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STATISTICAL NEAR-REAL-TIME ACCOUNTANCY PROCEDURES
APPLIED TO AGNS MINIRUN DATA USING PROSA

by

Rainer Beedgen

ABSTRACT

The computer program PROSA (PROgram for Sta-
tistical Analysis of near-real-time accountancy
data) was developed as a tool to apply statistical
test procedures to a sequence of materials balance
results for detecting losses of material. First
applications of PROSA to model facility data and
real plant data showed that PROSA is also usable as
a tool for process or measurement control. To
deepen the experience for the application of PROSA
to real data of bulk-handling facilities, we applied
it to uranium data of the Allied General Nuclear
Services miniruns, where accountancy data were col-
lected on a near-real-time basis. Minirun 6 espe-
cially was considered, and the pulsed columns were
chosen as materials balance area. The structure of
the measurement models for flow sheet data and
actual operation data are compared, and methods are
studied to reduce the error for inventory measure-
ments of the columns.

I. INTRODUCTION

The computer program PROSA [PROgram for Statistical Analysis of near-

real-time accountancy (NRTA) data^] was developed as a tool to apply sta-

tistical test procedures to a sequence of materials balance results for

detecting losses of material under consideration especially nuclear mate-

rial. First applications of PROSA to model facility data*-'^ and real plant

data^ showed that PROSA is also usable as a tool for process or measurement

control. To get more experience for the application of PROSA to real data



ot bulk-handling facilities, we applied it to uranium data from the Allied

General Nuclear Services (AGNS) miniruns, where accountancy data were col-

lected on a near-real-time basis. In our case, the four pulsed columns 2A,

2B, 3A, and 3B are considered as one materials balance area. The pulsed

columns are interesting from the measurement uncertainty and measurement

model point of view. There is not much information available about the

sizes of these uncertainties under routine operating conditions.

If we are to get reasonable results out of such an analysis, it is

important to have a realistic measurement model for the process data be-

cause it is an essential input for PROSA and the application of statistical

test procedures. The measurement model for a steady-state operation based

on the flow sheet data is compared with the actual model derived from the

actual facility data. The measurement models (dispersion matrices) allow

an estimate of the performance of the NRTA test procedures and a determi-

nation of those loss patterns that are the most difficult to detect.

We studied some experiments for reducing the error of the inventory

measurements and determined what the changes of the data mean for the

structure of the measurement model. The analysis of the Minirun 6 data

may serve as an example of how to evaluate other real plant data with

PROSA. The study should be valuable for data analysts as well as plant

operators. The analysis was carried out under the bilateral U.S. DOE/BMFT

(Bundesministerium fuer Forschung und Technologie) Cooperation in Reproc-

essing Safeguards R&D.

II. SHORT DESCRIPTION OF PROSA

PROSA has been developed as a tool to apply truncated sequential

statistical tests to a sequence of materials balance results, the origin

of which is a model facility or an existing plant. PROSA is used to

decide, on the basis of statistical considerations, whether in a given

sequence of materials balance periods a IOSP of material might have

occurred. The evaluation of the materials balance data is based on sta-

tistical test procedures.



In the present version of PROSA 1.0, three statistical tests,

(1) Truncated Sequential CUMUF Test,

(2) CUSUM Test with Power One thresholds, and

(3) CUSUM Test with Page's thresholds,

are selected. These three test procedures are the result of several years

of statistical research in the international community and, at the moment,

are promising ones, as far as the detection probability for a loss of

material and the timeliness of detection of a loss is concerned.

PROSA has been developed for evaluating accountancy data from reproc-

essing facilities. However, it is also able to evaluate accountancy data

from all kinds of facilities as long as they possess a particular, but

fairly general, structure.

The evaluation of a given data set can be performed with a desired

false alarm probability a. This enables sensitivity studies for given

data sets.

To use PROSA, it is not necessary to understand all of the statistical

details, but it is important that the user is aware of the measurement

model of the plant under consideration. The measurement model is the basis

for the statistical tests performed on a given sequence of materials bal-

ance results.

A. Multiple Balances Model

We assume a discrete number of balance periods k = l,2,...,n for a

well-defined class of material. For each period k we establish the mate-

rials balance equation

Here 1^ is the inventory at the end of period k (Io is the beginning inven-

tory), and the net transfer is T^ = R^ - S^ with R^ equal to receipts and

Sfc equal to shipments.

The concept of multiple balances is used for detection of possible

nuclear materials losses in a bulk-handling facility. The detection has

to be timely and have sufficiently high probability. The true MUF^ values



are zero in the ideal situation of no losses and no measurement errors. In

actual practice, however, nonzero MUF^'s may occur for a number of reasons,

for example, measurement errors or loss of material.

Measurement errors in our model are represented as random variables

in determining the materials balance.

We assume that Ij,., R^, and S^ are random variables that can be written

as

- E(Ik) + ZIk + SIk ,

where ECl^) is the true valus of inventory, ZI^ is the random error of

measurement, and SI^ is the systematic measurement error. Furthermore, we

define

T. = R, - S, = E(T. ) + ZT.+ ST.
k k k k k k

for all k, where ECT^) are the true values, ZT^ the random measurement

errors, and ST^ the systematic measurement errors.

A further assumption is that all measurement errors are stochastically

independent.

The variances for period k are defined as

var (I ) = var (ZI.) + var (SI ) and

var(T ) = var (ZT ) + var (ST ) .

For two periods i and j, we define the covariance of MUF^ and MUFj as

a. . = cov (MUF.,MUF.) .



All the variance and covariance calculations may be summarized in the

variance-covariance matrix £, also called the dispersion matrix, of the

sequence MUFi,MUF2,•..,MUFn:

(2)
a
nn'

The matrix J is the condensed form of the measurement model of the facil-

ity under consideration. It is an essential component of the statistical

analysis of the MUF sequence.

Given a sequence of nonzero MUF values, we have to decide whether the

values are caused by measurement errors or loss. In our case, we use the

theory of statistical hypothesis testing to decide on the basis of a given

sequence of MUF values (MUF^,...,MUFn) whether the situation of no loss or

loss of nuclear material pertains. Loss of material may occur in a variety

of patterns, and we have to take into account that the actual loss pattern

is unknown.

We assume two hypotheses for the mean values of the random variables

MUF^. If there is no loss of material, all materials balances have zero

mean. This situation is described by the null hypothesis

H : E(MUF ) = 0 for all periods k = l,2,...,n . (3)
\J K

A loss of material can take place in one or more balance periods.

Taking this into account, we formulate the alternative hypothesis:

H : E(MUF ) = nu t 0 with Enu > 0 . (4)

Hypothesis Hi means that a loss of material occurred in at least one bal-

ance period k. In our considerations, we are not restricted to a fixed

number of inventory periods.
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B. NRTA Test Procedures

The sequential tests in PROSA are truncated versions; that is, they

give a decision at the end of the n1-*1 balance period or earlier. We use

three sequential test procedures in PROSA, all of which are evaluated with

the same selected false alarm probability a.

1. Test Based on MUFs.

a. Truncated Sequential CUMUF Test. CUMUF is defined as the cumu-

lative sum of the materials balance results

CUMUFi = MUFX + ... + MUFi , i = 1,2,...,n . (5)

The test is performed as follows:

for i = 1,2,...,n-l,

> s., reject H_

CUMUF.
1 £ s., no decision and go to the next period

for i = n,

<_ s , reject

CUMUF
n ' > sn, reject HQ

The significance thresholds s^,S2,-..,sn are determined by a Monte Carlo

simulation to give a given false alarm probability a. In our case, we

select

1 I")
s. = var (CUMUF.) ' U, ,
1 1 i-<X



where U is the inverse standard normal distribution function. The value

a' corresponds to the total false alarm probability a.

b. The GeMUF Test. The application of FROSA 1.0 to various data

sets revealed that the application of the Power One Test does not provide

a substantial increase in detection capability of anomalies among the data

compared with the Page's Test. This is not very surprising because the

statistics of both tests are very similar. There are cases, however,

where the CUMUF Test as well as Page's Test do not perform very well, so

at Kernforschungszentrum Karlsruhe (KfK) we were looking for a test that

is based on the idea of the Neyman-Pearson Test, which should close the

gap- The idea is to replace the Power One Test by this newly developed

test. We know that there exists exactly one best test to test HQ against

H\ when in case of loss the loss pattern is known exactly. This is the

Neyman-Pearson Test that may be formulated as

> k, reject Hn

Z <J ° , (6)
< k, reject H

where

Z = (mi,m2,...,mn)5:
 1(MUF1,MUF2,...,MUFn)

t

Because in the case of loss the exact pattern will normally not be known,

this test cannot be applied. The idea of the new test, which is called

the GeMUF Test, is to estimate the loss rc^ of period i, i=l,2,...,n, by

MUF^, which is an unbiased estimate. The statistics of this test may be

written as

(MUF1,MUF2,...,MUF



where Ei~* is the inverse of the dispersion matrix for the random vector

p,... ,MUFj[). The test may now be formulated as follows:

for i = 1,2,...,n-l,

<_ t., no decision and go to the next period

> tiS reject HQ

for i = n,

, reject
I '•

GeMUF
n ' > tn, reject HQ

The thresholds t^ have to be calculated by a Monte Carlo simulation to

allow a total overall false alarm probability a.

2. Tests Based on the MUF Residuals. The materials balance equations

MUFj[ are stochastically dependent random variables. With a linear trans-

formation, it is possible to transform the sequence MUF^,...,MUFn to a

sequence of stochastically independent random variables MUFR^,...,MUFRn.

There are numerous possibilities for this transformation. We selected the

transformation given by

MUFIL = MUFi - E(MUFi|MUF1 WF^) (7)

for i = 2,...,n with MUFR! = MUF^ The values for MUFR^ are called MUF

residuals because they describe the difference between the estimate for

che mean of MUF^ based on the last i - 1 results and the realization of

The transformation can be described as an n • n matrix L with

(MUFR1,...,MUFR ) = (MUF ,...,MUF ) • L . (8)



The diagonal matrix L • E • Lfc is the dispersion matrix of the MUFR

vector.

For the hypotheses we get

(HQ): E(MUFR.) = 0 for i = 1,2,...,n . (9)

Under the alternative hypothesis Hj, positive or negative values for the

sum of the means of MUFRj are possible, and this is an important differ-

ence to MUFF'S. Therefore, we have a two-sided hypothesis:

(H1): E(MUFRi) t 0 for at least one i . (10)

a. Power One Test. The Power One Test was proposed by Robbins as a

procedure that accepts R\ with probability one when it is true and testing

can continue indefinitely. For this test, we use the cumulative sum of

the standardized MUFR^ variables:

i MUFR.
Ti = Z 3i Z

j=l var (MUF.)

The test procedure is defined as follows:

for i = 1,2,...,n-l,

r > b i 5 reject HQ

£ b., no decision and go to the next period



for i=n,

> b n, reject HQ

|T | "
n ' < bn, reject H]

The parameters bj are calculated as

b. = {(i + m) [-21n (a) + In (1 + ^

where a is determined by simulation to obtain a specific false alarm prob-

ability a and m is a parameter that influences the distribution of the

false alarms.

b. CUSUM Test with Page Thresholds. The test was proposed by Page

and uses the following statistics:

S Q = 0 .

.̂  = max {0,Si_1 + MUFIL - k} , and

T. = min{0,T + MUFR. + k} ,

for i = l,2,...,n, where k is a fixed real number. The test procedure

called Page's Test is defined as follows, where h is a real number:

for i = 1,2,...,n-l,

1. S. > h or T. < -h , reject H..

2. S. ^ h and T. _> -h, no decision and go to the next period

10



for i = n,

1. S > h or T < -h , reject H~

2. S £ h and T ;> ~h> reject H.

The parameters h and k are determined by simulation to guarantee a false

alarm probability a for the n balance periods. In our case, we selected

k = 0.

III. DESCRIPTION OF AGNS MINIRUN DATA

The data that are used for a demonstration of PROSA were collected

during a demonstration of near-real-time nuclear materials accountancy at

the AGNS Barnwell Nuclear Fuels Plant.* The demonstration was structured

in several experiments for processing uranium solutions. The experiments

lasted 1 week each and were called miniruns. The measurement system for

collecting the data consisted primarily of process-monitoring measurements.

The accounting data were collected in 4-minute intervals, but only the

hourly readings are used for the following analysis and only a part of the

facility is used for the accountancy analysis. The materials balance area

under consideration consists of the four pulsed columns 2A,2B,3A and 3B

(see also Fig. 1). The demonstration of PROSA is restricted to Minirun 6,

which was conducted during the week 13-19 May 1981. Miniruns 1-5 were

devoted primarily to the testing of equipment, measurement system, and

materials accountancy software. Full-scale tests of the complete material

and data collection systems were conducted during Miniruns 6 and 7.

The hourly flow and concentration measurements for the input and out-

put are shown in Figs. 2-5. For the determination of the hourly input and

output, we assumed that they are constant during the 1-hour time period.

The hourly inventories of the four pulsed columns are illustrated in Figs.

6-9. For a further description of the measurement system, we refer to

Ref. 4.
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Input
2AF : Flow

1BP-Tank (Taylor):
Concentration

2A

I
2B

3A~]

I
3B

Output
3BX: Flow

3BP:
Concentration

Fig. 1. Selected materials balance area of AGNS Minirun 6
for demonstrations of NRTA with PROSA.

IV. DEVELOPMENT OF A MEASUREMENT MODEL

An essential part of the the NRTA analysis of a sequence of mate-

rials accountancy data is the calculation of the dispersion matrix £ [see

Eq. (2)]. This matrix has to be calculated based on the real inventories,

inputs, and outputs for a series of materials balances under consideration.

For the inventory measurements of the pulsed columns, we assume a random

error of 20% (measurement-to-measurement variation) and a systematic error

of 20%, which is a random error that is constant for the whole sequence of

accounting periods. The operator information (Table A-IV in Ref. 4) ranges

from 20% to 76% standard deviation. We take the lowest value for all

pulsed columns. The high uncertainties mainly originate from the influence

of pulsing the columns.

The following data in Table I, taken from Table A-IV in Ref. 4, are

used as relative standard deviations for data of the transfer measurements.

Based on the information from the flow sheet data, we calculate the rela-

tive standard deviations for the input R and output S where FR and CR are

the flow and concentration data, respectively, for the input and Fg and Cg

are the flow and concentration data, respectively, for the output.

12



2AF (FR205) ARANGE DATA—AGNS6 5/13-5/20/81

0 20 40 60 80 100 120 140 160 180 200 220

TIME(hrs)

Fig. 2. Flow data for the input (2AF stream), measured hourly.

1BP TANK (TAYLOR) ARANGE DATA—AGNS6 5/13-5/20/81
0.06

0.05 -

0.04 -

0.03 -

0.02 -

0.01 -

0.00
0 20 40 50 80 100 120 140 160 180 200 220

TIME (hrs)

Fig. 3. Concentration data for the input (IBP tank, Taylor),
measured hourly.
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Fig. 5. Concentration data for the output (3BF sample),
measured hourly.
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Fig. 6. Uranium inventory of 2A column, measured hourly.

2B COLUMN ARANGE DATA—AGNS6 5/13-5/20/81
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Fig. 7. Uranium inventory of 2B column, measured hourly.
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3A COLUMN ARANGE DATA—AGNS6 5/13-5/20/81

( I
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Fig. 8. Uranium inventory of 3A column, measured hourly.
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Fig. 9. Uranium inventory of 3B column, measured hourly.
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Table I. Relative Standard Deviations for Input and Output Streams

Random Systematic

Input: Concentration - 1 BP Tank (Taylor)
Flow - 2 AF

Output: Concentration - 3 BP Sample
Flow - 3 BX

0.064
0.02

0.06
0.02

0.142
0.02

0.01
0.02

We get

R = CR • FR and S . (12)

and using error propagation based on the first two terms of the Taylor

series, we get

var (R) = E(C R)
2 » var (FR) + E(F R)

2 • var(CR)

= (60 • 100 • 0.02)2 + (100 • 60 • 0.064)2 (random)

(13)

+ (60 • 100 • 0.02) + (100 • 60 • 0.142) (systematic)

= 161 856 (g U/h)'

+ 740 304 (g U/h)'

(random)

(systematic)

and

var (S) E(C_)2 • var (Fc) + E(F C)
2 • var (Cc)

K b o b
(14)

= (50 • 120 • 0.02)2 + (120 • 50 • 0.06)2

+ (50 • 120 • 0.02)2 + (120 • 50 • 0.01)2

(random)

(systematic)

17



= 14 400 (g U/h)'

+ 18 000 (g U/h)'

(random)

(systematic)

Based on the flow sheet information, we have an input and output of 6000 g

of uranium/hour. This allows us to calculate the relative standard devia-

tions for input and output (Table II).

Table II. Relative Standard Deviations of Input and Output

Input
Output

Random

0.07
0.06

Systematic

0.14
0.02

A. Steady-State Model for Pulsed Columns

If we assume an ideal operation of the facility according to the flow

sheet data, we can set up a steady-state operation and measurement model

for the pulsed columns that can serve as a guideline for the uranium mate-

rials accountancy considerations. The steady-state operation model is

summarized in the Table III. Based on Table III, we get for the variance

of a 5-hour materials balance 65 kg of uranium, which is a standard devia-

tion of 8.065 kg of uranium. The standardized 19 • 19 dispersion matrix

for the materials balance model in Table III has the following structure:

r =

a b c c c c

b a b c c c

c b a b c c

c

c

c

.c b a b

. . c b a

(15)

where a = 1, b = -0.073, and c = 0.277.

18



Table III. Parameter of Steady-State Operation Measurement Model
for Balancing Uranium in the Pulsed Columns of AGNS
Minirun 6

Number of working hours 95
Balance interval in hours 5
Number of balances 19

2A Column
2B Column
3A Column
3B Column

Input (2AF.1BP)
Output (3BX.3BP)

U - Inventory
(kg)

19.2
5.4
11.4
5.6

U/hour (kg)

6.0
6.0

Relative
Random

0.20 = <?!
0.20
0.20
0.20

0.07 = aR

0.06 = as

Standard Deviation
Systematic

, 0.20 = or „
0.20
0.20
0.20

,r °-11* = °R,s
> r 0.02 - a s > s

The structure of I means that the systematic errors of the transfers

are quite influential-' and allows a first estimate about the performance

of NRTA measures to detect losses of material. The most difficult tu

detect loss pattern in such a case is a uniform loss over all 19 balance

periods. A loss of about 40 materials balance standard deviations is

detectable by the Truncated Sequential CUMUF Test with 95% probability if

the amount is distributed uniformly over the 19 balance periods. The

standard deviation for the materials balance over 95 hours is 81.071 kg of

uranium.

B. Measurement Model for AGNS Minirun 6 Data

A steady-state model that is considered in Table I is only an approxi-

mation of a real process when this process is running according to the

flow sheet data. But a running facility is often not in a flow sheet

state. For an exact NRTA analysis of real process data, one has to use a

measurement model that is based on the facility data that led to the series

19



of materials balances. The establishment of a measurement model for a

sequence of materials balance periods means that PROSA must use the plant

data for inventories, input, and output to calculate, based on the relative

standard deviations, the dispersion matrix £ = (<Jij^)- In our special

case, we have the same standard deviation for all inventory components 2A,

2B, 3A, and 3B, so we use Ij as total inventory measurement at the end of

balance period i. Here Io is the beginning inventory, and Rj and S^ are

the receipts and shipments, respectively, during balance period i.

The symmetric dispersion matrix £ for n balances is calculated accord-

ing to the following equations:

for i = 1,2 ,n,

h

Ri * (°R,r + < s } + Sl ' (*S,r + °S,s)

for j = i + i,

a2. = -I1. • al + (I. , • I. - I? -- I. . • I. + I. • I.) • o\
IJ 1 I,r l-l l l l-l j I j I,s

+ R. • R. • vl + S. • S. • el ; (17)
l j R,s l j S,s

and for j > i + 1,

cr?. = (I. . • I. . - I. • I. . - I. . • I. + I. • I.) 2 • o TIJ l-l j-1 l j-1 l-l j l j I,s

+ Ri # Ri * °l s + Si ' Si ' aS s 'l j K,s l j a,s

V. APPLICATION OF PROSA TO THE MINIRUN 6 DATA

In our case PROSA is going to be applied to the data of Minirun 6 as

explained in Sec. III. As a first step, we use for our NRTA analysis a

time period when we had a controlled, nearly steady-state input according

20



to the flow sheet. Based on Fig. 2, we select the time period beginning

after operation hour 55 to hour 150 of Minirun 6 divided into 19 balance

periods of 5 hours.

A. Application to Data Without any Changes

In a first approach, we use the data without any adjustments. In

Figs. 10-12, the input, output, and inventories are illustrated as they

have been derived from Figs. 2-9. The values of the materials balances

are shown in Fig. 13. Based on Eqs. (16)-(18) and using the data in Figs.

10-12, we calculate the dispersion matrix, which is shown in Fig. 14 in

lower triangular form. PROSA calculates the standardized dispersion matrix

because it generally uses standardized values. The structure of the stan-

dardized dispersion matrix shown in Fig. 15 allows a first analysis of the

materials balance data. We see that the two following materials balances

are negatively correlated and that otherwise materials balances are not

strongly correlated. That means, the measurement uncertainties of the

transfers are dominated by the measurement uncertainties of the inven-

tories. Furthermore, the general structure of the standardized dispersion

matrix in Fig. 15 differs considerably from the standardized dispersion

matrix T of the flow sheet model in Sec. IV.A. One of the reasons is that

for the real data the systematic measurement uncertainties have an influ-

ence on the dispersion matrix. The readings in Fig. 12 show a considerable

fluctuation in the inventory readings.

Now PROSA is going to be used to decide if the MUF series shown in

Fig. 13 may be explained by the assumed measurement model—the result of

which is the dispersion matrix in Fig. 14. We assume for the determina-

tion of the alarm thresholds a false alarm probability of 5% for the total

period of 19 balance periods.

The results coming out of PROSA are shown in Figs. 16-19. We do not

generally get an alarm by PROSA. Only the Power One Test shows a slight

anomaly, which is caused by the negative tendency of the CUMUFs. In such

a situation, the CUMUF Test is not useful because it is one-sided and only

designed to detect material losses, that is, positive CUMUFs. A further

analysis of the data shows that a false alarm level of 1% does not lead to

an alarm. The fluctuations of the inventories lead to the hypothesis that
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Fig. 14. Lower triangular form of the dispersion matrix
for the series of HUFs in Fig. 10.

the standard deviation of 20% of the random and systematic error for meas-

uring the column inventories may be too optimistic. Indeed, if we go

closer to the operator information and go up to 60% relative standard

deviations, we do not get an alarm anymore. In this case the measurement

model is dominated even more by the measurement uncertainties of the inven-

tories. These may originate from the random influence of pulsing the col-

umns on a single reading for the weight measurement. Furthermore, it is

not yet clear what a systematic error in such an environment really means

and how it has to be propagated.

B. Data Adjustments to Reduce the Random Error for Pulsed-Column Inven-

tory Measurements

The first adjustment of data we are going to make is for the inventory

measurements of the 3A column, where we have from reading 54 to 114 a zero

for the column inventory, which was caused by an error in the measurement

system. We change these data by assuming a constant inventory of 17.263 kg

of uranium, which was the last reading before the failure. This measure
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Fig. 15. Standardized dispersion matrix of matrix shown in Fig. 14.

will only influence two materials balance results, namely, one at the

beginning and one at the end of the failure period. Furthermore, it may

reduce the fluctuations in the total inventory readings. Another measure

is to take for an inventory at the end of 5 hours the average of the last

5 readings, which should under the assumption of nearly constant real

inventory reduce the random error from 60% to l//5~ • 60%, which is about

25%. The inventory measurements that result from these measures are shown

in Fig. 20, where the readings are averaged over 5 hourly readings. The

adjusted inventory readings are used to calculate a new sequence of mate-

rials balance results and a new dispersion matrix, which are illustrated

in Figs. 21-23, where a 25% measurement uncertainty of random and systema-

tic error for the inventory measurements is assumed. Also, in this case

the CUMUF series shows a negative trend. It is explainable by the input
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Fig. 22. Lower triangular form of the dispersion matrix

for the HUF series based on modified data.

and output data in Figs, 10-11. They show on the average a higher reading

for the outputs compared with the inputs, which finally leads to a negative

trend in the CUMUFs. It should be mentioned that the systematic error

meaning is still to be questioned. By the way, the systematic error of

the inventories does not have a significant influence on the dispersion

matrix for the MUFs. This can be seen by looking at Fig. 24, where the

standardized dispersion matrix for 0% systematic error for the inventories

is illustrated.

Furthermore, Fig. 23 shows that the random measurement errors of the

inventories dominate the correlations of the materials balances. PROSA

will now be applied to the data in Figs. 21-22, and we again assume a 5%

false alarm probability for the evaluation of the 19 balance periods. The

results in Figs. 25-27 show indeed that we do not get an alarm this time,

and the data may be explained by the measurement model.
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Fig. 23. Standardized dispersion matrix of matrix shown in Fig. 22.

VI. CONCLUSION

It was shown that the uranium data of a bulk-handling reprocessing

facility could be used for a statistical analysis of NRTA data where PROSA

was a helpful tool. The most interesting part was the development of the

statistical measurement model for the collection of the materials balance

data. PROSA could be used to test whether the underlying assumptions about

measurement errors agree with the materials balance data. Adjustments for

the inventory data of the pulsed columns led to a considerable reduction

of the random error. What the systematic error for the pulsed column

inventory means is still an unanswered question. It was demonstrated that

measurement models, that is, dispersion matrices, for flow sheet data or

real process data might differ considerably. Furthermore, it was explained
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Fig. 24. Standardized dispersion matrix of MUF in Fig. 21 with zero
per cent systematic error for the inventory measurements.

that the structure of the dispersion matrix can be used for a first es t i -

mate about the performance of the NRTA analysis. The procedure of NRTA

data analysis explained in this report might be used as an example for the

evaluation of other facility data.
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