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A Tensor Product b—-Spline Method
for
3D Multi-Block Elliptic Grid Generation

Joseph W. Manke *

1 INTRODUCTION

We formulate a tensor product b-spline method for multi-block numerical grid generation.
The Cartesian coordinate functions for a block are represented as a sum of tensor product
b-spline basis functions defined on a parameter space for the block. The tensor product
b-spline basis functions are constructed so that the basis functions and their first partials
are continuous on the parameter space. The coordinate functions inherit this smoothness: a
grid computed by evaluating the coordinate functions along constant parameter lines leads
to smooth grid lines with smoothly varying tangents. The expansion coefficients for the
coordinate functions are computed by solving the usual elliptic grid generation equations
using simple collocation. This assures that the computed grid has the smoothness and
resolution expected for an elliptic grid with appropriate control. The formulation also leads to
a solution algorithm analogous to the ADI method with SOR used in elliptic grid generation.
An important result of the formulation is that the dimension of the collocation equations
is the number of distinct knots for the tensor product b-spline basis functions. Combining
this result with the smoothness of the b—spline representation makes it possible to reduce
the dimension of the tensor product method with respect to the finite difference method,
simply by using fewer knots than grid points. In effect, a fine grid in the physical domain is
obtained by constructing a smooth expansion of the coordinate functions on a coarse grid in
the parameter space. These properties suggest that the method may prove to be a fast and
reliable grid generation technique appropriate for use in interactive and adaptive grid codes
in workstation environments.

In Section 2 we formulate the expansion of the Cartesian coordinate functions as a sum
of tensor product b-spline basis functions, and then we derive the collocation and bound-
ary condition equations for the usual elliptic grid generation equations. In Section 3 we
investigate the structure of the system of equations for the expansion coefficients and then
formulate a solution algorithm to compute the coefficients. Finally, in Section 4 we describe
the implementation of the method in a 2D multi-block grid code and discuss the performance
of the method for several grids.

*Department of Applied Mathematics, University of Washington, Seattle, WA. and on educational leave
from Boeing Computer Services Co., Seattle, WA.



2 TENSOR PRODUCT b-SPLINE METHOD

For a single block B C R with Cartesian coordinates z*, we consider a general coordinate
system defined by curvilinear coordinate functions ¢'(-) mapping B into a parameter space
I C R3, where I = [0,1] x [0,1] x [0,1]. The functions £'(-) are required to be one-to—one
maps from B onto [0,1] and twice continuously differentiable with non-zero Jacobian on
an open set containing B. Since the Jacobian is non-zero on B, the system of equations
' = £(27) on B may be inverted to obtain the system of equations z' = z*(¢7) on I for the
Cartesian coordinate functions z‘(-) mapping [ into R.

In the grid generation method. we represent the Cartesian coordinate functions z*(-) as
a sum of tensor product b-spline basis functions defined on the parameter space I. The
expansion coefficients are computed by solving the usual elliptic grid generation equations
on I using simple collocation. The result is a parametric representation of the functions z'(-),
which may be evaluated along constant parameter lines to compute a grid for the block B.

The b-spline basis functions are defined in Section 2.1 and the colloca.tlon and boundary
condition equations are presented in Sections 2.2 and 2.3.

2.1 Expansion of the Cartesian Coordinate Functions

For a block B, the representation of the Cartesian coordinate functions z! as a sum of tensor

product b-splines defined on the parameter space I is constructed by first defining b-spline
basis functions on the interval [0, 1] for each of the curvilinear coordinates. For the coordinate
&, we divide the interval [0,1] into /; intervals of equal length and define the set of I; + 1
equally spaced breakpoints si as the endpoints of the intervals

n=1,...,+1. (1)

Next, we define the set of knots by placing k; knots at each interior breakpoint and k; + 2
knots at the initial and final breakpoints, which leads to the set n; + m; knots ¢!, where

ni = kil;+2, (2)
m; = ki+2, (3)
and .
s1 (i=1,...,my),
th = Si-f-(f-‘-mwk.'-f-l)/k." (i=mi+1,...,n), (4)
Sii+1) (i=ni+1,...,n; 4+ my).

Finally, we define the b-spline functions for the coordinate ¢ as the n; normalized b-
spline basis functions U} of order m; on the interval [0,1] for the set of knots ¢ specified
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in (4), [1]. These b-spline basis functions form a basis for the linear space of piecewise
polynomials on the interval [0,1] of degree m; — 1 with m; — k; = 2 continuity conditions
at the interior breakpoints, i.e., the b—spline basis functions and their first derivatives are
continuous at the interior breakpoints. This property of the b-spline basis functions will be
exploited in the representation of the Cartesian coordinate functions. Another important
property of the b—spline basis functions is that they have small support; U,".'. is zero outside
the interval [t¢, ¢, .]. This property will be used to simplify the collocation equations in
Section 2.2.

We now define the n; x ng X n3 tensor product b-spline basis functions on the parameter
space I as products of the b—spline basis functions U7,

Unmrs = Unmn (€,6,8) = UL () U2 (&) U2 (). (5)

We may now use the tensor product b-splines U,, ., defined in (5) to construct a para-
metric representation of the Cartesian coordinate functions z' on the parameter space I

zl = E A:'11'273Uﬁ7'2731 (6)

n7273

where the expansion coefficients A! , .. are to be determined.

With this parametric representation as a sum of the tensor product b-splines U, r,r,,
the Cartesian coordinate functions inherit the smoothness properties of the b—spline basis
functions U .,‘;.. , i.e., the Cartesian coordinate functions z' and all their first partial derivatives
are continuous on the parameter space /. The result of this fact is that a grid computed
by evaluating the Cartesian coordinate functions along constant parameter lines leads to
smooth grid lines with smoothly varying tangents.

" Another result of the construction is that all the second partials of the Cartesian coor-
dinate functions exist and are continuous on I, except possibly at points that correspond
to break points for the b-spline basis functions. Thus all the terms in the usual elliptic
grid generation equations may be evaluated on I and collocation may be used to adjust the
expansion coefficients A’ in (6) to obtain a solution. The detailed development of the
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collocation equations is given in the next section.

2.2 Collocation Equations for Elliptic Grid Generation

For a block B, the elliptic grid generation equations may be formulated on the parameter
space I, [3]

3 3 3

0 = Z Z g‘jxlfgfe + Z g“Pg:J:és, (7)

=1 j=1 =1



where z! are the Cartesian coordinate functions, £ are the curvilinear coordinates, g'/ are

the contravariant metric elements and P; are the control functions.

As pointed out in Section 2.1, all the terms in the elliptic grid generation equations (7)
may be evaiuated on I and collocation may be used to adjust the expansion coefficients
Al .. in (6) to obtain a solution. We begin the development of the collocation equations by
first defining collocation points on the interval [0, 1] for each of the curvilinear coordinates.
For the coordinate £, we assign k; collocation points to each of the [; intervals defined
in Section 2.1. As suggested in [1], the collocation points are distributed in each interval
according to the roots of the k;—th Legendre polynomial. This construction gives k;l; = n;—2
collocation points P}, for the interval [0,1]

P;.'(L.'—l)-kK.' = (sl‘L;+1 + si.» + Pk, (si.'+1 - 3}..-)) /2a L:’ =1,... ,li (8)

where pg,, K; = 1,...,k; are the roots of the k; — th Legendre polynomial.

We may now define the (n, — 2) x (n; — 2) x (n3 — 2) collocation points Py, ., for the
parameter space I as the cross-product of the collocation points on the intervals [0,1] for
coordinates £* defined in (8)

Prime = (P;,P;‘;,Pfs). (9)

To derive the collocation equations, we first compute the Cartesian coordinate functions
and their partial derivatives at the collocation points P, .., and then substitute into the
grid generation equations (7); the details of the derivation are presented below. Notice
that a final interchange of the order of summation leads to a discrete approximation of the
generating equation at the collocation points. (The notation [-], . . used in the equations
below indicates that the function inside the brackets is evaluated at the collocation point

P"'l"'2"’3‘)

3 3
0 = ;g [g'J]ﬂﬂn[xe f'] +; [ "P]n‘r:ﬂ [zii]ﬁﬁ‘m’ (10)
3 3
= g le [g'-’]ﬁﬁ?‘3 ﬂg;ﬂ Aaluzﬂa[ alazaa)e.f]]ﬂﬁﬁ
3
+§ [g“P]nrm 61;03 Aalagaa[ 0'10203)5 ]1'1‘7'213’ (11)

’ 3 3 ..
= ZZ Z [(U"1°7"3)5“‘-’]nnn [gU]nnnAf’“’”’

=1 j=1 010203

+Y T [Onesle] [0

1=1 010203

nmn 010203’ (12)
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Sl bopof CNM I 7

010203 i=1 j=1 nnm
3 . .
+ 2:1 [(U"l"2"3)€‘]nnm [‘q"P'-]nnn) Arrozos) (13)
= X (Bl Aviosens (14)

010203

where
B T™™ ]
01020’3 Z Z [ 71 ’203 E'E"] nm™TS [g l‘rl-r!-rs

i=1 j=1

ip.
+§ [ 010203)9]1_ . [g P']ﬁhfs. (15)
This derivation leads to (n; — 2) x (nz —2) X (n3 — 2) collocation equations for a block B,
but there are n, x ny x n3 expansion coefficients A,l,m in the representation of the Cartesian
coordinate functions. The additional equations needed to complete the formulation of the
method for a block B are the boundary condition equations developed in the next section.

2.3 Boundary Conditions for the Coordinate Functions

For a block B, we obtain the boundary condition equations for the coeficients A .. . in (6)
by first interpolating the coordinate data for the six faces of B. We use the b-spline basis
functions defined in Section 2.1 to form a tensor product b-spline expansion for the faces of
B on the faces of the parameter space I and interpolate the coordinate data for the faces to
compute the expansion coefficients.

F(ee) = LanUua(@)vi(e), (16)
W&ﬁ=§mmmm®, (1n)
W&ﬂ=§&m@mm, (18)
P(ee) = 30 () (6). s
FWM?=§&@@%@% (20)
Pe(e) = T ()0 6) 2

We note that 2 x ny X n3+2 X n3 X ny +2 x ny X n, coefficients appear in the specification
of the b-spline representation of the faces in (16) to (21). However, these coefficients are

3



not independent because the faces must be consistent along the block edges and at block
corners; there are 4 x (n; — 2) + 4 x (n2 — 2) + 4 x (n3 — 2) + 8 consistency conditions.

Next, we consider the boundary conditions for the elliptic grid generation equations for
a block B, which require that the Cartesian coordinate functions z‘ map the boundary of
the parameter space I one-to—one onto the boundary of B. When the Cartesian coordinate
functions have the parametric representation (6) on I, this boundary condition defines para-
metric representations of the faces of B. The faces are defined by fixing one of the curvilinear
coordinates £ to be 0 or 1

2 (0,8%,8) = X A, U (0)U2 () U2 (&%), (22)
2 (1,6.¢) = :2:2:/1,, (1) U2 (&) U3 (¢8), (23)
#(£,0.8) = T AL UL (€) VROV (), (24
7 (¢,1.6) = gA;mU; (&) vz s (), (25)
= (¢',¢%,0) = :ZzA‘mUl, (&) vz (&) u3 0, (26)
# (¢,6,1) = Z AmnUA (61) U (€) U2 (). (27)

Comparing these two representations of the boundary of B, we observe that the expansion

coefficients A! .. in (6) must satisfy the boundary condition equations

ZArrranl 0) = fih (28)
ZAﬁmUT’, (1) = fifs (29)
ZAW =0 = 3, (30)
ZAnfm (1) = i, (31)
ZAmmU“ 0 = £, (32)
ZAm A1) = f5 (33)

The above set of equations is redundant because the faces of B must satisfy the corner and
edge consistency conditions. Thus, we must eliminate 4 (ny —2)+4x(n;—2)+4x(n3—2)+8
equations. It is convenient to do this by replacing pairs of equations along an edge with a
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single edge boundary condition equation, and similarly, triples of equations at corners with a
single corner boundary condition equation. We do not present the details, but the procedure
leads to a set of 2 x (n; —2) x (n3 —2) +2 x (n3 —2) x (1 —2) +2 x (ny — 2) X (ny — 2)
face boundary condition equations, 4 x (n; — 2) + 4 X (ny — 2) + 4 x (n3 — 2) edge boundary
condition equations and 8 corner boundary condition equations.

When combined with the set of (ny —2) X (n3 —2) X (n3 —2) collocation equations derived
in Section 2.2, the set of boundary condition equations constructed above completes the set
of equations needed to formulate the tensor product b-spline method for a block B. The full
set consists of 7y x n; X n3 equations for the ny X n; x n3 expansion coefficients A/ . . in

(6).

3 APPLICATION of the METHOD

We have developed a block solver for the tensor product b-spline method for application in
a multi-block grid code. The solution algorithm is designed to solve the system of equations
derived in Sections 2.2 and 2.3 for the expansion coefficients A! __ in (6). The formulation
of the solver is analogous to the ADI method with SOR commonly used for elliptic grid
generation. The parametric representations of the block faces, needed to define the boundary
condition equations for each block, are computed by interpolating coordinate data for the
faces obtained from the block interface conditions.

In Section 3.1 we investigate the structure of the system of equations for the expansion
coefficients for a block, and then in Section 3.2 we describe the block solution algorithm.

3.1 Structure of System Equations

To formulate a solution algorithm for the tensor product b-spline method, we first investigate
the structure of the system of equations derived in Sections 2.2 and 2.3 for the expansion
coefficients A! .. in (6). The structure of the collocation equations may be identified by
noting that the small support of the b-spline basis functions makes it possible to reduce the
number of terms in (14). We consider a particular collocation point P, ,, where L; and K;

are fixed in the intervals

1< L; <, (34)
1< K; <k, (35)

and
o= k(Li—-1)+ K, (36)

and observe that the tensor product b-spline basis function U,,,,,, is nonzero at P, r,r, only
if



k(Li-1)4+1< o; <k{L;—1)+m,. (37)

Thus, the collocation equation (14) has only m; X m; x m3 nonzero terms for each collo-
cation point, and we may reduce (14) to the form

my m2 3
0 = Z Z z [B];’l?;:;Aloldzda’ (38)

vi=1 ve=1 v3=1

where

g = k,‘(L,‘ - 1) + v;. (39)

In a similar fashion, we observe that the boundary condition equations (28) and (29) have
only m, — 1 nonzero terms, (30) and (31) have only m; — 1 nonzero terms, and (32) and (33)
have only m3 — 1 nonzero terms.

The result of these observations is that the system of equations for the expansion co-
efficients A’,m,a has a familiar block, banded structure. When ky = k; = k3 = 1, the
b-spline basis functions are quadratics and the structure is similar to the structure of the
finite difference equations for elliptic grid generation when 2-rd order centered differences
are used.

3.2 Solution Algorithm for System Equations

Using the structure of the system equations identified in Section 3.1, we have formulated
a solution algorithm for the tensor product b-spline method that is analogous to the ADI
method with SOR commonly used for elliptic grid generation. The algorithm sweeps over
lines of collocation points and updates corresponding lines of expansion coefficients. The
corrections to the expansion coefficients are computed by solving a system of equations
derived from the collocation and boundary condition equations for the line.

We begin by establishing a correspondence between collocation points and expansion
coefficients. For a collocation point P, n, where L; and K; are fixed in the intervals

1< L; < (40)
1< Ki <k, (41)

and
n = ki(Li-1)+ K;, (42)

i

#1020, DS the indices

we specify that the corresponding expansion coefficient A

8



ag; = IC,‘(L.‘ - 1) + K,' + 1 (43)

For the sweep over 7-lines (7, varies, 7, and 73 are fixed) of collocation points, we define
the corrections for the corresponding sil1-line (o, varies, o; and o3 are fixed) of expansion
coefficients -

AL = AL+, (4
where the indices (0,0203) correspond to the indices (7;7373) as defined in (43). The super-
script (n) in (44) refers to the iteration number. Lines already processed in the sweep over
71-lines of collocation points are at iteration (n + 1); the current and succeeding lines are at
iteration (n).

Finally, we derive the equations defining the correction terms by substituting (44) into
the collocation equation (39) for the 7;-line of collocation points Pp,r , where L; and K;
vary and L,, K,, L3 and K3 are fixed in the intervals

1< L <, (45)
and rearranging terms to obtain
my my ma m3a
B A e = =L X X (BIRTR AN, (47)
=1 =l =1 =1
where
i = ki{l;-1)+ K; (48)
5 = ki(Li—1)+K;+1 (49)
oi = kiLi—1)+v,. (50)

The superscript (*) in (47) indicates that the most recent iterate of the expansion coeffi-
cients are used in the sum.

This derivation leads to ny — 2 equations for the n; correction terms 6A£,'£';),;,3 for the o,-
line of expansion coefficients. The two additional equations needed to complete the system
of equations for the correction terms are derived using the boundary condition equations for
All&g&:; and AL, 253"

The resulting system of n; equations for the n, correction terms for the ¢-line of expansion
coefficients has a banded structure; the lower and upper bands are of width k;. We use a
band solver to compute the correction terms and then use SOR to apply the corrections to

the expansion coefficients.



4 RESULTS of the RESEARCH

To test the tensor product b-spline method, we have implemented the block solver described
in Section 3.2 in a 2D multi-block grid code previously developed by the author, [2]. In the
modified grid code, the elliptic grid generation equations are solved using either the original
block solver for the finite difference method or the block solver for the tensor producr b-
spline method. With either solver, the generation equations are solved block by block, while
maintaining the block interface conditions. The solution for each block is iterated using
the ADI method with SOR commonly used for elliptic grid generation. Having similar
implementations of the finite difference and tensor product b-spline formulations in the
modified grid code made it possible to compare the performance of the two methods.

To demonstrate the tensor product b-spline method and compare its performance to
the finite difference method we selected two grid generation problems: a C-grid for the
NACA-0012 Airfoil and an O-grid for a cross-section of the Model 350 Fighter. The studies
conducted with these test cases are reviewed in Sections 4.1 and 4.2.

- The results of the studies indicate that the tensor product b-spline method may be applied
in a multi-block grid code to compute smooth elliptic grids for practical grid generation
problems. The expansion of the coordinate functions in smooth b-spline basis functions
makes it possible to compute fine grids in the physical domain using coarse grids in the
parameter domain. For the problems studied, this reduction in the dimension of the problem
and the corresponding increase in convergence rate, made the method as fast or faster than
the finite difference method.

4.1 C-Grid for NACA-0012 Airfoil

Figure 1-a shows a C—grid for the NACA-0012 airfoil computed with the modified multi-
block grid code using three blocks and the block solver for the finite difference method.
Figure 1-b shows the block boundaries in the computed grid and indicates the number of
grid points for each coordinate direction. The total number of grid points for all blocks is
4160. The converged grid was computed with 70 outer iterations over the three blocks with
an inner iteration of one line sweep for each coordinate direction for each block. As shown
in Figure 1-a the computed grid is a smooth elliptic grid with high resolution near the the
airfoil surface.

Figures 2 and 3 illustrate the first study with the tensor product b—spline method for
the NACA-0012 airfoil, in which we considered the task of generating a C-grid for the
airfoil. Figure 2-a shows a C-grid computed with the modified multi-block grid code using
three blocks and the block solver for the tensor product b-spline method. The grid lines
in the figure are lines on which one coordinate has a constant value equal to the value of
a collocation point for the coordinate. Thus the grid points in the figure are the points
at which the elliptic grid generation equations were solved by the tensor product b-spline
method. Figure 2-b shows the block boundaries in the computed grid and indicates the
number of intervals for each coordinate direction. Quadratic b-splines (k; = 1) were used
for all blocks. The total number of b—spline basis functions for all blocks is 256, which is

1
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approximately 6.2% of the total number of grid points in the finite difference grid. The
converged grid was computed with 10 outer iterations over the three blocks with an inner
iteration of one line sweep for each coordinate direction for each block. Figure 3-a shows
the C-grid computed by evaluating the tensor product b-spline solution at equally spaced
parameter values to obtain the same number of grid points as in the finite difference grid.
Figure 3-b shows an expanded view of the C—grid near the airfoil surface. Notice that the
fine grid computed from the coarse b-spline grid is as smooth and well resolved as the finite
difference grid. The total cost of computing the fine grid with the tensor product b-spline
method is 12.7% of the total cost of the finite difference method. The solution phase cost
of computing the fine grid with the tensor product b-spline method is 7.6% of the solution
phase cost of the finite difference method.

Figures 4 to 7 illustrate the second study with the tensor product b-spline method for
the NACA-0012 airfoil, in which we considered the task of generating a fine inner C-grid
and a coarse outer C—grid for the airfoil. Figures 4-a and 4-b show the finite difference grid
and block boundaries computed for a six block C-grid. The total number of grid points for
all blocks is 4290. The converged grid was computed with 70 outer iterations over the six
blocks with an inner iteration of one line sweep for each coordinate direction for each block.
As shown in Figure 4-a the computed grid is a smooth elliptic grid with high resolution near
the the airfoil surface and is nearly identical with the C-grid obtained with three blocks in
the first study. Figures 5-a and 5-b show the b—spline grid and block boundaries computed
for the six block C-grid. Quadratic b—splines (k; = 1) were used for all blocks.The total
number of b-spline basis functions for all blocks is 512, which is approximately 11.9% of the
total number of grid points in the finite difference grid. The converged grid was computed
with 15 outer iterations over the six blocks with an inner iteration of one line sweep for each
coordinate direction for each block. Figure 6-a shows the C-grid computed by evaluating
the tensor product b-spline solution at equally spaced parameter values to obtain the same
number of grid points as in the finite difference grid. Figure 6-b shows an expanded view
of the C-grid near the airfoil surface. Notice that the fine grid computed from the coarse
b-spline grid is as smooth and well resolved as the finite difference grid. The total cost
of computing the fine grid with the tensor product b—spline method is 33.6% of the total
cost of the finite difference method. The solution phase cost of computing the fine grid
with the tensor product b-spline method is 27.0% of the solution phase cost of the finite
difference method. Figure 7-a shows the C-grid computed by evaluating the tensor product
b-spline solution at different parameter spacings in the inner and outer blocks. For the inner
blocks, the tensor product b-spline solution is evaluated at equally spaced parameter values
to obtain the same number of grid points as in the finite difference grid. For the outer blocks
the parameter spacing is doubled to obtain one-half the number of grid points as in the finite
difference grid. Figure 7-b shows an expanded view of the C—grid near the airfoil surface.

4.2 0-Grid for Model 350 Fighter

Figures 8 to 11 illustrate the study of a cross-section of the Model 350 Fighter with the
tensor product b-spline method, in which we considered the task of generating an O-grid

11



for the fighter. Since the boundary of the cross-section is complex, we used an inner blocking
with a fine b-spline grid for accuracy near the boundary and an outer blocking with a coarse
b-spline grid for the far-field. Figures 8-a and 8-b show the finite difference grid and block
boundaries computed for a four block O-grid for the fighter. The total number of grid
points for all blocks is 11132. The convergered grid was computed with 100 outer iterations
over the four blocks with an inner iteration of one line sweep for each coordinate direction
for each block. As shown in Figure 8-a the computed grid is a smooth elliptic grid with
high resolution near the surface of the fighter. Figures 9-a and 9-b show the b-spline grid
and block boundaries computed for the four block O-grid. A detailed representation of the
cross—section boundary was obtained by using a large number of intervals for the coordinate
of the inner block which follows the cross-section boundary. Quadratic b-splines (k; = 1)
were used for all blocks. The total number of b-spline basis functions for all blocks is 1920,
which is approximately 17.2% of the total number of grid points in the finite difference grid.
The converged grid was computed with 40 outer iterations over the four blocks with an inner
iteration of one line sweep for each coordinate direction for each block. Figure 10-a shows
the O-grid computed by evaluating the tensor product b-spline solution at equally spaced
parameter values to obtain the same number of grid points as in the finite difference grid.
Figure 10-b shows an expanded view of the O-grid near the fighter surface. Notice that
the fine grid computed from the coarse b—spline grid is as smooth and well resolved as the
finite difference grid and gives an accurate representation of the fighter boundary. The total
cost of computing the fine grid with the tensor product b-spline method is 58.7% of the
total cost of the finite difference method. The solution phase cost of computing the fine grid
with the tensor product b-spline method is 55.2% of the solution phase cost of the finite
difference method. Figure 11-a shows the O-grid computed by evaluating the tensor product
b-spline solution at different parameter spacings in the inner and outer blocks. For the inner
blocks, the tensor product b-spline solution is evaluated at equally spaced parameter values
to obtain the same number of grid points as in the finite difference grid. For the outer blocks
the parameter spacing is doubled to obtain one-half the number of grid points as in the finite
difference grid. Figure 11-b shows an expanded view of the O—grid near the fighter surface.
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a. Three Block Finite Difference Grid

b. Block Boundaries
Figure 1: C-Grid for NACA-0012 Airfoil
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il
g ““\\l“',” 7
Q ‘\\\“\ A \\l““'
Sosstastsshio!
“““-‘

—_
O ALttt

Sua 'u"l',',',’,'?'l'i'
J]
il

]
il

b. Detail of Fine Grid

Figure 3: C-Grid for NACA-0012 Airfoil
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a. Six Block Finite Difference Grid

b. Block Boundaries
Figure 4: C-Grid for NACA-0012 Airfoil
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a. Six Block Tensor Product b-Spline Grid

b. Block Boundaries

Figure 5: C-Grid for NACA-0012 Airfoil
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a. Fine Grid Computed from Tensor Product b-Spline Grid
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b. Detail of Fine Grid
Figure 6: C-Grid for NACA-0012 Airfoil
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a. Fine Inner Grid, Coarse Outer Grid

b. Detail of Inner Grid
Figure 7: C-Grid for NACA—0012 Airfoil
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a. Four Block Finite Difference Grid

b. Block Boundaries
Figure 8: O-Grid for Model 350 Fighter
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a. Four Block Tensor Product b-Spline Grid

<>

b. Block Boundaries
Figure 9: O-Grid for Model 350 Fighter
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a. Fine Grid Computed from Tensor Product b-Spline Grid
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b. Detail of Fine Grid
Figure 10: O-Grid for Model 350 Fighter
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a. Fine Inner Grid, Coarse Outer Grid
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b. Detail of Inner Grid
Figure 11: O-Grid for Model 350 Fighter
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