization of Eq. (23) is 

discussed, and an estimate for the maximum stable time step is obtained. 

Then, the spatial discretization of the forces F^0 is performed, including 

the incorporation of the boundary conditions considered in Sec. V. 

A. Time discretization 
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The descent equations (23) for the plasma can be written 

^ S ( t ) X j n = S ( t ) F * n , (45) 

where S(t) = ex p ft T - 1 d t ' . Integrating Eq. (45) from t = t t o 

t = t n + j^2 ' where t n is the time at the nth iteration, yields 

T ( V l / 2 > = ( 1 " bn) ;T0 ( f cn- l /2) + " i K ^ T W ' ( 4 6 a ) 

where At = t n + 1 / 2 - t n _ 1 / 2 . 

X T C V I / Z ) = ^ ( V l )
A t " • 0(At") (46b) 

is the discretized "velocity," and 

bn = l - e « p ( - N 2 i d t ) (46c) 
V l / 2 T 

is the incremental damping factor. Using the expression for 1/T given in 

Eq. (24) and adding a small minimum damping rate ( T — 1 ) M I N (to guarantee 

convergence near the energy minimum3) yields 

bn = 1 ~ > n d " bmin) ' («d) 

where yn = m i n ^ V ^ V l ' <p 2>n-l/<F 2>n)' <>min = C ^ W * - and 

<F2>n = / |F ( t n ) | 2 dV. With this form for bn, Eq. (46a) reduces to the 

•conjugate gradient" procedure used in Ref. 3. In practice, since Dn is 
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proportional to the algebraically largest eigenvalue of yn should be 

averaged4 over several iterations to reduce the effect of a mixture of 

eigenvectors. Since the longest damping time scales as NpAt, where Np is 

the number of radial mesh points, an average over Np previous iterations is 

approximately equivalent bo averaging over one e-folding decay time. 

The maximum stable time step At may be estimated from a von Neumann 

analysis11 of the linearized version of Eq. (46a). The result is: 

Vl/2 
= (tt^-T] > (47) 

where |Amax| is the modulus of the algebraicaIly smallest eigenvalue of F. 

Equation (47) is ( l \ i a J ) 1 / 2 » 1 times larger than the stable time step 

for an equivalent first-order time scheme. 

To estimate A , ^ , consider the eigenvalues of the spatially 

discretized and linearized operator t . Noting that the shortest radial 

wavelengths in the Fp and F^ operators will determine Amax, we can 

approximate the eigenvalue condition using only the highest-order p 

derivatives in Eq. (18). Denoting the kth eigenvector by (R^, Z^), 

Eq. (18) reduces in the short-wavelength limit to 

W - I W = - W k • 

-»R7*k + W v = - V k . (48b) 

where DRR = Z$d0, DRZ = ZgRgdQ, D ^ = R§d0, d0 = R | B | 2 / ( G V [ M < ) ) . and 

G = 7g/R. For short-wavelength modes, the diffusion coefficients in 

Eq. (48) can be treated as constants (in a WKB sense). The spatial 

discretization for the second-order derivatives in Eq. (48)is taken to be: 
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R , , ( p = R ^ ^ R M , ( 4 9 ) 

and similarly for Z " , where Ap = pn - pn_^ is the uniform radial grid 

spacing. Letting R^(n) = RQCXP(^Q), where 0Q is a real phase factor, i t 

is apparent that RJJ'(n) = -4R|t(n)sin2OQ /2)/(^P)2• Using this result and 

applying Gerschgorin's theorem11 to account for a nonuniform p dependence 

of the diffusion coefficients, i t follows from Eq. (48) that 

MEX
 M * to?" p f e HMa*(DRR' V z z r f ^ M 

*§ee 
(Ap)2 ( • © . (so) 

where §00 = 2RgQ0/(GV[). Obviously, X^1 is related to the time for an 

AIfv6n wave to travel across the radial mesh. Note that Ap = (Np - l ) " 1 , 

which implies Max|X|J ~ N2. When the cylindrical nature of the 

eigenfunctions of Eq. (48) is accounted for, i t is found that Ap in 

Eq. (50) is replaced by (Np + M/2 - 1 ) _ 1 , where M is the maximum poloidal 

mode number. 

I t is now possible to make a heuristic comparison between the steepest 

descent method and the Jacobian inversion methods used previously5,7 to 

solve the equilibrium moment equations. The Jacobian methods involve 

inverting the linearized F operator and hence determining a l I the 

eigenvalues of this operator. In contrast, the steepest descent method 

requires only an estimate for the largest eigenvalue of F. When the number 

of eigenvalues is large ( i . e . , for a s t i f f system), an accurate inversion 
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Of ? becomes prohibitively time-consuming, and the accelerated descent 

method seems preferable. 

B. Spatial discretization of the forces 

The continuous expressions for the MHD residual forces obtained in 

Sees. I l l and IV may be transformed into discrete forms by numerical 

integration of W.13 Discrete conservative forms for the Fourier-transformed 

forces are then obtained by varying the individual nodal amplitudes.4 The 

asymptotic behavior of the solutions near the magnetic axis is used to 

appropriately modify these nodal equations in the vicinity of p = 0. 

The angle integrals in Eq. (8) are replaced by discrete sums as 

follows:13 

w = / dp / / w(p.e^) de d$ 

N T N Z 

- J dp E1 E ^ »(P.®i-l /2.«J-l /2) A 8 - ( 5 1 a ) 

where A0 = 2ir/Nj, = 2IT/N2 (NJ and are the number of discrete 0 and £ 

mesh points, respectively), 0 j_ i /2 = 0 ~ A0, Sj-1/2 = U ~ */2) ^ » 

and 

is the energy density functional evaluated at the angular half-mesh points, 

where </g = RG, p = M(p)(V' )^ . and 
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V'(p) = E E ^g(p.0j-l/2'$j-l/2) AS . (51c) I j 

A rectangle Integration rule accurate to second order in A0 and was used 
in Eq. (51a). Because this rule preserves the discrete orthogonality of 
the trigonometric functions, it is more accurate14 in the present problem 
than certain nominally higher-order schemes (e.g., Simpson's rule or 
Gaussian quadrature). If there are M theta modes and N zeta modes in the 
spectrum of R, Z, and A, then Nj = 2M + 1 and N^ = 2N + 1 are the minimum 
number of points required in the sum in Eq. (51a). (This estimate assumes 
that the modes are consecutive and counts M > 0, N > 0.) 

The Fourier analysis of the coordinates R, Z, and A appearing in the 
energy density w permits an exact evaluation of w at the half-mesh points 
(®i-l/2' Sj-1/2)- ^ ' s interpolation property of the trigonometric 
functions, together with the application of fast transform techniques, that 
makes harmonic analysis desirable even for the very nonlinear equilibrium 
problem under consideration here.15 

What remains in Eq. (51a) is now a one-dimensional integration in p. 
Consider the set of Np discrete radial mesh points (nodes) p^ = (k - l)Ap 
for k = 1, Np, where Ap = (Np - l)-1. The Fourier coefficients 
Xjn(p = pk) for a = (R,A,Z) will be denoted Xjn(k). They are the nodal 
amplitudes. which are to be obtained as the solution to the discrete force 
equations. In analogy with the angle discretization in Eq. (51), it is 
useful to introduce the radial half-mesh points P|<+]y2 = fck + Pk+l)/^' 
k = 1, ..., Np - 1. Then, the p integration in Eq. (51a) becomes 

N -1 N T N Z 
w = E E E *(Pk+ l/2'ei - l / 2'Sj - l/2) Ap A e • ( 5 2 ) 

k=l i=l j=l ' t i t 
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Henceforth, for brevity, the angular subscripting is suppressed. To 
evaluate w at the radial ha If-mesh points, central sum and difference 
formulas18 can be used: Xa(k + 1/2) = [xa(k) + Xa(k + l)]/2 and 
X̂ (k + 1/2) = [Xa(k + 1) - Xa(k)]/Ap. Since w depends only on Xa and X£, 
but no higher-order radial derivatives, these relations are sufficient to 
discretize w. 

The discrete forces are obtained by taking the time derivatives of the 
nodal amplitudes Xjn(k,t) appearing in the discrete form for W, in exact 
analogy with the procedure developed in Sec, III for the continuous case. 
The result is not unique, since several radial discretizations of w, all of 
which agree to 0(Ap2), are possible. The particular discrete form for w 
used here was chosen to minimize the radial coupling between the nodal 
amplitudes, which is desirable both for numerical stability and for 
minimizing truncation errors.4 In the pressure contribution to W [the 
second term in Eq. (51b)], V' is differenced to conserve the volume, thus 
preserving the feature that the MHO forces depend on p only through 9p/3p. 
This is accomplished by introducing U = R 2 ^ and writing 

V'(k + 1/2) = E E (UeZp - u pZe) k + 1 / 2 ae , (53) 
• j 

where each term on the right of Eq. (53) is evaluated individually at 
Pk+l/2; * 0 P e x a m P l e . Ue(k + 1/2) = RR@(k) + RRg(k + 1). 

The quantity >/g|B|2 appearing in the magnetic field energy Wg = W - Wp 
is evaluated at a s follows: 

W s | B P ) k + 1 / 2 = [ f f T ' y < " > - f ' k - - (54.) 
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where 

G(k + 1/2) = (ReZp - RpZe) 7 , 

b2(M = (gfee + 2beb$9e$ + . 

k+l/2 (54b) 
(54c) 

§ijCO = 9i jCO/R(k) are the normalized metric coefficients, 
bg(k) = t,(k) -A^(k), b^(k) = 1 + Ae(k), and L(k) is the discrete 
rotational transform profile. The ratio 4>'/G, which is proportional to the 
toroidal magnetic field, has been differenced on the half-grid to preserve 
the slowly varying radial behavior of this physical variable. 

Using these expressions to complete the discretization of W in 
Eq. (51a) and taking a time derivative yields 

= - E [Aa(k) - imBa(k) + inCa(k)]*mnX|Jn(k) Ap A6 , (55) i, j, k 

where The coefficients A, B, and C at 
interior radial mesh points are 

AR(k) = ( Z Q P ) K + 1 / 2 - (ZQP)fc-l/2 
Ap + (RZe)kp'(k) 

(56a) 

B R ( k ) = - I [ ( Z P P ) K + L / 2 + ( Z P P ) K - 1 / 2 ] + ( B E B R ) K . (56b) 

(56c) 

Az(k) = 
(R0P)k-l/2 _ (RqP)k+l/2 

— - (RRe)kP'(k) . (56d) 
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¥ k ) =|[(RpP)k+1/2 + (RpP) k~1/2] + (beb2)k , (56e) 

Cz(k) = (b^bz)k , (56f) 
Ax(k) = 0 , (B8g) 

C a W = + • (66i) 
Here, 

(TO 

bp CO = - ^ - ( b e R e + , (57c) 

bZ ( k ) = R ^ ^ + W k ' ( 5 7 d ) 

P k + 1/2=^) 2 ]k+l/2[b 2 ( k ) + b 2 ( k + 1 ) ] ^ ( 5 7 e ) 

A A 

The discrete variational procedure yields fy, instead of fy, in 
Eqs. (56h,i). This departure from the rigorous variational result is 
introduced to preserve the correct asymptotic behavior for the discretized 
A as p 0. 

At the origin, the correct discrete expressions for the forces can be 
obtained by integrating Eq. (18) from p = 0 to p = Ap/2. The asymptotic 
forms for R, Z, and A at the magnetic axis, which were derived in Sec. V, 
can then be used to obtain the following expressions: 
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3 
2 ( Z Q P ) 2 A ( 1 ) 

' ( 5 8 a ) 

•i C R ( 1 ) = W R S ( 1 ) ' ( 5 8 b ) 

3 
2 ( R E P ) " 5 " 

AZ(1) = — . (58c) 

•T 
CZ(1) = ZgCl) . (BBd) 

where 

• t ^ j f ^ F esse) 

and P 3' 2 is given by Eq. (57e) for fc = 1. Note that b2(l) = <^(1), and 
Bp(k) and Bz(k) do not contribute to the m = 0 force components [since they 
are multiplied by (im) in Eq. (55)]. The result in Eq. (58) differs from 
the variational discretization by the extra factor of 2 appearing in the 
radial derivative terms of Ap and kj.- This discrepancy can be traced to 
the inadequacy of the differencing scheme for |B|2 in Eq. (54a) as p •* 0. 

At the plasma boundary p^ = 1 , either R and Z are prescribed for a 
fixed boundary equilibrium, or P(b) = R(b)|w|2(b)/S^o (where b denotes the 
boundary) can be used in Eq. (56) for a free boundary equilibrium. The X 
force may be obtained by extrapolating the value of the toroidal field to 

A 
the boundary. Then B^ and C^ have the forms given in Eq. (56), with fy 
replaced by 
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' \ 2 

•(b) = fob) (69) 

where 4>'b = l.W>'(Np - 1/2) - 0.54>'(Np » 3/2), G(b) = Re(b)Zk(b) -
Rp(b)Ze(b), where Zp(b) s Zp(Np - 1/2) and Rp(b) Rp(Np - 1/2). 

Comparing Eqs. (56)-(58) with Eq. (18), it is apparent that A a arises 
from the p derivative terms in the MHD forces (together with the 
centrifugal force in Fp), and B a and C a arise from the total 0 and £ 
derivative terms, respectively. The coefficient of Xjjn(k) in Eq. (55) 
yields the following nodal equations for the discrete Fourier-transformed 
MHD forces: 

(V[)Fjn(k) =Ajn(k) + imB£n(k) - inCj"(k) , (80) 

where A{Jn(k) = J Aa(k)^*n A0 is the discrete Fourier transform of 
Aa(k). 

IX. GALERKIN METHOD FOR MAGNETIC AXIS 
Because of the singular behavior of the force equations in the 

neighborhood of the magnetic axis, it was necessary in the previous section 
to give special consideration to the discretization process as p -» 0. As 
the number of Fourier mode amplitudes increases, there is a greater 
sensitivity to small numerical errors in the position of the axis, as well 
as the plasma shift, so that the convergence of the descent algorithm is 
adversely effected. Improved numerical stability of the descent iteration 
can be realized by applying the Galerkin method to the axis shift 
components, 



40 

"ote'p) - w J R d e = E R 0 n ( p W ( - , n s ) . (61a) n 

Zoft'P) 1 ^ r / Z d e = EZ°"(p)exp(-in$) , (61b) 

comprising the m = 0 Fourier components of R and Z. The method consists of 
expanding the Fourier amplitudes R®N and Z®n in a polynomial "'.ries in p, 
rather than discretizing them on a radial mesh. The improved numerical 
properties associated with this Galerkin procedure arise from two features 
of the method: (i) the magnetic axis RG(̂ .O), Zgfe.O) is m w determined by 
an average force balance over p, rather than by the force at the singular 
point p = 0 alone; and (ii) the radial variation of R Q , Z Q will be smooth as 
a function of p, thus guaranteeing a well-behaved Jacobian y/g (which is 
strongly effected by the radial gradients of R Q . Z Q ) . 

Let Xjn denote R0N or Z°n for j = 1 or 2, respectively. Then 

X?n(p) = E cj,kuk(p) , (62a) J k=0 

where uk(p) = >/(4k + l)P2|<(p) and P 2 k is the Legendre polynomial of order 
2k. This choice of basis functions was motivated by noting that u£(0) = 0 
satisfies the boundary condition Eq. (27b) at the magnetic axis. The uk 
are orthonormal polynomials on the interval p = [0,1] with unit weight 
function. Since the boundary condition Xyn(l) = X̂ jJ may be prescribed, the 
c ^ are not independent but satisfy E^ V(4k + ljcj^ = X^n(l). Using this 
relation to eliminate C][Q yields an unconstrained Galerkin expansion for 
XO": 
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xjn(p) = xy n CD + E <4o k(p) , 
k=l 

(62b) 

where O^p) = V(4k + l)[P2|((p) - 1] • Inserting this expansion into 

Obviously, the expansion coefficients are determined by radially weighted 
averages of the MHD residual forces. 

For the examples discussed in the next section, the Galerkin method 
has been used when mode convergence studies, requiring many Fourier modes, 
were performed. In all instances examined so far, the Galerkin approach 
has been as accurate as, but more stable than, the discretization method 
when increasing numbers of Fourier modes are retained. Also, good radial 
resolution is generally achieved by retaining only two or three expansion 
coefficients in the series, Eq. (62b). 

Some numerical results obtained using the method described in the 
previous sections are now presented. In all the examples, the effect of 
the angle renormalization parameter A is substantial. A symmetry property 
of particular prevalence in stellarator designs, which permits a 
substantial reduction in the number of equilibrium equations, has been used 
to obtain these numerical results. Many systems of practical interest 
possess at least one toroidal plane (<J» = 0, specifically) where the coil 
symmetry imposes a flux surface shape with vertical symmetry. In this 
plane, R(p,9,0) = R(p,-6,0) and Z(p,8,0) = -Z(p,-8,0). By analytic 

Eq. (21a) for W yields descent equations 

(63) 

X. NUMERICAL EXAMPLES 



42 

continuation, this symmetry property implies the following Fourier series 
for R,Z for all values of <J>: 

R(p,e,4>) = E Rmn(p) cos(m0 - n4>) , (84a) 
m,n 

Z(p,e,<t>) = E Zmn(p)sin(m9 - ncfO . (64b) 
m,n 

Thus, half the possible terms in the general Fourier expansion of R,Z have 
been eliminated by symmetry. Furthermore, by examining the structure of 
the F^ operator defined in Eq. (14b), it is possible to infer that 

A(p,e,ct>) = E Amn(p)sin(m0 - n<J>) . (64c) 
m,n 

Figures 2-4 show the flux surfaces, normalized Fourier amplitudes, and 
residual decay, respectively, for the particular 2-D Solov'ev equilibrium 
discussed in Ref. 4. With a radial mesh of 10-20 points, a discretization 
error of less than 0.156 in the value of Rq(0) (which should be 4) was 
obtained using more than two harmonics for R, Z, and For the example 
shown, ~a total of 12 harmonic amplitudes was retained (although a minimum 
of 6 harmonics produces essentially the same flux surface configurations). 
In Fig. 2, the solid lines represent the magnetic surfaces and the dashed 
lines correspond to constant G contours. Note that after the first 100 
iterations the energy has already converged to within three significant 
figures, whereas the residuals |F2| = J F2 dV (which are normalized to W) 
continue to decay at a more or less uniform rate. 

Figures 5-7 illustrate the same features for a high-beta (<0> = 3K), 
axisymmetric, D-shaped plasma. The pressure profile was taken to be 
p = pg(l - f?)2 and the rotational transform was given by v = 1 - 0.87p2. 
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Because the Jacobian for the D-shaped configuration is not uniform with 
respect to the poloidal angle 0, there is a substantial decrease in the 
rate of residual decay in this case compared with the Solov'ev equilibrium 
for which iVg/99 = 0 [see Eq. (42)]. The figures correspond to a total of 
12 poloidal harmonics, although convergence has been achieved with up to 30 
harmonics. This limited convergence study indicates that after a certain 
minimum number of harmonics is present, the values of the lowest order 
harmonics seem to remain invariant to the addition of further harmonics. 

Figures 8-10 present the flux surface and residual decay for the 
1 It heliotron model configuration, which has an outer boundary (p = 1) 

R = 10 - cos 0 - 0.3 cos(0 - P<$) , (65a) 
Z = sin 0 - 0.3 sin(0 - P<$) , (65b) 

where P = 19 is the number of field periods. A total of 18 mode amplitudes 
(6 modes each for R, Z, and A, corresponding to all combinations of m = 0, 
1, 2 and n = 0, P) was used to obtain the equilibrium configurations shown. 
Here, the pressure is p = pg(l - p2)2, and v = 0.5 + 1.5p2. The low-beta 
result shows the approximate vacuum topology, whereas at high beta 
(<0> =2%), a substantial Shafranov shift A ~ 0.2 is apparent. To obtain 
the residual decay shown in Fig. 10 for <P> = 2% took about 32 s of cpu 
time on the C R A Y computer. The results of a beta scan are summarized in 
Fig. 11, where the average toroidal shift AR = (RQQ - 19) is displayed vs 
<{3>. This is in approximate agreement with the free boundary calculations 
reported in Ref. 16. 

Finally, Figs. 12 and 13 represent the flux surfaces for the Advanced 
Toroidal Facility (ATF)17 model configuration, with an outer boundary 
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R = 2.05 - 0.29 cos 9 + 0.09 cos(9 - P<5) 
+ 0.125[cos 26 - cos(29 - P$)] , (66a) 

* Z = 0.29 sin 9 + 0.09 sin(9 - P$) 
+ 0.00675[sin 29 - sin(29 - P^)] , (66b) 

where P = 12. The pressure was chosen to be p = pg(l - p2)2, and 
L = 0.35 + 0.65p2. In Eq. (66), the (cos 9, sin 9) terms produce an 
axisymmetric circular plasma and the [cos(9 - P£), sin(9 - P^)] terms 
represent a helically varying elliptical distortion. The last terms in 
Eq. (66) describe the D-shaped distortion of the plasma most notable in 
Figs. 12 and 13 at P£ = n. At the higher <|3> value, a marked helical 
distortion (cos P9, sin P9 terms) of the magnetic axis develops, even 
though there is no pure helical modulation of the boundary surface. 
Figure 14 shows the mean toroidal axis shift AR = (Rgg - 2.05) vs <p> for 
this ATF model, which is in good agreement with the results obtained in 
Ref. 17. 
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APPENDIX A: ALTERNATIVE CALCULATION OF THE MHD FORCE 

The MHD residual force ? defined in Eq. (la) can be decomposed as 

(Al) 

where Et = (p,0,<$) and P = p + |B|2/2^XQ- The contravariant cylindrical 
coordinate basis vectors are ti, where ^ = VR = cos 4>ix + sin <f>î , 

= V<J> = (-sin 4>ix + cos cj>iy)R-1, and t^ = VZ. Here, ix and i^ are fixed 
Cartesian vectors in the R,Z plane. Then, the covariant components of ? 
are = R3' x tJ. For example, tp = VR. Thus, 

FR = TR • ? 

. ^ i 9P _ W R e e B R . a B R ) . i # (Be 8 B$ 9 w 

For the choice of toroidal coordinates £ = 4>, note that 9VR/90 = 0 and 
9VR/9£ = RV4>. Thus, Eq. (A2) becomes 

Multiplying Fp by -Vg, using Eq. (12e) for the adjoint components 9aj/9R, 
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and noting that V • S = 0 implies 8(^8°)/&6 + 8(VgB$)/9$ = 0 yields the 
expression for F^ given in Eq. (18a). 

An expression for F^ in agreement with Eq. (18b) is obtained in a 
similar manner by considering the = VZ component of 
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APPENDIX B: OPTIMAL CHOICE FOR THE POLOIDAL ANGLE 

The rate at which a magnetic flux surface is traversed in the poloidaf 
direction can be independent of its shape. This leads to the 
interdependence of the MHD forces FR, Fz, and F^ when the renormaIization 
parameter \ is introduced. This degeneracy may be resolved by specifying 
the poloidal angle 9. Several choices for 9 have been discussed in the 
literature.4'5'7'18 In this appendix, it is argued that the requirement of 
rapid convergence for the Fourier moment expansions of R and Z selects a 
particular angle 9 that has not been previously considered. 

One choice4 for 9 is a polar representation for which 9 = tan-1(Z/R), 
where (R, Z) are local Cartesian coordinates (in the plane 4> = const) 
measured from the magnetic axis. In this system, Eq. (16) is replaced by a 
single equation r ~ Fp, where r = (R2 + Z 2 ) 1 / 2 is the polar radius. 
Because r(p,9,£) must be a single-valued function of the flux coordinates, 
this representation is limited to starlike domains (or boundary shapes that 
can be mapped into starlike domains) and cannot describe, for example, 
strongly pinched surfaces that might appear in a plasma preceding the 
development of magnetic islands. In addition, the polar angle 9 may not 
lead to a rapidly convergent Fourier expansion of r. (This difficulty 
poses no problem in Ref. 4, where Fourier analysis is not used.) For 
example, an elliptical flux surface R2 + Z2/K.2 = 1 becomes (for K. > 1) r = 
[1 - (1 - KT2)sin29]-1/^, which develops a significant Fourier spectrum as 
K. departs from unity. The same problem exists for certain other angle 
choices. For example, the angle producing equal arc lengths around a flux 
surface requires 9g0g/d9 = 0 but can lead to a substantial Fourier spectrum 
even for the simplest noncircular geometric shapes. 
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To avoid the restriction to starlike domains imposed on the polar 

system, the cylindrical system (R,4>,Z) was introduced in Sec. I I I . In this 

system, a natural unique choi ce7'18 for the poloidal angle is 0 = 0 , where 

0* is the angle that, together with £ = 4>, defines a straight magnetic 

field line coordinate system. Although this choice for 0 is adequate in 

the context of Ref. 18, where the MHD equilibrium equations are solved on a 

Lagrangian grid, i t is generally inappropriate for use in conjunction with 

Fourier analysis. (An explicit analytic example of this is given in 

Sec. VI.) The poor convergence properties associated with 8* may be 

understood by considering a fixed plasma boundary with the following f inite 

parametric representation: 

Mr Nr 

= E E Rmncos(m0 - n<$) , (Bla) 
m=0 n=-Mp 

MZ NZ 

Zb(0,$) = E E Zmnsin(m0 - n<$) . (Bib) 
m=0 n=-Nz 

I t is assumed that Eq. (Bl) is the most economical series representation of 

the boundary, in the sense that any periodic displacement of 9 increases 

the total number of harmonics, MRNR + M N̂̂ . Note that the shape of the 

boundary, at a fixed toroidal angle is invariant to such displacements, 

which merely change the rate at which the boundary is traversed as 0 

increases. In general, the parametric (geometric) angle 6 in Eq. (Bl) does 
A # 

not coincide with 0 . (Even if 0 and 0 agreed in i t ia l ly , i t would be 

impossible to guarantee their equality as the plasma evolved toward 

equilibrium. This is because the operator F^, which determines the 

evolution of 0*, depends on 7g, which is not a function of the boundary 
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coordinates alone.) Thus, in terms of 0* = 0 + Aj(0*,£), where A b is a 
periodic function, Eq. (Bla) becomes (with a similar result for Zb) 

R b ( e * . d = E E Rmncos[m(0* - Aj) - n<;l 

MR Np 
= E E , R5 n cos(m9* - n$) . (B2) 

m=0 n=-Np 
ft ft 4 4 

where MpNp + M2N2 > MpNp + M^N^- Not only is the number of Fourier 
harmonics in general (substantially) increased in the 0* system, but also 
the boundary coefficients Rjn are no longer fixed during the energy 
minimization even for a fixed boundary equilibrium. Rather, they undergo18 
periodic Lagrangian displacements along the boundary curve that are of the • • • 
form 6RJJ = RQA and 8 Z B = ZQA, with A = -Fp. Thus, simply to conserve the 
outer boundary shape requires a large number of harmonics in the 0 system. 
For these reasons, it is preferable to transform to the geometric 
coordinate system 0 = 0 - A^, where the boundary Fourier coefficients can 
be fixed and where the number of harmonics is minimized. Because of the 
large number of harmonics generated by the transformation to 0* in 
Eq. (B2), it may be concluded that the development in Ref. 7, though 
technically correct, is of little practical importance. 

Having transformed to 0 at the boundary, it becomes necessary to 
extend this coordinate system into the plasma. This is exactly what 
Eq. (3a) accomplishes. The coefficients (Rmn, Z"1") in Eq. (Bl) are 
specified boundary values. This yields a unique transformation from 0* to 
0 at the boundary. However, the transformation equation (3a) is not unique 
in the plasma interior, where the same flux surface can have an infinite 
number of parametric representations under the family of transformations 
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given by Eq. (3a). This underdetermination of 8 is irrelevant in practice 
where only finite Fourier expansions are used to represent the equilibrium 
solutions. For finite-term series expansions of R and Z, there exists a 
unique poloidal angle 6 (the geometric angle) that leads to the most 
accurate solution of the inverse equilibrium problem in the sense of 
convergence in the mean. (This conclusion concerning series economization 
follows from the Fourier-Bessel theory of finite-series approximation). We 
now demonstrate that the variational principle given in Sec. Ill is capable 
of determining the geometric poloidal angle as a result of the minimization 
process (with fixed boundary conditions). That is, the variational 
principle automatically performs the series economization when the angle 
renormalization parameter A is retained. As a consequence, no constraint 
between the Fourier harmonics need be imposed _ab_ initio whenever a 
finite-series approximation to R and Z is sought. 

To prove this remarkable property of the variational equations it 
• * 

suffices to show that when A ^ 0, the equations for R and Z are independent 
whenever finite Fourier series approximations for R and Z are used. 
Without loss of generality it may be assumed that F^ = 0 can be satisfied 
by an appropriate choice of A. Then Eq. (16) yields 

where Fp = RFp is the 3-D inverse Grad-Shafranov operator. In the infinite 
mode number (continuous) limit, the underdetermination of 6 is manifested 
in Eq. (B3) by the fact that R and Z are not independent equations. 
However, for a finite-series expansion of R and Z, and hence of Rq and Zq, 

R = ZeFp ' (B3a) 

z = - V p . (B3b) 
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the Fourier moments of the variational equation (B3) needed to extract the 
appropriate harmonics of R and Z yield exactly the correct number of 
independent equations for determining each of the harmonics of R iid Z. 
This is due to the mode coupling produced by ZQ and RQ in Eq. (B3). (It is 
assumed that because of the strong nonlinearity of Fp, the harmonics of Fp 
are independent at least up to a mode number equal to the sum of the R and 
Z mode numbers. Also, since \/g t 0, RQ and Zg do not both vanish.) 

Because Eq. (B3) is indeterminate in the continuous limit, it is 
probably ill-conditioned for finite but large mode numbers. Limited mode 
convergence studies (see Sec. IX) suggest that lack of uniqueness does not 
seem to produce any deleterious numerical effects when used in conjunction 
with the steepest descent method. This is probably due to the fact that 
the initial guess for (Rmn, Z"1") is sufficient to yield a unique descent 
path and thus determines a unique poloidal angle even when many modes are 
present (up to 30 mode amplitudes have been successfully converged). 

When a unique poloidal angle choice is desired, it is possible to 
scale A from its value at the plasma boundary (which js. unique) into the 
plasma. For example, A m n = pPA^n satisfies the boundary conditions for A 
at p = 0 and p = 1. In this way, the renormalization features of A are 
retained, while Eq. (B3) is no longer ill-conditioned. 
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APPENDIX C: DESCENT METHOD FOR THE VACUUM MAGNETIC FIELD 

The consideration o* the free plasma boundary in Sec. V.B led to the 
descent equation (31c) for the vacuum potential, with the boundary 
conditions f y • d§p = 0 at p = 1 and Sy • d? = 0 at the conducting wall. 
Equation (31c) is a 3-D parabolic equation for v with homogeneous "flux" 
conditions on a moving boundary. The numerical problem of solving this 
equation in a time-varying, irregular domain can be overcome by 
transforming the cylindrical coordinates (R,4>,Z) in the vacuum region to 
polar coordinates (r,0,<;) with $ = 4>. Here r = 0 corresponds to the plasma 
boundary [R1(e,^) = R(p = 1,9,$), Z 1 (0,O = Z(p = 1,9,0] and r = 1 is the 
coil (or wall) surface [Rc(9,$), Zc(9,^)]. Thus,4 

R = Ri(e^.t) + r[Rc(9,$) - R i ^ . t ) ] , (Cla) 
Z = Z1(0,^.t) - r[Zc(0,«5) - Z1(9,«5,t)] . (Clb) 

Note that the polar radius r is considered an independent variable in 
Eq. (CI) and therefore does not change during the variation of In this 
vacuum polar coordinate system, the variation of the vacuum energy becomes 

-wv = -no1 jJ dr J d9 ds VgvF u ( i - + ? • Vv) 

+ Mfl J p + tf • Vv)Bv • dSp , (C2) 
r=0 

where dSp = VrVgy d9 d£ = dSp. The surface contribution to Sj and the wall 
term in Eq. (30) are both unchanged by this coordinate transformation and 
have been omitted from Eq. (C2) for brevity. Now, v = 9v/9t is taken at 
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fixed and the convective speed due to the coordinate motion is 
tf • Vr = r, tf • V6 = 6, and tf • = 0, where 

tf . Vr = R(* - p) (ZeRj - R Q Z X ) , (C3a) 

tf . ve = - R ( 1 - r ) (ZPRi - R p Z j ) , (C3b) 

and Rj and Zj are determined by the descent equations for the plasma moment 
amplitudes and the appropriate boundary conditions discussed in Sec. V. In 
the vacuum, 

8Ri aRr 
R e = - r > w + ( C 4 a > 

Rr = Rc - Ri (C4b) 

(similar equations pertain for Z), and the Jacobian is 

Vg„ = R(ReZr - RpZe) . (C4c) 

Denoting the polar coordinates (r,0,£) = (uj^.ug), the 3-D Laplacian 
transforms in a conservative form as 

where the inverse metric tensor elements in the vacuum are 
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gJJ = Vuj • Vuj 

_ a u | au, ! Bu, du, Du, 8UJ 
- n r ¥ + - & W W " 5 z " 5 r • ( C 4 e ) 

Explicit expressions for g^J in terms of derivatives of R and 2 with 
I t 4 # • respect to Uj are [note that g^J = (gv )'J]: 

G . G J 1 = R 2 G Q Q + A ^ , ( C 5 A ) 

SvOl2 = -R2gr6 " ̂ r * - ( C 5 b ) 
9v9i3 = A r 9 ^ • C0 5 0) 

2 = R 2 ^ • A 2^ , (C5d) 
3 = -Are/\rs , (C5e) 

gv9?3 = . (C5f) 

Here, gT j = RjRj + Z j Z j , AJJ = R;Z j - R jZ; , and = - R A r 0 . 

From Eq. (C2), the steepest descent equation for the vacuum potential, 
written in the polar coordinate system, becomes 

= (C6) 

T "T and the boundary condition By • dS = 0 at r = 0 and r = 1 can be written 

^ 9 , 9 1 ^ = 0 . ( C 7 0 

Since Eq. (C7a) is just the argument of the i = 1 (uj = r) derivative 
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appearing in Fv, it is simple to incorporate this boundary condition into 
the finite-difference scheme for the vacuum. Similarly, the vacuum 
pressure term appearing in Eq. (31a) becomes 

where Eq. (C7a) was used to eliminate 9i;/9r and ĝ J* = g^J - gj'gjj/9y* m ay 
be explicitly evaluated as follows: 

(C8a) 
9 v g v 

(C8b) 
9v9v 

.a _ 9ee , x V - — n - . (C8c) 
9y9v 

The solution of Eq. (C6) may be obtained in polar coordinates by 
expanding v in a Fourier series: 

v = - ̂  (1*0 + I0$) + l ^n(r)exp[i (me - ntf] . (C9) 
m, n 

Here, = [IQ1 / Bv • d?Q = / J • V£\/g dp d9 is the net toroidal plasma 
current and I® = JJQ1 / Bv • di^ is the poloidal current flowing in external 
conductors that intercept the plane Z = 0. These currents are fixed during 
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the variation of v and should be chosen initially so that the 
surface-averaged toroidal and poloidal magnetic fields in the plasma and 
the vacuum are continuous at p = 1 (assuming p vanishes at the plasma 
edge). This choice will suppress the development of surface currents. 
Thus, from Amp&re's law, Eq. (lb), it fol lows that 

iiois = j ^ b9 de , (cioa) 

M-O1® = J f ' (ClOb) 

where Bj are the covariant components of B evaluated at p = 1. In 
equilibrium, it follows from current conservation and JP = 0 [Eq. (4e)] 
that and I® as defined in Eq. (CIO) are indeed constants, independent of 
both £ and 9. Initially, however, BQ and B^ may not satisfy Eq. (4e), so 
the remaining angle averages should be performed in Eq. (CIO). When the 
currents I^ and I® are prescribed, Eq. (CIO) can be inverted to determine 
<t>'(l) and x'(l)- The matrix of coefficients relating the currents to the 
fluxes (the inverse inductance matrix) is found from Eq. (CIO) and Eq. (3) 
to be (2ir/jiQ)<gjj/Vg>, where (i, j) e (0*, £) and the angle brackets denote 
a double angle average. Note that the relationship between total current 
and total plasma magnetic flux given in Eq. (CIO) pertains only in the 
absence of surface currents. In general, since both the plasma fluxes and 
the currents are constant during the variation of W, a change in the 
inductance matrix implies 6he generation of surface currents needed to 
satisfy Amp&re's law at p = 1. 

Inserting Eq. (C9) into the vacuum energy descent equation (C2) yields 
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6lJ*dtr'^ = F 5 n " M e xP^',( m e - • V v d e • (CIla) 

where 

Fj)n = [V'(r)]"1 J N/gvexp[-i(mfl - n^)]Fv d6 d$ (CI lb) 

and V'(r) = // d6 <*$ Vgv. I n Eq. (Clla), the convective terms are to be 

surface terms in Wy, which are zero for the natural boundary conditions, 
and using the descent equation (Clla) for the potential yields 

Therefore, the vacuum potential energy is maximized and reaches a steady 
state if and only if the vacuum force F|J)n vanishes and the natural boundary 
conditions are satisfied. 

The present treatment of the vacuum fields as a maximization problem 
coupled to the internal plasma equiI ibrium differs from the approach in 
Ref. 4. There, the vacuum potential is relaxed quasi-statically for each 
shape change of the plasma boundary. In addition, here the currents and 
I® are fixed during the descent of v. If and I® were allowed to vary in 
time in Eq. (C2), the additional term -(I^XV + I^i>v)/(2n^g) would arise in 
Wy, where xv

 a n d ̂ V a r e total poloidal and toroidal vacuum fluxes, 
respectively. Therefore, in general, the maximization of the vacuum energy 
is inconsistent with fixing the vacuum fIuxes when the representation 
Bv = -Vu is used. 

evaluated using Eq. (C9), noting that di>/dd includes I** as well as periodic 
terms. Similarly, uu contains a term arising from I®. Neglecting the 

» 

(C12) 
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FIGURE CAPTIONS 

Fig. 1 Toroidal-cylindrical coordinate system. 
Fig. 2 Flux surfaces for Solov'ev equilibrium (R/4)2 = 1 - (p/2)cos 9, 

Z = G/10/2)sin 9, p = (1 - p2)/8, and X = p?. 
Fig. 3 Normalized profiles Rj, = R^o/^m a n d ^m = ^ O ^ m f o r Sol°v'ev 

equilibrium, where RQ = 3.999, R * = 1.026, RIJ> = 0.068, Z* = 1.58, 
and l\ = 0.01. 

Fig. 4 Residual decay and change in energy as a function of iteration 
number for Solov'ev equilibrium. 

Fig. 5 Flux surfaces for high-beta, D-shaped plasma, <0> 2 396, with 
Rb = 3.51 - cos 9 + 0.106 cos 29 , Zb = 1.47 sin 9 + 0.16 sin 29. 

— A X 

Fig. 6 Norma I i zed prof i I es Rm = Rmo/^m anc' = Zmg/Zm for high-beta, 
D-shaped plasma, with R$ = 3.97, R* = 1.00, = 0.107, Z* = 1.47, 
and l\ - 0.16. 

Fig. 7 Residual decay and change in energy as a function of iteration 
number for the high-beta, D-shaped plasma. 

Fig. 8 Low-beta (<|3> =0.156) flux surfaces for hel iotron model 
configuration; Rjj = 10 — cos 9 - 0.3 cos(9 - P£), Z b = sin 9 -
0.3 sin(9 - P$), with p = 19. 

Fig. 9 High-beta (<j3> = 2$) flux surfaces for heliotron model 
configuration. 

Fig. 10 Residual decay for the high-beta heliotron configuration. 
Fig. 11 Toroidal shift AR vs </3> for heliotron configuration. 
Fig. 12 Moderate-beta (<|3> = 25J) flux surfaces for ATF model 

configuration; Rfa = 2.05 - 0.29 cos 9 + 0.09 cos(9 - P$) + 
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0.0125[cos 29 - cos(20 - P$)], Zb = 0.29 sin 9 + 0.09 sin(9 - P<;) + 
0.0007[sin 29 - sin(29 - P$)], with P = 12. 

Fig. 13 High-beta (<0> = 8SI) flux surfaces for ATF model configuration. 
Fig. 14 Toroidal shift AR vs <0> for ATF configuration. 
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