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A Tensor Product b-Spline Method 
for

3D Multi-Block Elliptic Grid Generation 

Joseph W. Manke *

1 INTRODUCTION

We formulate a tensor product b-spline method for multi-block numerical grid generation. 
The Cartesian coordinate functions for a block are represented as a sum of tensor product 
b-spline basis functions defined on a parameter space for the block. The tensor product 
b-spline basis functions are constructed so that the basis functions and their first partials 
are continuous on the parameter space. The coordinate functions inherit this smoothness: a 
grid computed by evaluating the coordinate functions along constant parameter lines leads 
to smooth grid lines with smoothly varying tangents. The expansion coefficients for the 
coordinate functions are computed by solving the usual elliptic grid generation equations 
using simple collocation. This assures that the computed grid has the smoothness and 
resolution expected for an elliptic grid with appropriate control. The formulation also leads to 
a solution algorithm analogous to the ADI method with SOR used in elliptic grid generation. 
An important result of the formulation is that the dimension of the collocation equations 
is the number of distinct knots for the tensor product b-spline basis functions. Combining 
this result with the smoothness of the b-spline representation makes it possible to reduce 
the dimension of the tensor product method with respect to the finite difference method, 
simply by using fewer knots than grid points. In effect, a fine grid in the physical domain is 
obtained by constructing a smooth expansion of the coordinate functions on a coarse grid in 
the parameter space. These properties suggest that the method may prove to be a fast and 
reliable grid generation technique appropriate for use in interactive and adaptive grid codes 
in workstation environments.

In Section 2 we formulate the expansion of the Cartesian coordinate functions as a sum 
of tensor product b-spline basis functions, and then we derive the collocation and bound­
ary condition equations for the usual elliptic grid generation equations. In Section 3 we 
investigate the structure of the system of equations for the expansion coefficients and then 
formulate a solution algorithm to compute the coefficients. Finally, in Section 4 we describe 
the implementation of the method in a 2D multi-block grid code and discuss the performance 
of the method for several grids.

‘Department of Applied Mathematics, University of Washington, Seattle, WA. and on educational leave 
from Boeing Computer Services Co., Seattle, WA.
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2 TENSOR PRODUCT b-SPLINE METHOD

For a single block 5 C 3t3 with Cartesian coordinates x\ we consider a general coordinate 
system defined by curvilinear coordinate functions £’(•) mapping B into a parameter space 
I C 3£3, where I = [0,1] x [0,1] x [0,1]. The functions £*(•) are required to be one-to-one 
maps from B onto [0,1] and twice continuously differentiable with non-zero Jacobian on 
an open set containing B. Since the Jacobian is non-zero on B, the system of equations

= s1^) on B may be inverted to obtain the system of equations xl = xl(£J) on I for the 
Cartesian coordinate functions x‘(-) mapping / into 3?.

In the grid generation method, we represent the Cartesian coordinate functions x'(-) as 
a sum of tensor product b-spline basis functions defined on the parameter space I. The 
expansion coefficients are computed by solving the usual elliptic grid generation equations 
on / using simple collocation. The result is a parametric representation of the functions xl(-), 
which may be evaluated along constant parameter lines to compute a grid for the block B.

The b-spline basis functions are defined in Section 2.1 and the collocation and boundary 
condition equations are presented in Sections 2.2 and 2.3.

2.1 Expansion of the Cartesian Coordinate Functions

For a block B, the representation of the Cartesian coordinate functions x* as a sum of tensor 
product b-splines defined on the parameter space I is constructed by first defining b-spline 
basis functions on the interval [0,1] for each of the curvilinear coordinates. For the coordinate 
if’, we divide the interval [0,1] into /, intervals of equal length and define the set of /, + 1 
equally spaced breakpoints slT. as the endpoints of the intervals

Ti - 1
/i

T,- = 1, . . . , /,• + 1. (1)

Next, 
knots at

we define the set of knots by placing fc, knots at each interior breakpoint and fc, + 2 
the initial and final breakpoints, which leads to the set n, + m, knots t'n, where

n{ = kiU + 2, (2)
m,- = k{ + 2, (3)

and

n,-
. 4+i’

(rt = l,...,mt),
(r,- = mj + 1,... ,nt),
(rt- = n,- + 1,..., m + mi).

(4)

Finally, we define the b-spline functions for the coordinate as the nt- normalized b- 
spline basis functions of order m,- on the interval [0,1] for the set of knots specified
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in (4), [1]. These b-spline basis functions form a basis for the linear space of piecewise
polynomials on the interval [0,1] of degree m,- — 1 with m,- — fct- = 2 continuity conditions 
at the interior breakpoints, i.e., the b-spline basis functions and their first derivatives are 
continuous at the interior breakpoints. This property of the b-spline basis functions will be 
exploited in the representation of the Cartesian coordinate functions. Another important 
property of the b-spline basis functions is that they have small support; £/*. is zero outside 
the interval [t'T., This property will be used to simplify the collocation equations in
Section 2.2.

We now define the ni x nj x 713 tensor product b-spline basis functions on the parameter 
space / as products of the b-spline basis functions £/’.

=ur,^„(e,e,?)= ((') u?, (e) u* (e). (5)

We may now use the tensor product b-splines UTxT7Tz defined in (5) to construct a para­
metric representation of the Cartesian coordinate functions xl on the parameter space /

x — (6)

where the expansion coefficients AlnTlT3 are to be determined.
With this parametric representation as a sum of the tensor product b-splines U^nrj, 

the Cartesian coordinate functions inherit the smoothness properties of the b-spline basis 
functions 6^., i.e., the Cartesian coordinate functions xl and all their first partial derivatives 
are continuous on the parameter space /. The result of this fact is that a grid computed 
by evaluating the Cartesian coordinate functions along constant parameter lines leads to 
smooth grid lines with smoothly varying tangents.

Another result of the construction is that all the second partials of the Cartesian coor­
dinate functions exist and are continuous on /, except possibly at points that correspond 
to break points for the b-spline basis functions. Thus all the terms in the usual elliptic 
grid generation equations may be evaluated on I and collocation may be used to adjust the 
expansion coefficients Alnrir3 in (6) to obtain a solution. The detailed development of the 
collocation equations is given in the next section.

2.2 Collocation Equations for Elliptic Grid Generation

For a block B, the elliptic grid generation equations may be formulated on the parameter 
space /, [3]

0 = +
>=i j=i t=i

(7)
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where xl are the Cartesian coordinate functions, £* are the curvilinear coordinates, are 
the contravariant metric elements and P, are the control functions.

As pointed out in Section 2.1, all the terms in the elliptic grid generation equations (7) 
may be evaluated on / and collocation may be used to adjust the expansion coefficients 

in (6) to obtain a solution. We begin the development of the collocation equations by 
first defining collocation points on the interval [0,1] for each of the curvilinear coordinates. 
For the coordinate £*> we assign collocation points to each of the /,• intervals defined 
in Section 2.1. As suggested in [1], the collocation points are distributed in each interval 
according to the roots of the ki—th Legendre polynomial. This construction gives &,/, = n,—2 
collocation points P'. for the interval [0,1]

PkiiLi-^+K, ~ (^L.+l + s'u + PKi (^Li+l — sl.)) /2» L* = 1,..., U (8)

where pK<, A', = are the roots of the — th Legendre polynomial.
We may now define the (rix — 2) x (n2 — 2) x (n3 — 2) collocation points for the

parameter space / as the cross-product of the collocation points on the intervals [0,1] for 
coordinates defined in (8)

Pr,r,r, = (9)

To derive the collocation equations, we first compute the Cartesian coordinate functions 
and their partial derivatives at the collocation points P^nr^ and then substitute into the 
grid generation equations (7); the details of the derivation are presented below. Notice 
that a final interchange of the order of summation leads to a discrete approximation of the 
generating equation at the collocation points. (The notation [-]nT2^ used in the equations 
below indicates that the function inside the brackets is evaluated at the collocation point
PnTjTsO

3 3
0 = EEkl [*W] +EM [4]T-' r—' t J-n-n-rsL Jtitits T”- l Jti-pitsL J. I TITJTJ L JTI'rjT3 .

t=l 1=1
3 3

UTJTJ L J U T2T5
(10)

- 132 TiT5T3 2
i=i i=i ^2^3

t=i TlTjra 0\0l03 riTiTi (11)

- 22 2
1=1 J=1 tT\<7?03

TJTJTS l J TlTin "1

+E E1=1 <T1<T2<T3 nTj-rj <71^2^3’ (12)
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- E
<7i a'l o'a

Ii

I
i
j

i

l 4

EE[w
t=i j=i n T2T3

,»J
T1T2T3

"f" ^

i=l
T1T2T3 ^‘‘P,

Tl-f2TJ
A i

a\ ^2<T3 >

= E [B] A i
ITI&203 >

<71 <^3

(13)

(14)

where

[5]73 72 T3 
<7l<720,3

3 3
- [(^1*2*3

1=1 J=1 Tl L J n^Ts

+ E[(£'..n«)p]r„ [»"><
^ L ' J Tl 72T3

1=1
T172T3 (15)

This derivation leads to (nx — 2) x (ri2 — 2) x (n3 — 2) collocation equations for a block B, 
but there are ni x n2 x n3 expansion coefficients A^^ in the representation of the Cartesian 
coordinate functions. The additional equations needed to complete the formulation of the 
method for a block B are the boundary condition equations developed in the next section.

2.3 Boundary Conditions for the Coordinate Functions

For a block B, we obtain the boundary condition equations for the coefficients A^^ in (6) 
by first interpolating the coordinate data for the six faces of B. We use the b-spline basis 
functions defined in Section 2.1 to form a tensor product b-spline expansion for the faces of 
B on the faces of the parameter space / and interpolate the coordinate data for the faces to 
compute the expansion coefficients.

= E«(<2K(*T
TJTS

(16)

"s(e,e) = EM(<2K(<3).
7273

(17)

= E f‘nnul (t3) UU?) ’
73 71

(18)

= E (<3) tfJ. (<‘) ■
73 Tl

(19)

*•* (e,?) = E«(^K(f2).
7172

(20)

= E 04 (f‘K («’) •
71 TJ

(21)

We note that 2 x n2 x n3 + 2 x n3 x ni + 2 x ni x n2 coefficients appear in the specification 
of the b-spline representation of the faces in (16) to (21). However, these coefficients are
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not independent because the faces must be consistent along the block edges and at block 
corners: there are 4 x (ni — 2) + 4 x (n2 — 2) + 4 x (n3 — 2) + 8 consistency conditions.

Next, we consider the boundary conditions for the elliptic grid generation equations for 
a block B, which require that the Cartesian coordinate functions xl map the boundary of 
the parameter space I one-to-one onto the boundary of B. When the Cartesian coordinate 
functions have the parametric representation (6) on /, this boundary condition defines para­
metric representations of the faces of B. The faces are defined by fixing one of the curvilinear 
coordinates to be 0 or 1

(<U!,{3)
nra'nj

(22)

(m2.?3)
= 1;Tl TJTJ

(23)

(«\<u3) = Z <^n(e)ui(a)ui(e),
nrrns

(24)

(«\1,{3)
TIT2TS

(25)

({‘.e’.o) = z <^u'n(e)ux(e)u3n(o),
■nri'n

(26)

(27)

Comparing these two representations of the boundary of B, we observe that the expansion 
coefficients A^TiT2T3 in (6) must satisfy the boundary condition equations

SX^AfO) = /AV
n

(28)

n
(29)

ZA‘n„„VH0) = /£,
7)2

(30)

XXn„££(l) = fa,
7)2

(31)

5Xb„££(o) = fa,
75

(32)

ZAfaU^l) = fa.
73

(33)

The above set of equations is redundant because the faces of B must satisfy the comer and 
edge consistency conditions. Thus, we must eliminate 4x (rii —2)+4x (n2—2)+4x (713—2)+8 
equations. It is convenient to do this by replacing pairs of equations along an edge with a
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single edge boundary condition equation, and similarly, triples of equations at corners with a 
single corner boundary condition equation. We do not present the details, but the procedure 
leads to a set of 2 x (n2 — 2) x (n3 — 2) + 2 x (n3 — 2) x (m — 2) + 2 x (ni — 2) x (n2 — 2) 
face boundary condition equations, 4 x (ri! — 2) + 4 x (n2 — 2) + 4 x (n3 — 2) edge boundary 
condition equations and 8 corner boundary condition equations.

When combined with the set of (ni — 2) x (n2 — 2) x (n3 — 2) collocation equations derived 
in Section 2.2, the set of boundary condition equations constructed above completes the set 
of equations needed to formulate the tensor product b-spline method for a block B. The full 
set consists of nj x n2 x n3 equations for the n! x n2 x n3 expansion coefficients A* lT in 
(6).

3 APPLICATION of the METHOD

We have developed a block solver for the tensor product b-spline method for application in 
a multi-block grid code. The solution algorithm is designed to solve the system of equations 
derived in Sections 2.2 and 2.3 for the expansion coefficients AlnTiTi in (6). The formulation 
of the solver is analogous to the ADI method with SOR commonly used for elliptic grid 
generation. The parametric representations of the block faces, needed to define the boundary 
condition equations for each block, are computed by interpolating coordinate data for the 
faces obtained from the block interface conditions.

In Section 3.1 we investigate the structure of the system of equations for the expansion 
coefficients for a block, and then in Section 3.2 we describe the block solution algorithm.

3.1 Structure of System Equations

To formulate a solution algorithm for the tensor product b-spline method, we first investigate 
the structure of the system of equations derived in Sections 2.2 and 2.3 for the expansion 
coefficients in (6). The structure of the collocation equations may be identified by
noting that the small support of the b-spline basis functions makes it possible to reduce the 
number of terms in (14). We consider a particular collocation point PnViVi, where L{ and Kt 
are fixed in the intervals

1< U <li, (34)
1 < Ki < ki, (35)

and

n = k,(Li - 1) + Ki, (36)

and observe that the tensor product b-spline basis function is nonzero at PTlT2T3 only
if

7



ki(Li — 1) + 1 < cri < ki(Li — 1) + mt-. (37)

Thus, the collocation equation (14) has only mj x m2 x m3 nonzero terms for each collo­
cation point, and we may reduce (14) to the form

0
mi m2 m3
LEE [BKA™.

1/1=1 1/3=1 1/3=1
(38)

where

crj = ki(Li - 1) + Vi. (39)

In a similar fashion, we observe that the boundary condition equations (28) and (29) have 
only mj — 1 nonzero terms, (30) and (31) have only m2 — 1 nonzero terms, and (32) and (33) 
have only m3 — 1 nonzero terms.

The result of these observations is that the system of equations for the expansion co­
efficients has a familiar block, banded structure. When k\ = k2 = ks = 1, the
b-spline basis functions are quadratics and the structure is similar to the structure of the 
finite difference equations for elliptic grid generation when 2-rd order centered differences 
are used.

3.2 Solution Algorithm for System Equations

Using the structure of the system equations identified in Section 3.1, we have formulated 
a solution algorithm for the tensor product b-spline method that is analogous to the ADI 
method with SOR commonly used for elliptic grid generation. The algorithm sweeps over 
lines of collocation points and updates corresponding lines of expansion coefficients. The 
corrections to the expansion coefficients are computed by solving a system of equations 
derived from the collocation and boundary condition equations for the line.

We begin by establishing a correspondence between collocation points and expansion 
coefficients. For a collocation point PnTirs, where £, and Ki are fixed in the intervals

1< Li </,-, (40)
1 < Ki < kh (41)

and

Ti = ki(Li - 1) + Ki, (42)

we specify that the corresponding expansion coefficient AlCl<77<T3 has the indices

8



(Ti — ki(Li — 1) + Ki + 1. (43)

For the sweep over Ti-lines (n varies, r2 and r3 are fixed) of collocation points, we define 
the corrections for the corresponding sz 1-line (ai varies, (T2 and <t3 are fixed) of expansion 
coefficients

Ah(n+\) _ Al,(n) I
■rleri<r2<T3 villas ' ^/a<T1<T2<7'3> (44)

where the indices (<t1o-2<t3) correspond to the indices (rir2r3) as defined in (43). The super­
script (n) in (44) refers to the iteration number. Lines already processed in the sweep over 
ti-lines of collocation points are at iteration (n + 1); the current and succeeding lines are at 
iteration (n).

Finally, we derive the equations defining the correction terms by substituting (44) into 
the collocation equation (39) for the Ti-line of collocation points , where Li and K\
vary and L2, K2, L3 and K3 are fixed in the intervals

1 < £, <

1 < Ki < ki.

and rearranging terms to obtain

£
i/i=l

[B]\n-nr3 s;a1<(*)_
<71 0203^'n'crl 0203

mi m2 m3
— v' a^*)l <Ti<rj<r3

1/1=1 1/3=1 1/3=1

where

(45)
(46)

(47)

^ = ki(Li - 1) + Ki (48)
d'i = ki(Li — 1) -j- Ki + 1 (49)
<Ti = ki(Li - 1) + i/i. (50)

The superscript (*) in (47) indicates that the most recent iterate of the expansion coeffi­
cients are used in the sum.

This derivation leads to ni — 2 equations for the ni correction terms SA1^^ for the <ri- 
line of expansion coefficients. The two additional equations needed to complete the system 
of equations for the correction terms are derived using the boundary condition equations for
Alff2ff3 Aniff2ff3‘

The resulting system of ni equations for the ni correction terms for the <7i-line of expansion 
coefficients has a banded structure; the lower and upper bands are of width k\. We use a 
band solver to compute the correction terms and then use SOR to apply the corrections to 
the expansion coefficients.
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4 RESULTS of the RESEARCH

To test the tensor product b-spline method, we have implemented the block solver described 
in Section 3.2 in a 2D multi-block grid code previously developed by the author, [2]. In the 
modified grid code, the elliptic grid generation equations are solved using either the original 
block solver for the finite difference method or the block solver for the tensor producr b- 
spline method. With either solver, the generation equations are solved block by block, while 
maintaining the block interface conditions. The solution for each block is iterated using 
the ADI method with SOR commonly used for elliptic grid generation. Having similar 
implementations of the finite difference and tensor product b-spline formulations in the 
modified grid code made it possible to compare the performance of the two methods.

To demonstrate the tensor product b-spline method and compare its performance to 
the finite difference method we selected two grid generation problems: a C-grid for the 
NACA-0012 Airfoil and an O-grid for a cross-section of the Model 350 Fighter. The studies 
conducted with these test cases are reviewed in Sections 4.1 and 4.2.

The results of the studies indicate that the tensor product b-spline method may be applied 
in a multi-block grid code to compute smooth elliptic grids for practical grid generation 
problems. The expansion of the coordinate functions in smooth b-spline basis functions 
makes it possible to compute fine grids in the physical domain using coarse grids in the 
parameter domain. For the problems studied, this reduction in the dimension of the problem 
and the corresponding increase in convergence rate, made the method as fast or faster than 
the finite difference method.

4.1 C-Grid for NACA-0012 Airfoil

Figure 1-a shows a C-grid for the NACA-0012 airfoil computed with the modified multi­
block grid code using three blocks and the block solver for the finite difference method. 
Figure 1-b shows the block boundaries in the computed grid and indicates the number of 
grid points for each coordinate direction. The total number of grid points for all blocks is 
4160. The converged grid was computed with 70 outer iterations over the three blocks with 
an inner iteration of one line sweep for each coordinate direction for each block. As shown 
in Figure 1-a the computed grid is a smooth elliptic grid with high resolution near the the 
airfoil surface.

Figures 2 and 3 illustrate the first study with the tensor product b-spline method for 
the NACA-0012 airfoil, in which we considered the task of generating a C-grid for the 
airfoil. Figure 2-a shows a C-grid computed with the modified multi-block grid code using 
three blocks and the block solver for the tensor product b-spline method. The grid lines 
in the figure are lines on which one coordinate has a constant value equal to the value of 
a collocation point for the coordinate. Thus the grid points in the figure are the points 
at which the elliptic grid generation equations were solved by the tensor product b-spline 
method. Figure 2-b shows the block boundaries in the computed grid and indicates the 
number of intervals for each coordinate direction. Quadratic b-splines (ki = 1) were used 
for all blocks. The total number of b-spline basis functions for all blocks is 256, which is
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approximately 6.2% of the total number of grid points in the finite difference grid. The 
converged grid was computed with 10 outer iterations over the three blocks with an inner 

iteration of one line sweep for each coordinate direction for each block. Figure 3-a shows 
the C-grid computed by evaluating the tensor product b-spline solution at equally spaced 
parameter values to obtain the same number of grid points as in the finite difference grid. 
Figure 3-b shows an expanded view of the C-grid near the airfoil surface. Notice that the 
fine grid computed from the coarse b-spline grid is as smooth and well resolved as the finite 
difference grid. The total cost of computing the fine grid with the tensor product b-spline 
method is 12.7% of the total cost of the finite difference method. The solution phase cost 
of computing the fine grid with the tensor product b-spline method is 7.6% of the solution 
phase cost of the finite difference method.

Figures 4 to 7 illustrate the second study with the tensor product b-sphne method for 
the NACA-0012 airfoil, in which we considered the task of generating a fine inner C-grid 
and a coarse outer C-grid for the airfoil. Figures 4-a and 4-b show the finite difference grid 
and block boundaries computed for a six block C-grid. The total number of grid points for 
all blocks is 4290. The converged grid was computed with 70 outer iterations over the six 
blocks with an inner iteration of one line sweep for each coordinate direction for each block. 
As shown in Figure 4-a the computed grid is a smooth elliptic grid with high resolution near 
the the airfoil surface and is nearly identical with the C-grid obtained with three blocks in 
the first study. Figures 5-a and 5-b show the b-spline grid and block boundaries computed 
for the six block C-grid. Quadratic b-splines (fc,- = 1) were used for all blocks.The total 
number of b-spline basis functions for all blocks is 512, which is approximately 11.9% of the 
total number of grid points in the finite difference grid. The converged grid was computed 
with 15 outer iterations over the six blocks with an inner iteration of one line sweep for each 
coordinate direction for each block. Figure 6-a shows the C-grid computed by evaluating 
the tensor product b-spline solution at equally spaced parameter values to obtain the same 
number of grid points as in the finite difference grid. Figure 6-b shows an expanded view 
of the C-grid near the airfoil surface. Notice that the fine grid computed from the coarse 
b-sphne grid is as smooth and well resolved as the finite difference grid. The total cost 
of computing the fine grid with the tensor product b-sphne method is 33.6% of the total 
cost of the finite difference method. The solution phase cost of computing the fine grid 
with the tensor product b-sphne method is 27.0% of the solution phase cost of the finite 
difference method. Figure 7-a shows the C-grid computed by evaluating the tensor product 
b-sphne solution at different parameter spacings in the inner and outer blocks. For the inner 
blocks, the tensor product b-spline solution is evaluated at equally spaced parameter values 
to obtain the same number of grid points as in the finite difference grid. For the outer blocks 
the parameter spacing is doubled to obtain one-half the number of grid points as in the finite 
difference grid. Figure 7-b shows an expanded view of the C-grid near the airfoil surface.

4.2 O-Grid for Model 350 Fighter

Figures 8 to 11 illustrate the study of a cross-section of the Model 350 Fighter with the 
tensor product b-spline method, in which we considered the task of generating an O-grid
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for the fighter. Since the boundary of the cross-section is complex, we used an inner blocking 
with a fine b-spline grid for accuracy near the boundary and an outer blocking with a coarse 
b-spline grid for the far-field. Figures 8-a and 8-b show the finite difference grid and block 
boundaries computed for a four block O-grid for the fighter. The total number of grid 
points for all blocks is 11132. The convergered grid was computed with 100 outer iterations 
over the four blocks with an inner iteration of one line sweep for each coordinate direction 
for each block. As shown in Figure 8-a the computed grid is a smooth elliptic grid with 
high resolution near the surface of the fighter. Figures 9-a and 9-b show the b-spline grid 
and block boundaries computed for the four block O-grid. A detailed representation of the 
cross-section boundary was obtained by using a large number of intervals for the coordinate 
of the inner block which follows the cross-section boundary. Quadratic b-splines (Jfe, = 1) 
were used for all blocks. The total number of b-spline basis functions for all blocks is 1920, 
which is approximately 17.2% of the total number of grid points in the finite difference grid. 
The converged grid was computed with 40 outer iterations over the four blocks with an inner 
iteration of one line sweep for each coordinate direction for each block. Figure 10-a shows 
the O-grid computed by evaluating the tensor product b-spline solution at equally spaced 
parameter values to obtain the same number of grid points as in the finite difference grid. 
Figure 10-b shows an expanded view of the O-grid near the fighter surface. Notice that 
the fine grid computed from the coarse b-spline grid is as smooth and well resolved as the 
finite difference grid and gives an accurate representation of the fighter boundary. The total 
cost of computing the fine grid with the tensor product b-spline method is 58.7% of the 
total cost of the finite difference method. The solution phase cost of computing the fine grid 
with the tensor product b-spline method is 55.2% of the solution phase cost of the finite 
difference method. Figure 11-a shows the O-grid computed by evaluating the tensor product 
b-spline solution at different parameter spacings in the inner and outer blocks. For the inner 
blocks, the tensor product b-spline solution is evaluated at equally spaced parameter values 
to obtain the same number of grid points as in the finite difference grid. For the outer blocks 
the parameter spacing is doubled to obtain one-half the number of grid points as in the finite 
difference grid. Figure 11-b shows an expanded view of the O-grid near the fighter surface.
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a* Three Block Finite Difference Grid

b. Block Boundaries

Figure 1: C-Grid for NACA-0012 Airfoil
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a. Three Block Tensor Product b-Spline Grid

b. Block Boundaries

Figure 2: C-Grid for NACA-0012 Airfoil
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a. Fine Grid Computed from Tensor Product b-Spline Grid

b. Detail of Fine Grid

Figure 3: C-Grid for NACA-0012 Airfoil
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a. Six Block Finite Difference Grid

b. Block Boundaries

Figure 4: C-Grid for NACA-0012 Airfoil
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b. Block Boundaries

Figure 5: C-Grid for NACA-0012 Airfoil
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a. Fine Grid Computed from Tensor Product b-Spline Grid

b. Detail of Fine Grid

Figure 6: C-Grid for NACA-0012 Airfoil
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a. Fine Inner Grid, Coarse Outer Grid

b. Detail of Inner Grid

Figure 7: C-Grid for NACA-0012 Airfoil
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a. Four Block Finite Difference Grid

b. Block Boundaries

Figure 8: 0-Grid for Model 350 Fighter
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a. Four Block Tensor Product b-Spline Grid

b. Block Boundaries

Figure 9: 0-Grid for Model 350 Fighter

21



V

a. Fine Grid Computed from Tensor Product b-Spline Grid

b. Detail of Fine Grid

Figure 10: O-Grid for Model 350 Fighter
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a. Fine Inner Grid, Coarse Outer Grid

b. Detail of Inner Grid

Figure 11: 0-Grid for Model 350 Fighter
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