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ABSTRACT 

Redts from the f i r s t  year of operation of the so lar  ground coupling re- 
search f a c i l i t y  a t  Brookhaven National Laboratory (BNL) are  presented. Nine ex- 
perlamots which are f i r s t  &eneration ground coupled heat tranefcr and storage 
devices for a so la t  source heat pump system have been operated since Deceaber, 
1978, A cemputer program called GROCS wbich models the haat t ransfer  b e m e n  
these devices and the Qarrh ha8 been written (and subsequently integrated with 
the so la r  energy systcrsl shmlafion program TRMSPS by John W. Aadrews). I n  this 
paper the ground coupling tarsearch progrsm, the f i r s t  generation m r i p r a n t s ,  
mi t h e  underground heat flow &el W C S  a re  described. Experimental r e su l t s  
f r m  December, 1978 to September, 1979 a r e  presented and coatpared to  model pre- 
d i c  tionr. 

1.1 S o l a  Source Heat Pump Systems 

A solar  source heat pump system is a solar  heating system also containing 
a heat pump i n  which the solar  heat i s  placad i n  storage and then wed ae, a heat 
source for  the heat pump wbera the storage temperature is not high enough fo r  
d i r ec t  h m t b g ,  Tha advantages of t h i s  approach are  that  inexpensive ~ o l a r  col- 
l ec to r s  not al-ys sui table  fo r  d i r ec t  heating may be used, and that  the heat 
pump is available f o r  space cooling. 

A l l  solar  heating system of reasonable s i ze  require some form of auxiliary 
heat* due to  the intsnaittancy of sunlight. In  solar  heat pump sys tem one 
has the option of using any A i l a b l e  low temperature heat source as input to 
the h a t  pttmp to provide th&s auxiliary heat (and a lso  a s  a heat sink f o r  space 
cooling). The advantage of doing so is that the aamunt of purchased e l e c t r i c i t y  
required to  drive the heat pump is l e s s  than that required fo r  e l e c t r i c  resis-  
tance heating. Further, because of the second l a w  of thermodynamics, the higher 
the temperature of the heat source, the less e l e c t r i c i t y  the heat pump will con- 
s- for  heating. 

- * Work perfomed under the auspices of the U. S. Department of Energy, System 
Development: Division, Solar Applications, Office of Assistant Secretary. . . 
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1.2 The Solar  Ground Coupling Research Program a t  Brookhaven ~ a t i ' o n a l  Labora- 
to ry  (BNL) 

The s o l a r  ground coupling research  program a t  BNL s t u d i e s  ground coupling - 
the use of the  e a r t h  a s  a h e a t  source/sink and s to rage  element - f o r  s o l a r  source 
hea t  pump systems. The p l a u s i b i l i t y  of using the  e a r t h  i n  t h i s  way has  been 
discussed i n  an  e a r l i e r  paper [l]. The goal  of our research  program is t o  de- 
termine the  f e a s i b i l i t y  of ground coupling f o r  s o l a r  source hea t  pump systems, 
and i f  f e a s i b i l i t y  i s  demonstrated, t o  spec i fy  t h e  optimal conf igura t ions  of 
ground coupling devices f o r  va r ious  c l imates ,  s i t e s  and a p p l i c a t i o n s  i n  a Hand- 
book. A key s t e p  toward this goal  i s  the  development of an experimental ly v a l i -  
dated model of ground coupling so t h a t  ground coupling devices can be designed 
r e l i a b l y  on paper. This  is a p r a c t i c a l  necess i ty  a s  the  l e n g t h  of ground cou- 
p l ing  experiments (% years)  and the  g r e a t  d i v e r s i t y  of space condit ioning needs 
and underground p r o p e r t i e s  make des ign  based pure ly  upon experiment unfeas ib le .  

Our research  program began wi th  a review of ground coupling, ground behavior 
and hea t  flow modeling l i t e r a t u r e .  Simple a n a l y t i c a l  h e a t  flow models were w r i t -  
t en  and used t o  roughly s i z e  ground coupling devices f o r  s o l a r  source hea t  pump 
systems. Eventually, a computer program c a l l e d  GROCS w a s  w r i t t e n  t o  more ac- 
c u r a t e l y  model the  behavior of ground coupling devices. GROCS was a l s o  used t o  
he lp  des ign  our f i r s t  generat ion hea t  flow experiments (and has subsequently 
been in t eg ra ted  with TRNSYS by John W. Andrews [ 2 ] ) .  These have been operated 
s ince  December, 1978, and the  r e s u l t s  from them a r e  used t o  t e s t  and r e f i n e  t h e  
computer model so  t h a t  a ( l o c a l l y )  va l ida ted  model can be crea ted .  

2. THE FIRST GENERATION EXPERIMENTS 

2.1 S o i l  Property Experiments 

Two c l a s s e s  of f i r s t  generat ion experiments have been conducted. The f i r s t  
c l a s s  c o n s i s t s  of s o i l  thermal proper ty  experiments which a r e  necessary t o  pro- 
v ide  thermal property d a t a  inpu t  f o r  the  computer model. The s o i l  volume h e a t  
capaci ty  (cp) and moisture content  were measured v i a  ca lor imetry  of s o i l  samples. 
The thermal d i f f u s i v i t y  (a) has been determined from t h e  f a r  f i e l d  underground 
temperature v a r i a t i o n s  with depth =d time. The thermal conduct iv i ty  (k) can 
a l s o  be deduced from those experiments (k=acp). Addit ional  property experiments 
a r e  planned t o  d i r e c t l y  measure the  thermal p r o p e r t i e s  and moisture content  
under the  inf luence  of heat  flows and temperature g rad ien t s  r e l evan t  t o  ground 
coupling devices. 

2.2 The F i r s t  Generation Heat Flow Experiments 

The f i r s t  generat ion heat  flow experiments were designed t o  provide t h e  ex- 
perimental  information necessary t o  produce a va l ida ted  model of ground coupling.  
Two types of devices were constructed;  (1) buried tanks made from precas t  con- 
c r e t e  r ings ,  and (2) buried f i e l d s  of serpent ine  1 1/2" nominal s i z e  f l e x i b l e  
polyethylene pipe. 

I n  operat ion,  each experiment i s  provided wi th  hea t  i n p u t s  o r  outputs  de- 
r ived  from a TRNSYS o r  GROCS-TRNSYS computer s imula t ion  of a s o l a r  hea t  pump sys- 
tem and a r e s i d e n t i a l  load i n  t h e  l o c a l  (New York) c l imate .  Each computer simu- 
l a t i o n  explores  a d i f f e r e n t  con t ro l  s t r a t e g y  scenar io .  The load simulated i s  a 



2 
f a i r l y  w e l l  i n s u l a t e d  150 m2 0500 f t  I house w i t h  a f u l l  basement and a hea t ing  
requirement of about 1 .9  X 1Q7 J / O C  day Cl0,000 ~ t u l d e g r e e  day). . The average 
Long I s l and  hea t ing  season c o n t a i n s  about  2800 O C  day/year  (5,000 degree days/  
year)  f o r  a t o t a l  annual bu i ld ing  h e a t  requirement of 5 . 3  X l 0 l Q  J / y e a r  
(50,000,000 . Btulyear)  . The annual cool ing  requirement is ahout 1.6 X l o l o  J l y e a r  
(15,000,000 Btulyear)  . The s o l a r  c o l l e c t o r  simula ed is a s i n g l e  g$azed co l -  5 l e c t o r  w i t h  an a b s c i s s a  i n t e r c e p t  ,of ATIT = 0.11 m - O C / w a t t  C0.6 ' f t  -hr-OF/Btu). 
  he h e a t  pump siniulated has  an  e f f i c i e n c y  which is  approximately 50% of t h e  
t h e o r e t i c a l  Carnot e f f i c i e n c y  over t h e  temperature range of i n t e r e s t .  The de- 
s ign ,  cons t ruc t ion  and ope ra t ion  of t h e s e  experiments  were descr ibed  i n  d e t a i l  
i n  an e a r l i e r  paper [3] .  I n  s e c t i o n  3 p h y s i c a l  desc r ip t i . ons  of t h e s e  exper i -  
ments a r e  given and t h e  experimental  r e s u l t s  from December 1978 t o  September 
1979 compared t o  computer model p red ic t ions .  

2.3 The Computer Program GROCS 

GROCS i s  a 3-dimensional h e a t  f low f i n i t e  element computer program s p e c i a l l y  
designed t o  s tudy  underground heat flow around ground coupling devices .  S ince  
n a t u r a l l y  occurr ing  ground inhomogeneities limit the  accuracy of any model based 
on bulk thermal p r o p e r t i e s  t o  about  lo%,  models which con ta in  more elements  than 
a r e  needed f o r  this l e v e l  of accuracy provide no a d d i t i o n a l  va lue  a l though they 
do u s e  a d d i t i o n a l  computer time. Also, i t  is  necessary  t o  model many d i f f e r e n t  
ground coupling conf igu ra t ions  Ce.g. a t  ENL t h e r e  are 8 d i f f e z e n t  experimental  
des igns)  so  t h a t  i t  i s  d e s i r a b l e  t h a t  model c r e a t i o n  no t  be t i m e  consuming. I n  
s h o r t ,  a computer program of moderate accuracy and g r e a t  f l e x i b i l i t y  is  requ i r ed  
f o r  this app l i ca t ion .  

A t  p r e sen t  GROCS uses  up t o  30 f i n i t e  e lements  o r  "blocks" of e a r t h  d iv ided  
i n t o  two types  wi th  1 0  "rigged 'blocks" and 20 " f r ee  blocks". The r igged  b locks  
surround t h e  f r e e  blocks and provide t h e  necessary  s p a t i a l  boundary condi t ions .  
The temperatures  of t h e  r igged  b locks  are determined a t  each  t imes tep  by a func- 
t i o n  subprogram c a l l e d  TINTERP which con ta ins  a t a b l e  of ground temperatures  
based on experimental  measurement 141 f o r  depths  of 0.00 m, 1.52 m, 3.05 m, 
6.10 m, and 12.20 m, f o r  each  month of t h e  year .  (Note: The monthly 0.00 m 
temperatures used are t h e  average of t h e  mean monthly ambient and t h r e e  i n c h  
temperatures  whi le  t h e  12.20 m temperature is  set cons t an t  a t  t h e  annual  average 
6.10 m value.) A t  every  t imestep i n  GROCS, t h e  subprogram is t o l d  t h e  t i m e  of 
year and depth  of t h e  c e n t e r  of t h e  block whose temperature i t  i s  t o  compute. 
TINTERP then determines the  temperature of t h e  block by l i n e a r l y  i n t e r p o l a t i n g  - 

wi th  r e s p e c t  t o  t.me and dep th  between t h e  r e l e v a n t  t a b l e  e n t r i e s .  

The i n i t i a l  temperature of each f r e e  block i s  s p e c i f i e d  a s  d a t a  i n p u t  t o  
GROCS, o r  i f  a d e f a u l t  va lue  is s p e c i f i e d ,  by TINTERP a s  descr ibed  above. A t  
all subsequent t imesteps,  however, t h e  temperatures  of t h e  f r e e  b locks  a r e  de- 
termined by t h e i r  thermal i n t e r a c t i o n s  wi th  a l l  of t h e  o t h e r  blocks,  and by hea t  
i npu t s  placed i n  them t o  s imula te  t h e  presence of an ope ra t ing  ground coupl ing  
device. The v e r s i o n  of GROCS used t o  gene ra t e  t h e  r e s u l t s  presented i n  s e c t i o n  
3 (.GROC3) r e q u i r e s  weekly h e a t  i n p u t s  f o r  t h e  f r e e  b locks  ( the  GROCS-TRNSYS 
program uses  hea t  i n p u t s  provided by TRNSYS a t  each TRNSYS t imes t ep ) .  

GROCS r e q u i r e s ' t h r e e  types  of d a t a  i npu t :  
(1) The h e a t  i n p u t  d a t a  descr ibed  above. 
(2) One va lue  of .  t h e  ground thermal conduc t iv i ty  (k) f o r  a l l  of t h e  

blocks, and one v a l u e  of t h e  volume h e a t  c a p a c i t y  (cp) f o r  each f r e e  block. 
The ,va lues  used were determined exper imenta l ly  a s  descr ibed  above. 

(.3) Phys ica l  in format ion  about  t h e  p a r t i c u l a r  ground coupling device  
model being used inc luding  the  volume of each  f r e e  block, the.  depth  of each  



block, and h e a t  t r a n s f e r  s u r f a c e  a r e a s  and center- to-center  d i s t a n c e s  between 
ad jacent  blocks. This  in format ion  is der ived  from a hand drawn model (one of 
which w a s  i l l u s t r a t e d  previous ly  [ 5 ] ) .  An experienced person can draw t h e  model 
and e x t r a c t  t h e  informat ion  requi red  f o r  a t y p i c a l  bur ied  tank  o r  o u t l i n e  of a 
p ipe  f i e l d  i n  a few hours. 

The major approximations used by GROCS a t  p re sen t  a r e :  
(1) Twenty f i n i t e  s i z e  f r e e  b locks  of e a r t h ,  
(2) A f i n i t e  time s t e p  i n t e r v a l ,  
(3) One cons t an t  thermal conduc t iv i ty  (k) f o r  every  block, 
(4) One cons t an t  volume h e a t  c a p a c i t y  Ccp) f o r  each  block,  
(5) Hor izonta l  boundary cond i t i ons  a f i n i t e  d i s t a n c e  from t h e  dev ice  

modeled, 
(6) L inea r ly  i n t e r p o l a t e d  boundary condi t ions ,  
(7) No cons ide ra t ion  of v a r i a t i o n s  i n  ground mois ture  con ten t ,  o f  mois- 

t u r e  flow, o r  of  f r eez ing ,  
(8) Weekly hea t .  i n p u t s  (.for t he  v e r s i o n  which produced t h e  r e s u l t s  pre-  

sen ted  i n  this .paper) .  

3. ElPERIMENTAL RESULTS VERSUS COMPUTER RESULTS 

3.1 Method of. Comparison 

Af t e r  t h e  n i n e  f i r s t  genera t ion  h e a t  flow experiments were opera ted  from 
December 3, 1978 t o  September 15 ,  1979, weekly experimental  hea t  flow t o t a l s  
(which appear a s  his tograms i n  Figures  2, 3, 4 ,  6,  7, 8 ,  9 ,  and 10) were com- 
puted f o r  each and used a s  i npu t  t o  GROCS. The thermal p r o p e r t i e s  used in a l l  
computer runs  were: 

3 
and cp = 1.7 x l o 6  J / m  'C (26 Btu/ft3-OF) 

6 3 
(cp = 4.18 x 10 J/? 'C [62.4 Btu/f t3-OF] f o r  water  in t h e  tanks.) 

The i t e r a t i o n  time s t e p  w a s  one hour. 

Phys i ca l  models were c r e a t e d  f o r  e i g h t  of t h e  experiments (due t o  time lim- 
i t a t i o n s  one is omit ted)  and GROCS w a s  run. Space does n o t  permit  a d e t a i l e d  
d e s c r i p t i o n  of each model bu t  t h e s e  a r e  a v a i l a b l e  from t h e  au thor  upon reques t .  
No model has  any b lock  wi th  a dimension smaller than 0 .3  m ( 1  f t ) .  The output  
of GROCS f o r  each experiment con ta ins  t h e  temperatures  of a l l  t h e  f r e e  blocks 
a t  r e g u l a r  t ime i n t e r v a l s .  Midweek temperatures  of those  f r e e  blocks which 
correspond t o  each ground coupling device  were ex t r ac t ed .  I n  c a s e s  where two 
f r e e  b locks  wi th  d i f f e r e n t  temperatures  corresponded t o  one device,  a s imple 
average w a s  taken. For t h e  t a n k  experiments,  t h e s e  temperatures  a r e  simply t h e  
computer model p r e d i c t i o n s  of t h e  t ank  water  temperatures .  For t h e  s e r p e n t i n e  
p ipe  f i e l d s ,  however, t h e s e  temperatures  a r e  t h e  average ground temperature in 
t h e  block conta in ing  t h e  p i p e  and do no t  co inc ide  wi th  t h e  p i p e  f l u i d  tempera- 
t u r e  unless  t h e r e  is no h e a t  flow. Thus, a d d i t i o n a l  c a l c u l a t i o n s  a r e  needed t o  
compute t h e  f l u i d  temperatures  in t h e  f i e l d  experiments. The method used f o r  
t h i s  a n a l y s i s  is  descr ibed  in s e c t i o n  3.3. The computer p red ic t ed  (wi th  addi- 
t i o n a l  computations f o r  t h e  f i e l d  experiments) midweek f l u i d  temperatures  a r e  
shown as c i r c l e s  in Figures  2,  3, 4, 6,  7, 8, 9,  a d  10. 

The experimental  f l u i d  temperatures  used f o r  comparison wi th  t h e  computer 
de r ived  f l u i d  temperatures  were obta ined  from t h e  d a t a  of a p a r t i c u l a r  experi-  
mental run each week. The run w a s  s e l e c t e d  f o r  t y p i c a l i t y ,  i.e. f o r  having 



temperatures and h e a t  flow r a t e s  common f o r  t h a t  experiment during t h a t  week, 
and f o r  c lo seness  i n  t ime t o  midweek. Usual ly t h e  experimental  temperatures  
vary  over  a cons ide rab le  range during a run of s e v e r a l  hours ( a l l  runs  s e l e c t e d  
were a t  l e a s t  one hour long ,  much longer  i f  poss ib l e )  . Thus, t h e  experimental  
temperature range, p l o t t e d  a s  a "bar" placed i n  midweek f o r  each experiment i n  
F igures  2, 3, 4 ,  6 ,  7, 8 ,  9 ,  and 10, is t h e  b a s i s  f o r  comparison wi th  t h e  com- 
pu te r  model temperature results. 

There a r e  two important approximations which e n t e r  i n t o  t h i s  a n a l y s i s :  
(1) The h e a t  flow inpu t s  t o  GROCS a r e  weekly. The computer program 

d iv ides  t h e s e  inpu t s  evenly i n t o  (hourly)  p i eces  in  c o n t r a s t  t o  t h e  experiments 
which a r e  opera ted  f o r  comparatively s h o r t  t imes a t  high h e a t  flow r a t e s  and 
then l e f t  i d l e  much of t h e  t i m e .  

(2) The f a r - f i e l d  underground temperatures  used a s  boundary cond i t i ons  
i n  GROCS are based on experimental  d a t a  taken  over  a number of  yea r s  and do no t  
co inc ide  exac t ly  w i t h  t h e  f a r - f i e l d  temperatures  in any p a r t i c u l a r  year .  
To i l l u s t r a t e  this po in t ,  cons ider  F igure  1 which compares midweek experimental  
underground temperatures  measured from December, 1978 t o  September, 1979 t o  t h e  
va lues  used i n  GROCS. During t h e  w i n t e r  of 1978-9, t h e  3.7 m (12 f t )  tempera- 
t u r e s  and t h e  2.4 m (8 f t )  temperatures  measured c l o s e l y  coincided wi th  t h e  
GROCS va lues  (almost always w i t h i n  1°C) w h i l e  t h e  1.2 m (4 f t )  and 0.6 m (2 f t )  
temperatures a r e  c l o s e  on t h e  average wi th  a n o t i c e a b l e  w a r m  s p e l l  a t  t h e  begin- 
ning of January and a very co ld  per iod  toward t h e  end of February ev ident  i n  
t h e  1978-1979 da t a .  In t h e  summer, t h e  1979 temperatures  were s y s t e m a t i c a l l y  
high a t  a l l  depths,  about 1 t o  Z°C a t  3.7 m (12 f t )  , about 2OC a t  2.4 m ( 8  f t )  , 
from 2 t o  4OC a t  1 .2 m (4 f t ) , a n d  from 2 t o  5OC a t  0.6 m (2 f t ) .  These d i f -  
fe rences  a r e  s i g n i f i c a n t  and must b e  borne in mind when cons ider ing  t h e  a b s o l u t e  
accuracy of t h e  computer model temperature p red ic t ions .  
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Fig. 1. December, 1978 t o  September, 1979 f a r  f i e l d  underground temperatures .  



3.2 The Tank Experiments 

Analysis has been completed f o r  t h r e e  t ank  experiments. A l l  a r e  v e r t i c a l  
cy l inde r s  made from precas t  concrete r ings  and a r e  2.4 m (8 f t )  high and 2.2 m 
(7 f t  4 in . )  inner  diameter wi th  t h e i r  bases 3.7 m (12 f t )  deep. Tank A a l s o  
has 2 in. of polystyrene foam shee t  i n s u l a t i o n  covering i ts  top  h a l f .  No e f f o r t  
was made t o  seal t h e  gaps between t h e  shee t s .  The i n s u l a t i o n  was s imulated i n  
GROCS by using an e x t r a  ip t e rb lock  d i s t ance  of 2.4 m (8 f t )  where appropr i a t e  
(equivalent  t o  an e f f e c t i v e  average "R Value" of 2.5 f t 2 - h r - ' ~ / ~ t u  per  inch) 
with no a d d i t i o n a l  hea t  capaci ty  provided. Tanks C and E a r e  i d e n t i c a l  i n  de- 
s ign  (except f o r  Coil  E surrounding Tank E, s e e  sec t ion  3.3) and thus use  t h e  
same GROCS physica l  model. 

Figures 2, 3 and 4 conta in  t h e  experimental weekly hea t  histograms and 
compare t h e  r e s u l t a n t  computer generated midweek t ank  temperatures t o  t h e  ex- 
perimantal ly observed temperatures f o r  Tanks A, C and E r e spec t ive ly ,  For t h e  
winter  of 1978-9, a l l  t h r e e  f i g u r e s  show excel lent  agreement between experiment 
and computer model wi th  t h e  computer va lue  never  more than about 2OC from t h e  
cen te r  of t h e  experimental range, and usua l ly  much c l o s e r .  For t h e  summer of 
1979, t h e  Tank A computer r e s u l t s  a r e  gene ra l ly  wi th in  t h e  experimental range 
with some dispers ion ,  t h e  Tank C computer r e s u l t s  a r e  c o n s i s t a n t l y  about 4OC 
below t h e  c e n t e r  of t h e  e x p e r h e n t a l  range, while  t h e  Tank E computer temper- 
a t u r e s  a r e  a b i t  low averaging l e s s  than 3OC below t h e  c e n t e r  of t h e  experimen- 
t a l  range. The computer r e s u l t  e r r o r  introduced by using h i s t o r i c a l  f a r  f i e l d  
da ta  ins t ead  of 1978-9 da ta ,  a s  discussed in s e c t i o n  3.1, can be  removed t o  
f i r s t  order  by adding t h e  average e r r o r  (experimental 1978-9 d a t a  minus h i s t o r -  
i c a l  GROCS data)  a t  t h e  2.4 m (8 f t )  depth - which is t h e  middepth of t h e  t h r e e  
tanks - t o  t h e  computer generated tank temperatures. This  e r r o r ,  a s  seen i n  
Figure 1, w a s  almost O°C in winter  and about 2°C i n  summer. Adding t h i s  e r r o r  

Fig. 2. 
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makes t h e  summer computer results f o r  Tank A s t i l l  g e n e r a l l y  w i t h i n  t h e  experi-  
mental range bu t  a b i t  h igh ,  f o r  Tank C about  Z°C below t h e  middle  of t h e  ex- 
per imental  range, and f o r  Tank E less than  1°C below t h e  middle  o f  t h e  experi-  
mental range. 

The computer r e s u l t s  f o r  Tank A cannot provide  an  a b s o l u t e  gauge of t h e  
accuracy of GROCS because of t h e  e x i s t a n c e  of a f r e e  parameter ,  t h e  e f f e c t i v e  
R va lue  o f  t h e  po lys ty rene  i n s u l a t i o n .  The v a l u e  chosen, a l though q u i t e  rea- 
sonable ,  w a s  s e l e c t e d  because it y i e l d e d  t h e  f i t  shown in  F igure  2 w h i l e  o t h e r  
va lues  gave poorer  f i t s .  The r e s u l t s  f o r  t h e  i d e n t i c a l  Tanks C and E,  however, 
con ta in  no such f r e e  parameter and t h u s  provide  an a b s o l u t e  and s e n s i t i v e  mea- 
s u r e  of t h e  accuracy of GROCS. Both t h e  w i n t e r  and summer r e s u l t s  shown in 
Figures  3 and 4 a r e  c o n s i s t a n t  w i t h  an experimental  h e a t  t r a n s f e r  r a t e  f o r  
Tank C which is  somewhat lower t han  t h e  rate f o r  Tank E. Because t h e  two com- 
pu te r  models a r e  i d e n t i c a l ,  a c t u a l  d i f f e r e n c e s  in t h e  e a r t h  surrounding t h e  two 
tanks  are probably r e spons ib l e ,  which means t h a t  t h e  e x t e n t  of  t h e  e r r o r  inher-  
e n t  i n  any model r e l y i n g  on bu lk  thermal  p r o p e r t i e s  is ind i ca t ed  by t h i s  d i f -  
ference.  

3.3 The F i e l d  Experiments 

F ive  s e r p e n t i n e  p i p e  experiments,  shown in Figure  5 and desc r ibed  i n  Table  
1, have been analyzed. 

,....... >.". .:,..: >.::::::::.<:- ......... 
L 

Fig. 5 Pe r spec t ive  drawing of t h e  f i r s t  gene ra t i on  h e a t  f low experiments.  



Table 1. 

Experiment Lo c a t  ion 
in  Fig.  5 

Desc r ip t i on  Length 

Co i l  E 8 o ' c lock  3 c o i l s  a t  depths  o f  1.2 m (4 ' ) ,2 .4  m 82 m (270')  
(surround- ( 8 ' ) ,  and 3.7 m (12') r e s p e c t i v e l y ,  
i ng  Tank E) each 6 m (20')  on a s i d e  

F i e l d  A 1 o'c lock  5 c o i l s  each 1 5  m (50') long,  1.2 m 174 m (570') 
(4 ')  wide, spaced 0.6 m (2 ') a p a r t  
from 1.2 m. (4 ' )  t o  3.7 m (12') depth 

~ i e l d  B 3 o ' c lock  3 p lanes  w i th  0 .9 .  m (3 ' )  p i p e  spac ing ,  274 m (900')  
each about  8 m (26') x 8 m (26') a t  
depths  of 1 .2  m ( 4 ' ) ,  2.4 m (a') and 
3.7 m (12') 

F i e l d  C 5 o ' c lock  1 plane  1.2 m (4 ' )  deep wi th  0.9 m 162 m (530') 
(3 ' )  spacing,  about  12 m (40')  x 
1 0  m (32 ' )  

F i e l d  F 11 o ' c lock  1 plane,  0.6 m (2 ' )  deep w i t h  0.5 m 102 m (334')  
(1.5')  spac ing ,  about  5 . m  (18')  x 
7 m (24 ' ) ,  covered w i t h  2'' s h e e t s  of 
po lys ty rene  foam extending 1.2 m ( 4 ' )  
beyond t h e  edges of t h e  f i e l d  

Modeling t h e  near-pipe behavior  of s e r p e n t i n e  p i p e  f i e l d s  s o l e l y  by comput- 
er would r e q u i r e  a g r e a t  i n c r e a s e  in t h e  number of b locks  used i n  GROCS and a 
r educ t ion  of t h e  i t e r a t i o n  t ime s t e p ,  a t ime consuming and expensive t o  o p e r a t e  
process .  Therefore ,  in t h i s  f i r s t  examination of t h e  model, a s imp le  ca l cu l a -  
t i o n  procedure h a s  been adopted t o  approximately model t h e  near-pipe h e a t  flow. 
This  method assumes t h a t  t h e  near-pipe h e a t  f low is approximately s t eady  s t a t e  
which permi ts  t h e  u se  of a formula f o r  t h e  s t eady  s ta te  thermal  r e s i s t a n c e  p e r  
u n i t  l e n g t h  of p i p e  between a row of equa l  s i z e  and temperature  e q u a l l y  spaced 
p ipes  and a mass ( t h e  f r e e  block con ta in ing  t h e  p ipes)  bounded by two p a r a l l e l  
planes.  The r e s i s t a n c e  pe r  u n i t  l eng th  is [6] :  

where: k = thermal  conduc t iv i t y  of t h e  e a r t h  
e 

s = spacing between t h e  c e n t e r s  of t h e  p ipes  
h = ha l f - t h i cknes s  of  t h e  block 
k = thermal  conduc t iv i t y  of t h e  p i p e  (0.42 ~/msec'C) 

P 5 = o u t e r  r a d i u s  of t h e  p ipe  (0.023 m) 

Rl = i ~ e r  r a d i u s  of t h e  p ipe  (0.020 m) 

The f i r s t  term i n  Eq. (1) d e s c r i b e s  t h e  thermal  r e s i s t a n c e  between t h e  o u t s i d e ,  
of t h e  p ipe  and t h e  b lock  of e a r t h ,  w h i l e  t h e  second term accounts  f o r  t h e  re- 
s i s t a n c e  of t h e  p i p e  i t s e l f .  The f l u id -p ipe  i n t e r f a c e  r e s i s t a n c e  i s  neglec ted .  



S t r i c t l y  speaking, Eq. (1) is. v a l i d  f o r  an i n f i n i t e  number of in£  i n i t e l y  long 
p ipes .  

Q( s ,h )  is used a s  an e f f e c t i v e  l o c a l  r e s i s t a n c e  which means t h a t :  

where: 6 = t o t a l  rate of h e a t  flow from t h e  f l u i d  t o  t h e  ground 
L = p i p e  l e n g t h  

and AT = temperature  d i f f e r e n c e  between p ipe  f l u i d  and t h e  p lanes  bounding 
t h e  b lock  

I n  use,  Eq. (2)  is rear ranged  t o  give:  

Then, f o r  each experiment n ( s ,h )  is computed, L is known, and Fhe average  r a t e  
of heat f low f o r  che experimental  run of interest is used f o r  Q ,  y i e l d i n g  a 
va lue  f o r  AT. Using t h e  computer genera ted  f r e e  b lock  temperature ,  TGWCS, a s  
t h e  temperature  of  t h e  bounding p l anes ,  

so  t h a t  t h e  computer genera ted  block temperature  and t h e  experimental  hea t  f low 
r a t e  ( t o g e t h e r  w i th  p h y s i c a l  parameters) provide an. approximate computer de r ived  
va lue  f o r  t h e  p i p e  f l u i d  temperature  t o  b e  compared wi th  experiment. These are 
t h e  va lues  shown a s  c i r c l e s  in F igures  6,  7 ,  8, 9 ,  and 10. 

The r e s u l t s  f o r  Coi l  E are shown in Figure  6. Because of t h e  extremely 
s h o r t  l e n g t h  of t h i s  f i e l d ,  winter h e a t  e x t r a c t i o n  w a s  s m a l l  u n t i l  a n t i f r e e z e  
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w a s  added i n  February. The computer der ived  temperatures  a r e  s y s t e m a t i c a l l y  
low, s l i g h t l y  i n  win te r  bu t  cons iderably  i n  summer. Po in t s  f o r  weeks 52 and 5 
were omi t ted  from Figure  6 because of  small h e a t  flow, but: both a r e  w i t h i n  t h e  
experimental  ranges. P ipe  f i e l d s  u sua l ly  o p e r a t e  n e a r  t h e i r  extreme tempera- 
t u r e s  (low end of range i n  w in te r  and h igh  end i n  summer), so t h a t  t h e  win te r  
computer r e s u l t s  f o r  Co i l  E a r e  q u i t e  reasonable ,  wh i l e  t h e  summer r e s u l t s ,  even 
wi th  t h e  f a r  f i e l d  co r r ec t ion ,  a r e  u sua l ly  t oo  low. 

The r e s u l t s  f o r  F i e l d s  A and B ,  t h e  l a r g e s t  p ipe  f i e l d s ,  a r e  shown in  Fig- 
ures  7 and 8 r e spec t ive ly .  The computer phys i ca l  models used f o r  bo th  of t h e s e  
experiments used blocks somewhat too  sma l l  t o  enc lose  t h e  rows of p ipes  so  t h a t  
t h e  model f o r  F i e l d  A a c t u a l l y  desc r ibes  two rows of p ipe  0.6 m (2 f t )  a p a r t  
i n s t e a d  of 1.2 m (4 f t )  a p a r t  and t h e  model f o r  F i e l d  B desc r ibes  t h r e e  planes 
of p ipe  0.8 m (2.7 f t )  a p a r t  i n s t e a d  of 1.2 m (4 f t )  a p a r t  w i th  t h e  c e n t r a l  
p lane  s t i l l  2.4 m ( 8  f t )  deep. The result of t h e s e  model approximations is a 
decreased n e a r - f i e l d  h e a t  capac i ty  and consequent enhanced temperature extremes 
i n  t h e  model p red ic t ions .  The F i e l d  A computer r e s u l t s  a r e  s l i g h t l y  low i n  
winter, t a i l i n g  o f f  a t  t h e  end of-March and usua l ly  w i t h i n  t h e  experimental  
range in summer. The s i t u a t i ~ u  fur  F i e l d  B is s ~ f l a t ,  w i t h  very  good win te r  
agreement and good t o  h igh  summer computer r e s u l t s .  Model improvement would 
probably enhance win te r  agreement f o r  F i e l d  A, bu t  lower t h e  summer computer 
r e s u l t s  of both,  perhaps enough t o  decrease  t h e  agreement wi th  experiment.  

F i e l d s  C and F ( s e e  F igures  9 and 10) both have good computer models wi th  
t h e  p ipes  contained in f r e e  blocks 0.6 m (2 f t )  and 0 .3  m ( 1  f t )  t h i c k  respec- 
t i v e l y .  The w i n t e r  computer temperatures  are i n  good agreement wi th  experiment 
f o r  both of t h e s e  f i e l d s .  Computer r e s u l t s  f o r  F i e l d  C f o r  weeks 50, 51, 52, 
3,  and 5 ,  omi t ted  because of n e g l i g i b l e  h e a t  f low r a t e s ,  a r e  a l l  w i t h i n  2 O C  
of t h e  experimental  range cen te r ,  u sua l ly  w i th in  1°C. Weeks 8 through 1 3  a r e  
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t h e  most important f o r  F i e l d  C because of t h e  large h e a t  flow r a t e s  obtained.  
The agreement between computer and experiment was good during t h e s e  weeks, a s  
during t h e  analogous week 12 f o r  F i e l d  F. The summer computer de r ived  r e s u l t s  
f o r  both experiments are sys t ema t i ca l ly  low, even a f t e r  a l lowing f o r  t h e  con- 
s i d e r a b l e  f a r - f i e l d  co r r ec t ion ,  p a r t i c u l a r l y  toward t h e  end of t h e  summer. 

3.4 Analysis  

The win te r  computer generated temperatures  a r e  very c l o s e  t o  t h o s e  experi-  
mental ly  observed f o r  a l l  experiments with good computer models (Tanks A, C, 
and E, Co i l  E, and F i e l d s  C and I?) ,  and low f o r  t h o s e  experiments us ing  models 
conta in ing  undersized b locks  (F ie lds  A and B) , probably because of t h e  reduced 
h e a t  capac i ty  of t h e s e  blocks. The summer computer generated t ank  temperatures ,  
a f t e r  the f a r  f i e l d  c o r r e c t i o n ,  a r e  q u i t e  c l o s e  t o  t h e  experimental  r e s u l t s  
wi th  evidence of a d i f f e r e n c e  in ground thermal behavior  between t h e  i d e n t i c a l  
Tanks C and E. 

The summer computer generated temperatures  f o r  t h e  f i e l d s  w i t h  good models 
(Coi l  E, and F i e l d s  C and F) a r e  s y s t e m a t i c a l l y  low, p a r t i c u l a r l y  toward t h e  
end of t h e  summer. S ince  t h i s  behavior  is apparent  f o r  t h e  f i e l d s  b u t  n o t  f o r  
t h e  tanks ,  it is probably r e l a t e d  t o  h igh  h e a t  f l u x e s ,  and n o t  merely t o  h igh  
temperatures .  P l a u s i b l e  explana t  ions  inc lude  dev ia t ions  from cons tan t  thermal  
p r o p e r t i e s  due t o  s o i l  d ry ing ,  and underest imation of t h e  computer de r ived  tem- 
pe ra tu re s  because of t h e  even d i v i s i o n  of h e a t  i npu t s  by GXOCS ( a s  d e s c ; i b e d  i n  
s e c t i o n  3.1). It is n o t  completely c l e a r  how model improvement w i l l  a f f e c t  t h e  
computer r e s u l t s  f o r  F i e l d s  A and B,  bu t  it should moderate computer temperature 
r e s u l t s .  



4.  CONCLUS I O N  

A s imple and f l e x i b l e  computer program c a l l e d  GROCS has been w r i t t e n  t o  
model ground coupling devices  f o r  s o l a r  source  h e a t  pump systems. Model pre- 
d i c t i o n s  have been compared t o  experimental  r e s u l t s  ob ta ined  dur ing  t h e  f i r s t  
yea r  of ope ra t ion  of t h e  s o l a r  ground coupling r e sea rch  f a c i l i t y  a t  Brookhaven 
Nat iona l  Laboratory as a f i r s t  s t e p  toward t h e  c r e a t i o n  of an experimental ly  
v a l i d a t e d  model of ground coupling. Although using cons tan t  thermal p r o p e r t i e s ,  
averaged hea t  i npu t s  and ( f o r  t h e  f i e l d  experiments) a near-pipe s teady  s t a t e  
h e a t  flow approximation, model p r e d i c t i o n s  gene ra l ly  a r e  i n  good agreement wi th  
experiment, providing a b a s i s  f o r  f u r t h e r  refinement and improvement. 
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