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ABSTRACT

Uncertainties of computer results are of primary interest
in applications such as high-level waste repository performance
assessment in which experimental validation is not possible
or practical. Because of the complex computational structure
of large computer models, and because of the large number of
input and data parameters associated with such models, to date
almost all uncertainty analysis of computer results has been
performed using a statistical approach. This paper presents a
deterministic uncertainty analysis (DUA) method for calculating
uncertainties that has the potential to significantly reduce
the mmber of computer runs compared to conventional statistical
analysis. The method is based upon the availability of deriva-
tive and sensitivity data such as that calculated using the
well known direct or adjoint sensitivity analysis techniques.
Formation of response surfaces using derivative data and the
propagation of input probability distributions are discussed
relative to their role in the NUA wmethod. A sample problem
that models the flow of water through a borehole is used as a
basis to compare the cumulative distribution function of the
itlow rate as calculated by the standard statistical methods and
the DUA method. Propogation of uncertainties by the DUA method
is compared for ten cases in which the mmber of reference model
runs was varied from one to ten. The DUA method gives a more
accurate representation of the true cumulative distribution of
the flow rate based upon as few as twvo model executions compared
to fifty model executions using a statistical approach.

ix



I. INTRODUCTION

The Office of Nuclear Waste Isolation (ONWI) is performing sensitivity
and uncertainty studies as part of its performance assessment of a high-
level nuclear waste repository in salt.{1,2] The role of the sensitivity
analysis is to provide a means to limit the scope of the more complicated
problea of quantifying uncertainties. Uncertainty analyses will be per-
formed to support design reliability studies, to produce a cost-benefit
analysis in conjunction with cost estimates, to insure compliance with
regulatory criteria, and to help identify important research and develop-
ment needs.

For quantification of uncertainties in computer-generateus results,
the problem can be expressed more precisely as the propagation of input
uncertainties through models by the laws of probability to obtain output
uncertainties. Uncertainties of computer results are of primary interest
in applications such as repository performance assessment in which experi-
mental validation is not possible or practical. Because of the complicated
nature of the computational structure of large computer models, and because
of the large number of input and data parameters associated with such
models, to date almost all uncertainty analysis of computer results has
been performed using a statistical approach. The purpose of this work
is to present an alternate deterministic approach that retains the char-
acteristics of analytically computing result uncertainties based upon

parameter probability distributions.



II. BACKGROUND

The analytical propagation of input uncertainties through a
calculational model is unfeasible, if not impossible, for all but the
most simple models. The difficulty lies in mapping probability density
functions from a multidimensional space of input parameters to the one-
dimensional output distribution function. To circumvent this problem,
the most common approach is to randomly sample the input distributions and
then calculate the model output of interest, constructing a probability
distribution of the output by rerunning the model for each sample set of
input parameters. The input probability distributions and any parameter
correlations are handled, in a statistical sense, in the sampling proce-
dure.{3,4] The information available from probability propagation is
lost, but hopefully the sampling procedure will lead to an output distri-
bution that is representative of that which would result from the actual
propagation of input probability distributions. As the number of sampling
sets increases, the difference between the calculated and "true” output
distribution diminishes. The problems occur in practice when the number
of runs of the computer model needed to assure a large enough statistical
sample becomes too expensive.

Another approach is to discretize the input probabilities into
histograms and evaluate the model output of interest for zll possibilities
of parameter combinations to form a probability tree.[5] All parameter
correlations are incorporated into the tree probability structure. This
method does not rely on random sampling and probabflities are easily pro-
pagated in probability trees by simple multiplication. The histogram

probability distributions are not actually propagated, but rather mean or



endpoint parameter values are used. This method is quite feasible for
models with a small number of parameters or even for a large number of
input parzmeters if the model is simple (inexpensive). Again the problem
arises when the computer model has numerous input parameters and/or is
expensive to run.

A third approach is the response surface method in which the computer
model is replaced with a simple analytical expression.[6] The expression
is constructed by fitting the computed values of the model output ~o the
corresponding input parameters, or more generally, to chosen functions
of the input parameters. The uncertainty in the computed value of the
expression is then determined in the usual statistical sense by sampling
of the input distributions. The advantage of replacing the model with
the response surface is the drastically reduced computational time to
compute the expression result compared to running the computer model.

The disadvantage is the introduction of error in the calculated output
by replacement of the model with a simple expression.

This paper introduces a method for calculating the uncertainty in
computer model results that is analytic (deterministic) ‘n principal and
that is firmly based on the model equations. The method combines the
characteristics of the response surface method and probability trees.
Statistical sampling is not required and probabilities are propagated
analytically within discretized numerical meshes that encompass the
parameter space. This approach is referred to as the Deterministic

Uncertainty Analysis (DUA) method.



III. DETERMINISTIC UNCERTAINTY ANALYSIS METHOD

The approach underlying the deterministic calculation of uncertainties
in the DUA method reiies upon (1) a replacement of the computer model with
an analytical function relating the responses of interest to the parameters
of interest and (2) discretizing the parameter space and calculating the
expected value of the response within each discrete parameter space “"mesh.”
The parameters of interest are chosen to be those that are "uncertain,”
meaning that they have known or assumed probability distributions. The
parameters of interest may often include the entire set of data used by the
computer model.

This deterministic approach differs from the response surface methods
in two ways. First, the analytical function is constructed based upon
the response value of interest as well as the partial derivatives of the
response with respect to each of the parameters. The classical response
surface method constructs the surface (analytical expression) based only
upon the response value at each parameter space point. Thus the degrees
of freedom with which to fit the response to the parameter values is much
greater in the DUA method than in the response surface methods. There is
of course no reason tov distinguish the DUA method from response surface
methods if the response surfaces are constructed using derivative data; but
in the classical response surface methods these derivatives are assumed to
be unavailable, most likely since the response surface methods grew out of
experimental design fields in which only set points of the control vari-
ables (parameters in our terminology) and the experimental measured values
(responses) are known. As the response surface methods became to be used
for replacement of large, complex computer models, again the derivative

information was not used because of the difficulty of calculating partial



derivatives chained through complex computational paths. Howevar, the
development of efficient methods for calculating derivatives and sensi-
tivities for large-scale computer model results has progressed steadly
based upon a firm theoretical foundation.[7,8,9,10,11,12] Moreover, now
new techniques for calculating derivatives within existing computer models
based upon computer calculus are available.[13,14,15] For these reasons,
the calculation of derivative information for the purpose of improving the
formation of response surfaces is both practical and cost effective. This
availability of derivative information is a key component in the DUA
method.

The second feature that distinguishes the DUA method from response
surface methods, and a feature that it has in common with probability tree
methods, is that the entire parameter space is spanned. 1In the response
surface methods, the construction of response surfaczs has been primarily
used to dramatically increase the number of sampling points in a statisti-
cal determination of response probability distributions since the evalua-
tion of the analytical response surface expression is much lecss expensive
to obtain than the corresponding computer model result. However, only by
spanning the entire parameter space can probabilities be propagated, either
through a computer model or through an analytical expression. Spanning the
entire parameter space i{s practical only if the discretization of parameter
probability distributions is performed over a reasonably large mesh. In
probability tree methods, for example, the probability distributions are
typically replaced with the high and low values of the distribution. The
DUA method extends the probability tree methods into a more rigorous pro-
pagation of probabilities in two ways: (1) Since an analytical expression

relates the response to the parameters, the expected value of the response
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over each discretized mesh can be calculated analytically and thus gives
a more meaningful value than just a single sampling point within the mesh.
(2) Because the computer model is replaced with an analytical expression,
a finer mesh size can be constructed over the parameter space and a more
accurate representation of the parameter probability distributions of most
interest can be obtained.

Another point to be made in favor of propagating probabilities through
an expression that only approximates the original computer model, but one
that makes the DUA method possible for computer models with a large number
of parameters, is the integral nature of the probability distribution of
the response. The probability distribution of the response of interest is
an integral quantity and errors introduced by replacement of the computer
model by an analytical expression are most often washed out when the

parameter space is completely spanned.



IV. FORMATION OF RESPONSE SURFACE USING DERIVATIVE INFORMATION

The DUA method replaces the conputer model with an analytical
expression by relating the response of interest as calculated by the
coxputer model to the parameter values by techniques that incorporate
knowledge of the partial derivatives of the response with respect to
the parameters of interest. The simplest scheme is linear extrapolation
from reference space points to each mesh of the discretized parameter
space. Within each mesh the respoase surface is linear with respect to
the parameters, and the calculacion of the expected value of the response
within the mesh, given parameter probability functions, is straightforward.
Various extrapolation schemes are possible; several are discussed and
compared in the sample problem discussion.

A more general approach for construction of a response surface is
a least-squares fitting technique. In Appendix A, linear least-squares
fitting is reviewed, and possible schemes for incorporating derivative
information into the standard fitting technique are presented. Basically,
to coustruct a response surface to a given order of expansion, the use of
derivative information reduces the number of computer runs required to
uniquely determine the expansion coefficients by a factor of approximately
1/K, where K is the number of parameters. Omne can either construct a
global response surface or define local response surfaces over subregions
of the parameter space. A local fit of the response values and derivatives
using a low-order function may be more desirable than & global fit using a
higher order function to fit a large portion of the data because a higher
order fit involving many response points may result in a very radically
behaved function in the parameter space not near the fitted points. For

this reason most of our research to date has focused upon either local



.d
[t=]

fitting or linear extrapolation from reference parameter space points. By
careful selection of these parameter space points for which model results
will be obtained, the number of computer runs can be held o a small frac-
tion (<< 1/K) of the number required for the conventional construction of
a response surface.

Finally, sensitivity analysis plays an important role in the formation
of the response surface by eliminating those parameters that have a negli-
gible effect on the resulv of interest based on their sensitivities and
uncertainty ranges. Also, the derivative information from the reference
model runs can be used to identify the occurrence of parameters that occur
exclusively in a given combination. Such identification reduces the
parameter space by replacement of the individual parameters with the
particular combinaticn. For example, if the derivative of tﬁe response
with respect to each of two parameters is the same at each reference space
point sampled, the two parameters most likely appear in the model as a
sum, and a single parameter representing the sum of the two can be used
in the formation of the response surface in place of the two individual
parameters. The sample problem exemplifies these uses of sensitivity and

derivative data in the formation of the response surface.
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V. PROPAGATION OF PROBABILITIES

The propagation of parameter probability distributions from the
multidimensional parameter space to the singly-dimensioned result space
is determined by the governing system of equations and the input variable
probability density functions (pdf’s). In theory, this propagation can
be performed analytically by convolution of the integral of the parameter
space into a discrete number of integrals of the singly-dimensioned
response space, in which each integral is over a monotonically changing
function representing the result. However, because the identification of
the convolution integrals, in particular the limits of the integrals, is
virtually impossible for all but the simplest problems, and because the
model equations are nonlinear and complexly intertwined in general, the
propagation of probability distributions through computer model cannot be
treated analytically in the strictest sense.

The propagation of parameter probability distributions in the DUA
approach is performed by discretizing the K-dimensional parameter space
(K = number of parameters) into L meshes, each mesh denoted by my. The
probability of mesh my occurring within the entire paramecer space, p(mp),
is calculated as well as the expected value of the response function within
the mesh, E(ry), where rj represents the response function within my. The
probability p(my) is assigned to E(rp) to obtain the probability of E(ryp)
within the discrete space of expected values. The pairs of p(mp) and E(ry)
are reordered such that E(ry) < E(r2) < ... E(ry) and as such constitute
the probability distribution fun:%ion of the response r over the parameter
gpace. The cumulative distribution function of r, F(r), is the running sum

of the reordered p(myp) paired with the corresponding value of E(ry). 1In
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the limit as L = «, F(r) approaches the true cumulative distribution
function of r as calculated using the response function.

Let the functional form of the response within my be given by

ry = gg(x) (1)

where gy(x) is the response surface function within my resulting either
from a fitting procedure or from a linear expansion from one or more
referen.e space points. The vector x is the K-dimensional parameter
column vector given by x = {xl,xz,...,xK)T. where the superscript T
denotes the transpose. Given the joint probability function of x as

P(x) = P(x1,x2,...xg), the probability that x C my is given by
p(mp) = p(x C my) = I;z P(x) dx , (2)
and the expected value of the response r wi- 'n my, E(ry), is

E(ry, = I;Igl(x) P(x) dx /p(my) . (3)

The values of p(my) and E(ry) as calculated by Eqs. (2) and (3) are used to
construct the probability density function and cumulative distributions

function of the responss r,.
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VI. SAMPLE PROBLEM

Reference 16 describes a sample problem that exemplifies the use of
uncertainty analysis in high-level waste applications. The sample problem
consists of three coupled equations with eight input parameters and three
dependent variables. The analysis focuses on one of the three dependent
variables as the response of interest, and statistical techniques are used
to calculate the cumulative distribution of the flow rate given probability
distributions for the eight input parameters.

The governing equations describe the downward flow of water through a
borehole that is drilled from the ground surface through two aquifers. For
a fully penetrating well and no ground-water gradient, the steady-state
flow through the upper aquifer into a borehole is given by

Q- 2y - HdTu (%)
In(r/ry)

vhere
Q = flow, m3/yr
Ty = transmissivity of upper aquifer, n2/yr
H, = potentiometric head of upper aquifer, m
Hyy = steady-state potentiometric head in borehole at upper aquifer, m
r = radius of influence, m

ry =~ radius of borehole, m.

Similarly. the steady-state flow from the borehole to the lower

aquifer is given by

-2n(Hg - Hyp)Tp
In(r/ry)

' (5)
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where
Ty = transmissivity of lower aquifer, -Z/yt
Hy = potentiometric head of lower aquifer, m

Hyp = steady-state potentiometric head in borehol: at lower aquifer, m

The flow of water through the borehole is assumed to be laminar and

isothermal and is given by

Q. T U - BepKy )
L

where
Ky = hydraulic conductivity of borehole, m/yr.

L = length of borehole, m.

In Eqs. (4-6), Q, Hyy,. and Hyy are dependent variables; the flow rate
of water, Q, is the response of interest. The uncertainty problem is to
calculate the cumulative distribution function of Q, F(Q), given the proba-
bility density functions of *.: eight input parameters ry, r, Ty, Ty, Hy,
Hy, K,, and L. The probability density functions of these eight parameters
are shown in Table B.1 of Appendix B, which is taken from Ref. 16.

The standard statistical approach for calculating F(Q) is o define
a design matrix based upon the pdf’s of the parameters. Several sampling
procedures are available for determining a suitable design matrix. For
this problem, Ref. 16 investigates the formation of design matrices based
upon the Latin Hypercube Sampling (LHS) procedure using 10 and 50 design
points. The 10-point and 50-point LHS design matrices are given in Tables
B.2 and B.3 of Appendix B, along with the calculated values of Q, H,,, and

LYTR
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The choice of the sets of input parameters in a design matrix hope-
fully accounts for the parameter pdf’s and any parameter correlations such
that each calculated value of the response is of equal probability. Thus,
the probability cf a calculated response is 1/N, where N is the number of
input sets in the design matrix and formation o7 F(Q) is performed by
ranking the values of Q from lowest to highest and apportioning a proba-
bility of 1/N to each value. Figure B.1 of Appendix B shows the plots
of I'(Q) resulting from the use of the 10-poirt and 50-point LHS design
matrices. Clearly, the 10-point LHS design matrix does not resulc in a
good approximation of F(Q) vwhen compared to the 50-point set. It is
important to keep in mind that a design metrix based on N input sets
requires that the computer model be run N times to determine F(Q). For
this sample problem, the "computer model” consists of Eqs. (4-6) and these
were solved 10 times for the 10-point design matrix and 50 times for the

5C-point design matrix.
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VII. APPLICATION OF DUA TO THE SAMPLE PROBLEM
The DUA method was aprlied to this sample problem and the results
compared to the published statistical results of Ref. 16. The choice of
N reference points from which the response surface is formed in the appli-
cation of DUA to this problem was chosen to be a subset of the 10-point

1HS design matrix. For each refererce point i, i=1,.. N, defined by the

8-dimensional parameter vector xj = (r:, ri, Ti, T:, Hi. Hi, Ki 1 .
the derivative vector qf = ((3Q/dry);, (3Q/0r)§, (3Q/8Ty) 4., («Q/3Typ)i.
(3Q/aH,) ¢, (3Q/3Hp);, (3Q/3Ky) 14, (aQ/aL)i)T. and the response Q(xj) were
calculated. First-order sensitivities of Q with respect to each param-
eter, defined by (8Q/dxy){ (xk.ilQ(xi)), vere also computed. Parameters
with sensitivities and uncertainty ranges such that their influence on

Q was negligitle were dropped from the parameter space for the purpose

cf forming the response surface. (The values of the derivatives and sen-
sitivities for the 10-point LHS design matrix are listed in Table B.4.)
As a result, the parameters T,, r, and Ty were not used in tue formation
of the response surface. In addition, the derivatives of N, and Hy are
equal but opposite in sign indicating that the two parameters occur in
the model in the combination of (H,-Hy). In fact, in this case we can
verify this relationship between Q and H, and Hy by direct solution of
Eqs. (4-6) for Q; the solution is given by Q = 2x T,(H, - Hp)/([4n(r/xy)]
(1 + 2LTy/(In(r/ry)ry?Ky) + Ty/Tyl). Therefore these two parameters were
replaced by the single parameter (H,-Hy). The response surface was then
constructed based on only the four significant parameters (H,-Hyp), ry, K,
and L. This reduction in the number of significant parameters and combi-

nation of parameters illustrates the role of sensitivity analysis in the

DUA method as applied to this sample problem.



pmt
o0

In this application, the response surface was formed by linear
extrapolations of Q from the reference points. Three extrapolation schemes
were first tested. The accuracy of each of the tested extrapolation
schemes was evaluated by comparison of the extrapolated value of Q to the
actual calculated value at the space points making up the 50-point LHS
design matrix.

The three extrapolation schemes, denoted ES1, ES2, and ES3, are
described below. To account for the fact that the dimensjionality of the
parameters varies, the metric djy used to define the "distance” between a

reference space point xgy and the space point xy to which the response is

to be extrapolated was chosen as

2 2
E(’;‘t._t_x_k_"u) s,
agy - <t L , (7a)
K
2
Y s
el ol

where Xy o and Xy j are the elements of xy and xj, and where Sy { is the
sensitivity of the response Q with respect to parameter k at point i,
defined as Sy ¢ = (3r/dxy)i (xx §/Qj). Note that xi § cannot equal zero
if Eq. (7a) is used. However, if xy g = 0, diy can be alternatively

expressed, using the definition of Sy i, as

K

I (xg,g - xk,i)z (3Q/3"k)§
a 4 - 1 . (7b)
K
¢ T (s,p?

Equation (7b) can be used if the x { can take on zero values and Qiz

does not equal zero; in most applications the responses of interest are
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non-zero. Equations (7a) and (7b) remove the dimensionality of each
parameter by normalization of the parameter value change to its value at
the reference point. Also, djy as defined above makes use of sensitivities
to weight the more important parameters.

The calculated value of the flow rate by extrapolation from point x;

to point xy, Q(xy), for each of the three extrapolation procedures is:

ES1 : Q(xp) - Q(x5) + (xp - x{)Tqq , (8a)

i3 djy = min (dyy) , n=1,N

ES2 : Q(xg) = 1/2(Q(x;) + Q(x4)) (8b)
+ 1/2((xg - x1)Tq; + (g - !j)Tle ]

i>d4y =-minidy); j > djl - min{dyyg), i

d
ES3 : Q(xg) = Y @ap + g - xpTep (8c)
dyg + dj‘
djl
+ (Qxq) + (xg - x)Tqy)
dys + dj‘

i and j as in ES2

Recall that the vector qi is the derivative vector which has as its
elements the partial derivatives of the response with respect to the
parameters.

Scheme ES1 simply extrapolates from the nearest point as defined by
the metric dyy in Eq. (7b). ES2 averages the extrapolated value of the
nearest two points, and ES3 welights the extrapolated value of Q of the two

nearest points by their respective closeness to the point of interest.
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The vectors xj and xp in Eqs. (8a,8b,8¢c) are of dimension K where
K (used in Eqs. (7a) and (7b)) is equal to the total number of problem
parameters if the sensitivity and parameter range data is not used to
reduce the parameter space. However, as discussed previously, in most
applications, many parameters may have a negligible effect upon the
response, and an examination of the sensitivity data and parameter ranges
can be used to reduce the parameter space before the response surface is
formed. In this sample problem, for example, the parameter space was
reduced from eight to four parameters, and Eq. (7b) and Eqs. (8a,8b,8¢c)
were evaluated for the reduced parameter set.

These three schemes were compared for ten different cases in which the
nunmber of reference points N was varied from one to ten. In general, the
number of reference points (model runs) in the DUA method would initially
be one or two. The CDF of the response of interest would be _alculated and
additional reference points added one by one until the CDF did not change
appreciably. The choice of reference points could be determined dymami-
cally based upon knowledge of the sensitivities and derivatives already
calculated, or statistically using techniques such as LHS (but where the
number of reference points is very small compared to the number required
for statistical determination of the CDF). For this sample problem, how-
ever, the reference points used in the DUA approach for the ten cases were
a near-optimal selected subset of the 10-point LHS design set. Algorithms
for choosing optimal reference points are a problem for further investiga-
tion, particularly dymamic schemes based upon prior knowledge. The
extrapolated points xy were chosen to be the parameter space points of

the 50-point LHS design matrix. The results are summarized in Table 1.
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Table 1. PERCENT DIFFERENCE BETWEEN CALCULATED AND EXTRAPOLATED
VALUES FOR EXTRAPOLATION FROM N POINTS TO THE 50-POINT LHS SPACE POINTS

VALUES SHOWN ARE FOR EXTRAPOLATION SCHEME ES1*

B L I . kT T O p e A R

Number of Points From Which the Extrapolations Are Performed

Space N-10 N=9 N~8 N=7 N=6 N=5 Nty N=3 N=-2 N~1
Point

1 0.3 -1.1 -4.5 -0.9

2 -0.2

3 -0.6 -0.4

4 2.1 -48.2
5 -0.5

6 -1.4 -11.0
7 -0.9

8 -0.1 05 O

9 0.9

10 -5.6 -3.0 1.8 0.6

11 -2.6 -3.8

12 -8.0 -14.5 -2.0 -57.8
13 -0.2 0.4

14 -1.6 0 -16.4
15 -6.0 0.9 -4.1
16 -0.1 8.4

17 -0.4 -1.0

18 3.6 -52.9
19 1.2 -2.4 9.9 -0.8 -59.7

20 -0.5

21 0.8 -31.9
22 -0.2 -2.0 2.0

23 -17.9 -3.7 -10.5

24 0.2 -6.1

25 -0.8 9.7 0.7 -2.5
26 -0.8 1.7

27 -1.4 -10.0

28 0.6 -1.7 -2.0 9.0

29 -1.6

30 -1.1

31 0.1 -0.6 -17.7
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Table 1. (Contimued).

Space N-10 N=9 N-8 N=7 N=6 N=5 N=44 N=3 N=2 N=-1
Point

32
33
k
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

1

1.2
-7.3 -0.1

]
SN EBENMNUOON

-]

p—t

'
£
[

5.5 -92.6
0.7 -0.6 -22.8

2.7

»-'ooow.-
- UNWOWHEEENOO:!

-6.3 0.8

-14.8

—
-0

R (BS1)* 177.9 168.0 191.6 211.0 361.4 359.6 373.4 486.4 379.8 2868.6
R (ES2) 300.0 345.2 544.4 558.6 618.7 2132.9 2389.0 2614.0 3009.0 2156.C

R (ES3) 281.8 288.8 1098.0 439.2 645.5 2508.4 3028.0 2614.0 3009.0  4126.0

*ES]1 refers to extrapolation from nearest point; ES2 refers to extrapola-
tion from nearest two points with each point weighted equally; ES3 refers
to extrapolation from -~earest two points with the points weighted by their
respective proximity to the extrapolated point.

R is a measure of the fit of the extrapolated points to the 50 LHS points;

50

R = § (Q(xg) - Qc(xp))?
2=

Blank entries indicate that the value is unchanged from the value at the
lefc.
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(Table 1 is based upon using a metric djp that did not weight with sensi-
tivities but the values listed in the table are not appreciahly different
than if Eq. (7a) had been used.) The columns represent the results of
extrapolation using all 10 of the input parameter sets of the 10-point LHS
design matrix (far left column) down to extrapolation from a single input
parameter set of the 10-point LHS design matrix (far right column). The
numbers at the extreme far left represent the 50 input parameter sets of
the 50-point LHS design matrix listed in Table B.3. The entries in Table 1
are the percent differences between the extrapolated value of Q(xy) from
Eq. (8a) and the actual value of Q, Q.(xp), at the 50 points as calculated
by the model. Blank entries indicate no change from the value of the per-
cent difference from cnat of the column to the immediate left. A blank
value thus indicates that the same reference point was chosen from which

to extrapolate as in the previous case. Below each column is listed the
variable R which represents the sum of the squares of the differences
between Q(xy) and the actual value of Q for each of the three extrapolation
schemes. For this problem, scheme ES1 gives the most accurate prediction
of the flow rate. Using information from the second closest point does not
improve the extrapolated value of Q; and weighting based upon distance to
the desired space point is better than straight averaging in only a few
cases. Using 7 to 10 reference points has approximately the same accuracy,
then the accuracy drops somewhat when using 2 to 6 reference points. How-
ever, examination of R for the best extrapolation scheme, ES1, reveals that
the decrease is not monotonic as the number of reference points increases,
indicating only that the selection of the reference parameter space point
to eliminate from case to case was not optimal. (The actual values of Q

were assumed to be unknown.)
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Extrapolation scheme ES1 was chosen for the formation of the response
surface over which the parameter probabilities were to be propagated. The
entire parameter space of significant parameters as identified in the
sensitivity analysis (ry,, H,-Hp, K, and L) was divided into L discrete,
nonoverlapp:ng meshes, my, 2=~ .,,,L. The expected value of Q within each
mesh, E(Qyp), was determined by replacing Qp for gy(x) in Eq. (3). Here,

Qp - Q(x), x C myp, where within my, Q(x) was calculated using Eq. (8a).

The mesh probability p(my) was calculated from Eq.(2) using the parameter
probability distributions from Table B.1 (note that p(H,-Hp) had to be cal-
culated separately using the individual distributions given in Table B.1).
For calculating the values of djy needed for the extrapolation scheme, the
value of xy chosen for each my was E(x), x C mgp. The probabiljty assigned
to each E(Qg), £-1,,,L, was the corresponding value of p(mg). As discussed
earlier, in the DUA method the number of meshes, L, is chosen such that

the entire reduced parameter space is covered by nonoverlapping discrete
meshes and therefore the entire probability space is complete in that

L L
I p(mp) = ¥ p(E@p) - 1.
£=1 f=]

As a benchmark against which a comparison of the DUA method and the
statistical results from Ref. 16 could be compared, the sample problem
model was executed 2304 times in order to determine the "true" CDF of Q
for this problem. A comparison of this benchmark 2304-pt CDF to the
statistical 50-point CDF from Ref. 16 is shown in Fig. 1. The CDF based
upon the 50-point LHS design matrix is a fairly accurate represention of
the true CDF of Q. DUA method results wore obtained for three cases.

The first case propagates probabilities over a 144-mesh parameter space
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CUMULATIVE PROBABILITY

° 50-POINT LHS STATISTICAL COF
= 2304-POINT BENCH!ARK COF

| T ¥ ¥ LI T | L) T T T T 1 T T L}
0 10 20 30 40 S0 60 70 80 90 100 110 120 130 140 150 160
FLOW RATE (M»xx3/YR)

Fig. 1. Comparison of the 50-Point LHS CDF to the 2304-Point
Benchmark CDF.
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by extrapolation fror two reference model runs, and the second case by
extrapolation from 10 reference model runs. Figure 2 compaires the CDF’'s
for these two DUA cases to the benchmark ?304-pt CDF. The DUA method for
both cases gives a somevhat more accurate representation of the true CDF
than the use of a 50-point LHS design matrix. The curves in Fig. 2 also
indicate the integral nature of a CDF: although individual values of Q
may be inaccurately predicted using a response surface (see Table 1), the
CDF of Q is accurately represented. In addition, the accuracy of the CDF
was only slightly improved for this problem by increasing the number of
computer runs from two to ten.

The effect of the number of discretized meshes over which probabili-
ties are propagated was evaluated in the third DUA case by increasing the
nunber of meshes from 144 to 2304. The resulting CDF based upon the two-
point extrapolated response surface is compared to the benchmark CDF in
Fig. 3, in which only every fortieth point of the DUA-generated curve is
plotted. For this problem, the increase in the number of meshes from 144
to 2304 leads to a somewhat more accurate representation of the true CDF.
The apparent discontinuous nature of the deterministic curves in Fig. 2
arises as a result of duplications in the response for different values of
H,; and Hy. These singularities tend to disappear with increasing number of
disnretized meshes. Thus, the number of meshes over which probabilities
are to be propagated should be as high as possible within constraints of
the cost effectiveness of constructing the response surface and propagating

the probabilities.
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Fig. 2. Comparison of 2-Point and 10-Point Deterministic CDF by
Extrapolation to 144 Discrete Meshes with the 2304-Point Benchmark CDF.
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o 2-POINT OETERMINISTIC COF
=~ 2304-POINT BENCHMARK CDF

.0 T T T T T T 7

0 10 20 30 4b 55 66 70 B0 90 100 110 120 150 !;0 1%0 léO
FLOW RATE (Mwx3/YR)

Fig. 3., Comparison of the Decerministic CDF Based on an
Extrapolation from Two Puints to 2304 Discrete Meshes Compared to
the 2304-Point Benchmark CDF. (For clarity, every fortieth point
is plotted for the extrapolated values,)
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VIII. CONCLUSIONS

The availability of derivative information gives a much more complete
basis for creating an accurate response surface than does the use of
response values alone. The response surface could be sampled in place of
the original model, or the propagation of probabilities can be performed in
a rigorous fashion over the response surface. The latter procedure results
in a strictly deterministic method of probability propagation. The sample
problem results show that simple linear extrapolation from two space points
produces a CDF of the response of interest that more closely matches a
benchmark 2304-point CDF than does the CDF based upon a 50-point LHS design
matrix. The reduction in model runs by a factor of 25 and the increased
accuracy in calculating the CDF of the response of interest are strong
evidence that a substantial savings in computational cost is possible using
derivative information. This reduction is offset by the additional cost of
calculating derivatives, but the deterministic calculation of model deriva-
tives has been shown in the published literature to be both feasible and
cost efficient for large-scale computer models. The avajlability of auto-
mated precompilers for adding derivative-taking capability to existing
models makes the DUA approach even more practical. The strong analytical
foundations of propagating probabilities deterministically is another

desirable feature of the DUA approach.
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APPENDIX A - FITTING PROCEDURES USING DERIVATIVE INFORMATION
The DUA method replaces the computer model with an analytical
expression by relating the response of interest as calculated by the com-
puter model to the parameter values by fitting techniques that incorporate
knowledge of the partial derivatives of the response with respect to the
parameters of interest. Before discussing fitting techniques that use
derivative information, a review of fitting strategies using only response

values will be helpful.

A. Linear Least Sguares Fitt o Values.

Let the computer model response of interest r be represented by a
function f of the k parameters such that r=f(xj,x5,...xK). Defining the
parameter space vector at point i as x4 = {Xx1,X3,...xXK}, the corresponding

observed (calculated) response riy is given by

ry = £(xq) - (A.1)

Note that rj refers to a chosen response of interest, r, at the parameter
space point i and not to another response. For most computer models, the
functional form of f is generally too complex to express in closed form. A
response function g(xy) is sought which closely approximates f over some
domain of the parameter space. Thus the observed response rj is to be

related to x4 by the relation

ry = g(xq) . (A.2)
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The basic procedure of linear least-squares fitting begins by choosing
g(x1) to be a linear combination of simple functions of the parameters.
Denoting these simple expansion functions as gj(x), then
J
g(xy) = ¥ cj8§(x) (A.3)
j=1
where the selection of the gj and J determines the order and completeness

of the expansion and the cj are the expansion coefficients to be deter-

mined. Eq. (A.3) becomes

J
ry = jEIngj(!i) . (A.4)

Defining

r= (rl,r2,...,rN)T

g1 (ky) gy (k)

and c - (c1.c2.--..<=.1)T '

then Eq. (A.4) can be written in matrix form as

r=Gc ., (A.5)

Note that r is an N-dimensional vector of the values of a single response
for N parameter space points, not a vector of different responses. The
matrix G {s an NxJ matrix whose elements are all known, being simple
functions of preselected parameter space points. The vector c is a J-

dimensional vector of constants to be determined. 1f J=N, and i{f C is
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non-singular, the vector ¢ can be solved for directly and Eq. (A.3) will
yield a function g(x) that exactly reproduces rj for the corresponding
xy. As an example, for K=2, N=6, and J=6, a fit of six points in a two-
dimensional parameter space can be performed by expanding the response in

a perfect quadratic form such that

2

r = cp + coxy + caxg + c4x1€ + c5x22 + CgK1X7 . (A.6)

In general, the relative values of N, J, and K will determine the order
and completeness of the expansion defined by Eq. (A.3). Often, high-order
expansions do not prove to be practical because g(x) exhibits unrealistic
behavior "between" and "outside of" the selected parameter space points xj.
Therefore, for many applications a low-order expansion of g(x) is chosen
and N will be greater than J. For this case Eq. (A.5) is ovardetermined
and a least-squares fitting technique must be used. In fact, "fitting
techniques™ are often associated with solving for ¢ assuming Eq. (A.S) is
overdetermined. Least-squares fitting determines the vector c¢ that gives
the best fit of the members of r to the space points x4, i=1,N, in a least-
squares sense. Defining the sum of the squares of the differences between

r and Ge as L,

L=(r-6e)T (r - Ge) (A.7a)
or

L = rlr - 2¢T6¢Tr + cTelge . (A.7b)

The vector ¢ that results in L being a minimum is given by

9L | 2¢Tr + 2 ¢Tee . (A.8)

ac
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Seteing L =0

dc

c = (¢Te)-1 ¢Tr . (A.9)

Equation (A.9) defines the basic fitting solution of the least-sauares

technique when fitting response values.

B. Fit Schemes Us t ormat .
One approach to fitting values and derivatives simultaneously is to
differentiate Eq. (A.5) with respect to a parameter of interest,

ar

— = Ggc (A.10)
Ixy
where xi Is a parameter of interest and Gy = Gy(x) = 8_ . G being the same
Ixy
matrix as the one in Eq.(A.5). Defining py ~ 25_ R
axy
P1
pP- ?2
Pk
G
and G’ = G’ (x) = G|,
Gy
then
p=-6G'c . (A.11)

Note that p, the vector of observed (calculated) partial derivatives of the
response with respect to all parameters of interest at all of the parameter
space points, is of length NK and 6’ is an NKxJ matrix. If the derivatives

are expanded to first order in the parameters, J=K+1. Thus, for most cases
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NK>J and Eq. (A.1l) is overdetermined, and a least squares fitting proce-
dure could be used. However, the objective for this paru cular procedure
is to solve Eqs. (A.5) and (A.ll) simultaneously. The G matrix of response
expansion function values and the G’ matrix of the evaluated derivatives
of these functions have the same number of columns (the derivative of a
constant element of the G matrix is a constant equal to zero in the G’
matrix). Thus Eqs. (A.5) and (A.1ll) can be augmented to produce the single

relationship

o G

-;- - -é: c . (2.12)

Eq. (A.12) is the system of equations that describe the fitting of both
response values and derivatives. There are N responses and NK derivatives
to be fitted. The vector --f-- is N(K+1) x 1 and the matrix -o&-- is
N(K+1l) x J. The solution of the J length vector ¢ based upon Eq. (A.12) is
discussed for two cases:

1. The matrix E— is square.

G’

For this case, J=N(K+1) and the solution for ¢ is unique if -g; is
nonsingular. In such a case, all N response values and NK derivatives are
reproduced for the response surface defined by Eq. (A.5) where c is the
solution to Eq. (A.12). However, the -g; matrix has been found Lv e
singular for some simple situations. For examyie, consider the quadratic
expansion in two-parameter space (K-2) given by E7. (A.6). Fitting the
responses and derivatives of two space points (N=2), then N(K+l)~6=J, and c
can be solved for exactly if -g; is nonsingular. For this case, -g- and

-g; are given by
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fr;
rz

e L (A.13a)

3x1 1
ar

ax; 2
ar

ax2 1
ar

Laxz 2

and

x1(1)  x (1) x2(1)  x%(1) x1(1)x5(1) |
x1(2)  x2(2) x12(2)  x2(2)  x1(2)x2(2)
1 0 2x1(1) 0 x2 (1)

0 2x1(2) 0 x2(2)
0 1 0 2x(1) x1(1)
0 1 0 2x2(2) x1(2) J(A.13b)

cl

o O O O =
5

The determinant of -g; can be shown to be algebraically equal to zero
with a matrix rank of five for this case. In particular, for this case,

r=- h(gf; . éf—). Physically interpreted, for this case all the deriva-

tives ::l rez:gduced by the fit, and integration of the derivatives
introduces only one constant back into the form of the response expansion.
Therefore only one response point can be fit. Or both responses could be
fic and differentiating the expressions only introduces enough degrees of
freedom to fit 3 of the 4 known derivatives. Interestingly, had a func-

tional form other than xjx7 been chosen for gg(x), the determinant would

not have been zero.

2. Eq. (A.12) is nverdetermined.
If BEq. (A.12) %s overdetermined, some fitting procedure must be used

that will lead to the best fit of the responses while incorporating the
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derivative information. But both responses and derivatives should not

be fitted using Eq. (A.12) as is because the response values have units
different than the derivatives. In fact, the derivatives most likely
have units different from each other and even the derivatives defined by
Eq. (A.1ll) must be normalized if the system of equations is overdetermined
and a fitting of the derivatives is to be performed. The fitting of the
sensitivities would eliminate the normalization problem since the sen-
sitivities are unitless, but the response function itself would not be
addressed. The main objective is still to identify a response surface that
would closely reproduce the observed vector of responses r. One possible
approach is to choose the functions gi that make up the matrix G and solve
Eq. (A.9) for ¢, calculate the derivatives based upon differentiation of
Eq. (A.10), and calculate the sum of the squares of differences in the
calculated and observed values of the sensitivities. The process could

be repeated for various choices of the functions g; until a set of g; are
identified that closely match the responses and the sensitivities. Yet
another method would be to treat some of the derivative equations as con-
straints and solve Eq. (A.9) with these constraint conditions. Numerous
other possibilities exist for treating Eq. (A.12) €for the case where the
equations are overdetermined, but no superior method has been identified

and future research in this area is needed.

C. leocal Fitting snd Expansion Based on Derivative Information.

A local fit of the response values and derivatives using a low-order
function may be more desirable than a global fit using a higher order func-
tion to fit a largs portion of the data for two reasons: (1) the inve.sion

of the matrix G = 6/G’ in Eq. (A.9) is expensive for large values of NK,
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and (2) a higher order fit involving many response points may result in a
very radically behaved function in the parameter space not near the fitted
points. But another basic difference exists between conventional fitting
to response values and fitting using derivative information that makes
local fitting very attractive. Use of derivative information permits a
fit to a fewer number of points for a fixed order of expansion as compared
to conventional fitting of just the data. For example, the quadratic
expansion in two parameters defined by Eq. (A.6) required six data points
to uniquely determine the expansion coefficients based on fitting six
response values. However, with the use of derivative information, only
two points are fequired to uniquely determine five of the six expansion
coefficients (see discussion in previous section). In the limit of local
fitting by linear extrapolation from reference space points, the fitting

procedure is a series of linear expansions.
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APPENDIX B - SAMPLE PROBLEM DATA FROM REFERENCE

Table B.1.* Input Parameter Probability Distributions.
Input
Parameter Range Distribution

Ty 0.05 to 0.15 m Normal (s = 0.10, ¢ = 0.0161812)1
r 100 to 50,000 m Lognormal (u’' = 7.71. o' = 1.0056)**
Ty 63,070 to 115,600 m?/yr Uniform

Hy 990 to 1,110 m Uniform

T; 63.1 to 116 m?/yr Uniform

Hy 700 to 820 m Uniform

L 1,120 to 1,680 m Uniform

Ky 9,855 to 12,045 m/yr Uniform

*From Ref. 16.
7p, o are the mean and standard deviation, respectively, of r..

*%ky' o' are the mean and standard deviation, respectively, of the ln (r)

(vhich is normally distributed).
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FLOW RATE BRSED ON LATIN HYPERCUBE SAMPLING

o = 50 SAMPLING POINTS
x - 10 SAMPLING POINTS

CUMULATIVE PROBABILITY
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Fig. B.1. Cumulative Distribution Functions for 10-Point and 50-Point
LHS Design Matrices. From Data Published in Ref, 16.



Table B.2.*

LHS Boreflow Results, N = 10,

::? "w r Tu Nu TI Hl L K “ul Huu Q
1 0.8609E-01 | 2948.0 | 0.8337E+05 [1044.0 | 107.0 | 783.0 | 1250.0 | O.100VE+05 | 783.754 | 1044.0 48,5247
2 0.1050 S194.0 | 0.8840€+05 [1093.0 67.7 | 788.0 | 1181.0 | 0.V126E+05 | 790,538 | 1093.0 99.8815
3 0.1180 1358.0 | 0.9471E+05 993.0 98.6 | 758.0 | 1466.0 | 0.1174E+05 | 759.236 992.999 | 81.8886
4 0.9050€-01 240.0 | 0.1091E+06 |1037.0 81.2 | 811.0 | 1534.0 | 0.1052e+05 | 811.614 | 1037.0 39.7706
5 0.9287¢-01 | 1861.0 |0.9219€+05 {1101.1 | 103.0 1 711.0 | 1575.0 | 0,1075€+05 | 712,101 | \101.0 71.9224
6 0.1250 1165.0 | 0.1015€+06 | 1055.0 86.5 | 734.0 | 1325.0 | 0.1023E+05 | 736.033 | 1055.0 120.885
7 0.9778E-01 902.0 {0.6798E+05 [1072.0 76.9 { 715.0 | 1380.0 | 0.1116E+05 | 716.631 | 1072.0 86.3202
8 0.1100 2616.0 [ 0.6944E+05 [1085.0 | 113.0 | 799.0 | 1429.0 | 0.1147€+05 | 800.233 | 1085.0 86.8866
9 0.1000 14690.0 | 0.7427€+05 |1009.0 70.8 | 768.0 | 1672.0 | 0.1043E+05 | 769.257 | 1009.0 46,9832
10 0.7457E-01 | 8017.0 ] O0.1153e+06 {1025.0 90.6 | 738.0 | 1141.0 | 0.1202€+05 | 739.071 | 1025.0 52.6204

*From Ref. 16.

Sy



Table B.3.* LHS Boreflow Results, N = 50,

Run

No. T r d,c zc 4_ z_ L Ko zt_ ztc Q
0.1200 307.0 | 0.7V33E+05 | 1070.0 87.4 | 704.0 { 1504.0 | 0,1080E+05 | 705.691 | 1070.0 118.347
0.1210 7787.0 | 0.8976E+05 { 1088.0 88.5 | 812.0 | 1672.0 | 0.1071E+05 | 813.610 | 1089.0 80.8426
0.1040 2684.0 | 0.7764E+05 | 1092.0 91.4 | 782.0 | 1245.0 | 0.1120E+05 | 783.667 | 1092.0 94,2502
0.7928¢€-01 455.0 | 0.6463E+05 | 1046.0 63.) | 801.0 | 1556.0 | 0.1147€+05 | 801.776 | 1046.0 35,5482
0.1170 480.0 | 0.9364E+05 | 1034.0 64.2 1 730.0 | 1430.0 | 0.1129E+05 | 732.114 | 1034.0 102.499
0.1010 1508.0 | 0.1029E+06 1006.0 114.0 737.0 1590.0 | 0.1051E+05 137.762 1006.0 $6.8220
0.1130 16040.0 | 0.1038E+06 | 1004.0 | 103.0 | 714.0 | 1352.0 | O.V179E+05 | 715.848 | 1004.0 100.801
0.1120 1¥2V.0 | 0.8194E+05 1036.0 105. 702.0 1282.0 | 0.1008E+05 | 703.439 1036.0 103.045
0.1000 24370.0 | 0.1060E+06 | 1023.0 84.1 | 71,0 | 1480.0 | O0.V177E+05 | 712.819 | 1023.0 17.4957

0.8917€-01 | 3967.0 | 0.1044E+06 | 1063.0 82,1 | 750.0 | 1154.0 | 0.9943E+04 | 751.392 | 1063.0 67.0667

0.9S04E-01 | 1798.0 | 0.7483E£+05 997.0 95.3 | 753.0 [ 1138.0 | 0.1067€+05 | 7%4.063 996.999 | 64.6362
0.7425€-01 | 4686.0 | 0.1081E+06 | 1017.0 | 104.0 | 778.0 | 13V1.0 | O.1014E+05 | 778,540 | 1017.0 31,9442
0.9985€-01 | 1985.0 { 0.7907€+05 | 1044.0 V.21 725.0 | 1211.0 | O.1106E+05 | 727,006 | 1044.0 90.6787
0.9564¢€ -01 750.0 | 0.9121€+05 | 1025.0 | 113. 793.0 | 1544.0 | 0.1156E+Q5 | 793.629 | 1025.0 49.7792

0.1150 6951.0 | 0.9751E+05 | 1008.0 69.2 | 799. 1623.0 | 0.9870e+04 | £00.415 | 1008.0 55.8928
0.9209€-01 }11710.0 | 0.1019E+06 | 1109.0 80.9 | 723.0 | 1525.0 | 0.1198E+05 | 724.859 | 1109.0 80. 3990
0.1100 274.0 | 0.11206+06 | 1039.0 | 112.0 | 7245.0 | 1257.0 | 1 1O75€+05 | 746.058 | 1039.0 95.2331

0.7821€-01 | J134.0 | 0.8075E+0S | 1009.0 73.7 | 734.0 | 1651.0 | 0.1100E+05 | 734.803 | 1009.0 35.1060
0.7562E-01 | 2346.0 | 0.1071E+06 933.0 81.3 | 810.0 | 1303.0 | 0.1185€+05 | 810.603 993.0 29.7998

PO " ot ot ot ot ot — —— —
COWANVE NBEWN—~ OVBRBVE vawh ~

0.1080 2134.0 | 0.1134E+06 | 1072.0 | 103. 819.0 | 1392.0 | 0.1116E+05 | 820.131 | 1072.0 73.9938
21 0.1030 2869.0 | 0.7306€+05 | 1014.0 | 110.0 { 813.0 | 1623.0 | 0.1017€+05 | 813,620 | 1014.0 41,8485
22 0.1040 10170.0 | 0.8365E+05 | 1079.0 | 100.0 | 727.0 | 1453.0 | 0.1171E+05 | 728,754 | 1079.0 95.9132
23 0.8143E-01 | 1359.0 | 0.6610E+05 | 1053.0 86.9 | 747, 1500.0 | O.1141E+0S | 747.861 | 1053.0 48.3514
24 0.1300 6148.0 | 0.°541E+05 | 1058.0 95.7 | 781.0 | 1179.0 | 0.1086€+05 | 783.404 | 1058.0 134.290
25 0.9691E-91 840.0 | 0.9264E+05 992.0 75.2 | 816.0 | 1226.0 | 0.1204E+05 | 816.973 991.999 | 50.713?

*From Ref. 16; continued on next page.
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Table B.4.*

Derivatives and Sensitivities of the Response Q with

Respect to Each Parameter for the 10-Point LHS Design Matrix.

R LLY
Parameter Value Ja a R

1 R=Q = 48.52464 Hyy = 783.7536 Hyy = "1043.999
Ty 83370.00 0.2156935E-08 0.3795821E-05
Hy 1044.00 0.1859182 4.000000
r 2948.00 -0.4557747E-05 -0.2758951€-03
ry 0.08609 1124.082 1.994291
Ty 107.00 0.1309451E-02 0.2887424€ -02
Hy 783.00 -0.1859182 -3.000000
Ky 10010.00 0.4833502€-02 0.9971089
L 1250.00 -0.3870748€-01 -0.9971089

2 R=Q = 99.82144 H, = 790.5381 Hyy = 1092.998
Ty 88400.00 0.7200674€-08 0.6372952€-05
Hy 1093.00 0.3274801 3.583607
r 5194.00 -0.1481603€-04 -0.7704580€-03
Ty 0.105 1886.844 1.983538
T3 67.70 0.1227723¢-01 0.8321550£-02
Hj 788.00 -0.3274801 -2.583607
K 11260.00 0.8796593€-02 " 0.9916721
L 1181.00 -0.8386930£-01 -0.9916721

3 R=Q = 81.88855 H,] = 759.2360 Hyy = 992.9987
Ty 94710.00 0.4734320£-08 0.5475582E-05
Hy 993.00 0.3484619 4,225532
r 1358.00 -0.3395267€-04 -0.5630546€-03
Tw 0.118 1380.910 1.989868
T3 98.60 0.4368129€-02 0.5259557E-02
Hy 758.00 -0.3484619 -3.225532
Ky 11740.00 0.6938450F -02 0.9947350
L 1466.00 -0.5556440€ -01 -0.9947350

4 R=Q = 39.77062 H,1 = 811.6145 Hyy = 1037.000
Ty 109100.00 0.7377022€-09 0.2023687E-05
Hy 1037.00 0.1759762 4,588496
r 240.00 -0.5719953€-04 -0.3451766€-03
Fw 0.0905 877.3659 1.996489
£ 81.20 0.1331737€-02 0.2719018€-02
Hy 811.00 -0.1759762 -3.588496
Ky 10520.00 0.3770191€-02 0.9972790
L 1534.00 -0.2585555C-01 -0.9972790

*From Ref. 16,
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Table B.4. (Continued).
EL Ra

Parameter Value Ja a R

S R=Q = 71.92241 Hy1 = 712.1008 Hyy = 1100.999
Ty 92190.00 0.2460308€-08 0.3153618€-05
Hy 1101.00 0.1844164 2.823G77
r 1861.00 -0.1102517¢-04 -0.2852775€-03
Tw 0.09287 1544.613 1.994485
T 103.00 0.1970982t -02 0.2822641¢£-02
Hy 711.00 -0.1844164 -1.823077
Ky 10750.00 0.6671550E -02 0.9971741
L 1575.00 -0.4553598¢£-01 -0.9971741

6 R=Q = 120.8852 Hy1 = 736.0329 Hyy = 1054.998
Ty 101500.00 0.6427935£-08 0.5397149€-05
Hy 1055.00 0.3765893 3.286604
r 1165.00 -0.7195967£-04 -0.6€34929¢-03
Tw 0.125 1922.578 1.988021
T 86.50 0.8850572¢ -02 0.6333071€-02
Hy 734.00 -0.3765893 -2.286004
Ky 10230.00 0.1174183¢-01 0.9936614
L 1325.00 -0.9065580£ -01 -0.9936614

7 R=Q = 86.32016 Hy1 = 716.6310 Hyy = 1071.998
Ty 67980.00 0.6562483¢£-08 0.5168174€-05
Hy 1072.00 0.2417931 3.002801
r 902.00 -0.4794403€-04 -0.5009897¢-03
Tw 0.09778 1757.957 1.991343
N 76.90 0.5128352€-02 0.4568693€-02
Hy 715.00 -0.2417931 -2.002801
Ky 11160.00 0.7699403£-02 0.9954261
L 1380.00 -0.6226474£-01 -0.9954261

8 R=Q - 86.88659 Hy1 = 800.2331 Hey = 1084,998
Ty 69440.00 0.8779252€-08 0.7016403€-05
Hy 1085.00 0.3037992 3.793706
r 2616.00 -0.1423474£-04 -0.4285827¢-03
Tw 0.11 1573.013 1.991463
T 113.00 0.3315279¢-C2 0.4311673c-02
Hy 799.00 -0.3037993 -2.793706
K 11470.00 0.7542402¢-02 0.9956813
L 1429.00 -0.6053978£-01 -0.9956813
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Table B.4. (Continued).
3R R a

Parameter Value a 2a R

9 R=Q = 46.98318 Hy} = 769.2566 Hyy = 1008.999
Ty 74270.00 0.31442505¢-08 0.4970363E£-05
Hy 1009.00 0.1949509 4,186722
r 14690.00 -0.1402964E-05 -0.4386581€-03
Tw 0.10 934.7742 1.989593
T 70.80 0.3460010E-02 0.5213967t-02
H 768.00 -0.1949509 -3.186722
Ky 10430.00 0.4481110£-02 0.9947811
L 1672.00 -0.2795333E-02 -0.9947811

10 R=() = 52.62038 Hy1 = 739.0709 Hyy = 1024.999
Tu 115300.00 0.1338124£-08 0.2932052E-05
Hy 1025.00 0.1833462 3.571428
r 8017.00 -0.2115667E-05 -0.3223333t-03
Ty 0.07457 1406.067 1.992582
N 90.60 0.2167197€-02 0.3731408E-02
Hy 738.00 -0.1833462 -2.571428
K 12020.00 0.4361387£-02 0.9962656
L 1141.00 -0.4594555E-01 -0.9962656

———
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