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and 
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The f i r s t  w a l l  and b lanke t  d e s i g n  concepts  be ing  
eva lua ted  f o r  t h e  STARPIRE camnercial  tokamak r e a c t o r  
s t u d y  a r e  presented.  The two concepts  r e p r e s e n t  d i f -  
f e r e n t  approaches t o  t h e  mechanical d e s i g n  of  a t r i t i u m  
breeding b lanke t  us ing  t h e  r e f e r e n c e  m a t e r i a l s  opt ions.  
Each concept h a s  a s e p a r a t e  f e r r i t i c  s t e e l  f i r s t  w a l l  
cooled by heavy water  (D20), and a f e r r i t i c  s t e e l  

..... . . 
blanke t  wi th  s o l i d  l i t h i u m  oxide  breeder  cooled by 
helium. A s e p a r a t e  helium purge system i s  used i n  : 
both  concepts  t o  e x t r a c t  t r i t i u m .  The two concepts  a r e :  
compared and r e l a t i v e  advantages and disadvantages f o r  ' 

each a r e  discussed.  

I n t r o d u c t i o n  

F i r s t  w a l l  and b lanke t  mechanical  des ign  o p t i o n s  
a r e  being developed f o r  t h e  s e l e c t e d  r e f e r e n c e  mat- - 
e r i a l s  opt ion.  The r a t i o n a l e  f o r  t h e  m a t e r i a l s  s e l -  

' e c t i o n ' i s  t h e  s u b j e c t  of a s e p a r a t e  paper1 a t  t h i s  
Symposium and w i l l  no t  b e  d i scussed  here.  The t a b l e  
below b r i e f l y  summarizes t h e  s e l e c t e d  m a t e r i a l s .  

F i r s t  Wall 

S t ruc ture :  F e r r i t i c  s t e e l  (Al te rna te :  Austen- 
i t i c  s t a i n l e s s  s t e e l )  

Cooiant: ..:,. D20, healrp wate r  

Blanket 

S t ruc ture :  F e r r i t i c  s t e e l  ( A l t e r n a t e s :  Ti tan-  - ium a l l o y  o r  a u s t e n i t i c  s t a i n l e s s  
s t e e l )  

Coolant: Helium 

Breeder: Lithium oxide  

Two d i f f e r e n t  mechanical d e s i g n  concepts  f o r  t h e  
r e f e r e n c e  m a t e r i a l s  o p t i o n  a r e  p r e s e n t l y  being develop- 
ed and f u r t h e r  analyzed t o  a s s u r e  t h a t  des ign  r e q u i r e -  
ments a r e  sat$sf . ied i n  t h e  a r e a s  of thermal  h y d r a u l i c s ,  
power c y c l e  e f f i c i e n c y ,  t r i t i u m  breeding,  t r i t i u m  re -  
covery, f a b r i c a b i l i t y ,  and s t r u c t u r a l  i n t e g r i t y .  The 
concepts  w i l l  a l s o  be  compared t o  determine how w e l l  
t h e y  s a t i s f y .  t h e s e  important  STARFIRE d e s i g n  ob jec t -  
ives :  . 

o minimize probabFlity/consequences o f  acc i -  
d e n t a l  c o n t a c t  o f  incompatible  m a t e r i a l s ;  

o maximize r e l i a b i l i t y  o f  system and components, 
t o  i n c r e a s e  a v a i l a b i l i t y ;  

o maximize m a i n t a i n a b i l i t y  by minimizing need 
f o r ,  and t ime requi red  f o r ,  s t andard  maintenance 
opera t ions ;  

o minimize i n n e r  w a l l / b l a n k e t / s h i e l d  t h i c h e e s  
i 

(A ), t o  reduce r e a c t o r  e i z e  add areximum 
BS 

magnetic f i e l d ;  and 

o minimize o u t e r  w a l l / b l a n k e t / s h i e l d  t h i c k n e s s ,  
t o  minimize TF and EF c o i l  s i z e .  

i 
The f i n a l  cho ice  f o r  t h e  mechanical d e s i g n  concept  

vill b e  made fol lowing t h e s e  a n a l y s e s  and comparisons. 
, . 

S e l e c t i o n  o f  t h e  'mechanical d e s i d n  concept  f o r  
t h e  helium cooled b lanke t  is  s t r o n g l y  dependent on , 

t h e  i n d i v i d u a l  and combined c h a r a c t e r i s t i c s  of t h e  s e l -  
e c t e d  s t r u c t u r a l  m a t e r i a l ,  c o o l a n t  and breeder .  Of 
c r i t i c a l  importance is  a s s u r i n g  s a t i s f a c t o r y  adherence 
, to .  minimum and maximum temperature c o n s t r a i n t s  p laced  

1 'on t h e  s o l i d  b reeders  . Minimizing t h e  b l a n k e t  th ick-  
n e s s ,  manifold and header  s i z e  a r e  a l s o  of  major im- 
por tance ,  i n  o r d e r  t o  minimize r e q u i r e d  r e a c t o r  s i z e .  

Both t h e  d e s i g n  concepts  be ing  eva luz ted  u s e  t h e  
approach o f  i n d i v i d u a l  b lanke t  modules o f  s i m i l a r  shape 
and s i z e  which a r e  b u i l t  up i n t o  wedge-shaped f i r s t  
w a l l  and b lanke t  c i r c u m f e r e n t i a l  s e c t o r s .  T h i s  

2 '. 2 
approach, d i scussed  in a n o t h e r ' p a p e r  a t  t h i s  Synposium , 
h a s  s e v e r a l  advantages. It p e r m i t s  more a c c u r a t s  
t a i l o r i n g  o f  t h e  b lanke t  t o  match neu t ron  w a l l  load  
v a l u e s  a t  s p e c i f i c  p o s i t i o n s  around t h e  plasma c r o s s  
sec t ion .  Accommodation o f  l o c a l  d i s c o n t i n u i t i e s  such 
a s  vacuum p o r t s  and r f  d u c t s  is  simplif i 'ed.  Replace- 
ment o f  i n d i v i d u a l  modules can  be  performed i n  t h e  h o t  
'cell, w h i l e  t h e  r e a c t o r  contFrues noruial o p e r a t i o n  
: fol lowing i n s t a l l a t i o n  of a replacement  s e c t o r .  The 
r e a c t o r  i s  t h u s  shu t  down o n l y  f o r  t h e  t ime  needed t o  
remove the s e c t o r  con ta in ing  a f a u l t y  f i r s t  w a l l  o r  
b lanke t  component and t o  i n s t a l l  t h e  replacement  sec tor .  

A water-cooled f i r s t  w a l l ,  mechanical ly and 
s t r u c t u r a l l y  s e p a r a t e  from t h e  b l a n k e t ,  was s e l e c t e d  
f o r  b o t h  t h e  b lanke t  des ign  concepts .  The s e p a r a t e  
f i r s t  w a l l  concept  permi t s  s imple  replacement ( i n  t h e  
h o t  c e l l )  of  a f a i l e d  f i r s t  w a l l  pane l  wi thout  a l s o  
r e q u i r i n g  replacement of  t h e  more expensive b lanke t  
module behind it. The u s e  of  water  c o o l a n t  f o r  t h e  
f i r s t  w a l l  i n  t h e  r e f e r e n c e  d e s i g n  accommodates t h e  

s e l e c t e d  neu t ron  w a l l  ioad (Pnw) v a l u e  of  3.5 MW/m 2 

w i t h  n e g l i g i b l e  pumping l o s s e s .  The two a d d i t i o n a l  
disconnect / reconnect .  o p e r a t i o n s  f o r  t h e  f i r s t  w a l l  
water  coo lan t  headers ,  necessary  f o r  removal o f  a 
b lanke t  s e c t o r ,  a r e  n o t  considered a major a d d i t i o n  t o  
t h e  t i m e  requi red  f o r  t h a t  opera t ion .  

Discussion of Design Concepts 

Two mechanical  des ign  concepts  a r e  be ing  cons ider -  
ed f o r  t h e  b lanke t .  I n  t h e  f i r s t  concept ,  t h e  module 
w a l l s  a r e  p ressur ized  t o  t h e  c o o l a n t  s t a t i c  p ressure .  
The s o l i d  b reeder  i s  contained i n  s e a l e d  tubes ,  arrang-  
ed in a s taggered  rod bank p a t t e r n ,  which a r e  cooled 
by cross-f lowing t h e  helium over  them. I n  t h e  second 
concept ,  t h e  helium coolan t  f lows i n s i d e  tubes  each of 
v h i c h  i s sur rounded  throughout t h e  module by t h e  s o l i d  
b reeder .  T h i s  s e c t i o n  d i s c u s s e s  t h e  two concepts ,  and 
t h e  water-cooled f i r s t  w a l l  common. t o  both. 



- - - .  . . . . .  

prefisuri ted Module Concept 

The pressur ized  blanket  module h a s  e s s e n t i a l l y  t h e  
form o f  a s l i g h t l y  tapered p a r a l l e l e p i p e d ,  a s  shown i n  
Ffg. 1. Pour o f  t h e  s i d e s  a r e  a l igned  t o  fo l low t h e  
two p l a n e s  formed by t h e  wedge-shaped b lanke t  s e c t o r  ' 

and two planes extending r a d i a l l y ,  from approximately 
t h e  plasma cen te r .  The f r o n t  f a c e  is  s e m i c i r c u l a r  and 
t h e  back face  i s  a shal low s e m i e l l i p s o i d .  Module wid th  
( d i s t a n c e  along s e c t o r  chord) is v a r i a b l e  t o  match 
s e c t o r  width a t  any po in t .  Module dep th  and thermal  
hydrau l ic  parameters (b reeder  zone d e t a i l s  and c o o l a n t  
mass f lowra te )  may be  a d j u s t e d  t o  match t h e  a c t u a l  
neutron w a l l  load  f o r  any p o s i t i o n  i n  t h e  b l a n k e t  
s e c t o r .  

........ 
: Each module has one c o o l a n t  i n l e t  and twu cool-  
a n t  o u t l e t s  a t  t h e  r e a r  f a c e ,  which a t t a c h  t o  mani fo lds  
'vrapping around t h e  b lanke t  s e c t o r .  The mani fo lds  
connect  a l l  modules i n  t h e  s e c t o r  t o g e t h e r  and run  t o  
. v e r t i c a l l y  a l i g n e d  headers  ( l a r g e  diameter  p ipes )  a t  . 

t h e  top  and bottom of  t h e  s e c t o r .  The headers  a r e  
mechanical ly a t t a c h e d  t o  i n l e t  and o u t l e t  feed  p i p e s  
which remain i n  t h e  r e a c t o r  when a s e c t o r  is  removed. 

j Helium coolan t  e n t e r s  t h e  module through t h e  i n l e t  
a t  t h e  r e a r  f a c e  and f lows r a d i a l l y  toward t h e  f r o n t  

' 

f a c e  (nose)  through plenums formed by t h e  double 
walled module s i d e s .  The helium e n t e r s  t h e  semicir-  
c u l a r  nose a r e a  where t h e  f low is  d iv ided  i n t o  channe ls  
w i t h  f low d i r e c t i o n  a l t e r n a t i n g  between a d j a c e n t  

CROSS R O Y  RIBS 

PURGE 

A 

INLET 
A- A 

SHOYING COOLANT FLOY 

............ . . . . .  -. Figure  1. Helium-Cooled Blanket - pressur ized  ,Module Concept. 



, . - .  
channels. The helium then en t e r s  a plenum region 

( through po r t s  i n  t he  nose inner wal l  and flows radi -  
ally through the  breeding region. The flow then en t e r s  
a second.plenum region and e x i t s  t o  t h e  o u t l e t  mani- 
folds.  

The breeding zone of t h e  pressurized module con- 
t a i n s  c i r c u l a r  breeder tubes,  which extend across  t h e  
f u l l  module width ( t o ro ida l  d i r ec t ion ) .  The tubes a r e  
i n  rows, with successive rows staggered t o  produce an  
equ i l a t e r a l  p i tch .  Each tube cons i s t s  of a s t r u c t u r a l  
s h e l l ,  Li,O breeder, and end f i t t i n g s  f o r  t he  purge gas 

.. L>$Y., : . :. , system. f h e  s h e l l  is s ized  f o r  a d i f f e r e n t i a l  pressure  
. . .:, . . . (collapse) equal  t o  t h e  coolant s t a t i c  pressure. The 

_ ._ . compacted l i th ium oxide breeder i n s ide  t he  s h e l l  has  a 
:&.;.':. ,.. , . .. ..I. emall c e n t r a l  d i a l  hole. The purge gas is introduced 
.:..?; i n t o  t h e  c e l l  through the  f i t t i n g  ;at one end, f lows 

through t h e  breeder center  hole., and e x i t s  through t h e  
f i t t i n g  a t  t he  other end. The helium (a t  ?. 1 atm 
pressure)  permeates t h e  breeder,  and c o i l e c t s  t h e  
t r i t i u m  i n  t h e  form of T,0 o r  LiOT wi th  oxygen suppl ied-  
through a low p a r t i a l  pressure of oxygen i n  t h e  helium. 

.. . 
. . . . 

The breeder tube diameter v a r i e s  through t h e  depth 
of  t h e  blanket ,  fram * 1.8 cmmear t h e  nose t o  % 4.0 cm 
at the  r e a r ,  i n  order t o  maintain breeder temperatures 

1 v i t h i n  minimum and maximum temperature l i m i t s  a s  vol- 
umetric heating r a t e s  decrease with depth through the  - 
blanket .  The breeder temperatures a r e  s ens i t i ve  t o  
changes i n  t he  heat  conductance value (assumed t o  b e  

% U = 2000 w / ~ ~ - o K )  f o r  t h e  s t ruc ture /breeder  i n t e r -  
face. Further work i s  needed t o  optimize breeder tube 
design d e t a i l s  t o  a s su re  t h a t  required values of coa- 
ductance can be r e l i a b l y  maintained throughout t h e  
blanket  design l i f e .  

Heat generated within t h e  breeder i s  conducted 
through t h ~  ~ T P R ~ P . ~  t o  t h e  tube s t r u c t u r e  surface.  The 
helium coolant ,  flowing across  t he  rows of tubes,  re- 
moves t h i s  heat  by convection. Thermal-hydraulic 
c h a r a c t e r i s t i c s  of t he  coolant flow across t he  breeder 
tubes a r e  based on well-established empirical  r e l a t i on -  
s h i p s  f o r  cross-flow tube bank heat  exchangers. Spac- 
i n g  of t he  tubes is  based on an e q u i l a t e r a l  p a t t e r n  
f o r  adjacent  tubes with 1.15 D spacing between tube  
centers  ( i .e . ,  the  gap between any two adjacent  tubes 
i s  equal t o  0.15 times the  tube diameter). This per- . 

m i t s  a r e l a t i v e l y  high packing f r a c t i o n  f o r  the  tubes. 
To ta l  pumping power required f o r  the  breeding zone o n l y :  
is  % 0.5 MW (pump work) f o r  t he  r eac to r ,  which is 
negl ig ib le  i n  comparison t o  t he  power required f o r  the  
r e s t  of t he  helium coolant system. To ta l  pumping power 
f o r  all 24 blanket s ec to r s  is estimated t o  be s 50 MW 
(pump work), o r  s 1.31 of t o t a l  reac tor  thermal power 
v i t h  near ly  a l l  t he  l o s se s  occurring i n  t h e  manifolds. 
This  value includes a l l  preasure l o s se s  occurring i n  
t h e  s ec to r s  between the  i n l e r  and o u t l e t  header d i s -  ' 

connect '. 
The pressurized module makes e f f i c i e n t  use of 

. . .. . . . s t r u c t u r a l  mater ia l  t o  keep the  s t r u c t u r a l  volume 
? a  ' . f r ac t ion  a s  low a s  poss ib le  i n  order t o  enhance t r i t i u m  

breeding. The module s ides  a r e  designed with ou te r  and 
.. inner wal l s  joined by r ib s .  This design i s  s t ruc tu ra l ly .  

:. more e f f i c i e n t  than a s ing l e  pressurized wall.  The use . . .. 
.... ;.,,:':::'; . . -  of two wal ls  a l s o  provides a flow channel around t h e  
. . .b lanket  perimeter through which r e l a t i v e l y  cool  helium 

from the  i n l e t  manifold flows r a d i a l l y  toward t h e  
blanket  nose, keeping a l l  t he  pressurized outer  wa l l  , 
at  c 300 '~  o r  l e s s .  The inner wal l s  experience v i r -  . 
t u a l l y  no d i f f e r e n t i a l  pressure. Tie  rods span t h e  
long width d i r e c t i o n  of t h e  module i n  a square pa t t e rn  
with % 10 cm spacing. These rods r e a c t  t he  pressure  
loads  applied t o  opposite walls ,  f u r the r  reducing 
t h e  required wal l  thickness. I n  t he  sho r t  width 

d ikec t ion ,  a combination of t i e  rods  and t h i n  bulkheads 
is used t& r e a c t  pressure  loads  on opposite walls .  The 
bulkheads a l s o  provide support f o r  t h e  long breeding 
c e l l s  by holding them i n  c lo se - f i t t i ng  holes  t o  prevent 
any s i g n i f i c a n t  de f l ec t ion  of breeder tubes between 
bulkheads. The p o s s i b i l i t y  of using the  breeder tubes  
a a  s t r u c t u r a l  members, t o  e l iminate  t i e - r o d s  i n  t h e  
long v i d t h  (tube a x i a l )  d i r ec t ion ,  w i l l  be invest igated.  

Coolant i n l e t  temperature and o u t l e t  gemperature 
f o r  t h e  pressurized module concept a r e  250 C and 500°c, 
respect ive ly .  A key f ea tu re  of t h i s  concept i s  t h a t  i t  
permits  t he  maximum coolant  temperature t o  be approxi- 
mately equal  t o  t he  maximum temperature of t h e  module 
w a l l  s t ruc tu re .  This is  important because i t  maximizes 
th,e power cycle  e f f i c i ency  f o r  t h e  helium coolant. The 
only highly pressurized s t r u c t u r e  i n  the  module wi th  a 
temperature near ly  equal  t o  coolant  o u t l e t  temperature 
is  the  o u t l e t  manifolds a t  t h e  r e a r  of t h e  blanket .  
A l l  o the r  s t r u c t u r e  i n  t h e  module, with t h e  exception 
of  t h e  breeder tubes near t h e  r e a r  of t h e  blanket ,  w i l l  
experience temperatures no g r e a t e r  than t h e  coolant  out- 
l e t  temperature. The breeder tubes near t h e  r e a r  of 
t h e  blanket  a r e  estimated t o  have a s t r u c t u r a l  temp- 
e r a t u r e  a p p r 5 h a t e l y  3 0 ' ~  higher than  t h e  l o c a l  cool- 
a n t ,  o r  s 530 C. Most of t h e  s t r u c t u r e  w i l l  be a t  con- 
s iderably  lower temperatures, and w i l l  be s ized  f o r  
loads r e s u l t i n g  from thermal g rad i en t s  and r eac t ions  
t o  pressure loads. 

The pressurized module concept f o r  t h e  reference  
blanket  has been analyzed t o  determine a prel iminary 
es t imate  f o r  volume f r ac t ions ,  using both f e r r i t i c  
' s t e e l  a l l o y  and t i tan ium a l l o y  Ti-6242s a s  s t ruc tu re .  
The t a b l e  below shows the  r e s u l t s .  

Fer r  i t  i c  

f V St ruc tu re  14.9 11.1 

* Volume required by breeder without accounting f o r  
voids. 

The lower s t r u c t u r a l  f r a c t i o n  f o r  t h e  Ti-6242s r e s u l t s  . 
from the  higher al lowable s t r e s s e s  compared t o  t h e  
f e r r i t i c  s t e e l .  From t h e  standpoint  of design and fab- 
r i c a b i l i t y  t he  t i tanium a l l o y  seems super ior  t o  t he  
f e r r i t i c  s t e e l  because (a) its duc t i l e - to -b r i t t l e  tran* 
i t i o n  i s  s ign i f i can t ly  l e s s  than room t e q e r a t u r e ,  
(b) no preweld heat t reatment is requi red ,  and (c) post- 
weld heat  t reatment (other than annealing) is not  
required. 

Pressurized Tube Concept 

I n  t h e  second concept f o r  t h e  helium cooled 
blanket  (Fig. 2). helium coolant  is  contained i n  tubes 
which a r e  surrounded by t h e  breeder ( e s sen t i a l l y  t he  
reverse  of t h e  concept previously described).  The 
tubes a r e  each i n  a U-shape. The tube end regions a r e  
aligned r a d i a l l y  along t h e  module ends, with t h e  cen te r  
region running lengthwise through t h e  module. The ends 
of t h e  tubes a r e  manifolded s o  t h a t  each module has 
only one i n l e t  and one o u t l e t  f i t t i n g  f o r  t he  coolant .  
These f i t t i n g s  a r e  located on the  f l a t  back f ace  of t he ' .  
module. The purge gas system cons i s t s  of a s epa ra t e  
n e t w r k  of porous tubes,  each located a t  t h e  approxi- 
mate cen te r  of any four  ad jacent  tubes forming a square 
pa t te rn .  The tubes a r e  connected t o  a separa te  header 
system a t  t h e  module ends which connect t o  i n l e t  and 
:ou t l e t  f i t t i n g s  a t  t h e  r e a r  f a c e  of t h e  blanket. 
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. . The outer'  wal l  of t h e  module i s  s ized  t o  conta in  
..'' t h e  % 1, atm.;ettjtic pressure of t h e  helium purge gas. i 

'The wall.:36,a.ctfvely cooled by helium; construction is : 
simt1ar:;to t h a t  04 the  water-cooled f i r s t  wall.  Active 

..,;. ,,CO?linB is c h s i d e r e d  necessary because t h e  breeder 
: . .. : . .. ] j : ' < ~ : < ~ q d u c t i v ~ ~ ~  .!s too low t o  adequately conduct' heat  away . .  .. . 

C.S:,.:.:~.~.(;. ,-:.;pOPi .thg::oq%er wa l l  t o  maintain a s a t i s f a c t o r y  maximum. 
.- . , .:...-* ~c tu i&g ' t .&~e ' t a tu re .  

. . ' : , .. . .. ' .. 
t : . - 

The module wal l s  enclose t he ' b reede r  which f i l l s  

spacing, i n s ide  diameter , 'and length  vary through t h e  

I t h e  module and surrounds the  tubing network. Tube 

blanket depth t o  achieve equal coolant  temperature 
changes and equal coolant  pressure drops f o r  a l l  t h e  
tubes. Prel iminary theimal-hydraulics'analysis in- 
d i ca t e s  t h a t  tube in s ide  diameters should vary from 
* 1.2 cm a t  t he  f r o n t  t o  % 0.8 cm a t  t he  r e a r  of t h e  

'blanket. Approximately 170 tubes a r e  required f o r  each 
module. A narrow gap between t h e  breeder and t h e  tpbe  
ou te r  surface. has been conservatively assumed f o r  heat  
t r a n s f e r  ca lcula t ione .  Coolant i n l ek  and o u t l e t  temp- 
e r a tu re s  have been assumed t o  be 225 and 475'~. re-  
epectively.  0u t l e t . t empera tu re  was reduced from t h e  
500 '~  assumed f o r  t h e  previous concept t o  keep t h e  
maximum tube temperature t o  % 5 3 0 ~ ~ .  Pressure drops 
f o r  t h e  blanket  have been estimated t o  be 16  t o  18  p s i  

, a t  t he  750 ps ig  coolant  s t a t i c  pressure.  This r e s u l t s  
i n  pumping power l o s se s  of % 2% of r eac to r  thermal 
power. 

.Inner Blanket Concept 

For both concepts, t h e  Lnner blanket  is pres- 
e n t l y  assumed t o  be water-cooled and non-breeding, t o  

i 
minimize AgS. However, should neut ronics  a n a l y s i s  show 

t h a t  add i t i ona l  breeding on t h e  inboard w a l l  is needed 
f o r  e i t h e r  concept, a modified breeding blanket  design 
would be  adopted f o r  t h a t  region. The design would 
e s s e n t i a l l y  cons i s t  of t h e  f i r s t  30 t o  40 cm depth of 
t h e  standard breeding blanket concept. Blanket depth 
and manifolding diameter would be adjusted i n  t h i s  

i 
region t o  maintain t h e  des i red  ABS and st i l l  achieve 

t h e  necessary add i t i ona l  breeding and adequate hea t  
recovery. 

F i r s t  Wall Concept 

The f i r s t  wal l  concept f o r  t h e  reference  design is 
e s s e n t i a l l y  a water-cooled f l a t  panel. The bas i c  con- 
cept  i s  c m o n  t o  both t he  reference  and a l t e r n a t e  

' 

blanket  concepts. De ta i l s  of t h e  des ign  v i l l  be devel- 
oped l a t e r  i n  t h e  study. For t h e  present ,  t he  mechani- 
cal design concept used i s  t h a t  adopted previously i n  . 

3 
t he  ANL-EPR study . I n  t h i s  design,  coaling is accomp- 
l i shed  by c i r c u l a t i n g  pressurized water i n  a network of 
channels t h a t  l i n e  t h e  plasma s i d e  of t he  panel. The 
channels a r e  formed by bonding preformed s t e e l  shee t  
t o  a second, f l a t  s t e e l  sheet. Each panel  s ec t ion  
spans s eve ra l  blanket modules, and has one i n l e t  and 
one o u t l e t  coolant  l i n e  which connect t o  manifolds a t  
t h e  r e a r  of t h e  blanket  module. These manifolds 
connect a l l  f i r s t  wal l  panels  and t h e  water-cooled in- 
board blanket  wi th in  a s i n g l e  blanket  sec tor .  The 
manifolds terminate i n  headers i n  t h e  v i c i n i t y  of t h e  . 
helium blanket  coolant  headers, and a r e  i n  t u r n  attached 
mechanically t o  i n l e t  and o u t l e t  feed pipes which re-  
main i n  t h e  r eac to r  when the  s e c t o r  is removed. 

Comparison of Blanket Concepts 

Figure 3 presents  a comparison of t h e  two blanket  
concepts previously discussed i n  terms of design re- 
quirements and design object ives.  The pressurized tube 
concept has t h e  r e l a t i v e  advantage of s t r u c t u r a l  sim- 
p l i c i t y  compared t o  t h e  pressur ized  module concept. 
The high pressure  coolant  is contained by tubes r a t h e r  
; than  by t h e  i r r egu la r  shape formed by the  module walls. 
:The c i r c u l a r  shape i s  s t r u c t u r a l l y  more e f f i c i e n t  f o r  
lcontaining the  high pressure.  The reduction i n  t he  
.number of s t r e s s  concentrat ion regions could be ex- 
pected t o  r e s u l t  i n  somewhat g r e a t e r  assurance agains t  
/ t h e  occurrence of coolant  leaks.  Fabr ica t ion  would be 
simpler f o r  t h e  pressurized tube concept, a l though. the  
development of a method, t o  f i l l  t h e  module with 
breeder t o  t h e  desired 80X of t h e o r e t i c a l  dens i ty  is 
a concern. 

/ . However, t h e  pressurized tube  concept has  s eve ra l  
inherent  r e l a t i v e  disadvantages. F i r s t ,  the  maximum 
, temperature of each tube w i l l  be % 40-50°c above the  
'coolant  o u t l e t  temperature. The wa l l  th ickness  of t h e  
.- . .. . . - . . - -, . - .. . . - . . . . . 
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Figure  3. Comparison of  Helium-Cooled Blanket Concepts. 

t u b e s  must t h e r e f o r e  be s i z e d  t o  t h e  maximum a l lowable  
s t r u c t u r e  temperature and t h e  c o o l a n t  o u t l e t  tempera- 
t u r e  determined accordingly.  For  t h e  p ressur ized  
niodule concept, maximum s t r u c t u r e  temperature of t h e  . 

p r e s s u r i z e d  o u t e r  w a l l  i s  ?. 5 0 0 ~ ~  wlrich oecuro i n  t h e  

. . o u t l e t  tube  a t  t h e  r e a r  of  t h e  b lanke t .  Given t h e  in -  
. h e r e n t  d i f f e r e n c e s  between maximum coolan t  temperature 

and maximum s t r u c t u r e  temperature f o r  t h e  two concepts, 
f o r  any a r b i t r a r y  maximum s t r u c t u r e  temperature l i m i t  
t h e  p r e s s u r i z e d  module cgncept should permit  coo lan t  

. o u t l e t  temperatures  ?. $ 0  C higher  t h a n  f o r  t h e  p ressur -  
i z c d  t u b e  concept. Second, f o r  t h e  p ressur ized  tube  
concept t h e  pumping power requ i red  f o r  t h e ' b l a n k e t s  
and manifolds t o g e t h e r  i s  est imated t o  be * 3.0% o f  
r e a c t o r  thermal  power; t h i s  compares t o  ?. 1.3% f o r  t h e  
p ressur ized  module concept. The d i f f e r e n c e  amounts t o  
s 66 MW (work), and would s i g n i f i c a n t l y  reduce n e t  
' e f f i c i e n c y  f o r  t h e  power cyc le .  The requirement f o r  
an a c t i v e l y  cooled module w a l l  is a s i g n i f i c a n t  added 
complexity and may p o s s i b l y  r e s u l t  i n  a s i g n i f i c a n t  
r e d u c t i o n  i n  b lanke t  breeding c a p a b i l i t y .  T h i s  , 

requirement w i l l  be  f u r t h e r  i n v e s t i g a t e d .  

F u r t h e r  eva lua t fon  o f  t h e  .two concepts  w i l l  be per-  
formed i n  t h e  a r e a s  0.f s t r u c t u r a l  a n a l y s i s ,  thermal- 
h y d r a u l i c s ,  and n e u t r o n i c s  t o  a i d  i n  t h e  s e l e c t i o n  of 
t h e  d e s i g n  concept t o  be  adopted f o r  t h e  STARFIRE re- 
a c t o r  and opt imized as a n  i n t e g r a l  p a r t  of  t h e  r e a c t o r  
design.  
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